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Abstract
Amphibian populations worldwide are at risk of extinction from infectious diseases, including chytridiomycosis caused by
the fungal pathogen Batrachochytrium dendrobatidis (Bd). Amphibian cutaneous microbiomes interact with Bd and can
confer protective benefits to the host. The composition of the microbiome itself is influenced by many environment- and
host-related factors. However, little is known about the interacting effects of host population structure, genetic variation and
developmental stage on microbiome composition and Bd prevalence across multiple sites. Here we explore these questions
in Amietia hymenopus, a disease-affected frog in southern Africa. We use microsatellite genotyping and 16S amplicon
sequencing to show that the microbiome associated with tadpole mouthparts is structured spatially, and is influenced by host
genotype and developmental stage. We observed strong genetic structure in host populations based on rivers and geographic
distances, but this did not correspond to spatial patterns in microbiome composition. These results indicate that demographic
and host genetic factors affect microbiome composition within sites, but different factors are responsible for host population
structure and microbiome structure at the between-site level. Our results help to elucidate complex within- and among-
population drivers of microbiome structure in amphibian populations. That there is a genetic basis to microbiome
composition in amphibians could help to inform amphibian conservation efforts against infectious diseases.

Introduction

Multicellular organisms act as hosts to a diverse suite
of bacterial communities, collectively referred to as the
microbiome. Recent research across multiple taxa has
highlighted that these bacterial communities perform ben-
eficial functions for the host, including protection from
infectious pathogens [1–3]. Despite the importance of
symbiotic relationships between microbes and their hosts, a
comprehensive understanding of factors that influence the
diversity and composition of the microbiome, particularly
for non-human animals, is lacking. Though previous studies
have revealed landscape-scale variation among populations
in microbiome structure [4–6], and fine-scale variation
among individuals within populations due to life stage [6],
diet [7], gender [7] and genotype [7, 8], few have investi-
gated both within and among population drivers of micro-
biome structure in a single framework [6, 8]. Studying
factors that determine variation in the distribution of bac-
terial symbionts at both the individual and landscape scale
is crucial for understanding how individual susceptibility
to pathogens varies within and among populations.
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The amphibian skin microbiome represents a model
system for understanding the ecological drivers of host
microbiome structure and the role of symbiotic bacteria in
protecting the host from pathogens. The lethal and globally
distributed amphibian chytrid fungus (Batrachochytrium
dendrobatidis; Bd) is causing mass mortalities and rapid
population declines of amphibians around the world and is a
major driver of the current amphibian extinction crisis [9].
Certain host-associated bacteria have been shown to influ-
ence susceptibility to Bd, with particular bacterial genera
conferring increased or decreased protection against Bd in
experimental and field studies [2, 10–12]. Host genotype is
one factor that may underpin variation in the presence and
persistence of these protective microbes, both within and
among host populations [7, 8, 13–16]. For example, poly-
morphism of the major histocompatibility complex (MHC)
Class IIb gene has been shown to co-vary with gut micro-
biome structure in vertebrates [7]. The expression of anti-
microbial peptides (AMPs) on frog skin is governed by
innate immunity [17], and so variation in immune genes may
drive structural changes in the microbiome through differ-
ential AMP expression. The population genetic structure
could therefore yield differences in microbiome at the
landscape level if it is representative of the non-random
distribution of functional genetic variation at immune loci.
Furthermore, shifts in the environmental reservoir of bacteria
across large geographic scales may also cause differences in
the relative abundances of bacteria able to colonise the host
[4]. Within populations, fine-scale variation in life-history
traits, such as age, may further modify the ability of bacteria
to coexist on the skin, or favour differential selection by the
host from the environment. Though microbiome differences
have been shown among larvae, juveniles and adults in some
amphibian species [18, 19], changes in microbiome structure
throughout larval ontogeny have not been investigated. This
may be especially pertinent, given that fine-scale variation in
Bd infection loads has been found across developmental
stages of tadpoles [20, 21]. Research into the links between
host genetics, developmental stage, microbiome composition
and pathogen susceptibility may enable a better understanding
of the factors governing disease in vulnerable populations.

