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Abstract 

There are different risk management approaches available, as different firms have different risk goals. 

Value at risk (VaR) is the most frequently used risk measure for asset or portfolio risk and certainly, 

per the Basel framework, is a preferred measure for market risk for banks and financial institutions. 

VaR is still the most popular method for performing financial risk, although it has been criticized on 

many grounds by academic researchers.  A coherent measure of financial risk referred to as expected 

shortfall (hereinafter ES) was proposed by Artzner et al. (1999) to overcome problems associated with 

VaR. 

In the first part of the thesis we evaluate expected shortfall (ES) with a new 6-parameter heavy tailed 

distribution by Baker (2014) alongside recent generalizations of the asymmetric Student t by Zhu and 

Galbraith (2010) and exponential power distributions by Zhu and Zinde-Walsh (2009). This is allowing 

separate parameters to control skewness and tail thickness for both stocks and indexes. The results 

suggest that GAT of Baker (2014) outperforms both AST of Zhu and Galbraith (2010) and APED by 

Zhu and Zinde-Welsh (2009) for both 1-day and multi-day ES forecasts. 

In the second part of the thesis, we present and discuss the use of copulas and vine copulas for financial 

risk management, also introduce the term structure of risk for bivariate and multivariate data. To the 

best of our knowledge, this study is the first to explore multivariate term structure of risk with both 

static and dynamic conditional correlation. The results suggest that copula models for two-dimensional 

data and vine copula models for five, seven and fifteen-dimensional data provide a good fit and 

accurately and efficiently forecast the expected shortfall as compared to DCC-norm and DCC-t. 

In the third part of the thesis, we compare the performance of the Heston option pricing model, Bates 

option pricing model, Merton jump diffusion option pricing model, Kou option pricing model and 

variance gamma option pricing model with a traditional Black-Scholes option pricing model. We also 

evaluate expected shortfall estimates for European options for 1-day and 10-days at a range of 

confidence levels with full Monte Carlo and Monte Carlo delta and Monte Carlo delta gamma derived 

from option pricing models tested in our research. The results indicate that full valuation appears to be 

one of the top models for both 1-day ahead and multi-days ahead ES. This gives us clear implications 

for calculation of ES beyond 10-days. 
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Chapter One: General Introduction 

Over the years, financial risk management has become a popular discipline among academic 

researchers, market analysts and regulators. Cassar and Gerakos (2013) define risk management ‘as 

procedure and mechanism used to monitor and manage an organization’s exposure to risk’. 

There are different risk management approaches available, as different firms have different risk goals. 

Some companies use cash-flow volatility, while others use the volatility in the firm’s value as risk 

measurement object. The size of the company is an important factor when considering risk 

management, as large companies manage risk more effectively than smaller companies 

(Christoffersen, 2012). 

The effectiveness of risk management practices is an important research issue. The theory of corporate 

risk management indicates that shareholders are better off if a firm maintains smooth cash flows 

(Rountree et al., 2008). 

According to Stulz (1996), risk management has the capability both to increase the size of debt and to 

facilitate equity stakes for management by reducing the possibility of financial distress. Risk 

management also eliminates risk of bankruptcy effectively by reducing the direct cost of administration 

and reorganization (lawyers and court cost), indirect cost of interference from the bankruptcy court on 

investment and the operating cost of the firm to zero, as well as increasing the company’s value. 

The academic literature has concentrated on volatility reduction as the primary objective of risk 

management and on variance as the main measure of risk. However, the main purpose of most 

corporate risk management is to avoid lower tail outcomes rather than aiming to reduce variance. Many 

commercial banks and their financial institutions are determined to reduce the probability of lower tail 

outcomes by using the measure known as value at risk (hereinafter VaR). VaR is the maximum 

potential loss over a given time at a certain confidence level. 

VaR is the most frequently used risk measure for asset or portfolio risk and is a preferred measure for 

market risk for banks and financial institutions per the Basel framework. 

The lack of adequacy of traditional risk measures such as VaR explains by the recent financial crises. 

VaR made the financial crises worse by giving wrong security to bank executives and regulators. VaR 

is still the most popular method for assessing financial risk, ass Basel II and Basel III regulatory 

frameworks for banking supervision and risk management still prefer VaR as the market risk measure. 
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VaR has been criticized on many grounds by academic researchers, as VaR does not identify any loss 

beyond VaR level and is not a coherent measure of risk as it cannot satisfy the property of subadditivity 

(Artzner et al., 1997, 1999). Yamai and Yoshiba (2002) mentioned two more issues that a rational 

investor who wants to maximize expected utility may be misled by information provided by VaR. VaR 

is also difficult to use when the investor wants portfolio optimization.  Prause (1999) criticized VaR 

because to avoid bankruptcy one should forecast the distribution of the maximum expected loss.  

Artzner et al. (1999) introduced a new coherent measure of financial risk referred to as expected 

shortfall (hereinafter ES) to overcome problems associated with VaR. ES satisfies the sub-additivity 

property, as observed by Acerbi and Tasche (2002). The VaR provides information only if the loss is 

above a certain level, but does not consider the magnitude of the given loss; ES does provide this 

information. 

VaR and ES estimation frequently assume that long returns are normally distributed. However, the 

assumption of normality of returns is inadequate for most of the time series. The most important 

deviations from normality are the heavy tails.  

The Student t-distributions have played a particularly significant role as a long-tailed distribution. 

However, the Student t distribution that allows for heavier tails than the normal assumes that the 

distribution is symmetric around zero. The skew t distribution proposed by Hansen (1994) allows 

modelling of skewness in conditional distributions of financial returns.  

Since Hansen’s (1994) introduction of the skew t distribution, many skew t distributions have been 

introduced in the financial literature (Fernandez et al., 1995; Fernandez and Steel, 1998; Theodossiou, 

1998; Branco and Dey, 2001; Bauwens and Laurent, 2002; Jones and Faddy, 2003; Sahu et al., 2003; 

Azzalini and Capitanio, 2003; Ayebo and Kozubowski, 2004; Aas and Haff, 2006; Komunjer, 2007; 

Zhu and Galbraith, 2010; Su et al, 2014 and Tolikas, 2014).  

Unlike the skew t distribution, the generalized asymmetric student t distributions constrain the 

modelling of asymmetry and tails by using two parameters, which together control skewness and 

thickness of the left and right tails. Zhu and Zinde-Walsh (2009) proposed as asymmetric exponential 

power distribution (AEPD) that in addition to skewness suggests different decay rates of density in the 

left and right tails. Baker (2014) proposed a 6-parameter generalized t distribution (GAT) that allows 

asymmetry of scale and tail power. The GAT distribution generalized the t-distribution through two 

types of skewness (parameters 𝑐 and 𝑟), and how soon tail behaviour starts (parameter 𝛼). 
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In Chapter 2, we explore a 6-parameter fat tailed distribution by Baker (2014) alongside the recent 

generalizations of the asymmetric Student-t by Zhu and Galbraith (2010) and exponential power 

distribution by Zhu and Zinde-Walsh (2009). We also include the Student t-distribution as used by 

Bollesslev (1987), skewed t distribution by Zhu and Galbraith (2010), skewed exponential distribution 

by Zhu and Zinde-Walsh (2009) and twin- t distribution by Baker and Jackson (2014) as benchmark 

models.  

The empirical analysis focuses on two different groups of data. We include the world’s five major 

indices Standards and Poor’s 500, FTSE-100, NASDAQ 100, Nikkei -225, and DAX-30 indexes for 

the period 1995-2014. We also include individual stock from Standards and Poor’s 500 (Adobe, Bank 

of America, J P Morgan, Pfizer and Starbucks). 

When portfolio variance is time varying, going from 1-day-ahead to ℎ-days-ahead ES without knowing 

the detail for the distribution of returns can be found using simulation based methods. We consider 

Monte Carlo simulation (MCS) with GAT, AEPD, SEPD, AST, SSTD, ST and TTD as standardized 

distributions of returns and filtered historical simulation (FHS) for 5-days and 10-days ES in this 

research. 

We explore different ES methods i.e. EGARCH-GAT by Baker (2014), EGARCH-TTD by Baker and 

Jackson (2014) with EGARCH-AST, EGARCH-SST by Zhu and Galbraith (2010), EGARCH-AEPD, 

EGARCH-SEPD by Zhu and Zinde-Welsh (2009) and Standardized Student t distribution as used by 

Bollesslev (1987). The longer period ES forecasts are estimated by using Monte Carlo simulation with 

GAT, AEPD, SEPD, AST, SSTD, ST and TTD as standardized distributions of returns and filtered 

historical simulation (FHS) for the world’s major five stock indices (S & P 500, FTSE100, NASDAQ, 

Nikkei and DAX30). 

Due to the financial crisis of 2007-2009 and increasing volatility at international financial markets, an 

active risk management is important for any financial organization.  It is also mandatory by Basel II 

and III for the banking sector to encourage the use of sophisticated internal models. However, a critical 

concern of those models is in the handling of dependence among different assets. 

Sklar (1959) introduced the copula as a statistical function that links together univariate distributions 

to form multivariate distributions. According to Sklar’s Theorem, any multivariate joint distribution 

can  decompose into univariate marginal distribution functions and a copula which describes the 

dependence part of the distribution.  

https://en.wikipedia.org/wiki/Cumulative_distribution_function#Multivariate_case
https://en.wikipedia.org/wiki/Marginal_distribution
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The copula has become a popular multivariate modelling tool mainly due to easy modelling and 

estimation of marginal distributions and copula separately. The approach is to model the well-known 

stylized facts of financial returns using marginal distributions (Cherubini et al., 2004 and McNeil et 

al., 2005). 

Constructing higher-dimensional copulas is considered as a difficult problem. There are a huge number 

of parametric bivariate copulas, but the set of known higher-dimensional copulas is rather limited. The 

pair-copula construction can be a straightforward and powerful tool for model building and extending 

bivariate copulas to higher dimensions (Aas et al., 2009).   

There are a significant number of feasible pair-copula decompositions available for high-dimensional 

distributions. Bedford and Cooke (2001, 2002) presented a graphical model denoted the regular vine 

(R-vine). The R-vines are very common and include many possible pair-copula decompositions. 

In Chapter 3, we calculate VaR and ES for different GARCH-Copula models with various marginals. 

They are implemented and tested on both bivariate and multivariate data. The forecasts from copula 

models are then compared to DCC-GARCH-models, as both dynamic conditional correlations models 

(DCC) by Engle (2002) and copulas models by Sklar (1959) allow for two steps modelling of portfolio 

returns.  Marginal return distributions are specified in the first step. In the second step, the marginal is 

linked to a joint distribution either via time variant correlations or a time invariant link function 

(Berger, 2013).  

Zhang et al. (2014) and Brechmann and Czado (2011) provides strong evidence of the superiority of 

the VaR model calculating with the vine copula over historical simulation, mean-variance and DCC-

GARCH models. For multivariate analysis, all developed models and methods are used to analyse the 

five, seven and fifteen companies from DAX 30 index, a major market indicator for the Eurozone.   

The accurate valuation of options is critical for financial market analysts. Since Black and Scholes 

derived their formula on option pricing in the early 1970s, there has been a significant amount of 

theoretical and empirical work on the subject. The fundamental assumption underlying the Black-

Scholes model is that the underlying asset return dynamics are captured by the normal distribution. 

However, over the last three decades, many pricing models have been presented as an alternative to 

the classic Black-Scholes approach as the underlying assumptions by Black-Scholes are violated by 

observed asset returns. 

The rejection of constant variance Brownian motion results in a new class of stochastic volatility 

models introduced by Hull and White (1987), which suggest that volatility is stochastic, varying both 

https://en.wikipedia.org/wiki/Stochastic_volatility
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for time and for the price level of the underlying security. Since then,  many other stochastic volatility 

models have been developed,  including Heston (1993), Duffie and Kan (1996), Ghysels et al.(1996), 

Diffie et al.(2000)  and Balajewicz and Toivanen (2017). 

In finance, all types of models belong to a class of Levy processes called exponential Levy processes. 

Exponential Levy models generalize the classical Black and Scholes formulation and enable jumps in 

the stock prices, while the independence and stationarity of returns are maintained. 

Exponential Levy models are helpful in finance and can be divided into two classes. The first class is 

called jump-diffusion models, in which the normal change of prices is given by a diffusion process, 

interrupted by jumps at irregular breaks. The second class is called infinite activity models and consist 

of models accompanying an absolute number of jumps in each time interval. 

Over the last few years several kinds of jump diffusion models have been developed. Two important 

jump-diffusion models are proposed by Merton (1976) and Kou (2002) respectively. The variance-

gamma process and the normal-inverse Gaussian process are two examples of infinite activity 

processes. These models can represent both insignificant and persistent jumps as well as substantial 

and exceptional ones. 

Merton’s and Heston’s models of option pricing were combined by Bates (1996), who suggested a 

stock price model with stochastic volatility and jumps. The Bates model ignores interest rate risk, while 

Scott (1997) introduced another model that supports interest rates to be stochastic. 

There are several methods to price options. A lot of numerical methods need to implement the partial 

differential equations (PDE). The fast fourier transform (FFT) pricing method is very useful to 

efficiently price derivatives under any model with a known characteristic function, some of which are 

only expressible in this form (Hirsa and Neftci, 2014; Carr and Madan ,2002; Duffie et al., 2000; 

Bakshi and Madan, 2000; Lewis, 2000; Schoutens, 2003; Chourdakis, 2005; Fang and Oosterlee, 2008; 

Gong and Zhuang, 2016a and Deelstra and Simon, 2017). 

The purpose of chapter 4 is to compare option pricing models, which are based on the stochastic 

volatility model, jump diffusion model, infinite activity model and combined stochastic volatility and 

jump diffusion model. We compare the performance of Heston’s (1993) stochastic volatility model, 

Bates’s (1996) as combined stochastic volatility model, Merton jump diffusion model, the Kou model 

as jump diffusion model and the variance gamma as infinite activity model with traditional the Black-

Scholes model. We measure the mean absolute error relative to observed option prices. 

https://en.wikipedia.org/wiki/Stochastic_volatility
https://en.wikipedia.org/wiki/Heston_model
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We have computed VaR and ES estimates for the short position of the reference option, at -day and 

10-days horizon, different ranges of significance levels, and for in sample and out of sample.  

We evaluated various ES models based on partial Monte Carlo and full Monte Carlo methods. For 

partial Monte Carlo, we have calculated delta based and delta gamma based models. The preceding 

deltas and gammas were derived from the Black Scholes model (BSM), variance gamma model (VG), 

Heston model (HS), Bates model (Bat), Merton jump diffusion model and double exponential jump 

diffusion model (Kou). We evaluate 1-day and 10-days expected shortfall (ES) for options based on 

the minimum mean absolute error (MAE). 

This dissertation has contributed to the knowledge in several ways. For univariate data in Chapter 2, 

our study provides further support for the usefulness and superiority of heavy tailed distributions 

especially asymmetric distributions in the US, UK, Japanese and German stock markets. Moreover, it 

proposes the use of heavy tailed distributions to measure financial risk for a longer horizon. 

Chapter 3 not only presents and discusses the use of copulas and vine copulas for financial risk 

management, but also shows the term structure of risk for bivariate and multivariate data. To the best 

of our knowledge, this study is the first to explore multivariate term structure of risk with both static 

and dynamic correlation. 

In Chapter 4, we not only compare non-normal option pricing with Black Scholes but also calculate 

ES with partial Monte Carlo and full Monte Carlo. Per our knowledge, this study is the first to derived 

delta and gamma from the Black Scholes model (BSM), variance gamma model (VG), Heston model 

(HS), Bates model (Bat), Merton jump diffusion model and double exponential jump diffusion 

model(Kou) for both 1-day and 10-days ES forecasts. 
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Chapter Two: Dynamic Expected Shortfall with Non-

Normal Distributions: A Univariate Analysis 
 

1. Introduction 

Over the years, financial risk measurement has become a popular discipline among researchers, market 

analysts and regulators. The lack of adequacy of traditional risk measures was demonstrated by recent 

financial crises.  Recently, value-at-risk (hereinafter VaR) and expected shortfall (hereinafter ES) have 

become the most common risk measures used in financial risk management practice. VaR is the 

maximum loss given a confidence level during a specific time interval, while ES is the average loss 

once this loss overcomes VaR. VaR has become the benchmark measure for financial market risk and 

is endorsed by the Basel Committee. Regardless of its simplicity and ease of implementation, VaR has 

been criticized for not being a coherent measure of risk (Artzner etal., 1999). Artzner et al. (1999) 

introduced a new coherent measure of financial risk referred to as ES, to overcome problems associated 

with VaR. 

Various methods can be used to calculate VaR and ES. The choice of method depends on portfolio 

type, availability of computational resources and time constraints. Parametric, historical simulation 

and Monte-Carlo simulation are the main three approaches. Kim and Lee (2016) examined nonlinear 

regression models to calculate ES and VaR.  

 In this chapter, we mainly focus on the parametric approach. The parametric approach assumes that 

the asset returns follow a specific probability distribution (for example, the normal). The VaR and ES 

measures are based on the estimated parameters of the specific distribution. 

Several models have been suggested in the literature to account for stylized facts in financial returns. 

GARCH models of volatility that were introduced by Engle (1982) and Bollerslev (1986) are 

particularly designed to capture the volatility clustering of financial returns (Engle and Patton, 2001; 

Jondwau and Rockinger, 2003; Poon and Granger, 2003). There are many different GARCH models 

available. The standard GARCH model does not consider the possibility of leverage effect, where 

volatility increases more by a negative shock than by a positive shock of the same significance. The 

leverage effect is noticeable in equity markets, where it exists as a strong negative correlation between 

the equity returns and the change in volatility (Alexander, 2008). In this chapter, we captured the 

asymmetric volatility response by an exponential GARCH (E-GARCH) model, threshold GARCH 

(TGARCH) model and nonlinear GARCH (NGARCH) model. 
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Precise modelling of the empirical distribution of financial returns is critical for estimating financial 

risk measures such as value at risk (VaR) and expected shortfall (ES). It is assumed in the financial 

risk management that returns follow a normal distribution. There is evidence that the empirical 

distribution of returns has fatter tails. The normality assumption first was criticized by Mandelbrot 

(1963) and Fama (1965). As observed from the finance literature, extreme events follow heavier tails 

than normal distribution, especially for high frequency data (McNeil, 1997; Da Silva et al., 2003; 

Jondeau and Rockkinger, 2003).  

Historical simulation employs recent historical data so it allows the presence of heavy tails without 

assuming the probability distribution. However, McNeil and Frey (2000) argued that extreme quantiles 

were especially difficult to estimate under HS because extrapolation beyond past values is impossible. 

When any unusual value enters the sample, quantile estimates obtained by HS tend to be very volatile. 

Moreover, HS is unable to distinguish between high and low volatility periods, especially if a long 

data sample is used to mitigate the influence of the first two problems on the quality of tail-estimate. 

 Filtered historical simulation (FHS) proposed by Barone-Adesi et al. (1999) has an advantage of 

combining historical simulation with the power and adaptability of conditional volatility models. In 

the view of Zikovic and Aktan (2009), Angelidis et al. (2007), Kuester et al (2006) and Marimoutous 

et al. (2009) FHS perform better than other models for estimating VaR. 

VaR and ES estimation frequently assume that long returns are normally distributed (Angelidis et al. 

2004; Bellini and Figa-Talamanca, 2007; Chen and Liao, 2009; So and Yu, 2006). However, the 

assumption of normality of returns is inadequate for most of the time series of returns.  

The most important deviations from normality are the heavy tails. For financial significance, the return 

distribution displays heavy tails because of the chance of an extremely large negative return. 

Distributions with heavier tail likelihood compared to a normal distribution are called heavy tailed. 

Heavy-tailed distributions are essential models in finance because equity returns and other changes in 

market prices have fat tails.  

Extreme value theory (hereinafter EVT) is also an important method that focuses on the tail behavior 

of the distribution of returns. Stochastic volatility is also an important issue, as it has been observed 

that financial returns are not independent over time. In the literature, both stationary (unconditional) 

return distributions and conditional return distributions with stochastic volatility assumption are 

considered. However, EVT emphasizes only big prices changes and their related probabilities by 

directly examining the tails of a probability distribution (Tolika, 2014). 
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The Student t distributions have played a particularly significant role in financial research as models 

for the distribution of heavy-tailed phenomena such as financial markets data. However, the Student t 

distribution allows for heavy tails than the normal, but assumes that the distribution is symmetric. The 

Student t distribution can permit for kurtosis in the conditional distribution but not for skewness.  

Hansen (1994) was the first to propose a generalization of the Student t distribution that allows 

modelling of skewness in conditional distributions of financial returns. Since then, several skew 

extensions of the Student-t distribution have been proposed in the financial risk management literature 

(Fernandez et al., 1995; Fernandez and Steel, 1998; Theodossiou, 1998; Branco and Dey, 2001; 

Bauwens and Laurent, 2002; Jones and Faddy, 2003; Sahu et al., 2003; Azzalini and Capitanio, 2003; 

Ayebo and Kozubowski, 2004; Aas and Haff, 2006, Komunjer, 2007; Zhu and Galbraith, 2010; Su et 

al., 2014 and Tolikas, 2014). Zhu and Zinde-Walsh (2009) suggested an alternative to the skewed t 

distribution that is skewed exponential power distribution.  

However, for finance applications, skew extensions of the Student t distribution may not be able to 

capture all the asymmetries of distributions of financial returns, especially asymmetry in the tails. The 

asymmetric t distribution is more complex but allows for skewness as well as kurtosis. The generalized 

version of Student t distributions constrains the modelling of asymmetry and tails by using two 

parameters together control skewness and thickness of the left and right tails.  Asymmetric 

generalizations of the skewed t distribution allow a separate parameter to control skewness and 

thickness of the left and right tails (Zhu and Galbraith, 2010). Zhu and Zinde-Walsh (2009) proposed 

an asymmetric exponential power distribution (AEPD) that in addition to skewness suggests different 

decay rates of density in the left and right tails. 

Baker (2014) proposed a 6-parameter generalized t distribution(GAT) that allows asymmetry of scale 

and tail power. The GAT distribution generalizes the t distribution through two types of skewness 

(parameters 𝑐 and 𝑟), and how soon tail behaviour starts (parameter 𝛼). The GAT distribution avoids 

the discontinuity of the second derivative of the AST distribution that is problematic for the estimation 

of standard errors on fitted model parameters because of the reliance on the second derivative of the 

likelihood. The GAT distribution can fit at least as well as the AST distribution. Moreover, varying 

the parameter 𝛼 can sometimes improve the fit, although this option is not available with the AST 

distribution. 

 In the financial risk management literature, long tailed and asymmetric conditional distributions are 

studied substantially. Researchers extensively applied the fat tailed and asymmetric class of returns 

distributions to calculate VaR and ES. Nadarajah et al. (2014) developed a detailed survey of well-
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known techniques for expected shortfall calculation. Abad et al. (2014) explored the existing literature, 

especially new approaches on VaR estimation and back-testing approaches to evaluate different VaR 

methods, performances. 

Baker and Jackson (2014) introduced another distribution known as the twin-t distribution(TTD). The 

TTD is heavy-tailed like the t distribution, but is closer to normality in the central part of the curve. 

This property has an implication that the distribution could be helpful when one requires a normal 

distribution, but with robustness to outliers. 

We only include long tailed distributions in this chapter for the analysis of ES, as previous studies 

strongly recommend that those models which allow fat tails or skewness estimate VaR and ES 

correctly (Abad et al., 2014; Keller and Rosch, 2016).  

Furthermore, we explore a new 6-parameter heavy tailed distribution by Baker (2014) alongside recent 

generalizations of the asymmetric Student t by Zhu and Galbraith (2010) and exponential power 

distribution by Zhu and Zinde-Walsh (2009) to allow separate parameters to control the skewness and 

the thickness of each tail for modelling the conditional distribution of asset returns and downside risk 

through expected shortfall. We also include the Student t-distribution by Bollesslev (1987), skewed t 

distribution by Zhu and Galbraith (2010), skewed exponential distribution by Zhu and Zinde-Walsh 

(2009) and twin- t distribution by Baker and Jackson (2014) as benchmark models.  

The empirical analysis focuses on two different groups of data. Initially, we use the same data as used 

by Zhu and Galbraith (2011), which includes Standard and Poor’s index, Adobe, Bank of America, JP 

Morgan, Pfizer and Starbuck. Furthermore, we extend this study to a new dataset of world four major 

world indexes. We include FTSE-100, NASDAQ 100, Nikkei -225 and DAX-30 indexes for the period 

1995-2014. 

Calculation of 1-day ahead ES follows a two-stage procedure. In the first step, a asymmetric GARCH-

type stochastic volatility model is fitted to the historical data by maximum likelihood (ML). From this 

model, the so-called standardized residuals are extracted. The asymmetric GARCH-type model is used 

to calculate 1-step predictions of conditional mean (𝜇𝑡+1) and conditional standard deviation (𝜎𝑡+1). 

In the second step, various long-tailed and asymmetric distributions are applied to the standardized 

residuals and calculate 𝐹−1(𝑝)  with estimated parameters of distributions. Finally, one day ahead 

conditional 𝐸𝑆𝑡+1 calculated. 
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For the situation where the portfolio variance is time varying, going from 1-day-ahead to ℎ-days ahead 

ES is complicated. As in the case of GARCH, scale by the horizon  ℎ  is not attainable as variance 

means revert. Additionally, the returns over the next ℎ days are not normally distributed. The answer 

of computing VaR and ES for longer horizons without knowing the detail for the distribution of returns 

can be found using simulation based methods. We consider Monte Carlo simulation (MCS) with GAT, 

AEPD, SEPD, AST, SSTD, ST and TTD as standardized distributions of returns and filtered historical 

simulation (FHS) for 5-days and 10-days ES in this research. 

The contribution of this chapter is as follows. First, our study provides further support for the 

usefulness and superiority of fat tailed distributions especially asymmetric distributions in the US, UK, 

Japanese and German stock markets. Second, it proposes the use of fat tailed distribution to measure 

financial risk for a longer horizon. This is in contrasts with the current literature that mainly focuses 

on the one day ahead ES, our approach considers the usefulness of fat tail distribution for calculation 

of ES beyond 1-day. 

To the best of our knowledge, our research is the first to consider two new distributions and compare 

them with other previous distributions for expected shortfall calculation. Moreover, our study is also 

first to calculate VaR and ES with Monte Carlo simulation with selective numbers of distributions and 

Filter Historical simulation for longer horizons. As in this manner, the contribution of our research to 

the literature is many fold. 

The remainder of this paper is organized as follow: Section 2 addresses the previous studies; Section 

3 addresses the methodological framework; Results are discussed in section 4; Section 5 concludes the 

findings. 

2. Review of Literature 

2.1. Introduction 

The academic literature has concentrated on volatility reduction as the primary objective of risk 

measurement, and on variance as the main measure of risk. However, the main purpose of most 

corporate risk measurement is to avoid lower tail outcome rather than aiming to reduce variance. Many 

commercial banks and their financial institutions are determined to reduce the probability of lower 

tails outcome by VaR. VaR is maximum potential loss over a given period at a certain confidence 

level. Value at Risk is the most frequently used risk measure for asset or portfolio risk, and certainly, 

per the Basel framework is a preferred measure for market risk for banks and financial institutions. 
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McNeil (2000) define VaR as a high quantile of the distribution of losses, usually the 95th or 99th 

percentile. VaR is criticized for not a being coherent risk measure with no indication of the potential 

size of the loss that exceeds it. While using the VaR for risk management the optimizing behaviour of 

investor may results in extreme loss, because VaR comes up with confusing results. Consequently, 

such investor behaviour end with higher volatility in equilibrium security prices (Basak and Shapiro, 

2001).  

Artzner et al. (1999) suggest a new coherent risk measure the expected shortfall or tail conditional 

expectation instead of VaR. The tail conditional expectation is the expected size of a loss that exceeds 

VaR. Expected shortfall needs a larger size sample than VaR for the same level of accuracy (Yamai 

and Yoshiba, 2002b). 

Yami and Yoshiba (2002b) claim that widespread use of VaR for risk management could lead to 

market instability. So, use of VaR and expected shortfall should not dominate financial risk 

management. The assumption of normal distribution in standard VaR models disregards the fat tailed 

properties of actual returns and underestimates the likelihood of extreme price movement. To capture 

the information disregarded by VaR and expected shortfall, it is necessary control to diverse aspects 

of the profit/loss distribution, such as tail fatness and asymptotic dependence. 

2.2. Value at Risk and Expected Shortfall Techniques  

Value at risk and expected shortfall is well presented in previous literature (Hull, 2006; Jorion, 2001; 

McNeil et al., 2005; Dowd, 2005 and Christoffersen, 2012). VaR is defined as a high quantile of the 

distribution of losses and expected shortfall is defined as the conditional expectation of loss for losses 

beyond VaR as a coherent measure of risk. Expected Shortfall is the expected size of a return exceeding 

VaR.  

Perignon et al. (2008) reinforce the debate on the accuracy of the VaR models used by commercial 

Banks. They find very substantial evidence of overstatement of VaR by commercial banks. This 

empirical outcome against the common understanding that banks purposely under report their risk to 

reduce market risk capital charge. Due to overstating of VaR there is a high cost borne by the banks, 

but there are also other negative implications. Banks appear riskier than perceived; exaggeration about 

VaR reporting may also result in inefficient portfolio allocation; and redundant regulatory capital may 

restrict some attractive projects being funded, which has a harmful effect on the economy’s growth. 

Righi and Ceretta (2015) explore the criterion with regard to the value of various models and methods 

in ES estimation, taking into account well defined asset categories, estimation windows and 
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significance levels. Unconditional, conditional and quantile regression based models have been used. 

To evaluate ES a new test based on the dispersion truncated by VaR has proposed alongside with the 

usual ES back-test. 

 

Kim and Lee (2016) perform a simulation study for the expectile regression models generated from 

various GARCH classes of models and back-test the performance of the VaR and ES. Wied et al. 

(2016) proposed new test evaluating VaR for assessing the systemic risk of the banking sector.  

There are a few stylized facts of financial returns that must be considered while selecting a risk method. 

It is widely agreed that financial asset return volatilities are time-varying. The generalized 

autoregressive conditional heteroskedasticity (GARCH) type of volatility specification can capture the 

stylized facts existing in the volatility of financial market returns. The GARCH family of models has 

been extensively used in financial research for estimating volatility and financial risk (Engle & Patton, 

2001; Jondeau & Rockinger, 2003; Poon & Granger, 2003 and Leeves, 2007). 

Previous research shows that risk models that perform poorly can work better by just apply volatility 

models like GARCH, exponential smoothing and Historical Simulation. GARCH volatility models are 

advantageous and frugal framework for modeling key dynamic features of returns, including volatility 

(Andersen and Bollerslev, 2006 and Bin Su et al., 2014). 

Ardia and Hoogerheide (2014) explore the effect of the estimated frequency of frequently used 

GARCH models on one day ahead forecasts of Value at risk(VaR) and Expected Shortfall(ES). 

Practically the revising frequency is used for the extensive computational significance of substantial 

risk management system that includes thousands of models expected to be estimated and updated. 

Even though generalized autoregressive conditional heteroscedastic (GARCH) models have been 

extensively used over the years, they are not free of limitations. Another stylized fact of financial 

volatility is that the large change in asset prices tend to be followed by further large changes and the 

small changes are followed by smaller changes known as volatility clustering (Brooks, 2008). 

 Daily returns have very little autocorrelation, meaning that the returns are almost impossible to predict 

from their past. The stock market exhibits occasional, very large drops but not equally large up- moves. 

Consequently, the return distribution is asymmetric or negatively skewed. Black (1976) associates this 

impact to the evidence as increase in leverage of the asset (i.e., the debt equity ratio), that causing the 

asset to be more volatile. Pagan and Schwert (1990), Engle and Ng (1993) defined the concept of news 

impact curve that associates past return shocks to current volatility. The asymmetric news impact on 
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volatility is commonly referred to as the “leverage effect” (Christie, 1982; French et al., 1987; Pagan 

and Schwert, 1990) and Christophersen, 2012).  

 

However, GARCH model assumes only significance of unanticipated excess return determines the 

conditional variance without considering the positive and negative changes. Several parameterizations 

have been proposed for a model in which the conditional variance responds asymmetrically to positive 

and negative residuals. The exponential GARCH or EGARCH model of Nelson (1991), the threshold 

GARCH model or TGARCH of Zakoian (1991), The GJR model of Jagan-Nathan and Runkle (1993) 

and Absolute GARCH model or AGARCH model of Hentschel (1995) have been proposed to present 

potential improvements over the conventional GARCH models. 

In risk management practice the selection of the appropriate distribution is very critical. As it directly 

affects the measurement processes. Any drawback of statistical distribution can produce inaccurate 

estimation of financial risk and result in significant flaws in financial risk management. For instance, 

an inadequate capital provided to reduce the probability of extreme losses. Therefore, finding a 

statistical distribution that captured the extreme events in financial returns for VaR and ES calculation 

remains a serious research issue. 

Non-normality of the asset return is also an important stylized fact, the heavy tailless is the most 

important deviations from normality and the Student t distribution captures this feature. In financial 

literature, it is common to use Student t distribution to capture the heavy tail-ness when modelling VaR 

and ES (Baillie& Bollerslev, 1992; Beine, Laurent, & Lecourt, 2002; Bollerslev, 1987; Angelidis et 

al., 2004; Huang & Lin, 2004; Ane 2006 and So & Yu, 2006). Even though the Student t distribution 

capture the feature of fat tails in financial returns. However, the problem of the t distribution is that it 

can allow for kurtosis in the conditional distribution but not for skewness because it is symmetrical 

around zero.  

Baker and Jackson (2014) developed a new distribution, heavy-tailed like the t distribution that is 

closer to normality in the main body of the distribution. Hanssen (1994) was the first who addresses 

the lack of skewness in the Student t distribution and suggested a skew extension to the t distribution 

for modelling financial returns. Since then, many studies have examined the application of the Skew 

Student t distribution to modelling financial returns. 

Hansen (1994) extends the Student t distribution with skewness parameter in the distribution. 

Fernandez and Steel (1998) introduce a distribution that account both skewness and fat tailless in the 
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same distribution, which allow for very flexible modelling of skewness and fat tail features of the data. 

The skewness parameter controls the mass and degree of freedom account for the fat tailless. 

There are many extensions of skewed t distribution are available in the literature (Hansen, 1994; 

Fernandez and Steel, 1998; Theodossiou, 1998; Branco and Dey, 2001; Bauwens and Laurent, 2002; 

Jones and Faddy, 2003; Sahu et al., 2003; Azzalini and Capitanio, 2003; Aas and Haff, 2006; Zhu and 

Zinde-Welsh, 2009 and Zhu and Gilbraith, 2010).  

These skewed t distributions capture the asymmetry and tails by using two parameters which together 

control skewness and thickness of the left and right tails. For this reason, generalized skewed Student 

t distributions with separate skewness parameter and tail parameters   can improve the fit and forecast 

of empirical data in the tail area are important to risk management practice. 

Zhu and Galbraith (2010) proposed an asymmetric t distribution(AST) a three-parameter generalized 

t distribution. In their view, the generalizations of the Student t that allows asymmetry are potentially 

valuable in empirical modelling and forecasting. When one of the tail parameters goes to infinity, the 

AST behaves as a Student t on the left side and as a Gaussian on the right side, implying one heavy 

tail and one exponential tail. With two tail parameters, the AST can favour empirical distributions of 

daily returns of financial returns that are often skewed and have one heavy tail and one relatively thin 

tail. 

Zhu and Zinde-Welsh (2009) proposed Asymmetric Exponential Power Distribution (AEPD) and 

suggest a generalizes of Skewed Exponential Power Distributions (SEPD) in a way that in addition to 

skewness, introduces different decay rates of density in the left and right tails. 

Baker (2014) proposed a 6- parameter fat tailed distribution(GAT) that allows asymmetry of scale and 

tail power. The advantage of GAT by Baker (2014) over AST by Zhu and Galbraith (2010) is that it 

avoids the discontinuity of the second derivative of AST distribution. The discontinuity of second 

derivative cause no problem in fitting the distribution by likelihood maximisation, but the calculation 

of standard errors on fitted model parameters is troublesome because of reliance on the second 

derivative of the log-likelihood. The GAT distribution generalises the t- distribution through two types 

of skewness (parameter 𝑐 and 𝑟) and how soon tail behaviour starts (parameter 𝛼). The GAT 

distribution can fit the financial data as correctly as the AST, and sometime even improves the fit by 

letting the parameter 𝛼 to vary. 
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2.3. Extreme Value Theory (EVT) 

McNeil (1997) consider EVT as an easily implemented method for specific risk measurement 

problems such as market risk measurement, and has an important role for future risk measurement 

developments. While in the view of Diebold et al. (1999), EVT provides convenience for the sub areas 

of risk management, but it will not transform the discipline of risk management. There is need to use 

EVT with caution as very low frequency events with small sample size are filled with pitfalls.  

However, it helps to draw smooth curves through extreme tails of empirical functions.  

McNeil (2000) combines quasi maximum likelihood fitting of GARCH models to estimate the current 

volatility and extreme value theory (EVT) to estimate the tail of the distribution of GARCH model. 

The results indicate that conditional distribution of asset returns with current volatility performs better 

for VaR estimation than unconditional approach. As an alternative risk measure the ES has better 

theoretical properties than quantile, and should be modeled by a fat tailed distribution preferably EVT. 

The EVT provides critical view on skewness, fat tails, rare events and stress scenarios. However, to 

estimate tails beyond or at the limit of mathematical data assumptions is needed, which are difficult to 

verify in practice. Other issues should be considered like multiple dependent risk factors unresolved, 

maximum likelihood estimators are not granted, there is need to consider other estimation procedure 

like methods of moments, Monte Carlo simulation or parametric bootstrapping can be considered when 

applied EVT theory to portfolios (Embrechts, 2000). Empirical literature proves that techniques based 

on the EVT and FHS are superior and feasible methods for forecasting VaR (Abad et al., 2014). 

Extreme theory captures tail areas that are very different and possibly more advantageous than the tails 

obtained with the standard approach.  For risk management techniques, extreme value theory provides 

a more accurate approach and tail estimation procedure for value at risk calculation. With extreme 

value distribution VaR calculations are more rigorous, and tails allow more authentic estimates of the 

occurrence rate and the extreme observations size (Bali, 2003). 

In EVT block maxima and Peaks over Threshold (POT) are two extensively used estimation 

approaches. POT employs the data more effectively than the block maxima method when individual 

data points are available, like with high frequency financial data. Independence of financial data is an 

important requirement for the application of POT, but most of the financial data show external 

clustering. However, this problem can be overcome by combining autoregressive (AR) and GARCH 

with POT and estimate VaR and ES (Chen et al., 2010). 
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2.4. Longer Horizon Value at Risk and Expected Shortfall 

For the computation of longer horizon VaR and ES longer, we need to depend on simulation based 

methods instead of closed form solution. We can employ the simulation based dynamic risk models to 

estimate VaR and ES at any horizon of interest and therefore to calculate the entire term structure of 

risk (Christoffersen and Diebold, 2000; Dowd et al, 2003; Asai and McAleer, 2009; Pesaran et al. 

2009; Wang et al., 2011 and Christoffersen, 2012). 

Dowd et al (2003) conducted a study to calculate the long term VaR. They proposed a simple technique 

to the calculation of long-term VaR to avoid issues related to the square-root procedure for 

hypothesizing VaR and anticipation of day-to-day volatility forecasts over longer horizons. 

In the view of Wang (2011) VaR calculation over a short horizon, square root time rule (SRTR) scaling 

to transform to longer-term tail risks, is probably to be unsuitable and ambiguous. It is necessary to 

apply the SRTR carefully. 

Degiannakis et al. (2014) estimated multi-day Value-at-Risk (VaR) and Expected Shortfall (ES) 

through the Monte Carlo simulation technique for computing multi-period volatility to a Fractionally 

Integrated Generalized Autoregressive Conditional Heteroscedasticity (FIGARCH) structure for 

leptokurtic and asymmetrically distributed portfolio returns. 

Considering the discussion above, there is no obvious consensus in the financial literature on which is 

the most suitable 1-day ahead Value at risk (VaR) and Expected Shortfall (ES) model. Moreover, there 

is no extensive literature available on VaR and ES forecasting based on longer horizons. 

Nadarajah et al. (2014) develop a detail investigation of notable techniques for expected shortfall 

computation. Their research contains 140 references that emphasis on recent developments in 

calculation of expected shortfall. The survey performs as a source of reference for further research for 

financial risk measures. 

To be more precise, in our research we studied different 1-day ES methods by using different non-

normal distributions. Another objective of this research is to examine the predictive ability of Monte 

Carlo Simulation (MCS) and Filtered Historical Simulation (FHS) in longer forecasting horizons. 

There is no extensive literature on VaR and ES forecasting based on longer horizons. 
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3. Methodological Framework 

In the section, we explain in detail the procedure for the calculation and comparison of different models 

for the matter of VaR and ES estimation. We split this section into seven parts and then into further 

sub parts for best understanding: (1) asset returns; (2) stylized facts of returns; (3) stochastic volatility 

models; (4) dynamic risk models; (5) calculating VaR and ES models;(6) term structure of risk for 

univariate models; (7) back-testing ES models. 

3.1. Asset Returns 

The market risk is explained by the asset prices movements, and we observe prices in the financial 

market. However, most empirical studies involve asset returns for the risk analysis. The reason is that 

asset returns produces more attractive statistical properties than price series. There are many return 

definitions; our study involves log returns. 

3.1.1. Simple Returns 

Pt is the price of an asset for the period t (with assumption of no dividend). Simple gross return is: 

1 + 𝑟𝑡 =
𝑃𝑡
𝑃𝑡−1

 

𝑃𝑡 = 𝑃𝑡−1(1 + 𝑟) 

One period simple return: 

𝑟𝑡 =
𝑃𝑡
𝑃𝑡−1

− 1 

𝑟𝑡 =
𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
   (1) 

Holding the asset for k-period from t to t-k, k-period simple gross returns: 

 

1 + 𝑟𝑡[𝑘] =
𝑃𝑡
𝑃𝑡−𝑘

=
𝑃𝑡
𝑃𝑡−1

×
𝑃𝑡−1
𝑃𝑡−2

× …×
𝑃𝑡−𝑘+1
𝑃𝑡−𝑘

 

 

1+𝑟𝑡[𝑘]=(1 + 𝑟𝑡)(1 + 𝑟𝑡−1)… (1 + 𝑟𝑡−𝑘+1) 
 

= ∏ (1 + 𝑟𝑡−𝑗)
𝑘−1
𝑗=0             (2) 

 

The k-period simple return: 

 

𝑟𝑡[𝑘] =
𝑃𝑡−𝑃𝑡−𝑘

𝑃𝑡−𝑘
              (3) 

3.1.2. Log-Returns 

The natural log of simple gross returns is called log return: 
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𝑅𝑡 = 𝑙𝑛(1 + 𝑟𝑡) = 𝑙𝑛
𝑃𝑡

𝑃𝑡−1
= 𝑝𝑡 − 𝑝𝑡−1         (4) 

where 

𝑝𝑡 = 𝑙𝑛𝑃𝑡 

An advantage of the log-return is that multi-period return is easy to calculate, as it is simply the sum 

of one period return. 

𝑅𝑡[𝑘] = 𝑙𝑛(1 + 𝑟𝑡)[𝑘] = 𝑙𝑛[(1 + 𝑟𝑡)(1 + 𝑟𝑡−1)… . (1 + 𝑟𝑡−𝑘+1)] 

𝑅𝑡[𝑘] = 𝑅𝑡 + 𝑅𝑡−1 +⋯+ 𝑅𝑡−𝑘+1 

𝑅𝑡[𝑘] = ∑ 𝑅𝑡−𝑗
𝑘−1
𝑗=0              (5) 

3.2. Stylized Facts of Financial Returns 

Many empirical studies identified common statistical properties of financial returns that are known as 

stylized facts. To gain better intuition of the stylized facts of financial data, we will look at a sample 

at Standard and Poor’s 500 for the period 1995-2013. 

Daily returns have very little autocorrelation. We can write autocorrelation function as: 

𝐶𝑜𝑟𝑟(𝑅𝑡+1, 𝑅𝑡+1−𝜏) ≈ 0,     for 𝜏 = 1,2,3………… ,40       (6) 

 In other words, returns are almost impossible to predict from their past. Figure 1 shows the correlation 

of daily S&P 500 returns with returns lagged from 1 to 40 days. This is an evidence of very low 

conditional mean of returns. 

The unconditional distribution of daily returns does not follow the normal distribution. Figure 2 shows 

a histogram of the daily S&P 500(1) return data with the normal distribution curve. Notice how the 

histogram is more peaked around zero than the normal distribution. Although the histogram is not an 

ideal graphical tool for analyzing extremes, extreme returns are also more common in daily returns 

than in the normal distribution. We say that the daily return distribution has fat tails. Fat tails mean a 

higher probability of large losses (and gains) than the normal distribution would suggest. Appropriately 

capturing these fat tails is crucial in risk management. 

The stock market exhibits occasional, very large drops but not equally large up- moves. Consequently, 

the return distribution is asymmetric or negatively skewed. Some markets such as that for foreign 

exchange tend to show less evidence of skewness. 

The standard deviation of returns completely dominates the mean of returns at short horizons such as 

daily. It is not possible to statistically reject a zero-mean return. Our S&P 500 data have a daily mean 

of 0.0002% and a daily standard deviation of 1.0346%. 
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Variance, measured, for example, by squared returns, displays positive correlation with its own past. 

This is called volatility clustering. This is most evident at short horizons such as daily or weekly. 

Observations of this type in financial time series have led to the use of GARCH models in financial 

forecasting and derivatives pricing. 

Figure 3 shows the autocorrelation in squared returns for the S&P 500 data, that is: 

𝐶𝑜𝑟𝑟(𝑅𝑡+1
2 , 𝑅𝑡+1−𝜏

2 ) > 0, 𝑓𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝜏         (7) 

Equity and equity indices display negative correlation between variance and returns. This is often 

called the leverage effect, arising from the fact that a drop in a stock price will increase the leverage 

of the firm if debt stays constant. This increase in leverage might explain the increase in variance 

associated with the price drop. The leverage effect can be captured by incorporating the EGARCH, 

NGARCH or TGARCH models. For news impact curve see figure 4. 

Even after standardizing residuals by a time-varying volatility measure, they still have fatter than 

normal tails. We will refer to this as evidence of conditional non -normality (see, Figure 5). 

3.3. GARCH Type Models 

The volatility of financial asset returns changes over time, with periods when volatility is atypically 

high as compared with periods when volatility is unusually low. This volatility clustering behaviour 

depend on the frequency of the data and is very common in daily data. Volatility clustering has 

important implications for financial risk measurement. The generalized autoregressive conditional 

heteroscedasticity (GARCH) models of volatility that were introduced by Engle (1982) and Bollerslev 

(1986) are particularly designed to capture the volatility clustering of financial returns (Alexander, 

2008). 

Based on the above stylized facts our returns take the form: 

𝑅𝑡+1 = 𝜇𝑡+1 + 𝜎𝑡+1𝑧𝑡+1            𝑤𝑖𝑡ℎ 𝑧𝑡+1~𝑖. 𝑖. 𝑑. 𝐷(0,1)       (8) 

where 𝜎𝑡+1 is the conditional standard deviation of the return, so the conditional variance is 𝜎𝑡+1
2  and 

𝜇𝑡+1 is the conditional mean of the return. These values are considered to depend in a deterministic 

way on the past behavior of return. The innovation term 𝑧𝑡+1is assumed to be an independent with an 

identical unknown distribution. We assume that unknown distribution has a mean zero and variance 1 

i.e. D (0, 1). In the time series language 𝑅𝑡+1 is assumed to be a stationary process. We include GARCH 

(1, 1), EGARCH (1, 1), NGARCH (1, 1) and TGARCH (1, 1) with GAT, AEPD, SEPD, AST, STT, 

ST, and TTD as unknown distributions in this research. 

http://en.wikipedia.org/wiki/Volatility_clustering
http://en.wikipedia.org/wiki/GARCH
http://en.wikipedia.org/wiki/Derivative_%28finance%29
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The simplest generalized autoregressive conditional heteroskedasticity (GARCH) model of dynamic 

variance can be define as: 

𝜎𝑡+1
2 = 𝛼0 + 𝛼1𝑅𝑡

2 + 𝑏1𝜎𝑡
2           (9) 

where 𝛼0 > 0, 𝛼1 ≥ 0, 𝑏1 ≥ 0 

 

The symmetric GARCH model suppose the response of the conditional variance to negative market 

shocks is just the same as its response to positive market shocks of the same significance (Alexander, 

2008). As we know from the stylized facts bad news or negative shocks have more impact on volatility 

than good news or positive shocks. Per Black (1976) this is because bad shocks lower the stock price, 

thus result in increased leverage (the debt and equity ratio) and stock become riskier. Asymmetric news 

impact on the volatility is referred as leverage effect. We introduce EGARCH (p, q), TGARCH (p, q) 

and NGARCH (p, q) to capture the asymmetric effect. 

The EGARCH is an asymmetric GARCH model that specifies not only the conditional variance but 

the logarithm of the conditional volatility. It is widely accepted that EGARCH model gives a better in-

sample fit than other types of GARCH models (Alexander, 2008). 

The exponential GARCH model or EGARCH by Nelson (1991) captures the leverage effect and is 

defined as: 

𝑙𝑛𝜎𝑡+1
2 = 𝛼0 + 𝛼1𝑧𝑡 + 𝛾(|𝑧𝑡| − 𝐸(|𝑧𝑡|)) + 𝑏1𝑙𝑛𝜎𝑡

2                 (10) 

𝛼𝑖 capture the sign effect, so when 𝛼𝑖 < 0 there is leverage effect and 𝛾𝑖 represent the size effect, so 

when 𝛾𝑖 > 0 the leverage effect present. 

The threshold GARCH referred as TGARCH model by Zakoian (1994) specification is: 

𝜎𝑡+1
2 = 𝛼0 + 𝛼1𝑅𝑡

2 + 𝛾𝑆𝑡𝑅𝑡
2 + 𝑏1𝜎𝑡

2                   (11) 

𝑆𝑡 = {
1      𝑖𝑓    𝑅𝑡 < 0
0     𝑖𝑓     𝑅𝑡 ≥ 0

 

The leverage implies that 𝛾 > 0. 

 

The model specification for nonlinear GARCH (NGARCH) model by Engle and Ng (1993) is: 

𝜎𝑡+1
2 = 𝛼0 + 𝛼1𝜎𝑡+1

2 (𝑧𝑡 − 𝛾)2 + 𝑏1𝜎𝑡
2                  (12) 

𝛾 > 0 implies present of leverage effect, indicates a negative correlation between the innovations in 

the asset return and conditional volatility of the return. 
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3.4. Financial Risk Measures 

3.4.1. Value at Risk (VaR) 

Value at risk is generally defined as possible maximum loss over a given holding period within a fixed 

confidence level. Let 𝑅 be the random variable whose unknown cumulative distribution function is 𝐹𝑅.  

In this research, we calculate VaR based on log return. Let the 𝑃𝑡  be the price of financial asset 𝑅 for 

day 𝑡, 𝑅𝑡 is defined as: 

𝑅𝑡 = 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
)                      (13) 

VaR is defined as: 

𝑃(−𝑅𝑡 > 𝑉𝑎𝑅) = 𝑝 

𝑃(𝑅𝑡 < −𝑉𝑎𝑅) = 𝑝           

Christopherson (2012) defined “VaR as the number so that we would get a worse log return only with 

probability p. That is, we are (1−p) 100% confident that we will get a return better than VaR”. 

The dynamic of 𝑅𝑡 is given by: 

𝑅𝑡+1 = µ𝑡+1 + 𝜎𝑡+1𝑍𝑡+1          

𝑍𝑡+1 =
𝑅𝑡+1 − µ𝑡+1

𝜎𝑡+1
 

one day ahead  𝑉𝑎𝑅𝑡+1
𝑝

: 

𝑃(𝑅𝑡+1 < −𝑉𝑎𝑅𝑡+1
𝑝

) = 𝑝                               (14) 

= 𝑃(µ𝑡+1 + 𝜎𝑡+1𝑍𝑡+1 < −𝑉𝑎𝑅𝑡+1
𝑝 ) = 𝑝 

= 𝑃 (𝑍𝑡+1 <
−𝑉𝑎𝑅𝑡+1

𝑝 − µ𝑡+1
𝜎𝑡+1

) = 𝑝 

= 𝐹 (
−𝑉𝑎𝑅𝑡+1

𝑝 − µ𝑡+1
𝜎𝑡+1

) = 𝑝 

−𝑉𝑎𝑅𝑡+1
𝑝 − µ𝑡+1
𝜎𝑡+1

= 𝐹−1(𝑝) 

𝑉𝑎𝑅𝑡+1
𝑝 = −µ𝑡+1 − 𝜎𝑡+1𝐹

−1(𝑝)                   (15)

  

Note that 𝐹−1(𝑝) is the standardized quantile function, which measures risk in terms of the number of 

standard deviations from zero.  
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3.4.2. Problems associated with VaR Models 

3.4.2.1. The Problem of Tail Risk 

VaR main drawback is that it ignores extreme losses. The VaR number only tells us that 1% of the 

time we will get a return below the reported VaR number, but it says nothing about what will happen 

in those 1% worst cases. 

3.4.2.2. VAR is not Coherent 

Per Artzner et al. (1999) a risk measure that satisfies these conditions is called a coherent risk measure: 

I. Monotonicity: 

For all 𝑋 ≤ 𝑌 for each outcome, then  𝜌(𝑋) ≤ 𝜌(𝑌) 

II. Subadditivity: 

For all X and Y,𝜌(𝑋 + 𝑌) ≤ 𝜌(𝑋) + 𝜌(𝑌) 

III. Positive homogeneity.  

For a positive constant k, 𝜌(𝑘𝑥) = 𝑘𝜌(𝑥) 

IV. Translation invariance.  

For a constant k,𝜌(𝑘 + 𝑥) = 𝑘 + 𝜌(𝑥) 

The VaR is not considered a coherent measure of risk, because it fails to satisfy the subadditivity 

property, i.e., the VaR of a two assets portfolio can be greater than the sum of the two individual VaR’s. 

3.4.3. Expected Shortfall 

We previously discussed a key shortcoming of VaR, namely that it is concerned only with the 

percentage of losses that exceed the VaR and not the magnitude of these losses. The magnitude, 

however, should be of serious concern to the risk manager. Extremely large losses are of course much 

more likely to cause financial distress, such as bankruptcy, than are moderately large losses; therefore, 

we want to consider a risk measure that accounts for the magnitude of large losses as well as their 

probability of occurring. The challenge is to come up with a portfolio risk measure that retains the 

simplicity of the VaR, but conveys information regarding the shape of the tail. Expected Shortfall (ES), 

or Tail-VaR as it is sometimes called, is one way to do this.  

Mathematically ES is defined as: 

𝐸𝑆𝑡+1
𝑝 = −𝐸𝑡[𝑅𝑡+1|𝑅𝑡+1 < −𝑉𝑎𝑅𝑡+1

𝑝 ]                  (16) 

where the negative signs in front of the expectation and the VaR are needed because the ES and the 

VaR are defined as positive numbers. The Expected Shortfall tells us the expected value of tomorrow’s 

loss, conditional on it being worse than the VaR.  Expected Shortfall. (ES) is coherent measure of risk, 

(Artzner et al., 1999).  
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The distribution tail gives us information on the range of possible extreme losses and the probability 

associated with each outcome. The Expected Shortfall measure aggregates this information into a 

single number by computing the average of the tail outcomes weighted by their probabilities. So, where 

VaR tells us the loss so that only 1% of potential losses will be worse, the ES tells us the expected loss 

given that we actual get a loss from the 1% tail. 

3.5. Calculating Value at Risk and Expected Shortfall 

Following by Christofersen (2012) and others the calculation of VaR and ES follows a two-stage 

procedure: 

1. A GARCH-type volatility model is fitted to the historical data by maximum likelihood (ML). From 

this model, the so-called standardized residuals are extracted. The GARCH-type model is used to 

calculate 1-step predictions of conditional mean (𝜇𝑡+1) and conditional standard deviation (𝜎𝑡+1) . 

2. Various long tail and asymmetric distributions are applied to the standardized residuals and 

calculate𝐹−1(𝑝)  with estimated parameters of distributions. Finally, one day ahead Conditional 

𝑉𝑎𝑅𝑡+1 and conditional 𝐸𝑆𝑡+1 calculated. 

3.5.1. Normal Distribution 

In the simple model, it is assumed that returns are normally distributed. The normal density function 

is: 

𝑓(𝑥; 𝜇, 𝜎) =  
1

√2𝜋𝜎2
𝑒𝑥𝑝 {−

(𝑥−µ)2

2𝜎2
}                   (17) 

The standard normal distribution is: 

𝑓(𝑥) =
1

√2𝜋
𝑒𝑥𝑝 {−

𝑥2

2
} 

 

The log-likelihood of the normal distribution is express as: 

𝐿(𝜇, 𝜎2; 𝑥1, … 𝑥𝑛) = −
1

2
∑ [𝑙𝑛(2𝜋) + 𝑙𝑛(𝜎2) +

(𝑥−µ)2

𝜎2
]𝑛

𝑖=1                 (18) 

= −
𝑛

2
𝑙𝑛(2𝜋) −

𝑛

2
𝑙𝑛(𝜎2) −

1

2𝜎2
∑(𝑥 − µ)2
𝑛

𝑖=1

 

The maximum likelihood estimators of mean variance are: 

𝜇̂ =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1
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𝜎𝑖
2 =

1

𝑛
∑(𝑥𝑖 − 𝜇̂)

𝑛

𝑖=1

 

The cumulative normal distribution function is: 

𝜙(𝑥) =
1

2
[1 − 𝑒𝑟𝑓 (

𝑥 − 𝜇

2𝜎2
)] 

The cumulative of standard normal distribution function is: 

𝜙(𝑧) =
1

2
[1 − 𝑒𝑟𝑓 (

𝑥

2
)] 

 

Value at risk when returns are normally distributed: 

𝑉𝑎𝑅𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝑧𝑞 

where 𝑧𝑞 = 𝛷𝑝
−1 is  

𝑉𝑎𝑅𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝛷𝑝

−1                    (19) 

 

Expected shortfall with normal distribution: 

𝐸𝑆𝑡+1
𝑝 = −𝐸𝑡[𝑅𝑡+1|𝑅𝑡+1 ≤ −𝑉𝑎𝑅𝑡+1

𝑝 ] 

= −𝜎𝑡+1𝐸𝑡[𝑧𝑡+1|𝑧𝑡+1 ≤ −𝑉𝑎𝑅𝑡+1
𝑝 /𝜎𝑡+1] 

= 𝜎𝑡+1
𝜙(−𝑉𝑎𝑅𝑡+1

𝑝
/𝜎𝑡+1)

𝛷(−𝑉𝑎𝑅𝑡+1
𝑝

/𝜎𝑡+1)
              (20) 

By putting the value of 𝑉𝑎𝑅𝑡+1
𝑝

 of normal distribution we get: 

𝐸𝑆𝑡+1
𝑝 = 𝜇𝑡+1 + 𝜎𝑡+1

𝜙(𝛷𝑝
−1)

𝑝
              (21) 

3.5.2. Generalized Asymmetric t Distribution (GAT) 

A 6-parameter asymmetric fat-tailed distribution (GAT) is proposed by Baker (2014). The pdf of the 

GAT is: 

𝑓𝐺𝐴𝑇(𝑥|𝜇, 𝜙, 𝛼, 𝑟, 𝑐, 𝑣) =
𝛼(1+𝑟2)

𝑟𝜙

{(𝑐𝑔((𝑥−𝜇)/𝜙))
𝛼𝑟
+(𝑐𝑔((𝑥−𝜇)/𝜙))

−𝛼/𝑟
}
−𝑣/𝛼

𝐵(
𝑣/𝑎

1+𝑟2
,
𝑟2𝑣/𝛼

1+𝑟2
)

(1 + ((𝑥 − 𝜇)/𝜙)
2
)
−1/2

(22) 

where B is the beta function, ν > 0 controls tail power, µ is a center of location (not necessarily the 

mean), ϕ > 0 is a measure of scale (but not the variance, which may not exist), r > 0 controls tail power 

asymmetry, c > 0 controls the scale asymmetry, and α > 0 controls how early ‘tail behaviour’ is 

apparent. 

The cdf of the GAT distribution is: 
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𝐹𝐺𝐴𝑇(𝑥|𝜇, 𝜙, 𝛼, 𝑟, 𝑐, 𝑣) = 𝐵 (
𝑣

𝛼(1+𝑟2)
,

𝑣𝑟2

𝛼(1+𝑟2)
; 𝑞(𝑥))                                                   (23) 

where  

𝑞(𝑥) =
1

1 + 𝑐−𝛼(1+𝑟
2)/𝑟 {

(𝑥 − 𝜇)
𝜙 + √1 +

(𝑥 − 𝜇)2

𝜙2 } − 𝛼(1 + 𝑟2)/𝑟

 

Value at risk for GAT is: 

𝑉𝑎𝑅𝐺𝐴𝑇(𝑝|𝜇, 𝜙, 𝛼, 𝑟, 𝑐, 𝑣) = 𝐹𝐺𝐴𝑇
−1 (𝑝|𝜇, 𝜙, 𝛼, 𝑟, 𝑐, 𝑣) 

where 𝐹𝐺𝐴𝑇
−1 is the inverse of cdf 𝐹𝐺𝐴𝑇. 

Conditional Value at risk of GAT is: 

𝑉𝑎𝑅𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝑉𝑎𝑅𝐺𝐴𝑇(𝑝|𝜇, 𝜙, 𝛼, 𝑟, 𝑐, 𝑛𝑢)                (24) 

The expected shortfall of the GAT is: 

𝐸𝑆𝐺𝐴𝑇(𝑝|𝜇, 𝜙, 𝛼, 𝑟, 𝑐, 𝑣) = −𝐸𝑡[𝑅|𝑅 < −𝑉𝑎𝑅𝐺𝐴𝑇(𝑝|𝜇, 𝜙, 𝛼, 𝑟, 𝑐, 𝑣)]              (25) 

Conditional Expected shortfall for the GAT is: 

𝐸𝑆𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝐸𝑆𝐺𝐴𝑇(𝑝|𝜇, 𝜙, 𝛼, 𝑟, 𝑐, 𝑣)                 (26) 

3.5.3. The Asymmetric Exponential Power Distribution 

The asymmetric exponential power distribution is proposed by Zhu and Zinde-Walsh (2009). 

𝑓𝐴𝐸𝑃(𝑥|𝛽) = {
(
𝛼

𝛼∗
)
1

𝜎
𝐾𝐸𝑃(𝑑1)𝑒𝑥𝑝 (−

1

𝑑1
|
𝑥−𝜇

2𝛼∗𝜎
|
𝑑1
) ,                    𝑥 ≤ 𝜇 

(
1−𝛼

1−𝛼∗
)
1

𝜎
𝐾𝐸𝑃(𝑑2)𝑒𝑥𝑝 (−

1

𝑑2
|

𝑥−𝜇

2(1−𝛼)∗𝜎
|
𝑑2
) ,   𝑥 > 𝜇

              (27) 

where 𝛽 = (𝛼, 𝑑1, 𝑑2, 𝜇, 𝜎)
𝑇 is parameter vector, 𝜇 ∈  𝑅 𝑎𝑛𝑑 𝜎 > 0 is still location and scale 

parameters respectively, 𝛼 ∈ (0,1) is skewness parameter. 𝑑1 > 0 and 𝑑2 > 0 are left and right tail 

parameters respectively, 𝐾𝐸𝑃(𝑑) is the normalizing constant of exponential power distribution(EPD): 

𝐾𝐸𝑃(𝑑) ≡
1

[2𝑝
1
𝑑⁄ 𝛤(1 + 1

𝑑⁄ )]
 

and 𝛼∗ is: 

𝛼∗ = 𝛼𝐾𝐸𝑃(𝑑1)/[𝛼𝐾𝐸𝑃(𝑑1) + (1 − 𝛼)𝐾𝐸𝑃(𝑑2)] 

Note that: 

(
𝛼

𝛼∗
)𝐾𝐸𝑃(𝑑1) = (

1 − 𝛼

1 − 𝛼∗
)𝐾𝐸𝑃(𝑑1) = [𝛼𝐾𝐸𝑃(𝑑1) + (1 − 𝛼)𝐾𝐸𝑃(𝑑2)] 
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The AEPD density function is still continuous at every point and unimodal with mode at 𝜇. The 

parameter 𝛼∗  in the AEPD density provides scale adjustments respectively to the left and right parts 

of the density to ensure continuity of the density under changes of shape parameters(𝛼, 𝑑1, 𝑑2). 

The value at risk and expected short fall is computed analytically for the AEPD distribution in Zhu 

and Galbraith (2011). 

 

Value at risk (VaR) of the AEPD distribution is: 

𝑉𝑎𝑅𝐴𝐸𝑃(𝑝|𝛼, 𝑑1, 𝑑2) = {
−2𝛼∗ [𝑑1𝑄

−1 (
𝑝

𝛼
,
1

𝑑1
)]

1

𝑑1 ,                      𝑝 ≤ 𝛼  

2(1 − 𝛼∗) [𝑑2𝑄
−1 (

1−𝑝

1−𝛼
,
1

𝑑2
)]
1/𝑑2

, 𝑝 > 𝛼

              (28) 

𝑄(𝛼, 𝑥) denotes the regularized complementary incomplete gamma function: 

𝑄(𝛼, 𝑥) = ∫ 𝑡𝛼−1𝑒𝑥𝑝(−𝑡)𝑑𝑡/𝛤(𝛼)

∞

𝑥

 

𝑄−1 denotes the inverse of 𝑄(𝛼, 𝑥) and 𝛤 is gamma function: 

𝛤(𝛼) = ∫ 𝑡𝛼−1𝑒𝑥𝑝(−𝑡)𝑑𝑡
∞

0
Dynamic Value at risk for AEPD is: 

𝑉𝑎𝑅𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝑉𝑎𝑅𝐴𝐸𝑃(𝑝|𝛼, 𝑑1, 𝑑2)                 (29) 

 

The expected shortfall of AEPD is: 

𝐸𝑆𝐴𝐸𝑃(𝑝|𝛼, 𝑑1, 𝑑2) = −
2𝛼∗

𝑝
∫ [𝑑1𝑄

−1 (
𝑝

𝛼
,
1

𝑑1
)]

1

𝑑1𝑝

0
𝑑𝑝 +

2(1−𝛼∗)

𝑝
∫ [𝑑2𝑄

−1 (
1−𝑝

1−𝛼
,
1

𝑑2
)]

1

𝑑2𝑝

0
𝑑𝑝           (30) 

Dynamic expected shortfall for AEPD is: 

𝐸𝑆𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝐸𝑆𝐴𝐸𝑃(𝑝|𝛼, 𝑑1, 𝑑2)                  (31) 

3.5.4. Skewed Exponential Power Distribution (SEPD) 

Skewed is the special case of AEPD proposed by Zhu and Zinde-Walsh (2009), if 𝑑2 = 𝑑1 = 𝑑 

implying 𝛼 = 𝛼∗ The AEPD reduced to SEPD: 

𝑓𝑆𝐸𝑃(𝑥|𝛽) = {

1

𝜎
𝐾𝐸𝑃(𝑑)𝑒𝑥𝑝 (−

1

𝑑
|
𝑥−𝜇

2𝛼𝜎
|
𝑑

) ,                    𝑥 ≤ 𝜇 

1

𝜎
𝐾𝐸𝑃(𝑑)𝑒𝑥𝑝 (−

1

𝑑
|
𝑥−𝜇

2𝛼𝜎
|
𝑑

) ,                   𝑥 > 𝜇
               (32) 

where 𝛽 = (𝛼, 𝑑, 𝜇, 𝜎)𝑇 . The SEPD density is skewed to the right for 𝛼 < 1/2 and to the left for  𝛼 > 

½. 