Here we use a disease-challenged high-altitude amphibian
species in the Drakensberg Mountains of southern Africa to
investigate within and among population predictors of micro-
biome structure that may have implications for disease sus-
ceptibility. Using microsatellite genotyping and 16S amplicon
sequencing, we examine how population genetic structure,
individual genotype, and developmental stage determine dif-
ferences in microbiome structure among individuals. Specifi-
cally, we aim to: (i) quantify Bd infection across Amietia
hymenopus frog populations; (ii) characterise the microbiome
of A. hymenopus; (iii) examine the genetic population structure
of A. hymenopus on the Drakensberg plateau; (iv) investigate

predictors of microbiome structure among sites (specifically
river, geographic distance and genetic differentiation among
host populations); (v) investigate within-site predictors of
microbiome structure (specifically host genotype and ontoge-
netic stage); and (vi) examine the roles of host microbiome and
host genetics in influencing Bd infection loads.

Methods

Study site

The Drakensberg Mountains of southern Africa are a vast
mountain range reaching up to 3482m above sea level
(asl). Here, the Mont-aux-Sources plateau crosses north-east
Lesotho and South Africa. On the South African side, four
streams (Vemvane, Tugela, Bilanjil and Ribbon Falls) flow
1–3 km across the plateau from multiple origins in the high
peaks on the South Africa-Lesotho border, before dropping
off a ~1000m precipice into South Africa (Fig. 1). Two other
streams on the plateau flow into Lesotho; Khubela and
Kubedu. The Phofung river frog (Amietia hymenopus) is the
only amphibian found in most of the Mont-aux-Sources
stream system, with the exception of the Kubedu river, where
A. hymenopus is absent and A. umbraculata is present [22].
Long-term (10 year) sampling in this region indicates
A. hymenopus has a consistent history of Bd infection with
associated mass mortalities [23].

Sample collection

We collected tadpoles from Mont-aux-Sources by permis-
sion of Ezemvelo KwaZulu Natal Wildlife and the King-
dom of Lesotho Ministry of Tourism, Environment and
Culture. We sampled eight sites across five rivers over the
plateau; ‘Nampolice’ and ‘Vemvane’ from the Vemvane
River (South Africa); ‘Tugela’, ‘Tugela 2’ and ‘Tukelahed’
from the Tugela River (South Africa); ‘Khubnam’ from the
Khubela River (Lesotho); and ‘Bilanjil’ and ‘Ribbon Falls’
from their respective rivers (South Africa; Fig. 1). High-
resolution mapping was unavailable for the study area, so
we used QGIS (version 2.18) to combine Open Source data
sets and then digitise the water courses within the study area
(Supplementary Information).

We collected 20–28 tadpoles per site (nine at Khubnam)
along a ~150 m transect within an altitudinal range of
3010–3090 m asl to minimize variation in Bd infection.
We conducted two sampling trips 4-weeks apart; in March
2015, we collected tadpoles from six sites (Nampolice,
Tugela, Tugela 2, Tukelahed, Bilajil and Ribbon Falls;
Fig. 1) and analysed these for Bd infection, host genotype
and microbiome composition. In April 2015, we collected
tadpoles from Vemvane and Khubnam to enhance the
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population genetics analyses, but did not carry out micro-
biome analyses on these samples in order to avoid spurious
variation caused by temporal changes (Table 1). We stored
tadpoles in 95% ethanol prior to Gosner staging [24] and
exported carcasses for molecular analyses in the UK by
permission of the Department of Agriculture, Forestry and
Fisheries, South Africa, and the Department for Environ-
ment, Food and Rural Affairs, UK. We excised full
mouthparts for DNA extraction as due to their keratinised

nature, Bd primarily affects this area in tadpoles. DNA was
extracted using the DNeasy® Blood and Tissue Kit (Qiagen)
and was used for all subsequent analyses.