The VaR for SEPD is: 
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𝑉𝑎𝑅𝑆𝐸𝑃(𝑝|𝛼, 𝑑) = {
−2𝛼∗ [𝑑1𝑄

−1 (
𝑝

𝛼
,
1

𝑑
)]

1

𝑑
,                          𝑝 ≤ 𝛼  

2(1 − 𝛼∗) [𝑑𝑄−1 (
1−𝑝

1−𝛼
,
1

𝑑
)] ,1/𝑑 𝑝 > 𝛼

               (33) 

Dynamic value at risk for SEPD is: 

𝐸𝑆𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝑉𝑎𝑅𝑆𝐸𝑃(𝑝|𝛼, 𝑑)                  (34) 

The Expected shortfall for the SEPD is: 

𝐸𝑆𝑆𝐸𝑃(𝑝|𝛼, 𝑑) = −
2𝛼∗

𝑝
∫ [𝑑𝑄−1 (

𝑝

𝛼
,
1

𝑑
)]
1/𝑑𝑝

0
𝑑𝑝 +

2(1−𝛼∗)

𝑝
∫ [𝑑𝑄−1 (

1−𝑝

1−𝛼
,
1

𝑑
)]
1/𝑑𝑝

0
𝑑𝑝             (35) 

Dynamic expected shortfall for SEPD is: 

𝐸𝑆𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝐸𝑆𝑆𝐸𝑃(𝑝|𝛼, 𝑑)                  (36) 

3.5.5. Asymmetric Student t Distribution (ASTD) 

ASTD proposed by Zhu and Galbraith (2010) and density function is defined as: 

𝑓𝐴𝑆𝑇(𝑥|𝛽) =

{
 
 

 
 
(
𝛼

𝛼∗
)𝐾(𝑣1) [1 +

1

𝑣1
(
𝑥

2𝛼∗
)
2

]
−
𝑣1+1

2

,                    𝑥 ≤ 0 

(
1−𝛼

1−𝛼∗
)𝐾(𝑣2) [1 +

1

𝑣2
(
𝑥

2𝛼∗
)
2

]
−
𝑣2+1

2

,              𝑥 > 0

               (37) 

Where 𝛽 = (𝛼, 𝑣1, 𝑣2), 𝛼 ∈ (0,1) is skewness parameter. 𝑣1 > 0 and 𝑣2 > 0 are left and right tail 

parameters respectively. 

𝐾(𝑣) ≡  𝛤(𝑣 + 1)/√𝜋𝑣3 

where Γ(. ) is gamma function and 𝛼∗ is: 

𝛼∗ = 𝛼(𝑣1)/[𝛼𝐾(𝑣1) + (1 − 𝛼)𝐾(𝑣2)] 

Denoting by µ and σ the location (center) and scale parameters, respectively, the general form of the 

AST density is expressed as 
1

𝜎
𝑓𝐴𝑆𝑇 (

𝑥−𝜇

𝜎
; 𝛼, 𝑣1, 𝑣2). 

Note that 

(
𝛼

𝛼∗
)𝐾(𝑣1) = (

1 − 𝛼

1 − 𝛼∗
)𝐾(𝑣2) = 𝛼(𝑣1)/[𝛼𝐾(𝑣1)+ (1 − 𝛼)𝐾(𝑣2)] ≡ 𝐵𝐴𝑆𝑇 

The value at risk of Asymmetric t distribution is: 

𝑉𝑎𝑅𝐴𝑆𝑇(𝑝|𝛼, 𝑣1, 𝑣2) = 2𝛼∗𝑆𝑣1
−1 (

𝑚𝑖𝑛(𝑝,𝛼)

2𝛼
) + 2(1 − 𝛼∗)𝑆𝑣2

−1 (
𝑚𝑎𝑥(𝑝,𝛼)+1−2𝛼

2(1−𝛼)
)             (38) 

where 𝑆𝑣(. ) is the cumulative distribution function of the standard Student t distribution with ν degrees 

of freedom and 𝑆𝑣
−1 is its inverse. 

Dynamic value at risk for ASTD is: 

𝑉𝑎𝑅𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝑉𝑎𝑅𝐴𝑆𝑇(𝑝|𝛼, 𝑣1, 𝑣2)                 (39) 
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The Expected shortfall function of the ASTD is: 

𝐸𝑆𝐴𝑆𝑇(𝑝|𝛼, 𝑣1, 𝑣2) = −
4𝐵

𝑝
{
(𝛼∗)2 𝑣1

𝑣1−1
(1 +

1

𝑣1
[
𝑚𝑖𝑛(𝑞−𝜇,0)

2𝛼∗
]
2

)

1−𝑣1
2

−
(1−𝛼∗)2 𝑣2

𝑣2−1
(1 +

1

𝑣2
[
𝑚𝑖𝑛(𝑞−𝜇,0)

2𝛼∗
]
2

)

1−𝑣2
2

} 

where 𝑞 = 𝑉𝑎𝑅𝐴𝑆𝑇 ≡ 𝐹𝐴𝑆𝑇
−1                     (40) 

Dynamic Expected shortfall for ASTD is: 

𝐸𝑆𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝐸𝑆𝐴𝑆𝑇(𝑝|𝛼, 𝑣1, 𝑣2)                  (41) 

3.5.6. Skewed Student t Distribution 

By letting 𝑣2 = 𝑣1 = 𝑣 and 𝛼∗ = 𝛼 in ASTD by Zhu and Galbraith (2010), we get new 

parameterization of skewed student t distribution (SSTED): 

𝑓𝑆𝑆𝑇(𝑥|𝛽) =

{
 
 

 
 1

𝜎
𝐾(𝑣) [1 +

1

𝑣
(
𝑥−𝜇

2𝛼𝜎
)
2

]
−
𝑣+1

2

,                    𝑥 ≤ 𝜇 

1

𝜎
𝐾(𝑣) [1 +

1

𝑣
(

𝑥

2𝛼𝜎
)
2

]
−
𝑣+1

2

,                        𝑥 > 𝜇

               (42) 

 

where 𝛽 = (𝛼, 𝑣). 

The value at risk for the skewed student t distribution is: 

𝑉𝑎𝑅𝑆𝑆𝑇(𝑝|𝛼, 𝑣) = 2𝛼∗𝑆𝑣
−1 (

𝑚𝑖𝑛(𝑝,𝛼)

2𝛼
) + 2(1 − 𝛼∗)𝑆𝑣

−1 (
𝑚𝑎𝑥(𝑝,𝛼)+1−2𝛼

2(1−𝛼)
)              (43) 

where 𝑆𝑣(. ) is the cumulative distribution function of the standard Student t distribution with ν degrees 

of freedom and 𝑆𝑣
−1 is its inverse. 

Dynamic value at risk for SSTD is: 

𝑉𝑎𝑅𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝑉𝑎𝑅𝑆𝑆𝑇(𝑝|𝛼, 𝑣)                  (44) 

 

The Expected shortfall function of the SSTD is: 

𝐸𝑆𝑆𝑆𝑇(𝑝|𝛼, 𝑣) = −
4𝐵

𝑝

{
 
 

 
 (𝛼∗)2 𝑣

𝑣−1
(1 +

1

𝑣
[
𝑚𝑖𝑛(𝑞−𝜇,0)

2𝛼∗
]
2

)

1−𝑣

2

−
(1−𝛼∗)2 𝑣

𝑣−1
(1 +

1

𝑣
[
𝑚𝑖𝑛(𝑞−𝜇,0)

2𝛼∗
]
2

)

1−𝑣

2

}
 
 

 
 

               (45) 

where 𝑞 = 𝑉𝑎𝑅𝑆𝑆𝑇 ≡ 𝐹𝑆𝑆𝑇
−1  

Dynamic Expected shortfall for SSTD is: 

𝑉𝑎𝑅𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝐸𝑆𝑆𝑆𝑇(𝑝|𝛼, 𝑣)                  (46) 

3.5.7. Standardized t Distribution 

The density function for the student t distribution with v degree of freedom is: 
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𝑓𝑡(𝑥; 𝑣) =
𝛤(

𝑣+1

2
)

𝛤
𝑣

2
√𝑣𝜋

(1 +
𝑥2

𝑣
)
−(

1+𝑣

2
)

                   (47) 

where Γ is the gamma function. When random variable x has student t distribution, the distribution has 

zero mean and skewness but for v >2 the variance of the student t distribution is not one. 

𝜇 = 𝐸(𝑥) = 0 

𝑉𝑎𝑟(𝑥) =
𝑣

𝑣 − 2
 

Kurtosis and excess Kurtosis are: 

𝑘 =
3(𝑣 − 2)

𝑣 − 4
, 𝜁 = 𝑘 − 3 =

6

𝑣 − 4
 

When 𝑣 = 1 the Student density function is the Cauchy density function and when 𝑣 → ∞ the Student 

distribution converges to the normal distribution. 

By standardizing x define z as: 

𝑧 =
𝑥 − 𝜇

𝜎
 

𝑧 =
𝑥 − 𝜇

√𝑣𝑎𝑟(𝑥)
=

𝑥

√𝛾2 𝑣 𝑣 − 2⁄
=
𝑥√𝑣 − 2

𝛾√𝑣
 

Bollesslev (1987) proposes using the standardized t distribution with 𝑣 > 2. The standardized t 

distribution density with v > 2 is then: 

𝑓𝑡̃(𝑧, 𝑣) =
𝛤((𝑣+1) 2⁄ )

𝛤(𝑣 2⁄ )√𝜋(𝑣−2)
 (1 +

𝑧2

𝑣−2
)
−(

1+𝑣

2
)

                  (48) 

where 𝛤(𝑣) = ∫ 𝑒−𝑥𝑥𝑣−1𝑑𝑥
∞

0
 is the gamma function. 𝑣 is the parameter that describe the thickness 

of tails. 

The log-likelihood function of standardized-t-distribution is: 

𝐿𝑡̃(𝑧; 𝑣) =∑𝑙𝑛(𝑓(𝑧; 𝑣))

𝑛

𝑖=1

 

𝐿𝑡̃(𝑧; 𝑣) = 𝑛 𝑙𝑛 (
𝛤 (

𝑣 + 1
2 )

𝛤 (
𝑣
2) (

√𝜋(𝑣 − 2))
) − 

 1

 2
 ∑(𝑣 + 1)𝑙𝑛 (1 +

𝑧2

𝑣 − 2
)

𝑛

𝑖=1 

 

= 𝑛 {𝑙𝑛 (𝛤 (
𝑣+1

2
)) − 𝑙𝑛 (𝛤 (

𝑣

2
)) − 𝑙𝑛 (

𝜋

2
) − 𝑙𝑛 (

𝑣−2

2
)} −

1

2
∑ (𝑣 + 1)𝑙𝑛 (1 +

𝑧2

𝑣−2
)𝑛

𝑖=1             (49)

  

In the standardized t distribution, random variable z has mean equal to zero and a variance equal to 1. 

The parameter v >2 for standardized distribution to be well defined. 

The standardized t distribution is symmetric around zero, and the mean µ, variance σ2, skewness ζ1, 

and excess kurtosis ζ2 of the distribution are: 
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𝜇 = 𝐸(𝑧) = 0 

𝜎2 = 𝐸 [(𝑧 − 𝐸(𝑧))
2
] = 1 

𝜁1 =
𝐸(𝑧)3

𝜎3
= 0 

𝜁2 =
𝐸(𝑧)4

𝜎4
− 3 =

6

𝑣 − 4
 

Under the standardized t distribution VaR is calculated as: 

𝑉𝑎𝑅𝑡+1
𝑝 = −𝜇𝑡+1 − 𝜎𝑡+1𝑡̃𝑝

−1(𝑣)                   (50) 

where 𝑡̃𝑝
−1  is the pth quantile of standardized t distribution. 

VaR for the student t distribution is calculated as: 

𝑃(𝑅𝑡 ≤ 𝑡𝑞
−1) = 𝑝 

𝑎𝑠 𝑅𝑡 = 𝑧𝑡√
𝑣

𝑣 − 2
 

𝑃 (𝑧𝑡√
𝑣

𝑣 − 2
≤ 𝑡𝑝

−1) = 𝑝 

𝑃 (𝑧 ≤ √
𝑣

𝑣 − 2
𝑡𝑝
−1) = 𝑝 

𝑡̃𝑝
−1 = √

𝑣 − 2

𝑣
𝑡𝑝
−1 

VaR for standardized t distribution is: 

𝑉𝑎𝑅𝑡+1
𝑝 = −𝜇𝑡+1 − 𝜎𝑡+1√

𝑣−2

𝑣
𝑡𝑝
−1(𝑣)                  (51) 

where 𝑡𝑝
−1  is the pth quantile of student t distribution. 

The expected shortfall for the standardized t distribution is: 

𝐸𝑆𝑡+1
𝑝 = 𝜇𝑡+1 − 𝜎𝑡+1𝐸𝑆𝑡̃(𝑣)(𝑝)                   (52) 

𝐸𝑆𝑡̃(𝑣)(𝑝) =
𝐶(𝑣)

𝑝
[[1 +

1

𝑣−2
𝑡𝑝
−1(𝑣)]

1−𝑣

2 𝑣−2

1−𝑣
]                  (53) 

where 𝐶(𝑣) =
𝛤((𝑣+1)/2)

𝛤(𝑣/2)√𝜋(𝑣−2)
 

The main drawback of the Student t distribution is that it is symmetrical while financial time series 

can be skewed. 
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3.5.8. Twin t Distribution 

Baker and Jackson (2014) applied Johnson’s transformation to statistical modelling, and constructs a 

new long tailed distribution that is like the t-distribution. The t like distribution is useful for fitting 

data, it is more normal in the body of the distribution but has the same power law tail behaviour. 

The probability density function is: 

𝑓(𝑥) =
25 2⁄ 𝛤(𝑣 4+3 2⁄⁄ )

√𝜋𝑣𝛤(𝑣 4⁄ )(𝑣+1)
(𝑥2 𝑣 + √1 + (1 + (𝑥2 𝑣⁄ ))

2
⁄ )

−(𝑣+1) 2⁄

               (54) 

As 𝑣 → ∞ the distribution becomes standard normal. The distribution function for 𝑥 > 0 is: 

𝐹𝑇𝑇𝐷(𝑥) = 1 2⁄ +
23 2⁄ 𝑥(𝑆+𝐶)−(𝑣+1) 2⁄

√𝑣(𝑣+1)𝐵(𝑣 4⁄ ,3 2⁄ )
+ (

1

2
) 𝐼(1 − (𝐶 + 𝑆)−2); 𝑣 4⁄ , 3 2⁄               (55) 

where 𝑆 =
𝑥2

𝑣
, 𝑎𝑛𝑑 𝐶 = √1 + 𝑆2 

𝐵 is the beta function and 𝐼 the regularized incomplete beta function. 

Value at risk for TTD is: 

𝑉𝑎𝑅𝑇𝑇𝐷(𝑝|𝑣) = 𝐹𝑇𝑇𝐷
−1 (𝑝|𝑣)                    (56) 

where 𝐹𝑇𝑇𝐷
−1 is the inverse of cdf 𝐹𝑇𝑇𝐷. 

Conditional Value at risk of TTD is: 

𝑉𝑎𝑅𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝑉𝑎𝑅𝑇𝑇𝐷(𝑝|𝑣)                  (57) 

The expected shortfall of the TTD is: 

𝐸𝑆𝑇𝑇𝐷(𝑝|𝑣) = −𝐸𝑡[𝑅|𝑅 < −𝑉𝑎𝑅𝑇𝑇𝐷(𝑝|𝑣)]                  (58) 

Conditional Expected shortfall for the TTD is: 

𝐸𝑆𝑡+1
𝑝 = − 𝜇𝑡+1 − 𝜎𝑡+1𝐸𝑆𝑇𝑇𝐷(𝑝|𝑣)                   (59) 

3.6. Term Structure of Risk for a Univariate Model 

The literature has relatively little to say on longer-term VaR and ES as compare to one-day risk. The 

most popular method is the square-root rule, and is usually applied to short time horizons. 

If we consider a simple case of normal distribution with a constant variance 𝜎𝑃𝐹
2 , per square–root rule, 

the VaR for returns over the next ℎ days calculated on day  𝑡, as: 

𝑉𝑎𝑅𝑡+1;ℎ
𝑝 = −√ℎ𝜎𝑃𝐹𝛷𝑝

−1 = √ℎ𝑉𝑎𝑅𝑡+1
𝑝

                (60) 

In the same way ES can be calculated as: 

𝐸𝑆𝑡+1,ℎ
𝑝 = √ℎ𝜎𝑃𝐻

𝜙(𝛷𝑝
−1)

𝑝
= √ℎ𝐸𝑆𝑡+1

𝑝
                (70) 

However, when we consider a situation where the portfolio variance is time varying, going from 1-

day-ahead to ℎ-days-ahead VaR is not so straightforward. 
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As in the case of GARCH, scaling by the horizon ℎ is not possible as variance does mean revert, and 

again the returns over the next ℎ days are not normally distributed, although 1-day returns are supposed 

to be normally distributed. The question of computing VaR and ES for longer horizons without 

knowing the detail for the distribution of returns can be found with simulation based methods. 

 

Following the work of Christoffersen (2012), in this research, we will consider Monte Carlo simulation 

(MCS) and filtered historical simulation (FHS) for ℎ days VaR and ES. 

3.6.1 Monte Carlo Simulation (MCS) 

Consider GARCH (1, 1) with normal model of returns: 

𝑅𝑡+1 = 𝜎𝑡+1𝑧𝑡+1      with 𝑧𝑡+1~𝑁(0,1) 

𝜎𝑡+1
2 = 𝜔 + 𝛼𝑅𝑡

2 + 𝛽𝜎𝑡
2                (71) 

We get 𝑅𝑡  at the end of day 𝑡  and we can calculate 𝜎𝑡+1
2  that is tomorrow’s variance in the GARCH 

model. 

In order to calculate term structure of risk with Monte Carlo simulation as described in Christoffersen 

(2012), we need the following steps: 

1. Draw a set of artificial random numbers  𝑧̌𝑖,1 with zero mean and one variance by using random 

number generator from the standard normal distribution: 

𝑧̌𝑖,1,       𝑖 = 1,2… . . ,𝑀𝐶                (72) 

where MC denotes the number of draws. 

2. Now, from these pseudo random numbers calculate a set of hypothetical returns for tomorrow: 

𝑅̌𝑖,𝑡+1 = 𝜎𝑡+1𝑧̌𝑖,1                (73) 

3. Update the variances to get a set of hypothetical variances for the day after tomorrow, 𝑡 + 2: 

𝜎̌𝑖,𝑡+2
2 = 𝜔 + 𝛼𝑅̌𝑖,𝑡+1

2 + 𝛽𝜎𝑖,𝑡+1
2                    (74) 

4. Given a new set of random number generated from 𝑁(0,1), 

𝑧̌𝑖,2,       𝑖 = 1,2… . . ,𝑀𝐶 

We can calculate the hypothetical return on day 𝑡 + 2: 

𝜎̌𝑖,𝑡+3
2 = 𝜔 + 𝛼𝑅̌𝑖,𝑡+2

2 + 𝛽𝜎𝑖,𝑡+2
2                    (75) 

We end up with 𝑀𝐶 sequences of pseudo future daily returns for day 𝑡 + 1  to day 𝑡 + ℎ. From these 

hypothetical future daily returns, we can easily calculate the hypothetical ℎ day return from each Monte 

Carlo path: 

http://store.elsevier.com/authorDetails.jsp?authorId=ELS_1010583
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𝑅̌𝑖,𝑡+1:𝑡+ℎ = ∑ 𝑅̌𝑖,𝑡+ℎ
𝐾
𝑘=1 ,       𝑓𝑜𝑟 𝑖 = 1,2, … ,𝑀𝐶                 (76) 

5. If we collect these MC hypothetical h-days returns in a set {𝑅̌𝑖,𝑡+1:𝑡+ℎ}𝑖=1
𝑀𝐶

, then we can calculate the 

h-day value at risk simply by calculating the 100pth percentile as in: 

𝑉𝑎𝑅𝑡+1:𝑡+ℎ
𝑝 = −𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 {{𝑅̌𝑖,𝑡+1:𝑡+ℎ}𝑖=1

𝑀𝐶
, 100𝑝}                 (77) 

We can also use Monte Carlo to compute the expected shortfall at different horizons: 

𝐸𝑆𝑡+1:𝑡+ℎ
𝑝 = −

1

𝑝.𝑀𝐶
∑ 𝑅̌𝑖,𝑡+1:𝑡+ℎ
𝑀𝐶
𝑖=1 . 1(𝑅̌𝑖,𝑡+1:𝑡+ℎ < −𝑉𝑎𝑅𝑡+1:𝑡+ℎ

𝑝 )               (78) 

where 1(∙) takes the value 1 if the argument is true and zero otherwise. The key advantage of the MCS 

technique is its flexibility. We can use MCS for any assumed distribution of standardized returns-

normality is not required. 

3.6.2. Filtered Historical Simulation 

If we like that past returns data to tell us about the distribution directly without making specific 

distribution assumptions, FHS approach is the appropriate method. FHS combines model-based 

methods of variance with model-free methods of the distribution of shocks. 

Consider a simple GARCH (1,1) model: 

𝑅𝑡+1 = 𝜎𝑡+1𝑧𝑡+1                     (79) 

where 

𝜎𝑡+1
2 = 𝜔 + 𝛼𝑅𝑡

2 + 𝛽𝜎𝑡
2 

 

Given a sequence of past returns, {𝑅𝑡+1−𝜏}𝜏=1
𝑚 , we can estimate the GARCH model and calculate past 

standardized returns from the observed returns and from the estimated standard deviation as: 

𝑧̌𝑡+1−𝜏 = 𝑅𝑡+1−𝜏      𝑓𝑜𝑟 𝜏=1,2,…,𝑚
         

                   (80) 

We will refer to the set of standardized return as {𝑧𝑡+1−𝜏}𝜏=1
𝑚 . The number of historical observations, 

m, should be as large as possible. 

At the end of day t we obtain 𝑅𝑡 and we can calculate 𝜎𝑡+1
2 , which is day t+1’s variance in the GARCH 

model. Instead of drawing random 𝑧̌𝑠 from a random number generator, which relies on a specific 

distribution, we can draw with replacement from our own database of past standardized 

residuals, {𝑧𝑡+1−𝜏}𝜏=1
𝑚 . 

 

We end up with a sequence of pseudo future daily returns for day 𝑡 + 1 to day 𝑡 + ℎ. From these 

hypothetical future daily returns, we can easily calculate the hypothetical ℎ day return as: 
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𝑅̌𝑖,𝑡+1:𝑡+ℎ = ∑ 𝑅̌𝑖,𝑡+ℎ
𝐾
𝑘=1 ,       𝑓𝑜𝑟𝑖 = 1,2, … , 𝐹𝐻                 (81) 

where FH is the number of times we draw from the standardized residuals on each future date. 

If we collect these FH hypothetical h-days returns in a set {𝑅̌𝑖,𝑡+1:𝑡+ℎ}𝑖=1
𝐹𝐻

, then we can calculate the h-

day value at risk simply by calculating the 100pth percentile as in: 

𝑉𝑎𝑅𝑡+1:𝑡+ℎ
𝑝 = −𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 {{𝑅̌𝑖,𝑡+1:𝑡+ℎ}𝑖=1

𝐹𝐻
, 100𝑝}                 (82) 

 

We can also use Monte Carlo to compute the expected shortfall at different horizons: 

𝐸𝑆𝑡+1:𝑡+ℎ
𝑝 = −

1

𝑝.𝐹𝐻
∑ 𝑅̌𝑖,𝑡+1:𝑡+ℎ
𝐹𝐻
𝑖=1 . 1(𝑅̌𝑖,𝑡+1:𝑡+ℎ < −𝑉𝑎𝑅𝑡+1:𝑡+ℎ

𝑝 )               (83) 

where 1(∙) takes the value 1 if the argument is true and zero otherwise. 

3.7. Back-testing Risk Models 

Lopez (1999) proposed a forecast evaluation framework based on loss function. By specifying a utility 

function and ranking the risk models, loss function satisfies the specific need of the risk manager. Let 

consider a vector of variables 𝑥𝑡 known. Lopez (1999) loss function take the following specific form:  

𝛹𝑡+1 = {1 + (𝑉𝑎𝑅𝑡+1|𝑡 − 𝑥𝑡+1)
2
       

0                                       𝑒𝑙𝑠𝑒,
 if violation occurs                (84) 

which accounts for the magnitude of the tail losses (𝑉𝑎𝑅𝑡+1|𝑡 − 𝑥𝑡+1)
2
 and adds a score of one 

whenever a violation is observed. The model that minimizes the total loss ∑ 𝛹𝑡
𝑇
𝑡=1  outperforms other 

models. 

This approach has a main drawback that the return 𝑥𝑡+1 should be better compared with ES measure 

not with the VaR, as VaR does not give any evidence of the size of the expected loss. Therefore, the 

proposed loss function for the Expected shortfall can be proposed as: 

𝛹1|𝑡+1
(𝑖) = {

|𝑥𝑡+1 − 𝐸𝑆𝑡+1|𝑡
(𝑖) | 𝑖𝑓 𝑣𝑜𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠                

0                    𝑒𝑙𝑠𝑒,                         
                (85) 

𝛹2|𝑡+1
(𝑖) = {(𝑥𝑡+1 − 𝐸𝑆𝑡+1|𝑡

(𝑖) )
2

𝑖𝑓 𝑣𝑜𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠          

0                           𝑒𝑙𝑠𝑒,
                     (86) 

To judge the models by loss functions we calculate MAE and MSE: 

𝑀𝐴𝐸 = 𝑇̃−1∑ 𝛹1|𝑡+1
(𝑖)𝑇

𝑡=1                     (87) 

𝑀𝑆𝐸 = 𝑇̃−1∑ 𝛹2|𝑡+1
(𝑖)𝑇

𝑡=1                     (88) 

The best model is preferred with the lowest MAE and MSE error. 
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4. Empirical Results 

In this section, we explore the two different groups of data sets to estimate different non-normal 

distributions. Then, we evaluate different ES models from different returns of distribution for one-day 

head. Finally, we compare two simulation based methods to evaluate long term ES. 

4.1. Data Analysis and Preliminary Tests 

 As the purpose of this chapter is to study the long tail t distributions to give a complete view of the 

ES estimation, we select the world’s five major stock indices consisting of Standard and Poor’s 500, 

FTSE 100, NASDAQ 100, Nikkie 225 and DAX 30 and several individual stocks from Standard and 

Poor’s 500 including Adobe, Bank of America, J P Morgan, Pfizer and Starbucks. 

 

We select the data of the daily closing prices of the S&P500, FTSE100, Nikkei225 and DAX 30 indices 

representing American, British, Japanese and German markets, while NASDAQ -100 index consists 

of non-American and non-financial top 100 companies on the NASDAQ exchange. These markets 

mainly represent developed economies from America, Europe and Asia with relevant trading volume 

for the period of 1995-2014. We also include another sample of S& P 500 to exclude the financial 

crises of 1998 for the period 1999-2014.  

 

The individual companies stock of Standard and Poor’s 500 represent different industries and lengths 

of data history. Adobe information represents information technology for the period 1986-2013, Bank 

of America and J P Morgan represent the bank and financial services for the period 1973-2013, Pfizer 

represents health care sector for the period 1973-2013 and Starbucks represent consumer discretionary 

for the period 1993-2013. Two individual companies represent the banking financial services sector 

because of the effects of the recent financial crises on the financial sector. All daily prices data has 

been taken from DataStream database. Adobe index consists of 7042 observations, Bank of America, 

J P Morgan, Pfizer all consist of 10666 values and Starbucks contains 5583 values. Table 1 shows the 

start date, end date and number of observations of the data analyzed in this chapter. Figure 6 plots daily 

prices, returns, squared returns and absolute returns for each analyzed data set. Each plot of each time 

series exhibits the typical empirical time series properties. 

 

The plots of the closing prices of each data set are not stationary that mean the data does not revert 

around mean and it changes throughout the time series. On the other hand, the plot for the returns does 

fluctuate around mean. It is the desirable property of time series to have a stationary data set because 
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the characteristics of a stationary time series allow handling models that are independent of a specific 

starting point, practically which may be difficult to obtain. The squared daily returns exhibit evidence 

of volatility clustering that large changes tend to be followed by large changes and suggests the 

presence of heteroskedasticity. 

 

The summary statics are presented in table 2 and 3. The value of skewness is negative for all return 

series and indicating an asymmetry in the distribution of return. A negatively skewed distribution or 

skewed to the left has a long-left tail. Our all data series are characterized by many small gains and a 

few extreme losses. 

 

As positive kurtosis indicates a relatively peaked distribution and negative kurtosis indicates a 

relatively flat distribution. A normal distribution has a kurtosis of 3.  The kurtosis of our all data sets 

is greater than 3 reflecting heavy tails. We reject the null hypothesis of the normal distribution as the 

p value for the Jarque-Bera (1980) test is less than 0.05. The non-normality of the data is also apparent 

from the normal QQ plot figure 7 and figure 8. The Jarque-Bera Test confirms that all return series 

have non-normal distributions.  

 

The Ljung-Box (1978) Q-statistics reported in Table 2 and 3 for both returns and squared returns for 

all data series also reject the null hypothesis of no autocorrelation through 20-lags at a 5% significance 

level.  

 

Plots of log-returns show the so-called phenomenon of volatility clustering (i.e. large changes in 

returns are likely to be followed by large changes). Moreover, volatility seems to react differently to a 

big increase in asset price or a big drop in asset price, sometimes referred as the leverage effect. In 

application, volatility plays an important role in calculation of VaR and ES.  

 

Before performing VaR and ES analysis, we first estimate different GARCH (1, 1) models.  For the 

first group of data, we applied GARCH (1, 1) model for each data series to model the fluctuations of 

the variances of the time series data. The GARCH model also considers volatility clustering and tail 

behavior that is important features of financial time series. To imply leverage effect, we also applied 

three asymmetric GARCH models i.e. EGARCH (1,1), TGARCH (1,1) and NGARCH (1,1). We 

estimated the parameters of each model by Maximum Likelihood (ML) and then calculated the model 

diagnostic tests (ARCH LM Test, Q statistic, and Q2 statistics) and model comparison criteria (AIC, 
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BIC, SIC, and SH). As we can see from the results EGARCH model outperform other models in almost 

all the case (see Appendix A for results). 

 

We performed a Ljung-Box test and ARCH-LM test on each of the standardized residuals of world top 

indices and individual companies. The test statistics shown in tables 103, 104, 105, 106, 107, 108 and 

109 in Appendix A suggest that the null hypothesis of no ARCH effect is accepted for all data series 

and for all GARCH models except for few cases. The Ljung-Box Q-statistic is applied on the 

standardized residual and standardized square for all data set and for all GARCH models accept the 

null hypothesis of no auto correlation except for few cases. We can now see that the both Ljung-Box 

Q-statistic and ARCH-LM test is satisfied reasonably well, which means that the purpose of our 

GARCH models in filtering the returns by autocorrelation was accomplished. Ljung-Box Q-statistic 

for standardized residuals for FTSE, NASDAQ, NIKKIE and DAX in table 110 also satisfied the no 

auto correlation.  

 

The better model per these criterions is the one with lower AIC, BIC, SIC and SH. According to AIC, 

BIC, SIC and SH model chosen for SP (1) AB, PF and ST is EGARCH and TGARCH, for SP (2), 

Adobe model chosen is EGARCH, and NGARCH for JP. It is clear that EGARCH (1,1) is the best 

model for almost all data sets. We have chosen EGARCH model standardized residuals to calculate 

the parameters of distributions of return, conditional mean and conditional standard deviation for both 

groups of data.  

4.2. Parameter Estimation 

We can estimate the parameters of EGARCH and parameters of the distribution of returns together. 

However, we first estimate the parameters of all GARCH models with normal innovation and then 

choose the best GARCH model with Akaike Information Criterion (hereinafter AIC), Bayesian 

Information Criterion (hereinafter BIC), Schwarz Information Criterion (hereinafter SIC) and Shibata 

Criterion (hereinafter SH), based on minimum value of AIC, BIC, SIC and SH. EGARCH is turned 

best model for almost for all datasets. We have followed two step procedure because of several 

parameters involved in estimation. In the second step, we extract standardized residuals of EGARCH 

(1,1) model and estimate parameter of all distribution by maximum likelihood estimation. 

 

Table 4 gives parameter estimates, log-likelihood values, AIC and BIC values for models fitted to 

Standard and Poor’s 500(1). Table 5 presents parameter estimates, log-likelihood values, AIC and BIC 

values for models fitted to FTSE-100. Table 6 gives parameter estimates, log-likelihood values, AIC 
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and BIC values for models fitted to NASDAQ-100. Table 7 presents parameter estimates, log-

likelihood values, AIC and BIC values for models fitted to Nikkei-225. Table 8 gives parameter 

estimates, log-likelihood values, AIC and BIC values for models fitted to DAX-30. 

 

 Table 9 presents parameter estimates, log-likelihood values, Akaike information criterion (AIC) and 

Bayesian Information criterion values for models fitted to S and P500(2). Table 10 presents parameter 

estimates, log-likelihood values, Akaike information criterion (AIC) and Bayesian Information 

criterion values for models fitted to Adobe. Table 11 presents parameter estimates, log-likelihood 

values, Akaike information criterion (AIC) and Bayesian Information criterion values for models fitted 

to Bank of America. Table 12 presents parameter estimates, log-likelihood values, Akaike information 

criterion (AIC) and Bayesian Information criterion values for models fitted to J P Morgan. Table 13 

presents parameter estimates, log-likelihood values, Akaike information criterion (AIC) and Bayesian 

Information criterion values for models fitted to Pfizer. Table 14 presents parameter estimates, log-

likelihood values, Akaike information criterion (AIC) and Bayesian Information criterion values for 

models fitted to Starbucks. 

 

The bold values of AIC and BIC criteria in all tables represent top three best models for the specific 

data set. Per AIC and BIC values in Table 4, the best-fitting models for Standard and Poor’s 500(1) 

data are the generalized asymmetric t distribution (GAT), Student t distribution (ST) and double t 

distribution (TTD). All above models have lowest AIC and BIC while, asymmetric t distribution (AST) 

and skewed exponential power distribution (SEPD) have highest AIC and BIC value respectively. 

 

If we look carefully at the values of AIC and BIC in tables 5, 6, 7 and 8 for the indexes FTSE, 

NASDAQ, Nikkei and DAX, we observed that the generalized asymmetric t distribution (GAT), 

Student t distribution (ST) and double t distribution (TTD are the top three models. When we compare 

GAT and AST, we concluded that GAT clearly outperforms AST. AEPD distribution as an alternative 

to AST and GAT performs better that AST but under performs GAT.  

 

Now we will discuss the estimated parameter results of induvial stocks. Table 9 shows that the best 

fitting models for Standard and Poor’s 500(2) data are the GAT, ST and TTD distribution. This also 

indicates that when we avoid financial crises of 1998, the best-fitted models remain the same. As 

reported by AIC and BIC values in Table 10, the best-fitting model for Adobe data is the ST, GAT and 

TTD. Per AIC and BIC values in Table 11, ST, GAT and TTD are the best fitted models for the Bank 
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of America, For J P Morgan in Table 12, Pfizer in Table 13 and for Starbucks in table 14 GAT, ST and 

TTD remain the top three models. 

 

We see that the best fitting models for all the eleven data sets are our two new distributions (GAT and 

TDD) and standardized student t distribution. Overall the GAT distribution is the best model, as it has 

many advantages over standardized student t distribution. Standardized t distribution does not support 

asymmetry. None of Zhu-Welsh (2009) asymmetric exponential power distribution and Zhu and 

Galbraith (2010) asymmetric t distribution is the best-fitted model. Per AIC and BIC, the new twin t 

distribution also performs better than asymmetric t distribution and exponential power distribution for 

all data sets. 

 

With respect to model fit, as we have noted, both AIC and BIC favour GAT, ST and TTD instead of 

AST and AEPD and their skewed versions. 

4.3. One day ahead Expected Shortfall Back-testing 

Once all the parameters of all the distributions are calculated, we can calculate the VaR and ES for 

5%, 2.5%,1% and 0.5% significance levels. As we know from the previous literature that there are 

many problems associated with VaR, so, we only evaluate different ES models as a better measure of 

risk.  

The competing risk models included in this study are, the GAT model, the AEPD model, the SEPD 

model, the AST model, the SST model, the ST model and TTD model. 

 

We compare ES by a loss function that calculated the difference between the actual and the expected 

losses. Model ranking by MAS and MSE provided in the table 4. The mean absolute error and the 

mean squared errors appear small enough to suggest that the best fitting models are reasonable. In table 

4 we show the predictive performance for expected shortfall risk on world major indexes and five 

individual companies of S and P 500. The entries in the table are the mean absolute error and the mean 

square error of the expected shortfall predictions for one day ahead. The values in parenthesis show 

the ranks of the model. 

 

 Table 15 shows the result for Standard and Poor’s(SP), and per MAE and MSE the best model is EG-

GAT and EG-TTD, as both having the least MAE and MAE at 5% significance level. The EG-SST is 

the second-best model. We also observe that for the significance levels of 1% and 0.5% the 

performance of EG-GAT is like EG-AEP and EG-SEP and MAE while MSE of EG-TTD are less than 
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that of EG-GAT. It is noticeable that both EG-AST and EG-ST are the poorer models with highest 

MAE and MSE respectively. When we compare asymmetric t distribution of Baker (2014) GAT and 

Zhu and Galbraith (2010) AST, the result clearly indicates that MAE of GAT is significantly greater 

than AST. 

 

Tables 16, 17, 18 and 19 present the ES evaluation results for FTSE, NADAQ, NIKKIE and DAX. ES 

evaluation results for FTSE in table 16 shows that at 5%, 2.5% and 1% significance levels EG-TTD is 

the best model based on MAE and MSE, and for the 0.5% significance level it is the second best model.  

EG-SEPD came second for 5%, 2.5% and 1% significance levels and come first at the 0.5% 

significance level. EG-GAT remains in the top three models for all significance levels for both 

evolution measures.  

 

Table 17 shows that MAE and MSE for NASDAQ of EG-TDD are slightly greater than of EG-GAT 

at the 5% significance level. At 2.5%, 1% and 0.5% significance levels EG-SEPD has slightly less 

MAE and MSE than of EG-GAT. The MAE and MSE of EG-AST is significantly higher than of EG-

GAT and EG-AEPD. ES evaluation results for NIKKIE in table 18 shows almost the same results of 

NASAQ. In table 19 for DAX-30 index the MAE and MSE indicated that EG-TTD is lowest at 5% 

and 2.5% significance levels. 

 

The MSE of EG-SSTD is the lowest at 1% significance level. For all other confidence level EG-SSTD 

have the second highest values for MAE and MSE followed by the EG-AST with highest error values. 

 

From the table 20 again EG-GAT and EG-TTD are best models, and EG-SST is second best model at 

5% significance level. At 2.5% significance level, EG-TTD and EG-SST are the top models and EG-

GAT is second best model. EG-SST, EG-SEP and EG-TTD are the first, second and third top models 

respectively at 1% and 0.5% significance level. Again, at lower significance level EG-GAT and EG-

AEP behave similarly. EG-AST have the highest MAE and MSE values at all the significance levels. 

 

Table 21 compares the MAE and MSE results of Adobe and it indicates that per MAE EG-SST and 

EG-GAT are the best models and per MSE EG-GAT and EG-SST are best model at 5% significance 

level. EG-TTD and AEPD are third and fourth better models respectively. Although EG-GAT remains 

in the top three models at 5%, 2.5% and 1% significance levels, at 0.5% significance level EG-AEP 

and EG-SEP performed better than EG-GAT. 
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Table 22 present the MAE and MSE values of Bank of America and 23 represent J P Morgan. For both 

data sets EG-SST, EG-GAT and EG-TTD are top models at 5% and 2.5% significance levels with 

lower MAS and MSE, and EG-AST and EG-ST have highest MAS and MSE respectively. 

 

The values of MAE and MSE of Pfizer are present in table 24. The EG-GAT MAE and MSE values 

are slightly higher than of EG-SST, however, lower than all other models at the 5% significance level. 

EG-TTD is third best model at the 5% significance level. The Starbucks MAE and MSE value in table 

25 shows that again EG-SST and EG-GAT are the top two models and EG-TTD is the third best model.  

The results for the predicted expected shortfall can be summarized as follows: 

1. In the empirical prediction of expected shortfall, GAT model and TTD models are in the top 

three models at 5% and 2.5% significance levels in almost all cases. 

2. AST model have highest values of MAE and MSE for almost all datasets and significance 

levels. 

3. The skewed version of AST model (SSTD model) has the second highest MAE and MSE in all 

cases except few exceptions. 

4. AEPD model as alternative to asymmetric distributions performs better than the AST, but GAT 

model clearly outperforms AEPD. 

5. The skewed version of AEPD model (SEPD model) performs better than of the skewed version 

of AST model (SSTD model). 

6. When we compare two samples of Standards and Poor’s 500, we observed for both SP and SP 

(2) the GAT and TTD models are ranked as the top models and EG-SSTD is ranked as the 

second-best model at 5% and 2.5% significance values. However, as significance values 

decrease the result may slightly differ.  

7. The results of MSE and MAE indicate different model ranking for the same significance level. 

However, the top three models ranking remain the same.  

8. The result gave us a strong indication that new parameterization of generalized asymmetric 

distribution provides valuable improvement in the results. As discussed, when we compare ES 

back-testing for two asymmetric t distributions, MAE and MSE of  GAT are significantly lower 

than of AST. These results indicate strong implication for further research for use of 

asymmetric t distribution as expected shortfall measure. 

Based on the expected shortfall back-tests conducted through MAE and MSE, we conclude that the 

GAT model by Baker (2014) outperforms the competing AST by Zhu and Galbraith (2010) model by 
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a significant margin. As an alternative to asymmetric t distribution AEPD model also underperforms 

GAT model.  

4.4. Longer Horizon Expected Shortfall Back-testing 

In this section, we evaluate expected shortfall for 5- days and 10- days horizon. We have the Monte 

Carlo simulation and filtered historical simulation for ℎ days ES calculation. As mentioned earlier, the 

key advantage of the MCS technique is flexibility. We can use MCS for any assumed distribution of 

standardized returns, normality is not required. We used GAT, AEPD, SEPD, AST, SSTD, ST and 

TDD as distribution of standardized return. While, FHS combines model-based methods of variance 

with model-free methods of the distribution of shocks. 

 

ES evolution results for longer time horizon for univariate data present in tables 26, 27, 28, 29, 30, 31, 

32, 33, 34, and 35. The objective of this analysis has thus been to compare Monte Carlo simulation 

and Filtered Historical Simulation approaches that can be used to calculate long term risk in the 

univariate risk models. 

 

Table 26 indicates the expected shortfall back-test results for S & P 500 for 5 days ahead. When we 

compare FHS model with different Monte Carlo models that result indicates that FHS has lowest MAE 

at 1%, 2.5% and 5% significance levels for 5-day ES. While, at the 10% significance levels MC-GAT 

has lowest MAE and MSE values. When we compare different Monte-Carlo models, the results show 

that MC-SEPD model has the lowest MAE and MSE at the 1% significance level, at 2.5%, 5% and 

10% significance levels MC-GAT has lowest the MAE and MSE values.  

 

For FTSE in table 27 FHS remain the best models for all significance levels by both evaluation 

measures MAE and MSE. MC-SST has the second the lowest MAE and MSE at 1% and 2.5 % 

significance levels, but at 5% and 10% significance levels MC-GAT has lower MAE and MSE values. 

At 1% and 2.5 % significance levels, MC-SEPD has lower MAE and MSE than MC-GAT. In table 28 

MAE and MSE values for NASDAQ illustrate that FHS and SST is the first and second-best model 

respectively. 

 

For both Nikkei and DAX in tables 29 and table 30 FHS has minimum MAE and MSE values at 1% 

and 2.5%, while at 5% and 10% significance levels MC-GAT has minimum MAE and MSE values. 

MC-AST has highest MAE and MSE for all most all the data sets. MC-AEPD, MC-TTD and MC-ST 

give us mix results. 
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Tables 31, 32, 33, 34 and 35 present 10-day ES evolution results at 1%, 2.5%, 5% and 10% significance 

levels. It is clear from the MAE values that MC-GAT has smallest MAE and MSE values for Standards 

& Poor’s 500 in table 31, FTSE 100 in table 32, Nikkei in table 34 and DAX-30 in table 35 for all 

significance levels. Only for NASDAQ in table 33, MC-TTD has slightly lower MAE and MSE than 

of MC-GAT.  

 

Both MC-AEPD and MC-SEPD have highest MAE and MSE for all the datasets and significance 

level. MAE and MSE values for MC-AST remain higher than FHS, MC-SST, MC-ST and MC-TTD 

for all the data set, except for Nikkei where AST has lower MAE and MSE than of MC-SST. 

The results for the predicted expected shortfall for 5-days and 10-days can be summarized as follows: 

1. The ES evolution results in table 5 and 6 results suggest different best models across the 

horizon.  

2. As for 5-days FHS is the best model for 1% and 2.5% significance levels and MC-GAT is the 

best model at 5% and 10% significance levels. 

3. However, when we increase the number of horizon to 10-days, MAE and MSE values clearly 

suggest MCS-GAT as best model. 

4.  FHS is no longer the best model even for a single data set at any significance level for 10- days 

horizon. However, it performs better than MC-AEPD, MC-SEPD and MC-AST. 

5. Both MC-AEPD and MC-SEPD perform very poorly to forecast ES for 10-days horizon at 

various significance levels. 

 

To conclude, after checking the ES evolution results for 5-days and 10- days horizons, we can infer 

that results of ES models are not similar across different time horizons. However, the satisfactory 

predictions of the MC-GAT are in accordance with the findings of 1-day ahead ES evaluation. Again, 

like 1-day ahead ES, the MC-GAT model out performs MC-AST model and gives a clear implication 

for the use of the GAT distribution for multi-days risk forecasting. 

5. Concluding Remarks 

As we discussed earlier, expected shortfall (ES) is a superior measurement of market risk. However, 

measuring and forecasting market ES for financial assets are challenging because of the asymmetry 

and heavy tailed-ness of return distributions. Recently, good progress has been made in the academic 

literature to deal with features of asymmetry and heavy tailed-ness for different financial assets. 
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Findings of Kellner and Rosch (2016) recommend that only models which allow for heavy tailed-ness 

or skewness can accurately estimate both VaR and ES. 

 

Our research has tried to make additional progress on this important research issue. We have compared 

a new asymmetric t distribution (GAT) by Baker (2014) with asymmetric exponential power 

distribution by Zhu and Zinde-Welsh (2009) and asymmetric t distribution by Zhu and Galbraith 

(2010). These distributions allow separate parameters to control the skewness and the thickness of each 

tail, that may result in potential improvements in forecasting ability of expected shortfall because of 

better estimates of the left tail thickness. In addition, the GAT distribution adds another parameter of 

how soon tail behaviour starts. 

 

In this chapter, ES for only long tailed distributions are evaluated for world five major indexes and 

five individual companies of S and P 500 for 1-day ahead returns. We compare ES from EGARCH (1, 

1) of various non-normal distributions with two new distributions proposed by Baker (2014) and Baker 

and Jackson (2014). For longer horizon ES, we have used filter historical simulation as model-free 

methods of the distribution of shocks and Monte Carlo simulation with GAT, AEPD, SEPD, AST, 

SSTD, ST and TTD as standardized distribution of returns. 

 

The empirical results indicate that the asymmetric t distribution of Zhu and Galbraith (2011) is not the 

best distribution for 1-day head ES. We find that GAT outperforms both AST of Zhu and Galbraith 

(2010) and APED by Zhu and Zinde-Welsh (2009).  Our results also indicate that AEPD and AST 

perform like the results of Zhu and Galbriath (2011). 

 

Our results suggest that generalized distributions that account for both asymmetry and fat tails are 

important for risk analysis and produce good results. As also suggested by Abad et al. (2014), 

asymmetric extensions of parametric methods of VaR and ES estimation present promising results. 

 

Simulation based MCS and FHS methods for calculating ES indicate the importance of long term risk. 

For both 5 days and 10 days ES results show that MCS with GAT distribution of return performs better 

than AEPD and AST.  

 

One of the limitations of applying Monte Carlo with GAT, AEPD, SEPD, AST, SSTD, ST and TTD 

as standardized distribution of returns rather than square-root-of-time rule to calculate longer horizon 

ES is that the Monte Carlo method is a lengthy procedure.  
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Figure 1: Autocorrelation of Daily S&P 500 for the Period 1995-2013. 

 
 

 
Notes: Using daily returns on the S&P 500 index from 1995-2013, the figure shows the autocorrelations for the daily 

returns. The lag order on the horizontal axis refers to the number of days between the return and the lagged return for a 

specific autocorrelation. 
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Figure 2: Histogram of Daily S&P 500 Returns and the Normal Distribution. 

 

 

Notes: The daily S&P 500 returns from 1995-2013 are used to construct a histogram shown by bars. A normal distribution 

with the same mean and standard deviation as the actual returns is shown using the curve. 
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Figure 3: Autocorrelation of Squared Daily S&P 500 Returns 1995– 2013. 

 
Notes: Using daily returns on the S&P 500 index from 1995-2013 the figure shows the autocorrelations for the squared 

daily returns. The lag order on the horizontal axis refers to the number of days between the squared return and the lagged 

squared return for a specific autocorrelation. 
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Figure 4: News Impact curve of Different GARCH Models. 

 
Notes: Using daily returns on the S&P 500 index from 1995-2013 the figure shows the news impact news curves with 

different GARCH models.  
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Figure 5: Histogram with Normal Density and QQ-Plot of Standardized Residuals. 
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Table 1: Data Analyzed. 

No Stock Ticker Start End Observations 

 

1 

 

 

S & P 500 

 

SP 

 

07/01/1995 

 

07/11/2013 

 

4698 

2 

 

FTSE-100 FTSE 07/01/995 07/11/2013 4698 

3 

 

NASDAQ -100 NAS 07/01/1995 07/11/2013 4698 

4 

 

NIKKIE-225 NIK 07/01/1995 07/11/2013 4698 

5 

 

DAX30 DAX 07/01/1995 07/11/2013 4698 

6 

 

S & P 500(2) SP2 01/01/1999 20/11/2013 3874 

7 

 

Adobe AD 24/11/1986 20/11/2013 7042 

8 

 

Bank of America BA 02/01/1973 20/11/2013 10666 

9 

 

J P Morgan JP 02/01/1973 20/11/2013 10666 

10 

 

Pfizer PF 02/01/1973 20/11/2013 10666 

11 

 

Starbucks ST 20/11/1993 20/11/2013 5583 
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Figure 6: Prices, Returns, Squared Return, and Absolute Returns. 
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*SP:Standard and Poor 500),SP2: standard and Poor 500(2), AD: Adobe, BA: Bank of America, JP: JP Morgan, PF: Pfizer, ST: Starbucks. 
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Table 2: Summary Descriptive Statistics. 
 SP FTSE NASDAQ NIKKIE DAX 

Mean 0.0002 0.0001 0.0004 -0.0001 0.0003 

Median 0.0001 0.0001 0.0005 0.0000 0.0007 
Min −0.2283 -0.0927 -0.1111 -0.1211 -0.0887 
Max 
Std.dev. 

0.1096 
0.0103 

0.0938 
0.0120 

0.1720 
0.0192 

0.1323 
0.0151 

0.1080 
0.0153 

Skewness −1.0212 -0.1562 -0.1083 -0.3329 -0.1238 
Kurtosis 27.1950 

 
5.9081 5.1532 6.1275 4.3434 

Jarque-Bera Test 38077.34 
 

6850.3 5206.39 7434.82 3704.07 

P-Values 
 

0.0000 0.0000 0.0000 0.0000 0.0000 

ADF-Unit Root 

P-values 

 

Phillips-Perron Unit Root 

Test 

p-Values 

 

KPSS Test 

p-values           

Auto-Corr-r** 

Lag 1 

Lag 5 

Lag 10 

Lag 20 

Ljung-Box (20) 

p-value     

 

Auto-Corr- r2 

Lag 1 

Lag 5 

Lag 10 

Lag 20 

Ljung-Box (20) 

p-value     

 

−23.536 

0.01 

 

-110.59 

 

0.01 

 

0.13 

0.01 

 

0.013 

-0.005 

0.015 

0.002 

145.55 

0.0000 

 

 

0.139 

0.188 

0.079 

0.066 

3486.21 

0.000 

-16.795 

0.01 

 

-70.746 

 

0.01 

 

0.0965 

0.01 

 

-0.024 

-0.051 

-0.012 

-0.008 

129.88 

0.0000 

 

 

0.231 

0.338 

0.264 

0.123 

6329.1 

0.000 

 

 

-15.699 

0.01 

 

-74.035 

 

0.01 

 

0.1684 

0.01 

 

-0.070 

-0.016 

0.003 

-0.020 

132.97 

0.0000 

 

 

0.235 

0.211 

0.274 

0.184 

3888.3 

0.000 

 

 

-16.336 

0.01 

 

-71.213 

 

0.01 

 

0.1204 

0.01 

 

-0.035 

0.009 

0.001 

0.009 

63.017 

0.0000 

 

 

0.164 

0.152 

0.264 

0.114 

5777.8 

0.000 

-16.011 

0.01 

 

-69.362 

 

0.01 

 

0.1335 

0.01 

 

-0.010 

-0.031 

-0.001 

0.012 

64.015 

0.0000 

 

 

0.187 

0.248 

0.192 

0.124 

4512.2 

0.000 

 

Note: SP: Standard and Poor 500, FTSE: FTSE, NAS: NASDAQ, NIK: NIKKIE, DAX: DAX. **The Lag orders are 

selected to examine a range of possible autocorrelations. 
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Table 3: Summary Descriptive Statistics. 
 SP2 AD BA JP PF  ST 

Mean 0.0003 0.0007 0.0001 0.0002 0.0003  
 

0.0009 

Median 0.0002 0.0000 0.0000 0.0000 0.0000  0.0000 

Min −0.0947 -0.3595 −0.3421 −0.3246 -0.1899  -0.3325 

Max 
Std.dev. 

0.1096 
0.0114 

0.2792 
0.0331 

0.3021 
0.0244 

0.2239 
0.0221 

0.0975 

0.0176 

 

 

0.1687 

0.0260 

Skewness −0.2367 -0.4161 −0.3254 −0.0939 -0.1938  -0.1549 

Kurtosis 8.9912 10.7099 27.2005 
 

15.1951 4.3278  8.4168 

Jarque-Bera 
Test 

21049.96 33858.79 328998.43 102627.36 102627.35  16502.05 

P-Values 
 

0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 

ADF-Unit 

Root 

P-values 

 

Phillips-

Perron Unit 

Root Test 

p-Values 

 

KPSS Test 

p-values           

Auto-Corr-r** 

Lag 1 

Lag 5 

Lag 10 

Lag 20 

Ljung-Box 

(20) 

p-value     

 

Auto-Corr-

r2** 

 

Lag 1 

Lag 5 

Lag 10 

Lag 20 

Ljung-Box 

(20) 

p-value     

 

−18.38 

0.01 

 

 

-84.54 

 

0.01 

 

 

0.14 

0.01 

 

-0.060 

-0.027 

0.028 

-0.003 

144.28 

 

0.0000 

 

 

 

 

0.211 

0.311 

0.250 

0.216 

8611.888 

 

0.000 

-18.81 

0.01 

 

 

-84.51 

 

0.01 

 

 

0.12 

0.01 

 

-0.006 

-0.016 

-0.009 

0.001 

49.34 

 

0.0003 

 

 

 

 

0.121 

0.104 

0.054 

0.067 

866.698 

 

0.000 

−20.52 

0.01 

 

 

-100.87 

 

0.01 

 

 

0.13 

0.01 

 

0.023 

-0.044 

0.046 

0.014 

227.84 

 

0.0000 

 

 

 

 

0.280 

0.235 

0.219 

0.190 

11479.74 

 

0.000 

 −21.05 

0.01 

 

 

-105.51 

 

0.01 

 

 

0.045 

0.01 

 

-0.020 

-0.009 

0.014 

-0.005 

57.11 

 

0.0000 

 

 

 

 

0.236 

0.192 

0.109 

0.112 

5244.616 

 

0.000 

-21.052 

0.01 

 

 

-100.81 

 

0.01 

 

 

0.17 

0.01 

 

0.027 

-0.001 

0.003 

-0.002 

7.11 

 

0.0000 

 

 

 

 

0.130 

0.162 

0.071 

0.047 

2513.462 

 

0.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-18.28 

0.01 

 

 

-79.21 

 

0.01 

 

 

0.12 

0.01 

 

0.013 

-0.005 

0.015 

0.002 

50.01 

 

0.0002 

 

 

 

 

0.061 

0.054 

0.074 

0.072 

359.06 

 

0.000 

Note: SP2: Standard and Poor 500(2), AD: Adobe, BA: Bank of America, JP: JP, Morgan, PF: Pfizer, ST: Starbucks. 

**The Lag orders are selected to examine a range of possible autocorrelations.   
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Figure 7: Normal QQ Plot for the Individual Stocks Log-Returns Data. 
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Figure 8: Normal QQ Plot for the Induces Log-Returns. 

+



61 
 

Table 4: Estimated Parameters and Goodness of Fit Tests for S and Poor’s 500(1) for the Period 1995-2013. 
 

Models 

 

Estimated Parameters 

 

 

Goodness of fit Tests 

Log L AIC BIC 

EG-GAT 

 

𝜇 

0.010 

(0.242) 

𝜙 

2.724 

(0.121) 

𝛼 

1.568 

(1.64) 

 

𝑟 

1.104 

(0.082) 

 

𝑐 

0.926 

(0.116) 

𝑣 

6.947 

(0.426) 

 

-17459.5 

 

34930.9 

 

34975.5 

EG-AEPD 𝛼 

0.4874 

(0.0037) 

 

𝑑1 

1.4834 

(0.0278) 

𝑑2 

1.8409 

(0.0384) 

    

-17583.4 

 

35172.8 

 

35195.1 

EG-SEPD 𝛼 

0.5056 

(0.0029) 

𝑑 

1.623 

(0.0227) 

 

     

-17613.7 

 

35231.4 

 

35246.3 

EG-AST 𝛼 

0.493 

(0.0531) 

𝑣1 

4.999 

(0.401) 

𝑣2 

5.000 

(0.5319) 

    

-17846.3 

 

35698.67 

 

35721.0 

EG-SST 𝛼 

0.5016 

(0.0038) 

𝑣 

17.0969 

(1.390) 

     

-17608.4 

 

35220.9 

 

35235.7 

EG-ST 𝑣 

6.8787 

(0.4200) 

      

-17468.2 

 

34964.8 

 

34942.5 

EG-TTD 𝑣 

5.1375 

(0.2499) 

      

17505.27 

 

35012.53 

 

35012.0 

Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold. 
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Table 5: Estimated Parameters and Goodness of Fit Tests for FTSE for the Period 1995-2013. 

Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold. 

 

 

 

 

Models 

 

Estimated Parameters 

 

 

Goodness of fit Tests 

Log L AIC BIC 

EG-GAT 

 

𝜇 

1.3136 

(1.5299) 

𝜙 

3.3876 

(1.5616) 

𝛼 

1.2460 

(4.8008) 

𝑟 

0.9720 

(0.288) 

𝑐 

1.4802 

(0.013) 

𝑣 

12.616 

(0.220) 

 

-6608.1 

 

13228.3 

 

13267.1 

EG-AEPD 𝛼 

0.6329 

(0.0068) 

𝑑1 

0.5007 

(0.0095) 

𝑑2 

0.4974 

(0.0104) 

    

-14386.1 

 

28778.3 

 

28797.6 

EG-SEPD 𝛼 

0.5112 

(0.0045) 

𝑑 

1.8038 

(0.0403) 

     

-6640.9 

 

13285.9 

 

13298.8 

EG-AST 𝛼 

0.5121 

(0.6357) 

𝑣1 

1.3248 

(0.3305) 

𝑣2 

1.4625 

(0.8476) 

    

-6757.8 

 

13521.6 

 

13541.0 

EG-SST 𝛼 

0.5112 

(0.0045) 

𝑣 

1.8038 

(0.0403) 

     

-6640.98 

 

13285.9 

 

13298.8 

EG-ST 𝑣 

11.8647 

(1.8486) 

      

-6626.7 

 

13259.4 

 

13278.8 

EG-TTD 

 

6.7625 

(0.7503) 

      

-6629.012 

 

13260.02 

 

13266.48 
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Table 6: Estimated Parameters and Goodness of Fit Tests for NASDAQ for the Period 1995-2013. 
 

Models 

 

Estimated Parameters 

 

 

Goodness of fit Tests 

Log L AIC BIC 

EG-GAT 

 

𝜇 

0.1935 

(1.1715) 

𝜙 

3.2526 

(0.717) 

𝛼 

1.3627 

(0.5605) 

𝑟 

1.1799 

(0.407) 

𝑐 

0.9224 

(0.584) 

𝑣 

9.9581 

(1.511) 

 

-6609.9 

 

13231.9 

 

13270.6 

EG-AEPD 𝛼 

0.4883 

(0.0061) 

𝑑1 

1.5454 

(0.0508) 

𝑑2 

1.9685 

(0.0658) 

    

-6624.95 

 

13255.91 

 

13275.2 

EG-SEPD 𝛼 

0.5090 

(0.0046) 

𝑑 

1.7316 

(0.0399) 

     

-6638.07 

 

13280.1 

 

13293.1 

EG-AST 𝛼 

0.5087 

(0.2880) 

𝑣1 

5.3240 

(0. 208) 

𝑣2 

5.4629 

(0. 645) 

    

-6757.8 

 

13521.6 

 

13541.0 

EG-SST 𝛼 

0.5090 

(0.0046) 

V 

1.7316 

(0.0399) 

     

-6638.07 

 

13280.1 

 

13293.0 

EG-ST 𝑣 

9.5721 

(1.2906) 

      

-6619.9 

 

13246 

 

13265.3 

EG-TTD 𝑣 

6.1750 

(0.6239) 

      

-6626.2 

 

13254.5 

 

13260.9 

Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold. 
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Table 7: Estimated Parameters and Goodness of Fit Tests for Nikkei for the Period 1995-2013. 
 

Models 

 

Estimated Parameters 

 

 

Goodness of fit Tests 

Log L AIC BIC 

EG-GAT 

 

𝜇 

0.2707 

(0.5765) 

𝜙 

2.5566 

(4.547) 

𝛼 

1.1257 

(5.731) 

𝑟 

1.0566 

(0.266) 

𝑐 

1.0400 

(0.486) 

𝑣 

7.8906 

(0.508) 

 

-6584.44 

 

13180.9 

 

13219.6 

EG-AEPD 𝛼 

0.4858 

(0.0062 

𝑑1 

1.4992 

(0.0501) 

𝑑2 

1.8425 

(0.0622) 

    

-6612.17 

 

13230.34 

 

13249.7 

EG-SEPD 𝛼 

0.5034 

(0.0048) 

𝑑 

1.6517 

(0.0396) 

     

-6621.73 

 

13247.4 

 

13260.3 

EG-AST 𝛼 

0.5277 

(0.8428) 

𝑣1 

2.6048 

(0.000) 

𝑣2 

1.4390 

(0. 825) 

    

-6707.46 

 

13420.9 

 

13440.2 

EG-SST 𝛼 

0.5034 

(0.0048) 

𝑣 

1.6517 

(0.0396) 

     

-6634.97 

 

13273.9 

 

13286.8 

EG-ST 𝑣 

7.7844 

(0.8681) 

      

-6589.9 

 

13185.8 

 

13205.2 

EG-TTD 𝑣 

5.5062 

(0.4703) 

      

-6599.7 

 

13201.4 

 

13207.9 

Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold. 
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Table 8: Estimated Parameters and Goodness of Fit Tests for DAX 30 for the Period 1995-2013. 
 

Models 

 

Estimated Parameters 

 

 

Goodness of fit Tests 

Log L AIC BIC 

EG-GAT 

 

𝜇 

1.8020 

(1.734) 

𝜙 

1.1944 

(1.5266) 

𝛼 

1.9037 

(1.4019) 

𝑟 

0.6323 

(0.195) 

𝑐 

3.3817 

(3.329) 

𝑣 

7.4726 

(6.179) 

 

-6594.1 

 

13200.2 

 

13238.9 

EG-AEPD 𝛼 

0.4872 

(0.0060) 

𝑑1 

1.5238 

(0.0504) 

𝑑2 

2.0245 

(0.0639 

    

-6616.14 

 

13238.28 

 

13257.64 

EG-SEPD 𝛼 

0.5114 

(0.0046) 

𝑑 

1.7530 

(0.0397) 

     

-6634.977 

 

13273.95 

 

13286.86 

EG-AST 𝛼 

0.5196 

(0.8032) 

𝑣1 

3.5690 

(0.6909) 

 

𝑣2 

2.5628 

(0.3975) 

    

-6739.868 

 

13485.74 

 

13505.1 

EG-SST 𝛼 

0.5148 

(0.0063) 

𝑣 

1.7530 

(0.0397) 

     

-6629.466 

 

13262.93 

 

13275.84 

EG-ST 𝑣 

9.6497 

(1.2851) 

      

-6614.9 

 

13235.8 

 

13255.2 

EG-TTD 𝑣 

6.1000 

(0.5909) 

      

-6619.6 

 

13241.3 

 

13247.8 

Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold.  
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Table 9: Estimated Parameters and Goodness of Fit Tests for S and Poor 500(2) for the Period 1999-2013. 
 

Models 

 

Estimated Parameters 

 

Goodness of Fit Tests 

Log L AIC BIC 

EG-GAT 𝜇 

0.040 

(0.146) 

𝜙 

1.715 

(0.171) 

𝛼 

0.317 

(0.119) 

𝑟 

1.564 

(0.298) 

𝑐 

0.274 

(0.173) 

𝑣 

12.635 

(3.786) 

 

-8701.331 

 

17414.66 

 

17455.09 

 

EG-AEPD 𝛼 

0.484 

(0.005) 

𝑑1 

1.439 

(0.040) 

 

𝑑2 

1.938 

(0.058) 

    

-8747.885 

 

17501.77 

 

17521.98 

EG-SEPD 𝛼 

0.509 

(0.004) 

𝑑 

1.636 

(0.033) 

     

-8775.031 

 

17554.06 

 

17567.54 

EG-AST 𝛼 

0.517 

(0.009) 

𝑣1 

3.001 

(0.035) 

𝑣2 

5.999 

(0.021) 

    

-8900.742 

 

17807.48 

 

17827.7 

EG-SST 𝛼 

0.514 

(0.005) 

𝑣 

18.124 

(2.326) 

 

     

-8783.127 

 

17570.25 

 

17583.73 

EG-ST 𝑣 

6.499 

(0.550) 

      

-8718.412 

 

17442.82 

 

17463.04 

EG-TTD 𝑣 

4.994 

(0.340) 

      

-8740.973 

 

17483.95 

 

17490.68 

   Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold. 
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Table 10: Estimated Parameters and Goodness of Fit Tests for Adobe for the Period 1986-2013. 
Models Estimated Parameters Goodness of Fit Tests 

Log L AIC BIC 

EG-GAT 𝜇 

1.518 

(0.165) 

𝜙 

1.816 

(0.307) 

𝛼 

3.718 

(0.562) 

 

𝑟 

0.699 

(0.039) 

𝑐 

2.545 

(0.395) 

𝑣 

4.280 

(0.438) 

 

-9560.43 
 

19023.7 

 
19089.3 

EG-AEPD 𝛼 

0.500 

(0.005) 

𝑑1 

1.452 

(0.033) 

 

𝑑2 

1.444 

(0.039) 

    

-9757.6 

 

19521.2 

 

19541.7 

EG-SEPD 𝛼 

0.499 

(0.004) 

𝑑 

1.448 

(0.023) 

 

     

-9757.6 

 

19519.2 

 

19532.9 

EG-AST 𝛼 

0.454 

(0.011) 

𝑣1 

1.707 

(0.585) 

𝑣2 

4.054 

(0. 216) 

    

-9778.1 

 

19562.1 

 

19582.7 

EG-SST 𝛼 

0.452 

(0.006) 

𝑣 

11.022 

(0.804) 

     

-9694.2 

 

19392.4 

 

19406.1 

EG-ST 𝑣 

4.614 

(0.255) 

      

-9494.7 

 

18995.4 

 

19016.0 

EG-TTD 𝑣 

4.056 

(0.193) 

 

      

-9574.93 

 

19151.9 

 

19158.7 

Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: 

AST; skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold. 
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Table 11: Estimated Parameters and Goodness of Fit Tests for Bank of America for the Period 1973-2013. 
Models Estimated Parameters Goodness of Fit Test 

Log L AIC BIC 

EG-GAT 𝜇 

0.010 

(0.128) 

𝜙 

1.788 

(0.148) 

𝛼 

1.302 

(0.039) 

𝑟 

0.954 

(0.064) 

𝑐 

1.067 

(0.148) 

𝑣 

4.451 

(0.209) 

 

-14601.96 

 

29215.92 

 

29259.6 

EG-AEPD 𝛼 

0.507 

(0.004) 

𝑑1 

1.461 

(0.029) 

𝑑2 

1.444 

(0.036) 

    

-14854.67 

 

29715.35 

 

29737.17 

 

EG-SEPD 𝛼 

0.506 

(0.003) 

𝑑 

1.455 

(0.024) 

 

     

-14854.75 

 

29713.9 

 

29728.04 

EG-AST 𝛼 

0.425 

(0.079) 

𝑣1 

2.075 

(0. 94) 

𝑣2 

4.974 

(0.989) 

    

-14886.85 

 

29779.70 

 

29801.53 

EG-SST 𝛼 

0.436 

(0.005) 

𝑣 

10.502 

(0.669) 

     

-14788.2 

 

29580.40 

 

29594.95 

EG-ST 𝑣 

4.545 

(0.216) 

      

-14601.79 

 

29209.58 

 

29231.4 

EG-TTD 𝑣 

4.066 

(0.164) 

 

     

 

 

-14712.17 

 

29426.33 

 

29433.61 

Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold. 
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Table 12: Estimated Parameters and Goodness of Fit Tests for J P Morgan for the Period 1973-2013. 
Models Estimated Parameters  Goodness of Fit Test 

Log L AIC BIC 

EG-GAT 𝜇 

0.010 

(0.258) 

𝜙 

1.509 

(0.344) 

𝛼 

0.443 

(0.579) 

𝑟 

0.947 

(0.289) 

𝑐 

1.148 

(0.851) 

𝑣 

7.716 

(6.349) 

 

-14727.64 

 

29467.27 

 

29510.92 

EG-AEPD 𝛼 

0.499 

(0.004) 

𝑑1 

1.523 

(0.030) 

 

𝑑2 

1.571 

(0.035) 

    

-14929.15 

 

29864.29 

 

29886.12 

EG-SEPD 𝛼 

0.501 

(0.003) 

𝑑 

1.543 

(0.024) 

 

     

-14929.7 

 

29863.41 

 

29877.95 

EG-AST 𝛼 

0.442 

(0.075) 

𝑣1 

3.114 

(0.436) 

𝑣2 

5.952 

(0.956) 

    

-15021.47 

 

30048.95 

 

30070.77 

EG-SST 𝛼 

0.456 

(0.004) 

𝑣 

13.145 

(0.965) 

     

-14873.98 

 

29751.97 

 

29766.52 

EG-ST 𝑣 

5.5456 

(0.3032) 

      

-14729.19 

 

29464.39 

 

29486.21 

EG-TTD 𝑣 

4.481 

(0.199) 

      

-14789.01 

 

29580.02 

 

29587.29 

Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold. 
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Table 13: Estimated Parameters and Goodness of Fit Tests for Pfizer for the Period 1973-2013. 
Models Estimated Parameters Goodness of Fit Tests 

Log L AIC BIC 

EG-GAT 𝜇 

0.010 

(0.037) 

𝜙 

1.691 

(0.342) 

𝛼 

0.533 

(0.285) 

𝑟 

0.944 

(0.074) 

𝑐 

1.128 

(0.261) 

𝑣 

7.732 

(0.631) 

 

-14804.14 

 

29620.28 

 

29663.93 

EG-AEPD 𝛼 

0.496 

(0.004) 

 

𝑑1 

1.560 

(0.030) 

𝑑2 

1.630 

(0.037) 

    

-14977.44 

 

29960.89 

 

29982.71 

EG-SEPD 𝛼 

0.499 

(0.003) 

𝑑 

1.590 

(0.024) 

 

     

-14978.56 

 

29961.12 

 

29975.67 

EG-AST 𝛼 

0.447 

(0.075) 

𝑣1 

1.896 

(0.580) 

𝑣2 

2.7380 

(0.289) 

    

-15080.1 

 

30166.2 

 

30188.03 

EG-SST 𝛼 

0.459 

(0.004) 

𝑣 

13.664 

(1.020) 

 

     

-14921.63 

 

29847.26 

 

29861.81 

EG-ST 𝑣 

6.068 

(0.348) 

      

-14804.35 

 

29614.7 

 

29636.52 

EG-TTD 𝑣 

4.613 

(0.211) 

 

      

-14843.87 

 

29689.73 

 

29697.01 

Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold. 
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Table 14: Estimated Parameters and Goodness of Fit Tests for Starbucks for the Period 1993-2013. 
 