Bd infection

We constructed serial dilutions of DNA and conducted
quantitative PCRs on a Qiagen Rotor Gene according to
Boyle et al. [25]. We quantified Bd infection intensity in
triplicate using a 1:10 dilution of DNA with Bd standards
ranging from 0.025 to 250 zoospores/µl. We calculated
infection prevalence and intensity for each site.

16S amplicon sequencing of bacterial communities

We sequenced the microbial communities present on tadpole
mouthparts using a modified version of the protocol in
Kozich et al. and Bates et al. [26, 27]. Transient bacteria
most likely rinsed off during the ethanol preservation and so
microbial analyses reflect the resident microbiome in the
mouthparts of tadpoles. Briefly, we amplified a V4 region of
the 16S rRNA gene in triplicate for 139 samples, as well as

Fig. 1 Map of the river system and study sites in Mont-aux-Sources in
the Drakensberg Mountains. The rivers originate from springs on the
plateau; thus, the rivers in South Africa (Vemvane, Tugela, Bilanjil

and Ribbon Falls) all flow south-west to north-east before flowing over
the precipice into South Africa; Khubelu in Lesotho flows from north-
east to south-west

Table 1 Details of which molecular analyses were conducted with A.
hymenopus collected from each study site

Site Microbiome Bd infection Population genetics

Khubnam ●
Vemvane ●
Nampolice ● ● ●
Tugela ● ● ●
Tugela 2 ● ● ●
Tukelahed ● ● ●
Bilanjil ● ● ●
Ribbon Falls ● ● ●

Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian



two negative controls (one per PCR plate). Triplicates were
pooled and normalized using a titration run on an Illumina
MiSeq using v2 nano chemistry, followed by a full run using
250 bp paired-end v2 chemistry. We also sequenced a mock
community containing 20 bacteria isolated from amphibian
skin (genera Acinetobacter, Citrobacter, Enterobacter,
Flavobacterium, Plantibacter, Pseudomonas and Serratia).

Analyses

We performed sequence processing in DADA2 v1.4.0
(Calahan et al., 2016) using the default pipeline (see Sup-
plementary Information). Modal contig length was 253 bp
once paired-end reads were merged. We filtered
145 sequence variants (SVs) with length >260 bp (0.65% of
total sequences), and excluded 190 bimeras from the 22,010
input sequences. We assigned taxonomy using the SILVA
v123 training set [28, 29]. We removed 41 contaminating
SVs found in the negatives, including several variants of
halophilic bacteria, such as Halomonas and Pseudoalter-
omonas that are likely PCR mastermix contaminants.
DADA2 identified 20 unique sequence variants in the
sequenced mock community sample comprising 20 bacter-
ial isolates. The final SV table, taxonomy table, and sample
metadata were exported to phyloseq [30] in R v3.3.3 [31].

Following Longo and Zamudio [32], we excluded SVs
that contained fewer than 100 reads across the entire dataset
(n= 19,395), yielding 2384 SVs. Results using all SVs are
similar and not shown here. After filtering, mean library size
across individuals was 20,160 reads (range 13,156–83,063).
We rarefied all libraries to 13,156 reads per sample for alpha
and beta diversity analyses. We calculated alpha diversity
metrics (Shannon index) using the ‘estimate_richness’ com-
mand in phyloseq. We visualised differences in Bray-Curtis
distance among samples using non-metric multi-dimensional
scaling (NMDS) ordination of bacterial communities using
the R package vegan [33], setting k to 3 to yield a stress value
of <0.17. We also used the vegan function ‘vegdist’ to cal-
culate Bray-Curtis distance between bacterial communities to
compare to genetic distances among samples, and the ‘adonis’
function to compare bacterial community structure among
populations using permutational MANOVA. We used the R
package gplots [34] to visualize the number of shared SVs
among populations with a Venn diagram. To simplify the
Venn diagram, we collapsed the two ‘Tugela’ sampling points
into one group.

Population genetics

Microsatellite marker development and genotyping

We sequenced DNA from a single A. hymenopus individual
using Illumina 250 bp paired-end v2 chemistry. We

characterised eleven novel tri- and tetra-nucleotide micro-
satellite markers according to Griffiths et al. [35] (Supple-
mentary Information, Table S1). We conducted PCRs in five
multiplex reactions with the Type-it® Microsatellite Kit
(Qiagen) with the following conditions: 95 °C for 5 min;
30–35 × 95 °C for 30 s, 60–66 °C for 90 s, 72 °C for 30 s; 60
°C for 30 min (Table S1). We sized PCR amplicons using
the 3730 DNA Analyzer and the GeneScan™ LIZ1200 size
standard (Thermo-Fisher Scientific), scored alleles in Gen-
emapper v.3.7 (Thermo-Fisher Scientific), and binned alleles
in MsatAllele v1.02 [36] in R v3.3.3 [31].

Analyses

Details of quality control and summary statistics carried out
can be found in Supplementary Information. To assess
levels of population differentiation, we calculated global
FST and pairwise FST values between sites with corrections
for null alleles using the ENA method of Chapuis and
Estoup [37] with 1000 bootstrap replicates, and pairwise D
[38] in Genodive v2.0b23. [39] We used ADZE v1.0 [40]
to calculate site-level rarefied allelic richness (maximum
g= 20) to study the effects of intraspecific genetic diversity
at the population level on microbiome variation. We
excluded Khubnam due to the low sample size (n= 9)
compared with other sites (n= 20–28) to ensure sufficient
power to detect differences among sites was retained. We
created a pairwise matrix of Bruvo genetic distance [41]
between all individuals in GenoDive. We also calculated
individual-level heterozygosity (proportion of heterozygous
loci in all loci successfully genotyped) using Genhet [42] in
R to study its effect on associated microbial communities,
as individual heterozygosity can be correlated with fitness.

We used Bayesian clustering program STRUCTURE
v2.3.4 [43, 44] to assess the number of population clusters
(K) and assign individuals to them based on likelihoods. We
inferred the most probable K using the Evanno method [45,
46], and used CLUMPP v1.1.2 [47] and Distruct v1.1 [48]
to process the output.

We conducted principal coordinates analysis (PCoA) in
GenAlEx v6.502 [49, 50] using pairwise D values and the
standardised covariance method. We ran an analysis of
molecular variance (AMOVA) in Genodive using the Infi-
nite Allele Model. We tested for the presence of isolation by
distance among all locations and within population clusters.
We conducted a Mantel test in ade4 in R [51] in R with 999
permutations to test associations between matrices of pair-
wise linearised FST values (FST/1–FST) and the logarithm
of geographic distances. We used GENECLASS2 v2.0 [52]
to identify putative first-generation migrants among sites
[53, 54].

We used INEST v2.1 [55] to identify the presence of two
genetic signatures of bottleneck events; heterozygosity
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excesses in respect to allelic richness [56] and deficiency
in M-Ratio values (mean ratio of the number of alleles to
the range in allele size; [57]).

Predictors of microbial community structure

Individual level data

To examine the factors affecting Shannon diversity, we
fitted a Gaussian Mixed effects model in the R package
lme4 [58] with Shannon index as the response, Gosner
stage and heterozygosity (specified as proportion of het-
erozygous loci, [59]) as predictors, and population ID as a
random intercept (n= 126 data points for which there
were both microbial (Shannon) and host genetic (pro-
portion of heterozygous loci) data). Gosner stage and
proportion of heterozygous loci were z-transformed prior
to model fitting. The most complex model contained a
proportion of heterozygous loci ×Gosner stage interac-
tion. We assessed significance of terms using likelihood
ratio tests between models estimated using maximum
likelihood. To quantify differences in mean richness
among populations, we extracted the posterior modes of
the population random effects from a Bayesian version of
the best-supported model, specified in the R package
MCMCglmm [60].