Models 

 

Estimated Parameters 

 

Goodness of Fit Test 

Log L AIC BIC 

EG-GAT 𝜇 

0.0100 

(0.076) 

𝜙 

1.374 

(1.050) 

𝛼 

0.417 

(2.042) 

𝑟 

0.753 

(0.149) 

𝑐 

2.026 

(1.012) 

𝑣 

7.204 

(1.469) 

 

-7667.92 

 

15347.84 

 

15387.6 

EG-AEPD 𝛼 

0.507 

(0.006) 

 

𝑑1 

1.626 

(0.044) 

𝑑2 

1.403 

(0.043) 

    

-7801.192 

 

15608.38 

 

15628.27 

EG-SEPD 𝛼 

0.494 

(0.005) 

𝑑 

1.518 

(0.032) 

 

     

-7808.251 

 

15620.5 

 

15633.76 

 

EG-AST 𝛼 

0.455 

(0.102) 

𝑣1 

1.991 

(0.041) 

 

𝑣2 

7.001 

(0.870) 

 

    

-7847.263 

 

15700.53 

 

15720.41 

EG-SST 𝛼 

0.450 

(0.006) 

𝑣 

11.968 

(1.104) 

 

     

-7776.151 

 

15556.3 

 

15569.56 

EG-ST 𝑣 

4.852 

(0.322) 

      

-7674.449 

 

15354.9 

 

15374.78 

EG-TTD 𝑣 

4.088 

(0.226) 

      

-7718.06 

 

15438.12 

 

15444.75 

 
Note: Standard errors are reported in parenthesis. Log L is the maximum value of log likelihood function. AIC is Akaike information criterion, BIC is Bayesian information 

criterion. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD. The lowest AIC and BIC given in bold. 
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Table 15: Back-testing Results for 1-day Ahead Expected Shortfall for Standards and Poor’s 500. 
P 

 

5% 2.5% 1% 0.5% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

 

EG-GAT 

 

 

 

0.0203 

(1) 

 

0.0005 

(1) 

 

0.0242 

(3) 

 

0.0008 

(2) 

 

0.0299 

(4) 

 

0.0011 

(2) 

 

0.0346 

(5) 

 

0.0015 

(3) 

EG-AEPD 

 

 

0.0225 

(4) 

0.0007 

(3) 

0.0262 

(5) 

0.0009 

(3) 

0.0310 

(5) 

0.0012 

(3) 

0.0340 

(4) 

0.0015 

(3) 

EG-SEPD 

 

 

0.0218 

(3) 

0.0007 

(3) 

0.0251 

(4) 

0.0009 

(3) 

0.0292 

(2) 

0.0011 

(2) 

0.0320 

(2) 

0.0014 

(2) 

EG-AST 

 

 

0.0257 

(6) 

0.0009 

(5) 

0.0314 

(6) 

0.0012 

(5) 

0.0397 

(7) 

0.0020 

(5) 

0.0468 

(7) 

0.0028 

(5) 

EG-SSTD 

 

 

0.0206 

(2) 

0.0006 

(2) 

0.0237 

(2) 

0.0007 

(1) 

0.0277 

(1) 

0.0010 

(1) 

0.0307 

(1) 

0.0012 

(1) 

EG-ST 

 

 

0.0238 

(5) 

0.0008 

(4) 

0.0284 

(7) 

0.001 

(4) 

0.0346 

(6) 

0.0016 

(4) 

0.0399 

(6) 

0.0020 

(4) 

EG-TTD 

 

 

0.0203 

(1) 

0.0005 

(1) 

0.0239 

(1) 

0.0007 

(1) 

0.0293 

(3) 

0.0011 

(2) 

0.0338 

(3) 

0.0014 

(2) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 16: Back-testing Results for 1-day Ahead Expected Shortfall for FTSE. 
p 

 

5% 2.5% 1% 0.5% 

Models 

 

MAE MSE MAE MSE MAR MSE MAR MSE 

 

EG-GAT 

 

 

 

0.0242 

(3) 

 

0.0008 

(2) 

 

0.0284 

(3) 

  

0.0011 

(3) 

 

0.0340 

(3) 

 

0.0015 

(2) 

 

0.0382 

(3) 

 

0.0019 

(3) 

 

EG-AEPD 

 

 

0.1013 

(6) 

 

0.0125 

(4) 

0.1327 

(6) 

0.0214 

(5) 

0.1800 

(5) 

0.0392 

(3) 

0.2200 

(5) 

0.0586 

(4) 

EG-SEPD 

 

 

0.0240 

(2) 

0.0008 

(2) 

0.0273 

(2) 

0.0010 

(2) 

0.0314 

(2) 

0.0013 

(1) 

0.0342 

(1) 

0.0015 

(1) 

EG-AST 

 

 

0.1944 

(7) 

0.0458 

(5) 

0.3288 

(7) 

0.1307 

(6) 

0.6571 

(7) 

0.5220 

(5) 

1.1090 

(7) 

1.4870 

(6) 

EG-SSTD 

 

 

0.0814 

(5) 

0.0081 

(3) 

0.1206 

(5) 

0.0177 

(4) 

0.2014 

(6) 

0.0491 

(4) 

0.2962 

(6) 

0.1061 

(5) 

EG-ST 

 

 

0.0249 

(4) 

0.0008 

(2) 

0.0290 

(4) 

0.0011 

(3) 

0.0343 

(4) 

0.0015 

(2) 

0.0383 

(4) 

0.0019 

(3) 

EG-TTD 

 

 

0.0226 

(1) 

0.0007 

(1) 

0.0263 

(1) 

0.0009 

(1) 

0.0312 

(1) 

0.0013 

(1) 

0.0351 

(2) 

0.0018 

(2) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 17: Back-testing Results for 1-day Ahead Expected Shortfall for NASDAQ. 
p 

 

5% 2.5% 1% 0.5% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

 

EG-GAT 

 

 

 

0.0384 

(2) 

 

0.0022 

(2) 

 

0.0454 

(3) 

 

0.0029 

(3) 

 

0.0550 

(4) 

 

0.0041 

(2) 

 

0.0626 

(4) 

 

0.0052 

(4) 

EG-AEPD 

 

 

0.0404 

(4) 

0.0024 

(3) 

0.0467 

(4) 

0.0031 

(4) 

0.0546 

(3) 

0.0041 

(2) 

0.0603 

(3) 

0.0049 

(3) 

EG-SEPD 

 

 

0.0387 

(3) 

0.0022 

(2) 

0.0443 

(2) 

0.0028 

(2) 

0.0511 

(2) 

0.0036 

(1) 

0.0559 

(1) 

0.0042 

(1) 

EG-AST 

 

 

0.1397 

(7) 

0.0248 

(5) 

0.2102 

(6) 

0.0557 

(7) 

0.3585 

(7) 

0.1614 

(5) 

0.5357 

(7) 

0.3600 

(7) 

EG-SSTD 

 

 

0.0487 

(6) 

0.0033 

(4) 

0.0590 

(5) 

0.0047 

(6) 

0.0740 

(6) 

0.0072 

(4) 

0.0868 

(6) 

0.0098 

(6) 

EG-ST 

 

 

0.0410 

(5) 

0.0024 

(3) 

0.0480 

(5) 

0.0032 

(5) 

0.0574 

(5) 

0.0045 

(3) 

0.0648 

(5) 

0.0056 

(5) 

EG-TTD 

 

 

0.0363 

(1) 

0.0020 

(1) 

0.0424 

(1) 

0.0026 

(1) 

0.0508 

(1) 

0.0036 

(1) 

0.0593 

(2) 

0.0043 

(2) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 18: Back-testing Results for 1-day Ahead Expected Shortfall for Nikkei. 
p 

 

5% 2.5% 1% 0.5% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

 

EG-GAT 

 

 

 

0.0320 

(2) 

 

0.0013 

(2) 

 

0.0380 

(3) 

 

0.0018 

(2) 

 

0.0464 

(3) 

 

0.0026 

(3) 

 

0.0531 

(3) 

 

0.0033 

(4) 

EG-AEPD 

 

 

0.0342 

(4) 

0.0015 

(4) 

0.0396 

(4) 

0.0019 

(3) 

0.0464 

(3) 

0.0026 

(3) 

0.0513 

(2) 

0.0031 

(3) 

EG-SEPD 

 

 

0.0329 

(3) 

0.0014 

(3) 

0.0377 

(2) 

0.0018 

(2) 

0.0437 

(1) 

0.0023 

(2) 

0.0479 

(1) 

0.0027 

(1) 

EG-AST 

 

 

0.1264 

(7) 

0.0180 

(7) 

0.1935 

(7) 

0.0420 

(6) 

0.3379 

(6) 

0.1277 

(5) 

0.5145 

(6) 

0.2959 

(7) 

EG-SSTD 

 

 

0.0690 

(6) 

0.0055 

(6) 

0.0922 

(6) 

0.0097 

(5) 

0.1331 

(5) 

0.0200 

(1) 

0.1747 

(5) 

0.0343 

(6) 

EG-ST 

 

 

0.0357 

(5) 

0.0016 

(5) 

0.0422 

(5) 

0.0022 

(4) 

0.0510 

(4) 

0.0031 

(4) 

0.0580 

(4) 

0.0039 

(5) 

EG-TTD 

 

 

0.0310 

(1) 

0.0012 

(1) 

0.0363 

(1) 

0.0016 

(1) 

0.0440 

(2) 

0.0023 

(2) 

 

0.0513 

(2) 

0.0030 

(2) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 19: Back-testing Results for 1-day Ahead Expected Shortfall for DAX. 
p 

 

5% 2.5% 1% 0.5% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

 

EG-GAT 

 

 

 

0.0136 

(1) 

 

0.0003 

(1) 

 

0.0156 

(1) 

 

0.0004 

(1) 

 

0.0186 

(1) 

 

0.0006 

(1) 

 

0.0213 

(1) 

 

0.0007 

(1) 

EG-AEPD 

 

 

0.0331 

(4) 

0.0015 

(4) 

0.0384 

(4) 

0.0020 

(4) 

0.0449 

(4) 

0.0026 

(3) 

0.0496 

(3) 

0.0032 

(3) 

EG-SEPD 

 

 

0.0314 

(3) 

0.0014 

(3) 

0.0358 

(3) 

0.0017 

(3) 

0.0413 

(2) 

0.0022 

(2) 

0.0451 

(2) 

0.0026 

(2) 

EG-AST 

 

 

0.1125 

(7) 

0.0154 

(7) 

0.1685 

(6) 

0.0344 

(7) 

0.2855 

(7) 

0.0983 

(6) 

0.4246 

(7) 

0.2171 

(7) 

EG-SSTD 

 

 

0.0500 

(6) 

0.0032 

(6) 

0.0633 

(5) 

0.0050 

(6) 

0.0845 

(6) 

0.0088 

(5) 

0.1042 

(6) 

0.0132 

(6) 

EG-ST 

 

 

0.0370 

(5) 

0.0018 

(5) 

0.0443 

(5) 

0.0026 

(5) 

0.0549 

(5) 

0.0038 

(4) 

0.0635 

(5) 

0.0050 

(5) 

EG-TTD 

 

 

0.0295 

(2) 

0.0012 

(2) 

0.0345 

(2) 

0.0016 

(2) 

0.0414 

(3) 

0.0022 

(2) 

0.0586 

(4) 

0.0041 

(4) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 20: Back-testing Results for 1-day Ahead Expected Shortfall for Standers and Poor’s 500(2). 
p 

 

5% 2.5% 1% 0.5% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

 

EG-GAT 

 

 

 

0.0221 

(1) 

 

0.0007 

(1) 

 

0.0269 

(2) 

 

0.0010 

(2) 

 

0.0336 

(4) 

 

0.0015 

(3) 

 

0.0391 

(4) 

 

0.0020 

(4) 

EG-AEPD 

 

 

0.0244 

(4) 

0.0008 

(3) 

0.0285 

(3) 

0.0011 

(3) 

0.0336 

(4) 

0.0015 

(3) 

0.0373 

(3) 

0.0018 

(3) 

EG-SEPD 

 

 

0.0234 

(3) 

0.0008 

(3) 

0.0269 

(2) 

0.0010 

(2) 

0.0313 

(2) 

0.0013 

(2) 

0.0343 

(2) 

0.0016 

(2) 

EG-AST 

 

 

0.0397 

(6) 

0.0020 

(4) 

0.0518 

(5) 

0.0033 

(5) 

0.0716 

(6) 

0.0064 

(5) 

0.0912 

(6) 

0.0103 

(6) 

EG-SSTD 

 

 

0.0227 

(2) 

0.0007 

(2) 

0.0261 

(1) 

0.0009 

(1) 

0.0305 

(1) 

0.0012 

(1) 

0.0337 

(1) 

0.0015 

(1) 

EG-ST 

 

 

0.0262 

(5) 

0.0009 

(4) 

0.0313 

(4) 

0.0013 

(4) 

0.0384 

(5) 

0.0019 

(4) 

0.0443 

(5) 

0.0025 

(5) 

EG-TTD 

 

 

0.0221 

(1) 

0.0007 

(2) 

0.0261 

(1) 

0.0009 

(1) 

0.0321 

(3) 

0.0013 

(2) 

0.0373 

(3) 

0.0018 

(3) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 21: Back-testing Results for 1-day Ahead Expected Shortfall for Adobe. 
p 

 

5% 2.5% 1% 0.5% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

 

EG-GAT 

 

 

 

0.0671 

(2) 

 

0.0060 

(1) 

 

0.0819 

(2) 

 

0.0086 

(2) 

 

0.1041 

(3) 

 

0.0133 

(2) 

 

0.1231 

(4) 

 

0.0182 

(4) 

EG-AEPD 

 

 

0.0779 

(4) 

0.0078 

(3) 

0.0904 

(4) 

0.0103 

(4) 

0.1062 

(4) 

0.01385 

(3) 

0.1170 

(2) 

0.0167 

(2) 

EG-SEPD 

 

 

0.0782 

(5) 

0.0079 

(4) 

0.0908 

(5) 

0.0103 

(4) 

0.1066 

(5) 

0.0139 

(4) 

0.1180 

(3) 

0.0168 

(3) 

EG-AST 

 

 

0.2072 

(7) 

0.0497 

(6) 

0.3136 

(7) 

0.1126 

(6) 

0.5386 

(7) 

0.3290 

(7) 

0.8090 

(7) 

0.7430 

(7) 

EG-SSTD 

 

 

0.0655 

(1) 

0.0060 

(1) 

0.0762 

(1) 

0.0075 

(1) 

0.0905 

(1) 

0.0103 

(1) 

0.1014 

(1) 

0.0127 

(1) 

EG-ST 

 

 

0.0931 

(6) 

0.0108 

(5) 

0.1142 

(6) 

0.0158 

(5) 

0.1459 

(6) 

0.0252 

(6) 

0.1736 

(6) 

0.0352 

(6) 

EG-TTD 

 

 

0.0741 

(3) 

0.0072 

(2) 

0.0895 

(3) 

0.0101 

(3) 

0.1134 

(2) 

0.0156 

(5) 

0.1351 

(5) 

0.0217 

(5) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 22: Back-testing Results for 1-day Ahead Expected Shortfall for Bank of America. 
p 

 

5% 2.5% 1% 0.5% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

 

EG-GAT 

 

 

 

0.0454 

(2) 

 

0.0033 

(2) 

 

0.0550 

(2) 

 

0.0046 

(2) 

 

0.0696 

(4) 

 

0.0072 

(4) 

 

0.0823 

(4) 

 

0.0098 

(4) 

EG-AEPD 

 

 

0.0494 

(4) 

0.0039 

(4) 

0.0573 

(4) 

0.0050 

(3) 

0.0673 

(2) 

0.00679 

(2) 

0.0744 

(2) 

0.0081 

(2) 

EG-SEPD 

 

 

0.0512 

(5) 

0.0041 

(5) 

0.0593 

(5) 

0.0054 

(4) 

0.0694 

(3) 

0.0071 

(3) 

0.0768 

(3) 

0.0086 

(3) 

EG-AST 

 

 

0.08903 

(7) 

0.0114 

(7) 

0.1262 

(7) 

0.02238 

(6) 

0.1982 

(7) 

0.0543 

(7) 

0.2777 

(7) 

0.1061 

(7) 

EG-SSTD 

 

 

0.0414 

(1) 

0.0028 

(1) 

0.0481 

(1) 

0.0037 

(1) 

0.0572 

(1) 

0.0050 

(1) 

0.06420 

(1) 

0.0062 

(1) 

EG-ST 

 

 

0.0601 

(6) 

0.0055 

(6) 

0.0736 

(6) 

0.0079 

(5) 

0.0941 

(6) 

0.0127 

(6) 

0.1120 

(6) 

0.0177 

(6) 

EG-TTD 

 

 

0.0473 

(3) 

0.0036 

(3) 

0.0570 

(3) 

0.0050 

(3) 

0.0722 

(5) 

0.0077 

(5) 

0.0859 

(5) 

0.0106 

(5) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 23: Back-testing Results for 1-day Ahead Expected Shortfall for J P Morgan. 
p 

 

5% 2.5% 1% 0.5% 

Models MAE MSE MAE MSE MAE MSE MAE MSE 

 

EG-GAT 

 

 

 

0.0445 

(2) 

 

0.0028 

(2) 

 

0.0532 

(2) 

 

0.0039 

(2) 

 

0.0657 

(4) 

 

0.0057 

(4) 

 

0.0760 

(4) 

 

0.0075 

(4) 

EG-AEPD 

 

 

0.0481 

(5) 

0.0032 

(3) 

 

0.0555 

(5) 

0.0042 

(5) 

0.0649 

(3) 

0.0056 

(3) 

0.0716 

(3) 

0.0067 

(3) 

EG-SEPD 

 

 

0.0475 

(4) 

0.0032 

(3) 

0.0548 

(4) 

0.0041 

(4) 

0.0639 

(2) 

0.0054 

(2) 

0.0705 

(2) 

0.0065 

(2) 

EG-AST 

 

 

0.0606 

(7) 

0.0049 

(6) 

0.0786 

(7) 

0.0080 

(7) 

0.1084 

(7) 

0.01486 

(7) 

0.1372 

(7) 

0.0235 

(7) 

EG-SSTD 

 

 

0.0415 

(1) 

0.0025 

(1) 

0.0480 

(1) 

0.0032 

(1) 

0.0565 

(1) 

0.0043 

(1) 

0.0630 

(1) 

0.0053 

(1) 

EG-ST 

 

 

0.0547 

(6) 

0.0041 

(5) 

0.0659 

(6) 

0.0057 

(6) 

0.0823 

(6) 

0.0087 

(6) 

0.0960 

(6) 

0.0117 

(6) 

EG-TTD 

 

 

0.0452 

(3) 

0.0040 

(4) 

0.0540 

(3) 

0.0040 

(3) 

0.0673 

(5) 

0.0060 

(5) 

0.0791 

(5) 

0.0081 

(5) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 24: Back-testing Results for 1-day Ahead Expected Shortfall for Pfizer. 
p 

 

5% 2.5% 1% 0.5% 

Models MAE 

 

MSE MAE MSE MAE MSE MAE MSE 

 

EG-GAT 

 

 

 

0.0369 

(2) 

 

0.0017 

(2) 

 

0.0439 

(2) 

 

0.0023 

(2) 

 

0.0541 

(3) 

 

0.0034 

(3) 

 

0.0618 

(4) 

 

0.0044 

(4) 

EG-AEPD 

 

 

0.0407 

(5) 

0.0020 

(4) 

0.0469 

(5) 

0.0026 

(4) 

0.0547 

(4) 

0.0035 

(4) 

0.0603 

(3) 

0.0042 

(3) 

EG-SEPD 

 

 

0.0401 

(4) 

0.0020 

(4) 

0.0461 

(4) 

0.0025 

(3) 

0.0536 

(2) 

0.0033 

(2) 

0.0590 

(2) 

0.0040 

(2) 

EG-AST 

 

 

0.0953 

(7) 

0.0100 

(6) 

0.1392 

(7) 

0.0211 

(6) 

0.2277 

(7) 

0.0560 

(7) 

0.3293 

(7) 

0.1169 

(7) 

EG-SSTD 

 

 

0.0355 

(1) 

0.0016 

(1) 

0.0411 

(1) 

0.0021 

(1) 

0.0483 

(1) 

0.0028 

(1) 

0.0538 

(1) 

0.0034 

(1) 

EG-ST 

 

 

0.0458 

(6) 

0.0025 

(5) 

0.0548 

(6) 

0.0035 

(5) 

0.0678 

(6) 

0.0052 

(6) 

0.0785 

(6) 

0.0069 

(6) 

EG-TTD 

 

 

0.0386 

(3) 

0.0018 

(3) 

0.0460 

(3) 

0.0025 

(3) 

0.0572 

(5) 

0.0038 

(5) 

0.0669 

(5) 

0.0051 

(5) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 25: Back-testing Results for 1-day Ahead Expected Shortfall for Starbucks. 
p 

 

5% 2.5% 1% 0.5% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

 

EG-GAT 

 

 

 

0.0525 

(2) 

 

0.0036 

(1) 

 

0.0626 

(2) 

 

0.0049 

(2) 

 

0.0761 

(2) 

 

0.0071 

(2) 

 

0.0874 

(3) 

 

0.0091 

(3) 

EG-AEPD 

 

 

0.0581 

(3) 

0.0043 

(2) 

0.0666 

(3) 

0.0055 

(3) 

0.0772 

(3) 

0.0072 

(3) 

0.0847 

(2) 

0.0086 

(2) 

EG-SEPD 

 

 

0.0587 

(5) 

0.0044 

(3) 

0.0678 

(4) 

0.0057 

(4) 

0.0792 

(4) 

0.0076 

(4) 

0.0874 

(3) 

0.0091 

(3) 

EG-AST 

 

 

0.1282 

(7) 

0.0190 

(5) 

0.1841 

(7) 

0.0385 

(7) 

0.2942 

(7) 

0.0974 

(7) 

0.4179 

(6) 

0.1959 

(6) 

EG-SSTD 

 

 

0.0514 

(1) 

0.0036 

(1) 

0.0596 

(1) 

0.0045 

(1) 

0.0704 

(1) 

0.0061 

(1) 

0.0786 

(1) 

0.0075 

(1) 

EG-ST 

 

 

0.0721 

(6) 

0.0064 

(4) 

0.0879 

(6) 

0.00929 

(6) 

0.1115 

(6) 

0.0145 

(6) 

0.1319 

(5) 

0.0201 

(5) 

EG-TTD 

 

 

0.0584 

(4) 

0.0044 

(3) 

0.0704 

(5) 

0.0061 

(5) 

0.08917 

(5) 

0.0095 

(5) 

0.1060 

(4) 

0.0132 

(4) 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. Generalized asymmetric t distribution: GAT; exponential 

power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; skewed student t distribution: SST; student t distribution: ST and Twin 

t distribution: TTD. Values in parenthesis represent model raking. Models rankings are based on lowest value of MAE and MSE. 
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Table 26: Back-testing Expected Shortfall for 5-days Horizon for Standard & Poor 500. 
p 

 

1% 2.5% 5% 10% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

FHS 0.4369 

 

0.1909 0.3733 0.1394 0.3110 0.0967 0.2554 0.0652 

MC-GAT 

 

 

0.7194 

 

0.5175 0.5258 0.2764 0.3527 0.1244 0.2188 0.0479 

MC-AEPD 

 

 

1.3723 1.8833 1.1230 1.2611 0.8836 0.7808 0.6747 0.4553 

MC-SEPD 

 

 

0.7148 0.5110 0.5978 0.3574 0.4743 0.2250 0.3610 0.1303 

MC-AST 

 

 

0.9187 0.8441 0.6978 0.4870 0.4904 0.2405 0.3234 0.1046 

M-SST 

 

 

0.5515 

 

0.3042 0.4495 0.2021 0.3385 0.1146 0.2324 0.0540 

MC-ST 

 

 

0.7851 

 

0.6165 0.6119 0.3745 0.4495 0.2021 0.3056 0.0934 

MC-TTD 

 

 

0.8732 

 

0.7626 0.6891 0.4749 0.4991 0.2491 0.3380 0.1142 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. MC: Monte Carlo Simulation; FHS: Filtered Historical 

Simulation. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD as distributions of standardized returns in MC. Models rankings are based on lowest 

value of MAE and MSE.  
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Table 27: Back-testing Expected Shortfall for 5-Days Horizon FTSE. 
P 

 

1% 2.5% 5% 10% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

FHS 

 

 

0.2758 

 

0.0761 0.2393 0.05731 0.2005 0.0402 0.1650 0.0272 

MC-GAT 

 

 

0.7312 

 

0.5347 0.5490 0.3014 0.3614 0.1306 0.2027 0.0411 

MC-AEPD 

 

 

1.9403 3.7651 1.5153 2.2964 1.1398 1.2993 0.8334 0.6947 

MC-SEPD 

 

 

0.7131 0.5086 0.5912 0.3496 0.4646 0.2159 0.3428 0.1175 

MC-AST 

 

 

1.2032 1.4478 0.8713 0.7593 0.5758 0.3316 0.3483 0.1213 

M-SST 

 

 

0.6666 

 

0.4444 0.5219 0.2724 0.3697 0.1367 0.2284 0.0522 

MC-ST 

 

 

0.7235 

 

0.5235 0.5579 0.3113 0.3876 0.1503 0.2368 0.0561 

MC-TTD 

 

 

1.0673 

 

1.1393 0.7859 0.6177 0.5371 0.2885 0.3370 0.1136 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. MC: Monte Carlo Simulation; FHS: Filtered Historical 

Simulation. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD as distributions of standardized returns in MC. Models rankings are based on lowest 

value of MAE and MSE. 
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Table 28: Back-testing Expected Shortfall for 5-Days Horizon NASDAQ. 
p 

 

1% 2.5% 5% 10% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

FHS 

 

 

0.5086 

 

0.2586 0.4319 0.1865 0.3603 0.1298 0.2978 0.0886 

MC-GAT 

 

 

0.8480 

 

0.7191 0.5091 0.2592 0.2099 0.0440 0.0187 0.0043 

MC-AEPD 

 

 

0.7298 0.5326 0.5450 0.2970 0.3460 0.1197 0.1578 0.0249 

MC-SEPD 

 

 

0.7155 0.5119 0.5324 0.2834 0.3471 0.1204 0.1672 0.0279 

MC-AST 

 

 

1.3309 1.7713 0.9054 0.8197 0.5023 0.2523 0.1809 0.0327 

M-SST 

 

 

0.5995 

 

0.3594 0.3999 0.1599 0.1879 0.0353 0.0268 0.0072 

MC-ST 

 

 

0.7559 

 

0.5714 0.4974 0.2474 0.2459 0.0604 0.0210 0.0054 

MC-TTD 

 

 

0.6753 

 

0.4560 0.3758 0.1412 0.1198 0.0143 0.0789 0.0092 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. MC: Monte Carlo Simulation; FHS: Filtered Historical 

Simulation. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD as distributions of standardized returns in MC. Models rankings are based on lowest 

value of MAE and MSE. 
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Table 29: Back-testing Expected Shortfall for 5-Days Horizon Nikkei. 
p 

 

1% 2.5% 5% 10% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

FHS 

 

 

0.4792 

 

0.2296 0.4046 0.1637 0.3360 0.1129 0.2781 0.0773 

MC-GAT 

 

 

0.7555 

 

0.5708 0.5447 0.2967 0.3585 0.12855 0.2095 0.0439 

MC-AEPD 

 

 

0.78494 0.6161 0.6488 0.4210 0.5066 0.2566 0.3759 0.1413 

MC-SEPD 

 

 

0.8225 0.6765 0.6729 0.4528 0.5190 0.2694 0.3800 0.1444 

MC-AST 

 

 

1.1231 1.2614 0.8437 0.7119 0.5783 0.3344 0.3673 0.1349 

M-SST 

 

 

0.6342 

 

0.4022 0.5022 0.2522 0.3627 0.1315 0.2325 0.05407 

MC-ST 

 

 

0.8915 

 

0.7948 0.6646 0.4417 0.4663 0.2174 0.2972 0.0883 

MC-TTD 

 
0.7278 

 

0.5297 0.5136 0.2638 0.3369 0.1135 0.1985 0.0394 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. MC: Monte Carlo Simulation; FHS: Filtered Historical 

Simulation. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD as distributions of standardized returns in MC. Models rankings are based on lowest 

value of MAE and MSE. 
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Table 30: Back-testing Expected Shortfall for 5-Days Horizon DAX 30. 
p 

 

1% 2.5% 5% 10% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

FHS 

 

 

0.6171 

 

0.3808 0.5400 0.2916 0.4641 0.2154 0.3916 0.1533 

MC-GAT 

 

 

0.8623 0.7436 0.5869 0.3445 0.3435 0.1180 0.1606 0.0258 

MC-AEPD 

 

 

0.8044 0.6471 0.6497 0.4221 0.4854 0.2356 0.3324 0.1105 

MC-SEPD 

 

 

0.8685 0.7543 0.6842 0.4682 0.5003 0.2503 0.3347 0.1120 

MC-AST 

 

 

1.2209 1.4907 0.8735 0.7631 0.5610 0.3147 0.3145 0.0989 

M-SST 

 

 

0.8685 

 

0.7543 0.6842 0.4682 0.5003 0.2503 0.3347 0.1120 

MC-ST 

 

 

0.9372 

 

0.8784 0.6653 0.4427 0.4324 0.1870 0.2392 0.0572 

MC-TTD 

 

 

0.7630 

 

0.5821 0.5101 0.2602 0.3017 0.0910 0.1403 0.0196 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. MC: Monte Carlo Simulation; FHS: Filtered Historical 

Simulation. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD as distributions of standardized returns in MC. Models rankings are based on lowest 

value of MAE and MSE. 
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Table 31: Back-testing Expected Shortfall for 10-Days Horizon for Standard & Poor’s 500. 
p 

 

1% 2.5% 5% 10% 

Models MAE MSE MAE MSE MAE MSE MAE MSE 

FHS 

 

 

6.8677 

 

47.166 5.8807 34.5832 4.9057 24.066 4.0287 16.230 

MC-GAT 

 

 

2.5373 

 

6.4381 2.2350 4.9954 1.8978 3.6018 1.5805 2.4981 

MC-AEPD 

 

 

7.7892 60.6725 6.9783 48.6974 6.1953 38.3824 5.5263 30.5406 

MC-SEPD 

 

 

4.8601 23.6211 4.5360 20.5758 4.1805 17.4770 3.8526 14.8429 

MC-AST 

 

 

3.4506 11.9070 2.9242 8.5512 2.4181 5.8474 1.9764 3.9063 

M-SST 

 

 

2.6956 

 

7.2665 2.3987 5.7540 2.0632 4.2570 1.7303 2.9941 

MC-ST 

 

 

3.0945 

 

9.5762 2.7020 7.3011 2.2874 5.2324 1.9062 3.6338 

MC-TTD 

 

 

3.5624 

 

12.6910 3.0697 9.4234 2.5517 6.5114 2.0822 4.3357 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. MC: Monte Carlo Simulation; FHS: Filtered Historical 

Simulation. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD as distributions of standardized returns in MC. Models rankings are based on lowest 

value of MAE and MSE. 
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Table 32: Back-testing Expected Shortfall for 10-Days Horizon for FTSE. 
p 

 

1% 2.5% 5% 10% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

FHS 

 

 

4.2325 

 

17.914 3.6735 13.495 3.1085 9.6633 2.5875 6.6956 

MC-GAT 

 

 

4.1078 

 

16.8747 3.4962 12.2240 2.8686 8.2293 2.3178 5.3726 

MC-AEPD 

 

 

19.2447 370.36 16.4167 269.51 13.6825 187.21 11.5432 133.24 

MC-SEPD 

 

 

7.8319 61.3400 7.1241 50.7540 6.4061 41.0392 5.7822 33.4348 

MC-AST 

 

 

6.2635 39.2325 5.0524 25.5276 3.9767 15.8148 3.1279 9.7843 

M-SST 

 

 

4.2264 

 

17.8632 3.6306 13.1819 3.0361 9.2184 2.5062 6.2814 

MC-ST 

 

 

4.3563 

 

18.9781 3.7082 13.7514 3.0785 9.4777 2.5376 6.4398 

MC-TTD 

 

 

5.8011 

 

33.6538 4.8290 23.3201 3.9335 15.4731 3.1511 9.9299 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. MC: Monte Carlo Simulation; FHS: Filtered Historical 

Simulation. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD as distributions of standardized returns in MC. Models rankings are based on lowest 

value of MAE and MSE. 
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Table 33: Back-testing Expected Shortfall for 10-Days Horizon for NASDAQ. 
p 

 

1% 2.5% 5% 10% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

FHS 

 

 

7.7942 

 

60.750 6.6632 44.398 5.5942 31.295 4.6322 21.457 

MC-GAT 

 

 

5.3060 

 

28.1540 4.5456 20.6628 3.7986 14.4296 3.1338 9.8209 

MC-AEPD 

 

 

10.7972 116.580 9.8462 96.9484 8.8832 78.9119 8.0142 64.2280 

MC-SEPD 

 

 

10.496 110.18 9.618 92.516 8.722 76.0739 7.9352 62.9680 

MC-AST 

 

 

8.0139 64.223 6.7039 44.942 5.5176 30.444 4.4977 20.229 

M-SST 

 

 

5.6600 

 

32.036 4.9177 24.184 4.1569 17.280 3.4592 11.966 

MC-ST 

 

 

6.3367 

 

40.154 5.4656 29.873 4.5377 20.591 3.7198 13.837 

MC-TTD 

 

 

5.0608 

 

25.612 4.3995 19.355 3.7222 13.855 3.0969 9.5910 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. MC: Monte Carlo Simulation; FHS: Filtered Historical 

Simulation. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD as distributions of standardized returns in MC. Models rankings are based on lowest 

value of MAE and MSE. 
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Table 34: Back-testing Expected Shortfall for 10-Days Horizon for Nikkei. 
p 

 

1% 2.5% 5% 10% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

FHS 

 

 

7.4654 

 

55.733 6.4814 42.009 5.4834 30.068 4.5504 20.707 

MC-GAT 

 

 

3.7239 

 

13.8608 3.1290 9.7850 2.5739 6.6203 2.0986 4.4003 

MC-AEPD 

 

 

7.888 62.208 7.123 50.735 6.348 40.2921 5.677 32.225 

MC-SEPD 

 

 

7.795 60.759 6.964 48.494 6.2220 38.702 5.6093 31.454 

MC-AST 

 

 

5.4822 30.044 4.5637 20.819 3.7405 13.984 3.0373 9.2197 

M-SST 

 

 

3.8502 

 

14.817 3.3227 11.034 2.7929 7.7953 2.3151 5.3555 

MC-ST 

 

 

4.4081 

 

19.423 3.7571 14.109 3.0968 9.5846 2.5361 6.4272 

MC-TTD 

 

 

3.7941 

 

14.388 3.1916 10.180 2.6313 6.9190 2.1548 4.6393 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. MC: Monte Carlo Simulation; FHS: Filtered Historical 

Simulation. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD as distributions of standardized returns in MC. Models rankings are based on lowest 

value of MAE and MSE. 
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Table 35: Back-testing Expected Shortfall for 10-Days Horizon for DAX 30.  
p 

 

1% 2.5% 5% 10% 

Models 

 

MAE MSE MAE MSE MAE MSE MAE MSE 

FHS 

 

 

6.3029 

 

39.726 5.4049 29.213 4.5049 20.294 3.6919 13.630 

MC-GAT 

 

 

6.1159 

 

37.404 4.9464 24.467 3.8678 14.960 3.0336 9.2028 

MC-AEPD 

 

 

15.397 237.09 13.353 178.32 11.413 130.27 9.7809 95.666 

MC-SEPD 

 

 

15.000 225.02 13.098 171.55 11.209 125.65 9.6993 94.076 

MC-AST 

 

 

9.9253 98.511 7.9223 62.763 6.1506 37.830 4.7915 22.958 

M-SST 

 

 

10.257 

 

105.21 8.7580 76.702 7.3938 54.668 6.2205 38.694 

MC-ST 

 

 

7.7133 

 

59.495 6.2608 39.197 4.9442 24.445 3.8701 14.977 

MC-TTD 

 

 

6.2353 

 

38.879 5.0692 25.697 4.0363 16.292 3.2092 10.299 

Note: MAE: mean absolute error and MSE: mean square error for ES at 5%, 2.5%, 1% and 0.5% significance level. MC: Monte Carlo Simulation; FHS: Filtered Historical 

Simulation. Generalized asymmetric t distribution: GAT; exponential power distribution: AEPD; skewed exponential power distribution: SEPD; asymmetric t distribution: AST; 

skewed student t distribution: SST; student t distribution: ST and Twin t distribution: TTD as distributions of standardized returns in MC. Models rankings are based on lowest 

value of MAE and MSE.
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Chapter Three: The Multivariate Modelling 

Approach and Risk Measurement 

 

1. Introduction 

Sklar (1959) introduced the copula as a statistical function that linked together univariate 

distribution to form multivariate distributions. According to Sklar’s Theorem, any multivariate 

joint distribution can be decomposed into a univariate marginal distribution functions and a 

copula, which describes the dependence part of the multivaraite distribution.  

The copula has become a popular multivariate modelling tool mainly due to easy 

implementation and separate estimation of marginal distribution and copula separately. The 

approach is model to the well-known stylized facts of financial returns using marginal 

distributions (Cherubini et al., 2004 and McNeil et al., 2005). 

Constructing a higher-dimensional copula is considered as a difficult problem. There are a large 

number of parametric bivariate copulas, but the set of higher-dimensional copula is rather 

limited (Aas et al, 2009).   

 There are a significant number of feasible pair-copula decompositions are available for high-

dimensional distributions. Bedford and Cooke (2001, 2002) have presented a graphical model 

denoted the regular vine (R-vine). The R-vines are very common and include many possible 

pair-copula decompositions. We construct two special cases of R-vines; the canonical vine (C-

vine) and the D-vine (Kurowicka and Cooke, 2004) in our study. Each model represents a 

technique of decomposing the density (Joe, 1996; Bedford and Cooke, 2001, 2002; Vrac et al. 

2005; Kurowicka and Cooke, 2006 and Aas et al., 2009).  

Copulas are also suited for risk measurement by allowing the modelling of the marginal and 

dependence structures of a multivariate probability model separately (Pourkhanali et al., 2016). 

For computation of portfolio VaR and ES from both copula models and vine copulas as risk 

management measures, we need to rely on Monte Carlo simulation. Monte Carlo simulation 

essentially reverses the steps taken in copula model building (Christoffersen, 2012). 

Vine copulas account for a multivariate distribution that combines three or more marginal 

distributions in a joint distribution. Furthermore, conditional VaR is calculated using copulas 

as these allowed separate modelling of the marginal and the dependence structures. Tail 

https://en.wikipedia.org/wiki/Cumulative_distribution_function#Multivariate_case
https://en.wikipedia.org/wiki/Marginal_distribution
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dependence information from copulas generally supports a measure of CoVaR (Reboredo and 

Ugolini, 2015). 

In this chapter, we calculate VaR and ES for different GARCH-Copula models with various 

marginal implemented and tested on both bivariate and multivariate data. The forecasts from 

copula models are then compared to DCC-GARCH-models, as both dynamic conditional 

correlations models (DCC) by Engle (2002, 2009) and copulas models by Sklar (1959) allows 

for two steps modelling of portfolio returns.  Marginal return distributions are specified in the 

first step and in the second step the marginal is linked to a joint distribution either via time 

variant correlations or a time invariant link function (copula) (Berger, 2013).  

Zhang et al. (2014) and Brechmann and Czado (2011) provide strong evidence of the 

superiority of VaR models calculating with vine copula over historical simulation, mean-

variance and DCC-GARCH models. For multivariate analysis, all developed models and 

methods are used to analyse the five, seven and fifteen companies from DAX 30 index, a major 

market indicator for the Eurozone.   

Although quite a few studies have applied vine copula modelling to calculate VaR and ES, the 

main purpose of these studies is to measure one-day ahead risk. Risk managers require risk 

across many different horizons rather than just one specific horizon.  The mutiperiod risk is 

referred as the term structure of risk. The focus of our paper is not only to explore one-day VaR 

and ES but also longer than one-day VaR and ES for multivariate data. We calculated multi-

day VaR and ES up to 10 days as the Basel Committee requires financial institutions compute 

VaR at least 10-days ahead to determine their minimum capital risk requirements (Basel 

Committee on Banking Supervision, 2009).  

 

Degiannakis et al. (2012) and Degiannakis and Potamia (2016) compare multi-days VaR and 

ES for univariate data with simulation based methods. Monte Carlo simulation has been 

employed by Dionne et al. (2009) to calculate multi-day VaR for univariate data. Huang (2010) 

uses an iterative Monte Carlo simulation approach instead of simple Monte Carlo simulation 

to calculate VaR forecast. These studies employ Monte Carlo simulation to forecast multi-day 

VaR and ES for single asset. This chapter present empirical application of 5-days and 10-days 

VaR and ES forecasts for multivariate data. 
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The main contribution of this chapter is to suggest the adaptation of the Monte Carlo simulation 

technique of Christoffersen (2012) for forecasting multiple-step-ahead VaR and ES for 

multivariate data. At present, to the best of our knowledge, no study explores multi-period VaR 

and ES for multivariate data using either a static and dynamic correlation with Monte Carlo 

simulation method. The Monte Carlo simulation method allows us to calculate VaR and ES for 

multivariate data at any horizon of interest and hence to calculate the entire term structure of 

risk. 

This chapter is organized as follows. Section 2 discusses a review of the literature. Section 3 

introduces the methodological framework. Our empirical results are presented and discussed 

in Section 4. Section 5 concludes the chapter.  

2. Review of Literature 

The use of copulas in financial literature is very common (see, Cherubini et al., 2004; Aas et 

al., 2009; Fischer et al., 2009; Berg and Aas, 2009; Min and Czado, 2010; Brechmann et al., 

2011; Czado et al., 2012 and So and Yeung, 2014). Mendes et al. (2010) use a D-vine copula 

with four different bivariate copula families for a six-dimensional data set for portfolio 

management.  

Brechmann et al. (2011) employ R-vine structures on high-dimensional data to complex 

financial applications, to issues of financial risk management. The multivariate copulas 

obtained from C- and D-vine structures create very flexible models since bivariate copulas can 

contain complex dependence structures such as asymmetric dependence or strong joint tail 

behaviour (Joe et al., 2010).  

 Czad et al. (2012) provide a broad evidence of the selection of C-vines by describing an 

appropriate C-vine structure and selecting a fitting pair-copula family. For this purpose, a 

subsequent approach is developed based on the cardinality of the conditioning variables in 

association with individual options for each pair-copula as a best fitting pair-copula family 

from a large category of families.  

Schepsmeier (2015) introduced a new goodness of fit test for regular vine copulas. Kim et al. 

(2013) suggest a mixture of D-vine copulas which includes multiple parameters for examining 

the different dependencies inherent in multivariate data and can be extended to a multivariate 

copula function. By incorporating D-vine copulas into a finite mixture model, one can not only 
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create dependence patterns that may not belong to actual copula families, but also manage a 

comprehensive study of complex and hidden dependence structure in multivariate data. 

R-vine copulas are multivariate copulas based on a pair-copula construction (PCC) which 

decompose the d-dimensional density into unconditional and conditional bivariate copulas. The 

high flexibility is attained from the independently chosen copula families and the choice of the 

decomposition itself (Schepsmeie, 2013). 

Dissmann et at (2013) evaluated a large simulation study and applied it to a 16-dimensional 

financial data set of international equity, fixed income and commodity indices. They developed 

a strategy of simultaneously searching for an appropriate R-vine tree framework, the pair-

copula families and the parameter values of the chosen pair-copula families. It is a subsequent 

method starting by describing the first tree, its pair-copula families and estimating their 

parameters. Based on this the specification of the second tree utilizes transformed variables. 

The applied transformations depend on the choices made in the first tree. In this manner, all 

trees together with their choice of pair-copula families and corresponding parameters are made.  

Allen et al. (2013, 2014) use Regular Vine copula(R-vine) in an analysis of the co-

dependencies of 10 major European Stock Markets. Their empirical results indicate that the 

dependencies among different assets behave in a complicated process, and are conditional to 

change in different economic positions. One of the main advantages of this approach is the 

flexibility in the preference of different distributions to model co-dependencies in calculation 

of VaR of a portfolio.  

In the view of Nagler and Cazado(2016) practical applications of nonparametric density 

estimators in higher than three dimensions undergo a considerable deal from the notable curse 

of dimensionality, when dimension increases convergences slows down.  They show that one 

can avoid the curse of dimensionality by presuming an easy vine copula model for the 

dependence between variables. They specify a general nonparametric estimator for such a 

model and show under high-level assumptions that the speed of convergence is independent of 

dimension. 

Reboredo and Ugolini (2015) calculated conditional value-at-risk using copulas and vine 

copulas for systemic sovereign debt distress affecting European financial systems. To report the 

impact of possible Greek sovereign debt distress on the financial systems of other European 

markets, it is important to describe dependence between Greek sovereign debt and another 

country’s debt market and financial sector. For this purpose, they consider vine copula as these 
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account for a multivariate distribution that combines three or more marginal distributions in a 

joint distribution. Furthermore, CoVaR is calculated using copulas as these allowed separate 

modelling of the marginal and the dependence structure. Tail dependence information from 

copulas generally supports a measure of CoVaR. 

There is great empirical evidence that correlations increase during financial unrest and as a 

result financial risk increases even further. Therefore, modelling correlation dynamics is 

essential to a risk manager (Christoffersen, 2012). The Dynamic Conditional Correlation 

(DCC) model developed by Engle (2002) allows the conditional correlation matrix to vary 

parsimoniously over time. Hakim et al. (2007), Hakim and McAleer (2009), Palaro and Hotta 

(2006), Ozun and Cifter (2007) and Aloui et al. (2011) investigate DCC and compare with 

BEKK models for several bivariate portfolios. 

The important practical advantage of the DCC model is that only very few parameters are 

estimated simultaneously using numerical optimization. In the first step, all the individual 

variances are estimated by GARCH models. Then, the returns are standardized and the 

unconditional correlation matrix is estimated. Thirdly, the correlation persistence parameters 

are calculated. This element makes the DCC easily manageable for risk management of large 

portfolios (Christoffersen, 2012). 

Zhang et al. (2014) provide strong evidence that VaR forecasts with all three vine copula 

models (R-vine, C-vine and D-vine) are sufficiently accurate as compared to historical 

simulation, mean-variance and DCC-GARCH models.  Moreover, the vine copula methods can 

correctly forecast the ES of the portfolio based on VaR calculations, and the D-vine copula 

model performs better than other vine copulas. Aloui and Aissa (2016) find that the C-vine 

copula model leads to more accurate VaR forecasts than the traditional VaR approaches. 

 “It is evident that calculating VaR over a short horizon, followed by square root time rule 

(SRTR) scaling to convert to longer-term tail risks, is likely to be inappropriate and misleading, 

particularly for markets in Eastern Europe, Central and South America and the Asia Pacific. 

Caution is necessary in applying the SRTR” (Wang et al., 2011). 

The aim of this chapter is to present and discuss the use of copulas and vine copulas for 

financial risk measurement. As mentioned in previous literature, many problems are associated 

with SRTR for calculating longer horizon VaR and ES.  Inspired by the work of Christoffersen 

(2012), we developed framework for term structure of risk for bivariate and multivariate data. 
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For active risk management, a multivariate multi-days model is required (Christoffersen, 

2012). Most of the previous studies on multi-days of VaR and ES forecasting were based on 

only one asset. Multi-days VaR can be calculated based on different techniques, variance-

covariance, historical simulation, standard quantile formula, Monte Carlo simulation and 

square root of time rule (see; Christoffersen and Diebold, 2000; Dowd et al., 2003; Hartz et al., 

2006; Dionne et al., 2009; Semenov, 2009; Asai and McAleer 2009; Pesaran et al., 2009; 

Huang, 2010; Hoogerheide and van Dijk, 2010; Wang et al., 2011 and Christoffersen (2012). 

Square root of time rule is criticized by Dowd et al. (2003), Engle (2004), Danielsson (2002), 

Daníelsson and Zigrand (2006) and Wang et al. (2011). 

 

The main advantage of the Monte Carlo simulation method is its flexibility. Monte Carlo 

simulation can be used for any assumed distribution of standardized returns. However, there is 

no an extensive literature on Monte Carlo simulation for multi-day VaR and ES forecasting. 

Moreover, these studies focus on only univariate multi-days VaR and ES.  Degiannakis et al. 

(2012) and Degiannakis and Potamia (2016) compare multi-days VaR and ES for univariate 

data with simulation based method. 

 

For the computation of muti-days VaR and ES, we need to use Monte Carlo simulation methods 

rather than close form solution. We can use the Monte Carlo simulation based dynamic risk 

models to compute VaR and ES at any horizon of interest and therefore to compute the entire 

term structure of risk. 

3. Methodological Framework 

In this section, we introduce the concept and some basic properties for copulas and risk 

measures.  

3.1. Copula Theory 

There are several possibilities to construct two-dimensional distribution families proposed in 

the literature, one of them being the so-called copula approach, where copulas play the central 

part. 

A copula is a multivariate probability distribution for which the marginal probability 

distribution of each variable is uniform. Copulas are used to describe the dependence between 
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random variables (Sklar, 1959; Cherubini et al., 2004; McNeil et al., 2005 and Christoffersen, 

2012). 

Consider n assets with possibly 𝑓𝑖(𝑧𝑖) is the marginal distributions, CDFs are the cumulative 

density functions 𝑢𝑖 = 𝐹𝑖(𝑧𝑖) for I = 1, 2…n. Where 𝑢𝑖 is simply the probability of observing 

a value below 𝑧𝑖 for asset i.  

 3.1.1 Sklar’s Theorem 

Sklar's theorem by  Sklar (1959), provides us with the theoretical foundation we need for the 

application of copulas. Sklar's theorem states that every multivariate cumulative density 

function of (𝑧1, … , 𝑧𝑛) with marginal CDFs 𝐹1(𝑧1),… , 𝐹𝑛(𝑧𝑛), has a unique copula 

function 𝐶(. ), joining the marginals to form the joint distribution 

𝐹(𝑧1, … , 𝑧𝑛) = 𝐶(𝐹1(𝑧1), … , 𝐹𝑛(𝑧𝑛))        (1) 

=𝐶(𝑣1, … , 𝑣𝑛) 

C(𝑣1, … , 𝑣𝑛) is known as CDF of the copula function. If 𝐹1, … , 𝐹𝑛 are continuous then C is 

unique. Otherwise, C is uniquely defined on Range 𝐹1×…× Range 𝐹𝑛. Conversely, if C is a 

copula and 𝐹1 and 𝐹2 are univariate dfs, then 𝐹𝑛 define in above equation is joint df with margins 

𝐹1 and 𝐹2. 

The multivariate probability density function (PDF) implied by Sklar’s theorem is 

 

𝑓(𝑧1, … , 𝑧𝑛) =
𝜕𝑛𝐶(𝐹1(𝑧1), … , 𝐹𝑛(𝑧𝑛))

𝜕𝑧1. . . 𝜕𝑧𝑛
× 

=
𝐶(𝑣1,…,𝑣𝑛)

𝛿𝑣1,...,𝛿𝑣𝑛
  ×∏ 𝑓(𝑧𝑖)

𝑛
𝑖=1  

=𝑔(𝑣1, … , 𝑣𝑛) × ∏ 𝑓(𝑧𝑖)
𝑛
𝑖=1                    (2) 

 

where the copula PDF is defined in the previous equation as: 

𝑔(𝑣1, … , 𝑣𝑛) =
𝛿𝑛𝐶(𝑣1,…,𝑣𝑛)

𝛿𝑣1,...,𝛿𝑣𝑛
          (3) 

The PDF algorithm is: 

ln 𝑓(𝑧1, … , 𝑧𝑛) = ln 𝑔(𝑣1, … , 𝑣𝑛) + ∑ ln 𝑓𝑖(𝑧𝑖)
𝑛
𝑖=1                 (4) 

The above decomposition represents that we can build a complicated multivariate density in a 

few easier steps: 

1. We build and estimate n potentially different marginal distribution models.  

https://en.wikipedia.org/wiki/Abe_Sklar
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2. We decide on the copula PDF and estimate it using the probability outputs from the marginal 

as the data. 

The log likelihood function corresponding to the entire copula distribution model is constructed 

by summing the log PDF over the T observations in the sample: 

ln 𝐿 = ∑ ln 𝑔 (𝑣1,𝑡… , 𝑣𝑛,𝑡)
𝑇
𝑡=1 +∑ ∑ ln 𝑓𝑖(𝑧𝑖,𝑡)

𝑛
𝑖=1

𝑇
𝑡=1       (5) 

But if we have estimated the n marginal distributions in a first step then the copula likelihood 

function is simply: 

ln 𝐿𝑔 = ∑ ln 𝑔(𝑣1,𝑡, … 𝑣𝑛,𝑡)
𝑇
𝑡=1          (6) 

3.2. Dependence Measures and Copulas 

To understand the dependence structure between two random variables 𝑍1  and 𝑍2 (Embrechts 

et al., 2002) construct a scalar dependence measure between 𝑍1 and  𝑍2 that statisfied four 

properties. Desirable properties of dependence 𝜌(𝑍1, 𝑍2 ) for two random variables 𝑍1 and 𝑍2 

are: 

1. 𝜌(𝑍1, 𝑍2 ) = 𝜌(𝑍2, 𝑍1 ) 

2. −1 ≤ 𝜌(𝑍1, 𝑍2 ) ≤ 1 

3. 𝜌(𝑍1, 𝑍2 ) = 1 if 𝑍1 and 𝑍2 are co-monotonic, and 𝜌(𝑍1, 𝑍2 ) = -1 if 𝑍1 and 𝑍2 are 

counter-monotonic. 

4. If T is strictly monotonic, then 

            𝜌(𝑇(𝑍1), 𝑍2) =  {
𝜌(𝑍1, 𝑍2)     𝑇 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

−𝜌(𝑍1, 𝑍2 ) 𝑇 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔
      (7) 

3.2. 1.Pearson’s Linear Correlation 

The traditional concept of linear correlation or Pearson’s correlation: 

𝜌 =
𝑐𝑜𝑣(𝑍1,𝑍2)

𝜎𝑍1𝜎𝑍2
           (8) 

where 𝑐𝑜𝑣 is covariance, 𝑐𝑜𝑣(𝑍1, 𝑍2) = 𝐸(𝑍1, 𝑍2) − 𝐸(𝑍1)𝐸(𝑍2) and 𝜎𝑍1,𝜎𝑍2 are the standard 

deviations of 𝑍1 and 𝑍2. 

The Pearson’s correlation is a measure of linear dependence. If 𝑍2 = 𝛼 + 𝛽𝑍1 then 𝜌 = ±1 

and if  𝑍1 and 𝑍2 are independent then 𝜌 = 0. 

 

Even though linear correlation is quite popular due to straightforward variance and covariance 

calculations, it has several shortcomings: 
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1. Linear correlation requires existence of both 𝜎𝑍1 and 𝜎𝑍2. 

2. Linear correlation is not ideal for financial time series, which display the property of fat 

tails and nonexistence of higher moments.  

3. Independence between two random variables implies that 𝜌 = 0, but only the converse is 

true for the multivariate normal distribution, as explained by Embrechts et al. (2002). For 

example,  𝜌(𝑍1, 𝑍2)=0 if 𝑍1~𝑁(0,1) and 𝑍2 = 𝑍1
2, even though 𝑍1 and 𝑍2 are clearly 

dependent. This is because 𝑐𝑜𝑣(𝑍1, 𝑍2)=0. 

4. 𝜌 is not invariant under nonlinear strictly increasing transformations 𝑇: 𝑅 →  𝑅. That is 

𝜌(𝑇(𝑍1), 𝑇(𝑍2))  ≠ 𝜌(𝑍1, 𝑍2) 

5. Marginal distributions and correlation do not determine the joint distribution. This is only 

true for the bivariate normal distribution. 

6. For given marginal distributions 𝐹1 and 𝐹2, 𝜌 ∈ [𝜌𝑚𝑖𝑛, 𝜌𝑚𝑎𝑥] and it may be the case that 

𝜌𝑚𝑖𝑛 > −1 and 𝜌𝑚𝑎𝑥 < 1. 

The limitations of the linear correlation coefficient have motivated statisticians to the 

consideration of concordance measures of dependence. 

3.2.2. Concordance Measures 

The random variables 𝑍1 and 𝑍2 are labelled as being concordant if large values of  𝑍1  are 

associated with large (small) values of  𝑍2 , and small values of  𝑍1 are associated with small 

(large) values of  𝑍2. The concept of concordance has led to the use of Kendall’s 𝜏  and 

Spearman’s 𝜌𝑠 as measures of dependence. 

3.2.2.1. Kendall’s Tau Statistic 

Let  𝐹 be a continuous bivariate CDF, and let (𝑍1, 𝑍2)   and (𝑍̃1, 𝑍̃2)  are two pair of independent  

random variables of this distribution. Then Kendall’s 𝜏 measure of dependence between two 

random variables defined as the probability of concordance minus the probability of 

discordance. 

 

 Kendall’s tau statistic for the distribution 𝐹. 

𝜏 = 𝑃𝑟{(𝑍1 − 𝑍̃1)(𝑍2 − 𝑍̃2)} − 𝑃𝑟{(𝑍1 − 𝑍̃1)(𝑍2 − 𝑍̃2) > 0} 

= 𝐸[𝑠𝑖𝑔𝑛{(𝑍1 − 𝑍̃1)(𝑍2 − 𝑍̃2)}]         (9) 

The vector of (𝑍1, 𝑍2)   and (𝑍̃1, 𝑍̃2)  is said to be concordant if 𝑍1 > 𝑍̃1whenever 𝑍2 > 𝑍̃2, and 

they are said to be discordant if 𝑍1 < 𝑍̃1whenever 𝑍2 < 𝑍̃2. 
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If 𝐶(. ) is the copula for the continuous random variable (𝑍1, 𝑍2)  with function 𝐹 i.e. 

𝐹(𝑧1, 𝑧2) = 𝐶(𝑣1 = 𝐹1(𝑧1), 𝑣2 = 𝐹2(𝑧2)) 

then according to Nelsen (2006); 

𝜏 = 4𝐸[𝐶(𝑣1, 𝑣2)] = 4∬ 𝐶(𝑣1, 𝑣2)𝐼2
𝑓(𝑣1, 𝑣2)𝑑𝑣1𝑑𝑣2               (10) 

where 𝑓(𝑣1, 𝑣2) is the copula density. 

3.2.2.2. Spearman’s Rho Statistic 

Spearman’s 𝜌𝑠 for two random variables (𝑍1, 𝑍2) with joint density function 𝐹 and marginal 

distributions 𝐹1 and  𝐹2 , is defined as the (Pearson) correlation between 𝐹1(𝑍1) and 𝐹2(𝑍2). 

 

In terms of copula between continuous random variables 𝑍1 and𝑍2, Spearman’s 𝜌𝑠can be 

shown as: 

𝜌𝑠(𝑍1, 𝑍2) = 𝑐𝑜𝑟(𝐹1(𝑍1), 𝐹2(𝑍2)) = 12    3,
2121

2

vvvv dd

I

C 12𝐸(𝑣1, 𝑣2) − 3       (11) 

Kendall’s tau and Spearman’s rho satisfied all the four properties of dependence.  

3.2.3. Tail Dependence Measures 

Tail dependence measures are used to capture dependence in the joint tail of bivariate 

distributions. 

 

The bivariate upper tail dependence represents as: 

𝜆𝑢(𝑍1, 𝑍2) = lim
𝑞→0

𝑃𝑟 (𝑍2 > 𝑉𝑎𝑅𝑞(𝑍2)|𝑍1 > 𝑉𝑎𝑅𝑞(𝑍1))=lim
𝑞→1

1−2𝑞+𝐶(𝑞,𝑞)

𝑞
             (12) 

where 𝑉𝑎𝑅𝑞(𝑍1) and 𝑉𝑎𝑅𝑞(𝑍2) are the 100.qth percent quantile of 𝑍1 and  𝑍2 , respectively. 

 

Similarly, the bivariate upper tail dependence shown as: 

𝜆𝑙(𝑍1, 𝑍2) = lim
𝑞→0

𝑃𝑟 (𝑍2 ≤ 𝑉𝑎𝑅𝑞(𝑍2)|𝑍1 ≤ 𝑉𝑎𝑅𝑞(𝑍1)) = lim
𝑞→0

𝐶(𝑞,𝑞)

𝑞
             (13) 

𝐶 is said to be lower (upper) tail dependence if 𝜆𝑢 ≠ 0(𝜆𝑙 ≠ 0) 

3.3. Elliptical Copulas 

Let 𝐹  be the multivariate CDF of an elliptical distribution and 𝐹𝑖 be the CDF of 𝑖𝑡ℎ margins 

and 𝐹𝑖
−1 be its quantile function 𝑖 = 1,2, … 𝑛.The elliptical copula determined by 𝐹 is: 

𝐶(𝑣1, … 𝑣𝑛) = 𝐹[𝐹1
−1(𝑣1),… , 𝐹𝑛

−1(𝑣𝑛)]                (14) 
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The two most common elliptical copulas are the normal and the Student t. 

3.3.1. The Normal Copula 

One of the most frequently used copulas for financial modelling is the copula of a standard 

bivariate normal distribution with correlation parameter ρ defined by: 

 

C(𝑣1, … 𝑣𝑛; 𝜌) = 𝛷𝜌(𝛷
−1(𝑣1),𝛷

−1(𝑣2))                 (15) 

= ∫ ∫
1

2𝜋√1 − 𝜌2

𝛷−1(𝑣2)

−∞

𝛷−1(𝑣1)

−∞

𝑒𝑥𝑝 {−
𝑧1
2 − 2𝑧1𝑧2 + 𝑧2

2

2(−𝜌2)
} 

= 𝛷𝜌(𝛷
−1(𝑧1),𝛷

−1(𝑧2)) 

=  𝛷(𝒛𝟏, 𝒛𝟐)                     (16) 

where 𝛷−1(∙)the quantile is function of the standard normal distribution or inverse CDF, and 

𝛷𝜌 is joint cumulative distribution function of 𝛷−1(𝑣1)𝑎𝑛𝑑 𝛷
−1(𝑣2) with correlation 

coefficient 𝜌. The normal copula is much more flexible than mutivaraite normal distribution 

because the normal copula allows for the marginals to be no-normal. 

3.3.2. The t Copula 

As the normal copula does not allow for enough dependence between the tails of the 

distribution of different assets, the t copula derived from t distribution allow more flexible 

financial risk application. The Student t copula with correlation parameter 𝜌 and degree of 

freedom parameter d is defined by: 

𝐶(𝑣1, 𝑣2; 𝜌, 𝑑) = 𝑡𝜌,𝑑(𝑡𝑑
−1(𝑣1)𝑡𝑑

−1 (𝑣2))                 (17) 

where 𝑡𝑑
−1 is inverse CDF of student t distribution parameter d degree of freedom. 

 

The bivariate t copula density is: 

𝑔(𝑣1, 𝑣2; 𝜌, 𝑑) =
𝑡𝜌,𝑑(𝑡𝑑

−1(𝑣1)𝑡𝑑
−1 (𝑣2))

𝑡𝑡(𝑑) (𝑡𝑑
−1(𝑣1)𝑡𝑡(𝑑)𝑡𝑑

−1 (𝑣2))
 

=
𝛤 (

𝑑 + 2
2 )

√1 − 𝜌2𝛤 (
𝑑
2)
(

𝛤 (
𝑑
2)

𝛤 (
𝑑 + 1
2 )

)

2

× 
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(1+
(𝑡𝑑
−1 (𝑣1))

2
+(𝑡𝑑

−1 (𝑣2))
2
−2𝜌𝑡−1𝑡𝑑

−1(𝑣1)𝑡𝑑
−1(𝑣2)

𝑑(1−𝜌2)
)

−
−𝑑+2
2

(1+
(𝑡𝑑
−1 (𝑣1))

2

𝑑
)

−
𝑑+1
2

(1+
(𝑡𝑑
−1 (𝑣2))

2

𝑑
)

−
𝑑+1
2

                 (18) 

3.4. Archimedean Copulas 

Most common Archimedean copulas allow an explicit formula that the Gaussian copula doesn’t 

allow. Archimedean copulas are favoured because by controlling the strength of dependence 

they allow modelling dependence in randomly high dimensions with only one parameter. 

 

Archimedean copulas defied as: 

𝐶(𝑣1, 𝑣2; 𝜃) = 𝛹−1(𝛹𝜃(𝑣1) + 𝛹𝜃(𝑣2))                 (19) 

The function Ψ is called Archimedean generator, 𝛹−1 is its inverse function and 𝜃 is parameter. 

3.4.1. Gumbel Copula 

The Gumbel is defined as: 

𝐶(𝑣1, 𝑣2; 𝜃) = 𝑒𝑥𝑝 {− [−𝑙𝑛(𝑣1)
𝜃 + (−𝑙𝑛(𝑣2))

𝜃
]
1
𝜃⁄

}, 𝜃 ≥ 1              (20) 

and its generator function 𝛹(𝑡) = (−𝑙𝑛(𝑡)𝜃). The parameter  𝜃 measure the power of 

dependence,   𝜃 ∈ (1,∞).When 𝜃=1, there is no depended and when 𝜃 = +∞ there is perfect 

dependence. 

3.4.2. Clayton Copula 

Clayton copula has the following form: 

𝐶(𝑣1, 𝑣2; 𝜃) = [𝑚𝑎𝑥{𝑣1
𝜃 + 𝑣2

𝜃 − 1; 0}]
−1 𝜃⁄

                 (21) 

where 𝜃 ∈ (−1,∞)/{0} and generator function is 𝛹(𝑡) = 𝑡−𝜃 − 1. The parameter  𝜃 measure 

the power of dependence. When 𝜃=0, there is no depended and when 𝜃 = +∞ there is perfect 

dependence. 

3.4.3. Frank Copula 

The Frank Copula defined as: 

𝐶(𝑣1, 𝑣2; 𝜃) = −
1

𝜃
log [1 +

(𝑒𝑥𝑝(𝜃𝑣1)−1)(𝑒𝑥𝑝(𝜃𝑣2)−1)

𝑒𝑥𝑝(−𝜃)−1
]                (22) 

where 𝜃 ∈ 𝑅\{0} and its generator function is 𝛹(𝑡) = − ln
𝑒𝑥𝑝(−𝜃𝑡)−1

𝑒𝑥𝑝(−𝜃)−1
. 
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The dependence parameter 𝜃  can assume any real value in (-∞,∞ ). Values of -∞, 0, and 

∞ approximate the Fréchet lower bound, independence, and Fréchet upper bound, respectively. 

3.4.4. Joe Copula 

The Joe Copula defined as: 

𝐶(𝑣1, 𝑣2; 𝜃) = 1 − [(1 − 𝑣1)
𝜃 + (1 − 𝑣2)

𝜃 − (1 − 𝑣1)
𝜃(1 − 𝑣2)

𝜃]
1
𝜃⁄              (23) 

where  𝜃 ∈ (1,∞) and its generator function is 𝛹(𝑡) = −𝑙𝑛[1 − (1 − 𝑡)𝜃] 

3.5. Copula Estimation 

Several approaches have been proposed in the literature to estimate the parameter of copula 

models. In addition to MLE (maximum likelihood estimation), a two-step procedure of IFM 

(inference functions for margins estimation) developed by Joe and Xu (1996) is easy to 

implement. 

3.5.1. Maximum Likelihood Estimation 

Let (𝑍1, 𝑍2) represent two random variables from a bivariate distribution  𝐹 with marginal 

distributions 𝐹1 and 𝐹2(with density function) 𝑓1 and 𝑓2 and copula 𝐶 with density c. Each 

unknown parameters associated with the marginal densities 𝑓1 and 𝑓2 are 𝜗𝑧1  𝑎𝑛𝑑 𝜗𝑧2  , and 

unknown parameter of the copula function c is denoted by 𝜃. We denote the unknown vector 

of parameters by 𝜗 = (𝜗𝑧1 , 𝜗𝑧2 , 𝜃).The bivariate density function of (𝑧1, 𝑧2) may be 

represented as 

𝑓(𝑧1, 𝑧2; 𝜗) = 𝑐(𝐹1(𝑧1; 𝜗𝑧1), 𝐹2(𝑧2;  𝜗𝑧2); 𝜃)𝑓1(𝑧1; 𝜗𝑧1)𝑓2(𝑧2;  𝜗𝑧2)              (24) 

where  

𝑐(𝑣1, 𝑣2) =
𝜕2𝐶(𝑣1,𝑣2)

𝜕𝑣1𝜕𝑣2
                    (25) 

 

The maximum likelihood estimation (MLE) of a model is obtained by maximizing the log 

likelihood function, as: 

𝑙(𝑧1, 𝑧2; 𝜗) = ∑ 𝑙𝑛 (𝑐(𝐹1(𝑧1; 𝜗𝑧1), 𝐹2(𝑧2; 𝜗𝑧2); 𝜃) × 𝑓1(𝑧1; 𝜗𝑧1) × 𝑓2(𝑧2; 𝜗𝑧2))
𝑛
𝑖=1             (26) 

The exact maximum likelihood estimator is defined as: 

𝜗̂𝑀𝐿𝐸 = argmax
𝜗

𝑙(𝑧1, 𝑧2; 𝜗)                  (27) 

The exact maximum likelihood estimation (MLE) estimate the marginal distribution 

parameters 𝜗𝑧1and 𝜗𝑧2  jointly with copula parameter 𝜃. For high dimensional data, MLE may 
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be difficult and for the complicated structure of time-varying dependence, an analytical 

expression for the gradient vector of the likelihood might not exist. 

To solve the optimization problem numerical methods may be adopted, implying dramatic 

slows down of computation procedure. 

3.5.2. Inference Functions for Margins Estimation (IFM) 

Instead of maximizing the exact likelihood function of  𝜗𝑖, copula parameter can be estimated 

by two stage procedure proposed by Shih and Louis (1995) and Joe and Xu (1996), the 

inference function for margin ns (IFM) method. 

 

In the first step, marginal distribution 𝐹1 and 𝐹2 are estimated. 

𝜗̂𝑧1 ∈ argmax𝜗𝑧1

∑ 𝑙𝑛 (𝑓1(𝑧1, 𝜗𝑧1))
𝑛
𝑖=1 , 

𝜗̂𝑧2 ∈ argmax𝜗𝑧2

∑ 𝑙𝑛 (𝑓2(𝑧2, 𝜗𝑧2))
𝑛
𝑖=1 . 

 

In the second step, the copula parameter 𝜃 estimated conditioned on the previous marginal 

distributions estimates 𝐹̂1 𝑎𝑛𝑑 𝐹̂2. 

𝜽̂ ∈ 𝒂𝒓𝒈max
𝜃

∑𝑙𝑛[𝑐(𝐹1(𝑧1, 𝜗̂𝑧1), 𝐹2(𝑧2, 𝜗̂𝑧2); 𝜃)]

𝑛

𝑖=1

 

Per Patton (2006b) if the model is correctly specified then IFM estimators 𝜗̂𝑧1 , 𝜗̂𝑧2𝑎𝑛𝑑  𝜽 are 

consistent and asymptotically Normal.  

 

The models were ranked using Akaike's information criterion and defined as: 

𝐴𝐼𝐶(𝑀) = −2 ln(𝐿̂) + 2𝑀                   (28) 

where M is no of estimated parameter and ln(𝐿̂) is maximum log likelihood value. Smaller 

the AIC value betters the fit. 

Figure 9 show the properties of different bivariate Elliptical and Archimedean Copulas, figure 

10 represents contour plots for Normal, t, Clayton, Gumbel, Frank and Joe copula and figure 

11 shows pdf plots for Normal, t, Clayton, Gumbel, Frank and Joe copula. 
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3.6. GARCH Models for the Marginal Distributions 

We follow the inference function for margins (IFM) method, two step procedure. In the first 

step, we estimate the marginal models. A univariate AR (1,1)-GARCH (1,1) with different 

innovations is usually chosen to model the marginal distributions of return data. AR (1)-

GARCH (1,1) with t distribution innovation is described as: 

𝑟𝑡 = 𝜇 + 𝑎𝑟𝑡−1 + 𝜀𝑡 

𝜎𝑡
2 = 𝜔 + 𝛽𝜎𝑡−1

2 + 𝛼𝜀𝑡−1
2  

𝜀𝑡. √
𝑣

𝜎𝑡
2(𝑣−2)

~𝑖𝑖𝑑𝑡𝑣                    (29) 

where 𝜀𝑡 is the innovation process.  

3.6.1. Risk Management for Bivariate Copula Models 

For the computation of portfolio value at risk and expected shortfall, we have to rely on Monte 

Carlo simulation (Christoffersen, 2012). To calculate VaR and ES, Monte Carlo simulation 

reverses the steps taken in estimation of copula model building: 

1. First, we estimate dynamic volatility models, 𝜎𝑡, for each asset and calculate 

standardised returns. 

2. Second, estimate a density model for each asset to get the probabilities 𝑣𝑖,𝑡 = 𝐹𝑖(𝑧𝑖,𝑡) 

for each asset. 

3. Estimate the copula model’s parameters using  ln 𝑙 = ∑ 𝑙𝑛(𝑣1,𝑡, 𝑣2,𝑡)
𝑇
𝑡=1 . 

4. Simulate the probabilities (𝑣1,𝑡, 𝑣2,𝑡) from copula models. 

Now after simulation of data, we need to reverse the steps of estimation of copula models. 

5. Now create shock from the copula probabilities by using the inverse of marginal CDF’s 

on each asset, 𝑧𝑖,𝑡 = 𝐹𝑖
−1(𝑣𝑖,𝑡). 

6. By using the dynamic volatility models, 𝑟𝑖,𝑡 = 𝑧𝑖,𝑡𝜎𝑖,𝑡 for each asset we create portfolio 

returns from the shocks. 

7. Now we can calculate VaR and ES for equally weighted portfolio as a 100𝛼𝑡ℎ −

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(Christoffersen ,2012) 

3.7. Dynamic Conditional Correlation (DCC) 

Modelling correlation dynamics is crucial to risk management. Empirical evidences suggested 

that during financial uncertainty correlation increases, as a result increasing risk even further 

(Christoffersen, 2012). 

http://store.elsevier.com/authorDetails.jsp?authorId=ELS_1010583
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Univariate and multivariate dynamics are separated in two stage method to estimate DCC 

models. Standardized residuals extracted from estimated univariate GARCH models are used 

to compute the correlation matrix (Engle 2002). 

From covariance and volatility correlation is defined as: 

𝜌𝑖𝑗,𝑡+1 = 𝜎𝑖𝑗,𝑡+1 (𝜎𝑖,𝑡+1𝜎𝑗,𝑡+1)⁄                    

(30) 

The definition of correlation allows the decomposition of covariance into volatility and 

correlation: 

𝜎𝑖𝑗,𝑡+1 = 𝜌𝑖𝑗,𝑡+1𝜎𝑖,𝑡+1𝜎𝑗,𝑡+1                   (31) 

In metrics form, we can write as: 

𝐻𝑡+1 = 𝐷𝑡+1𝛶𝑡+1𝐷𝑡+1                    (32) 

where 𝐷𝑡+1 is a matrix of standard deviations, 𝜎𝑖,𝑡+1, on the ith diagonal and zero everywhere 

else, and 𝛶𝑡+1 is a matrix of correlations, 𝜌𝑖𝑗,𝑡+1, with ones on the diagonal. 

 In the two-asset case: 

𝐻𝑡+1 = [
𝜎1,𝑡+1
2 𝜎12,𝑡+1

𝜎12,𝑡+1 𝜎2,𝑡+1
2 ] = [

𝜎1,𝑡+1 0

0 𝜎2,𝑡+1
] [

1 𝜌12,𝑡+1
𝜌12,𝑡+1 1

] [
𝜎1,𝑡+1 0

0 𝜎2,𝑡+1
]            (33) 

The volatilities of each asset will estimate through NGARCH. To get the standardized returns 

(𝑧𝑖,𝑡+1 =, 𝑖 = 1,2, … , 𝑛) dividing the returns by their conditional standard deviation. The 

conditional covariance of the 𝑧𝑖,𝑡+1 variables equals the conditional correlation of the raw 

returns: 

𝐸𝑡(𝑧𝑖,𝑡+1𝑧𝑗,𝑡+1) = 𝐸𝑡 ((𝑅𝑖,𝑡+1 𝜎𝑖,𝑡+1⁄ )(𝑅𝑗,𝑡+1 𝜎𝑗,𝑡+1⁄ ))               (34) 

= 𝐸𝑡 (𝑅𝑖,𝑡+1𝑅𝑗,𝑡+1) (𝜎𝑖,𝑡+1𝜎𝑗,𝑡+1)⁄  

= 𝜎𝑖𝑗,𝑡+1 (𝜎𝑖,𝑡+1𝜎𝑗,𝑡+1)⁄  

= 𝜌𝑖𝑗,𝑡+1,for all 𝑖, 𝑗 

Modelling the conditional correlation of the raw returns is equivalent to modelling the 

conditional covariance of the standardized returns. 

In metrics notation DCC model can be written as: 

𝑄𝑡+1 = 𝐸[𝑧𝑡𝑧𝑡
′](𝑧𝑡𝑧𝑡

′) + 𝛽𝑄𝑡                   (35) 

In the two-asset case: 

𝑄𝑡+1 = [
𝑞11,𝑡+1 𝑞12,𝑡+1
𝑞12,𝑡+1 𝑞22,𝑡+1

] 

= [
1 𝜌12
𝜌12 1

] (1 − 𝛼 − 𝛽) + 𝛼 [
𝑧1,𝑡
2 𝑧1,𝑡𝑧2,𝑡

𝑧1,𝑡𝑧2,𝑡 𝑧2,𝑡
2 ] + 𝛽 [

𝑞11,𝑡 𝑞12,𝑡
𝑞12,𝑡 𝑞22,𝑡

]             (36) 
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where 𝜌12is the unconditional correlation between the two assets and estimated as: 

𝜌̅12 =
1

𝑇
∑𝑧1,𝑡𝑧2,𝑡

𝑇

𝑡=1

 

For bivariate normal distribution, the log-likelihood function is expressed as: 

𝐿𝐿12 = −
1

2
∑ (𝑙𝑛(1 − 𝜌12,𝑡

2 ) +
(𝑧1,𝑡

2 +𝑧2,𝑡
2 −2𝜌12𝑧1,𝑡𝑧2,𝑡)

(1−𝜌12,𝑡
2 )

)𝑇
𝑡=1                    (37) 

𝜌12,𝑡+1 =
𝑞12,𝑡+1

√𝑞11,𝑡+1𝑞22,𝑡+1
 

𝑞11,𝑡+1 = 1 + 𝛼(𝑧1,𝑡
2 − 1) + 𝛽(𝑞11,𝑡 − 1) 

𝑞12,𝑡+1 = 𝜌̅12 + 𝛼(𝑧1,𝑡𝑧2,𝑡 − 𝜌̅12) + 𝛽(𝑞12,𝑡+1 − 𝜌̅12) 

𝑞22,𝑡+1 = 1 + 𝛼(𝑧2,𝑡
2 − 1) + 𝛽(𝑞22,𝑡 − 1) 

In the general case of n assets: 

𝑙𝑛(𝐿𝐿) = −
1

2
∑ (𝑙𝑜𝑔|𝛶𝑡| + 𝑧𝑡

′𝛶𝑡
−1𝑧𝑡)𝑡                   (38) 

where |𝛶|denotes the determinant of the correlation matrix,  𝛶𝑡(Christoffersen, 2012) 

3.8. The Risk Term Structure with Constant Correlations 

The n asset returns in vector form is: 

𝑟𝑡+1 = 𝐷𝑡+1𝑧𝑡+1                    (39) 

where 𝐷𝑡+1 is an 𝑛 × 𝑛 dignal metrics containing the dynamic standard deviations on the 

diagonal, and zeros on the off diagonal. 𝑧𝑡+1 is an 1 × 𝑛 vector contains the shocks from the 

dynamic volatility model for each asset(see, Christoffersen , 2012). 

The conditional covariance matrix of the returns is defined as: 

𝑉𝑎𝑟𝑡(𝑟𝑡 + 1) = 𝐻𝑡+1 = 𝐷𝑡+1𝛶𝐷𝑡+1                  (40) 

The 𝑛 × 𝑛 metrics 𝛶 contains the base asset correlations on the off diagonals and ones on the 

diagonal. 

For two uncorrelated bivariate shocks, we have: 

𝐸[𝑧𝑡+1
𝑢 (𝑧𝑡+1

𝑢 )′] = [
1 0
0 1

]                   (41) 

To create correlated shocks with the correlation matrix: 

𝐸[𝑧𝑡+1(𝑧𝑡+1)
′] = 𝛶 = [

1 𝜌1,2
𝜌1,2 1

] 

http://store.elsevier.com/authorDetails.jsp?authorId=ELS_1010583
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𝐸[𝑧𝑡+1(𝑧𝑡+1)
′] = 𝐸 [𝛶1 2⁄ 𝑧𝑡+1

𝑢 (𝑧𝑡+1
𝑢 )′(𝛶1 2⁄ )

′
] = 𝛶                (42) 

For two assets case: 

𝛶1 2⁄ = [

1 0

𝜌1,2 √1 − 𝜌1,22
] 

𝑧𝑡+1 = 𝛶1 2⁄ 𝑧𝑡+1
𝑢  

𝑧1,𝑡+1 = 𝑧1,𝑡+1
𝑢  

𝑧2,𝑡+1 = 𝜌
1,2
𝑧1,𝑡+1
𝑢 + √1 − 𝜌

1,2
2𝑧2,𝑡+1

𝑢                 (43) 

This implies: 

𝐸[𝑧1,𝑡+1] = 𝐸[𝑧1,𝑡+1
𝑢 ] = 0 

𝐸[𝑧2,𝑡+1] = 𝜌
1,2
𝐸[𝑧1,𝑡+1

𝑢 ] + √1 − 𝜌
1,2

2𝐸[𝑧2,𝑡+1
𝑢 ] = 0 

and 

𝑉𝑎𝑟[𝑧1,𝑡+1] = 𝑉𝑎𝑟[𝑧1,𝑡+1
𝑢 ] = 1 

𝑉𝑎𝑟[𝑧2,𝑡+1] = 𝜌
1,2

2 𝑉𝑎𝑟[𝑧1,𝑡+1
𝑢 ] + (1 − 𝜌

1,2
2) 𝑉𝑎𝑟[𝑧2,𝑡+1

𝑢 ] = 1 

We can check the correlation is: 

𝐸[𝑧1,𝑡+1𝑧2,𝑡+1] = 𝜌
1,2
 𝐸[𝑧1,𝑡+1

𝑢 𝑧2,𝑡+1
𝑢 ] + √1 − 𝜌

1,2
2 𝐸[𝑧1,𝑡+1

𝑢 𝑧2,𝑡+1
𝑢 ] = 𝜌

1,2
            (44) 

In order to calculate term structure of risk with constant correlation, we rely on Monte Carlo 

simulation as described in Christoffersen (2012): 

1. Draw a vector of uncorrelated random normal variables 𝑧̌𝑖,1
𝑢  with zero mean and one-

variance. 

2. To correlate the random variables, use the matrix square root 𝛶1 2⁄  and get 𝑧̌𝑖,1
𝑢 = 𝛶1 2⁄ 𝑧𝑖,1

𝑢  . 

3. Update the variances for each asset, as: 

𝜎̌𝑖,𝑡+2
2 = 𝜔 + 𝛼𝑅̌𝑖,𝑡+1

2 + 𝛽𝜎𝑖,𝑡+1
2                   (45) 

where  

𝜎𝑖,𝑡+1
2 =∑𝜎𝑖

2

𝑛

𝑖=1

 

4.Compute returns for each asset: 

http://store.elsevier.com/authorDetails.jsp?authorId=ELS_1010583
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𝑅̌𝑖,𝑡+1:𝑡+𝑘 = ∑ 𝑅̌𝑖,𝑡+𝑘
𝐾
𝑘=1  for 𝑖 = 1,2, … ,𝑀𝐶                 (46) 

Loop through above steps from day t+1 until day t+k. compute the portfolio return using the 

equal portfolio weights and the vector of simulated returns on each day. Repeating these steps 

𝑖 = 1,2, …𝑀𝐶 times gives a Monte Carlo distribution of portfolio returns. From these MC 

portfolio returns we can compute VaR and ES from the simulated portfolio returns (see, 

Christoffersen , 2012): 

𝑉𝑎𝑅𝑡+1,𝑡+𝑘
𝑝 = −𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 {{𝑅̌𝑡+1,𝑡+𝑘}𝑖

𝑀𝐶
, 100𝑝}                (47) 

𝐸𝑆𝑡+1,𝑡+𝑘
𝑝 = −

1

𝑝.𝑀𝐶
∑ 𝑅̌𝑡+1,𝑡+𝑘
𝑀𝐶.1
𝑖=1 . 1(𝑅̌𝑡+1,𝑡+𝑘 < −𝑉𝑎𝑅𝑡+1,𝑡+𝑘

𝑝 )                         (48) 

3.8.1. The Risk Term Structure with Dynamic Correlations 

Now we consider dynamic correlation as in DCC models instead of constant correlation: at the 

end of day t we get 𝐷𝑡+1  and 𝛶𝑡+1  without simulation form GARCH and DCC models 

(Christofferse, 2012). 

𝑟̌𝑖,𝑡+1 = 𝐷𝑡+1𝛶𝑡+1
1/2
𝑧̌𝑖,𝑡+1
𝑢 = 𝐷𝑡+1𝑧̌𝑖,𝑡+1                  (49) 

𝑧̌𝑖,𝑡+1 = 𝛶𝑡+1
1/2
𝑧̌𝑖,1
𝑢                     (50) 

 

Using the new simulated shock vector, 𝑧̌𝑖,𝑡+1, we can update the volatilities and correlations 

using the GARCH models and the DCC model. We thus obtain simulated 𝐷̌𝑡+2 and 𝛶̌𝑡+1 .Now, 

draw a new vector of uncorrelated shocks 𝑧̌𝑖,2
𝑢  enables us to simulate the return for the second 

day ahead as: 

𝑟̌𝑖,𝑡+2 = 𝐷𝑡+2𝛶𝑡+2
1/2
𝑧̌𝑖,𝑡+2
𝑢 = 𝐷𝑡+2𝑧̌𝑖,𝑡+2 

𝑧̌𝑖,𝑡+2 = 𝛶𝑡+2
1/2
𝑧̌𝑖,2
𝑢  

 

We continue this simulation from day t+1 until day t+k. compute the portfolio return using the 

equal portfolio weights and the vector of simulated returns on each day. Repeating these steps 

𝑖 = 1,2, …𝑀𝐶 times gives a Monte Carlo distribution of portfolio returns. From these MC 

portfolio returns we can compute VaR and ES from the simulated portfolio returns (see, 

Christoffersen (2012): 

𝑉𝑎𝑅𝑡+1,𝑡+𝑘
𝑝 = −𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 {{𝑅̌𝑡+1,𝑡+𝑘}𝑖

𝑀𝐶
, 100𝑝}                (51) 

http://store.elsevier.com/authorDetails.jsp?authorId=ELS_1010583
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𝐸𝑆𝑡+1,𝑡+𝑘
𝑝 = −

1

𝑝.𝑀𝐶
∑ 𝑅̌𝑡+1,𝑡+𝑘
𝑀𝐶.1
𝑖=1 . 1(𝑅̌𝑡+1,𝑡+𝑘 < −𝑉𝑎𝑅𝑡+1,𝑡+𝑘

𝑝 )                  (52) 

3.9. Multivariate Copulas 

Copulas are simply multivariate distribution functions with uniform margins. A d-dimensional 

copula is defined as multivariate distribution function 𝐶(𝑣1, … , 𝑣𝑑)  on the𝐶: [0,1]𝑑 → [0,1]. 

Let  𝐹 be distribution function for a random vector 𝑍 = (𝑍1, … , 𝑍𝑑) with margins𝐹1, … , 𝐹𝑑. 

Then according to Sklar’s Theorem (Sklar, 1959) there exist a copula 𝐶 such that for all 𝑧 =

(𝑧1, … , 𝑧𝑑) ∈ [−∞,∞]
𝑑: 

𝐹(𝑧1, … , 𝑧𝑑) = 𝐶(𝐹1(𝑧1),… , 𝐹𝑑(𝑧𝑑))                               (53) 

where 𝐶 is d-dimensional copula, and if 𝐹 is continuous with strictly continuous increasing 

marginal distributions 𝐹1, … 𝐹𝑑: 

𝑓(𝑧1, … , 𝑧𝑑) = 𝑐(𝐹1(𝑧1),…𝐹2(𝑧𝑑)). [∏ 𝑓𝑖(𝑧𝑖)
𝑑
𝑖=1 ]                (54) 

where  𝑐 denotes the density of the copula and given by:  

𝑐(𝑣1, 𝑣2) =
𝜕2𝐶(𝑣1,𝑣2)

𝜕𝑣1𝜕𝑣2
                    (55) 

Detailed copula analysis available in Joe (1996) and Nelson (2006). 

3.9.1 Vine Copula/Pair Copula Construction (PCC) 

 Joe (1996) is the first who introduced selective construction of pair copula. Later Aas et al. 

(2009) introduced graphical representation to specify pair copula constructions (PCCs), also 

called vine copula. 

We can represent PCC for two, three, more and general multivariate case. 

For two random variables(𝑍1, 𝑍2 )  𝑑 = 2: 

𝑓(𝑧1, 𝑧2) = 𝑐12(𝐹1(𝑧1), 𝐹2(𝑧2))𝑓1(𝑧1)𝑓2(𝑧2)                            (56) 

For the transformed variables  𝐹1(𝑧1) and 𝐹2(𝑧2), 𝑐12 is the appropriate pair copula density. 

The conditional density can be calculated as: 

𝑓(𝑧2|𝑧1) =
𝑓(𝑧1,𝑧2)

𝑓1(𝑧1)
= 𝑐12(𝐹1(𝑧1), 𝐹2(𝑧2))𝑓2(𝑧2)                (57) 

For three random variables(𝑍1, 𝑍2 and𝑍3), 𝑑 = 3 

𝑓(𝑧1, 𝑧2, 𝑧3) = 𝑓1(𝑧1)𝑓2|1(𝑧2|𝑧1)𝑓3|12(𝑧3|𝑧1, 𝑧2)                             (58)  

𝑓2|1(𝑧2|𝑧1) =
𝑓(𝑧1,𝑧2)

𝑓1(𝑧1)
=

=𝑐12(𝐹1(𝑧1),𝐹2(𝑧2))𝑓1(𝑧1)𝑓2(𝑧2)

𝑓1(𝑧1)
= 𝑐12(𝐹1(𝑧1), 𝐹2(𝑧2))𝑓2(𝑧2),               (59) 



113 
 

𝑓3|12(𝑧3|𝑧1, 𝑧2) =
𝑓13|2(𝑧1, 𝑧3|𝑧2)

𝑓2|1(𝑧2|𝑧1)
=
𝑐13|2 (𝐹1|2(𝑧1|𝑧2), 𝐹3|2(𝑧3|𝑧2)) 𝑓2|1(𝑧2|𝑧1)𝑓3|2(𝑧3|𝑧1)

𝑓2|1(𝑧2|𝑧1)

= 𝑐13|2 (𝐹1|2(𝑧1|𝑧2), 𝐹3|2(𝑧3|𝑧2)) 𝑓3|2(𝑧3|𝑧2) 

𝑓13|2(𝑧1, 𝑧3|𝑧2) = 𝑐13|2 (𝐹1|2(𝑧1|𝑧2), 𝐹3|2(𝑧3|𝑧2))𝑓1|2(𝑧1|𝑧2)𝑓3|2(𝑧3|𝑧2) , 

𝑓3|2(𝑧3, 𝑧2) = 𝑐23(𝐹2(𝑧2), 𝐹3(𝑧3))𝑓3(𝑧3) 

𝑓3|12(𝑧3|𝑧1, 𝑧2) = 𝑐13|2 (𝐹1|2(𝑧1|𝑧2), 𝐹3|2(𝑧3|𝑧2)) 𝑐23(𝐹2(𝑧2), 𝐹3(𝑧3))𝑓3(𝑧3)            (60) 

The 3-dimension full decomposition is: 

= 𝑐13|2 (𝐹1|2(𝑧1|𝑧2), 𝐹3|2(𝑧3|𝑧2)) 𝑐23(𝐹2(𝑧2), 𝐹3(𝑧3)) 

× 𝑐12(𝐹1(𝑧1), 𝐹2(𝑧2)) × 𝑓3(𝑧3)𝑓2(𝑧2)𝑓1(𝑧1)                 (61) 

Per Czado (2010) a multivariate density can be calculated as a product of pair-copulas, acting 

on several different conditional marginal distributions. 

𝑓(𝑧1, … , 𝑧𝑑) = ∏ 𝑓(𝑧𝑡|𝑧1, … , 𝑧𝑡−1) ×
𝑑
𝑡=2 𝑓1(𝑧1)                (62) 

For the arbitrary distinct 𝑖, 𝑗, 𝑖1, … , 𝑖𝑘 with 𝑖 < 𝑗 and 𝑖1 < ⋯ < 𝑖𝑘, let: 

𝑐𝑖,𝑗|𝑖1, … , 𝑖𝑘 = 𝑐𝑖,𝑗|𝑖1, … , 𝑖𝑘 (𝐹(𝑧𝑖|𝑧𝑖1, … , 𝑧𝑖𝑘), (𝐹(𝑧𝑗|𝑧𝑖1,…, 𝑧𝑖𝑘))) 

By expressing(𝑧𝑡|𝑧1, … , 𝑧𝑡−1): 

𝑓(𝑧𝑡|𝑧1, … , 𝑧𝑡−1) = 𝑐1,𝑡|2,…𝑡−1 ×  𝑓(𝑧𝑡|𝑧1, … , 𝑧𝑡−1) 

= ∏ 𝑐𝑠,𝑡|𝑠+1,…,𝑡−1
𝑡−2
𝑠=1 × 𝑐(𝑡−1),𝑡 × 𝑓𝑡(𝑧𝑡)                 (63) 

Czado (2010) showed that for𝑡 = 2,… , 𝑑, the joint distribution is: 

𝑓(𝑧1, … , 𝑧𝑑) = ∏ ∏ 𝑐𝑖,(𝑖+𝑗)|(𝑖+1),…,(𝑖+𝑗−1) ×∏ 𝑓𝑘(𝑥𝑘)
𝑑
𝑘=1

𝑑−𝑗
𝑖=1

𝑑−1
𝑗=1               (64) 

This decomposition called pair copula decomposition (PCC). The conditional distributions 

needed as copula arguments at level 𝑗 are obtained as partial derivatives of the copula at level 

𝑗 − 1. Under regular condition, according to Joe (1996): 

𝐹(𝑧|𝑉) =
𝜕𝐶𝑧𝑉𝑗;𝑉−𝑗(𝐹(𝑧|𝑉−𝑗),𝐹(𝑉𝑗|𝑉−𝑗))

𝜕𝐹(𝑉𝑗|𝑉−𝑗)
                  (65) 

where 𝐶𝑧𝑉𝑗;𝑉−𝑗  is a bivariate copula function, 𝑉𝑗 is a arbitrary component of 𝑉 and 𝑉−𝑗 denotes 

the vector 𝑉 excluding 𝑉𝑗.When 𝑉 is univariate, z and  𝑉 are distributed uniformly on the 

intervals [0,1],then 

𝐹(𝑧|𝑉) =
𝜕𝐶(𝑧, 𝑉)

𝜕𝑉
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We can assume a parametric specification for 𝐶𝑖,𝑗|𝑖1,…,𝑖𝑘  with given parameter vector 𝜃, pair 

copula densities and univariate condition ac be simplifying as: 

ℎ(𝑣1|𝑣2; 𝜃): = 𝐹(𝑣1|𝑣2; 𝜃) =
𝜕𝐶𝑣1,𝑣2(𝑣1,𝑣2;𝜃)

𝜕𝜃
                 (66) 

where 𝜃 is the parametric vector for 𝐶𝑣1,𝑣2. 

3.9.2. Vine Structure 

There are many ways to decompose multivariate density function into PCC. Bedford and 

Cooke (2001) have specified graphical structure, called a regular vine tree structure, that helped 

to organize all decompositions. 

A d-dimensional vine tree structure is sequence of d-1 trees. Tree j d+1-j nodes and n-j edges. 

The edges in tree j become nodes in tree j+1.Two nodes in tree j+1 are joined by an edge if the 

corresponding edges in tree j share a node. The density of a regular vine distribution is defined 

as by the multiple of pair copula density over the (
𝑑(𝑑−1)

2
) edges identified by the regular vine 

tree structure and the product of the marginal densities. 

 

 Regular vine decomposition includes many possible pair copulas. In this research, we 

construct R-vine and two special cases of R-vine called D-vines and C-vines (canonical vines. 

C-vine are regular vine distribution for which each tree has a unique node that is connect to d-

j edges, and D-vine are regular vine distribution for which no node in any tree is connected to 

more than two edges. 

 

 For C-vine copula each tree has a unique node that is connected to all other nodes. 

𝑓1234567 = (
𝑓1. 𝑓2. 𝑓3. 𝑓4. 𝑓5. 𝑓6. 𝑓7

nodes in 𝑻𝟏
)(

𝑐12, 𝑐13, 𝑐14, 𝑐15, 𝑐16, 𝑐17
𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑻𝟏 
𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑻𝟐 

)(
𝑐23|1, 𝑐24|1, 𝑐25|1,𝑐26|1,𝑐27|1

𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑇2
𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑇3

) 

(
𝑐34|12, 𝑐35|12, 𝑐36|12, 𝑐37|12

𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑇3
𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑇4

)(

𝑐45|123,𝑐46|123, 𝑐47|123
𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑇4
𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑇5

) 

(

𝑐56|1234,𝑐57|1234
𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑇5
𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑇6

) (
𝑐67|12345
𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑇6

) 
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1.(1,2), (1,3), (1,4), (1,5), (1,6), (1,7) 

2.(2,3|1), (2,4|1), (2,5|1), (2,6|1), (2,7|1) 

3.(3,4|12), (3,5|12), (3,6|12), (3,7|12) 

4.(4,5|123), (4,6|123), (4,7|123) 

5. (5,6|1234), (5,7|1234) 

6. (6,7|12345) 

Figure 12 represent the decomposition of a four-dimensional C-vine joint density function 

into pair-copulas and marginal densities. 

The density 𝑓(𝑧1, … , 𝑧𝑑) of d-dimension for C-vine copula can be written as (Aas et al. 2009): 

𝑓(𝑧1, … , 𝑧𝑑) = [∏ 𝑓(𝑧𝑘)
𝑑
𝑘=1 ] ×

[∏ ∏ 𝑐𝑗,𝑗+1:1,…,𝑗−1
𝑑−𝑗
𝑖=1

𝑑−1
𝑗=1 (𝐹(𝑧𝑖|𝑧1, … 𝑧𝑗−1), 𝐹(𝑧𝑗+1|𝑧1,𝑡, … 𝑧𝑗−1))]               (67) 

where index 𝑗 identifies the trees, while 𝑖 runs over the edges in each tree. 

In D-vine no node is connected to more than 2 edges. 

𝑓1234567

= (
{𝑓1. 𝑓2. 𝑓3. 𝑓4. 𝑓5. 𝑓6. 𝑓7

nodes in 𝑻𝟏
)(

𝑐12, 𝑐23, 𝑐34, 𝑐45, 𝑐56, 𝑐67
𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑻𝟏 
𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑻𝟐 

)(
𝑐13|2, 𝑐24|3, 𝑐35|4,𝑐46|5, 𝑐57|6

𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑇2
𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑇3

) 

(
𝑐14|23, 𝑐25|34, 𝑐36|45, 𝑐47|56

𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑇3
𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑇4

)(

𝑐15|234, 𝑐26|345, 𝑐37|456
𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑇4
𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑇5

)(

𝑐16|2345, 𝑐27|3456
𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑇5
𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑇6

) 

(
𝑐17|23456
𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑇6

) 
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1.(1,2), (2,3), (3,4), (4,5), (5,6), (6,7) 

2.(1,3|2), (2,4|3), (3,5|4), (4,6|5), (5,7|6) 

3.(1,4|23), (2,5|34), (3,6|45), (4,7|56) 

4.(1,5|234), (2,6|345), (3,7|456)  

5. (1,6|2345), (2,7|3456) 

6. (1,7|23456) 

Figure 13 represent the decomposition of a four-dimensional D-vine joint density function into 

pair-copulas and marginal densities. 

The density 𝑓(𝑧1, … , 𝑧𝑑) of d-dimension for D-vine copula can be written as (Aas et al. 2009): 

𝑓(𝑧1, … , 𝑧𝑑) = [∏𝑓(𝑧𝑘)

𝑑

𝑘=1

] 

× [∏ ∏ 𝑐𝑖,𝑖+𝑗;𝑖+1,…,𝑖+𝑗−1
𝑑−𝑗
𝑖=1

𝑑−1
𝑗=1 𝐹(𝑧𝑖|𝑧𝑖+1, … 𝑧𝑖+𝑗−1), 𝐹(𝑧𝑖+𝑗|𝑧𝑖+1, … 𝑧𝑖+𝑗−1)]            (68) 

3.9.3. Estimation of Pair-Copula Decompositions 

There is a different method available for parametric estimation for given tree structure and 

copula families for pair copulas. In sequentially estimation parameters are estimated starting 

from the top tree until the last, however stander errors are difficult to estimate (Aas et al., 2009 

and Czado et al., 2012). 

 Maximum likelihood estimation is asymptotically efficient, but for high dimensions it is not 

appropriate and calculation of standard errors is also challenging, Stoeber and Schepsmeier 

(2012). In our research parameters are estimated by the Inference Function for Margins (IFM) 

method, where the estimation of the parameters is done in two steps:  

1. The parameters in the marginal distributions are estimated.  

2. The copula parameters are estimated conditioned on the previous marginal distributions 

estimates.  
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For a R- vine decomposition, the log-likelihood is given by:  

𝑙(𝑧: 𝜃) = 

∑ ∑ ∑ 𝑙𝑛 (𝑐𝑚𝑗,𝑗,𝑚𝑖,𝑗;𝑚𝑖+1,…,𝑚𝑛,𝑗
(𝐹(𝑧𝑚𝑗,𝑗,𝑡|𝑧𝑚𝑗+1,𝑡 , … 𝑧1,𝑗,𝑡), 𝐹(𝑧𝑚𝑖,𝑗,𝑡|𝑧𝑚𝑖+1,𝑗,𝑡 , … 𝑧𝑚1𝑗,𝑡)))

𝑗+1
𝑖=1

1
𝑗=1

𝑇
𝑡=1               (69) 

 

For a C- vine decomposition, the log-likelihood is given by: 

𝑙(𝑧: 𝜃) = 

∑ ∑ ∑ 𝑙𝑛 (𝑐𝑗,𝑗+1:1,…,𝑗−1 (𝐹(𝑧𝑖,𝑡|𝑧1,𝑡, … 𝑧𝑗−1,𝑡), 𝐹(𝑧𝑗+1,𝑡|𝑧1,𝑡, … 𝑧𝑗−1,𝑡)))
𝑑−𝑗
𝑖=1

𝑑−1
𝑗=1

𝑇
𝑡=1                            (70) 

For a D- vine decomposition, the log-likelihood is given by: 

𝑙(𝑧: 𝜃) = 

∑ ∑ ∑ 𝑙𝑛 (𝑐𝑖,𝑖+𝑗;𝑖+1,…,𝑖+𝑗−1 (𝐹(𝑧𝑖,𝑡|𝑧𝑖+1,𝑡 , … 𝑧𝑖+𝑗−1,𝑡), 𝐹(𝑧𝑖+𝑗,𝑡|𝑧𝑖+1,𝑡 , … 𝑧𝑖+𝑗−1,𝑡)))
𝑑−𝑗
𝑖=1

𝑑−1
𝑗=1

𝑇
𝑡=1                              (71) 

 

Akaike or (Schwarz) Bayesian information criterions are the straightforward approaches to 

select a copula between non-nested parametric copulas as estimated by maximum likelihood. 

The Akaike’s information criterion (AIC) is defined as: 

𝐴𝐼𝐶(𝑀) = −2 ln(𝐿̂) + 2𝑀                 (72) 

3.9.4. Value-at-Risk and Expected Shortfall Calculation for Pair-Copula 

To forecast the Value-at-Risk (VaR) and expected shortfall (ES) of the equally weighted 

portfolio for one day ahead for pair copula, we need to use Monte Carlo simulate from the 

estimated pair-copula decomposition followed by the method suggested in Aas et al. (2009). 

From the fitted copula model, we simulate a sample of random numbers of each copula class. 

 The simulated vine copulas observations are then converted using the inverse skewed t 

distribution cumulative distribution function (CDF) which is an assumption of the marginal 

distribution in the NGARCH model.  

 

The standardized residuals calculated from inverse skewed t CDF along with the estimated 

parameters of the NGARCH model are later used to forecast the log returns of each asset in the 

portfolio. We distribute equal weights to each stock log return, and then we get the returns after 

the weighting; finally, we calculate the value of the portfolio for each of the simulation and use 

the empirical quantile function to calculate one-day Value-at-Risk and Expected Shortfall at 

different significance levels. 
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3.10. Back- testing Risk Models 

According to Lopez (1999), to assess the validity of VaR models the statistical tests suggested 

by Kupiec(1995) and Christoffersen(1998)  can have relatively low power against inaccurate 

VaR models. Lopez (1999) proposed a forecast evaluation framework based on loss function 

rather than on a statistical testing framework. By specifying a utility function and ranking the 

risk models, loss function satisfies the specific need of the risk manager.  

Lopez (1999) loss function takes the following specific form:  

𝛹𝑡+1 = {1 + (𝑉𝑎𝑅𝑡+1|𝑡 − 𝑥𝑡+1)
2
       

0                                       𝑒𝑙𝑠𝑒,
 if violation occurs               (73) 

which accounts for the magnitude of the tail losses (𝑉𝑎𝑅𝑡+1|𝑡 − 𝑥𝑡+1)
2
 and adds a score of one 

whenever a violation is observed. The model that minimizes the total loss ∑ 𝛹𝑡
𝑇
𝑡=1  outperforms 

other models. 

 

This approach has a main drawback that the return 𝑥𝑡+1 should be better compare with ES 

measure not with the VaR, as VaR does not give any evidence of the size of the expected loss. 

Therefore, the proposed loss function for the Expected shortfall can be proposed as: 

𝛹1|𝑡+1
(𝑖) = {

|𝑥𝑡+1 − 𝐸𝑆𝑡+1|𝑡
(𝑖) | 𝑖𝑓 𝑣𝑜𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠                

0                    𝑒𝑙𝑠𝑒,                         
               (74) 

𝛹2|𝑡+1
(𝑖) = {(𝑥𝑡+1 − 𝐸𝑆𝑡+1|𝑡

(𝑖) )
2

𝑖𝑓 𝑣𝑜𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠          

0                           𝑒𝑙𝑠𝑒,
      

To judge the models by loss functions we calculate MAE: 

𝑀𝐴𝐸 = 𝑇̃−1∑ 𝛹1|𝑡+1
(𝑖)𝑇

𝑡=1                    (75) 

 

The best model is preferred with the lowest MAS error. To evaluate VaR we use loss function 

of Gonz´alez-Rivera et al. (2004) which is especially suited to assess quantile risk measures, 

such as the VaR. Gonzalez-Rivera et al. (2004) suggest a loss function to forecast the Value-

at-Risk (VaR) of a portfolio of financial assets and describe as for given 𝛼: 

𝑄 = 𝑃−1∑ (𝛼 − 𝑑𝑡+1
𝛼 )(𝑦𝑡+1 − 𝑉𝑎𝑅𝑡+1

𝛼 )𝑇
𝑖=1                 (76) 

where 𝑑𝑡+1
𝛼 = 1(𝑦𝑡+1 < 𝑉𝑎𝑅𝑡+1

𝛼 ). Smaller  𝑄 indicates a better goodness of fit. 
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3.11. Implementation 

The methods were implemented in the open-source software R by using the following 

packages;  xlsx ( Dragulescu, 2015) ,  rugarch (Ghalanos, 2015a), rmgarch (Ghalanos 2015b),  

CDVine (Schepsmeier and Brechmann 2015), VineCopula (Schepsmeier et at.,2016) 

,PerformanceAnalytics (Peterson and Carl, 2014), quantmod (Ryan et al.,2015) , car(Fox and 

Weisberg,2016),FinTS(Graves,2015),hydroGOF( Bigiarini,2014),Metrics (Hamner,2015),fG 

rch(Wuertz and Chalabi,2015),zoo (Zeileis et al.,2016), fBasics (Wuertz et al.,2015), tseries 

(Trapletti et al.,2016). 

4. Empirical Results 

In this section, we model the dependence among the returns of 15 of fifteen companies from 

DAX -30 index from June 1995 to June 2015. The selection of 15 companies mainly depends 

on the availability of data for all companies from June 1995. Further we investigate dependence 

among 7 and 5-dimension data. For the five-dimension data, we have chosen five companies 

mainly form steel and engineering sector. All the data has been taken from DataStream 

database. 

Table 37 shows the start date, end date and number of observation of the data analysed in this 

chapter.  

4.1. Data Description and Preliminary Analysis 

Figure 14 plots daily prices, returns, squared returns for each analysed data set. Each plot of 

each time series exhibits the typical empirical time series properties. 

The plots of the closing prices of each data set are not stationary in other words the data does 

not revert around mean and it changes throughout the time series. Whereas, the plot for the 

returns does fluctuate around mean. It is the desirable property of time series to have a 

stationary data set because the characteristics of a stationary time series allow handling models 

that are independent of a specific starting point, practically it may be difficult to obtain. The 

squared daily returns exhibit evidence of volatility clustering that large changes tend to be 

followed by large changes and suggests the presence of heteroscedasticity. 

The summary statics are presented in table 38. The value of skewness is negative for some 

return series and positive for some returns indicating an asymmetry in the distribution of return. 

A negatively skewed distribution or skewed to the left has a long-left tail and a positively 
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skewed distribution or skewed to the right has a long right tail. Our all data series are 

characterized by many small gains and a few extreme losses. 

As positive kurtosis indicates a relatively peaked distribution and negative kurtosis indicates a 

relatively flat distribution. A normal distribution has a kurtosis of 3.  The kurtosis of our all 

data sets is greater than 3 reflect fat tails. We reject null hypothesis of the normal distribution 

as the p value for Jarque-Bera (1980) test is less than 0.05. Jarque-Bera test confirms that all 

return series have non-normal distributions. Among all stocks, the VOL is the most volatile as 

it has highest Standard deviation and Standard and HEN is the least volatile asset. The Ljung-

Box (1978) Q-statistics reported in Table 2 for both returns and squared returns for all data 

series also reject the null hypothesis of no autocorrelation through 20-lags at a 5% significance 

level. 

4.2. Marginal Models for Univariate Data 

As indicated earlier that we divide our sample into 15, 7, 5 and 2 dimensions. For our entire 

sample, we adopt the two-step estimation method in this chapter due to the large number of 

parameters in the time-varying models. As Haff (2012) provides evidence that the performance 

of the stepwise estimator is rather valid compared to the full log likelihood method. 

The first step is to estimate the marginal distribution using GARCH specification. To imply 

leverage effect, we applied asymmetric GARCH models, i.e. NGARCH with normal, student 

t, skewed t and GED innovations. We choose the best specifications for the marginal based on 

the information criteria AIC and BIC. The parameter estimates and standard errors for the 

marginal distribution models for bivariate data are presented in table 115, table 116, table 117 

and table 118 in Appendix. As indicated before our data exhibit non-normal characteristics, so 

we only compare NGARCH-t, NGARCH-skewed t and NGARCH-GED. Based on AIC 

criteria NGARCH-skewed t for has lower AIC for all datasets. Moreover, our data sets display 

clear signs of asymmetry and excess kurtosis, NGARCH-skewed t is the best marginal model 

for our data set. 

To set an initial view on the correlation and dependence relationship among five stocks, we 

present Pearson Correlation, Spearman’s Correlation and Kendall’s Tau Correlation measures 

in table 39, table 40 and table 41. As expected, the unconditional correlation measure matrices 

present a high dependence between among all fifteen stocks. 
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After choosing the NGARCH-skewed t marginal models and obtaining the standardized return, 

we now examine the dependence between the filtered returns. Figure 15 shows the scatter plots 

of a pair of filtered returns. The scatter plots emerge to be clouded circles with dispersions in 

lower and upper tails exhibit the disappearing of linear correlation between return series. 

 It is evident, that fitting of the marginal models did not remove the dependence between each 

series. Table 42, table 43 and table 44 summarizes the conditional correlation measures. Like 

the unconditional correlation measures, the conditional correlation matrices indicate that there 

exists a rather high dependence between standardized return series. In addition, the 

unconditional correlation measures are slightly higher than the conditional ones.  

4.3. Estimation Results for Copula Models 

Visual observation of bivariate plots in figure15 confirms that the filtered returns are correlated, 

to describe this dependence, we will fit copula models on bivariate data sets. The following 

copula families are fitted to the normal, Student t, Gumbel, Clayton, Frank, and Joe copulas. 

Table 111 in Appendix reports estimated parameter for bivariate data sets alongside with AIC 

and BIC value.  We use the AIC for selection criterion because of evidence that it performs 

especially well in a simulation study (Brechmann, 2010). 

The results in table 111 indicate that all estimated parameters are statistically significant. All 

models are ranked on minimization of AIC. The results indicate that Frank, Clayton and student 

t remained top three models for most of the portfolio. Although in few cases normal copula is 

in top three models but we don’t prefer it because of its properties. The Kendal’s tau estimation 

for student t copula and Frank Copula remain higher. 

Table 112 in Appendix shows parameter estimation of bivariate DCC-GAECH models. We 

compared DCC-Normal and DCC-t, the results indicates that for all portfolios DCC-t model 

outperform DCC-Normal.  

Table 45 and table 46 report the estimated parameter for C and D vine copula for 5-dimension 

data of engraining and steel sector for selected models. These tables also report the estimated 

Kendall’s tau computed based on the estimated pair-copulas. For C-Vine copula in table 45 

Frank copula is preferred model for tree 1, 3 and 4.  Three 2 for D-vine copula all three-pair 

preferred student t distribution. For C-vine copula pair BMW.VOL and BMW.LIN have 

highest Kendell’s tau, while for D-vine BMW.VOL/SEI and VOL.LIN/THY have highest 

Kendell’s tau. 
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For seven-dimension data, we estimate the parameters of C-vine and D-vine for Normal, 

Student t, Gumbel, Clayton, Frank, Joe, BB1, BB6, BB7, and BB8 models. Table 47 and 48 

represent that student t, Frank, Gumbel, Clayton, BB1 are selected but student t, and Frank and 

BB1 appear more frequently. For D-vine copula it is the student-t that appears most frequently 

and then BB1, BB8 and Frank. Pair CON.FRES/ SAP.SIE.BAY.BASF.BMW have the highest 

Kendell’s Tau for C –vine and pair SAP.BASF/SIE.BAY for D-vine copula. For 15-dimensions 

data we estimate 105 parameters for both C-vine and D-vine for Norma, t, Gumbel, Clayton, 

Frank, Joe, BB1, BB6, BB7 and BB8 models. Copula vine structure, estimated parameters, 

family selection and Kendell’s tau for 14 trees are presented in tables 49, 50, 51, 52, 53, 54, 

55, 56, 57 and 58 for both C-vine and D-vine copulas. For C- vine student t and Frank copula 

appeared more frequently in table 53 while for D-vine copula student t, Frank and BB8 

appeared frequently. 

The general conclusion from our estimated parameters for bivariate, 5-dimesion,7-dimension 

and 15-dimension data is that student t-copula and Frank copula are the best choices among 

the traditional copulas in most of the cases. Moreover, the advantage of vine copulas does not 

mainly for the flexible tree structure, but also for the flexibility of mixing different bivariate 

families. 

4.4. Expected Shortfall (ES) Back-testing 

We forecast the one day ahead VaR and ES for the different copula models and compare them 

with DCC models by Engle (2001) and Engle (2002) with Normal and Student t innovations. 

The DCC model is popular and thus established the most suitable benchmark for the vine 

copula models (Brenchman and Cazado, 2013).  We have calculated Value at risk (VaR) and 

Expected Shortfall (ES) for 2- dimensions, 5- dimensions, 7- dimensions and 15- dimensions 

data. Moreover, we have also estimated VaR and ES for longer horizon for bivariate data and 

7-dimensions data by Monte-Carlo (Static) and Monte-Carlo (DCC) models suggested by 

Christoffersen (2011). 

The evaluated different VaR and ES models for bivariate data are presented in table 113 in 

Appendix. We ranked our ES models based on smallest value of MAE. For the pair BMW/SEI 

Student t rank first while Frank and Joe ranked second and third for 1% significant level. It is 

evident from the result that student t and Frank copula remain the top models and in few cases 

Clayton and Gumbel copula. Moreover, results indicate that copula-based methods also have 

better results than the DCC-norm and DCC-t.  

http://store.elsevier.com/authorDetails.jsp?authorId=ELS_1010583
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Table 59 represents the back-test results for VaR and ES for C-vine, D-vine C and DCC models 

for 5-dimension data as representing the engineering and steel sector from DAX-30. C-Vine 

Clayton Copula ranked first for all significance levels, C-vine copula ranked second for all 

significance level. D-vine student t copula ranked third for 1%, fifth for 2.5%, and 4th for 5% 

significance. Again, for multivariate data copula models performed better than DCC-norm and 

DCC-t models.  

Table 60 represent the back-test results for VaR and ES for C-vine, D-vine C and DCC models 

for 7- dimension data. For 7- dimensions data we calculate VaR and ES for C-vine and D-vine 

for Normal, Student t, Gumbel, Clayton, Frank, Joe, BB1, BB6, BB7, and BB8 models. D-

Vine Joe Copula and C-Vine Joe Copula ranked first and second for all four significance levels 

(1%,2.5%,5% and 10%). C-Vine BB6 appeared third for all significance levels and D-vine 

BB6 as fifth for 1%, 2.5% and 10% while forth for 5% significance level. 

Table 62 presents results of Back-testing VaR and ES for 15 dimensions’ data. D-vine copula 

ranked first based on minimum MAE and C-Vine BB6 ranked second for all significance level. 

D-vine BB6 ranked third for 1%, 2.5%, 5% and forth for 10% significance level and D-Vine 

Gumbel copula ranked forth for 1%, 2.5%, 5% and third for 10% significance level. 

If the main purpose of the risk models is the allocation of optimal portfolio instead of just risk 

measurement, the multivariate term structure of risk is required (Christoffersen, 2012). Thus, 

for active risk management we need to consider multivariate term structure of risk. We are 

applying Monte Caro simulation rather than square-root-of-time rule to calculate multi-days 

ahead VaR and ES (see Dowd et al., 2004 and Christopherson, 2012). Under the square-root-

of-time rule the long-term risk measures such as VaR, is obtained by multiplying the one-day 

risk measure by the square root of the number of days in the holding period. The simulation-

based methods allow to calculate VaR and ES for multivariate data at any horizon of interest 

and hence to calculate the entire term structure of risk. Monte Carlo simulation method is very 

flexible as can assume any distribution of return with Mote Carlo simulation based method. 

We don’t need to rely on the assumption of normality of return. 

We suggest a new adaptation of Christoffersen (2012) method for calculating multiple VaR 

and ES with Monte Carlo simulation method using many steps. We estimate NGARCH-Skew 

t at the end of day one and obtain day one returns and tomorrow’s variance in the NGARCH 

model. To simulate the model forward in time using Monte Carlo we need to assume a 

multivariate distribution of the random shocks. We generate random numbers from the 
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multivariate skewed student-t distribution. Then, we use both static and dynamic correlation to 

correlate these random variables. From correlated random number create the hypothetical 

returns for tomorrow for each asset. Given these hypothetical returns, we update the variance 

to get a set of hypothetical variances for the day after tomorrow.  Repeat all above steps for 

multi-days. Now, we compute the portfolio return using the equal portfolio weights and the 

vector of simulated returns on each day. We compute multi-days VaR and ES from the 

simulated portfolio returns. 

The 5-days and 10-days loss function for VaR indicates in table 61 that Monte Carlo(Static) 

perform significantly than of Monte Carlo(DCC). The best model is highlighted with bold. 

Again, for ES, Monte Carlo(Static) has lower MAE than of Mote Carlo(DCC).  

It is important to note that that for one-day measure by vine copula models perform better than 

of DCC-norm and DCC-t. Our results reinforce the findings of Brechmann et al. (2011) that 

vine copula based models with static correlation are potential alternative to the DCC model for 

multivariate risk measurement. Our results also indicate that for multi-days VaR and ES model 

with static correlation perform better than of model with DCC correlation. 

5. Concluding Remarks 

The aim of this chapter is not only to present and discuss the use of vine copula for financial 

risk management but also to present the term structure of risk for multivariate data. 

We follow the Inference Function for Margins (IFM) method, two step method. In the first 

step, we estimate the marginal models. A univariate AR (1,1)-GARCH (1,1) with different 

innovations usually chosen to model the marginal distributions of return data. We employ a 

NGARCH model with skewed-t distribution to filter the return series and construct their 

marginal distributions. 

 The C- and D-vine copulas are then estimated and chosen based on minimum AIC. The 

optimal choices of the copula for both C-vine and D-vine copula are Student t, BB1, BB8, 

Frank. 

We finally show the implications of the empirical findings for risk management and calculate 

VaR and ES. We calculated VaR and ES with both static and dynamic correlation with Monte 

Carlo simulation rather than square-root-of-time rule for 5-days and 10-days. 
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The developed methodology is used to analyse the dependence structure among five stocks, 

seven stocks and fifteen as represented in the DAX 30 index. In these analyses, our models are 

critically compared to relevant benchmark models such as the DCC models. It turns out that 

vine copula models for our data provide good fit and accurately and efficiently forecast the 

expected shortfall as compare to DCC-norm and DCC-t (Zhang et al.,2014; Brechmann and 

Czado ,2011; and Aloui and Aissa, 2016). Among vine copula models it is Joe copula class and 

BB1 copula class with both C-vine construction and D-vine construction among the top five 

models. For term structure of risk for multivariate data Monte Carlo simulation with static 

correlation outperformed Monte Carlo simulation with dynamic correlation.  

An innovation of this paper is the estimation of multiple-step-ahead VaR and ES for 

multivariate stock data for the NGARCH-Skew t specification with both static and dynamic 

correlation. The new methodology has been adapted from Christoffersen (2012). 

This research constitutes one of the first applications of multi-days multivariate VaR and ES 

measure with Monte Carlo simulation method. Our results indicate that for 1-day ahead VaR 

and ES measure by vine copula with static correlation perform better than of DCC model with 

both normal and student t innovations. Moreover, for both 5-days and 10-days ahead again 

Monte Carlo with static correlation significantly perform better than of dynamic 

correlation(DCC).  

The present work constitutes one of the first applications of multivariate term structure of risk. 

An important direction of future research is the consideration of term structure of risk for longer 

horizon than 5-days and 10-days as Monte Carlo simulation is time consuming for longer 

horizon as compare to simple rule of square-root-of-time. However, in the view of Wang et al. 

(2011) square root time rule (SRTR) scaling to convert the longer-term tail risks is 

inappropriate and misleading. 

An important direction of future research is the consideration of filtered historical simulation 

(FHS) approach for multi-days ahead multivariate VaR and ES measurement. FHS combines 

model-based methods of variance with model-free methods of the distribution of shocks.  As 

Monte Carlo simulation based models are good if the selected model for distribution of returns 

is a sufficiently correct specification of reality. 
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Figure 9: Notation and Properties of Bivariate Elliptical and Archimedean Copulas. 
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Distribution 
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                                 Kendell’s Tau Tail Dependence 

      

1 Gaussian  𝜌 ∈ (−1,1) 2
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1

𝜃
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4

𝜃
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𝐷1(𝜃)

𝜃
 

(0,0) 
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6 Joe −𝑙𝑜𝑔[1 − (1 − 𝑡)𝜃] 𝜃 > 1 

1 −
4

𝜃2
∫𝑡𝑙𝑜𝑔(𝑡)(1 − 𝑡)𝜃

2(1−𝜃)
𝜃 𝑑𝑡

1

0

 

(0,2 − 21 𝜃⁄ ) 

7 BB1 (𝑡−𝜃 − 1)
𝛿

 𝜃 > 0, 𝛿 ≥ 1 
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2

𝛿(𝜃 + 2)
 

(2−1 (𝜃𝛿)⁄ , 2 − 21 𝛿⁄ ) 
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𝛿
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               1 + 4∫(−𝑙𝑜𝑔(−(1 − 𝑡)𝜃 + 1)

1

0

×
(1 − 𝑡 − (1 − 𝑡)−𝜃 + 𝑡(1 − 𝑡)−𝜃)

𝛿𝜃
)𝑑𝑡 

(0,2 − 21 (𝜃𝛿)⁄ ) 

9 BB7 [1 − (1 − 𝑡)𝜃]
−𝛿

 𝜃 ≥ 1, 𝛿 > 0 
1 −

2

𝛿(2 − 𝜃)
+

4

𝜃2𝛿
𝐵 (

2 − 𝜃

𝜃
, 𝛿 + 2) 

(2−1 𝛿⁄ , 2 − 21 𝜃⁄ ) 

10 BB8 
−𝑙𝑜𝑔 [

1 − (1 − 𝛿𝑡)𝜃

1 − (1 − 𝛿)𝜃
] 

𝜃 ≥ 1,0 < 𝛿

≤ 1 

 1 + 4∫ (−𝑙𝑜𝑔 (
(1−𝑡𝛿)𝜃−1

(1−𝛿)𝜃−1
) ×

(1−𝑡𝛿−(1−𝑡𝛿)−𝜃+𝑡𝛿(1−𝑡𝛿)−𝜃)
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) 𝑑𝑡

1

0
 

(0,0) 

Source: Breckmann and Cazado (2013)
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Figure 10: Contour Plots for Normal, Student t, Clayton, Gumbel, Frank 

and Joe Copula. 

 

Note: We plot the contour plot for Normal , Student t, Clayton, Gumbel, Frank and Joe Copulas. The marginal 

distributions are assumed to be normal. 
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Figure 11: pdf Plots for Normal, Student t, Clayton, Gumbel, Frank and Joe 

Copula. 
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Note: We plot the PDF plot for Normal, t, Clayton, Gumbel, Frank and Joe Copulas. The marginal distributions are 
assumed to be normal. 

 

 

 

 

  

v1

0.0

0.2

0.4

0.6

0.8

1.0

v
2

0.0

0.2

0.4

0.6

0.8

1.0

c
(v

1
,v

2
)

0.0

0.5

1.0

1.5

pdf Frank Copula

v1

0.0

0.2

0.4

0.6

0.8

1.0

v
2

0.0

0.2

0.4

0.6

0.8

1.0

c
(v

1
,v

2
)

0

2

4

6

8

10

pdf Joe Copula



131 
 

Figure 12: C-vine Decomposition for 7 Dimensions.  
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Figure 13: D-vine Decomposition for 7 Dimensions. 
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Table 36: Data Analysed   

Stock Ticker Start End Observations 

SAP SAP 09/06/1995 09/06/2015 5217 

SIEMENS 

 

SIE 09/06/1995 09/06/2015 5217 

BAYER BAY 09/06/1995 09/06/2015 5217 

BASF BASF 09/06/1995 09/06/2015 5217 

BMW BMW 09/06/1995 09/06/2015 5217 

CONTINENTAL CON 09/06/1995 09/06/2015 5217 

FRESENIUS FRES 09/06/1995 09/06/2015 5217 

MUENCHENER RUCK. MUEN 09/06/1995 09/06/2015 5217 

BEIERSDORF BEIR 09/06/1995 09/06/2015 5217 

LINDE LIN 09/06/1995 09/06/2015 5217 

THYSSENKRUPP THY 09/06/1995 09/06/2015 5217 

RWE RWE 09/06/1995 09/06/2015 5217 

DEUTSCHE LUFTHANSA DEU 09/06/1995 09/06/2015 5217 

HENKEL PREF. HEN 09/06/1995 09/06/2015 5217 

VOLKSWAGEN PREF. VOL 09/06/1995 09/06/2015 5217 
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Figure 14: Prices, Return and Square Retune Plot. 
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Table 37: Summary Statistics. 

Tests 
 
 

BMW 

 

SEI VOL THY LIN SAP BAY BASF CON FRES MUEN BEIR RWE DEU HEN 

 
Mean 
 
 

 
0.0004 

 
0.0003 

 
0.0005 

 
0.0001 

 
0.0003 

 
0.0004 

 
0.0004 

 
0.0004 

 
0.0006 

 
0.0006 

 
0.0002 

 
0.0004 

 
0.0003 

 
0.0001 

 
0.0005 

Median 
 
 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Min 
 
 

-0.159 -0.163 -0.252 -0.165 -0.105 -0.255 -0.184 -0.129 -0.325 -0.124 -0.171 -0.134 -0.105 -0.152 -0.142 

Max 
 
 

0.1352 0.1660 0.1834 0.1679 0.1285 0.2351 0.3230 0.1269 0.2533 0.2147 0.1653  0.1610 0.1285 0.1639 0.1080 

Std.dev 
 
 

0.0218 0.0216 0.0240 0.0230 0.0177 0.024 0.0194 0.0179 0.0245 0.0202 
 

0.0203 
 

0.0186 0.0171 0.0210 0.0171 
 

Skewness 
 
 

-0.011 -0.069 -0.567 -0.063 0.0513 0.037 0.5412 -0.055 -0.223 0.1249 -0.049 0.1046 0.0408 -0.122 0.0837 

Kurtosis 
 
 
 

4.3723 5.6496 8.9493 4.4606 4.0742 10.584 19.095 4.5699 14.986 5.7657 7.3939 5.8818 4.3330 3.6096 4.1021 

Jarque-Bera  
Test* 

3741 

 

6250 
 

15926 
 

3897 
 

3250 
 

24354 79521 4542 48866 7239 11885 7529 4082 2845 3663 

p-values 
 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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ADF-Unit Root* 

 

-17.90 

 

-15.80 

 

-14.67 

 

-15.80 

 

-17.20 

 

-17.34 

 

-18.52 

 

-18.21 

 

-15.67 

 

-17.30 

 

-18.12 

 

-17.96 

 

-17.94 

 

-17.04 

 

-19.40 

 

p-values 0.01 0.01 

 

0.01 

 

0.01 

 

0.01 

 

0.01 

 

0.01 

 

0.01 

 

0.01 

 

0.01 

 

0.01 

 

0.01 

 

0.01 

 

0.01 

 

0.01 

 

Phillips-Perron 

Unit Root Test* 

 

-65.4 

 

 

-67.09 

 

 

-65.61 

 

 

-66.24 

 

 

-72.45 

 

 

-69.28 

 

 

-73.83 

 

 

-72.34 

 

 

-70.04 

 

 

-73.48 

 

 

-67.81 

 

 

-81.49 

 

 

-76.42 

 

 

-70.21 

 

 

-73.26 

 

 

p-values 

 

 

 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

KPSS Test 

 

 

0.0712 

 

0.0657 

 

0.0758 

 

0.0576 

 

0.0850 

 

0.1121 

 

0.1013 

 

0.0543 

 

0.0882 

 

0.1168 

 

0.1542 

 

0.1302 

 

0.0810 

 

0.0655 

 

0.0898 

 

p-values        

    

 

0.01 

 

 

0.01 

 

 

0.01 

 

 

0.01 

 

 

0.01 

 

 

0.01 

 

0.01 

 

 

0.01 

 

 

0.01 

 

 

0.01 

 

 

0.01 

 

 

0.01 

 

 

0.01 

 

 

0.01 

 

 

0.01 

 

 

Auto-Corr-r** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lag 1 

 

 

0.043 0.045 0.021 0.033 -0.050 0.040 -0.021 -0.001 0.030 -0.018 0.061 -0.103 -0.051 0.028 -0.012 

Lag 5 

 

 

-0.019 

 

-0.023 

 

-0.016 

 

-0.002 

 

-0.025 

 

-0.004 

 

-0.020 

 

-0.025 

 

-0.029 

 

0.002 

 

-0.062 

 

-0.020 

 

-0.023 

 

-0.026 

 

-0.036 

 

Lag 10 

 

-0.010 -0.009 0.036 0.014 0.010 -0.041 -0.005 0.005 0.023 -0.004 -0.003 -0.006 0.010 0.005 0.026 

Lag 20 

 

 

0.037 

 

-0.015 

 

0.037 

 

0.003 

 

0.012 

 

0.001 

 

0.009 

 

0.014 

 

-0.002 

 

-0.027 

 

-0.009 

 

-0.010 

 

0.012 

 

0.012 

 

-0.010 

 

Ljung-Box  

(20)* 

79.39 

 

71.01 

 

74.65 

 

36.62 

 

63.37 

 

53.099 

 

67.222 

 

77.929 

 

90.125 

 

67.779 

 

108.68 

 

108.52 

 

67.644 

 

37.108 

 

54.256 
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p-values 

 

 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Auto-Corr- r2** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lag 1 

 

0.220 

 

0.139 

 

0.373 

 

0.135 

 

0.181 

 

0.135 

 

0.074 

 

0.209 

 

0.152 

 

0.140 

 

0.232 

 

0.188 

 

0.186 

 

0.094 

 

0.242 

 

Lag 5 

 

0.123 

 

0.156 

 

0.184 

 

0.160 

 

0.183 

 

0.133 

 

0.034 

 

0.160 

 

0.049 

 

0.084 

 

0.191 

 

0.138 

 

0.187 

 

0.120 

 

0.127 

 

Lag 10 

 

0.097 

 

0.233 

 

0.135 

 

0.142 

 

0.148 

 

0.092 

 

0.026 

 

0.186 

 

0.089 

 

0.092 

 

0.153 

 

0.057 

 

0.153 

 

0.087 

 

0.104 

 

Lag 20 

 

 

0.097 

 

0.084 

 

0.081 

 

0.136 

 

0.087 

 

0.069 

 

0.019 

 

0.137 

 

0.112 

 

0.049 

 

0.127 

 

0.073 

 

0.093 

 

0.086 

 

0.094 

 

Ljung-Box  

(20)* 

 

2115.8 

 

2733.4 

 

5537.5 

 

1773 

 

2289.4 

 

1177.8 

 

298.28 

 

4236 

 

1113 

 

1061 

 

4272 

 

1319.4 

 

2695 

 

1443.7 

 

2042.6 

 

p-value    

  

0.000 

 

0.000 0.000 0.000 0.000 

 
0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 0.000 0.000 0.000 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa: DEU ,Henkel  Pref: HEN, Volkswagen: VOL. * Indicates significant at the 5% level ,**The Lag orders are selected to examine a range of 

possible autocorrelations. 
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Table 38: Unconditional Correlation Measures Matrix (Linear Correlation). 