To examine the factors predicting microbial community
structure (beta diversity), we calculated the within-
population ‘divergence’ metric of beta diversity using the
microbiome package (Lahti et al. 2017) to be used as a
response in a Gaussian mixed effects model. The community
structure model contained Gosner stage, proportion of het-
erozygous loci and their interaction as fixed effects, and
population ID as a random effect. We calculated the r2

values of minimal models using the [61] method for mixed
effects models, as implemented in the R package MuMIn
[62]. We used a partial Mantel test to examine the correla-
tion between genetic distances among A. hymenopus indi-
viduals (calculated from microsatellite data) and Bray-Curtis
dissimilarities among their microbial communities (calcu-
lated from 16S amplicon data), while controlling for the
effect of geographic distance. We used the ‘mantel.partial’

function in the vegan package, specifying the Pearson cor-
relation statistic.

Population level data

We fitted population-level regressions (n= 6 sampling
sites) to test the influence of allelic richness and Bd infec-
tion prevalence on alpha diversity. We did not fit both
Bd prevalence and allelic richness in the same model to
maximize residual degrees of freedom in the model.
Significance of terms was assessed by likelihood ratio test.

Results

Bd infection

The average Bd infection intensity across all individuals
was 0.19 (±0.02) zoospores, with an average prevalence
of 10.91 (±3.92)% across populations. There was relatively
low infection prevalence and intensity at all sites, with
highest infection rates at Tugela 2 and a complete absence
of infection at Ribbon Falls (Table 2).

Microbiome structure

Of the 2384 SVs in the filtered dataset, 449 SVs (18.83%)
were common to all sampling sites (Fig. 2). Tukelahed
had the highest number of unique SVs (114), followed by
Ribbon Falls (75) and Nampolice (50). Bacterial commu-
nities were dominated at the family level by Cytophagaceae,
Comamonadaceae, Saprospiraceae, Flavobacteraceae and
Chitinophageaceae.

We observed significant differences in Shannon diversity
index among sampling sites (Fig. 3). Tukelahed had the
highest alpha diversity, whilst the values for the remaining
five sampling locations were significantly lower (95%
credible intervals of difference all >0; Fig. 3). There was no
significant difference in the alpha diversity of the two
Tugela sampling locations (95% credible interval of dif-
ference −0.92 to 0.05). NMDS ordination revealed distinct
separation of bacterial community centroids corresponding

Table 2 Summary results of
qPCR analyses of
Batrachochytrium dendrobatidis
infection of Amietia hymenopus

Site Number of
individuals
sampled

Number of
infected
individuals

Infection
prevalence (%)

Average infection
intensity (zoospore
equivalents)

Range
(zoospore
equivalents)

Nampolice 21 1 4.76 0.07 0.00–1.50

Tugela 24 2 8.33 0.02 0.00–0.50

Tugela 2 21 5 23.81 0.89 0.00–15.73

Tukelahed 20 1 5.00 0.01 0.00–0.01

Bilanjil 23 4 17.39 0.22 0.00–4.53

Ribbon Falls 25 0 0.00 0.00 0.00–0.00
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to sampling site (Fig. 4). PERMANOVA of community
distances supported this pattern, with significant separation
among sampling sites (F5,127= 18.64, r2= 42.32%;
p < 0.001).

Shannon diversity of tadpole mouthparts was not affec-
ted by either Gosner stage of tadpoles (χ2= 2.61, p= 0.1),

proportion of heterozygous loci (χ2= 2.19, p= 0.14), or
their interaction (χ2= 0.19, p= 0.67).