 Linear Correlation 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 1               

SIE 

 
0.51 1              

BAY 

 
0.35 0.49 1             

BASF 

 
0.38 0.57 0.67 1            

BMW 

 
0.34 0.51 0.47 0.56 1           

CON 

 
0.28 0.42 0.36 0.44 0.47 1          

FRES 

 
0.19 0.23 0.24 0.24 0.22 0.18 1         

MUEN 

 
0.36 0.49 0.47 0.51 0.46 0.35 0.22 1        

BEIR 

 
0.20 0.25 0.26 0.28 0.23 0.20 0.19 0.23 1       

LIN 

 
0.32 0.45 0.48 0.54 0.45 0.36 0.21 0.41 0.23 1      

THY 

 
0.33 0.50 0.46 0.56 0.51 0.42 0.20 0.42 0.23 0.48 1     

RWE 

 
0.28 0.42 0.44 0.47 0.39 0.30 0.16 0.45 0.21 0.39 0.40 1    

DEU 

 
0.36 0.47 0.42 0.50 0.48 0.40 0.19 0.44 0.22 0.41 0.45 0.36 1   

HEN 

 
0.25 0.36 0.41 0.44 0.41 0.34 0.19 0.35 0.27 0.41 0.36 0.34 0.36 1  

VOL 

 
0.32 0.42 0.39 0.44 0.53 0.41 0.19 0.37 0.20 0.37 0.41 0.31 0.41 0.29 1 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa:DEU,Henkel Pref:HEN,Volkswagen: VOL.  
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Table 40: Unconditional Correlation Measures Matrix (Spearman’s Correlation). 

                                                                                                                 Spearman’s Correlation  

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 1               

SIE 

 
0.53 1              

BAY 

 
0.40 0.49 1             

BASF 

 
0.42 0.55 0.64 1            

BMW 

 
0.38 0.50 0.45 0.50 1           

CON 

 
0.33 0.42 0.37 0.42 0.47 1          

FRES 

 
0.20 0.22 0.22 0.23 0.21 0.18 1         

MUEN 

 
0.38 0.48 0.45 0.48 0.42 0.36 0.20 1        

BEIR 

 
0.24 0.27 0.29 0.30 0.26 0.24 0.21 0.25 1       

LIN 

 
0.35 0.43 0.46 0.49 0.41 0.36 0.20 0.38 0.24 1      

THY 

 
0.36 0.49 0.44 0.51 0.45 0.40 0.18 0.40 0.25 0.44 1     

RWE 

 
0.32 0.41 0.42 0.44 0.36 0.30 0.17 0.42 0.21 0.35 0.36 1    

DEU 

 
0.37 0.46 0.40 0.46 0.44 0.39 0.16 0.42 0.23 0.38 0.42 0.36 1   

HEN 

 
0.28 0.36 0.40 0.41 0.36 0.33 0.19 0.34 0.31 0.37 0.33 0.31 0.34 1  

VOL 

 
0.38 0.45 0.41 0.45 0.54 0.44 0.18 0.38 0.23 0.38 0.42 0.32 0.41 0.32 1 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa :DEU, Henkel Pref: HEN, Volkswagen: VOL.  
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Table 40: Unconditional Correlation Measures Matrix (Kendall’s Tau). 

Kendall’s Tau 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 1               

SIE 

 
0.39 1              

BAY 

 
0.28 0.36 1             

BASF 

 
0.30 0.40 0.47 1            

BMW 

 
0.27 0.36 0.32 0.36 1           

CON 

 
0.23 0.30 0.26 0.30 0.34 1          

FRES 

 
0.14 0.15 0.15 0.16 0.14 0.12 1         

MUEN 

 
0.27 0.35 0.32 0.34 0.30 0.25 0.14 1        

BEIR 

 
0.17 0.19 0.20 0.21 0.18 0.16 0.14 0.18 1       

LIN 

 
0.25 0.31 0.33 0.35 0.29 0.25 0.14 0.27 0.17 1      

THY 

 
0.25 0.35 0.31 0.36 0.32 0.28 0.12 0.28 0.17 0.31 1     

RWE 

 
0.22 0.29 0.30 0.31 0.25 0.21 0.11 0.30 0.14 0.25 0.25 1    

DEU 

 
0.26 0.33 0.28 0.32 0.31 0.27 0.11 0.30 0.16 0.26 0.29 0.25 1   

HEN 

 
0.20 0.25 0.28 0.28 0.25 0.23 0.13 0.24 0.21 0.26 0.23 0.22 0.24 1  

VOL 

 
0.27 0.32 0.29 0.32 0.39 0.31 0.12 0.27 0.16 0.27 0.30 0.23 0.29 0.22 1 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa: DEU, Henkel Pref: HEN ,Volkswagen: VOL.  
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Table 41: Conditional Correlation Measures Matrix (Linear Correlation). 

 Linear Correlation 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 1               

SIE 

 
0.48 1              

BAY 

 
0.37 0.47 1             

BASF 

 
0.40 0.54 0.65 1            

BMW 

 
0.36 0.50 0.46 0.52 1           

CON 

 
0.32 0.42 0.37 0.43 0.47 1          

FRES 

 
0.19 0.22 0.23 0.23 0.21 0.18 1         

MUEN 

 
0.34 0.46 0.44 0.48 0.43 0.36 0.21 1        

BEIR 

 
0.36 0.47 0.45 0.48 0.43 0.36 0.21 0.93 1       

LIN 

 
0.34 0.44 0.48 0.52 0.44 0.37 0.22 0.38 0.39 1      

THY 

 
0.34 0.47 0.43 0.50 0.45 0.40 0.19 0.39 0.40 0.44 1     

RWE 

 
0.29 0.39 0.40 0.42 0.36 0.29 0.16 0.42 0.43 0.36 0.36 1    

DEU 

 
0.35 0.43 0.40 0.46 0.45 0.38 0.17 0.41 0.41 0.38 0.41 0.33 1   

HEN 

 
0.28 0.35 0.40 0.41 0.37 0.33 0.21 0.35 0.35 0.39 0.33 0.32 0.34 1  

VOL 

 
0.35 0.42 0.40 0.44 0.54 0.45 0.18 0.36 0.37 0.39 0.40 0.31 0.40 0.32 1 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa: DEU, Henkel Pref: HEN, Volkswagen: VOL.  
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Table 42: Conditional Correlation Measures Matrix (Spearman’s Correlation). 

Spearman’s Correlation 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 1               

SIE 

 
0.53 1              

BAY 

 
0.41 0.50 1             

BASF 

 
0.44 0.56 0.64 1            

BMW 

 
0.40 0.51 0.46 0.50 1           

CON 

 
0.35 0.43 0.37 0.43 0.48 1          

FRES 

 
0.21 0.22 0.23 0.23 0.21 0.18 1         

MUEN 

 
0.39 0.49 0.46 0.49 0.43 0.37 0.21 1        

BEIR 

 
0.39 0.50 0.46 0.49 0.43 0.37 0.21 0.98 1       

LIN 

 
0.36 0.44 0.47 0.50 0.42 0.36 0.21 0.38 0.38 1      

THY 

 
0.37 0.49 0.44 0.50 0.45 0.40 0.18 0.40 0.40 0.43 1     

RWE 

 
0.33 0.42 0.42 0.44 0.36 0.30 0.17 0.43 0.43 0.35 0.36 1    

DEU 

 
0.38 0.46 0.40 0.45 0.44 0.38 0.16 0.42 0.43 0.38 0.41 0.36 1   

HEN 

 
0.31 0.36 0.40 0.41 0.36 0.33 0.20 0.35 0.35 0.38 0.33 0.31 0.35 1  

VOL 

 
0.39 0.46 0.41 0.44 0.54 0.45 0.17 0.38 0.38 0.39 0.42 0.32 0.41 0.33 1 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa: DEU, Henkel Pref: HEN, Volkswagen: VOL.  
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Table 43: Conditional Correlation Measures Matrix (Kendall’s Tau). 

Kendall’s Tau 

  

SAP 

 

SIE 

 

BAY 

 

BASF 

 

BMW 

 

CON 

 

FRES 

 

MUEN 

 

BEIR 

 

LIN 

 

THY 

 

RWE 

 

DEU 

 

HEN 

 

VOL 

SAP 1               

SIE 

 
0.38 1              

BAY 

 
0.29 0.36 1             

BASF 

 
0.31 0.40 0.46 1            

BMW 

 
0.28 0.36 0.32 0.35 1           

CON 

 
0.24 0.30 0.26 0.30 0.34 1          

FRES 

 
0.14 0.15 0.16 0.16 0.14 0.12 1         

MUEN 

 
0.27 0.35 0.32 0.34 0.30 0.25 0.14 1        

BEIR 

 
0.27 0.31 0.32 0.34 0.30 0.25 0.14 0.89 1       

LIN 

 
0.25 0.35 0.33 0.35 0.29 0.25 0.14 0.27 0.27 1      

THY 

 
0.26 0.35 0.30 0.35 0.31 0.28 0.12 0.28 0.28 0.30 1     

RWE 

 
0.23 0.29 0.29 0.31 0.25 0.21 0.11 0.30 0.30 0.24 0.25 1    

DEU 

 
0.26 0.32 0.28 0.32 0.30 0.27 0.11 0.30 0.30 0.26 0.29 0.24 1   

HEN 

 
0.21 0.25 0.28 0.28 0.25 0.23 0.13 0.24 0.24 0.26 0.22 0.21 0.24 1  

VOL 

 
0.27 0.32 0.28 0.31 0.39 0.31 0.12 0.26 0.26 0.27 0.29 0.22 0.34 0.22 1 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa: DEU, Henkel Pref: HEN, Volkswagen: VOL.  
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Figure 15: Scatter Plot of Bivariate Standardized Returns. 
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Table 44: Estimation Results of the Static C-vine Copula for 5-Dimensional 

Data. 

 Bivariate 

Copula 

𝜽𝟏 𝜽𝟐 τ AIC BIC 

Tree 1 
BMW.SEI Frank  1.7739 

(0.0803) 

 

 0.1912 -671.29 -664.959 

BMW.VOL Frank  3.8739 

(0.1208) 

 

 0.3786 -1178.7 -1172.45 

BMW.THY Frank  2.0195 

(0.0827) 

 

 0.2158 -820.93 -814.606 

BMW.LIN Frank  3.3648 

(0.1179) 

 

 0.3382 -936.68 -930.354 

Tree2 
SEI.VOL/BMW Student t 0.2592 

(0.0074) 

 

8.8941 

(0.2718) 

0.1669 -5898.8 -5886.14 

SEI.THY/BMW Normal 0.1076 

 

(0.0066) 

 

 0.0686 -270.87 -264.546 

SEI.LIN/BMW Normal 0.1088 

(0.0066) 

 

 0.0694 -277.34 -271.014 

Tree3 
VOL.THY/BMW.SEI Frank  0.6503 

(0.0728) 

 

 0.0719 -82.855 -76.5218 

VOL.LIN/BMW.SEI Student t 0.2606 

(0.0155) 

 

9.6682 

(1.6486) 

0.1678 -303.56 -290.900 

Tree4 
THY.LIN/BMW.SEI.VOL Frank  0.4144 

(0.0722) 

 

 0.0459 -33.122 -26.7887 

Note:Siemens:SIE,BMW:BMW,Linde:LIN,Thyssenkrup:THY,Volkswagen:VOL. Standard errors are presented in 

parenthesis. All models are ranked on the basis of smallest AIC. AIC is Akaike information criterion, and BIC is 

Bayesian information criterion. τ is Kendell’s Tau measure of dependence. 
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Table 45: Estimation Results of the Static D-vine Copula for 5- Dimensional 

Data. 

 Bivariate 

Copula 

𝜽𝟏 𝜽𝟐 τ AIC BIC 

Tree 1 
BMW.SEI 

 
Normal 0.1032 

(0.0066) 

 

 0.0658 -237.66 -231.33 

SEI.VOL Normal 0.0815 

(0.0076) 

 

 0.0519 -111.04 -104.71 

VOL.THY Student t 0.2910 

(0.0170) 

 

9.4489 

(1.6754) 

0.1880 -269.22 -256.55 

THY.LIN Frank  0.6061 

(0.0707) 

 

 0.0671 -71.749 -65.416 

Tree2 
BMW.VOL/SEI Student t 0.4616 

(0.0124) 

7.5897 

(0.9899) 

 

0.3054 -1005.3 992.732 

SEI.THY/VOL Student t 0.2592 

(0.0074) 

 

8.8941 

(0.2718) 

0.1669 -5898.8 -5886.14 

VOL.LIN/THY Student t 0.4833 

(0.0145) 

 

6.1854 

(0.7919) 

0.3211 -697.60 -684.94 

Tree3 
BMW.THY/SEI.VOL Frank  1.7739 

(0.0702) 

 

 0.1912 -

671.292 

-664.959 

SEI.LIN/VOL.THY Clayton  0.1820 

(0.0065) 

 

 0.1165 -

747.301 

-740.967 

Tree4 
BMW.LIN/SEI.VOL.THY Frank  2.0195 

(0.0728) 

 

 0.2158 -820.93 -814.606 

Note:Siemens:SIE,BMW:BMW,Linde:LIN,Thyssenkrup:THY,Volkswagen:VOL. Standard errors are presented 

in parenthesis. All models are ranked on the basis of smallest AIC. AIC is Akaike information criterion and BIC 

is Bayesian information criterion. τ is Kendell’s Tau measure of dependence. 
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Table 46: Estimation Results of the Static C-vine Copula for 7- 

Dimensional Data. 

 Bivariate 

Copula 
𝜃1 𝜃2 τ AIC BIC 

Tree 1 
 

SAP.SIE Student t 0.0207 

(0.0973) 
 

9.9518 0.0132 -184.67 -171.55 

SAP.BAY Frank 0.5389 

(0.0117) 
 

 0.0597 -349.86 -343.30 

SAP.BASF Gumbel 1.1214 

(0.0015) 
 

 0.0225 -354.77 -348.21 

SAP.BMW Student t 0.1702 

(0.0112) 
 

5.3895 0.0775 -536.58 -523.46 

SAP.CON BB1 0.0804 

(0.2875) 
 

1.7729 0.0890 -535.30 -523.46 

SAP.FRES Student 0.3639 

(0.0276) 
 

9.0369 0.0234 -125.54 -118.98 

Tree 2 

 
SIE.BAY/SAP Clayton 0.0354 

(00027) 
 

 0.1089 -763.75 -750.63 

SIE.BASF/SAP Student 0.1393 

(0.3745) 
 

8.7661 0.1672 -1044.0 -1037.5 

SIE.BMW/SAP Frank 0.3510 

(0.1081) 
 

 0.1186 -841.63 -835.07 

SIE.CON/SAP Student t 0.4163 

(0.0488) 
 

7.8961 0.0291 -199.11 -192.55 

SIE.FRES/SAP BB1 0.5405 

(0.3221) 
 

1.1430 0.1981 -987.06 -973.94 

Tree 3 

 
BAY.BASF/SAP.SIE Gaussian 0.0367 

(0.4991) 
 

 0.2283 -268.32 -255.20 

BAY.BMW/SAP.SIE Frank 1.0804 

(0.0846) 
 

 0.1494 -1081.8 -1068.6 
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BAY.CON/SAP.SIE Student t 0.2326 

(0.4160) 
 

6.3553 0.1747 -674.2 -661.14 

BAY.FRES/SAP.SIE Student t 0.4497 

(0.0042) 
 

6.2048 0.0277 -91.127 -84.567 

Tree 4 

 
BASF.BMW/SAP.SIE.BAY Frank 0.2620 

(0.3485) 
 

 0.2371 341.08 354.20 

 

BASF.CON/SAP.SIE.BAY 

 

 

Student t 0.2710 

(0.0047) 
8.2445 0.2733 423.53 436.65 

BASF.FRES/SAP.SIE.BAY Student t 0.4437 

(0.2087) 
 

 0.2969 605.66 618.78 

Tree 5 

 
BMW.CON/ 

SAP.SIE.BAY.BASF 
Gumbel 1.0285 

(0.0799) 
 

 0.2927 -670.85 -657.73 

BMW.FRES/ 

SAP.SIE.BAY.BASF 
Student 0.4049 

(0.3579) 
4.2640 0.2654 -407.01 -393.89 

Tree 6 

 
CON.FRES/ 

SAP.SIE.BAY.BASF.BMW 
Frank 0.8698 

(0.0208) 
 

 0.8906 
 

6799.0 6196.1 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES. Standard 

errors are presented in parenthesis. All models are ranked on the basis of smallest AIC. AIC is Akaike information 

criterion and BIC is Bayesian information criterion. τ is Kendell’s Tau measure of dependence 
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Table 47: Estimation Results of the Static D-vine Copula for 7-Dimensional 

Data. 

 Bivariate 

Copula 
 

𝜽𝟏 𝜽𝟐 τ AIC BIC 

Tree 1 
 

SAP.SIE Student t 0.5571 

(0.009) 
 

6.3451 

(0.5965) 
0.3762 -1854.6 -1841.5 

SIE.BAY Student t 0.5404 

(0.0103) 
 

4.7926 

(0.3763) 
0.3634 -1806.0 -1792.9 

BAY.BASF Student t 0.4409 

(0.0117) 
 

7.9497 

(0.8854) 

0.2907 -1052.2 -1039.1 

BASF.BMW Student t 0.46571 

(0.0112) 
 

7.7538 

(0.8543) 
0.3084 -1198.9 -1185.8 

BMW.CON BB1 0.4690 

(0.0317) 
 

1.2461 

(0.0195) 
0.3499 -1813.9 -1800.8 

CON.FRES BB1  0.5194 

(0.0332) 
 

1.1814 

(0.0183) 
0.3280 -1596.8 -1583.7 

Tree2 

 
SAP.BAY/SIE BB8 2.1306 

(0.5190) 
 

0.6214 

(0.1462) 
0.1372 -220.73 -207.62 

SIE.BASF/BAY Frank 2.9614 

(0.0934) 
 

 0.3038 -1000.6 -994.04 

BAY.BMW/BASF Student t 0.5863 

(0.0092) 
 

5.6288 

(0.1437) 

0.3989 -2313.6 -2300.5 

BASF.CON/BMW BB8 3.1031 

(0.9745) 
 

0.4885 

(0.1437) 
0.1687 -305.71 -292.59 

BMW.FRES/CON BB8 3.1085 

(0.1077) 
 

0.4902 

(0.1634) 
0.1699 -341.58 -328.46 

Tree3 
SAP.BASF/SIE.BAY student t 0.9837 

(0.0004) 
 

6.1828 

(0.4748) 
0.8852 -1802.4 -18011.5 

SIE.BMW/BAY.BASF student t 0.2943 

(0.0130) 
 

10.5573 

(0.4780) 
0.1901 -501.31 -488.19 
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BAY.CON/BASF.BMW BB8 1.6939 

(0.3019) 
 

0.6939 

(0.1328) 

0.1059 -139.20 -126.08 

BASF.FRES/BMW.CON Frank 0.7548 

(0.0877) 
 

 0.0833 -72.019 -65.459 

Tree4 
 

SAP.BMW/SIE.BAY.BASF Frank 0.3944 

(0.0833) 
 

 0.0437 -20.439 -13.879 

SIE.CON/BAY.BASF.BMW Student t 0.2252 

(0.0136) 
 

11.9838 

(0.0136) 
0.1446 -300.22 -287.10 

BAY.FRES/BASF.BMW.CON Frank 0.3729 

(0.0839) 
 

 0.0413 -17.738 -11.178 

Tree 5 
 

SAP.CON/SIE.BAY.BASF.BMW Clayton 0.0496 

(0.0152) 
 

 0.0242 -9.8432 -3.2835 

SIE.FRES/BAY.BASF.BMW.CON Student t 0.1158 

(0.0138) 
 

2.6448 

(0.6380) 
0.0739 -84.689 -71.570 

Tree 6 
 

SAP.FRES/SIE.BAY.BASF.BMW. 

CON 
Gaussian 0.0202 

(0.0133) 
 

 0.0129 -2.974 -6.2622 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES. Standard 

errors are presented in parenthesis. All models are ranked on the basis of smallest AIC. AIC is Akaike information 

criterion and BIC is Bayesian information criterion. τ is Kendell’s Tau measure of dependence. 
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Table 48: C-Vine Copula Structure for 15-Dimensional Data. 

 

 SAP SIE BAY BASF BMW CON FRES MUEN MEIR LIN THY RWE DEU HEN VOL 

SAP 14               

SIE 15 13              

BAY 1 15 12             

BASF 2 1 15 11            

BMW 3 2 1 15 10           

CON 4 3 2 1 15 9          

FRES 5 4 3 2 1 15 8         

MUEN 6 5 4 3 2 1 15 7        

MEIR 7 6 5 4 3 2 1 15 6       

LIN 8 7 6 5 4 3 2 1 15 5      

THY 9 8 7 6 5 4 3 2 1 15 4     

RWE 10 9 8 7 6 5 4 3 2 1 15 3    

DEU 11 10 9 8 7 6 5 4 3 2 1 15 2   

HEN 12 11 10 9 8 7 6 5 4 3 2 1 15 1  

VOL 13 12 11 10 9 8 7 6 5 4 3 2 1 15 1 

 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa:DEU,Henkel Pref:HEN,Volkswagen: VOL. 
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Table 49: C-Vine Copula Parameter Estimation and Standard Error for 15-Dimensional Data. 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEW HEN VOL 

SAP 0               

SIE 0.0066 

(0.0089) 

0              

BAY 1.0016 

(0.0165) 

1.0082 

(0.0147) 

0             

BASF 0.0061 

(0.0112) 

0.01712 

(0.0252) 

0.0325 

(0.0251) 

0            

BMW 0.3586 

(0.0196) 

0.1361 

(0.0848) 

0.01896 

(0.4299) 

0.2246 

(0.0116) 

0           

CON 1.0094 

(0.0904) 

0.01657 

(0.0136) 

1.0217 

(0.0114) 

0.0905 

(0.0131) 

0.0091 

(0.0140) 

0          

FRES 0.6331 

(0.0208) 

0.2034 

(0.0963) 

0.0046 

(0.0895) 

0.0130 

(0.0131) 

0.3954 

(0.0168) 

0.01415 

(0.0840) 

0         

MUEN 1.0201 

(0.0145) 

0.0062 

(0.0086) 

1.0075 

(0.0118) 

0.1018 

(0.0111) 

0.0629 

(0.0124) 

0.0259 

(0.0134) 

0.6885 

(0.0008) 

0        

BEIR 0.0508 

(0.0203) 

1.0545 

(0.0842) 

0.0893 

(0.0879) 

0.0851 

(0.0094) 

0.0123 

(0.0130) 

0.0919 

(0.0135) 

0.1527 

(0.0872) 

0.2219 

(0.0145) 

0       

LIN 0.1056 

(0.0198) 

0.7208 

(0.0138) 

0.10397 

(0.0854) 

0.1605 

(0.0847) 

0.0067 

(0.0138) 

0.4778 

(0.0833) 

0.0937 

(0.0910) 

0.0944 

(0.0131) 

0.0291 

(0.082) 

0      
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THY 0.1244 

(0.0856) 

0.0348 

(0.0143) 

1.0489 

(0.0152) 

0.2902 

(0.0875) 

0.0997 

(0.0135) 

0.0136 

(0.0130) 

0.1799 

(0.0140) 

4.0183 

(0.0141) 

0.0871 

(0.0142) 

1.0069 

(0.0142) 

0     

RWE 0.2408 

(0.0185) 

0.9973 

(0.0136) 

1.3180 

(0.0139) 

1.5432 

(0.0071) 

0.8821 

(0.0135) 

1.2250 

(0.0135) 

1.2453 

(0.0145) 

0.4632 

(0.0139) 

0.6704 

(0.0129) 

0.5088 

(0.0136) 

0.2469 

(0.0162) 

0    

DEU 0.4471 

(0.0144) 

0.4618 

(0.0861) 

0.1074 

(0.0139) 

0.2716 

(0.0883) 

0.0859 

(0.0135) 

1.1535 

(0.0911) 

0.1275 

(0.0875) 

0.3119 

(0.0852) 

0.1684 

(0.0849) 

0.1011 

(0.0867) 

0.1099 

(0.0135) 

1.0788 

(0.0137) 

0   

HEN 0.2041 

(0.0862) 

0.1985 

(0.0898) 

0.2161 

(0.0878) 

0.1718 

(0.0853) 

0.1394 

(0.0839) 

1.0657 

(0.0837) 

1.4553 

(0.0899) 

1.6197 

(0.0848) 

0.9918 

(0.0908) 

1.2792 

(0.0865) 

0.1511 

(0.0847) 

1.3400 

(0.0875) 

1.5159 

(0.0142) 

0  

VOL 2.7334 

(0.0138) 

1.3172 

(0.0142) 

1.5643 

(0.0140) 

1.5723 

(0.0136) 

1.0601 

(0.0141) 

0.5263 

(0.0140) 

0.4769 

(0.0143) 

0.5974 

(0.0135) 

0.5301 

(0.0141) 

0.5282 

(0.0139) 

0.4964 

(0.0135) 

0.4708 

(0.0142) 

0.4308 

(0.0135) 

0.5310 

(0.0005) 

0 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa:DEU,Henkel Pref:HEN,Volkswagen: VOL 
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Table 50: C-vine Copula Second Parameter Estimation and Standard Error foe 15-Dimensional Data. 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

 

SAP 

 

 

0 

              

SIE 

 

0.000 0              

BAY 

 

0.000 0.000 0             

BASF 9.9899 

(0.0021) 

0.0000 0.0000 0            

BMW 0.0000 0.0000 0.0000 1.8790 

(0.0740) 

0           

CON 0.0000 0.0000 0.0000 0.0000 2.4326 

(0.0010) 

0          

FRES 0.0000 0.0000 0.0000 2.9803 

(0.2140) 

0.0000 0.0000 0         

MUEN 0.0000 0.0000 0.0000 1.6933 

(0.0014) 

5.8733 

(0.0782) 

0.3508 

(0.0001) 

0.0000 0        

 

BEIR 

 

0.0000 

 

0.0000 

 

0.0000 

 

1.9991 

 

3.5790 

 

0.0000 

 

8.5059 

 

0.0000 

 

0 
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(0.0000) (0.0127) 

LIN 0.0000 3.5183 

(0.0063) 

0.0000 0.0000 2.6601 

(0.0049) 

0.0000 0.0000 1.5684 

(0.0041) 

0.0000 0      

THY 0.0000 3.6760 

(0.0253) 

0.0000 0.0000 5.0058 

(0.0004) 

0.0000 6.2863 

(0.0007) 

5.3690 

(0.0210) 

3.4733 

(0.0032) 

0.0000 0     

RWE 0.0000 1.6923 

(0.0031) 

0.0000 0.0000 4.8128 

(0.0154) 

7.669 

(0.0004) 

4.6182 

(0.0823) 

2.699 

(0.0023) 

5.9754 

(0.0816) 

7.0984 

(0.004) 

11.7225 

(0.5061) 

0    

DEU 0.0000 7.1966 

(0.3140) 

0.0000 2.8043 

(0.2140) 

0.0000 10.7440 

(0.0579) 

0.0000 0.0000 0.0000 0.0000 0.0000 9.7657 

(0.1240) 

0   

HEN 10.0885 

(0.5612) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0  

VOL 8.5986 

(0.0418) 

5.4200 

(0.0112) 

5.2647 

(0.4617) 

10.2816 

(0.1840) 

3.8579 

(0.0026) 

15.5995 

(0.9463) 

15.0892 

(0.5473) 

6.6730 

(0.0247) 

4.6895 

(0.0631) 

5.5414 

(0.0029) 

11.539 

(0.4321) 

6.7186 

(0.0056) 

7.0284 

(0.0293) 

6.459 

(0.0001) 

 

0 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa :DEU, Henkel Pref: HEN, Volkswagen: VOL. 
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Table 51: C-vine Copula Kendall’s Tau for 15- Dimensional Data. 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 0               

SIE 0.00422 0              

BAY 0.0016 0.0082 0             

BASF 0.0258 0.0030 0.0084 0            

BMW 0.0160 0.0397 0.0151 0.0093 0           

CON 0.0249 0.0093 0.0105 0.0212 0.0577 0          

FRES 0.0045 0.0700 0.0226 0.0029 0.0064 0.0438 0         

MUEN 0.0070 0.0197 0.0040 0.0075 0.0649 0.0401 0.0127 0        

BEIR 0.0761 0.0056 0.0516 0.0569 0.0542 0.0061 0.0586 0.0169 0       

LIN 0.0246 0.0673 0.0796 0.0115 0.1026 0.0033 0.0529 0.0529 0.0602 0      

THY 0.0143 0.0794 0.0221 0.0466 0.1874 0.0636 0.0067 0.1151 0.8448 0.0555 0     

RWE 0.1107 0.1548 0.9538 0.1439 0.1675 0.0972 0.1341 0.1362 0.3066 0.4678 0.3398 0    

DEU 0.1588 0.2951 0.3056 0.0685 0.0301 0.1265 0.0814 0.0346 0.1077 0.0645 0.0701 0.1184 0   

HEN 0.1308 0.1272 0.1387 0.1099 0.0890 0.1170 0.1584 0.1754 0.1091 0.1398 0.0965 0.1462 0.1647 0  

VOL 0.2835 0.1438 0.1697 0.1705 0.3528 0.3165 0.4076 0.3557 0.3542 0.3307 0.1164 0.3120 0.2835 0.0061 0 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa :DEU, Henkel Pref: HEN, Volkswagen: VOL. 
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Table 52: C-Vine Copula Family Selection for 15-Dimensional Data. 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 0               

SIE 1 0              

BAY 4 4 0             

BASF 2 3 3 0            

BMW 3 5 5 2 0           

CON 5 4 1 4 2 0          

FRES 3 5 5 2 3 5 0         

MUEN 3 4 1 4 2 2 2 0        

BEIR 3 5 5 4 2 2 5 2 0       

LIN 3 2 5 5 2 5 5 2 5 0      

THY 5 2 3 5 2 1 2 2 2 5 0     

RWE 3 2 1 4 2 2 2 2 2 2 2 0    

DEU 3 2 5 2 5 2 5 5 5 5 5 2 0   

HEN 2 5 5 5 5 5 5 5 5 5 5 5 5 0  

VOL 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa:DEU,Henkel Pref:HEN,Volkswagen: VOL 
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Table 53: D-Vine Copula Structure for 15-Dimensional Data. 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 1               

SIE 15 2              

BAY 2 15 3             

BASF 3 3 15 4            

BMW 4 4 4 15 5           

CON 5 5 5 5 15 6          

FRES 6 6 6 6 6 15 7         

MUEN 7 7 7 7 7 7 15 8        

BEIR 8 8 8 8 8 8 8 15 9       

LIN 9 9 9 9 9 9 9 9 15 10      

THY 10 10 10 10 10 10 10 10 10 15 11     

RWE 11 11 11 11 11 11 11 11 11 11 15 12    

DEU 12 12 12 12 12 12 12 12 12 12 12 15 13   

HEN 13 13 13 13 13 13 13 13 13 13 13 13 15 14  

VOL 14 14 14 14 14 14 14 14 14 14 14 14 14 15 1 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa:DEU,Henkel Pref:HEN,Volkswagen: VOL  
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Table 54: D-Vine Copula Parameter Estimation and Standard Errors for 15-Dimensional Data. 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

 

SAP 

 

0 

              

SIE 0.5571 

(0.0097) 

0              

BAY 0.5404 

(0.0103) 

0.4409 

(0.0117) 

0             

BASF 0.4656 

(0.0112) 

0.4690 

(0.0317) 

0.5194 

(0.0332) 

0            

BMW 0.2602 

(0.0196) 

0.2227 

(0.0138) 

4.8545 

(0.4299) 

0.3946 

(0.0116) 

0           

CON 0.4610 

(0.0113) 

0.3840 

(0.0121) 

0.3707 

(0.0123) 

0.3661 

(0.0123) 

2.1290 

(0.5179) 

0          

FRES 2.9614 

(0.0934) 

0.5863 

(0.0092) 

3.0991 

(0.9706) 

3.1084 

(1.1075) 

0.1385 

(0.0141) 

0.3462 

(0.0123) 

0         

MUEN 1.0092 

(0.0063) 

0.0488 

(0.0145) 

1.8550 

(0.0860) 

1.5168 

(0.0863) 

0.3454 

(0.0125) 

0.2344 

(0.0134) 

0.9837 

(0.0003) 

0        

BEIR 0.2943 

(0.0130) 

1.6945 

(0.3023) 

0.7553 

(0.0876) 

1.8452 

(0.6533) 

0.2996 

(0.0128) 

0.0358 

(0.0131) 

0.1521 

(0.0142) 

0.0126 

(0.0143) 

0       

LIN 0.2824 0.2033 0.1704 0.3943 0.2252 0.3728 0.6283 1.9980 0.2033 0      
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(0.0127) (0.0137) (0.0138) (0.0833) (0.0136) (0.0839) (0.0904) (0.0869) (0.082) 

THY 0.2478 

(0.0137) 

0.4453 

(0.0854) 

0.3234 

(0.0858) 

1.5258 

(0.0860) 

1.4129 

(0.0868) 

0.0495 

(0.0152) 

0.1158 

(0.0138) 

0.5530 

(0.0863) 

1.0618 

(0.0886) 

0.0569 

(0.0132) 

0     

RWE 0.2310 

(0.0134) 

0.2286 

(0.0135) 

0.0396 

(0.0148) 

0.0373 

(0.0137) 

1.4378 

(0.1708) 

-0.0203 

(0.0133) 

1.0787 

(0.0551) 

0.1449 

(0.0140) 

0.0325 

(0.0126) 

0.2870 

(0.0129) 

0.1923 

(0.0134) 

0    

DEU 0.4393 

(0.0851) 

0.0351 

(0.0148) 

0.0151 

(0.0146) 

-0.0316 

(0.0843) 

1.1571 

(0.0865) 

0.0400 

(0.0144) 

0.7404 

(0.0909) 

0.2152 

(0.0137) 

0.0930 

(0.0141) 

0.1572 

(0.0136) 

0.0927 

(0.0138) 

0.0141 

(0.0143) 

0   

HEN 0.0394 

(0.0131) 

0.1533 

(0.0141) 

0.5842 

(0.0898) 

1.7922 

(0.4131) 

0.1398 

(0.0139) 

0.10834 

(0.0140) 

-0.1379 

(0.0812) 

0.0818 

(0.0144) 

1.1072 

(0.0468) 

0.0651 

(0.0149) 

0.1128 

(0.0141) 

0.0711 

(0.0144) 

-0.0880 

(0.0849) 

0  

VOL 2.0222 

(0.6504) 

0.7003 

(0.0868) 

0.6014 

(0.0894) 

0.0974 

(0.0143) 

0.0126 

(0.0141) 

0.5019 

(0.0875) 

1.0086 

(0.0058) 

0.2154 

(0.0892) 

0.0270 

(0.01393) 

0.0862 

(0.0141) 

1.3109 

(0.1674) 

0.1235 

(0.0836) 

0.1317 

(0.0871) 

1.0040 

(0.0039) 

0 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa:DEU,Henkel Pref:HEN,Volkswagen: VOL. 
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Table 55: D-Vine Copula Second Parameter Estimation and Standard Errors for 15-Dimensional Data. 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 0               

SIE 6.3426 

(0.5965) 

0              

BAY 4.7927 

(0.3763) 

7.9518 

(0.8854) 

0             

BASF 7.7549 

(0.8543) 

1.2461 

(0.0195) 

1.1814 

(0.0183) 

0 

 

           

BMW 0.000 11.5553 

(0.1483) 

0.000 12.1587 

(0.8773) 

0           

CON 6.9099 

(0.7610) 

8.9819 

(0.2420) 

9.1480 

(0.2658) 

10.493 

(0 
.7114) 

0.6218 

(0.1462) 

0          

FRES 0.0000 5.6279 

(0.5316) 

0.4892 

(0.1437) 

0.4901 

(0.1634) 

20.699 

(0.7231) 

8.8965 

(0 
.256) 

0         

MUEN 0.0000 27.0312 

(0.3825) 

0.0000 0.0000 9.9359 

(0.4565) 

19.896 

(0 
.591) 

6.1832 

(0.4748) 

0        

BEIR 10.556 

(0.4780) 

0.6937 

(0.1328) 

0.0000 

 

0.5609 

(0.0043) 

11.336 

(0.2066) 

0.0000 29.768 

(0.2440) 

29.230 

(0.2191) 

0       
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LIN 15.935 

(0.0927) 

15.130 

(0.1571) 

21.566 

(0.2333) 

0.0000 0.0000 0.0000 0.0000 10.001 

(0.0094) 

0.0000 0      

THY 0.0000 0.0000 0.0000 0.0000 21.648 

(0.5000) 

0.0000 0.0000 0.0000 20.379 

(0.638) 

 0     

RWE 12.2814 

(0.7613) 

22.487 

(0.1721) 

0.0000 0.7517 

(0.7762) 

0.0000 0.9042 

(0.108 

16.6112 

(0.1158) 

0.0000 20.612 

(0.698) 

22.516 

(0.613) 

0.0000 0    

DEU 0.0000 21.2256 

(0.0698) 

0.0000 0.0000 0.0000 0.0000 13.3576 

(0.4489) 

23.0898 

(0.4670) 

20.824 

(0.900) 

0.0000 17.096 

(0.622) 

0.0000 0   

HEN 19.997 

(0.8384) 

0.0000 0.6508 

(0.0640) 

17.8632 

(0.1650) 

20.891 

(0.3322) 

0.0000 23.552 

(0.5758) 

0.9300 

(0.9573) 

18.4992 

(0.060) 

18.1072 

(0.005) 

17.7037 

(0.283) 

0.0000 0.5779 

(0.36) 

0  

VOL 0.0000 0.0000 19.9614 

(0.2021) 

28.970 

(0.3888) 

0.0000 0.0000 0.0000 0.0000 22.872 

(0.101) 

0.7760 

(0.771) 

0.0000 0.0000 0.0000  0 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa:DEU,Henkel Pref:HEN,Volkswagen: VOL 
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Table 56: D-Vine Copula Kendall’s Tau for 15-Dimensional Data. 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 0               

SIE 0.3762 0              

BAY 0.3634 0.2907 0             

BASF 0.30839 0.3499 0.3280 0            

BMW 0.1151 0.1430 0.8906 0.2582 0           

CON 0.3050 0.2509 0.2417 0.2386 0.1372 0          

FRES 0.3038 0.3989 0.1688 0.1699 0.0884 0.2251 0         

MUEN 0.0091 0.0311 0.1994 0.1648 0.2245 0.1506 0.8852 0        

BEIR 0.1901 0.1059 0.0834 0.0877 0.1937 0.0228 0.0972 0.0080 0       

LIN 0.1823 0.1303 0.1090 0.0437 0.1446 0.0413 0.0695 0.2137 0.0225 0      

THY 0.1594 0.0493 0.0358 0.1657 0.1539 0.0241 0.0739 0.0612 0.1166 0.0362 0     

RWE 0.1484 0.1468 0.0252 0.0183 0.0806 0.0129 0.0252 0.0926 0.0160 0.1853 0.1232 0    

DEU 0.0487 0.0172 0.0096 0.0035 0.1268 0.0196 0.0818 0.1381 0.0593 0.1005 0.0591 0.0090 0   

HEN 0.0251 0.0980 0.0646 0.1064 0.0893 0.0691 0.0153 0.0521 0.0380 0.0415 0.0720 0.0453 0.0097 0  

VOL 0.1105 0.0774 0.0665 0.0621 0.0080 0.0556 0.0085 0.0239 0.0133 0.0549 0.0623 0.0137 0.0146 0.0040 0 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa:DEU,Henkel Pref:HEN,Volkswagen: VOL. 
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Table 57: D-Vine Copula Family Selection for 15-Dimensional Data. 

 SAP SIE BAY BASF BMW CON FRES MUEN BEIR LIN THY RWE DEU HEN VOL 

SAP 0               

SIE 2 0              

BAY 2 2 0             

BASF 2 7 7 0            

BMW 3 2 5 2 0           

CON 2 2 2 2 10 0          

FRES 5 2 10 10 2 2 0         

MUEN 4 2 5 5 2 2 2 0        

BEIR 2 10 5 10 2 1 2 2 0       

LIN 2 2 2 5 2 5 5 5 5 0      

THY 2 5 5 5 5 3 2 5 5 1 0     

RWE 2 2 2 3 10 1 10 2 3 2 2 0    

DEU 5 3 2, 5 5 3 5 2 2 2 1 2 0   

HEN 1 2 5 10 2 2 5 2 10 2 2 2 5 0  

VOL 10 5 5 2 2 5 4 5 3 2 10 5 5 4 0 

Note:SAP:SAP,Siemens:SIE,Bayer:BAY,BASF:BASF,BMW:BMW,Continental:CON,Fresenius:FRES,MuenchenerRuck:MUEN,Beiersdorf:BEIR,Linde:LIN,Thyssenkrup:TH

Y,RWE:RWE,Deutsche Lufthansa:DEU,Henkel Pref:HEN,Volkswagen: VOL.
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Table 58: Back-testing Value at Risk (VaR) and Expected Shortfall (ES) for 

Pair Copulas for 5-Dimensional Data. 

Model VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 
D-Vine Normal  0.2802 0.7044 1.4164 2.8498 0.27858 

 
0.28018 0.2813 0.2828 

D-Vine t Copula 0.2794 0.7039 1.4149 2.8488 0.2762 
(3) 

0.2788 
(5) 

0.2805 
(4) 

0.2822 

D-Vine Clayton  0.2791 0.7024 1.4129 2.8528 0.2766 
(4) 

0.2787 
(4) 

0.2802 
(3) 

0.2821 

D-Vine Gumbel  0.2801 0.7057 1.4179 2.8538 0.2785 0.2800 0.2815 0.2829 
D-Vine Frank   0.2795 0.7032 1.4119 2.8438 0.2775 

 
0.2793 0.2805 0.2819 

(4) 
D-Vine Joe  0.20448 0.7077 1.4204 2.8548 0.2805 

 
0.2816 0.2825 0.2836 

C-Vine Normal 

Copula 

0.27908 0.7012 1.4119 2.8458 0.2767 
(5) 

0.2785 
(3) 

0.2800 
(2) 

0.2818 
(3) 

C-Vine t Copula 0.2795 0.7039 1.4129 2.8468 0.2779 
 

0.2795 0.2807 0.2822 

C-Vine Clayton  0.2782 0.7022 1.4119 2.8488 0.2741 
(1) 

0.2774 
(1) 

0.2795 
(1) 

0.2817 
(1) 

C-Vine Gumbel  0.27978 0.7022 1.4134 2.8448 0.2752 
(2) 

0.2784 
(2) 

0.2800 
(2) 

0.2818 
(2) 

C-Vine Frank   0.27918 0.7039 1.4139 2.8408 0.2773 
 

0.2792 0.2807 0.2821 

C-Vine Joe   0.2805 0.7074 1.4189 2.8538 0.2791 
 

0.2807 0.2820 0.2833 

DCC-norm 13.178 6.475 0.8561 0.5708 0.3736 
 

0.3554 0.3335 0.3077 

DCC-t 26.107 14.947 7.164 0.0010 0.7402 
 

0.6049 0.5086 0.4147 

Note: All models are ranked based on the minimum of MAE for ES on 1%,2.5%,5% and 10% significance level. 

The best models are highlighted by bold. 

  



172 
 

Table 59: Back testing value at Risk(VaR) and Expected Shortfall(ES) for  

Pair Copulas for 7-Dimensional Data. 

Models 

 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

D-Vine t Copula 2.1685 1.5311 1.1784 0.7293 0.0385 0.0235 0.0192 0.0149 

D-Vine Clayton  2.2279 1.7261 1.1974 0.7023 0.0392 0.0313 0.0252 0.0192 

D-Vine Gumbel  1.5844 1.2874 0.9694 0.6753 0.0267 0.0218 0.0183 0.0147 

(5) 

D-Vine Frank   1.0003 0.8194 0.6464 0.4593 0.0311 0.0251 0.0211 0.0173 

D-Vine Joe  2.3071 1.6286 1.1309 0.7203 0.0188 

(1) 

0.0163 

(1) 

0.0140 

(1) 

0.0115 

(1) 

D-Vine BB1 1.6339 1.1801 1.0169 0.6843 0.0302 0.0256 0.0212 0.0168 

D-vine BB6 2.1982 1.6384 1.1499 0.6483 0.0258 

(5) 

0.0209 

(5) 

0.0178 

(4) 

0.0146 

(5) 

D-vine BB7 1.7329 1.4336 1.0264 0.7383 0.0373 0.0293 0.0240 0.0187 

D-Vine BB8 2.0299 1.7066 1.3399 0.9723 0.0228 0.0206 

(4) 

0.0180 

(5) 

0.0152 

C-Vine t 2.7130 1.9114 1.4729 0.8913 0.0309 0.0262 0.0217 0.0169 

C-Vine Clayton  2.8813 2.1844 1.5869 0.9363 0.0383 0.0303 0.0249 0.0194 

C-Vine Gumbel  2.0200 1.6286 1.3209 0.9093 0.0255 

(4) 

0.0212 0.0182 0.0152 

C-Vine Frank   2.2180 1.7554 1.3209 0.9813 0.0272 0.0230 0.0194 0.0160 

C-Vine Joe  1.6141 1.2679 1.0169 0.6933 0.0194 

(2) 

0.0165 

(2) 

0.0142 

(2) 

0.0116 

(2) 

C-Vine BB1 2.4061 1.8431 1.4064 0.9093 0.0290 0.0241 0.0204 0.0163 

C-Vine BB6 1.7527 1.4726 1.1404 0.7923 0.0243 

(3) 

0.0194 

(3) 

0.0165 

(3) 

0.0134 

(3) 

C-Vine BB7 2.7823 1.9601 1.3684 0.9183 0.0350 0.0277 0.0223 0.0171 

C-Vine BB8 2.3467 1.7359 1.3969 1.0173 0.0290 0.0237 0.0200 0.0166 

DCC-norm 5.8513 4.8071 3.8859 2.8083 0.5893 0.5755 0.5637 0.5501 

DCC.t 8.3362 6.3769 4.9974 3.6453 0.4368 0.4133 0.3972 0.3822 

Note: All models are ranked based on the minimum of MAE for ES on 1%,2.5%,5% and 10% significance level. 

The best models are highlighted by bold. 
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Table 60:  Back-testing Term Structure of Risk for 7-Dimensional Data. 

Model 

 

5- Day VaR-Loss Function 10 -Days VaR-Loss Function 

 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

 

Monte-

Carlo(Static) 

 

4.7029 3.1789 2.1569 1.1883 9.7618 6.5816 4.6079 2.6013 

Monte-

Carlo(DCC) 

9.2965 7.5371 6.0804 4.3923 17.6323 14.1086 11.5619 8.1993 

 5-Day ES-MAE 

 

10-Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 

 
Monte-

Carlo(Static) 

 

0.0588 0.0489 0.0377 0.0274 0.1362 0.1026 0.0788 0.0575 

Monte-

Carlo(DCC) 

 

0.1098 0.0949 0.0826 0.0691 0.2042 0.1771 0.1542 0.1292 

Note: All models are ranked based on the minimum of MAE for ES on 1%,2.5%,5% and 10% significance level. 

The best models are highlighted by bold. 
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Table 61: Back- testing Value at Risk(VaR) and Expected Shortfall(ES) for 

Pair Copulas for 15-Dimensional. 

Model 

 

VaR ES 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

D-Vine Student t  1.9747 1.3403 0.9925 0.5532 0.0245 0.0196 0.0158 0.0121 

D-Vine Clayton  2.0341 1.5353 1.0115 0.5262 0.0293 0.0226 0.0178 0.0127 

D-Vine Gumbel  1.3906 1.0966 0.7835 0.4992 0.0166 

(4) 

0.0143 

(4) 

0.0119 

(4) 

0.0093 

(3) 

D-Vine Frank   1.5886 1.2136 0.9260 0.5982 0.0177 

(5) 

0.0155 

(5) 

0.0133 0.0107 

D-Vine Joe  0.8065 0.6286 0.4605 0.2832 0.0101 

(1) 

0.0084 

(1) 

0.0070 

(1) 

0.0054 

(1) 

D-Vine BB1 2.1133 1.4378 0.9450 0.5442 0.0260 0.0210 0.0165 0.0121 

D-vine BB6 1.4401 0.9893 0.8310 0.5082 0.0163 

(3) 

0.0138 

(3) 

0.0116 

(3) 

0.0094 

(4) 

D-vine BB7 2.0044 1.4476 0.9640 0.4722 0.0248 0.0203 0.0161 0.0119 

D-Vine BB8 1.5391 1.2428 0.8405 0.5622 0.0182 0.0156 0.0131 

(5) 

0.0104 

C-Vine t 1.7866 1.3306 0.9450 0.5532 0.226 0.0183 0.0150 0.0114 

C-Vine BB1 1.9945 1.3891 0.9450 0.5622 0.0245 0.0199 0.0160 0.0121 

C-Vine BB6 1.2817 0.9893 0.7360 0.4632 0.0152 

(2) 

0.0128 

(2) 

0.0107 

(2) 

0.0084 

(2) 

C-Vine BB7 2.0539 1.5061 1.0495 0.6522 0.0256 0.0210 0.0170 0.0129 

C-Vine BB8 1.4698 1.1161 0.8690 0.5892 0.0188 0.0152 0.0128 0.0103 

DCC-norm 11.072 9.3986 7.933 5.4242 2.496 1.859 1.701 1.515 

DCC.t 15.642 12.464 9.876 7.842 2.186 1.809 1.544 1.289 

 Note: All models are ranked based on the minimum of MAE for ES on 1%, 2.5%, 5% and 10% significance   level. 

The best models are highlighted by bold. 
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Chapter Four: Value at Risk and Expected Shortfall for 

Options. 

1. Introduction 

Options play a major role in the financial markets as they can be used by the investors for 

hedging, speculative, spreading and synthetic positions. The accurate valuation of the option is 

critical for financial market analysts. Black and Scholes (1973) and Merton (1973) derived a 

formula to price a European call option based on Black-Scholes-Merton(BSM) option pricing. 

The Black Scholes Model (BSM) is one of the most effective approaches in modern financial 

theory and has become the basic benchmark for pricing equity and commodity options.  

Several of the assumptions used in the Black-Scholes method are considered unrealistic. The 

BSM assumes that the price of an asset traded reflect a geometric Brownian motion with 

constant drift and volatility.  The geometric Brownian motion model indicates that the series 

of first differences of the log prices of an asset must be uncorrelated. However, it was noticed 

that there are small but statistically significant correlations in the differences of the logs at short 

time lags. 

Another key assumption underlying the Black-Scholes model is that the underlying asset return 

dynamics are captured by the normal distribution. However, empirical results have shown that 

assets returns are not normal but have leptokurtic distribution (heavy tailed). 

One of inappropriate assumption of the Black-Scholes model is that the volatility of the 

underlying is constant.  However, it is usually observed that for financial time series the level 

of volatility appears to change with time. However, it is observed by Mandelbrot (1963) that 

large changes are being followed by large changes, and small changes are being followed by 

small changes in the level of the initial time series. This kind of pattern is often referred to as 

volatility clustering. Because of violation of underlying assumptions of the Black-Scholes 

model the computed options prices may be misleading. 

Over the last three decades, a vast number of pricing models have been presented as an 

alternative to the classic Black-Scholes approach as the underlying assumptions by Black-

Scholes are clearly violated by observed asset returns. 
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Since the stock market crash of 1987, the inconsistency of stock index option prices from the 

Black-Scholes model has been phenomenal. For different option strikes and maturities, it is 

required to use different volatilities (implied volatilities), as the Black-Scholes model demand 

a constant volatility build on the underlying historical volatility. 

In many markets, the implied volatilities often represent a smile or skew instead of a straight 

line.  A volatility smile reflects when implied volatilities plotted against strike prices tend to 

vary in a U-shape relationship resembling a smile.  Volatility smirk indicates that market 

implied volatility for options of lower strike prices is usually higher than for higher strike 

prices. When the implied volatilities for options at the lower strikes are lower than those at 

higher strikes is known as forward skew. The stochastic volatility models have been proposed 

to model the irregularities of volatility. 

 The rejection of constant variance Brownian motion result in a new class of Stochastic 

volatility models introduced by Hull and White (1987) which suggest that volatility is 

stochastic, varying both for time and for the price level of the underlying security. Since then 

many other stochastic volatility models have been developed (see Heston, 1993; Duffie and 

Kan, 1996; Ghysels et al., 1996; Duffie et al., 2000 and Balajewicz and Toivanen, 2017).  

The Hull and White (1987) model is one of the first stochastic volatility model proposed after 

the market crash of 1987. It is a simple type of the stochastic volatility models developed later. 

However, the major disadvantages are the assumption of the zero correlation and the absence 

of an incorporated mean-reverting part for the volatility dynamics. Moreover, unlike other 

models we cannot compute the characteristic function in closed-form for Hull-White model. 

 

Stein and Stein (1991) suggested a model with spot and volatility dynamics.  The model 

contributes to closed-form option pricing solutions. Schobel and Zhu (1999) expanded the Stein 

and Stein’s (1991) formation to a general case and derived an analytic solution for option 

prices. Heston’s Model (1993) emerged from other stochastic volatility models as there prevails 

an analytical solution for European options that deals with correlation between stock price 

process and volatility process. The advantage of the Heston (1996) model is that it can be 

solved in closed-form, while other stochastic volatility models require complex numerical 

methods. 

https://www.google.co.uk/search?biw=1600&bih=741&q=define+phenomenal&sa=X&sqi=2&ved=0ahUKEwjO19e-iubMAhWhLcAKHaVOBe0Q_SoIKjAA
https://en.wikipedia.org/wiki/Implied_volatility
https://en.wikipedia.org/wiki/Stochastic_volatility
https://en.wikipedia.org/wiki/Stochastic_volatility
https://en.wikipedia.org/wiki/Stochastic_volatility
https://en.wikipedia.org/wiki/Heston_model
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Lévy processes become very popular in option pricing academic research due to the flaws of 

the classical geometrical Brownian motion. In Lé-vy process the evolution of prices is given 

by a diffusion process and occurred by jumps at random distance or pure jumps type. Many 

previous studies introduce the Lévy processes into option pricing (see, Agliardi, 2011; Hsu and 

Chen, 2012; Ornthanalai, 2014; Fajardo, 2015; Kleinert and Van Schaik, 2015; Jiang et al., 

2016; Xiao and Ma, 2016; Gong and Zhuang, 2016; Gong and Zhuang, 2016b; Balajewicz and 

Toivanen, 2017 and Deelstra and Simon, 2017). 

In finance, all types of models belong to a class of Levy processes called “exponential Levy 

processes”. Exponential Levy models generalize the classical Black and Scholes formation that 

enable jumps into the stock prices, while the independence and stationarity of returns 

maintained. 

Exponential Levy models are helpful in finance and can be divided into two classes. The first 

class called jump-diffusion models, in which the “normal” change of prices is given by a 

diffusion process, interrupted by jumps at irregular breaks. The second-class is known as 

infinite activity models that consists of models accompanying absolute number of jumps in 

each time interval. 

 

Over the last few years several kinds of jump diffusion models have been developed. Two 

important Jump-diffusion models proposed by Merton (1976) and Kou (2002) respectively. 

For our research, we considered the Merton model and Double Exponential Jump Diffusion 

Model (Kou Model).  

Both Merton and Kou models have certain characteristics that they share with known asset 

prices. Those models feature are missing in the classical Black Scholes model, like the 

characteristic of the leptokurtic. However, Kou's model is superior to Merton’s model in 

various aspects. As per Kou and Wang (2004) one of the features of Kou model is that the 

memoryless property of the exponential distribution makes it feasible to attain explicit formulas 

for substantial categories of options. 

The jump-diffusion models allow for a finite number of jumps in a finite time interval (Merton 

,1976; Ball and Torous, 1983 and Bates, 1991). More recently, infinite-activity models have 

been proposed that allowed an infinite number of jumps in a finite time interval (Madan and 

Seneta, 1990; Madan et al., 1998; Eberlein and Keller, 1995; Carr et al., 2002 and Carr and Wu 
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,2003). To form an infinite activity Lévy process, a Brownian process can be subordinated in 

time to a pure jump process. 

The variance-gamma process and the normal-inverse Gaussian process are two examples of 

infinite activity processes. These models can represent both insignificant and persistent jumps, 

as well as substantial and exceptional ones. 

Merton’s and Heston’s models of option pricing were combined by Bates (1996), that 

suggested a stock price model with stochastic volatility and jumps. The Bates model ignores 

interest rate risk, while the Scott (1997) introduced another model that supports interest rates 

to be stochastic. 

The primary purpose of Bates (1996) and Scott (1997) option pricing models were to represent 

two characteristics of asset returns that conditional volatility grows over time in a stochastic 

but mean-reverting fashion, and the existence of irregular but important deviations in asset 

returns. These two models combined the Heston (1993) model of stochastic volatility with the 

Merton (1976) model of independent normally distributed jumps in the log asset price. The 

studies of Bakshi et al (1997), Bakshi and Madan (2000), Bates (2000,2003,2006), Lee (2004), 

Sgarra and Miglio (2011), Salami et al. (2013), Ballestra and Cecere (2016) and Balajewicz 

and Toivanen (2017) further extent and apply the models of Bates (1996) and Scott (1997) on 

both European and American options. 

There are several methods to price options. Numerical methods need to implement to solve 

partial differential equation (PDE). The Monte-Carlo method easy to implement, however, this 

method is computationally heavy and needed lot of paths to ensure a good approximation. In 

this study, we discuss another pricing technique based on the characteristic function, the 

characteristic function of the asset prices distribution is simply the Fourier transform of its 

probability distribution function. The probability distribution function can be recovered from 

the characteristic function through Fourier inversion.  

The Fast Fourier Transform (FFT) pricing method is very useful to efficiently price derivatives 

under any model with a known characteristic function, some of which are only expressible in 

this form (Hirsa and Neftci, 2013; Carr and Madan, 1999; Duffie et al., 2000; Bakshi and 

Madan, 2000; Lewis, 2000; Schoutens, 2003; Chourdakis, 2005; Fang and Oosterlee (2008), 

Gong and Zhuang, 2016a) and Deelstra and Simon, 2017). 
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The purpose of this chapter is to compare option pricing models, which are based on stochastic 

volatility model, jump diffusion models, infinite activity model and combined stochastic 

volatility model. We compare the performance of the Heston (1993) as stochastic volatility 

model, Bates (1996) as combined stochastic volatility model, Merton Jump Diffusion model 

and Kou model as jump diffusion model and Variance Gamma as infinite activity model with 

traditional Black-Scholes model. We measure the mean absolute error relative to observed 

option prices. 

Backus et al. (1997) contributes the formula for delta in the Gram-Charlier Model. Pritsker 

(1997) examines the critical point of accuracy against computation speed in the full valuation, 

delta and gamma approaches. Risk measurement for options portfolios has also been calculated 

in Gibson (2000), Alexander et al. (2006), Sorwar and Dowd (2010), and Simonato (2011). 

Hull (2011) examine and suggest the delta, gamma and other risk measures in detail.  

For a given level of volatility delta based VaR method is accurate only over short periods of 

time and gamma based VaR under estimate the actual risk. A basic problem associate with the 

delta and the delta-gamma way of calculating VaR is for a longer horizon is that delta and 

gamma calculation may not be steady approximations to the risk of the option position because 

they are expected to be constant over time but they are not. 

Full valuation consists of simulating future hypothetical underlying asset prices and using the 

option pricing model to calculate the corresponding future hypothetical option prices. For each 

hypothetical future asset price, every option written on that asset must be priced. While full 

valuation is precise, it is unfortunately also computationally intensive (Christoffersen, 2012). 

For risk analysis purpose, we evaluated various ES models based on partial Monte Carlo and 

full Monte Carlo method. For partial Monte Carlo, we calculated Delta based and Gamma 

based. The preceding deltas and gammas were derived from the Black Scholes model(BSM), 

Variance Gamma model(VG), Heston model (HS), Bates model (Bat), Merton Jump diffusion 

model and Double Exponential Jump diffusion model(Kou). We evaluate 1-day and 10-days 

ES for options based on the minimum mean absolute error (MAE).  

We evaluated ES estimates for European options for all combinations of the following cases: 

1-day and 10 days, at a range of confidence levels, and delta and gamma derived from various 

option models. For longer horizon, ES relies on the typical shortcut to estimating the risk over 

various time horizons is to scale by the square root of the ratio of the time horizons. Per our 
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knowledge, this study is first to derived Delta and Gamma from the Black Scholes 

model(BSM), Variance Gamma model(VG), Heston model (HS), Bates model (Bat), Merton 

Jump diffusion model and Double Exponential Jump diffusion model(Kou) for both 1-day and 

10 days ES forecast. 

The code written to perform pricing and calibration is an important part of the thesis. The code 

is written with R programming.  

Rest of the chapter is organized as follows. Section 2 discusses theoretical consideration. 

Section 3 introduces risk management for options. Section 4 looks at data and calibration. Our 

empirical results are presented and discussed in Section 5. Section 6 concludes the chapter.  

2. Theoretical Considerations 

European options are the simplest type of options contract that gives the owner the right but 

not the obligation to buy or sell an underlying asset at the price X on a specific date T, 

depending on the form of the option. The European option only allows exercising the option 

before the exercising date. On the other hand, American options can be exercised any time 

before the maturity date. 

The holder of a call option gives the owner the right but not the obligation to buy a certain 

underlying asset (usually a stock) at the price X at pre-determined date T. A European put 

option gives the owner of the option the right to sell a certain of the underlying asset at the 

specific price X at pre-determined date T. 

The today’s price of the underlying asset is denoted by 𝑆𝑡; and at maturity of the option by 𝑆𝑡+𝑇 

. If the underlying  𝑆𝑡+𝑇 is worth more than 𝑋  then the holder of the option would exercise the 

option and make a profit 𝑆𝑡+𝑇 − 𝑇. Alternatively, if  𝑆𝑡+𝑇  is less than 𝑋  , then the holder of 

the option would not exercise, resulting in the option expiring worthless. Mathematically, the 

value of the call option at maturity of the option 𝑇 is: 

𝑀𝑎𝑥{𝑆𝑡+𝑇 − 𝑋, 0} 

The holder of a put option has the right to sell the underlying for the exercise price 𝑋  and result 

in the put option price: 

𝑀𝑎𝑥{𝑋 − 𝑆𝑡+𝑇, 0} 
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2.1. Stochastic Processes and Mathematical Finance for Options 

This section presents a theoretical background to stochastic processes and stochastic calculus.  

Bjork (2009), Karatzas and Shreve (1991), Mikosch (1999), Oksendal (2010), Shreve (2004) 

and Zhu (2009) provides detailed introduction to stochastic processes and mathematical 

finance. 

2.1.1 Brownian Motion 

Robert Brown in 1828 first introduced Brownian motion. Louis Bachelier in 1900 brought it 

into finance. It was Norbert Wiener in 1923 that proved Brownian motion mathematically. 

Brownian motion is physical phenomenon, but also plays an important role in mathematical 

finance. It is zig-zagging motion showed by a small fragment, such as a grain of pollen, 

involved in a liquid or a gas. 

Definition (Wiener Process) A stochastic process𝑋(𝑡), for 𝑡 ≥ 0, is called a Brownian motion 

or a Wiener, with following properties: 

(i) 𝑋(𝑡) = 0 

(ii) 𝑋(𝑡) is continuous for all 𝑡. 

(iii)  𝑋(𝑡) has independent increments. In other word 𝑋(𝑡) − 𝑋(𝑠) over an interval of 

length 𝑡 − 𝑠 is normally distributed with 0 mean and 𝑡 − 𝑠 variance: 

            𝑋(𝑡) − 𝑋(𝑠)~𝑁(0, 𝑡 − 𝑠) 

(iv) If the intervals [𝑡1, 𝑡2] and [𝑡3, 𝑡4] don’t overlap, then random variables 𝑋(𝑡2) −

𝑋(𝑡1) and  𝑋(𝑡4) − 𝑋(𝑡3) are independent. 

As we know from property (iii) that if 0 ≤ 𝑡0 < 𝑡1… < 𝑡𝑛, then Markov property of the Wiener 

process is: 

P[𝑋(𝑡0) = 𝑥0, 𝑋(𝑡1) = 𝑥1, …𝑋(𝑡𝑛) = 𝑥𝑛] = 𝑃 [𝑋(𝑡) ≥ 𝑥 𝑋(𝑡𝑛) = 𝑥𝑛]    (1) 

The sum of two independent variables that normally distributed with mean 𝜇1 and 𝜇2 and 

variance 𝜎1
2 and 𝜎2

2 is also a random variable with mean 𝜇1 + 𝜇2 and variance 𝜎1
2+𝜎2

2.In the 

same way for increments 𝑋(𝑡2) − 𝑋(𝑡1) and 𝑋(𝑡4) − 𝑋(𝑡3) the sum 𝑋(𝑡2) − 𝑋(𝑡1) + 𝑋(𝑡4) −

𝑋(𝑡3) is normally distributed with mean 0 and variance 𝑡2 − 𝑡1 + 𝑡4 − 𝑡3. 

 

The property of independent variable is consistent with properties of normal random variables. 

The probability density function for a random variable with 𝑁(0, 𝑡) is: 

𝑝(𝑥, 𝑡) =
1

√2𝜋𝑡
𝑒𝑥𝑝(−𝑥2/(2𝑡))         (2) 
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Now derive the joint density of an event: 

𝑋(𝑡1) = 𝑥1, 𝑋(𝑡2) = 𝑥2, …𝑋(𝑡𝑛) = 𝑥𝑛 

It is very much like the joint probability density of another similar event. 

𝑋(𝑡1) − 𝑋(𝑡0) = 𝑥1, 𝑋(𝑡2) − 𝑋(𝑡1) = 𝑥2 − 𝑥1, …𝑋(𝑡𝑛) − 𝑋(𝑡𝑛−1) = 𝑥𝑛 − 𝑥𝑛−1   (3) 

We can get the expression for joint probability density function of 𝑋𝑡1, …𝑋𝑡𝑛 as: 

𝑓(𝑥1, 𝑡1; 𝑥2, 𝑡2; … 𝑥𝑛, 𝑡𝑛) = 𝑝(𝑥1,𝑡)𝑝(𝑥2 − 𝑥1, 𝑡2 − 𝑡1)…𝑝(𝑥𝑛 − 𝑥𝑛−1, 𝑡𝑛 − 𝑡𝑛−1)   (4) 

where 𝑡0 = 0,𝑥0 = 0. 

2.1.2. Stochastic Integral -Ito Lemma 

Stochastic calculus is one of the important instruments in modern Mathematical Finance. In 

this section, we now explain the stochastic integral. For that purpose, we consider as given a 

Brownian motion 𝑋(𝑡) and stock prices is of the form 𝑆𝑡 = 𝑓(𝑋𝑡). By using Taylor’s Theorem: 

𝑓(𝑋𝑡+𝛿𝑡) − 𝑓(𝑋𝑡) = (𝑋𝑡+𝛿𝑡 − 𝑋𝑡)𝑓
′(𝑋𝑡) +

1

2!
(𝑋𝑡+𝛿𝑡 − 𝑋𝑡)

2𝑓"(𝑋𝑡) + ⋯    (5) 

The differential equation 𝑆𝑡 = 𝑓(𝑋𝑡) will take the form: 

𝑆𝑡 = 𝑓′(𝑋𝑡)𝑑𝑋𝑡 +
1

2
𝑓"(𝑋𝑡)𝑑𝑡 

In integration form: 

𝑆𝑡 = 𝑆𝑡 + ∫ 𝑓′(𝑋𝑠)𝑑𝑋𝑠 + ∫
1

2
𝑓"(𝑋𝑠)𝑑𝑠

𝑡

0

𝑡

0
        (6) 

Thus, the Brownian motion has finite quadratic variation. 