Gosner stage significantly influenced within-population
divergence in beta diversity (χ2= 5.01, p= 0.025; Fig. 5).
There was no evidence of an effect of an interaction
between Gosner stage and proportion of heterozygous loci
on beta diversity, or proportion of heterozygous loci as
a main effect (all p > 0.47). The best model explaining
differences in beta diversity contained Gosner stage as
the only fixed effect and had a marginal r2 of 4%.

There was a positive correlation between host genetic
distance calculated from microsatellites and microbial
community distance when controlling for geographic
distance (Partial Mantel Test r= 0.145, p < 0.001). There
was no evidence that the Shannon diversity at a
sampling site was affected by site-level allelic richness
(F1,4= 0.95, p= 0.38) or Bd infection prevalence
(F1,4= 1.17, p= 0.34).

Population genetics

Strong genetic structure was found in A. hymenopus, with
FST levels reaching 0.292 between Ribbon Falls and
Nampolice (Table S2 and Supplementary Information).
Ribbon Falls was highly differentiated from all sites, and in
general sites from different rivers showed moderate levels
of genetic differentiation, while sites within the same river
showed low differentiation. STRUCTURE showed the
optimum K to be two (Fig. 6), with Ribbon Falls forming a
distinct population cluster and the remaining sites another.
At K= 3, Vemvane and Nampolice also formed a separate
cluster (Fig. 6). Hierarchical clustering analysis conducted
on the population cluster of the K= 2 analysis (i.e.,
repeating the STRUCTURE run without Ribbon Falls)
supported the presence of a Nampolice and Vemvane
cluster. The PCoA and AMOVAs showed results consistent

Fig. 2 Venn diagram illustrating unique and shared sequence variants
(SVs) by sampling location. Here the two Tugela sampling locations
have been collapsed into one group for ease of presentation

Fig. 3 Mean Shannon diversity by site for each of the six sampling
locations. Points are posterior mean estimates of a Bayesian model of
the effect of site identity on Shannon diversity. Bars are 95% credible
intervals

Fig. 4 Non-metric multi-dimensional scaling (NMDS) ordination of
bacterial communities on tadpole mouthparts. Colours indicate dif-
ferent sampling sites. There was significant differentiation among
sampling sites in bacterial community structure

S. M. Griffiths et al.



with the STRUCTURE analysis (Fig. 7, Table S4), and
together indicate that Ribbon Falls is a distinct population
cluster, and Vemvane and Nampolice form a subpopulation
cluster within the cluster of remaining sites.

Isolation by distance was strong and significant when
tested over all locations (p= 0.002, r= 0.675), and within
the population cluster identified in STRUCTURE K= 2
(i.e. Khubnam, Nampolice, Vemvane, Tugela, Tugela 2,
Tukelahed and Bilanjil) (r= 0.598, p= 0.024). However,

when tested within the Khubnam, Tugela, Tugela 2,
Tukelahed and Bilanjil group identified in the PCoA and
STRUCTRE K= 3, isolation by distance was not sig-
nificant (r= 0.694, p= 0.054). Four putative first-
generation migrants were found among the site: One in
Nampolice originating from Vemvane (p= 0.009), one
migrant each were exchanged between Tugela 2 and
Bilanjil (Bilanjil to Tugela 2: p < 0.001; Tugela 2 to
Bilanjil: p= 0.006), and one in Tukelahed originating
from Tugela 2 (p= 0.003).

Bottlenecks were detected at three sites: Heterozygosity
excess in respect to allelic richness was found at Nampolice
(p= 0.003), and deficiencies in M-ratios were found at
Nampolice (p= 0.003), Vemvane (p < 0.001) and Ribbon
Falls (p= 0.042).

Discussion

Population structure in A. hymenopus was strongly influ-
enced by river network and geographic distance. However,
at the landscape level, the microbiome of A. hymenopus is
not structured according to host population genetic structure
or river system. For example, Tukelahed did not have a
similar microbial community structure to downstream sites
Tugela and Tugela 2 (Fig. 4). Despite a lack of similarity
between host population genetic structure and site-level
microbiome structure, genetic distance among hosts is still
significantly correlated with associated microbial commu-
nity dissimilarity when controlling for geographic distance.
This has not been previously shown in amphibians, but host
genotype influences the gut microbiota of chickens [16],
mice [63] and fish [7], and inbreeding and relatedness
(although not population genetic structure) influence gut
microbiomes of gopher tortoises (Gopherus polyphemus;
[8]). Although not tested here, these patterns may be due
to genetic variation in microsatellites reflecting variation
in phenotypic traits that affect microbiome composition.

Fig. 5 Divergence values of beta diversity decreased significantly with
Gosner stage of tadpoles across sampling sites. Lines are the posterior
modes of the relationship between age and divergence, conditioned on
sampling site ID. Shaded areas around lines represent 95% credible
intervals. Points are raw data, coloured by sampling site
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Microsatellites can be linked to genes coding for functional
traits [64–66], including immune response genes in a
number of species [67–69]. Variation in these genes could
influence the composition of microbiomes by controlling
the horizontal transmission of microbes from the environ-
ment. In A. hymenopus, the microbiome of the tadpole
mouthparts is most likely transmitted from the environment
as they are feeding or behaviourally selecting areas in the
river. Behaviours can also influence symbiont transmission
[70], and therefore there may be a link between genetic
variation, behavioural variation, and microbe acquisition.
That the influence of host genotype does not extend to
landscape level microbiome structure may indicate that site-
level environmental differences have more influence in
structuring tadpole microbiomes, and host genotype simply
exerts some selection pressure or behavioural influence on
horizontal transmission.

We detected a link between Gosner stage and mouthpart
microbiome composition. Studies to date have predominantly
used skin swabs to determine host microbiome of amphibians,
as this is the region that becomes infected by Bd on post-
metamorphic individuals. However, Bd primarily infects the
mouthparts of larvae as keratin is localised to this area until
the onset of metamorphosis when skin is remodelled to
contain keratin. Although Bd infection intensities tend to
increase as larvae develop due to increasing size [71], we
show that alpha diversity (i.e., number of SVs) of the larval
mouthpart microbiome does not increase as Gosner stage
increases. This indicates that ontogenetic variation in micro-
biome is not simply an artefact of increasing mouthpart size,
but rather it is the specific composition of the community that
is changing as tadpoles develop. These microbiome changes
may be related to phenotypic changes in mouthparts over
development [24, 72], which occur in other montane river
species in the region during development as an adaptation to

fast-flowing water [73]. Ontogenetic variation may also arise
from changes in behaviour throughout larval development
that means individuals are exposed to different environmental
conditions and thus, microbial influences; however, this
has not been studied in this species.

Despite these genotypic and ontogenetic influences on
microbiome composition, populations shared a consider-
able core microbiome (Fig. 2), which has also been shown
for other amphibian species [6, 74], including among
genetically isolated populations [75]. Our population
genetics analyses detected low numbers of first-generation
migrants between populations, with high-genetic differ-
entiation given the relatively small geographic area studied.
Together, these results indicate very low levels of dispersal
among rivers, and in some instances, low dispersal among
tributaries in the same river. This implies that core micro-
biome observed across the metapopulation of A. hymeno-
pus has not arisen from contact between populations. A
number of studies have now indicated that amphibians are
able to select their microbiome based on functional traits
[76, 77]. This may be related to conserved host traits, such
as anti-microbial peptide composition, or adaptive genetic
loci. In addition, the river system and associated vegetation
is remarkably homogenous on the uninhabited and
unspoiled ecosystem of the Mont-aux-Sources plateau,
with very low diversity of plants [78]. This may also in part
explain the shared microbiome exhibited across popula-
tions. That said, there is likely to be fine-scale variation
between environmental conditions in the rivers, which may
be driving some variation in microbiome composition
[6, 79, 80]. Microbial communities have been shown to
vary between rivers even when colonisation substrate is
controlled for [81]. Individuals from Nampolice and
Tukelahed had the most distinct microbiome (Fig. 4), and
the highest alpha diversity (Fig. 3), and this may be related