 

Definition 1. Suppose 𝜋 be a partition of  [0, 𝑇], the variation of 𝑓 is  

lim
𝛿→0

[
   :

sup ∑ |𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗)|
𝑁(𝜋)
1 ]        (7) 

where 𝑁(𝜋) is number of intervals that make up 𝜋 and 𝛿(𝜋) is length of biggest interval of 

the partition. 

 

Definition 2. The quadratic variation of function 𝑓 is: 𝑋𝑡𝑗  

𝑞. 𝑣. (𝑓) = lim
𝛿→0

[
   :

sup ∑ |𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗)|
2𝑁(𝜋)

1 ]       (8) 

 

Definition 3. Let 𝑋𝑡 be Brownian motion and for s partition  𝜋 of   [0, 𝑇] is: 
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𝑆(𝜋𝑛) = ∑ |𝑋𝑡𝑗 − 𝑋𝑡𝑗−1|
2

𝑁(𝜋)
𝑗=1          (9) 

𝛿(𝜋𝑛) → 0, then 

𝔼[|𝑆(𝜋𝑛) − 𝑇|2] → 0 as 𝑛 → ∞ 

The two further limits as 𝛿(𝜋𝑛) → 0: 

∑ 𝑋𝑡𝑗+1 (𝑋𝑡𝑗+1 − 𝑋𝑡𝑗)

𝑁(𝜋)−1

𝑗=0

 

and 

lim
𝛿(𝜋𝑛)→0

∑ (
𝑋𝑡𝑗 + 𝑋𝑡𝑗+1

2
) (𝑋𝑡𝑗+1 − 𝑋𝑡𝑗)

𝑁(𝜋)−1

𝑗=0

 

We obtained different integral by selecting different points within every subinterval of the 

partition. The Ito integral is defined as: 

∫ 𝑓(𝑋𝑠)𝑑𝑋𝑠 =
𝑇

0
lim

𝛿(𝜋𝑛)→0
∑ 𝑓 (𝑋𝑡𝑗)
𝑁(𝜋)
𝑗=1 (𝑋𝑡𝑗+1 − 𝑋𝑡𝑗)               (10) 

This is on especial case of Ito integral. We will now consider the value on simple function in 

classical settings. 

 

Definition 4. A simple function is: 

𝑓(𝑋𝑠) = ∑ 𝛼𝑖(𝑋𝑠)𝜒𝛪𝑖(𝑠)
𝑛
𝑖=1                    (11) 

where 𝐼𝑖 = (𝑠𝑖, 𝑠𝑖+1),⋃𝑖=1
𝑛 𝐼𝑖 = [0, 𝑇], 𝐼𝑖⋂𝐼𝑗 = {Ǿ} 𝑖𝑓 𝑖 ≠ 𝑗 , 𝛼𝑖 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝔼[𝛼𝑖(𝑋𝑠)

2] < ∞ 

By definition: 

∫ 𝑓(𝑋𝑠)𝑑𝑋𝑠 =
𝑇

0
∑ 𝛼𝑖(𝑋𝑠)(𝑋𝑠𝑖+1 − 𝑋𝑠)
𝑛
𝑖=1                  (12) 

 

Definition 5: Let 𝑓 is a simple function: 

1.  ∫ 𝑓𝑠(𝑋𝑠)𝑑𝑋𝑠
𝑡

0
 is a continuous ℱ𝑡 −𝑚𝑎𝑟𝑡𝑖𝑛𝑔𝑎𝑙𝑒. 

2.   𝔼 [[∫ 𝑓(𝑋𝑠)𝑑𝑋𝑠
𝑇

0
]
2

] = ∫ 𝔼
𝑇

0
[𝑓(𝑋𝑠)

2]𝑑𝑠 

The above statement is famous Ito isometry. It indicates that definition of the integral to 

functions extended such that ∫ 𝔼[𝑓𝑠(𝑋𝑠)
2]𝑑𝑠

𝑡

0
< ∞ 

3.   𝔼 [sup
Tt

(∫ 𝑓(𝑋𝑠)𝑑𝑋𝑠
𝑇

0
)
2

] ≤ 4∫ 𝔼[𝑓(𝑋)2]𝑑𝑠
𝑇

0
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The above statement observed from the second statement by an implication of a famous result 

of Doob’s inequality. 

 

Definition 6 (Doob’s inequality): If {𝑀𝑡}0 ≤ 𝑡 ≤ 𝑇 is a continuous martingale: 

𝔼 [sup
0 Tt

𝑀𝑡
2] ≤ 4𝔼[𝑀𝑇

2]                   (13) 

 

Definition 7: Let ℱ𝑡 denote the natural filtration producing by Brownian motion. 𝐽  is a special 

linear mapping from 𝛺 to the space of continuous ℱ𝑡 −𝑚𝑎𝑟𝑡𝑖𝑛𝑔𝑎𝑙𝑒 defined on [0, 𝑇] as: 

1. If 𝑓 is simple: 

𝐽(𝑓)𝑡 = ∫ 𝑓𝑠(𝑋𝑠)𝑑𝑋𝑠
𝑡

0
 2. 

2. If 𝑡 ≤ 𝑇, 

𝔼[𝐽(𝑓)𝑡
2] = ∫ 𝔼[𝑓𝑠(𝑋𝑠)

2]𝑑𝑠
𝑡

0

 

3.  𝔼 [ sup
0 Tt

 𝐽(𝑓)𝑡
2] ≤ 4∫ 𝔼[𝑓𝑠(𝑋𝑠)

2]𝑑𝑠
𝑇

0
 

Definition 8: (Ito’s formula) For 𝑓 such that 
𝜕𝑓

𝜕𝑥
∈ 𝓗 

𝑓(𝑡, 𝑋𝑡) − 𝑓(0, 𝑋0) = ∫
𝜕𝑓

𝜕𝑥
(𝑠, 𝑋𝑠)𝑑𝑋𝑠

𝑡

0

+∫
𝜕𝑓

𝜕𝑠
(𝑠, 𝑋𝑠)𝑑𝑠

𝑡

0

+
1

2
∫
𝜕2𝑓

𝜕2𝑥2
(𝑠, 𝑋𝑠)𝑑𝑠

𝑡

0

 

𝑑𝑓𝑡 = 𝑓𝑡
′𝑑𝑋 + 𝑓̇𝑡𝑑𝑡 +

1

2
𝑓𝑡
"𝑑𝑡                   (14) 

 

Definition 9: We use Ito’s formula to compute 𝔼[𝑋𝑡
4] 

We define𝑍𝑡 = 𝑍𝑡
4. Then by using Ito’s formula 

𝑑𝑍𝑡 = 4𝑋𝑡
3𝑑𝑋𝑡 + 6𝑋𝑡

2𝑑𝑡 

𝑍0 = 0 

In integrated form, 

𝑍𝑡 − 𝑍0 = ∫4𝑋𝑠
3𝑑𝑋𝑠

𝑡

0

+∫6𝑋𝑠
2𝑑𝑠

𝑡

0

 

𝔼(𝑍𝑡) = ∫ 6𝔼[𝑋𝑠
2]𝑑𝑠

𝑡

0
= ∫ 6𝑠𝑑𝑠

𝑡

0
= 3𝑡2                 (15) 
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Geometric Brownian motion is the most common model of stock price movement, defined by: 

𝑆𝑡 = 𝑒𝑥𝑝(𝑣𝑡 + 𝜎𝑋𝑡) 

Now applying Ito formula: 

{
𝑑𝑆𝑡 = 𝜎𝑆𝑡𝑑𝑋𝑡 + (𝑣 +

1

2
𝜎2) 𝑆𝑡𝑑𝑡

𝑆0 = 1
                  (16) 

The equation 16 is called the stochastic differential equation for 𝑆𝑡. 

2.1.3. Geometric Brownian Motion 

We have explained both Brownian motion 𝑋(𝑡) and Itˆo’s Lemma, as BM can take on negative 

values, using BM directly for modelling stock prices is uncertain. Therefore, we introduce an 

important stochastic process, a non-negative variation of BM called geometric Brownian 

motion. 

A stochastic process 𝑆(𝑡) is said to follow a Geometric Brownian Motion if it satisfies the 

following stochastic differential equation: 

𝑆(𝑡) = 𝜇𝑑𝑡 + 𝜎𝑆(𝑡)𝑋(𝑡)                   (17) 

where 𝑋(𝑡) is a Wiener process (Brownian Motion) and 𝜇, 𝜎 are constants. 

By apply the technique of separation of variables: 

𝑑𝑆(𝑡)

𝑆(𝑡)
=  𝜇𝑑𝑡 + 𝜎𝑑𝑋(𝑡) 

Apply integral on both side: 

∫
𝑑𝑆(𝑡)

𝑆(𝑡)
= ∫( 𝜇𝑑𝑡 + 𝜎𝑑𝑋(𝑡)) 𝑑𝑡                  (18) 

Now involve and Itˆo’s Lemma and get the following solution: 

𝑙𝑛 (
𝑑𝑆(𝑡)

𝑆(𝑡)
) = (𝜇 −

1

2
𝜎2) 𝑡 + 𝜎𝑋(𝑡)                  (19) 

 

The analytical solution of this geometric Brownian motion is given by: 

𝑆(𝑡) = 𝑆(0)𝑒
((𝜇−

𝜎2

2
)+𝜎𝑋(𝑡))

                   (20)  

If 𝜇 and 𝜎 are constant, we have the normal geometric Brownian motion model 𝑑𝑆(𝑡) =

𝑆(𝑡)(𝜇𝑑𝑡 + 𝜎𝑑𝑋(𝑡)), and the distribution of 𝑆(𝑡) is log-normal. 

2.2. The Black-Scholes (1973) Model 

Black-Scholes model is simple and popular as a benchmark model for pricing and trading in 

the financial market. We assume the stock price follows a geometric Brownian motion. Under 
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BMS trading takes place in continuous time (in the absence of arbitrage opportunities), the 

risk-free rate r is known and constant over time, the stock pays no dividend until the maturity 

of the option. BSM only use to calculate option pricing for European options (it can only be 

exercised at the expiration date). The stock price follows a geometric Brownian motion over 

time that generate a log-normal distribution for stock price between any two points in time, the 

volatility is constant for any strike and maturity. Because of its simplicity, the Black-Scholes 

formula is extensively used among experts for pricing and hedging options. 

 

Under the BMS model, the stock price, S, follows Geometric Brownian Motion, 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑋(𝑡)                  (21) 

where 𝜇 and 𝜎 are known constant, 𝑋(𝑡) is a standard Brownian motion. The analytical solution 

of this geometric Brownian motion is given by, 

𝑆(𝑡) = 𝑆(0)𝑒
((𝜇−

𝜎2

2
)+𝜎𝑋(𝑡))

                   (22) 

An important part in the BSM methodology is the construction of risk free portfolio. A partial 

differential can be determined for the price of call option based on the no-arbitrage debate. To 

get a close form solution for BSM partial differential equation can be easily solve. 

Let C is the price of a call option.  

𝑑𝐶 = (
𝜕𝐶

𝜕𝑡
+

𝜕𝐶

𝜕𝑆
𝜇𝑆 +

1

2

𝜕2𝐶

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡 +

𝜕𝐶

𝜕𝑆
𝜎𝑆𝑑𝑋(𝑡)                (23) 

 

Now consider a portfolio consisting of short position in a call option and a long position, 

𝑉𝑃 = −𝐶 + ∆𝑆 

where 𝑉𝑃 is value of portfolio and ∆ is units of stock. 

The change in the 𝑉𝑃 over small intervals, 

𝑑𝑉𝑃 = −𝑑𝐶 + ∆𝑑𝑆 

By substituting 𝑑𝑆(𝑡) and  𝑑𝐶 into 𝑑𝑉𝑃 yields, 

𝑑𝑉𝑃 = −(
𝜕𝐶

𝜕𝑡
+

𝜕𝐶

𝜕𝑆
𝜇𝑆 +

1

2

𝜕2𝐶

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡 −

𝜕𝐶

𝜕𝑆
𝜎𝑆𝑑𝑋(𝑡) + ∆𝜇𝑆𝑑𝑡 + ∆𝜎𝑆𝑑𝑋(𝑡)   

= (−
𝜕𝐶

𝜕𝑆
𝜇𝑆 +

𝜕𝐶

𝜕𝑡
+

1

2

𝜕2𝐶

𝜕𝑆2
𝜎2𝑆2)𝑑𝑡 + (−

𝜕𝐶

𝜕𝑆
𝜎𝑆 + ∆𝜎𝑆)𝑑𝑋(𝑡)              (24) 

We put ∆=
𝜕𝐶

𝜕𝑆
 to make the portfolio risk free, 

𝑑𝑉𝑃 = (−
𝜕𝐶

𝜕𝑡
−

1

2

𝜕2𝐶

𝜕𝑆2
𝜎2𝑆2) 𝑑𝑡                  (25) 
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It is clear from above expression that to make the portfolio risk free, the Brownian motion 𝑋(𝑡) 

has been removed. In the absence of arbitrage opportunities, the risk-free portfolio need a risk-

free rate,𝑟, 

𝑑𝑉𝑃 = 𝑟𝑑𝑉𝑃𝑑𝑡 

By substituting 𝑉𝑃 into expression 25: 

(−
𝜕𝐶

𝜕𝑡
−
1

2

𝜕2𝐶

𝜕𝑆2
𝜎2𝑆2)𝑑𝑡 = 𝑟 (−𝐶 +

𝜕𝐶

𝜕𝑆
𝑆)𝑑𝑡 

𝜕𝐶

𝜕𝑡
+ 𝑟𝑆

𝜕𝐶

𝜕𝑆
+

1

2

𝜕2𝐶

𝜕𝑆2
𝜎2𝑆2 = 𝑟𝐶                   (26) 

The expression 26 is the Black Scholes partial differential equation. 

 

Let 𝐶(𝑡; 𝑟, 𝐾, 𝑇, 𝜎, 𝑆(𝑡)) is the time t price of a European call, K is exercise price, and T is time 

of maturity on the underlying asset S(t) based on BSM model. We have, 

𝐶(𝑡; 𝑟, 𝐾, 𝑇, 𝜎, 𝑆(0)) =  𝑆(0)𝛷(𝑑1) − 𝑒𝑥𝑝(−𝑟𝑇)𝐾𝛷(𝑑2)               (27) 

where  𝛷() is the cumulated normal distribution function, 

𝑑1 =
𝑙𝑛 (

𝑆(0)
𝐾 ) + (𝑟 +

1
2𝜎

2) 𝑇

𝜎√𝑇
 

and 

𝑑2 = 𝑑1 −  𝜎√𝑇 

Proof: For European vanilla call option, the option price is simply its payoff at maturity. 

𝐶 = 𝑚𝑎𝑥(𝑆 − 𝐾, 0)      t=T 

For time 𝑡 = 0, 

𝐶(0; 𝑟, 𝐾, 𝑇, 𝜎, 𝑆(0)) 

= 𝐸[𝑒𝑥𝑝(−𝑟𝑇)𝐶(𝑇; 𝑟, 𝐾, 𝑇, 𝜎, 𝑆(𝑇))|ℱ0|] 

= ∫ 𝑒𝑥𝑝(−𝑟𝑇)𝑚𝑎𝑥 {𝑆(0)𝑒𝑥𝑝 [(𝑟 −
1

2
𝜎2) 𝑇 + 𝜎𝑦] − 𝐾, 0}

𝑒𝑥𝑝 (−
1
2
𝑦2

𝑇 )

√2𝜋𝑇
𝑑𝑦

∞

−∞

 

= ∫ {𝑆(0)𝑒𝑥𝑝 [−
1

2
𝜎2𝑇 + 𝜎𝑦√𝑇] − 𝐾𝑒𝑥𝑝(−𝑟𝑇)}

∞

−𝑑2

𝑒𝑥𝑝 (−
1
2
𝑦2

𝑇 )

√2𝜋𝑇
𝑑𝑦 

= 𝑆(0)𝛷(𝑑1) − 𝑒𝑥𝑝(−𝑟𝑇)𝐾𝛷(𝑑2)                  (28) 

 where  𝛷() is the cumulated normal distribution function, 
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𝑑1 =
𝑙𝑛 (

𝑆(0)
𝐾

) + (𝑟 +
1
2
𝜎2) 𝑇

𝜎√𝑇
 

𝑑2 = 𝑑1 −  𝜎√𝑇 

2.3. Implied Volatility  

Even though the Black-Scholes formula is very popular and dominant among market 

practitioners to price stock options and very simple to use. However, Black-Scholes model 

presents unrealistic assumption of constant volatility that result in the issue of most well-known 

phenomenon of volatility smile or skew. The implied volatilities from the market prices of 

options tend to vary by various strike prices, different maturities and underlying assets. 

 

In Black-Scholes option pricing model, the price of a call option is the function of the current 

price 𝑆(0) , interest rate  𝑟 , the strike price 𝐾 , the constant volatility 𝜎 and the maturity 𝑇. All 

the other variables are known except volatility 𝜎. Since the quoted option price 𝐶𝑜𝑏𝑠 is 

observable, the implied volatility is the volatility used in the Black-Scholes model such that 

the observed market price of the option equals the model price. 

𝜎𝐵𝑆𝑀
𝑖𝑣 = 𝐶𝐵𝑆𝑀

−1 (0; 𝑟, 𝐾, 𝑇, 𝑆(0), 𝐶𝑚𝑘𝑡)                  (29) 

 

Theoretically, options price under Black-Scholes model should have a flat implied volatility 

surface, because of assumption of constant volatility. However, practically, the implied 

volatility surface is not flat, as volatility change with strikes and maturity. This phenomenon is 

known as the volatility skew. In some market, Implied volatilities plotted against strike prices 

form a U-shape, which is called the volatility smile.  This arrangement is usually notice in 

options in the foreign exchange market.  

 

The implied volatilities for options at the lower strikes are higher than those at higher strikes. 

Generally, the shape of the volatility smile is not symmetric.  It is called reverse skew or 

volatility smirk. The reverse skew pattern commonly observes for longer term equity options 

and index options. The implied volatilities for options at the lower strikes are lower than those 

at higher strikes. It is called reverse skew. The forward skew pattern is usually seen in the 

commodities market option. 
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Figure 16: Volatility Smile 

 

 

 

 

 

 

 

 

 

 

2.4. Stochastic Volatility Models 

As the Black- Scholes model fails to model volatility, models based on Black-Scholes presume 

that the variance is constant over the maturity of the derivative, but empirical evidence indicates 

that volatility of the stock returns is not constant. The relation between the volatility and the 

stock or time changes over time. 

 

To overcome these problems, many models have been proposed in the financial literature. 

Stochastic volatility models are one approach to resolve a shortcoming of the Black-Scholes 

model. Stochastic volatility models are important because they describe that options with 

different strikes and expirations have different Black-Scholes implied volatilities in a rational 

way. Stochastic volatility models assume that the volatility of the option price is a stochastic 

process rather than a constant. 

In stochastic volatility models, 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡)𝑑𝑋1(𝑡)                  (30) 

𝜎2(𝑡) = 𝑓(𝑣(𝑡)) 

𝑑𝑣(𝑡) = 𝑎(𝑡, 𝑣(𝑡))𝑑𝑡 + 𝑏(𝑡, 𝑣(𝑡))𝑑𝑍(𝑡) 

𝑑𝑋1(𝑡)𝑑𝑍(𝑡) = 𝜌𝑑𝑡 

where  𝜇 is constant, 𝜎(𝑡) is the volatility of the stock price, 𝑓(. ) is some positive 

function, 𝑋1(𝑡) and 𝑍(𝑡) are two correlated Brownian motions with correlation 𝜌, and 𝑣(𝑡) is 

some underlying process which determines the volatility. We can have defined 𝑍(𝑡) as: 

In money 

momoney 

Implied Volatility 

vovolatilityvolatili

ty 

at money 

Strike Price 

Out of money 

mmomoney 
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𝑍(𝑡) = 𝜌𝑋1(𝑡) + √1 − 𝜌2𝑋2(𝑡)                  (31) 

where  𝑋2(𝑡) is standard Brownian motion independent of 𝑋1(𝑡). 

2.4.1. Hull-White Model 

Hull and White (1987) introduce a stochastic volatility model for option pricing. Hull-White 

model assumes a geometric Brownian motion for the variance, 

𝑑𝑆(𝑡) = 𝑑𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡)𝑑𝑋(𝑡) 

𝑑𝑣(𝑡) = 𝛼𝑣(𝑡)𝑑𝑡 + 𝛽𝑣(𝑡)𝑑𝑍(𝑡)                  (32) 

where volatility is calculated by 𝜎2(𝑡) = 𝑓(𝑌(𝑡)), 𝛼 and 𝛽 are constant, 𝑋(𝑡) is uncorrelated 

to 𝑍(𝑡). 

2.4.2. Heston Model 

The Heston model proposed by Heston (1993) is very important stochastic volatility model that 

provides closed-form formula for the European option. In Heston model, the randomness of 

the variance process varies as the square root of variance, 

𝑑𝑆(𝑡) = 𝜇(𝑡)𝑆(𝑡)𝑑𝑡 + √𝑣(𝑡)𝑆(𝑡)𝑑𝑍1(𝑡) 

𝑑𝑣(𝑡) = 𝑘(𝜃 − 𝑣(𝑡))𝑑𝑡 + 𝜎√𝑣(𝑡)𝑑𝑍2(𝑡) 

𝑑𝑍1(𝑡)𝑑𝑍2(𝑡) = 𝜌𝑑𝑡                    (33) 

where 𝜃 is the long-run variance, 𝑘 is the rate of mean reversion, 𝜎 is called volatility of 

volatility, and 𝑑𝑍1 and 𝑑𝑍2 are correlated with the constant correlation value 𝜌. 𝑣(𝑡) is strictly 

positive when 𝑘𝜃 ≥ 𝜎2 and is non-negative when 0 ≤ 2𝑘𝜃 < 𝜎2. 

2.5. Levy Process for Financial Modelling 

Levy processes are a category of stochastic processes with discontinuous paths. Exponential 

Levy models generalize the classical Black and Scholes structure that enable jumps into the 

stock prices, while the independence and stationarity of returns maintained. 

As a generalization of Brownian motion, Lévy process is a refined stochastic process which 

has stationary and independent increments that can keep any category of distribution only if it 

is infinitely divisible, Xiao and Ma (2016). 

 

In finance, all the models belong to a family of Levy processes called “exponential Levy 

processes”. Exponential Levy models are very useful in finance and can be divide into two 

classes. The first class called jump-diffusion models, in which the “normal” change of prices is 

https://en.wikipedia.org/wiki/Correlation
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given by a diffusion process, interrupted by jumps at irregular breaks. The second class called 

infinite activity models, that consists of models accompanying absolute number of jumps in 

each time interval. 

2.5.1. Jump Diffusion Models 

In jumps diffusion models the jumps represent unusual events, crashes. These changes can be 

defined by a Levy process with a nonzero Gaussian element and a jump part with finitely many 

jumps, 

Let 𝐿 = (𝐿(𝑡))
𝑡>0

 is a Levy Jump diffusion, 

𝐿(𝑡) = 𝛾𝑡 + 𝜎𝑋(𝑡) + ∑ 𝑌𝑖
𝑁𝑡
𝑖=1 , 𝛾 ∈ ℝ, 𝜎 ≥ 0                 (34) 

where 𝑋 = (𝑋(𝑡))
𝑡≥0

 is a standard Brownian motion, (𝑌𝑖) are i.i.d. sequence of random 

variables and N is a Poisson process. 

 

Over the last few years several kinds of jump diffusion models have been developed. Two 

important Jump-diffusion models proposed by Merton (1976) and Kou (2002) respectively. 

 For this chapter, we considered the Merton model and Double Exponential Jump Diffusion 

Model (Kou Model).  

2.5.1.1. Merton Model 

The Merton model (1976) which was the first model in the jump diffusion class to use a 

discontinuous price process to model asset returns. 

Merton’s jump-diffusion model tries to capture the negative skewness and excess kurtosis of 

log stock prices encountered in the Black-Scholes model by a simply inclusion of a compound 

Poisson process. Addition of the compound Poisson process include three extra parameters to 

the original Black Scholes model to control skewness and excess kurtosis.  

Merton’s jump-diffusion model is an exponential Lévy model of the form, 

𝑆(𝑡) = 𝑆(0)𝑒𝐿(𝑡)                    (35) 

where the stock price process 𝑆(𝑡); 0 ≤ 𝑡 ≤ 𝑇 is modelled as an exponential of a Levy process 

𝐿(𝑡); 0 ≤ 𝑡 ≤ 𝑇. 

Merton’s option of the Lévy process is a Brownian motion with drift addition a compound 

Poisson process. In the Merton, the Levy process {𝐿(𝑡)}𝑡≥0  is given by, 

𝐿(𝑡) = 𝜇𝑡 + 𝜎𝑋(𝑡) + ∑ 𝑌𝑖
𝑁𝑡
𝑖=1                    (36) 
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where (𝑋(𝑡))
𝑡≥0

is a standard Brownian motion, 𝜇𝑡 + 𝜎𝑋(𝑡) is a Brownian motion with drift, 

and ∑ 𝑌𝑖
𝑁𝑡
𝑖=1  is a compound Poisson process. The distinctness between the Black-Scholes and 

the Merton model is the inclusion of a compound Poisson process ∑ 𝑌𝑖
𝑁𝑡
𝑖=1 . A compound 

Poission process ∑ 𝑌𝑖
𝑁𝑡
𝑖=1  consists of two sources of randomness. The first randomness is a 

Poisson process 𝑑𝑁𝑡 with intensity parameter λ which result in random asset price jumps. The 

second randomness is once the asset price jumps; how much it jumps. Merton’s jump-diffusion 

model assume that log-price jump size follows a Gaussian distribution, i.e. 𝑌𝑖~𝑁(𝛼, 𝛿
2). 

Hence, the distribution of the jump size has the density, 

𝑓(𝑥; 𝛼, 𝛿) =
1

𝛿√2𝜋
𝑒𝑥𝑝 [

(𝑥−𝛼)2

2𝛿2
]                  (37) 

 

Moreover, it assumes that two sources of randomness are independent of each other. Therefore, 

three extra parameters 𝜆, 𝛼 and 𝛿 are introduce to Black Scholes models to capture the 

skewness and excess kurtosis. 

Hence, the Levy density is, 

𝑣(𝑥; 𝜆, 𝛼, 𝛿) = 𝜆𝑓(𝑥; 𝛼, 𝛿) =
𝜆

𝛿√2𝜋
𝑒𝑥𝑝 [

(𝑥−𝛼)2

2𝛿2
]               (38) 

Thus, the Merton model has four parameters excluding drift 𝜇; the diffusion volatility 𝜎, the 

jump intensity 𝜆, the mean jump size 𝛼  and the standard deviation of jump size 𝛿 . 

2.5.1.2. Double Exponential Jump Diffusion Model (Kou Model) 

Merton's model assumed that the jump sizes are normally distributed. Kou (2002) proposed 

another jump diffusion model, where the distribution of jump sizes is an asymmetric 

exponential. 

Both Merton and Kou models have certain characteristics that they share with known asset 

prices. Those models feature are missing in the classical Black Scholes model, like the 

characteristic of the leptokurtic. However, Kou's model is superior to Merton’s model in 

various aspects. As per Kou and Wang (2004) one of the features of Kou model is that the 

memoryless property of the exponential distribution makes it feasible to attain explicit formulas 

for substantial categories of options. 

In the Kou model the Levy process {𝐿(𝑡)}𝑡≥0  is given by, 

𝐿(𝑡) = 𝜇𝑡 + 𝜎𝑋(𝑡) + ∑ 𝑌𝑖
𝑁𝑡
𝑖=1                    (39) 
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where (𝑋(𝑡))
𝑡≥0

is a standard Brownian motion, 𝜇𝑡 + 𝜎𝑋(𝑡) is a Brownian motion with drift, 

and ∑ 𝑌𝑖
𝑁𝑡
𝑖=1  is a compound Poisson process.  The difference between Merton and Kou model is 

the assumption of log-price jump size that follows a double exponential distribution in Kou’s 

jump diffusion model i.e. 𝑌𝑖~𝐷𝑏𝐸𝑥(𝑝1, 𝑝2, 𝜂1, 𝜂2). Thus, the distribution of the jump size has 

the density, 

𝑓(𝑥; 𝑝1, 𝑝2, 𝜂1, 𝜂2) = 𝑝1𝜂1𝑒
−𝜂1𝑥1𝑥≥0 + 𝑝2𝜂2𝑒

𝜂2𝑥1𝑥<0 , 𝜂1, 𝜂2 > 1              (40) 

After multiplying by λ the Levy density, 

𝑣(𝑥; 𝑝1, 𝑝2, 𝜂1, 𝜂2) = 𝜆 𝑓(𝑥; 𝑝1, 𝑝2, 𝜂1, 𝜂2) = 𝜆(𝑝1𝜂1𝑒
−𝜂1𝑥1𝑥≥0 + 𝑝2𝜂2𝑒

𝜂2𝑥1𝑥<0)            (41) 

So, five extra parameters 𝑝1, 𝑝2, 𝜂1, 𝜂2 and 𝜆  excluding drift 𝜇 are introduced to the Black 

Scholes model: the diffusion volatility 𝜎, the jump intensity 𝜆, the probability of an upward 

jump 𝑝1 , the probability of a downward jump 𝑝2, and the decay of the tails for positive and 

negative jump sizes are controlled by 𝜂1 and 𝜂2 respectively.  

The five independent parameters in the Kou model make it more flexible and simple to compute 

asset prices than the Merton model, which has only four parameters. 

2.5.2. Infinite Activity Models 

The jump-diffusion models allow for a finite number of jumps in a finite time interval (Merton 

,1976); Ball and Torous, 1983 and Bates, 1991). More recently, infinite-activity models have 

been proposed that allowed an infinite number of jumps in a finite time interval (Madan and 

Seneta, 1990; Madan et al., 1998; Eberlein and Keller; 1995; Carr et al., 2002 and Carr and 

Wu, 2003). To form an infinite activity Lévy process, a Brownian process can be subordinated 

in time to a pure jump process. 

The variance-gamma process and the normal-inverse Gaussian process are two examples of 

infinite activity processes. These models can represent both insignificant and persistent jumps, 

as well as substantial and exceptional ones.  

 It is noticeable that the variance-gamma process has finite variation, while the normal-inverse 

Gaussian process has infinite variation (Merton, 2013). In our research, we are interested in 

only investigation the Variance Gamma model by Carr and Madan (1998) that combines a 

Brownian process and a jump component. 

 Carr and Madan (1998) proposed the first major development in the pricing of derivatives 

using Fourier techniques with variance gamma process. Variance Gamma not only control the 
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volatility but also the skewness and kurtosis of the return distribution. Madan and Seneta (1990) 

present a symmetric version of the variance gamma process. Madan et al. (1998) extend the 

model to allow for an asymmetric form and present a formula to price European options under 

the variance gamma process. 

2.5.2.1. Variance Gamma Process 

The Variance Gamma process nest the Brownian process on top of a Gamma process that 

explains the time-unit. Particularly, in situation of the attainment of the random process of time-

unit, the price has a Brownian distribution. 

The Variance Gamma process is realized by calculating Brownian motion with drift at a 

random time given by a gamma process, 

𝛽(𝑡; 𝜇, 𝜎) = 𝜇𝑡 + 𝜎𝑋𝐺(𝑡)                   (42) 

where 𝐺(𝑡) is a gamma process with parameters 𝛼 = 𝛽 = 1
𝜉⁄  with 𝜉  is the volatility of the 

time change. The process 𝛽(𝑡; 𝜇, 𝜎) is a Brownian motion with drift 𝜃  and volatility 𝜎.   

As we know that the Lévy measure has finite dimension, the variance-gamma process has an 

infinite number of jumps in any finite time spell (Schoutens, 2003). The distribution of the 

variance gamma process is extremely separable and has stationary and independent increments. 

Moreover, when 𝜇 < 0  it is negatively skewed and 𝜇 > 0 it is positively skewed. 

The moments of the variance-gamma process are: 

 Mean: 𝜇; variance:𝜎2 + 𝜉𝜇2; skewness:
𝜇𝜉(3𝜎2+2𝜉𝜇2)

(𝜎2+𝜉𝜇2)3 2⁄ , and Kurtosis: 3 (1 + 2𝜉 −
𝜉𝜎4

(𝜎2+𝜉𝜇2)2
). 

2.6. Combining Stochastic Volatility with Jumps 

One of most well-known models for option pricing is the classical Black Scholes model (BMS) 

by Black and Scholes (1973) and Merton (1973). According to BMS the price of the underlying 

asset is illustrated by a geometric Brownian motion with constant volatility. However, many 

empirical studies have explained that the volatility is not constant, and that the asset prices are 

usually subject to jumps. An evident generalization of the Black–Scholes model support one 

to combined both non-constant(stochastic)volatility and jumps in the asset price has been 

introduced by Bates (1996) (Ballestra and Cecere, 2016). 

The studies of Bakshi et al (1997), Bakshi and Madan (2000), Bates (2000,2003,2006), Lee 

(2004), Sgarra and Miglio (2011), Salami et al. (2013) and Ballestra and Cecere (2016) further 
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extent and apply the models of Bates (1996) and Scott (1997) on both European and American 

options. 

Merton’s and Heston’s models of option pricing was combined by Bates (1996), that suggested 

a stock price model with stochastic volatility and jumps. 

2.6.1. The Bates Model 

Dynamic of 𝑆(𝑡) under historical measure, 

𝑑𝑆(𝑡)

𝑆(𝑡)
= (𝜇 − 𝜆𝐽)𝑑𝑡 + √𝑣(𝑡)𝑑𝑋1(𝑡) + 𝐽𝑑𝑌(𝑡) 

𝑑𝑣(𝑡) = 𝜅(𝜃 − 𝑣(𝑡))𝑑𝑡 + 𝜎√𝑣(𝑡)𝑑𝑋2(𝑡)                 (43) 

where 𝜇 is spot interest rate, 𝜆 is frequency of jump, 𝐽 is the random percentage jump condition 

on jump occurring, 𝑣(𝑡) is value of spot volatility, 𝜃 is long run volatility, 𝜎 is volatility of 

volatility and𝑋1(𝑡) and 𝑋1(𝑡) are two stochastic process correlated by 𝜌 i.e. 

𝔼ℙ[𝑑𝑋1(𝑡)𝑑𝑋2(𝑡)] = 𝜌𝑑𝑡. 

 𝑌(𝑡) is compound Poisson process with intensity λ i.e. 𝑝𝑟𝑜𝑏(𝑑𝑌(𝑡) = 1) = 𝜆𝑑𝑡 and 

independent jumps 𝐽 with, 

𝑙𝑛(1 + 𝐽)~𝑌 (𝑙𝑛(1 + 𝐽) −
1

2
𝛼2, 𝛼2) 

The parameters 𝐽  and 𝛼 determine the distribution of the jumps and the Poisson process 𝑌(𝑡)  

is consider to independent of the Wiener processes. 

Now change measure ℙ → ℚ, 

𝑑𝑆(𝑡)

𝑆(𝑡)
= (𝑟 − 𝑞 − 𝜆∗𝐽

∗
) 𝑑𝑡 + √𝑣(𝑡)𝑑𝑋1

ℚ(𝑡) + 𝐽∗𝑑𝑌∗(𝑡) 

𝑑𝑣(𝑡) = 𝜅∗(𝜃∗ − 𝑣(𝑡))𝑑𝑡 + 𝜎√𝑣(𝑡)𝑑𝑋2
ℚ(𝑡)                (44) 

where 

𝐸ℚ[𝑑𝑋1
ℚ(𝑡)𝑑𝑋2

ℚ(𝑡)] = 𝜌𝑑𝑡 

𝜅∗ = 𝜅 + 𝜉 

𝜃∗ =
𝜅𝜃

𝜅 + 𝜉
 

such that  𝜉 is volatility market price and, 

𝐽∗ = 𝐽 + 𝐽𝐸ℙ [
∆𝐽𝜔
𝐽𝜔

] 
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𝐽
∗
= 𝐽 +

𝑐𝑜𝑣 (𝐽,
∆𝐽𝜔
𝐽𝜔

)

1 + 𝐸ℙ [
∆𝐽𝜔
𝐽𝜔
]
 

where 𝐽𝜔  is the marginal utility of dollar wealth of the world average representative investor, 

∆𝐽𝜔

𝐽𝜔
 is random percentage jump conditional on a jump occurring and 

𝑑𝐽𝜔

𝐽𝜔
 is percentage shock in 

the absence of jump. 

 

In the case of vanilla European call option, we have 

𝐶(𝑡, 𝑆(𝑡), 𝑣(𝑡), 𝐽, 𝐾, 𝑇) = 𝑒−𝑟𝑡𝐸∗𝑚𝑎𝑥(𝑆(𝑡) − 𝐾, 0)                (45) 

where 𝐽 = 1,2,3, 𝐾 is the strike price, and 𝐸∗ is the expectation with respect to the risk neutral 

probability measure. 

2.7. Option Pricing with the Characteristic Function 

There are several methods to price options. Numerical implementation of partial differential 

equations (PDE) are difficult. The Monte-Carlo method easy to implement, however, this 

method is computationally heavy as needed a lot of paths to ensure a good approximation. 

Hence, we will follow another pricing technique based on the characteristic function, the 

characteristic function of the asset prices distribution is simply the Fourier transform of its 

probability distribution function. The probability distribution function can be recovered from 

the characteristic function through Fourier inversion.  

The Fast Fourier Transform (FFT) pricing method is very helpful to efficiently price derivatives 

under any model with a known characteristic function, some of which are only expressible in 

this form (see, Carr and Madan, 1999; Duffie et al., 2000; Bakshi and Madan ,2000; Lewis, 

2000; Schoutens, 2003; Chourdakis, 2005; Fang and Oosterlee, 2008 and Hirsa and Neftci, 

2013). 

European call option price 𝐶0 can be expressed by the equation (Bakshi and Madan, 2000 and 

Schoutens, 2003): 

𝐶0 = 𝑒−𝑞𝜏𝑆0Π1 − 𝑒−𝑟𝜏𝑋Π2                    (46)

     

where 𝑆0 is the spot price of the underlying asset, 𝑋 is the strike price, 𝑟 and 𝑞 are the risk-free 

rate and dividend yield and  𝜏 is time to expiration. The Π𝑗   can be calculated as: 

Π1 =
1

2
+

1

𝜋
∫ 𝑅𝑒 (

𝑒𝑖𝜔𝑙𝑜𝑔(𝑋)𝜙(𝜔−𝑖)

𝑖𝜔𝜙(−𝑖)
)

∞

0
𝑑𝜔                                (47)       



197 
 

Π2 =
1

2
+

1

𝜋
∫ 𝑅𝑒 (

𝑒𝑖𝜔𝑙𝑜𝑔(𝑋)𝜙(𝜔)

𝑖𝜔
)

∞

0
𝑑𝜔                    (48) 

where 𝜙 represent the characteristic function of the log stock price, 𝑅𝑒(. ) stand in for the real 

part of a complex number. For call option price, we can compute Π1 and Π2by numerical 

integration for known characteristic function 𝜙 of Black-Scholes(BS), Merton Jump-

diffusion(MJD), Kou Jump-Diffusion(Kou), the Heston model (HS), the Bates model(BATs) 

and Variance Gamma Model (VG) from equation (1). 

2.7.1. Risk-Neutral Characteristic Functions 

The characteristic function of a random variable is the Fourier transform of its distribution. 

Many probabilistic properties of random variables correspond to analytical properties of their 

characteristic functions, making this concept very useful for studying random variables. 

2.7.1.1 The Black–Scholes Model 

For given dynamic of S, the log price 𝑠𝜏 = 𝑙𝑜𝑔(𝑆𝜏) follows a Gaussian distribution 

with 𝑠𝜏~ 𝑁 (𝑠0 + 𝜏 (𝑟 − 𝑞 −
1

2
𝑣) , 𝜏𝑣), where 𝑠0 represent the natural logarithm of the current 

spot price. The characteristic function of 𝑠𝜏 can be defined as: 

𝜙𝐵𝑆(𝜔) = 𝐸(𝑒𝑖𝜔𝑠𝜏)                       (49) 

= 𝑒𝑥𝑝 ((𝑖𝜔𝑠0 + 𝑖𝜔𝜏 (𝑟 − 𝑞 −
1

2
𝑣) +

1

2
𝑖2𝜔2𝜏𝑣)) 

= 𝑒𝑥𝑝 ((𝑖𝜔𝑠0 + 𝑖𝜔𝜏(𝑟 − 𝑞) −
1

2
(𝑖𝜔 − 𝜔2)𝜏𝑣))      

By inserting equation (4) into equation (1), we will get expression for the Black-Scholes option 

price. 

2.7.1.2. Merton’s Jump–Diffusion Model 

The characteristic function of Merton’s model is given by:  

𝜙𝑀𝐽𝐷(𝜔) = 𝑒𝐴+𝐵                      (50) 

where 

A = 𝑖𝜔𝑠0 + 𝑖𝜔𝜏 (𝑟 − 𝑞 −
1

2
𝑣 − 𝜆𝜇

𝐽
) +

1

2
𝑖2𝜔2𝜏𝑣 

B = λτ (𝑒𝑥𝑝 (𝑖𝜔𝑙𝑜𝑔 (𝜇
𝐽
) −

1

2
𝑖𝜔𝑣𝐽 −

1

2
𝜔2𝑣𝐽) − 1) 

We can then split the characteristic exponent into two parts, A represent a drift part and B-part adds the 

jump component. 

2.7.1.3. Kou Jump-Diffusion Model 

The characteristic function of Kou’s model is given by:  
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𝜙𝐾𝑜𝑢(𝜔) = 𝑒𝐴+𝐵                      (51) 

where 

A = 𝑖𝜔𝑠0 + 𝑖𝜔𝜏(𝑟 − 𝑞 −
1

2
𝑣 − 𝜆(

𝑝𝜂
1

𝜂
1
+ 1

)) +
1

2
𝑖2𝜔2𝜏𝑣 

B = λτ(((
𝑝𝜂

1

𝜂
1
+ 𝑖𝜔

) + (
(1 − 𝑝)𝜂

2

𝜂
2
+ 𝑖𝜔

)) − 1) 

We can then split the characteristic exponent into two parts, A represent a drift part and B-part 

adds the jump component. 

2.7.1.4. The Heston Model 

The characteristic function of the log price in the Heston model looks as follows (see, Albrecher 

et al., 2007). 

𝜙𝐻𝑆(𝜔) = 𝑒𝐴+𝐵+𝐶                      (52) 

𝐴 = 𝑖𝜔𝑠0 + 𝑖𝜔(𝑟 − 𝑞)𝜏 

𝐵 =
𝜃𝑘

𝜎2
((𝑘 − 𝜌𝜎𝑖𝜔 − 𝑑)𝜏 − 𝑔𝑙𝑜𝑔 (

1 − 𝑔𝑒−𝑑𝜏

1 − 𝑔
)) 

𝐶 =

𝑣0
𝜎2

(𝑘 − 𝜌𝜎𝑖𝜔 − 𝑑)(1 − 𝑒−𝑑𝜏)

1 − 𝑔𝑒−𝑑𝜏
 

𝑑 = √(𝜌𝜎𝑖𝜔 − 𝑘)2 + 𝜎2(𝑖𝜔 + 𝜔2) 

𝑔 =
𝑘 − 𝜌𝜎𝑖𝜔 − 𝑑

𝑘 − 𝜌𝜎𝑖𝜔 + 𝑑
 

2.7.1.5. The Bates Model 

The characteristic function becomes (Schoutens et al., 2004): 

𝜙𝐵𝐴𝑇(𝜔) = 𝑒𝐴+𝐵+𝐶+𝐷                   (53) 

𝐴 = 𝑖𝜔𝑠0 + 𝑖𝜔(𝑟 − 𝑞)𝜏 

𝐵 =
𝜃𝑘

𝜎2
((𝑘 − 𝜌𝜎𝑖𝜔 − 𝑑)𝜏 − 𝑔𝑙𝑜𝑔 (

1 − 𝑔𝑒−𝑑𝜏

1 − 𝑔
)) 

𝐶 =

𝑣0
𝜎2

(𝑘 − 𝜌𝜎𝑖𝜔 − 𝑑)(1 − 𝑒−𝑑𝜏)

1 − 𝑔𝑒−𝑑𝜏
 

𝐷 = 𝜆𝑢𝐽𝑖𝜔𝜏 + 𝜆𝜏 ((1 + 𝑢𝐽)𝑒
1
2
𝑣𝐽𝑖𝜔(𝑖𝜔−1) − 1) 

𝑑 = √(𝜌𝜎𝑖𝜔 − 𝑘)2 + 𝜎2(𝑖𝜔 + 𝜔2) 
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𝑔 =
𝑘 − 𝜌𝜎𝑖𝜔 − 𝑑

𝑘 − 𝜌𝜎𝑖𝜔 + 𝑑
 

2.7.1.6. Variance Gamma Model 

The characteristic function of the Variance Gamma model can be written as: 

𝜙𝑉𝐺(𝜔) = 𝑒𝐴+𝐵                    (54) 

where 

 

𝐴 = 𝑖𝜔𝑑𝑡 

𝑑 = 𝑟 +
𝑙𝑛 (1 − 𝜃𝑣 −

1
2𝜎

2𝑣)

𝑣
 

B = ln (1 − 𝑖𝜔𝜃𝑣 +
1

2
𝜎2𝜔2𝑣)

−𝑡 𝑣⁄

 

2.8. Greeks 

Option Greek support to compute variation in the worth of option agreement due to elements 

affecting the underlying stock price. These essential features can be listed as volatility, interest 

rate, change in the underlying stock price and breaking down of time. The generally known 

Greeks are the first order derivatives: Delta, Vega, Theta and Rho as well as Gamma, a second-

order derivative of the value function. 

2.8.1. Delta 

Delta is the amount by which the price of an option changes as compared to a $1 rise of the 

price of an asset indicated as a decimal or percentage. Delta can also be described as a slope of 

the tangent line fit to the option price function at the underlying stock price. 

 

Delta of call option is the first derivative of the value of call option with respect to the stock 

price, 

∆𝑐𝑎𝑙𝑙=
𝜕𝐶

𝜕𝑆
= 𝑁(𝑑1)                    (55) 

Delta of put option is the first derivative of the value of put option with respect to the stock 

price, 

∆𝑝𝑢𝑡=
𝜕𝐶

𝜕𝑆
= 𝑁(𝑑1) − 1 

where  

https://en.wikipedia.org/wiki/Greeks_%28finance%29#Delta
https://en.wikipedia.org/wiki/Greeks_%28finance%29#Vega
https://en.wikipedia.org/wiki/Greeks_%28finance%29#Theta
https://en.wikipedia.org/wiki/Greeks_%28finance%29#Rho
https://en.wikipedia.org/wiki/Greeks_%28finance%29#Gamma
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Partial_derivative
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𝑑1 =
𝑙𝑛 (

𝑆
𝐾
) + (𝑟 +

𝜎2

2
) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

2.8.2. Vega 

Vega measure sensitivity to volatility. It is defined as the measure of volatility of underlying 

asset that shows the amount of changes in option price due to changes in volatility. Vega is 

calculated by taking the derivative of the option value with respect to the volatility of the 

underlying asset, 

𝜕𝐶

𝜕𝜎
=

𝜕𝑃

𝜕𝜎
= 𝑣 = 𝑆√𝑇 − 𝑡𝑁′(𝑑1)                  (56) 

2.8.3. Theta 

Theta indicates the sensitivity of the value of the derivative with respect to the time. Theta is 

defined as the changes in the option prices as compared to the passage of time which is a 

negative number because the value of the option decreases with time. Theta can be calculated 

by taking derivative of function of option price with respect to time, 

𝛩𝑐𝑎𝑙𝑙 =
𝜕𝐶

𝜕𝑇
=

𝑆𝑁′(𝑑1)𝑆

2√𝑇−𝑡
−𝐾𝑟𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2)                 (57) 

𝛩𝑝𝑢𝑡 =
𝜕𝑃

𝜕𝑇
=

𝑆𝑁′(𝑑1)𝑆

2√𝑇−𝑡
+ 𝐾𝑟𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2)                 (58) 

where 

𝑑2 =
𝑙𝑛 (

𝑆
𝐾) + (𝑟 −

𝜎2

2 )
(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
= 𝑑1 − 𝜎√𝑇 − 𝑡 

2.8.4. Rho 

Rho measures sensitivity to the interest rate. Rho is changes in the option price as compared to 

changes in the risk-free rate. It is calculated by taking derivative of function of option price 

with respect to risk free interest rate, 

𝜌𝑐𝑎𝑙𝑙 =
𝜕𝐶

𝜕𝑟
= 𝐾𝑇𝑒𝑟𝑇 𝑁(𝑑2)                   (59) 

 

𝜌𝑝𝑢𝑡 =
𝜕𝑃

𝜕𝑟
= −𝐾𝑇𝑒𝑟𝑇 𝑁(−𝑑2)                  (60) 

where 

𝑑2 =
𝑙𝑛 (

𝑆
𝐾) + (𝑟 −

𝜎2

2 )
(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
= 𝑑1 − 𝜎√𝑇 − 𝑡 

https://en.wikipedia.org/wiki/Volatility_%28finance%29
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2.8.5. Gamma 

Gamma measures the rate of change in the delta relative to changes in the underlying price. 

Gamma is calculated by taking second derivative of the value function with respect to the 

underlying price, 

𝛤𝑐𝑎𝑙𝑙 =
𝜕∆𝑐𝑎𝑙𝑙

𝜕𝑆
=

𝜕2𝐶

𝜕𝑆2
                    (61) 

𝛤𝑝𝑢𝑡 =
𝜕∆𝑝𝑢𝑡

𝜕𝑆
=

𝜕2𝑃

𝜕𝑆2
                    (62) 

 

3. Value at Risk and Expected Shortfall for Options 

3.1. The Option Delta based VaR 

Consider a portfolio consisting of just one (long) call option on a stock. The change in the 

dollar value (or the dollar return) of the option portfolio, 𝐷𝑉𝑃𝐹,𝑡+1is then just the change in the 

value of the option: 

𝐷𝑉𝑃𝐹,𝑡+1 ≡ 𝑐𝑡+1 − 𝑐𝑡                    (63) 

Using the delta of the option, we have that for small changes in the underlying asset price: 

𝛿 ≈
𝑐𝑡+1 − 𝑐𝑡
𝑆𝑡+1 − 𝑆𝑡

 

Defining geometric returns on the underlying stock as: 

𝑟𝑡+1 =
𝑆𝑡+1 − 𝑆𝑡

𝑆𝑡
≈ 𝑙𝑛(𝑆𝑡+1/𝑆𝑡) = 𝑅𝑡+1 

and combining the previous three equations, we get the change in the option portfolio value to 

be: 

𝐷𝑉𝑃𝐹,𝑡+1 ≈ 𝛿(𝑆𝑡+1 − 𝑆𝑡) ≈ 𝛿𝑆𝑡𝑅𝑡+1 

The variance of the portfolio in the delta-based model is: 

𝜎𝐷𝑉,𝑡+1
2 ≈ 𝛿2𝑆𝑡

2𝜎𝑡+1
2  

where 𝜎𝑡+1
2  is the conditional variance of the return on the underlying stock. 

 

 Assuming conditional normality, delta based Value-at-Risk (VaR) in is: 

𝑉𝑎𝑅𝑡+1
𝑝 = 𝜎𝐷𝑉,𝑡+1ϕ𝑝

−1 

When volatility is assumed to be constant and returns are assumed to be normally distributed, 

we can calculate the dollar VaR at horizon K by: 

𝑉𝑎𝑅𝑡+1,𝑡+𝑘
𝑝 = 𝜎𝐷𝑉,𝑡+1√𝑘ϕ𝑝−1                   (64) 

https://en.wikipedia.org/wiki/Derivative
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3.2. The Option Delta Gamma based VaR 

Gamma based methods present more flexible functional form for capturing nonlinearity than 

delta method.  

As we know the option value for delta base approximation is: 

𝐷𝑉𝑃𝐹,𝑡+1 ≈  𝛿𝑆𝑡𝑅𝑡+1 

When incorporating the second derivative, gamma, we instead rely on the quadratic 

approximation: 

𝐷𝑉𝑃𝐹,𝑡+1 ≈ 𝜹𝑆𝑡𝑅𝑡+1 +
1

2
𝛾𝑆𝑡

2𝑅𝑡+1
2  

 

The variance of the portfolio in the delta gamma-based model is: 

𝜎𝐷𝑉,𝑡+1
2 ≈ 𝜹𝟐𝑆𝑡

2𝜎𝑡+1
2 +

1

2
𝛾2𝑆𝑡

4𝜎𝑡+1
4  

Gamma based VaR is defined as: 

𝑉𝑎𝑅𝑡+1
𝑝 = 𝜎𝐷𝑉,𝑡+1ϕ𝑝

−1                   (65) 

3.3. The Simulation-based Delta and Delta Gamma Approximation 

Consider the simple case where the portfolio consists of options on only one asset, then the 

change in the option value for delta base approximation: 

𝐷𝑉𝑃𝐹,𝑡+1 ≈  𝛿𝑆𝑡𝑅𝑡+1 

and for gamma base approximation: 

𝐷𝑉𝑃𝐹,𝑡+1 ≈ 𝜹𝑆𝑡𝑅𝑡+1 +
1

2
𝛾𝑆𝑡

2𝑅𝑡+1
2  

Using the assumed model for the physical distribution of the underlying asset return, we can 

simulate MC pseud return on underlying asset: 

{𝑅̂ℎ}ℎ=1
𝑀𝐶

 

We calculate the hypothetical changes in the portfolio value as: 

𝐷𝑉̂𝑃𝐹,ℎ ≈  𝛿𝑆𝑡𝑅̂ℎ 

𝐷𝑉̂𝑃𝐹,ℎ ≈ 𝜹𝑆𝑡𝑅̂ℎ +
1

2
𝛾𝑆𝑡

2𝑅̂ℎ
2 

 

Then value at risk for simulation based  delta gamma approach can be calculated as: 

𝑉𝑎𝑅𝑡+1,𝑡+𝑘
𝑝 = −𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 {{𝐷𝑉̂𝑃𝐹,ℎ}𝑖

𝑀𝐶
, 100𝑝}                (66) 
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 Expected Shortfall can be calculated as: 

𝐸𝑆𝑡+1,𝑡+𝑘
𝑝 = −

1

𝑝.𝑀𝐶
∑ 𝐷𝑉̂𝑃𝐹,ℎ
𝑀𝐶.1
𝑖=1 . 1(𝐷𝑉̂𝑃𝐹,ℎ < −𝑉𝑎𝑅𝑡+1,𝑡+𝑘

𝑝 )              (67) 

3.4. Portfolio Risk Using Full Valuation 

Linear and quadratic approximations to the nonlinearity arising from options can in some cases 

give a highly misleading picture of the risk from options. Especially, for option portfolio with 

different strike prices, then issue is likely to occur. In this situation, the full valuation 

approaches have the potential to improve on the delta and delta-gamma methods to risk   

because they can allow for alternative methods of approximating changes in portfolio value, 

(Christoffersen, 2012). 

 The Returns for a single option in short position: 

𝐷𝑉𝑃𝐹,𝑡+1 = −1. (𝑐(𝑆𝑡+𝑘, 𝑟𝑓 , 𝑋, 𝑇̃ − 𝜏; 𝜎) − 𝑐𝑚𝑟𝑘)                (68) 

 

We can simulate future hypothetical returns on the underlying asset by Monte Carlo, as: 

{𝑅̂ℎ}ℎ=1
𝑀𝐶

 

The future hypothetical asset prices can be calculated: 

{𝑆̂ℎ = 𝑆𝑡𝑒𝑥𝑝(𝑅̂ℎ)}ℎ=1
𝑀𝐶

 

The hypothetical changes in the portfolio value can be calculated as: 

 

𝐷𝑉̂𝑃𝐹,ℎ = −1. (𝑐(𝑆̂ℎ, 𝑟𝑓 , 𝑋, 𝑇̃ − 𝜏; 𝜎) − 𝑐𝑚𝑟𝑘) 

The full valuation VaR can be calculated as: 

𝑉𝑎𝑅𝑡+1,𝑡+𝑘
𝑝 = −𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 {{𝐷𝑉̂𝑃𝐹,ℎ}𝑖

𝑀𝐶
, 100𝑝}                (69) 

Expected Shortfall can be calculated as: 

𝐸𝑆𝑡+1,𝑡+𝑘
𝑝 = −

1

𝑝.𝑀𝐶
∑ 𝐷𝑉̂𝑃𝐹,ℎ
𝑀𝐶.1
𝑖=1 . 1(𝐷𝑉̂𝑃𝐹,ℎ < −𝑉𝑎𝑅𝑡+1,𝑡+𝑘

𝑝 )              (70) 

4. Data and Calibration 

All pricing models need a parameter set to completely describe the dynamics of every model. 

To make a model consistent to real markets and applicable for pricing, risk management, or 

trading, it is required to carry out calibration (Hirsa and Neftci, 2014). 

Usually, it is a simple task to determine the parameters estimation of a selective model. 

However, for complex models like option pricing, we need to use analytical approaches to 
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estimate parameter. Methods of estimating parameter include, maximum likelihood estimation, 

method of moments. 

To perform calibration for option pricing an objective function need to set. The objective 

function is usually set as the square root mean error. An optimization technique to minimize 

the objective function then apply. In general form, optimization function can be written as 

(Hirsa and Neftci (2014)).  

min∑ (𝐶𝑚𝑎𝑟𝑘𝑒𝑡 − 𝐶𝑚𝑜𝑑𝑒𝑙)2𝑁
𝑖=1                   (75) 

 

For our research, we find the best parameter values by means of minimizing the sum of 

quadratic deviations between the model’s prices and observed prices. For our model calibration, 

we minimize 𝑀𝐴𝐸 defined as: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐶𝑚𝑎𝑟𝑘𝑒𝑡 − 𝐶𝑚𝑜𝑑𝑒𝑙|𝑁
𝑖=1                   (76) 

where 𝐶𝑚𝑎𝑟𝑘𝑒𝑡 and 𝐶𝑚𝑜𝑑𝑒𝑙  are the market and model prices, respectively, of the ith option 

used in the calibration. 

In this section, we use historical option prices to estimate our models’ parameters. By using 

this technique, we prevent many issues that are related to parameters estimation based on an 

arbitrary basis. We consider options on S&P500 index traded on every Wednesday from 

January2005- December 2014. These are daily traded options of weekly record. 

 

There are four different types of the option prices, namely the close price, the bid, the ask and 

the mean of the bid and ask. For our study, we use the mean of the bid and ask as our option 

market data to calibrate models. We cannot examine option pricing without considering risk 

free interest rates and dividends. These two elements are input in our option pricing models 

and should be correctly chosen. For our analysis of options pricing models, the risk free one-

year US Treasury rates are used. 

 It is critical to consider that changes in interest rates are infrequent and insignificant. However, 

other determinants of the option price, such as underlying asset price, time to expiry, volatility, 

and dividend yield alter more commonly and significantly. These other factors have a relatively 

considerable effect on option prices than interest rates changes. 

A dividend is a cash payment made to the holder of stock. A dividend can be paid annually or 

more regularly. For option pricing, we require measuring the amount of dividend that a 

http://www.investopedia.com/articles/optioninvestor/09/buying-options.asp
http://www.investopedia.com/terms/d/dividend.asp
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stockholder can anticipate gaining till the maturity of the stock. However, dividend is not 

directly available as an expected value. We used dividend yield per annum for Standard and 

Poor index. 

5. Empirical Results 

In this section, we discuss the estimated parameters for option pricing and select the best model 

based on minimum MAE. We also discuss the evaluation of ES for both one-day and ten-days 

risk analysis. 

5.1. Calibration 

The main purpose of our study to compare the most popular and classical Black-Scholes 

models of options pricing with stochastic volatility models, jump diffusion models, infinite 

activity models and combined stochastic and jump diffusion models. We include Heston as 

stochastic volatility model, Merton and Kou as jump diffusion models, Variance Gamma as 

Infinite Activity model and Bates as combined stochastic and jump diffusion model. 

For all the models, we talked about in chapter 2, we tried to calibrate the parameters of these 

option pricing models on weekly S&P500 traded options data at Chicago Board Options 

Exchange (CBOE). Over the sample period January 2005 to December 2014. We carry out 

year-by-year calibrations, considering first six months as in-sample period and the second six 

months as out-of-sample. On the same data set, we calculate and evaluate Value at risk (VaR) 

and Expected shortfall (ES). 

Tables 63 to 82 show the calibrated model parameters together with the corresponding values 

of mean absolute error(MAE). The best model is selected by the minimization of error. For ‘in 

the sample’ and ‘out of sample’ result for year 2005 in tables 63 and 64, the results indicate 

that MJD, HS and BAT have very similar and minimum absolute error. Kou model in jump 

diffusion category has highest MAE for this sample. It is important to note that all three best 

models belong to different categories of option pricing models. Moreover, MJD has minimum 

MAE and Kou has highest MAE are both jump diffusion models. 

 For January-June 2006 in table 65 BS, BAT and MJD have minimum MAE, while for June-

December 2006 in table 66 HS, BS and MJD have minimum MAE. Again, for both sample of 

2006 Kou model has highest MAE. 
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BAT performs better than all other models for in sample 2007, in sample 2008 and out of 

sample 2008 indicated in table 67 table 69 and table 70. For all three samples HS, VG and MJD 

have very similar MEA. For out of sample 2007 BS is the best model as shown in table 68.  

  MJD has lowest MAE for both in sample and out of sample for 2009 in table 71 and 72. For 

both samples BAT has lowest MAE than HS and VG, HS and VG have similar MAE value. 

The results in table 73, 74, 76, 77, 78, 79, 80, 81, 82 shows that MJD and BAT are best 

performing models based on minimum MAE for both in samples and out of samples.  

 Our results indicate that Bates(BAT) and Merton -Jump diffusion model(MJD) outperforms 

the Black- Scholes model for both ‘in sample’ and ‘out of sample’ analysis. For all data 

samples, Kou has highest MAE, while HS and VG perform very similar in almost all cases. BS 

performs better than other models only for in sample 2011 and out of sample 2007.  

It is evident from the result that other models perform better than classical model of Black and 

Scholes model. BAT as a combined stochastic volatility model and jump diffusion model is 

the best model.   However, we cannot draw a clear conclusion about the performance of 

stochastic volatility models and jump diffusion models. On one hand, MJD is the best model 

in almost all cases but on the other hand, Kou has the highest MAE. We summarized our results 

as follows: 

1. There is no significant difference in the MAE values of all models except Kou models. 

2. For in sample and out of sample Kou has highest MAE. 

3. It is the BAT models that has smallest MAE for almost all datasets. As we know that 

Bat is hybrid model of stochastic model and jump diffusion models. 

4. The selection of Bat model give us clear indication of superiority of hybrid models over 

stochastics volatility models and jump diffusion models. 

5.2. Expected Shortfall Evaluation 

Risk modelling is an integral part of most, if not all, financial institutions. For risk management, 

we can calculate the VaR and ES for 5%, 2.5%,1% and 0.5% confidence level. As known from 

literature, there are many problems associated with VaR. Therefore, we have only measured 

different ES models as a better measure of risk 

We establish partial Monte Carlo and full Monte Carlo approaches to estimated expected 

shortfall for option risk management.  For partial Monte Carlo, we calculated Delta based and 
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Gamma based. The preceding deltas and gammas were derived from the Black Scholes 

model(BSM), Variance Gamma model(VG), Heston model(HS), Bates models(Bat), Merton 

Jump diffusion model(MJD) and Double Exponential Jump diffusion model(Kou). We implied 

other models beyond BSM to calculate delta and gamma, as know from the previous studies 

that the BSM model sometimes misprices traded options quite severely. 

The purpose of the delta based method is to linearize the option return and thereby make it fit 

into the risk models. We use gamma of an option is to construct a quadratic model of the 

portfolio return distribution, as implementations of the quadratic model relies on the Monte 

Carlo simulation technique. We also measure the expected shortfall for options using the full 

valuation method, which depends on a detailed version of the Monte Carlo simulation 

technique. 

We have evaluated expected shortfall estimates for European options for all combinations of 

the following cases: 1-day and 10 days, at a range of confidence levels, and delta and gamma 

derived from various option models. For longer horizon, ES relies on the typical shortcut to 

estimate the risk over different time horizons, is to scale by the square root of the ratio of the 

time horizons. 

We compare ES by a loss function that calculated the difference between the actual and the 

expected losses when a violation occurred. Model ranking by MAE provided in the tables 83 

to 102 for in sample and out of sample analysis. The mean absolute error appears small enough 

to suggest that the best fitting models are reasonable. ES evolution results for 10- days horizon 

for options also presented for in sample and out of sample analysis. We have used Monte Carlo 

Delta based, Monte Carlo Gamma based and full Monte Carlo (Full valuation) to calculate one-

day risk and long-term risk (10- day risk) for options. 

For in sample for Jan-2005 to June 2005, the table 83 shows that MC-MJD-Delta models have 

minimum MAE for 1-day ahead ES for all significance levels. MC-MJD-Gamma and MC-HS-

Delta are second and third best models respectively for one day-ahead ES for all confidence 

level. Full valuation is the fourth best model at 1 % significance level while MC-BAT-Delta is 

the third best model at 2.5%, 5% and 10% significance level. For the same sample, we observed 

that for 10-day ES MC-MJD-Delta, MC-HS-Delta, MC-Bat-Delta and MC-MJD-Gamma are 

first, second, third and fourth best models respectively. From these results, we observed that as 

compare to 1-day ES 10-day MAE values are significantly different across models and 
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significance levels. Moreover, ranking the of the models across horizon not the same. MC-

Kou-Delta, MC-Kou-Gamma, MC-VG-Delta and MC-VG-Gamma have highest MAE. 

MC-HS-Delta, MC-MJD-Delta, and MC-MJD-Gamma are first, second, and third models 

based on the smallest value of MAE for out of sample data for the period July2005-December 

2005 in table 84. At 1% and 2.5% confidence levels MC-Bat-Delta is the fourth best model 

and at 5% and 10% confidence levels MC-HS-Gamma is the fourth confidence level. 

For in sample Jan 2006-June 2006 in table 85 again MC-MJD-Delta has smallest MAE value 

for both 1-day and 10-days ES. MC-Bates-Delta, MC-HS-Delta and full valuation are second, 

third and fourth best model for 1-day ES. For 10-days ES MC-MJD-Delta MC-Bates-Delta, 

and MC-HS-Delta are the first three best models but MC-BS-Delta came fourth instead of full 

valuation. 

MC-HS-Delta, MC-MJD-Delta, MC-HS-Gamma and MC-MJD-Gamma are four top models 

for out of sample July 2006-Dec 2006 respectively in table 86 for 1-day ES. For 10-days ES 

full valuation came third after MC-HS-Delta and MC-MJD-Delta. For 10-days sample full 

valuation performs better than of MC-HS-Gamma and MC-MJD-Gamma. 

Table 87 shows that for in sample Jan2007-June 2007 full valuation is the second-best model 

for 1-day ES, and the third best model for 10-days ES. While the MC-Bat-Delta has the smallest 

MAE value for both 1-day and 10-day ES. For the out of sample July 2007-Dec 2007 in table 

88 full valuation is the fourth best model for 1-day ES, and the third best model for day ES for 

10-days ES. 

For the out of sample July 2007- Dec2007 in table 88 MC-HS-Delta, MC-MJD-Delta, MC-

HS-Gamma and full valuation are the four top models respectively for 1-day ES. For 10- days 

ES MC-HS-Delta, MC-MJD-Delta, full valuation and MC-BS-Delta are the four top models. 

Table 89 represents that MC-BS-Delta, MC-Bat-Delta, MC-Bat-Delta and MC-HS-Delta have 

smallest MAE respectively for 1-day ES. For 10-days ES Full Valuation, MC-BS-Delta, MC-

Bat-Delta and MC-HS-Delta are top four models respectively based on minimum value of 

MAE. 

If we observe at tables 90, table 91, table 92, table 93, table 94, table 95, table 96, table 97, 

table 98, table 99, table 100, table 101 and table 102 we can summarize our results as follows:   
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1. MC-HS-Delta, MC-MJD-Delta, MC-HS-Gamma, full valuation and MC-MJD-Gamma 

are the top models for 1-day ES. 

2. Although MC-BS-Delta in many cases remain in top four models based on the 

minimum value of MAE, but only in few cases is the first best model for 1-day ES. 

While, for 10-day ES MC-BS-Delta is the best model for many data sets. 

3. MC-BS-Gamma models never appear in the four top models. 

4. We observed that as compare to 1-day ES 10-day MAE values are significantly 

different across models and significance levels. Moreover, ranking the of the models 

across horizon not the same. 

5. It is not necessary that top four model for 1-day ES and 10-day ES are same models. 

6. In many cases, full valuation is in the four top models. In those cases, where full 

valuation is not in best four models, the MAE value of full valuation is not substantially 

different from other models. 

7. In the view of Christoffersen (2012) for risk management for longer horizons the full 

valuation approach may be the only reliable choice. 

8. In almost for all the data sets MC-Kou-Delta, MC-Kou-Gamma, MC-VG-Delta and 

MC-VG-Gamma have the highest MAE for both 1-day and 10- days ES. 

6.Concluding Remarks 

In this chapter, we calibrate different option pricing models and compare them with traditional 

Black –Scholes model. The results indicate that non-normal option pricing models are more 

suitable than the Black Scholes Model. However, we cannot draw any conclusions out of 

stochastics volatility model, jump diffusion models and infinite actively models, which model 

performs better. Bates models as combines stochastic and jump diffusion model is the only 

category of option pricing model that performs better for all samples of options. From jump 

diffusion category MJD model is one of the best model but Kou has the highest MAE for all 

data samples. Both Heston model as stochastic volatility model and Variance Gamma model 

as infinity model, have very similar MAE value.  

In the second part of the chapter, we evaluated various ES models based on partial Monte Carlo 

and full Monte Carlo method. For partial Monte Carlo, we have calculated Delta based and 

Delta Gamma based. The preceding deltas and gammas were derived from the Black Scholes 

model(BSM), Heston model, Merton Jump diffusion model and Bates model. We evaluate 1- 
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day and 10-days Expected Shortfall (ES) for options based on minimum mean absolute 

error(MAE).  

Results for ES evaluation indicates that Delta based Monte Carlo models are the dominate 

models in the top models. In most of the cases MC-HS-Delta, MC-MJD-Delta MC-HS-

Gamma, full valuation and MC-MJD-Gamma are the best performing models. Kou models 

have highest MAE for both option pricing and ES evaluation. It is also evident from the results 

that full valuation is one of the top models for 1-day ES and 10-days ES for many datasets. 

This has clear implication for longer horizon risk analysis, as per Christoffersen (2012) for risk 

management for longer horizons the full valuation approach may be the only reliable choice.  
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Table 62: In Sample Model Calibration for Option Traded over the Period 

Jan 2005-June 2005. 

Model 

 

MAE Parameters 

 

BS 

 

0.0138 

 

(𝜎) 

0.00300 

 

 

       

VG 0.0736 (𝜎) 

0.0543 

(𝜃) 

0.2004 

(𝑣) 
0.0306 

 

 

     

HS 0.0136 (𝑣0) 
0.0694 

 

(𝑣𝑇) 
0.01008 

(𝜌) 
0.9280 

(𝑘) 
0.1151 

(𝜎) 

0.2491 

 

 

   

BAT 0.0136 (𝑣0) 
0.02 

 

(𝑣𝑇) 
0.01 

(𝜌) 

-0.0009 

(𝑘) 
1.0000 

(𝜎) 

0.0021 

(𝜆) 
0.0200 

(𝑢𝐽) 

-0.000 

(𝑣𝐽) 

0.0030 

 

 

MJD 0.0130 (𝑣) 
0.202 

(𝜆) 

0.9011 

 

(𝑢𝐽) 

-0.2000 

(𝑣𝐽) 

0.6031 

 

 

    

Kou 0.0841 (𝑣) 
0.1311 

 

(𝜆) 
0.1304 

 

(𝑝) 
0.0590 

(𝜂1) 
0.5413 

(𝜂2) 
0.8991 

 

 

   

Note: Calibration with Options traded over the period January 2005-June 2005. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives. BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 63: Out of Sample Model Calibration for Option Traded over the 

Period July 2005-December 2005. 

Model 

 

 

MAE Parameters 

 

BS 

 

0.0185 

 

(σ) 

0.00843 

 

 

       

VG 0.0147 

 
(𝜎) 

0.0168 

 

 

(𝜃) 

0.0607 

(𝑣) 
0.2707 

     

HS 0.0141 

 
(𝑣0) 

0.0832 

 

 

(𝑣𝑇) 
0.1238 

(𝜌) 
0.5870 

(𝑘) 
0.3149 

(𝜎) 

0.7145 

   

BAT 0.0135 (𝑣0) 
0.0115 

 

 

(𝑣𝑇) 
0.6544 

(𝜌) 
-0.0124 

(𝑘) 
0.1516 

(𝜎) 

0.0147 

(𝜆) 
0.3400 

(𝑢𝐽) 

-0.0322 

(𝑣𝐽) 

0.0646 

MJD 0.0139 (𝑣) 
0.0456 

 

 

(𝜆) 
0.1936 

(𝑢𝐽) 

-0.0230 

(𝑣𝐽) 

0.1470 

    

Kou 0.0997 (𝑣) 
0.1451 

 

 

(𝜆) 
0.1240 

(𝑝) 
0.0101 

(𝜂1) 
0.4988 

(𝜂2) 
0.8000 

   

Note: Calibration with Options traded over the period July 2005-December 2005. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives. BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 64: In Sample Model Calibration for Option Traded over the Period 

January 2006-June2006. 

Model 

 

 

MAE 

 

Parameters 

 

 

BS 

 

 

 

0.0112 

 

 

 

 

(σ) 

0.0020 

 

 

 

       

VG 

 

0.0132 

 

 

 

(𝜎) 

0.0101 

 

 

 

(𝜃) 

0.7102 

(𝑣) 
0.0430 

     

HS 

 

0.0133 

 

 

(𝑣0) 
0.900 

 

 

 

(𝑣𝑇) 
0.899 

(𝜌) 
0.9000 

(𝑘) 
0.0100 

(𝜎) 

0.4065 

   

BAT 

 

0.0113 

 

 

(𝑣0) 
0.2001 

 

 

 

(𝑣𝑇) 
0.1000 

(𝜌) 
-0.0099 

(𝑘) 
0.0999 

(𝜎) 

0.0200 

(𝜆) 
0.1000 

(𝑢𝐽) 

-0.0003 

(𝑣𝐽) 

0.0010 

MJD 

 

0.0125 (𝑣) 
0.4020 

 

 

 

(𝜆) 
0.7010 

(𝑢𝐽) 

-0.4000 

(𝑣𝐽) 

0.5030 

    

Kou 

 

0.1148 (𝑣) 
0.0240 

 

 

 

(𝜆) 
0.0100 

(𝑝) 
0.0100 

(𝜂1) 
0.603 

(𝜂2) 
1.000 

   

Note: Calibration with Options traded over the period January 2006-June 2006. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives. BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 65: Out of Sample Model Calibration for Option Traded over the 

Period July 2006-December 2006. 
Model 

 

 

MAE Parameters 

 

 

BS 

 

 

 

 

 

 

0.0129 

 

 

(σ) 

0.0019 

 

       

VG 

 

 

 

 

0.0132 (𝜎) 

0.0025 

 

(𝜃) 

0.0100 

(𝑣) 
0.0324 

     

HS 

 

 

 

 

0.0125 (𝑣0) 
0.07450 

 

(𝑣𝑇) 
0.3547 

(𝜌) 
0.4130 

(𝑘) 
0.7790 

(𝜎) 

0.4146 

   

BAT 

 

 

 

 

0.0161 (𝑣0) 
0.9230 

 

(𝑣𝑇) 
0.7580 

(𝜌) 
0.0001 

(𝑘) 
0.1307 

(𝜎) 

0.02450 

(𝜆) 
0.4500 

(𝑢𝐽) 

-0.0009 

(𝑣𝐽) 

0.6230 

MJD 

 

 

 

 

0.0131 (𝑣) 
0.0013 

 

(𝜆) 
0.0103 

(𝑢𝐽) 

-0.123 

(𝑣𝐽) 

0.247 

    

Kou 

 

 

 

0.1001 (𝑣) 
0.1451 

 

(𝜆) 
0.1240 

(𝑝) 
0.0101 

(𝜂1) 
0.4414 

(𝜂2) 
0.9000 

   

Note: Calibration with Options traded over the period July 2006-December 2006. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 66: In Sample Model Calibration for Option Traded over the Period 

January 2007-June 2007. 
Model MAE Parameters 

 

 

BS 

 

 

 

 

0.0174 

 

(σ) 

0.00460 

 

       

VG 

 

 

 

0.0175 (𝜎) 

0.0108 

 

(𝜃) 

0.1124 

(𝑣) 
0.0792 

     

HS 

 

 

 

0.0172 (𝑣0) 
0.0324 

 

(𝑣𝑇) 
0.0221 

(𝜌) 
1.0132 

(𝑘) 
0.0549 

(𝜎) 

0.2032 

   

BAT 

 

 

 

0.0138 (𝑣0) 
0.0923 

 

(𝑣𝑇) 
0.0758 

(𝜌) 
-0.0001 

(𝑘) 
0.0523 

(𝜎) 

0.0101 

(𝜆) 
0.450 

(𝑢𝐽) 

-0.0009 

(𝑣𝐽) 

0.0623 

MJD 

 

 

 

0.0172 (𝑣) 
0.3210 

 

(𝜆) 
0.8790 

(𝑢𝐽) 

-0.0651 

(𝑣𝐽) 

0.7123 

    

Kou 

 

0.1180 (𝑣) 
0.0114 

 

(𝜆) 
0.0100 

(𝑝) 
0.5610 

(𝜂1) 
0.9530 

(𝜂2) 
0.999 

   

Note: Calibration with Options traded over the period January 2007-June 2007. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 67: Out of Sample Model Calibration for Option Traded over the 

Period July 2007-December 2007. 

Model 

 

MAE Parameters 

 

BS 

 

 

 

 

0.0136 

 

(σ) 

0.0065 

 

       

VG 

 

 

 

0.0172 (𝜎) 

0.0045 

 

(𝜃) 

0.0126 

(𝑣) 
0.0432 

     

HS 

 

 

 

0.0161 (𝑣0) 
0.6528 

 

(𝑣𝑇) 
0.7973 

(𝜌) 
0.7332 

(𝑘) 
0.7790 

(𝜎) 

0.4646 

   

BAT 

 

 

 

0.0224 (𝑣0) 
0.5734 

 

(𝑣𝑇) 
0.6408 

(𝜌) 
-0.0124 

(𝑘) 
0.1559 

(𝜎) 

0.0214 

(𝜆) 
0.4055 

(𝑢𝐽) 

-0.0214 

(𝑣𝐽) 

0.4053 

MJD 

 

 

 

0.0172 (𝑣) 
0.0072 

 

(𝜆) 
0.0420 

(𝑢𝐽) 

0.0810 

(𝑣𝐽) 

0.7100 

    

Kou 0.1358 (𝑣) 
0.0748 

 

(𝜆) 
0.1441 

(𝑝) 
0.7087 

(𝜂1) 
0.4145 

(𝜂2) 
0.2137 

   

Note: Calibration with Options traded over the period July 2007-December 2007. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 68: In sample Model Calibration for Option Traded over the Period 

January 2008-June 2008 
Model 

 

MAE Parameters 

 

BS 

 

0.0251 

 

 

(σ) 

0.00534 

 

       

VG 

 

 

 

 

0.0251 (𝜎) 

0.2191 

 

(𝜃) 

0.4418 

(𝑣) 
0.4698 

     

HS 

 

 

 

0.0255 (𝑣0) 
0.0524 

 

(𝑣𝑇) 
0.0611 

(𝜌) 
0.6848 

(𝑘) 
0.2890 

(𝜎) 

0.5032 

   

BAT 

 

 

 

 

0.0211 (𝑣0) 
0.4495 

 

(𝑣𝑇) 
0.3698 

(𝜌) 
-0.0121 

(𝑘) 
0.1559 

(𝜎) 

0.0101 

(𝜆) 
0.4499 

(𝑢𝐽) 

-0.0009 

(𝑣𝐽) 

0.1627 

MJD 

 

 

 

 

0.0274 

 
(𝑣) 

0.983 

 

(𝜆) 
0.0263 

(𝑢𝐽) 

-0.0005 

(𝑣𝐽) 

0.0126 

    

Kou 

 

 

0.1347 

 
(𝑣) 

0.0608 

 

(𝜆) 
0.0212 

(𝑝) 
0.0061 

(𝜂1) 
0.5208 

(𝜂2) 
0.800 

   

Note: Calibration with Options traded over the period January 2008-June 2008. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 69: Out of Sample Model Calibration for Option Traded over the 

Period July 2008-December 2008. 

Model 

 

MAE Parameters 

 

BS 

 

 

 

 

0.0183 

 

(σ) 

0.0032 

 

       

VG 

 

 

 

 

0.0185 (𝜎) 

0.0025 

 

(𝜃) 

0.0100 

(𝑣) 
0.0324 

     

HS 

 

 

 

0.0178 (𝑣0) 
0.0480 

 

(𝑣𝑇) 
0.7756 

(𝜌) 
0.7330 

(𝑘) 
0.7786 

(𝜎) 

0.4646 

   

BAT 

 

 

 

0.0153 (𝑣0) 
0.9230 

 

(𝑣𝑇) 
0.7580 

(𝜌) 
0.0001 

(𝑘) 
0.0523 

(𝜎) 

0.0214 

(𝜆) 
0.4500 

(𝑢𝐽) 

-0.0009 

(𝑣𝐽) 

0.6230 

MJD 

 

 

 

0.0185 (𝑣) 
0.0014 

 

(𝜆) 
0.0001 

(𝑢𝐽) 

-0.0737 

(𝑣𝐽) 

0.6447 

    

Kou 

 

 

 

0.1034 (𝑣) 
0.01468 

 

(𝜆) 
0.1440 

(𝑝) 
0.0101 

(𝜂1) 
0.4168 

(𝜂2) 
0.9000 

   

Note: Calibration with Options traded over the period July 2008-December 2008. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 70: In Sample Model Calibration for Option Traded over the Period 

January 2009-June 2009. 
Model 

 

MAE Parameters 

 

BS 

 

0.0189 

 

(σ) 

0.0004 

 

       

VG 

 

 

 

0.0188 (𝜎) 

0.0254 

 

(𝜃) 

0.202 

(𝑣) 
0.0742 

     

HS 

 

 

 

 

0.0187 (𝑣0) 
0.0361 

 

(𝑣𝑇) 
0.0201 

(𝜌) 
0.9000 

(𝑘) 
0.1199 

(𝜎) 

0.1032 

   

BAT 

 

 

 

 

0.0148 (𝑣0) 
0.2000 

 

(𝑣𝑇) 
0.1507 

(𝜌) 
-0.0011 

(𝑘) 
0.0500 

(𝜎) 

0.0200 

(𝜆) 
0.1010 

(𝑢𝐽) 

0.1000 

(𝑣𝐽) 

0.1000 

MJD 

 

 

 

 

0.0107 (𝑣) 
0.6009 

 

(𝜆) 
0.1635 

(𝑢𝐽) 

-0.0053 

(𝑣𝐽) 

0.6141 

    

Kou 

 

 

 

0.0345 (𝑣) 
0.0209 

 

(𝜆) 
0.6859 

(𝑝) 
0.1813 

(𝜂1) 
0.7038 

(𝜂2) 
0.2077 

   

Note: Calibration with Options traded over the period January 2009-July 2009. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives. BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 

  



220 
 

Table 71: Out of Sample Model Calibration for Option Traded over the 

Period July 2009-December 2009. 

Model MAE  

Parameters 

 

BS 

 

0.0143 

 

(σ) 

0.0005 

 

       

VG 

 

 

 

 

 

0.0142 (𝜎) 

0.0478 

 

(𝜃) 

0.0085 

(𝑣) 
0.1198 

     

HS 

 

 

 

 

0.0141 (𝑣0) 
0.2733 

 

(𝑣𝑇) 
0.8265 

(𝜌) 
0.1485 

(𝑘) 
0.6011 

(𝜎) 

0.4521 

   

BAT 

 

 

 

0.0086 (𝑣0) 
0.2479 

 

(𝑣𝑇) 
0.1684 

(𝜌) 
0.4982 

(𝑘) 
0.0740 

(𝜎) 

0.0040 

(𝜆) 
0.1462 

(𝑢𝐽) 

-0.0029 

(𝑣𝐽) 

0.3294 

MJD 

 

 

 

0.0054 (𝑣) 
0.3111 

 

(𝜆) 
0.0501 

(𝑢𝐽) 

-0.0567 

(𝑣𝐽) 

0.2941 

    

Kou 0.0469 (𝑣) 
0.0189 

 

(𝜆) 
0.0810 

(𝑝) 
0.5041 

(𝜂1) 
0.0476 

(𝜂2) 
0.1400 

   

Note: Calibration with Options traded over the period July 2009-December 2009. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives. BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 72: In Sample Model Calibration for Option Traded over the Period 

January 2010-June2010. 
Model 

 

MAE Parameters 

 

BS 

 

0.0130 

 

(σ) 

0.00128 

 

       

VG 

 

 

 

 

0.0120 (𝜎) 

0.0560 

 

(𝜃) 

0.0911 

(𝑣) 
0.0052 

     

HS 

 

 

 

 

0.0111 (𝑣0) 
0.04791 

 

(𝑣𝑇) 
0.0453 

(𝜌) 
0.8130 

(𝑘) 
0.2500 

(𝜎) 

0.521 

   

BAT 

 

 

 

 

0.0094 (𝑣0) 
0.3632 

 

(𝑣𝑇) 
0.5025 

(𝜌) 
-0.0095 

(𝑘) 
0.9990 

(𝜎) 

0.002 

(𝜆) 
0.2024 

(𝑢𝐽) 

0.0005 

(𝑣𝐽) 

0.0629 

MJD 

 

 

 

 

0.0068 (𝑣) 
0.3667 

 

(𝜆) 
0.0497 

(𝑢𝐽) 

-0.0335 

(𝑣𝐽) 

0.5926 

    

Kou 

 

 

 

 

0.0501 (𝑣) 
0.0120 

 

(𝜆) 
0.0403 

(𝑝) 
0.0601 

(𝜂1) 
0.7034 

(𝜂2) 
0.700 

   

Note: Calibration with Options traded over the period January 2010-June 2010. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 73: Out of Sample Model Calibration for Option Traded over the 

Period July 2010-December 2010. 

Model 

 

MAE Parameters 

 

BS 

 

 

 

 

0.0145 

 

(σ) 

0.0011 

 

       

VG 

 

 

 

 

0.0145 (𝜎) 

0.0597 

 

(𝜃) 

0.0266 

(𝑣) 
0.0980 

     

HS 

 

 

 

 

0.0141 (𝑣0) 
0.3309 

 

(𝑣𝑇) 
0.0567 

(𝜌) 
0.8990 

(𝑘) 
0.2998 

(𝜎) 

0.6100 

   

BAT 

 

 

 

0.00845 (𝑣0) 
0.3155 

 

(𝑣𝑇) 
0.1553 

(𝜌) 
0.4983 

(𝑘) 
0.2227 

(𝜎) 

0.0040 

(𝜆) 
0.3902 

(𝑢𝐽) 

-0.0029 

(𝑣𝐽) 

0.0210 

MJD 

 

 

 

0.00842 (𝑣) 
0.3079 

 

(𝜆) 
0.0172 

(𝑢𝐽) 

-0.0049 

(𝑣𝐽) 

0.4704 

    

Kou 

 

 

 

 

0.03805 (𝑣) 
0.0086 

 

(𝜆) 
0.0009 

(𝑝) 
0.0710 

(𝜂1) 
0.0878 

(𝜂2) 
0.9498 

   

Note: Calibration with Options traded over the period July 2010-December 2010. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives. BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 74: In Sample Model Calibration for Option Traded over the Period 

January 2011-June 2011. 
Model 

 

MAE Parameters 

 

BS 

 

 

 

 

0.0011 

 

(σ) 

0.0003 

 

       

VG 

 

 

 

 

0.0101 (𝜎) 

0.0394 

 

(𝜃) 

0.0105 

(𝑣) 
0.0183 

     

HS 

 

 

 

 

0.0111 (𝑣0) 
0.3986 

 

(𝑣𝑇) 
0.3659 

(𝜌) 
0.6405 

(𝑘) 
0.6242 

(𝜎) 

0.4965 

   

BAT 

 

 

 

 

0.0066 (𝑣0) 
0.3990 

 

(𝑣𝑇) 
0.1640 

(𝜌) 
-0.0099 

(𝑘) 
0.0999 

(𝜎) 

0.0020 

(𝜆) 
0.1962 

(𝑢𝐽) 

-0.0030 

(𝑣𝐽) 

0.0100 

MJD 

 

 

 

0.0073 

 

(𝑣) 
0.3753 

 

(𝜆) 
0.0719 

(𝑢𝐽) 

-0.0516 

(𝑣𝐽) 

0.3009 

    

Kou 

 

 

 

0.0410 (𝑣) 
0.0255 

 

(𝜆) 
0.0403 

(𝑝) 
0.0040 

(𝜂1) 
0.4499 

(𝜂2) 
0.6990 

   

Note: Calibration with Options traded over the period January 2011-June 2011. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives. BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 75: Out of Sample Model Calibration for Option Traded over the 

Period July 2011-December 2011. 
Model 

 

MAE Parameters 

 

BS 

 

 

 

 

0.0102 

 

(σ) 

0.0006 

 

       

VG 

 

 

 

 

0.0079 (𝜎) 

0.0751 

 

(𝜃) 

0.2348 

(𝑣) 
0.4942 

     

HS 

 

 

 

 

0.0098 (𝑣0) 
0.2607 

 

(𝑣𝑇) 
0.8032 

(𝜌) 
0.4328 

(𝑘) 
0.7789 

(𝜎) 

0.1646 

   

BAT 

 

 

 

 

0.0055 (𝑣0) 
0.2239 

 

(𝑣𝑇) 
0.6287 

(𝜌) 
-0.0014 

(𝑘) 
0.1553 

(𝜎) 

0.0710 

(𝜆) 
0.2308 

(𝑢𝐽) 

-0.0251 

(𝑣𝐽) 

0.2625 

MJD 

 

 

 

0.0070 (𝑣) 
0.2962 

 

(𝜆) 
0.0431 

(𝑢𝐽) 

-0.0520 

(𝑣𝐽) 

0.4952 

    

Kou 

 

 

 

 

0.0490 (𝑣) 
0.0663 

 

(𝜆) 
0.0212 

(𝑝) 
0.1878 

(𝜂1) 
0.5397 

(𝜂2) 
0.0058 

   

Note: Calibration with Options traded over the period January 201-June 2011. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 76: In Sample Model Calibration for Option Traded over the Period 

January 2012-June 2012. 
Model 

 

MAE Parameters 

 

BS 

 

 

0.0059 

 

(σ) 

0.0004 

 

       

VG 

 

 

 

0.0048 (𝜎) 

0.0734 

 

(𝜃) 

0.0097 

(𝑣) 
0.0688 

     

HS 

 

 

 

0.0060 (𝑣0) 
0.0126 

 

(𝑣𝑇) 
0.0325 

(𝜌) 
0.7461 

(𝑘) 
0.4701 

(𝜎) 

0.6142 

   

BAT 

 

 

 

 

0.0036 (𝑣0) 
0.2341 

 

(𝑣𝑇) 
0.1711 

(𝜌) 
0.2721 

(𝑘) 
0.0807 

(𝜎) 

0.432 

(𝜆) 
0.0621 

(𝑢𝐽) 

0.2000 

(𝑣𝐽) 

0.2433 

MJD 

 

 

 

0.0036 (𝑣) 
0.2803 

 

(𝜆) 
0.0386 

(𝑢𝐽) 

-0.0603 

(𝑣𝐽) 

0.2899 

    

Kou 

 

 

0.0160 (𝑣) 
0.0799 

 

(𝜆) 
0.173 

(𝑝) 
0.1780 

(𝜂1) 
0.3580 

(𝜂2) 
0.4500 

   

Note: Calibration with Options traded over the period January 2012-June 2012. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives. BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 

  



226 
 

Table 77: Out Sample Model Calibration for Option Traded over the Period 

July 2012-December 2012. 
Model 

 

MAE Parameters 

 

BS 

 

 

 

 

0.0080 

 

(σ) 

0.0003 

 

       

VG 

 

 

 

 

0.0080 (𝜎) 

0.03318 

 

(𝜃) 

0.0805 

(𝑣) 
0.0171 

     

HS 

 

 

 

 

0.0077 (𝑣0) 
0.0328 

 

(𝑣𝑇) 
0.6552 

(𝜌) 
0.3272 

(𝑘) 
0.0971 

(𝜎) 

0.0714 

   

BAT 

 

 

 

0.0059 (𝑣0) 
0.0115 

 

(𝑣𝑇) 
0.6229 

(𝜌) 
-0.0007 

(𝑘) 
0.1519 

(𝜎) 

0.0701 

(𝜆) 
0.1222 

(𝑢𝐽) 

-0.0323 

(𝑣𝐽) 

0.2686 

MJD 

 

 

 

0.0048 (𝑣) 
0.1301 

 

(𝜆) 
0.0579 

(𝑢𝐽) 

-0.1023 

(𝑣𝐽) 

0.4510 

    

Kou 

 

 

 

 

0.0465 (𝑣) 
0.0497 

 

(𝜆) 
0.3540 

(𝑝) 
0.0861 

(𝜂1) 
0.4128 

(𝜂2) 
0.8141 

   

Note: Calibration with Options traded over the period July 2012-December 2012. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 78: In Sample Model Calibration for Option Traded over the Period 

January 2013-June 2013. 

Model 

 

MAE Parameters 

 

BS 

 

 

 

 

0.0066 

 

(σ) 

0.0011 

 

       

VG 

 

 

 

0.0067 (𝜎) 

0.0722 

 

(𝜃) 

0.0128 

(𝑣) 
0.0716 

     

HS 

 

 

 

0.0065 (𝑣0) 
0.0689 

 

(𝑣𝑇) 
0.0444 

(𝜌) 
0.5290 

(𝑘) 
0.5230 

(𝜎) 

0.4742 

   

BAT 

 

 

 

0.0042 (𝑣0) 
0.1900 

 

(𝑣𝑇) 
0.1598 

(𝜌) 
-0.0099 

(𝑘) 
0.0990 

(𝜎) 

0.0040 

(𝜆) 
0.3941 

(𝑢𝐽) 

-0.0029 

(𝑣𝐽) 

0.0100 

MJD 

 

 

 

0.0040 (𝑣) 
0.1716 

 

(𝜆) 
0.0302 

(𝑢𝐽) 

-0.0660 

(𝑣𝐽) 

0.2824 

    

Kou 

 

 

 

0.0174 (𝑣) 
0.0731 

 

(𝜆) 
0.0141 

(𝑝) 
0.0218 

(𝜂1) 
0.0544 

(𝜂2) 
0.0950 

   

Note: Calibration with Options traded over the period January 2013-June 2013. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 79: Out of Sample Model Calibration for Option Traded over the 

period July 2013-December 2013. 
Model MAE Parameters 

 

BS 

 

 

 

 

0.00621 

 

(σ) 

0.0001 

 

       

VG 

 

 

 

 

0.00622 (𝜎) 

0.0482 

 

(𝜃) 

0.0937 

(𝑣) 
0.0225 

     

HS 

 

 

 

 

0.00589 (𝑣0) 
0.1636 

 

(𝑣𝑇) 
0.4238 

(𝜌) 
0.3552 

(𝑘) 
0.0511 

(𝜎) 

0.0619 

   

BAT 

 

 

 

 

0.00470 (𝑣0) 
0.0115 

 

(𝑣𝑇) 
0.6186 

(𝜌) 
-0.0012 

(𝑘) 
0.1518 

(𝜎) 

0.0682 

(𝜆) 
0.0588 

(𝑢𝐽) 

-0.0321 

(𝑣𝐽) 

0.3084 

MJD 

 

 

 

0.00369 (𝑣) 
0.0891 

 

(𝜆) 
0.0416 

(𝑢𝐽) 

-0.1078 

(𝑣𝐽) 

0.4441 

    

Kou 

 

 

 

0.00183 (𝑣) 
0.0941 

 

(𝜆) 
0.3552 

(𝑝) 
0.0918 

(𝜂1) 
0.9165 

(𝜂2) 
0.9991 

   

Note: Calibration with Options traded over the period July 2013-December 2013. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 80: In Sample Model Calibration for Option Traded over the Period 

January 2014-June 2014. 
Model 

 

MAE Parameters 

 

BS 

 

 

 

 

0.0054 

 

(σ) 

0.0039 

 

       

VG 

 

 

 

0.0055 (𝜎) 

0.0967 

 

(𝜃) 

0.0010 

(𝑣) 
0.0657 

     

HS 

 

 

 

 

0.0054 (𝑣0) 
0.1219 

 

(𝑣𝑇) 
0.0295 

(𝜌) 
0.4280 

(𝑘) 
0.3139 

(𝜎) 

0.5470 

   

BAT 

 

 

 

0.0035 (𝑣0) 
0.0350 

 

(𝑣𝑇) 
0.0861 

(𝜌) 
0.1028 

(𝑘) 
0.0531 

(𝜎) 

0.5099 

(𝜆) 
0.0199 

(𝑢𝐽) 

0.1821 

(𝑣𝐽) 

0.4020 

MJD 

 

 

 

0.0033 (𝑣) 
0.0072 

 

(𝜆) 
0.0486 

(𝑢𝐽) 

-0.0391 

(𝑣𝐽) 

0.2996 

    

Kou 

 

 

 

0.0132 (𝑣) 
0.0272 

 

(𝜆) 
0.0008 

(𝑝) 
0.0010 

(𝜂1) 
0.0373 

(𝜂2) 
0.9490 

   

Note: Calibration with Options traded over the period January 2014-June 2014. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives. BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 81: Out of Sample Model Calibration for Option Traded over the 

Period July 2014-December 2014. 
Model 

 

MAE Parameters 

 

BS 

 

 

 

 

0.00304 

 

(σ) 

0.0003 

 

       

VG 

 

 

 

 

0.00305 (𝜎) 

0.0443 

 

(𝜃) 

0.0320 

(𝑣) 
0.0092 

     

HS 

 

 

 

 

0.00292 (𝑣0) 
0.0594 

 

(𝑣𝑇) 
0.6056 

(𝜌) 
0.3270 

(𝑘) 
0.0980 

(𝜎) 

0.0714 

   

BAT 

 

 

 

 

0.00238 (𝑣0) 
0.9230 

 

(𝑣𝑇) 
0.6563 

(𝜌) 
0.0005 

(𝑘) 
0.1369 

(𝜎) 

0.0624 

(𝜆) 
0.4500 

(𝑢𝐽) 

-0.0009 

(𝑣𝐽) 

0.6231 

MJD 

 

 

 

 

0.00300 (𝑣) 
0.6048 

 

(𝜆) 
0.9891 

(𝑢𝐽) 

-0.9896 

(𝑣𝐽) 

0.9945 

    

Kou 

 

 

 

0.00911 (𝑣) 
0.0351 

 

(𝜆) 
0.3540 

(𝑝) 
0.0861 

(𝜂1) 
0.4127 

(𝜂2) 
0.0800 

   

Note: Calibration with Options traded over the period July 2014-December 2014. We consider Options 

traded on every Wednesday. We applied FFT approach to price options which is very helpful to 

efficiently price derivatives.BS stands for Black-Scholes model, VG stands for Variance Gamma infinite 

activity model, HS stands for Heston stochastic volatility model, Bat stands for Bates combined 

stochastic and volatility model, MJD stands for Merton jump diffusion model and Kou as Double 

Exponential Jump diffusion model, and MAE stands for Mean absolute error. The best fitted model 

selected based on minimum error(MAE) and represent in bold. 
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Table 82: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period Jan 2005-June 2005. 
Models 

 

1 Day MAE for ES 10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

39.38 

 

 

 

35.53 

 

32.52 

 

29.22 

 

140.05 

 

121.4 

 

105.7 

 

87.29 

MC-BS-Gamma 

 

64.17 

 

 

53.53 45.24 36.96 461.85 374.4 307.0 235.7 

MC-HS-Delta 27.08 

 

 

25.72 24.77 23.87 73.850 63.47 56.37 47.39 

MC-VG-Delta 

 

80.10 

 

 

69.52 60.89 50.95 298.87 261.1 229.01 190.19 

MC-VG-Gamma 

 

110.4 

 

 

92.72 78.00 61.74 625.8 518.9 434.9 341.8 

MC-HS-Gamma 31.77 

 

 

28.91 26.80 24.85 165.50 134.6 110.7 85.23 

MC-Bat-Delta 27.81 

 

 

26.27 25.17 24.12 78.610 68.25 59.81 50.09 

MC-Bat-Gamma 31.50 

 

 

28.80 26.78 24.89 149.21 122.5 101.6 79.26 

MC-MJD-Delta 24.86 

 

 

24.12 23.64 23.24 57.197 50.13 44.50 38.29 

MC-MJD-Gamma 26.78 

 

 

25.32 24.34 23.52 106.13 87.10 72.42 57.09 

MC-Kou-Delta 

 

 

50.238 44.400 39.772 34.701 187.28 162.59 141.86 117.18 

MC-Kou-Gamma 

 

 

79.347 66.003 55.415 44.256 531.77 434.12 357.80 276.32 

Full Valuation 

 

27.24 

 

 

27.13 27.08 27.05 164.86 142.9 116.5 87.84 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 83: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period July 2005-Dec 2005. 
Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

32.92 

 

 

 

30.62 

 

28.80 

 

26.86 

 

108.2 

 

94.29 

 

82.07 

 

67.012 

MC-BS-Gamma 

 

49.03 

 

 

42.19 37.01 31.68 360.9 294.8 241.1 181.1 

MC-VG-Delta 

 

 

27.663 26.564 25.801 25.136 73.410 63.655 55.531 46.420 

MC-VG-Gamma 

 

 

30.534 28.482 26.991 25.665 138.86 113.73 93.726 72.054 

MC-HS-Delta 25.54 

 

 

24.65 24.01 23.42 62.66 54.79 48.24 40.86 

MC-HS-Gamma- 28.89 

 

 

26.88 25.44 24.11 137.0 111.5 91.42 81.35 

MC-Bates-Delta 27.66 

 

 

26.56 25.80 25.13 73.41 63.65 55.53 46.42 

MC-Bates-Gamma 30.53 

 

 

28.48 26.99 25.66 138.8 113.7 93.72 72.05 

MC-MJD-Delta 25.65 

 

 

25.20 24.96 24.85 54.45 47.90 42.62 36.75 

MC-MJD-Gamma 26.91 

 

 

25.93 25.32 24.91 97.51 80.01 66.33 51.93 

MC-Kou-Delta 

 

 

48.274 43.122 38.870 33.951 183.13 158.80 137.81 112.38 

MC-Kou-Gamma 

 

 

64.644 55.160 47.701 39.605 388.78 320.86 266.01 204.78 

Full Valuation 

 

30.22 

 

 

29.96 29.88 29.85 79.41 67.23 56.44 45.49 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 84: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period Jan 2006-June 2006. 
Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

31.07 

 

 

 

29.38 

 

28.12 

 

26.87 

 

91.31 

 

79.68 

 

69.69 

 

57.89 

MC-BS-Gamma 

 

43.05 

 

 

37.76 33.85 30.08 300.9 244.5 199.4 150.1 

MC-VG-Delta 

 

 

30.129 28.668 27.589 26.564 84.564 73.343 64.050 53.437 

MC-VG-Gamma 

 

 

36.995 33.376 30.749 28.248 217.00 175.41 142.91 108.00 

MC-HS-Delta 30.58 

 

 

29.02 27.84 26.71 87.69 76.02 66.31 55.20 

MC-HS-Gamma- 37.89 

 

 

34.05 31.25 28.56 224.8 181.8 148.2 112.0 

MC-Bates-Delta 30.12 

 

 

28.66 27.58 26.56 84.56 73.34 64.05 53.43 

MC-Bates-Gamma 36.99 

 

 

33.37 30.74 28.24 217.0 175.4 142.9 108.0 

MC-MJD-Delta 29.92 

 

 

28.51 27.47 26.49 83.13 72.10 63.00 52.61 

MC-MJD-Gamma 35.35 

 

 

32.22 29.94 27.79 191.5 155.5 127.1 96.85 

MC-Kou-Delta 

 

 

39.048 35.688 32.998 30.108 135.53 117.14 101.64 83.496 

MC-Kou-Gamma 

 

 

61.126 51.763 44.619 37.296 438.46 355.05 290.14 220.34 

Full Valuation 

 

30.66 

 

 

29.17 28.03 26.10 273.1 236.5 205.83 170.5 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 85: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period July 2006-Dec 2006. 
Models 

 

 

1 Day MAE for ES 10 Days MAE for ES 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

35.53 

 

 

 

33.06 

 

30.95 

 

28.72 

 

117.7 

 

103.6 

 

90.53 

 

74.62 

MC-BS Gamma 

 

53.99 

 

 

46.71 40.72 34.62 392.2 325.3 267.3 202.8 

MC-VG-Delta 

 

 

47.496 42.949 38.909 34.363 175.75 155.14 135.50 111.18 

MC-VG-Gamma 

 

 

66.121 57.123 49.392 41.082 415.26 349.16 290.71 224.19 

MC-HS-Delta 26.23 

 

 

25.97 24.81 23.77 49.47 44.60 40.26 35.36 

MC-HS-Gamma- 28.07 

 

 

27.04 31.25 28.56 118.3 97.85 80.51 61.85 

MC-Bates-Delta 42.17 

 

 

38.53 35.31 31.76 151.5 133.5 116.4 95.68 

MC-Bates-Gamma 57.49 

 

 

50.02 43.70 37.04 361.9 303.7 252.2 193.7 

MC-MJD-Delta 26.61 

 

 

26.21 25.94 25.78 54.87 49.16 44.01 38.16 

MC-MJD-Gamma 29.52 

 

 

28.04 26.97 26.14 143.5 118.2 96.73 73.51 

MC-Kou-Delta 

 

 

49.698 44.790 40.409 35.483 185.32 163.64 143.02 117.40 

MC-Kou-Gamma 

 

 

91.252 76.770 64.347 51.057 681.88 567.34 468.96 360.59 

Full Valuation 

 

30.26 

 

 

30.17 30.13 30.10 107.1 89.69 77.03 61.64 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 86: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period Jan 2007-June 2007. 
Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

36.05 

 

 

 

34.03 

 

32.46 

 

30.92 

 

105.6 

 

91.05 

 

78.27 

 

63.53 

MC-BS-Gamma 

 

52.79 

 

 

45.67 40.46 35.35 367.8 293.9 234.1 170.1 

MC-VG-Delta 

 

 

51.884 46.828 42.515 37.718 184.92 159.19 136.22 108.80 

MC-VG-Gamma 

 

 

99.782 82.184 68.790 54.572 744.84 602.08 485.23 361.46 

MC-HS-Delta 54.86 

 

 

49.32 44.57 39.17 197.9 170.5 145.9 116.4 

MC-HS-Gamma- 78.50 

 

 

66.60 57.47 47.43 483.2 393.4 318.5 236.1 

MC-Bat-Delta 34.08 

 

 

32.53 31.38 30.30 92.87 80.27 69.29 56.79 

MC-Bat-Gamma 41.93 

 

 

37.80 34.86 32.05 236.8 189.8 151.4 110.9 

MC-MJD-Delta 44.86 

 

 

41.02 37.90 34.45 152.5 131.3 112.4 89.94 

MC-MJD-Gamma 61.76 

 

 

53.21 46.69 39.77 380.2 308.2 248.2 182.5 

MC-Kou-Delta 

 

 

53.609 48.279 43.699 38.549 192.55 165.79 141.86 113.27 

MC-Kou-Gamma 

 

 

76.432 64.955 56.123 46.454 471.06 383.33 310.17 229.792 

Full Valuation 

 

34.99 

 

 

34.86 34.81 30.78 118.2 97.96 80.42 62.54 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 87: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period July 2007-Dec 2007. 

Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

MC-BS-Delta 34.11 

 

 

32.05 30.40 28.87 108.1 94.44 81.77 67.29 

MC-BS-Gamma 

 

52.23 

 

 

44.75 38.89 33.54 391.2 319.0 257.9 194.3 

MC-VG-Delta 

 

 

54.436 48.357 43.055 37.457 204.41 179.00 155.25 127.31 

MC-VG-Gamma 

 

 

109.11 90.101 73.998 57.529 832.73 684.65 560.05 430.01 

MC-HS-Delta 27.88 

 

 

25.54 24.36 22.33 54.68 48.56 43.40 37.57 

MC-HS-Gamma 31.10 

 

 

29.47 28.38 27.57 166.6 135.1 108.4 81.28 

MC-Bat-Delta 69.72 

 

 

61.25 53.62 45.24 263.8 231.5 201.0 165.2 

MC-Bat-Gamma 113.2 

 

 

94.85 78.94 62.22 748.1 619.1 507.4 389.7 

MC-MJD-Delta 30.36 

 

 

29.25 28.43 27.70 81.41 71.29 62.05 51.69 

MC-MJD-Gamma 38.74 

 

 

34.79 31.89 29.43 255.1 207.5 167.0 125.4 

MC-Kou-Delta 

 

 

51.538 45.963 41.128 36.078 192.47 168.49 146.09 119.73 

MC-Kou-Gamma 

 

 

70.014 59.827 51.149 42.204 422.34 351.89 290.16 223.35 

Full Valuation 

 

32.53 

 

 

31.38 30.32 27.28 98.15 81.96 67.14 52.94 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 88: Back-testing Shortfall for Short S & P 500 Call over the Period 

Jan 2008-June 2008. 

Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

36.076 

 

 

35.091 

 

34.480 

 

34.046 

 

88.676 

 

76.955 

 

67.192 

 

55.657 

MC-BS-Gamma 

 

 

45.122 40.742 37.803 35.305 313.73 250.43 199.56 143.99 

MC-VG-Delta 

 

 

49.590 45.056 41.651 38.008 180.79 155.46 133.63 106.58 

MC-VG-Gamma 

 

 

108.01 87.201 71.373 55.065 934.01 760.63 622.79 469.71 

MC-HS-Delta 

 

 

44.357 42.110 38.646 36.166 151.19 129.93 111.83 89.618 

MC-HS-Gamma 

 

 

65.028 55.304 48.197 41.232 477.52 386.11 312.47 229.49 

MC-Bat-Delta 

 

 

39.182 37.254 35.879 34.647 116.06 100.05 86.570 70.123 

MC-Bat-Gamma 

 

 

52.645 46.077 41.550 37.321 376.73 303.08 243.76 177.05 

MC-MJD-Delta 

 

 

46.360 42.616 39.777 36.848 163.04 140.06 120.52 96.330 

MC-MJD-Gamma 

 

 

69.424 58.664 50.729 42.754 510.40 413.19 334.89 246.64 

MC-Kou-Delta 

 

 

51.171 

 

46.284 42.570 38.589 189.03 162.62 139.78 111.38 

MC-Kou-Gamma 

 

 

57.159 50.535 45.433 40.192 282.90 236.30 197.24 150.57 

Full Valuation 

 

 

41.984 38.284 36.214 33.184 77.549 62.611 50.965 41.973 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 89: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period July 2008-Dec 2008. 
Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

29.398 

 

 

 

28.878 

 

28.701 

 

28.109 

 

70.617 

 

59.234 

 

50.205 

 

41.801 

MC-BS-Gamma 

 

 

35.762 32.120 30.154 29.939 269.49 206.95 161.07 115.00 

MC-VG-Gamma 

 

 

52.607 45.082 39.743 34.675 217.45 183.49 154.36 123.38 

MC-VG-Gamma 

 

 

105.41 81.840 65.075 49.071 819.97 643.39 514.28 383.63 

MC-HS-Delta 

 

 

31.799 30.187 28.735 26.253 60.249 49.321 38.847 28.701 

MC-HS-Gamma 

 

 

33.657 31.881 29.376 28.928 76.729 57.915 45.854 36.292 

MC-Bat-Delta 

 

 

33.640 31.436 30.077 29.054 115.51 96.157 80.124 63.935 

MC-Bat-Gamma 

 

 

50.579 41.636 36.128 31.733 412.47 320.72 253.30 184.44 

MC-MJD-Delta 

 

 

32.413 30.635 29.587 28.857 105.31 87.618 73.112 58.565 

MC-MJD-Gamma 

 

 

35.453 32.374 30.536 29.194 180.83 143.84 115.67 86.127 

MC-Kou-Delta 

 

 

60.340 51.018 44.211 37.569 248.86 210.68 177.81 142.66 

MC-Kou-Gamma 

 

 

73.462 60.178 50.442 41.088 405.24 329.46 270.89 207.54 

Full Valuation 

 

 

36.983 35.693 34.583 33.533 86.357 62.066 46.707 35.552 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 90: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period Jan 2009-June 2009. 

Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

24.082 

 

23.230 

 

22.694 

 

21.742 

 

78.030 

 

64.633 

 

53.269 

 

40.804 

MC-BS-Gamma 

 

 

28.545 25.238 23.602 23.097 303.24 243.25 196.56 145.85 

MC-VG-Delta 

 

 

34.923 30.206 27.028 24.346 185.62 160.09 137.95 110.73 

MC-VG-Gamma 

 

 

62.857 48.913 38.803 30.129 509.70 417.17 343.59 262.74 

MC-HS-Delta 

 

 

35.730 29.821 25.106 18.309 67.101 55.679 44.766 33.967 

MC-HS-Gamma 

 

 

34.121 32.774 31.653 30.421 73.164 57.306 44.367 33.0879 

MC-Bat-Delta 

 

 

25.760 24.489 23.765 23.258 63.581 52.131 43.106 33.975 

MC-Bat-Gamma 

 

 

29.973 28.947 28.166 26.158 194.96 156.00 124.91 90.460 

MC-MJD-Delta 

 

 

28.341 24.882 23.874 21.917 49.382 43.388 39.224 35.501 

MC-MJD-Gamma 

 

 

25.616 24.139 23.368 23.079 163.98 128.90 101.15 70.903 

MC-Kou-Delta 

 

 

30.438 27.119 25.005 23.438 161.49 138.68 118.90 94.570 

MC-Kou-Gamma 

 

 

57.164 44.277 35.394 28.104 503.95 410.34 336.54 256.15 

Full Valuation 

 

 

47.919 45.139 42.569 38.005 145.130 114.04 88.610 63.283 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 91: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period July 2009-Dec 2009. 
Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

27.189 

 

26.122 

 

25.954 

 

24.904 

 

64.793 

 

53.316 

 

44.521 

 

43.089 

MC-BS-Gamma 

 

 

29.188 27.179 26.180 26.077 234.33 185.15 145.45 138.70 

MC-VG-Delta 

 

 

38.179 33.752 30.556 30.056 180.30 153.50 129.48 125.12 

MC-VG-Gamma 

 

 

59.916 47.702 39.225 37.915 465.06 377.04 304.78 292.28 

MC-HS-Delta 

 

 

27.077 26.287 25.932 25.905 92.799 76.738 62.578 60.127 

MC-HS-Gamma 

 

 

32.578 29.298 27.292 27.024 263.41 210.679 167.38 159.89 

MC-Bates-Delta 

 

 

26.845 25.737 24.275 23.975 69.333 51.740 46.092 45.183 

MC-Bates-Gamma 

 

 

26.503 24.986 23.952 22.939 158.29 123.94 95.758 90.878 

MC-MJD-Delta 

 

 

26.055 25.888 24.015 23.071 69.720 57.154 47.358 45.752 

MC-MJD-Gamma 

 

 

27.116 26.222 25.898 25.888 144.64 115.49 91.068 86.768 

MC-Kou-Delta 

 

 

55.922 47.473 40.399 39.231 259.20 222.70 190.01 184.08 

MC-Kou-Gamma 

 

 

103.54 81.988 63.890 60.824 734.93 595.92 483.42 464.10 

Full Valuation 

 

 

38.691 38.751 38.141 38.031 288.15 183.23 89.218 74.331 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 92: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period Jan 2010-June 2010. 

Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

32.181 

 

31.085 

 

30.690 

 

30.481 

 

65.602 

 

53.418 

 

45.410 

 

44.071 

MC-BS-Gamma 

 

 

32.524 32.524 30.504 30.479 248.97 192.52 150.71 143.50 

MC-VG-Delta 

 

 

39.331 35.448 33.066 32.705 183.01 153.67 129.94 125.37 

MC-VG-Gamma 

 

 

58.18 46.364 39.404 38.361 463.62 369.52 298.57 286.17 

MC-HS-Delta 

 

 

30.479 27.579 25.907 23.993 71.187 57.490 48.309 46.760 

MC-HS-Gamma 

 

 

31.989 30.816 29.479 27.474 212.24 164.92 129.25 123.01 

MC-Bat-Delta 

 

 

31.119 31.025 30.652 30.475 67.316 54.647 46.286 44.881 

MC-Bat-Gamma 

 

 

31.329 30.588 30.524 29.493 183.40 142.37 111.29 105.84 

MC-MJD-Delta 

 

 

31.118 31.025 30.652 30.475 67.325 54.655 46.293 44.887 

MC-MJD-Gamma 

 

 

31.658 30.691 30.474 30.490 203.38 157.71 123.28 117.26 

MC-Kou-Delta 

 

 

55.472 46.423 40.487 39.536 261.49 221.92 189.92 183.74 

MC-Kou-Gamma 

 

 

79.902 62.029 50.125 48.257 520.91 421.66 345.94 332.59 

Full Valuation 

 

 

42.589 42.519 42.289 42.179 134.74 105.84 82.190 78.204 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 93: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period July 2010-Dec 2010. 

Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

31.688 

 

 

 

30.599 

 

29.236 

 

29.088 

 

62.079 

 

51.531 

 

43.962 

 

42.731 

MC-BS-Gamma 

 

33.286 

 

 

32.755 31.148 30.108 232.90 182.34 142.08 135.27 

MC-VG-Delta 

 

 

35.184 32.507 30.740 30.482 152.91 128.41 107.34 103.46 

MC-VG-Gamma 

 

 

59.717 47.421 39.478 38.315 538.52 430.35 344.93 330.68 

MC-HS-Delta 35.572 

 

 

34.457 33.847 32.213 79.780 58.351 42.116 39.882 

MC-HS-Gamma- 35.550 

 

 

34.274 33.467 32.618 77.277 52.724 40.315 34.029 

MC-Bat-Delta 30.307 

 

 

30.190 29.165 28.281 50.453 43.080 37.918 37.083 

MC-Bat-Gamma 32.499 

 

 

31.407 30.194 29.116 130.52 101.22 77.312 73.251 

MC-MJD-Delta 30.530 

 

 

29.448 29.157 28.101 66.534 54.821 46.356 44.965 

MC-MJD-Gamma 31.741 

 

 

30.173 29.119 29.051 143.69 113.40 88.450 84.130 

MC-Kou-Delta 

 

 

42.973 37.933 34.333 33.771 202.07 171.37 144.97 140.11 

MC-Gamma 

 

 

59.452 48.318 40.731 39.576 429.09 349.12 283.82 272.57 

Full Valuation 

 

 

43.509 

 

43.409 42.969 42.739 92.660 70.726 55.170 53.003 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 94: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period Jan 2011-June 2011. 
Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

32.420 

 

32.340 

 

32.043 

 

31.998 

 

70.134 

 

58.056 

 

49.579 

 

48.168 

MC-BS-Gamma 

 

 

34.898 32.974 32.141 32.068 260.60 203.43 158.73 151.13 

MC-VG-Delta 

 

 

48.138 42.328 38.245 37.601 224.01 189.84 161.14 155.77 

MC-VG-Gamma 

 

 

65.576 53.295 45.034 43.761 462.06 375.15 305.31 293.23 

MC-HS-Delta 

 

 

32.533 32.067 32.010 31.990 92.519 75.277 62.302 60.114 

MC-HS-Gamma 

 

 

36.241 33.776 32.509 32.363 255.69 201.96 159.19 151.84 

MC-Bates-Delta 

 

 

32.077 31.583 31.185 30.987 63.114 52.944 45.843 44.667 

MC-Bates-Gamma 

 

 

32.656 32.056 31.016 30.060 169.319 131.89 101.96 96.809 

MC-MJD-Delta 

 

 

33.410 32.470 32.047 32.011 109.92 90.289 74.036 71.175 

MC-MJD-Gamma 

 

 

39.061 35.429 33.368 33.094 293.86 233.29 185.07 176.79 

MC-Kou-Delta 

 

 

46.865 41.422 37.616 37.021 217.26 183.95 155.97 150.74 

MC-Kou-Gamma 

 

 

70.198 56.030 46.635 45.199 529.26 426.52 344.74 330.68 

Full Valuation 

 

 

45.900 45.830 45.540 45.380 296.35 249.33 208.55 201.32 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 95: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period July 2011-Dec 2011. 
  

Models 

1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

33.285 

 

33.135 

 

32.505 

 

32.224 

 

81.920 

 

65.886 

 

54.353 

 

52.477 

MC-BS-Gamma 

 

 

35.703 34.157 32.276 32.233 308.97 237.94 183.98 175.10 

MC-VG-Delta 

 

 

41.590 37.193 34.485 34.115 200.61 168.10 140.55 135.51 

MC-VG-Gamma 

 

 

58.524 47.020 39.955 38.960 467.59 371.60 296.95 284.55 

MC-HS-Delta 

 

 

33.592 32.430 31.703 30.273 75.581 61.108 50.912 49.266 

MC-HS-Gamma 

 

 

34.543 33.686 32.222 31.237 281.44 216.23 166.55 158.33 

MC-Bates-Delta 

 

 

33.254 33.106 32.487 32.223 82.590 66.409 54.729 52.831 

MC-Bates-Gamma 

 

 

35.492 33.075 32.262 32.227 300.50 231.55 179.01 170.32 

MC-MJD-Delta 

 

 

36.027 35.811 34.741 33.746 87.697 71.300 67.135 56.499 

MC-MJD-Gamma 

 

 

33.563 33.362 32.514 32.231 188.73 141.75 105.96 100.04 

MC-Kou-Delta 

 

 

41.522 37.150 34.460 34.093 200.17 167.71 140.22 135.18 

MC-Kou-Gamma 

 

 

70.763 54.238 44.123 42.692 612.40 482.07 382.79 366.37 

Full Valuation 

 

 

52.596 52.436 51.806 51.476 239.07 195.06 158.80 152.99 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 96: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period Jan 2012-June 2012. 

Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

36.880 

 

35.792 

 

34.472 

 

33.418 

 

76.026 

 

62.727 

 

53.151 

 

51.547 

MC-BS-Gamma 

 

 

36.456 34.448 33.563 33.486 276.01 217.12 169.73 161.68 

MC-VG-Delta 

 

 

36.488 35.233 34.585 33.516 127.00 105.33 86.711 83.232 

MC-VG-Gamma 

 

 

55.108 45.430 39.454 38.606 546.51 436.56 348.99 334.68 

MC-HS-Delta 

 

 

35.363 35.223 34.556 34.002 49.908 43.797 39.606 38.932 

MC-HS-Gamma 

 

 

34.990 34.848 34.195 33.097 69.699 56.497 47.439 46.039 

MC-Bat-Delta 

 

 

34.354 33.238 32.749 32.458 64.028 53.939 46.781 45.591 

MC-Bat-Gamma 

 

 

34.346 33.939 33.425 32.461 208.32 162.98 126.12 119.75 

MC-MJD-Delta 

 

 

33.951 33.857 33.506 32.406 73.781 61.077 51.944 50.418 

MC-MJD-Gamma 

 

 

33.797 33.560 32.502 31.418 141.72 112.15 87.448 83.123 

MC-Kou-Delta 

 

 

46.376 41.460 38.003 37.465 215.05 182.39 154.31 149.02 

MC-Kou-Gamma 

 

 

55.301 47.049 41.373 40.498 358.96 295.63 242.63 233.27 

Full Valuation 

 

48.196 48.136 47.866 47.726 92.123 73.404 59.601 57.629 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 97: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period July 2012-Dec 2012. 

Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

34.870 

 

 

 

34.105 

 

33.897 

 

32.949 

 

74.883 

 

62.201 

 

53.239 

 

51.702 

MC-BS-Gamma 

 

37.462 

 

 

35.253 34.198 34.085 279.49 218.49 171.59 163.50 

MC-VG-Delta 

 

 

38.066 36.044 34.795 34.624 145.51 121.32 100.97 97.075 

MC-VG-Gamma 

 

 

48.828 42.373 38.340 37.747 389.23 311.27 249.38 238.58 

MC-HS-Delta 35.388 

 

 

34.424 33.971 33.928 112.23 92.251 75.889 72.985 

MC-HS-Gamma 41.572 

 

 

37.748 35.530 35.228 313.57 249.17 198.04 189.12 

MC-Bat-Delta 33.216 

 

 

33.145 32.924 31.911 73.089 60.891 52.271 50.799 

MC-Bat-Gamma 35.898 

 

 

34.502 33.944 33.905 222.85 174.70 136.48 129.81 

MC-MJD-Delta 34.617 

 

 

33.520 33.121 32.901 62.049 52.812 46.389 45.298 

MC-MJD-Gamma 34.176 

 

 

34.073 34.012 32.884 142.30 110.80 85.447 81.066 

MC-VG-Delta 

 

 

47.061 42.212 38.837 38.301 212.43 179.78 36.019 147.055 

MC-VG-Gamma 

 

 

73.160 58.555 48.947 47.458 578.39 464.91 375.09 359.48 

Full Valuation 

 

47.414 

 

 

47.364 47.124 46.984 105.73 82.483 67.016 64.655 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 



247 
 

Table 98:  Back-testing Expected Shortfall for Short S & P 500 Call over 

the Period Jan 2013-June 2013. 
Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

38.510 

 

38.404 

 

37.990 

 

37.818 

 

78.168 

 

65.340 

 

56.147 

 

54.592 

MC-BS-Gamma 

 

 

40.909 38.821 37.947 37.876 309.23 242.35 189.24 180.30 

MC-VG-Delta 

 

 

43.596 40.896 39.172 38.928 178.20 149.54 124.92 120.23 

MC-VG-Gamma 

 

 

55.366 47.875 43.074 42.370 427.75 344.77 277.08 265.27 

MC-HS-Delta 

 

 

40.638 40.482 39.723 38.035 49.233 44.609 41.545 41.058 

MC-HS-Gamma 

 

 

39.302 38.141 37.421 36.939 128.03 96.943 73.518 69.965 

MC-Bates-Delta 

 

 

40.134 39.981 39.254 38.631 53.254 47.399 43.426 42.780 

MC-Bates-Gamma 

 

 

38.869 37.725 36.122 35.825 144.19 110.28 83.165 78.832 

MC-MJD-Delta 

 

 

40.548 40.393 39.638 38.959 49.876 45.054 41.841 41.329 

MC-MJD-Gamma 

 

 

38.961 37.808 37.162 36.830 154.92 117.99 88.307 83.423 

MC-Kou-Delta 

 

 

41.224 39.390 38.336 38.201 154.17 128.50 106.45 102.25 

MC-Kou-Gamma 

 

 

62.663 51.855 45.128 44.155 593.16 472.64 377.65 361.69 

Full Valuation 

 

 

53.324 53.264 53.024 52.924 133.10 112.67 93.084 89.557 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 99: Back-testing Expected Shortfall for Short S & P 500 Call over 

the Period July 2013-Dec 2013. 
Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

43.975 

 

41.969 

 

41.404 

 

41.356 

 

143.00 

 

118.12 

 

96.906 

 

93.069 

MC-BS-Gamma 

 

 

55.794 48.869 44.731 44.162 493.03 391.66 310.70 297.02 

MC-VG-Delta 

 

 

45.203 43.149 41.938 41.783 170.01 141.76 117.46 112.89 

MC-VG-Gamma 

 

 

57.547 50.228 45.676 45.027 467.55 374.49 298.80 285.71 

MC-HS-Delta 

 

 

42.148 42.031 40.549 40.321 82.740 69.419 59.921 58.336 

MC-HS-Gamma 

 

 

44.456 42.302 41.418 41.355 334.14 261.67 204.14 194.47 

MC-Bates-Delta 

 

 

41.798 41.704 41.370 41.354 93.360 77.223 65.593 63.641 

MC-Bates-Gamma 

 

 

43.996 42.146 41.394 41.342 289.32 227.92 177.98 169.34 

MC-MJD-Delta 

 

 

41.959 41.851 41.442 40.319 88.000 73.275 62.719 60.950 

MC-MJD-Gamma 

 

 

42.130 41.910 40.407 40.259 200.26 157.93 122.93 116.80 

MC-Kou-Delta 

 

 

44.537 42.748 41.736 41.613 162.14 134.87 111.43 107.02 

MC-Kou-Gamma 

 

 

55.675 49.030 44.956 44.138 449.34 359.52 286.46 273.82 

Full Valuation 

 

 

57.905 57.845 57.585 57.445 310.68 269.56 231.04 224.39 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 



249 
 

Table 100: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period Jan 2014-June 2014. 

Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

45.770 

 

45.671 

 

44.435 

 

43.359 

 

107.45 

 

87.882 

 

74.029 

 

71.693 

MC-BS-Gamma 

 

 

50.800 47.374 45.790 45.627 403.31 314.59 245.52 233.77 

MC-VG-Delta 

 

 

49.097 48.448 47.353 46.386 132.74 108.00 88.814 85.551 

MC-VG-Gamma 

 

 

57.163 50.853 47.432 46.997 514.51 403.02 317.48 302.95 

MC-HS-Delta 

 

 

45.818 43.716 41.374 40.407 105.40 86.383 72.935 70.673 

MC-HS-Gamma 

 

 

79.824 62.995 53.555 52.290 977.19 786.18 634.34 610.75 

MC-Bates-Delta 

 

 

48.056 47.878 47.019 46.263 63.708 56.543 51.791 51.034 

MC-Bates-Gamma 

 

 

46.761 46.584 45.819 45.373 156.46 118.26 89.426 84.261 

MC-MJD-Delta 

 

 

46.793 46.642 45.960 45.489 79.944 67.954 59.705 58.343 

MC-MJD-Gamma 

 

 

45.915 45.791 44.791 44.373 181.61 140.20 106.92 101.32 

MC-Kou-Delta 

 

 

47.405 46.037 45.428 45.377 158.86 130.75 106.99 102.64 

MC-Kou-Gamma 

 

 

60.586 53.017 48.685 48.100 529.14 416.98 329.27 314.37 

Full Valuation 

 

 

61.532 60.516 59.505 58.504 167.56 132.64 100.79 98.823 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Table 101: Back-testing Expected Shortfall for Short S & P 500 Call over the 

Period July 2014-Dec 2014. 

Models 1 Day MAE for ES 

 

10 Days MAE for ES 

1% 

 

2.5% 5% 10% 1% 2.5% 5% 10% 

 

MC-BS-Delta 

 

 

 

49.059 

 

48.929 

 

48.452 

 

48.350 

 

105.61 

 

87.720 

 

75.008 

 

72.827 

MC-BS-Gamma 

 

 

52.993 49.933 48.602 48.479 403.51 314.82 246.01 234.17 

MC-VG-Delta 

 

 

52.926 51.383 50.399 49.455 133.40 108.94 90.769 87.622 

MC-VG-Gamma 

 

 

61.460 54.537 50.744 50.249 568.32 446.86 353.57 337.92 

MC-HS-Delta 

 

 

48.929 47.808 45.397 43.388 109.79 90.802 77.281 74.960 

MC-HS-Gamma 

 

 

49.045 48.385 47.424 45.494 196.86 155.19 121.59 115.73 

MC-Bates-Delta 

 

 

49.132 48.446 48.357 48.396 139.08 113.62 94.279 90.925 

MC-Bates-Gamma 

 

 

57.381 52.386 49.730 49.395 462.34 362.34 284.82 271.68 

MC-MJD-Delta 

 

 

48.741 48.639 47.342 46.095 116.97 96.151 81.244 78.669 

MC-MJD-Gamma 

 

 

53.715 50.346 48.774 48.612 401.79 314.79 246.34 234.63 

MC-Kou-Delta 

 

 

50.963 49.309 48.513 48.434 173.13 142.84 117.66 112.98 

MC-Kou-Gamma 

 

 

66.222 57.670 52.642 51.934 578.44 457.349 363.04 346.84 

Full Valuation 

 

 

69.310 69.200 68.820 68.630 165.51 137.88 112.83 108.77 

Note: MAE is mean absolute error for ES at 1%, 2.5%, 5% and 10% significance level. MC delta stands 

for Monte Carlo Delta based ES calculation method, MC Gamma based stands for Monte Carlo Gamma 

based ES method and Full Valuation stands for Full Monte Carlo based ES calculation method. The 

preceding deltas and gammas were derived from the Black Scholes model(BS), Variance Gamma 

model, Heston model, Bates models, Merton Jump diffusion model and Double Exponential Jump 

diffusion model.  BS stands for Black-Scholes model, HS stands for Heston stochastic volatility model, 

Bat stands for Bates combined stochastic and volatility model, MJD stands for Merton jump diffusion 

model and Kou stands for Double Exponential Jump diffusion model(Kou). The best fitted models 

selected based on minimum error(MAE) and represent in bold. 
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Chapter Five: Conclusion 
 

1. Thesis Summary 

 
This dissertation examines the estimation of risk measures ES for univariate data, multivariate 

data and options data for both 1-day ahead and multi-day ahead. In Chapter 2, we tested the 

performance of a new generalized t distribution (GAT) by Baker (2014) alongside other t 

distributions and exponential power distribution as an alternative to the t distribution. The 

primary purpose of this chapter is to compare the performances of the asymmetric t 

distribution(AST) by Zhu and Galbraith (2010) and GAT for calculating the ES for a single 

asset for both one day and multi-day.   

For the one-day ahead ES, our results indicate that EG-GAT significantly outperforms EG-

AST for all data sets. EG-AEPD model as an alternative to asymmetric distributions performs 

better than AST as shown by Zhu and Galbraith (2011). However, our EG-GAT model also 

performs better than EG-AEPD. 

Computing of ES for longer horizons without knowing the detail for the distribution of returns 

can be found using simulation based methods. We consider Monte Carlo simulation (MCS) 

with GAT, AEPD, SEPD, AST, SSTD, ST and TTD as standardized distributions of returns 

and filtered historical simulation (FHS) for 5-days and 10-days. Results indicate that 5-days 

FHS is the best model for 1% and 2.5% confidence levels and MC-GAT is the best model at 

5% and 10% confidence levels. However, for 10-days MC-GAT not only performs better than 

FHS but also MCS-AST and MCS-AEPD. 

There is a critical concern of models particularly those handling the dependence among 

different assets because increased volatility at international financial markets after the financial 

crisis of 2007-2009 mean that active risk management became important for any financial 

organization. The copula has become a popular multivariate modelling tool mainly due to easy 

implementation and estimation of marginal distribution and copula separately. However, the set of 

higher-dimensional copulas is rather limited.  The pair-copula construction can be a simple and 

powerful tool for model building and extending bivariate copulas to higher dimensions. 

The aim of Chapter 3 is to present the usefulness of copulas and vine copulas in financial risk 

management. Moreover, we extend our study to examine term structure of risk for bivariate 

and multivariate data. 
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For computation of portfolio ES from both copula models and vine copulas as risk management 

measures, we need to rely on Monte Carlo simulation. We calculate VaR and ES for different 

GARCH-Copula models with various marginals. So, they are implemented and tested on both 

bivariate and multivariate data and compared to DCC-norm and DDC-t models. For 

multivariate analysis, all developed models and methods are used to analyse the five, seven 

and fifteen companies from DAX 25 index, a major market indicator for the Eurozone. This 

study is also the first to explore multivariate term structure of risk with both static and DCC 

correlation. 

The results indicate that copula models for two-dimensional data and vine copula models for 

five, seven and fifteen-dimensional data provide a good fit and accurately and efficiently 

forecast the expected shortfall as compared to DCC-norm and DCC-t. Moreover, for the term 

structure of risk Monte Carlo simulation with  DCC-t outperforms Monte Carlo simulation with 

static correlation for bivariate data but multivariate data Monte Carlo simulation with static 

correlation perform better than Monte Carlo simulation DCC-t. 

Options play a major role in the financial markets as they can be used by the investors for 

hedging, speculative, spreading and synthetic positions. The accurate valuation of an option is 

critical for financial market analysts. The purpose of Chapter 4 is to compare option pricing 

models, which are based on a stochastic volatility model, jump diffusion models, an infinite 

activity model a combined stochastic volatility and jump diffusion model. 