Fig. 7 Principal coordinates
analysis (PCoA) of pairwise D
[38] estimates among Amietia
hymenopus sites. Percentages
show the amount of variance
explained by each coordinate
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to proximity from the source of the river. For example,
Górniak et al [82] found bacterial diversity generally
decreased as they sampled downstream from the source
(glacial lake), and linked this to changes in environmental
conditions and nutrient availability.

Historically there is wide annual and geographical varia-
tion in Bd infection prevalence in the Mont-aux-Sources
region, ranging from ~0 to 100% [23]. Although, we found
uncharacteristically low infection loads in this study, our data
correspond to historical patterns for the three sites that have
undergone long-term monitoring. Ribbon Falls has histori-
cally low infection prevalence, followed by Bilanjil, and then
Tugela, which shows the highest infection prevalence [23].
This may be driven by a range of environmental factors
similar to those that drive microbiome diversity, including
water flow, temperature, pH and depth [71]. Particularly low
infection intensities such as those found here are, however,
difficult to assess accurately using quantitative PCR. Given
these low infection intensities, it is not possible to identify
meaningful relationships between Bd infection and micro-
biome diversity, although this has been demonstrated in other
studies ([2, 12, 27, 76, 83, 84]).

Ribbon Falls, Nampolice and Vemvane showed evidence
of recent population bottlenecks, and these sites also have
some of the lowest allelic richness. Considerable mortalities
of A. hymenopus were seen at Ribbon Falls and Vemvane
in September 2006 during routine monitoring (every
2–4 months) of Vemvane, Tugela, Bilanjil and Ribbon Falls
([23]; C. Weldon, pers. obvs.). Diagnostic analyses identi-
fied Bd infections in 100% of the dead metamorphic
A. hymenopus (n= 10) collected at each site. Further dead
post-metamorphic individuals (n= 1–12) were encountered
on most of the subsequent surveys, all infected with Bd
[23]. Low genetic diversity in mortality-affected sites is
unsurprising given the low level of migration from other
sites. This presents a potential danger in bottlenecked
locations struggling to recover evolutionary potential,
impacting their ability to respond to stressors such as cli-
mate change, disease or local climatic events. Local chytrid-
induced mass mortality events may eliminate genetic
diversity from the species as a whole due to the distinct
population genetic structure and low migration. Interest-
ingly, Bd infection prevalence at Ribbon Falls is generally
low compared to other rivers in the region (this study and
[23]), and Ribbon Falls has the lowest genetic diversity,
which may be because of selection of Bd-resistant indivi-
duals. Addis et al. [85] showed montane boreal toads
(Bufo boreas) with higher heterozygosity had higher Bd
infection intensity, which they attribute to increased dis-
persal of heterozygous individuals leading to increased
spread of Bd. Therefore, it is possible that the lack of
immigrants to Ribbon Falls is also limiting the spread and
maintenance of Bd at this site.

Conclusion

Here we have shown that the microbiome composition
of amphibians is determined by genetic and ontogenetic
variation, as well as geographic site, indicating within and
among population predictors of microbiome diversity. Bd
prevalence was low in the year we sampled, but we found
lower genetic diversity and signals of genetic bottlenecks
in sites where mass mortalities have been recorded in
previous years, demonstrating the vulnerability to and
persisting effects of disease in amphibian populations.
Together these results demonstrate the key role of host
genotype on microbial colonisation, which may be
important in pathogen susceptibility in the amphibian-
chytridiomycosis system. Identifying individuals based on
this characteristic may aid amphibian conservation efforts
against this lethal pathogen.
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