For risk analysis purposes, we evaluated various ES models based on partial Monte Carlo and 

full Monte Carlo methods. For partial Monte Carlo, we calculated Delta based and Gamma 

based models. The preceding deltas and gammas were derived from the Black Scholes model 

(BSM), variance gamma model (VG), Heston model (HS), Bates model (Bat), Merton jump 

diffusion model and double exponential jump diffusion model (Kou). For longer horizons, ES 

relies on the typical shortcut to estimating the risk over various time horizons, which is to scale 

by the square root of the ratio of the time horizons. 

 For option pricing, the Bates model that combines stochastic and jump diffusion models is the 

only category of option pricing model that apparently perform better for all samples of options. 

For risk management purposes, the delta based Monte Carlo models are dominant in the top 

performing models. However, it is also evident that full valuation is one of the top models for 

1-day ES and 10-days ES for many datasets.  
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2. Future Research 

This thesis proposes several directions for future research. To date there is no comparison of 

two asymmetric generalized t distributions for calculation of 1– day ahead ES. Our research 

suggests the asymmetric generalized t distributions that allow a separate parameter to control 

skewness and thickness of the left and right tails are important for financial risk implications. 

More research is needed to work on these asymmetric generalized t distributions for risk 

management calculations to draw a clear conclusion. In addition, we develop multiday ahead 

ES with Monte Carlo simulation with asymmetric generalized t distributions and other t 

distributions as standardized distributions of returns and filtered historical simulation. 

However, Monte Carlo simulation and filtered historical simulation are too lengthy for 

calculating ES for more than 10 days. Therefore, future research is required to extend ES 

beyond 10-days. 

In Chapter 3 we apply copula models and vine copulas for bivariate and multivariate ES for 

both 1-day ahead and multi-day ahead forecasts. Our experience suggests that parameters 

estimation becomes very complicated for vine copula models when too many assets are 

involved in a portfolio. Therefore, work needs to be done to develop more efficient estimation 

methods for vine copula models. Again, like univariate data for multi-day ES we apply Monte 

Carlo simulation that is too lengthy. There is more work required on multiday portfolio ES 

calculations with higher dimensions. 

In Chapter 4 we calculate option pricing with various non-normal option pricing models. 

Estimation of option pricing models is very complicated and initial values turn out to be very 

important. More work is needed on efficient estimation procedures for option pricing parameter 

estimation.  

We apply mean absolute error (MAE) and mean square error (MSE) to test the performance of 

various expected shortfall models for univariate data, multivariate data and option data for both 

1-day ahead and multi-day ahead risk forecast. It is becoming necessary to develop a more 

advanced back-testing ES method, with an ability to choose the most appropriate ES model for 

the assets under study. 

 

  



254 
 

Appendix A 

Table 102: GARCH Type Models and Test Results for Standard and Poor’s 500 for the Periods 1995-2013. 
Models 

 

 

Model Parameters 

(standard errors) 

Residual Diagnostics 

Statistic (p-values) 

Model Comparison 

 

 

 

GARCH 

 

 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

 
 
𝜶𝟏 

0.072 
(0.006) 

 
 
𝜷𝟏 

0.920 
(0.006) 

 Q (5) 
 

𝑸𝟐(5) LM (10) AIC BIC SH HQ 

 
68.35 

(0.071) 

 
5.282 

(0.870) 

 
8.182 

(0.371) 

 
−6.678 

 

−6.676 

 

−6.678 

 

−6.677 

EGARCH 

 

 

 

𝜶𝟎 
-0.128 

(0.001) 

𝜶𝟏 
-0.074 

(0.004) 

𝜷𝟏 
0.986 

(0.000) 

𝜸 
0.123 

(0.005) 

 
55.93 

(0.062) 

 
3.054 

(0.691) 

 
6.501 

(0.772) 

 

-6.6982 

 

−𝟔.𝟔𝟗𝟓𝟐 

 

−𝟔.𝟔𝟗𝟖𝟐 

 

−𝟔.𝟔𝟗𝟕𝟐 

TGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.019 

(0.005) 

𝜷𝟏 
0.925 

(0.010) 

𝜸 
0.091 

(0.007) 

 
65.21 

(0.060) 

 
1.653 

(0.894) 

 
2.837 

(0.985) 

 

-6.6980 

 

-6.6950 

 

 

-6.6980 

 

-6.6970 

NGARCH 𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.064 

(0.003) 

𝜷𝟏 
0.911 

(0.006) 

𝜸 
2.556 

(0.013) 
 

 
70.91 

(0.053) 

 
2.329 

(0.532) 

 
2.923 

(0.983) 

 
−6.676 

 

−6.676 

 

−6.676 

 

−6.675 

 

          Note: AIC is Akaike information criterion, BIC is Bayesian information criterion, SH Shibata information criterion, HQ: Hannan-Quinn. Q (5): is the Ljung-Box-statistic 

of lag 5 of standardized residuals. Q2(5): is the Ljung-Box-statistic of lag 5 of standardized squared residuals. LM (10); ARCH LM test of lag 10 of standardized residuals. 
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       Table 103: GARCH Type Models and Test Results for Standard and Poor’s 500 (2) for the Periods 1999-2013. 

Models 

 

 

Models Parameters 

(standard errors) 

Residuals Diagnostic 

Statistic (p-values) 

Model Comparison 

 

 

 

GARCH 

 

 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

 
 
𝜶𝟏 

0.070 
(0.013) 

 
 
𝜷𝟏 

0.922 
(0.012) 

 Q (5) 
 

𝑸𝟐(5) LM (10) AIC BIC SH HQ 

 
 

11.19 
(0.041) 

 
 

12.34 
(0.127) 

 
 

19.32 
(0.04) 

 
 

−6.5296 

 
 

−6.5243 

 
 

−6.5296 

 
 

−6.5271 

EGARCH 

 

 

 

𝜶𝟎 
-0.156 

(0.0014) 

𝜶𝟏 
-0.104 
(0.003) 

𝜷𝟏 
0.983 

(0.000) 

𝜸 
0.114 

(0.007) 

 
9.540 

(0.089) 

 
11.82 

(0.0992) 

 
20.33 

(0.026) 

 
−𝟔.𝟓𝟔𝟏𝟒 

 
−𝟔.𝟓𝟓𝟔 

 
−𝟔. 𝟓𝟔𝟏𝟒 

 
−𝟔.𝟓𝟔𝟎 

TGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.000 

(0.005) 

𝜷𝟏 
0.925 

(0.009) 

𝜸 
0.123 

(0.018) 

 
9.223 

(0.101) 

 
19.47 

(0.140) 

 
16.15 

(0.095) 

 
6.5610 

 
-6.5556 

 
-6.5610 

 
-6.5592 

NGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.059 

(0.005) 

𝜷𝟏 
0.917 

(0.008) 

𝜸 
2.523 

(0.019) 

 
11.50 

(0.062) 

 
11.79 

(0.099) 

 
17.60 

(0.062) 

 
−6.5269 

 
−6.5215 

 
−6.5269 

 
−6.5250 

            Note: AIC is Akaike information criterion, BIC is Bayesian information criterion, SH Shibata information criterion, HQ: Hannan-Quinn. Q (5): is the Ljung-Box-statistic 

of lag 5 of standardized residuals. Q2(10): is the Ljung-Box-statistic of lag 5 of standardized squared residuals. LM (10); ARCH LM test of lag 10 of standardized 

residuals. 
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          Table 104: GARCH Type Models and Test Results Adobe for the Periods 1986-2013. 

Models 

 

 

Models Parameters 

(standard errors) 

 

Residuals Diagnostic 

Statistic (p-values) 

Model Comparison 

 

 

GARCH 

 

 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

 
 
𝜶𝟏 

0.041 
(0.002) 

 
 
𝜷𝟏 

0.958 
(0.001) 

 Q (5) 
 

𝑸𝟐(5) LM (10) AIC BIC SH HQ 

 
1.027 

(0.960) 

 
1.038 

(0.960) 

 
4.213 

(0.937) 

 
−4.2082 

 
−4.2043 

 
−4.2082 

 
−4.2078 

EGARCH 

 

 

 

𝜶𝟎 
-0.156 
(0.001) 

𝜶𝟏 
-0.104 
(0.004) 

𝜷𝟏 
0.983 

(0.000) 

𝜸 
0.114 

(0.007) 

 
9.540 

(0.089) 

 
3.621 

(0.059) 

 
20.33 

(0.062) 

 
−𝟔. 𝟓𝟔𝟏𝟒 

 
−𝟔. 𝟓𝟓𝟔𝟎 

 
−𝟔. 𝟓𝟔𝟏𝟒 

 
−𝟔. 𝟓𝟓𝟗𝟓 

TGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.035 

(0.003) 

𝜷𝟏 
0.958 

(0.001) 

𝜸 
0.013 

(0.005) 

 
1.109 

(0.953) 

 
11.36 

(0.146) 

 
4.530 

(0.920) 

 
-4.2088 

 
-4.2039 

 
-4.2088 

 
-4.2071 

NGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.051 

(0.001) 

𝜷𝟏 
0.958 

(0.000) 

𝜸 
1.099 

(0.044) 

 
0.867 

(0.973) 

 
12.40 

(0.091) 

 
9.905 

(0.449) 

 
−5.2299 

 
−5.2265 

 
−5.2299 

 
−5.2288 

         Note: AIC is Akaike information criterion, BIC is Bayesian information criterion, SH Shibata information criterion, HQ: Hannan-Quinn. Q (5): is the Ljung-Box-statistic 

of lag 5 of standardized residuals. Q2(5): is the Ljung-Box-statistic of lag 5 of standardized squared residuals. LM (10); ARCH LM test of lag 10 of standardized residuals. 
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             Table 105: GARCH Type Models and Test Results for Bank of America for the Periods 1973-2013. 

Models Models Parameters 

(standard errors) 

 

Residuals Diagnostic 

Statistic (p-values) 

Model Comparison 

 

 

GARCH 

 

 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

 
 
𝜶𝟏 

0.065 
(0.009) 

 
 
𝜷𝟏 

0.929 
(0.010) 

 Q (5) 
 

𝑸𝟐(5) LM (10) AIC BIC SH HQ 

 
70.60 

(0.080) 

 
60.00 

(0.330) 

 
11.325 
(0.333) 

 
−5.2257 

 
−5.2230 

 
−5.2257 

 
−5.2248 

EGARCH 

 

 

 

𝜶𝟎 
-0.057 

(0.002) 

𝜶𝟏 
0.036 

(0.004) 

𝜷𝟏 
0.992 

(0.000) 
 

𝜸 
0.108 

(0.006) 

 
71.17 

(0.101) 

 
61.23 

(0.210) 

 
27.87 

(0.000) 

 
−𝟓.𝟐𝟑𝟓𝟑 

 
−𝟓. 𝟐𝟑𝟏𝟗 

 
−𝟓.𝟐𝟑𝟓𝟑 

 
−𝟓.𝟐𝟑𝟒𝟏 

TGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.036 

(0.005) 

𝜷𝟏 
0.937 

(0.007) 

𝜸 
0.041 

(0.004) 

 
13.32 

(0.091) 

 
19.36 

(0.124) 

 
0.47 

(0.199) 

 
-5.2320 

 
-5.2285 

 
-5.2320 

 
-5.2308 

NGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.073 

(0.007) 

𝜷𝟏 
0.934 

(0.008) 

𝜸 
1.372 

(0.001) 

 
71.22 

(0.320) 

 
34.03 

(0.530) 

 
17.84 

(0.058) 

 
−5.1807 

 
−5.1773 

 
−5.1807 

 
−5.1795 

            

          Note: AIC is Akaike information criterion, BIC is Bayesian information criterion, SH Shibata information criterion, HQ: Hannan-Quinn. Q (5): is the Ljung-Box-statistic 

of lag 5 of standardized residuals. Q2(5): is the Ljung-Box-statistic of lag 5 of standardized squared residuals. LM (10); ARCH LM test of lag 10 of standardized residuals. 

 . 
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Table 106: GARCH Type Models and Test Results J P Morgan for the Periods 1973-2013. 

Models 

 

 

Models Parameters 

(standard errors) 

Residuals Diagnostic 

Statistic (p-values) 

Model Comparison 

 

 

GARCH 

 

 

 

 

 

𝜶𝟎 
0.000 

(0.000) 
 

 
 
𝜶𝟏 

0.069 
(0.009) 

 
 
𝜷𝟏 

0.927 
(0.009) 

 Q (5) 
 

𝑸𝟐(5) LM (10) AIC BIC SH HQ 

 
17.50 

(0.088) 

 
19.50 

(0.103) 

 
9.504 

(0.485) 

 
−5.1773 

 
−5.1746 

 
−5.1773 

 
−5.1764 

EGARCH 

 

 

 

𝜶𝟎 
-0.058 

(0.003) 

𝜶𝟏 
-0.047 

(0.004) 

𝜷𝟏 
0.992 

(0.001) 

𝜸 
0.116 

(0.013) 

 
14.10 
(0.085) 

 
21.58 

(0.138) 

 
12.412 

(0.258) 

 
−5.1908 

 
−5.1874 

 
−5.1908 

 
−5.1896 

TGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.033 

(0.005) 

𝜷𝟏 
0.930 

(0.009) 

𝜸 
0.065 

(0.003) 

 
17.10 
(0.100) 

 
31.10 

(0.314) 

 
10.498 

(0.398) 

 
-5.1877 

 
-5.1843 

 
-5.1877 

 
-5.1866 

NGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.077 

(0.005) 

𝜷𝟏 
0.933 

(0.007) 

𝜸 
1.333 

(0.038) 

 
16.28 
(0.090) 

 
14.87 

(0.241) 

 
10.52 
(0.396) 

 
−𝟓.𝟑𝟖𝟑𝟎 

 
−𝟓.𝟑𝟕𝟗𝟔 

 
−𝟓.𝟑𝟖𝟑𝟎 

 
−𝟓. 𝟑𝟖𝟏𝟗 

 

  Note: AIC is Akaike information criterion, BIC is Bayesian information criterion, SH Shibata information criterion, HQ: Hannan-Quinn. Q (5): is the Ljung-Box-statistic of 

lag 5 of standardized residuals. Q2(5): is the Ljung-Box-statistic of lag 5 of standardized squared residuals. LM (10); ARCH LM test of lag 10 of standardized residuals. 
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  Table 107: GARCH Type Models and Test Results for Pfizer for the Periods 1973-2013. 

Models 

 

 

Models Parameters 

(standard errors) 

Residuals Diagnostic 

Statistic (p-values) 

Model Comparison 

 

 

GARCH 

 

 

 

 

 

𝜶𝟎 
0.000 

(0.000) 
 

 
 
𝜶𝟏 

0.053 
(0.009) 

 
 
𝜷𝟏 

0.934 
(0.013) 

 Q (5) 
 

𝑸𝟐(5) LM (10) AIC BIC SH HQ 

 
36.01 

(0.090) 

 
51.01 

(0.182) 

 
27.22 

(0.080) 

 
−5.3817 

 
−5.3790 

 
−5.3817 

 
−5.3808 

EGARCH 

 

 

 

𝜶𝟎 
-0.117 
(0.005) 

𝜶𝟏 
-0.037 
(0.005) 

𝜷𝟏 
0.985 

(0.001) 

𝜸 
0.110 

(0.009) 

 
37.20 

(0.070) 

 
38.32 

(0.138) 

 
37.20 

(0.110) 

 
−𝟓. 𝟑𝟖𝟕𝟖 

 
−𝟓. 𝟑𝟖𝟒𝟒 

 
−𝟓. 𝟑𝟖𝟕𝟖 

 
−𝟓.𝟑𝟖𝟔𝟔 

TGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.033 

(0.007) 

𝜷𝟏 
0.939 

(0.012) 

𝜸 
0.033 

(0.007) 

 
36.88 

(0.110) 

 
29.32 

(0.203) 

 
18.28 

(0.060) 

 
-5.3848 

 
-5.3814 

 
-5.3848 

 
-5.3836 

NGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.063 

(0.004) 

𝜷𝟏 
0.933 

(0.008) 

𝜸 
1.512 

(0.065) 

36.24 
(0.090) 

32.12 
(0.182) 

35.56 
(0.093) 

 

 
−4.6784 

 
−4.6725 

 
−4.6784 

 
−4.6763 

  Note: AIC is Akaike information criterion, BIC is Bayesian information criterion, SH Shibata information criterion, HQ: Hannan-Quinn. Q (5): is the Ljung-Box-statistic of 

lag 5 of standardized residuals. Q2(5): is the Ljung-Box-statistic of lag 5 of standardized squared residuals. LM (10); ARCH LM test of lag 10 of standardized residuals. 
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Table 108: GARCH Type Models and Test Results for Starbucks for the Periods 1993-2013. 

Models 

 

 

Models Parameters 

(standard errors) 

Residuals Diagnostic 

Statistic (p-values) 

Model Comparison 

 

 

GARCH 

 

 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

 
 
𝜶𝟏 

0.036 
(0.001) 

 
 
𝜷𝟏 

0.961 
(0.001) 

 Q (5) 
 

𝑸𝟐(5) LM (10) AIC BIC SH HQ 

 
12.129 
(0.053) 

 
22.329 
(0.063) 

 
3.285 

(0.974) 

 
−4.6692 

 
−4.6644 

 
−4.6692 

 
−4.6675 

EGARCH 

 

 

 

𝜶𝟎 
-0.03 

(0.001) 

𝜶𝟏 
-0.029 

(0.005) 

𝜷𝟏 
0.995 

(0.000) 

𝜸 
0.088 

(0.002) 

14.53 
(0.083) 

19.52 
(0.351) 

4.066 
(0.944) 

 
−𝟒. 𝟔𝟖𝟒𝟕 

 
−𝟒. 𝟔𝟕𝟖𝟖 

 
−𝟒. 𝟔𝟖𝟒𝟕 

 
−𝟒.𝟔𝟖𝟐𝟕 

TGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.018 

(0.003) 

𝜷𝟏 
0.960 

(0.001) 

𝜸 
0.039 

(0.006) 

14.66 
(0.092) 

15.87 
(0.369) 

2.549 
(0.990) 

 
-4.6758 

 
-4.6699 

 
−4.6758 

 
-4.6738 

NGARCH 

 

 

 

𝜶𝟎 
0.000 

(0.000) 

𝜶𝟏 
0.048 
0.001 

𝜷𝟏 
0.961 

(0.000) 

𝜸 
1.060 

(0.042) 

12.106 
(0.073) 

9.30 
(0.249) 

4.751 
(0.907) 

 
−4.6784 

 
−4.6725 

 
−4.6784 

 
−4.6763 

  Note: AIC is Akaike information criterion, BIC is Bayesian information criterion, SH is Shibata information criterion, HQ is Hannan-Quinn. Q (5): is the Ljung-Box-statistic 

of lag 5 of standardized residuals. Q2(5) is the Ljung-Box-statistic of lag 5 of standardized squared residuals. LM (10): is ARCH LM test of lag10 of standardized residuals.
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Table 109: EGARCH Model Estimation and Test Results for the Periods 1995-

2013. 

Parameters 

 

Conditional Variance Equation with Normal Innovation 

 𝐅𝐓𝐒𝐄 

 
𝐍𝐀𝐒𝐃𝐀𝐐 𝐍𝐢𝐤𝐤𝐢𝐞 𝐃𝐀𝐗 

𝜶𝟎 -0.1294 
(0.0016) 

 

-0.0820 
(0.0116) 

-0.2282 
(0.0089) 

-0.1842 
(0.0066) 

𝜶𝟏 -0.1001 
(0.0057) 

 

-0.0702 
(0.0231) 

-0.0758 
(0.0070) 

-0.0930 
(0.0060) 

𝜷𝟏 0.9857 
(0.0000) 

 

0.9897 
(0.0015) 

0.9726 
(0.0010) 

0.9783 
(0.0007) 

 
γ 

0.1103 
(0.0043) 

 

0.1276 
(0.0219) 

0.1551 
(0.0114) 

0.1585 
(0.0088) 

Q (5) 5.7361 
(0.1037) 

 

9.195 
(0.0947) 

2.325 
(0.5438) 

1.8303 
(0.659) 

𝑸𝟐(5) 7.3504 
(0.1716) 

 

18.741 
(0.1804) 

6.397 
(0.2551) 

13.452 
(0.1083) 

AIC -6.4184 -5.5320 -5.7913 -5.9052 
     

    Note: Standard error and p value presented in parenthesis. AIC is Akaike information criterion, BIC is Bayesian      

information criterion, SH Shibata information criterion, HQ: Hannan-Quinn. Q (5): is the Ljung-Box-statistic of lag 5 of 

standardized residuals. Q2(5): is the Ljung-Box-statistic of lag 5 of standardized squared residuals. LM (10); ARCH LM 

test of lag 10 of standardized residuals. 
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Appendix B 

Jargue-Bera Test 

The Jarque–Bera test is goodness of test of normality, and test whether sample data have the 

skewness and kurtosis satisfying a normal distribution. The test is named after Carlos Jarque and 

Anil K. Bera.  

 Test the null hypothesis:  

 𝐻0: distribution is normal,  

skewness is zero and excess kurtosis is zero;  

against the alternative hypothesis:  

𝐻1: distribution is non-normal.  

The test statistic JB is defined as: 

𝐽𝐵 =
𝑁

6
((𝑆𝐾𝑊)2 + 1

1

4
(𝐾𝑈𝑅 − 3)2) 

where N is the number of total observations ; SKW is the sample skewness, and KUR is the sample kurtosis 

and defined as: 

𝑆𝐾𝑊 =

1
𝑁
∑ (𝑥𝑖 − 𝑥̅)3𝑁
𝑖=1

(
1
𝑁
∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 )

3
2⁄
 

𝐾𝑈𝑅 =

1
𝑁
∑ (𝑥𝑖 − 𝑥̅)4𝑁
𝑖=1

(
1
𝑁
∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 )

2 

 Test statistic can be compared with a chi-square distribution with 2 degrees of freedom. The null 

hypothesis of normality is rejected if the calculated test statistic exceeds a critical value from the chi-

square distribution. 

Augmented Dickey–Fuller Unit Root test 

An augmented Dickey–Fuller test (ADF) is a unit root test in a time series sample 

The null hypothesis of the Augmented Dickey-Fuller test is: 

Null Hypothesis: data is not stationary 

Alternative Hypothesis: data is stationary. 

 

The ADF is based on fitting the regressing model: 

∆𝑦𝑡 = 𝛼0 + 𝛽𝑡 + 𝜃𝑦𝑡−1 + 𝛼1∆𝑦𝑡−1 + 𝛼2∆𝑦𝑡−2 +⋯𝛼𝑝∆𝑦𝑡−𝑝 + 𝛼𝑡 

http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Kurtosis
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Carlos_Jarque
http://en.wikipedia.org/wiki/Anil_K._Bera
http://en.wikipedia.org/wiki/Test_statistic
http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Kurtosis
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Sample_%28statistics%29


263 
 

The unit root test is carried out under the null hypothesis 𝜃 = 0 against the alternative hypothesis of 𝜃 < 0. 

The ADF test is: 

Regress  ∆𝑦𝑡 on 𝑦𝑡−1, ∆𝑦𝑡−1… . ∆𝑦𝑡−𝑝 and compute the t statistic: 

𝜏 =
𝜃

𝑠𝑒(𝜃)
 

Phillips-Perron Unit Root Test(PP) 

PP test is proposed transformations of the τ statistics from the original Dicey Fuller regressions. The 

test is robust with respect to unspecified autocorrelation and heteroscedasticity in the disturbance 

process of the test equation. 

The Phillips–Perron test involves fitting the regression: 

∆𝑦𝑡 = 𝛼0 + 𝛽𝑡 + 𝜃𝑦𝑡−1 + 𝛼1∆𝑦𝑡−1 + 𝛼2∆𝑦𝑡−2 +⋯𝛼𝑝∆𝑦𝑡−𝑝 + 𝛼𝑡 

There are two statistics: 

𝑍𝑡 = (
𝜎̂2

𝜆̂2
)

1/2

. 𝑡𝜃=0 −
1

2
(
𝜆̂2 − 𝜎̂2

𝜆̂2
) . (

𝑛. 𝑠𝑒(𝜃)

𝜎̂2
) 

𝑍𝜃 = 𝑛𝜃 −
1

2

𝑛2. 𝑠𝑒(𝜃)

𝜎̂2
(𝜆̂2 − 𝜎̂2) 

Where 𝜎̂2 and 𝜆̂2 are standard error of 𝜃: 

𝜎2 = lim
𝑛→∞

𝑛−1∑𝐸(𝜇𝑡)
2

𝑛

𝑡=1

 

𝜆𝑛 = lim
𝑛→∞

∑𝐸(𝑛−1𝑆𝑛
2)

𝑛

𝑡=1

 

𝑆𝑛 =∑𝜇𝑡

𝑛

𝑡=1

 

Under the null hypothesis 𝜃 = 0. 𝑍𝑡 and 𝑍𝜃 have the same distribution as the Dickey – Fuller statistic. 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests  

The null hypothesis of the KPPS test is: 

Null Hypothesis: data is stationary 

Alternative Hypothesis: data is not stationary. 

𝑦𝑡 = 𝜇𝑡 + 𝑒𝑡 

𝜇𝑡 = 𝜇𝑡−1 + 𝜀𝑡   𝜀𝑡~𝑖𝑖𝑑(0, 𝜎𝜀
2) 

he KPSS test is score statistic for testing  𝜎𝜀
2 = 0 against  𝜎𝜀

2 > 0. KPSS Statistics is: 

http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Heteroscedasticity
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𝐾𝑃𝑆𝑆 =
1

2
.
𝑛−1∑ 𝑆𝑡

2𝑛
𝑡=1

𝜆2
 

Where  

𝑆𝑡 =∑𝑒𝑗

𝑛

𝑗=1

 

and 𝜆2  is a consistent estimate of the long-run variance of 𝑒𝑗. 

Ljung–Box test 

The sample autocorrelation function (ACF) and partial autocorrelation function (PACF) are helpful qualitative 

tools to test the presence of autocorrelation at individual lags. The Ljung-Box Q-test is a more convenient way 

to test for autocorrelation at multiple lags jointly (Ljung and Box, 1978). 

The Ljung–Box test can be defined as follows. 

Null Hypothesis: data is independently distributed. 

Alternative hypothesis: data is not independently distributed 

 Ljung and Box (1978) defined test statistics as: 

𝑄 = 𝑁(𝑁 + 2)∑
𝜌𝑘
2

𝑁 − 𝑘

ℎ

𝑘=1

 

where N is the sample size,𝜌𝑘 is the sample autocorrelation at lag k, and h is number of laga being tested. 

ARCH LM Test 

We want to model a time series with ARCH process effect and return residual are: 

𝜀𝑡 = 𝑧𝑡𝜎𝑡 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 +⋯𝛼𝑝𝜀𝑡−𝑝
2  

The null hypothesis is 𝛼𝑖=0 mean no ARCH effect. 

 

Akaike information criterion (AIC) 

The Akaike information criterion (AIC) is a measure of selection of models from a set of models, for a given 

set of data. Given a set of models for the data, the favored model is the one with the minimum AIC 

value. AIC is define as: 

𝐴𝐼𝐶 = 2(𝑘 − 𝑙𝑛(𝐿)) 

where k is the number of free parameters of the data, and L is the maximized value of the likelihood function 

for the model. 

http://en.wikipedia.org/wiki/Likelihood_function
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Bayesian information criterion (BIC) 

BIC feature the same goodness-of-fit term as AIC and defined as: 

𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2𝑙𝑛 (𝐿) 

where k is the number of free parameters of the data, and L is the maximized value of the likelihood function 

for the model. Given a set of models for the data, the favored model is the one with the minimum BIC 

value. 

 Hannan–Quinn information criterion(HQ) 

HQ is alternative to AIC and BIC is define as: 

𝐻𝑄 = 2𝑘. 𝑙𝑛(𝑙𝑛(𝑛)) − 2𝑙𝑛 (𝐿) 

The aim is to find the model with the lowest value of the selected information criterion. 

Maximum Likelihood Method 

Maximum-likelihood estimation (MLE) is the parameters estimation procedure of a statistical model.  

Given a statistical model and data set, maximum-likelihood estimation gives estimates for the model's 

parameter. 

Suppose a vector of independent and identically distributed  observations 𝑥0, 𝑥1………𝑥𝑁 coming 

from a distribution with an unknown density function 𝑓(𝑥|𝜃).𝜃 is unknown and is the true value of the 

parameter. It is desirable to find some estimator 𝜃 ̂which would be as close to the true value 𝜃 as 

possible. 

The likelihood function is the density function regarded as a function of 𝜃 is: 

𝐿(𝑥|𝜃) = 𝑓(𝑥|𝜃 ) 

 

The maximum likelihood estimator (MLE) is: 

𝜃(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃  𝐿(𝑥|𝜃) 

 

 

In practice, it is often more convenient to work with the logarithm of the likelihood function, called 

the log-likelihood: 

𝑙𝑛𝐿(𝑥|𝜃) = 𝑙𝑛 𝑓(𝑥|𝜃 ) 

http://en.wikipedia.org/wiki/Bayesian_information_criterion
http://en.wikipedia.org/wiki/Likelihood_function
http://en.wikipedia.org/wiki/Hannan%E2%80%93Quinn_information_criterion
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Independent_and_identically_distributed
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Determination of Threshold 

There are several plots available in the literature to determine the threshold level θ. The choice of 

threshold is to some extent subjective because in practice the explanation of threshold level 

determined plots is very difficult. A choice of the threshold is an important issue, as sufficiently high 

threshold θ result in too few exceedance and result in high variance estimator. While, too high 

threshold θ provides biased estimators. 

Quantile-Quantile Plot(QQ-Plot) 

Let 𝑥1, 𝑥2, … 𝑥𝑛 be a sequence of randome variables with i.i.d condition,𝑥1𝑛 < ⋯ < 𝑥𝑚.The 

empirical distribution is : 

𝐹𝑚(𝑥𝑘, 𝑛) =
(𝑛 − 𝑘 + 1)

𝑛
 

F is the estimated parametric distribution of data. 

The Q-Q plot is defined as: 

𝑥𝑘,𝑛𝐹
−1 (

𝑛−𝑘+1

𝑛
) ,       𝑘 = 1,2, … 𝑛                             9 

Q-Q plot can be used to differentiate between distribution functions. For the success of the model Q-

Q plot should me linear. No linear plot indicates model failure. 

Mean Excess Function 

Another method that enables us to provide a graphical tool to choose the threshold θ is mean excess function. 

If x hs a GPD distribution function 𝐺𝜉,𝜎, the mean excess function is: 

𝑒(𝜃) = 𝐸(𝑥 − 𝜃|𝑥 > 𝜃) =
𝜎+𝜉𝜃

1−𝜉
         10 

If the plot is a straight line, the model is good fit, if plot is flat line then data may follow exponential, and if it 

is in curved form then data may follow Weiball or gamma. 

Hill Plot 

Let 𝑥1 > ⋯ > 𝑥𝑛 be the order statistic random variable i.i.d. The Hill estimator of the tail index ξ 

using k+1 ordered statistic is defined as: 

𝐻𝑘.𝑛 =
1

𝑘
∑ 𝑙𝑛𝑥𝑗.𝑛 − 𝑙𝑛𝑥𝑘,𝑛
𝑘
𝑖=1 = 𝜉 ̂                  11 

𝜉 =
1

𝑘
∑𝑙𝑛 (

𝑥𝑖
𝑥𝑘+1

)

𝑘

𝑖=1
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The Hill plot is defined by the set of points (Dress de Haan, and Resnick, 1999)): 

(𝑘, 𝑥𝑘,𝑛
−1), 1 ≤ 𝑘 ≤ 𝑛 − 1 

Hill plot is considered good instrument to find the optimal threshold θ for the GPD distribution (Dress 

De Hannn,Rcsnick, 1999 and 1998  and Pilipihas, 2010). 
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Appendix C 

Table 110: Bivariate Copula Estimation. 

BMW/SEI 

Copula 
Model 

Marginal 𝜽𝟏 𝜽𝟐 τ 𝝀𝑳 𝝀𝑼 AIC BIC 

Normal Skew t 0.1756 
(0.0065) 

 0.0878   -681.58 
 

-675.24 

Student 
t 

Skew t 0.1391 
(0.009) 

5.303 
(0.002) 

0.0889 0.0694 0.0694 2335.5 2348.2 

Clayton Skew t 0.0755 
(0.0054) 

 0.0363 0.0001  -267.44 
(2) 

-261.11 

Gumbel Skew t 1.0031 
(0.003) 

 0.0029  0.0041 0.6438 6.9771 

Frank Skew t 2.0197 
(0.072) 

 0.2158   -820.93 
(1) 

-814.60 

Joe Skew t 1.0001 
(0.0031) 

 0.0053  0.0001 2.3012 
(3) 

8.6345 

BMW/VOL 

Model Marginal 𝜽𝟏 𝜽𝟐 τ 𝝀𝑳 𝝀𝑼 AIC BIC 

Normal Skew t 0.3218 
(0.0047) 

 0.2085   75.207 
 

81.540 

Student 
t 

Skew t 0.2818 
(0.0073) 

9.0443 
(0.2780) 

0.1819 0.0390 0.0390 1107.6 1120.3 

Clayton Skew t 0.2140 
(0.0059) 

 0.0966 0.0392  176.99 
(2) 

183.32 

Gumbel Skew t 1.1574 
(0.0050) 

 0.1359  0.1799 811.44 817.78 

Frank Skew t 2.7366 
(0.0684) 

 0.2838   -491.23 
(1) 

-484.90 

Joe Skew t 1.1084 
(0.0045) 

 0.0935  0.2010 616.84 
(3) 

623.17 

BMW/THY 
 

Model Marginal 𝜽𝟏 𝜽𝟐 τ 𝝀𝑳 𝝀𝑼 AIC BIC 

Normal Skew t 0.1874 
(0.0063) 

 0.1200   -746.62 
 

-740.28 

Student 
t 

Skew t 0.1788 
(0.0072) 

6.625 
(0.0124) 

0.0974 0.0468 0.0468 728.8 741.5 

Clayton Skew t 0.0950 
(0.0056) 

 0.0453 0.0006  -405.31 
(2) 

-398.98 

Gumbel Skew t 1.0317 
(0.0041) 

 0.0307  0.0421 -127.66 
(3) 

-121.33 

Frank Skew t 1.8878 
(0.0701) 

 0.2027   -718.33 
(1) 

-711.99 

Joe Skew t 1.0099 
(0.0029) 

 0.0057  0.01354 -37.684 -31.351 
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BMW/LIN 

Model Marginal 𝜽𝟏 𝜽𝟐 τ 𝝀𝑳 𝝀𝑼 AIC BIC 

Normal Skew t 0.1810 
(0.0063) 

 0.1158   -549.06 
 

-542.72 

Student 
t 

Skew t 0.4403 
(0.0090) 

2.2314 
(0.0126) 

0.2902 0.3388 0.3388 -764.61 
(2) 

-751.94 

Clayton Skew t 0.0895 
(0.0055) 

 0.0428 0.0004  -264.40 
(3) 

-258.07 

Gumbel Skew t 1.0338 
(0.0039) 

 0.0326  0.0448 -187.95 -181.62 

Frank Skew t 1.7814 
(0.0694) 

 0.1919   -783.57 
(1) 

-777.24 

Joe Skew t 1.0142 
(0.0031) 

 0.0082  0.0194 -51.392 -45.058 

SEI/VOL 

Model Marginal 𝜽𝟏 𝜽𝟐 τ 𝝀𝑳 𝝀𝑼 AIC BIC 

Normal Skew t 0.1611 
(0.0067) 

 0.1030   -2756.8 
 

-2750.5 

Student 
t 

Skew t 0.1254 
(0.0098) 

4.3261 
(0.0145) 

0.0800 0.09408 0.09408 -5648.4 
(1) 

-5635.8 

Clayton Skew t 0.0742 
(0.0058) 

 0.0357 0.0023  -2258.2 
(2) 

-2251.8 

Gumbel Skew t 1.0042 
(0.0027) 

 0.0041  0.0057 -1647.3 
(3) 

-1640.9 

Frank Skew t 1.7739 
(0.0702) 

 0.1912   -1411.3 -1404.9 

Joe Skew t 1.0041 
(0.5321) 

 0.0023  0.0056 -1532.6 -1526.3 

SEI/THY 

Model Marginal 𝜽𝟏 𝜽𝟐 τ 𝝀𝑳 𝝀𝑼 AIC BIC 

Normal Skew t 0.5336 
(0.0106) 

 0.3583   -360.92 -354.59 

Student 
t 

Skew t 0.5572 
(0.0115) 

6.8512 
(0.8382) 

0.3762 0.1741 0.1741 -1011.3 
(1) 

-998.71 

Clayton Skew t 0.8435 
(0.0318) 

 0.2966 0.4396  -506.08 
(3) 

-499.75 

Gumbel Skew t 1.5339 
(0.0203) 

 0.3480  0.4287 -327.82 -321.49 

Frank Skew t 3.8739 
(0.1116) 

 0.3786 
 

  -598.39 
(2) 

-592.06 

Joe Skew t 1.6741 
(0.0293) 

 0.2730  0.4870 -235.59 -229.25 

SEI/LIN 

Model Marginal 𝜽𝟏 𝜽𝟐 τ 𝝀𝑳 𝝀𝑼 AIC BIC 

Normal Skew t 0.4895 
(0.0116) 

 0.3256   3254.9 
(2) 

3261.3 

Student 
t 

Skew t 0.5071 
(0.0124) 

8.2720 
(1.2317) 

0.3386 0.1146 0.1146 3637.5 
 

3650.2 
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Clayton Skew t 0.7648 
(0.0307) 

 0.2766 0.4040  4444.0 4450.4 

Gumbel Skew t 1.4427 
(0.0189) 

 0.2877  0.3616 3664.9 
(3) 

3670.7 

Frank Skew t 3.3648 
(0.1086) 

 0.3382   691.99 
(1) 

698.32 

Joe Skew t 1.5447 
(0.0273) 

 0.2339  0.4337 4159.0 4165.4 

VOL/THY 

Model Marginal 𝜽𝟏 𝜽𝟐 τ 𝝀𝑳 𝝀𝑼 AIC BIC 

Normal Skew t 0.1820 
(0.0065) 

    -96.723 -90.390 

Student 
t 

Skew t 0.1291 
(0.0102) 

3.3151 
(0.1284) 

0.0824 0.1226 0.1226 3715.0 3727.6 

Clayton Skew t 0.0986 
(0.0060) 

 0.0470 0.0009  -141.82 
(1) 

-135.48 

Gumbel Skew t 1.0359 
(0.0041) 

 0.0346  0.0474 -108.23 
(3) 

-101.89 

Frank Skew t 1.7936 
(0.0687) 

 0.1932   44.719 51.052 

Joe Skew t 1.0149 
(0.0032) 

 0.0085  0.0202 -99.959 
(2) 

-93.626 

VOL/LIN 

Model Marginal 𝜃1 𝜃2 τ 𝜆𝐿 𝜆𝑈 AIC BIC 

Normal Skew t 0.1714 
(0.0065) 

 0.1096   -614.16 
 

-607.83 

Student 
t 

Skew t 0.1710 
(0.0065) 

3.5188 
(0.8371) 

0.1093 0.1399 0.1399 -40.853 -28.187 

Clayton Skew t 0.09327 
(0.0059) 

 0.0445 0.0006  -116.95 
(3) 

-110.62 

Gumbel Skew t 1.0350 
(0.0039) 

 0.0339  0.0464 -187.91 
(2) 

-181.58 

Frank Skew t 1.6134 
(0.0675) 

 0.1747   -384.38 
(1) 

-378.04 

Joe Skew t 1.0174 
(0.0032) 

 0.0100  0.02364 -40.366 -34.033 

Thy/LIN 

Model Marginal 𝜽𝟏 𝜽𝟐 τ 𝝀𝑳 𝝀𝑼 AIC BIC 

Normal Skew t 0.4458 
(0.0113) 

 0.2941   7428.5 7434.8 

Student 
t 

Skew t 0.4616 
(0.0124) 

7.5897 
(0.9899) 

0.3054 0.1105 0.1105 4529.6 
(2) 

4542.2 

Clayton Skew t 0.6891 
(0.0274) 

 0.2562 0.9998  5626.0 5632.4 

Gumbel Skew t 1.3778 
(0.0164) 

 0.2742  0.3461 5524.8 5531.2 

Frank Skew t 2.9991  0.3071   1852.4 1858.8 
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(0.0994) (1) 
Joe Skew t 1.4550 

(0.0234) 
 0.2039  0.3898 4593.3 

(3) 
4599.6 

Note:Siemens:SIE,BMW:BMW,Linde:LIN,Thyssenkrup:THY,Volkswagen:VOL. Standard errors are presented in 

parenthesis. All models are ranked on the basis of smallest AIC. AIC is Akaike information criterion, and BIC is Bayesian 

information criterion. τ is Kendell’s Tau measure of dependence. 
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Table 111: Bivariate DCC Model Parameter Estimation. 

DCC-mvnorm 
 

 BMW/SEI 
 

BMW/VOL BMW/THY BMW/LIN SEI/VOL SEI/THY SEI/LIN VOL/THY SEI/LIN THY/LIN 

 
𝜶 

 
0.0288 
 

 
0.0464 

 
0.0431 

 
0.0718 

 
0.0480 

 
0.0300 

 
0.0155 

 
0.0241 

 
0.0294 

 
0.0206 

𝜷 0.9658 
 

0.9371 0.9469 0.6822 0.9404 0.9679 0.9821 0.9714 0.9539 0.9701 

AIC 7.3272 
 

10.047 7.8530 7.9142 7.2414 4.8512 4.9517 7.7565 7.8058 5.4410 

DCC-mvt 

 

 BMW/SEI 
 

BMW/VOL BMW/THY BMW/LIN SEI/VOL SEI/THY SEI/LIN VOL/THY SEI/LIN THY/LIN 

 
𝜶 

 
0.0464 
 

 
0.0428 

 
0.0367 

 
0.0486 

 
0.0450 

 
0.0302 

 
0.0172 

 
0.0291 

 
0.0299 

 
0.0192 

𝜷 0.9356 
 

0.9476 0.9540 0.8266 0.9421 0.9674 0.9793 0.9626 0.9547 0.9743 

df 6.5275 
 

5.0671 5.6556 5.3163 5.9866 6.0869 5.9913 6.5342 6.4307 6.5275 

AIC 7.0623 
 
 

9.8216 7.6728 7.7229 5.9866 4.6741 4.7719 7.6262 7.6682 5.3126 

Note:Siemens:SIE,BMW:BMW,Linde:LIN,Thyssenkrup:THY,Volkswagen:VOL. Standard errors are presented in 

parenthesis. All models are ranked on the basis of smallest AIC. AIC is Akaike information criterion, and BIC is Bayesian 

information criterion. τ is Kendell’s Tau measure of dependence. 
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Table 112: Back-testing Value at Risk (VaR) and Expected Shortfall (ES) for 

Bivariate Copulas. 

BMW/SEI 
Model 
 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Normal 
 

0.1140 0.2924 0.5944 1.2038 0.1125 0.1143 0.1157 0.1174 

Student t 
 

0.1138 0.2909 0.5919 1.2058 0.1095 
(1) 

0.1129 
(2) 

0.1151 
(2) 

0.1173 
(3) 

Clayton 0.1148 0.2922 0.5924 1.2048 0.1127 0.1144 
 

0.1161 0.1177 

Gumbel 0.1143 0.2919 0.5934 1.2048 0.1127 0.1144 
 

0.1162 0.1179 

Frank 0.1123 0.2889 0.5889 1.1948 0.1100 
(2) 

0.1124 
(1) 

0.1145 
(1) 

0.1165 
(1) 

Joe 0.1138 0.2884 0.5864 1.2028 0.1121 
(3) 

0.1136 
(3) 

0.1151 
(2) 

0.1170 
(2) 

DCC-norm 3.061 2.345 1.725 1.0225 0.5418 0.5233  
 

0.5008 0.4745 

DCC-t 57.56 32.81 24.25 15.89 0.9475 0.8060 
 

0.7051 0.6067 

BMW/VOL 

Model 
 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Normal 0.1160 0.2949 0.5964 1.2148 0.1130 
 

0.1154 0.1169 0.1187 

Student t 0.1161 0.2952 0.6014 1.2178 0.1142 
(2) 

0.1159 
(2) 

0.1176 
(2) 

0.1193 
(2) 

Clayton 0.1169 0.2962 0.6004 1.2168 0.1144 
(3) 

0.1162 
(3) 

0.1178 
(3) 

0.1193 
(2) 

Gumbel 0.1168 0.2972 0.6009 1.2198 0.1155 
 

0.1169 0.1182 0.1197 

Frank 0.1162 0.2939 0.5974 1.2158 0.1132 
(1) 

0.1154 
(1) 

0.1170 
(1) 

0.1189 
(1) 

Joe 0.1169 0.2972 0.6039 1.2218 0.1148 
 

0.1166 0.1182 0.1198 

DCC-norm 1.908 1.206 0.611 0.041 0.4237 
 

0.4048 0.3823 0.3557 

DCC-t 4.594 2.126 1.248 0.447 0.7796 0.6271 0.4922 0.4228 

BMW/THY 

Model 
 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Normal 
 

0.1107 0.2855 0.5835 1.1900 0.1083 0.1110 0.1132 0.1156 

Student t 0.1115 0.2837 0.5810 1.1940 0.1070 
(1) 

0.1103 
(2) 

0.1126 
(1) 

0.1154 
(3) 

Clayton 0.1105 0.2835 0.5790 1.1890 0.1081 0.1106 
(3) 

0.1126 
(1) 

0.1152 
(1) 

Gumbel 0.1122 0.2875 0.5830 1.1970 0.1080 
(3) 

0.1113 0.1135 0.1159 
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Frank 0.1112 0.2852 0.5815 1.1860 0.1081 0.1109 0.1130 0.1152 
(1) 

Joe 0.1106 0.2850 0.5845 1.1910 0.1072 
(2) 

 

0.1102 
(1) 

0.1129 
(2) 

0.1155 

DCC-norm 3.0729 
 

2.3555 1.7337 1.0286 0.5424 0.5236 0.5011 0.4747 

DCC-t 5.8300 
 

3.4232 2.4870 1.6001 0.9490 0.7906 0.6815 0.5781 

BMW/LIN 

Model 
 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Normal 
 

0.1205 0.3078 0.6267 1.2735 0.1191 0.1207 0.1225 0.1244 

Student t 0.1192 0.3048 0.6232 1.2755 0.1151 
(1) 

0.1186 
(1) 

0.1211 
(1) 

0.1237 
(2) 

Clayton 0.1213 0.3088 0.6282 1.2825 
 

0.1190 0.1211 0.1228 0.1248 

Gumbel 0.1193 0.3066 0.6267 1.2775 0.1183 0.1201 
(3) 

0.1221 
(2) 

0.1244 
(3) 

Frank 0.1196 0.3041 0.6232 1.2715 0.1169 
(2) 

0.1191 
(2) 

0.1211 
(1) 

0.1235 
(1) 

Joe 0.1223 0.3098 0.6297 1.2815 0.1179 
(3) 

0.1210 0.1229 0.1250 

DCC-norm 2.8278 
 

2.1395 1.5441 0.8716 0.5281 0.5100 0.4883 0.4627 

DCC-t 5.6454 
 

3.0882 2.2072 1.3756 0.8850 0.7356 0.6328 0.5355 

SEI/VOL 

Model 
 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Normal 
 

0.1319 0.3369 0.6838 1.3846 0.1300 0.1320 0.1338 0.1358 

Student t 0.1334 0.3399 0.6878 1.3936 0.1304 
(1) 

0.1331 
(1) 

0.1349 
(1) 

0.1367 
(3) 

Clayton 0.1332 0.3386 0.6878 1.3896 0.1314 
(2) 

0.1332 
(2) 

0.1349 
(1) 

0.1366 
(2) 

Gumbel 0.1343 
 

0.3396 0.6863 1.3916 0.1329 0.1342 0.1354 0.1368 

Frank 0.1339 0.3404 0.6858 1.3866 0.1316 0.1335 
(3) 

0.1350 
(2) 

0.1365 
(1) 

Joe 0.1333 0.3404 0.6858 1.3876 0.1312 
(1) 

0.1336 0.1351 0.1366 

DCC-norm 0.9966 0.4358 0.1911 0.0638 0.3884 0.3881 
 

0.3841 0.3791 

DCC-t 0.8726 0.3583 0.1376 0.0360 0.3343 0.3038 
 

0.2830 0.2635 

SEI/THY 

Model 
 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Normal 0.0069 0.0232 0.0640 0.1541 0.0029 0.0060 0.0085 0.0114 
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Student t 0.0081 0.0265 0.0675 0.1591 0.0011 

(1) 
0.0061 

(2) 
0.0091 

(2) 
0.0119 

(3) 

Clayton 0.0066 0.0222 0.0625 0.1551 0.0024 
(2) 

0.0058 
(1) 

0.0083 
(1) 

0.0112 
(1) 

Gumbel 0.0077 0.0242 0.0645 0.1621 0.0044 
(3) 

0.0071 
(3) 

0.0093 0.0120 

Frank 0.0082 0.0247 0.0615 0.1511 0.0051 0.0075 0.0092 
(3) 

0.0115 
(2) 

Joe 0.0085 
 

0.0290 0.0690 0.1651 0.0044 0.0078 0.0103 0.0128 

DCC-norm 6.0279 
 

4.6398 0.4173 0.9676 0.5096 0.5096 0.5050 0.4996 

DCC-t 8.6118 
 

6.3266 6.3266 6.3266 0.4548 0.4269 0.4073 0.3882 

SEI/LIN 

Model 
 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Normal 
 

0.0156 0.0496 0.1128 0.2506 0.0132 0.0157 0.0184 0.0211 

Student t 0.0167 0.0476 0.1068 0.2466 0.0109 
(2) 

0.0151 
(1) 

0.0176 
(1) 

0.0203 
(1) 

Clayton 0.0153 0.0464 0.1073 0.2446 0.0138 0.0157 
(2) 

0.0178 
(2) 

0.0204 
(2) 

Gumbel 0.0179 0.0521 0.1133 0.2516 0.0108 
(1) 

0.0160 
(3) 

0.0189 0.0215 

Frank 0.0161 0.0499 0.1078 0.2426 0.0136 
(3) 

0.0165 0.0186 
(3) 

0.0208 
(3) 

Joe 0.0187 
 

0.0516 0.1143 0.2496 0.0160 0.0183 0.0200 0.0219 

DCC-norm 2.2012 
 

1.3294 0.5828 0.0246 0.4909 0.4891 0.4879 0.4845 

DCC-t 4.4584 
 

2.7626 1.5993 0.5521 0.4013 0.3803 0.3659 0.3525 

VOL/THY 

Model 
 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Normal 
 

0.1298 0.3297 0.6749 1.3718 0.1317 0.3349 0.6849 1.3918 

Student t 0.1315 0.3339 0.6789 1.3801 0.1249 
(1) 

0.1276 
(1) 

0.1304 
(1) 

0.1340 
(2) 

Clayton 0.1313 
 

0.3349 0.6779 1.3818 0.1298 0.1316 0.1333 0.1352 

Gumbel 0.1299 0.3322 0.6729 1.3688 0.1289 0.1312 0.1330 0.1350 
 

Frank 0.1308 0.3344 0.6754 1.3748 0.1278 
(2) 

0.1301 
(2) 

0.1318 
(2) 

0.1338 
(1) 

Joe 0.1317 0.3349 0.6849 1.3918 0.1287 
(3) 

0.1308 
(3) 

0.1326 
(3) 

0.1344 
(3) 

DCC-norm 0.9638 
 

0.4149 0.1784 0.0577 0.3906 0.3905 0.3859 0.3805 
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DCC-t 0.8388 
 

0.3419 0.1309 0.0297 0.3512 0.3224 0.3022 0.2825 

VOL/LIN 

Model 
 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Normal 
 

0.1367 0.3485 0.7101 1.4503 0.1339 0.1364 0.1386 0.1411 

Student t 0.1383 
 

0.3510 0.7146 1.4573 0.1357 0.1378 0.1399 0.1422 

Clayton 0.1391 
 

0.3523 0.7156 1.4523 0.1368 0.1385 0.1403 0.1423 

Gumbel 0.1366 0.3485 0.7091 1.4403 0.1338 
(2) 

0.1363 
(2) 

0.1383 
(2) 

0.1406 
(1) 

Frank 0.1360 0.3480 0.7066 1.4433 0.1329 
(1) 

0.1361 
(1) 

0.1382 
(1) 

0.1407 
(2) 

Joe 0.1381 0.3510 0.7151 1.4493 0.1349 
(3) 

0.1376 
(3) 

0.1396 
(3) 

0.1419 
(3) 

DCC-norm 1.1983 
 

0.5531 0.2568 0.0934 0.3712 0.3728 0.3696 0.3659 

DCC-t 1.1143 
 

0.5046 0.2250 0.07453 0.2940 0.2745 0.2607 0.2473 

THY/LIN 

Model 
 

VaR-Loss Function ES-MAE 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Normal 
 

0.0149 0.0464 0.1074 0.2428 0.0063 0.0127 0.0164 0.0196 

Student t 0.0096 0.0384 0.0954 0.2228 0.0060 
(2) 

0.0099 
(2) 

0.0135 
(2) 

0.0172 
(2) 

Clayton 0.0081 0.0357 0.0884 0.2178 0.0047 
(1) 

0.0086 
(1) 

0.0123 
(1) 

0.0160 
(1) 

Gumbel 
 

0.0169 0.0464 0.1074 0.2438 0.0112 0.0151 0.0175 0.0202 

Frank 0.0146 0.0452 0.1009 0.2308 0.0107 
(3) 

0.0141 
(3) 

0.0166 
(3) 

0.0191 
(3) 

Joe 0.0176 
 

0.0482 0.1079 0.2418 0.0155 0.0171 0.0187 0.0208 

DCC-norm 3.0806 
 

2.0492 1.1797 0.2176 0.4927 0.4940 0.4905 0.4865 

DCC-t 5.1497 
 

3.4240 2.2057 1.0546 0.4249 0.4036 0.3885 0.3739 

Note: Siemens: SIE, BMW: BMW, Linde: LIN, ThyssenKrupp: THY, Volkswagen:VOL. All models are ranked based on the 

minimum of MAE for ES on 1%, 2.5%, 5% and 10% significance level. The best models are highlighted by bold. 
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Table 113: Back-testing Term structure of Risk for Bivariate Data. 

BMW/SEI 
 

Model 
 

5- Day VaR-Loss Fuction 
 

10- Days VaR-Loss Function 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

147.40 100.23 69.712 69.712 286.52 196.00 130.47 77.734 

Monte-
Carlo(DCC) 

144.97 100.12 68.249 39.439 279.82 192.07 132.67 81.66 

 5-Day ES-MAE 10-Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

2.5397 1.9812 1.5846 1.2161 5.8295 4.1613 3.2499 2.4343 

Monte-
Carlo(DCC) 
 

2.0602 1.5428 1.1931 0.8637 4.1767 2.9914 2.3385 1.7267 

BMW/VOL 
 

Model 
 

5- Day VaR-Loss Fuction 
 

10 -Days VaR-Loss Fuction 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

133.41 87.51 56.07 27.53 257.87 167.69 108.94 55.245 

Monte-
Carlo(DCC) 

130.25 85.66 55.22 27.09 249.03 163.24 101.60 47.856 

 5-Day ES-MAE 10-Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

2.3756 1.8391 1.4525 1.0907 5.7101 4.1102 3.1305 2.3149 

Monte-
Carlo(DCC) 
 

1.8858 1.3876 1.0462 0.7231 4.0191 2.8163 2.0577 1.3817 

BMW/THY 
 

Model 
 

5- Day VaR-Loss Fuction 
 

10 -Days VaR-Loss Fuction 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

145.27 99.303 67.639 38.483 269.72 181.89 121.18 67.067 

Monte-
Carlo(DCC) 

144.48 100.04 67.687 39.239 259.94 175.90 113.06 59.876 

 5-Day ES-MAE 10-Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

2.4773 1.9410 1.5504 1.1915 5.6712 4.0545 3.0818 2.2887 

Monte-
Carlo(DCC) 
 

2.0225 1.5259 1.1820 0.8578 4.1577 2.9503 2.1927 1.5166 
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BMW/LIN 

 

Model 
 

5- Day VaR-Loss Fuction 
 

10 -Days VaR-Loss Fuction 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

170.57 120.72 85.618 50.386 292.68 194.06 128.54 73.44 

Monte-
Carlo(DCC) 

185.00 133.75 133.75 60.331 307.48 204.84 136.69 75.613 

 5-Day ES-MAE 10-Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

2.8213 2.2183 1.7964 1.4115 6.0938 4.3549 3.3148 2.4566 

Monte-
Carlo(DCC) 
 

2.5842 2.0013 1.6053 1.2252 4.8904 3.4998 2.6382 1.8854 

SEI/VOL 

Model 
 

5- Day VaR-Loss Fuction 
 

10 -Days VaR-Loss Fuction 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

105.07 62.032 34.734 9.299 190.24 118.202 78.168 37.937 

Monte-
Carlo(DCC) 

1.2486 0.7159 0.5753 0.2651 114.19 88.377 65.980 43.166 

 5-Day ES-MAE 10-Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

2.0201 1.4978 1.1351 0.8101 4.4975 2.9756 2.2394 1.6163 

Monte-
Carlo(DCC) 
 

0.0811 0.0924 0.1018 0.1116 1.4760 1.1698 0.9850 0.7738 

SEI/THY 
 

Model 
 

5- Day VaR-Loss Fuction 
 

10- Days VaR-Loss Fuction 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

116.86 73.67 46.14 21.229 248.59 165.62 108.01 61.405 

Monte-
Carlo(DCC) 

3.3054 2.0463 0.9869 0.0121 11.502 5.1273 3.4474 1.5919 

 5Day ES-MAE 10Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

2.0837 1.5911 1.2402 0.9227 4.6169 3.1727 2.3588 1.7357 

Monte-
Carlo(DCC) 
 

0.0425 0.0324 0.0236 0.0132 0.1820 0.1098 0.0764 0.0503 

SEI/LIN 
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Model 
 

5- Day VaR-Loss Fuction 
 

10 -Days VaR-Loss Fuction 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

180.66 130.67 95.307 59.565 302.78 204.01 138.23 82.623 

Monte-
Carlo(DCC) 

121.84 83.219 56.347 34.068 151.03 105.52 80.373 48.108 

 5-Day ES-MAE 10-Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

2.9233 2.3203 1.8984 1.5135 6.1958 4.4569 3.4168 2.5586 

Monte-
Carlo(DCC) 
 

2.0903 1.6138 1.2886 0.9919 2.9231 2.1367 1.6872 1.3173 

VOL/THY 

 

Model 
 

5- Day VaR-Loss Fuction 
 

10- Days VaR-Loss Fuction 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 

Monte-
Carlo(Static) 
 

105.08 62.040 34.809 10.486 202.54 139.94 96.378 43.822 

Monte-
Carlo(DCC) 

1.2098 0.5469 0.2477 0.0867 1.0218 0.4214 0.1719 0.0485 

 5-Day ES-MAE 10-Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 
 

2.0202 1.4979 1.1352 0.8105 4.5084 3.0351 2.3687 1.7809 

Monte-
Carlo(DCC) 
 

0.1063 0.0959 0.0868 0.0760 0.3991 0.1922 0.9177 0.0849 

VOL/LIN 
 

Model 
 

5 -Day VaR-Loss Fuction 
 

10- Days VaR-Loss Fuction 

1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

116.95 76.202 51.438 28.229 235.93 153.14 95.860 49.892 

Monte-
Carlo(DCC) 

69.513 46.601 30.367 15.890 71.592 46.961 32.286 15.863 

 5-Day ES-MAE 10-Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

1.9558 1.4632 1.1123 0.7951 4.4998 3.1037 2.3601 1.7723 

Monte-
Carlo(DCC) 
 

0.9038 0.6925 0.5381 0.3798 0.9524 0.7226 0.5575 0.3937 

THY/LIN 

 

Model 5- Day VaR-Loss Function 10- Days VaR-Loss Function 
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1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

128.79 87.839 62.863 38.953 254.15 167.99 109.44 61.939 

Monte-
Carlo(DCC) 

120.81 83.003 56.564 34.129 220.01 141.72 94.080 48.034 

 5-Day ES-MAE 10-Days ES-MAE 

 1% 2.5% 5% 10% 1% 2.5% 5% 10% 
Monte-
Carlo(Static) 

 

2.1867 1.6961 1.3545 1.0542 5.3775 3.8114 2.9068 2.1481 

Monte-
Carlo(DCC) 
 

2.0897 1.6130 1.2884 0.9924 4.9913 3.4633 2.5864 1.8851 

Note: Siemens: SIE, BMW: BMW, Linde: LIN, ThyssenKrupp: THY, Volkswagen:VOL. All models are ranked based on the 

minimum of MAE for ES on 1%, 2.5%, 5% and 10% significance level. The best models are highlighted by bold. 
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Table 114: Estimates from the Univariate GARCH-Normal Models. 

Parameters 

 

Conditional Variance Equation with normal Innovation 

 𝐁𝐌𝐖 𝐒𝐄𝐈 𝐕𝐎𝐋 𝐓𝐇𝐘 𝐋𝐈𝐍 
 

𝜶𝟎 0.0007 
(0.0002) 
 

0.0001 
(0.0000) 

0.0001 
(0.0001) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

𝜶𝟏 0.0849 
(0.0086) 
 

0.0826 
(0.0097) 

0.0958 
(0.0083) 

0.0926 
(0.0176) 

0.0696 
(0.0080) 

𝜷𝟏 0.9255 
(0.0081) 
 

0.9270 
(0.0089) 

0.9044 
(0.0092) 

0.9119 
(0.0180) 

0.9346 
(0.0090) 

γ 1.2910 
(0.1564) 
 

1.0421 
(0.1188) 

1.3995 
(0.1463) 

1.4875 
(0.2267) 

1.3071 
(0.1935) 

Q(5) 15.19 
(0.0003) 
 

4.665 
(0.1819) 

9.331 
(0.0136) 

15.150 
(0.0004) 

11.933 
(0.0029) 

Q2(5) 5.336 
(0.1283) 
 

0.1945 
(0.9930) 

3.005 
(0.4061) 

4.8518 
(0.1653) 

2.979 
(0.4109) 

AIC -5.1120 
 

-5.1722 -4.9122 -4.9429 -5.4676 

Siemens: SIE, BMW: BMW, Linde: LIN, ThyssenKrupp: THY, Volkswagen: VOL. Standard errors are presented in 

parenthesis. All models are ranked based on smallest AIC. AIC is Akaike information criterion, and BIC is Bayesian 

information criterion. 
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Table 115: Estimates from the Univariate GARCH-t Models. 

Parameters 

 

Conditional Variance Equation with t distribution Innovation 

 𝐁𝐌𝐖 𝐒𝐄𝐈 𝐕𝐎𝐋 𝐓𝐇𝐘 𝐋𝐈𝐍 
 

𝜶𝟎 0.0000 
(0.0000) 
 

0.0001 
(0.0001) 

0.0001 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

𝜶𝟏 0.0758 
(0.0110) 
 

0.0750 
(0.0141) 

0.1072 
(0.0113) 

0.0889 
(0.0132) 

0.0719 
(0.0125) 

𝜷𝟏 0.9368 
(0.0100) 
 

0.9391 
(0.0120) 

0.9016 
(0.0109) 

0.9218 
(0.0131) 

0.9351 
(0.0139) 

γ 1.2922 
(0.2023) 
 

0.9937 
(0.1828) 

1.2787 
(0.1662) 

1.3248 
(0.1922) 

1.4408 
(0.2434) 

df 6.406 
(0.5926) 
 

6.4361 
(0.5605) 

5.9080 
(0.5008) 

6.0429 
(0.5291) 

5.2149 
(0.4189) 

Q(5) 14.60 
(0.0005) 
 

4.242 
(0.2254) 

9.268 
(0.0141) 

15.0100 
(0.0004) 

11.497 
(0.0037) 

Q2(5) 12.551 
(0.0135) 
 

0.3602 
(0.9770) 

2.2037 
(0.5711) 

7.2432 
(0.0452) 

2.423 
(0.5225) 

AIC -5.1555 
 

-5.2428 -4.9686 -4.9964 -5.5300 

Siemens: SIE, BMW: BMW, Linde: LIN, ThyssenKrupp: THY, Volkswagen: VOL. Standard errors are presented in 

parenthesis. All models are ranked based on smallest AIC. AIC is Akaike information criterion, and BIC is Bayesian 

information criterion. 
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Table 116: Estimates from the Univariate GARCH-Skewed t Models. 

Parameters 

 

Conditional Variance Equation with skewed t distribution Innovation 

 𝐁𝐌𝐖 𝐒𝐄𝐈 𝐕𝐎𝐋 𝐓𝐇𝐘 𝐋𝐈𝐍 
 

𝜶𝟎 0.0000 
(0.0000) 
 

0.0001 
(0.0001) 

0.0001 
(0.0000) 

0.0001 
(0.0000) 

0.0000 
(0.0000) 

𝜶𝟏 0.0758 
(0.0218) 
 

0.0746 
(0.0138) 

0.0109 
(0.0114) 

0.0894 
(0.0133) 

0.0728 
(0.0125) 

𝜷𝟏 0.9368 
(0.0205) 
 

0.9394 
(0.0117) 

0.9009 
(0.0109) 

0.9215 
(0.0131) 

0.9345 
(0.0138) 

γ 1.2923 
(0.2957) 
 

0.9950 
(0.1803) 

1.2703 
(0.1669) 

1.3206 
(0.1921) 

1.4420 
(0.2420) 

Skew 1.000 
(0.0173) 
 

0.9799 
(0.0195) 

1.0344 
(0.0202) 

1.0115 
(0.0195) 

1.0474 
(0.0197) 

Shape 6.4059 
(0.6079) 
 

6.4578 
(0.5634) 

5.8526 
(0.4932) 

6.0204 
(0.5268) 

5.2133 
(0.4182) 

Q(5) 14.60 
(0.0005) 
 

4.238 
(0.2258) 

9.2130 
(0.0146) 

14.98 
(0.0004) 

11.480 
(0.0038) 

Q2(5) 12.551 
(0.4135) 
 

0.3762 
(0.9750) 

2.1361 
(0.5866) 

7.1428 
(0.4478) 

2.2390 
(0.5632) 

AIC -5.1550 
 

-5.2426 -4.9684 -4.9961 -5.5302 

Siemens: SIE, BMW: BMW, Linde: LIN, ThyssenKrupp: THY, Volkswagen: VOL. Standard errors are presented in 

parenthesis. All models are ranked based on smallest AIC. AIC is Akaike information criterion, and BIC is Bayesian 

information criterion. 
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Table 117: Estimates from the Univariate GARCH-GED Models. 

Parameters 
 

Conditional Variance Equation with Generalized Error Distribution  
Innovation 

 𝐁𝐌𝐖 𝐒𝐄𝐈 𝐕𝐎𝐋 𝐓𝐇𝐘 𝐋𝐈𝐍 
 

𝜶𝟎 0.0000 
(0.0000) 
 

0.0001 
(0.0000) 

0.0001 
(0.0001) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

𝜶𝟏 0.0803 
(0.0122) 
 

0.0792 
(0.0176) 

0.1030 
(0.0109) 

0.0923 
0.0115 

0.0717 
(0.0157) 

𝜷𝟏 0.9315 
(0.0116) 
 

0.9337 
(0.0155) 

0.9010 
(0.0113) 

0.9155 
(0.0115) 

0.9338 
(0.0187) 

γ 1.2810 
(0.2025) 
 

1.0288 
(0.1930) 

1.3226 
(0.1704) 

1.3921 
(0.1828) 

1.3768 
(0.3037) 

Shape 1.3187 
(0.0386) 
 

1.2970 
(0.0355) 

1.3002 
(0.0367) 

1.2907 
(0.0371) 

1.2041 
(0.0367) 

Q(5) 14.92 
(0.0004) 
 

4.430 
(0.2051) 

9.407 
(0.0130) 

13.72 
(0.0001) 

11.569 
(0.0036) 

Q2(5) 6.997 
(0.5190) 
 

0.2589 
(0.9877) 

2.3910 
(0.5293) 

5.4468 
(0.1210) 

2.631 
(0.4786) 

AIC -5.1571 
 

-5.2335 -4.9655 -4.9965 -5.5349 

Siemens: SIE, BMW: BMW, Linde: LIN, ThyssenKrupp: THY, Volkswagen: VOL. Standard errors are presented in 

parenthesis. All models are ranked based on smallest AIC. AIC is Akaike information criterion, and BIC is Bayesian 

information criterion. 
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