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Abstract A theoretical study is conducted for magnetohydrodynamic pumping of electro-
conductive couple stress physiological liquids (e.g. blood) through a two-dimensional ciliated
channel. A geometric model is employed for the cilia which are distributed at equal intervals
and produce a whip-like motion under fluid interaction which obeys an elliptic trajectory. A
metachronal wave is mobilized by the synchronous beating of cilia and the direction of wave
propagation is parallel to the direction of fluid flow. A transverse static magnetic field is
imposed transverse to the channel length. The Stokes’ couple stress (polar) rheological model
is utilized to characterize the liquid. The normalized two-dimensional conservation equations
for mass, longitudinal and transverse momentum are reduced with lubrication approximations
(long wavelength and low Reynolds number assumptions) and feature a fourth order linear de-
rivative in axial velocity representing couple stress contribution. A coordinate transformation is
employed to map the unsteady problem from the wave laboratory frame to a steady problem in
the wave frame. No slip conditions are imposed at the channel walls. The emerging linearized
boundary value problem is solved analytically and expressions presented for axial (longitudi-
nal) velocity, volumetric flow rate, shear stress function and pressure rise. The flow is effec-
tively controlled by three geometric parameters, viz cilia eccentricity parameter, wave
, dtripathi@nituk.ac.in (D. Tripathi).
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Nomenclature

c wave speed (unit: m$s�1

a mean width of the chann
l wavelength (unit: m)
t time (unit: s)
r density (unit: kg$m�3)
s electrical conductivity (u
B0 magnetic field (unit: T)
m dynamic viscosity (unit:
Q volume flow rate (unit: m
P pressure (unit: Pa)
ε cilia length parameter (u
U longitudinal velocity (un
V transverse velocity (unit:
a measure of the eccentric
x non-dimensional axial co
y dimensionless transverse
u non-dimensional axial ve
v dimensionless transverse
t dimensionless time
p dimensionless pressure
b wave number
Re Reynolds number
g couple stress (polar) fluid
M Hartmann magnetic num
Q dimensionless time-mean

frame
F dimensionless time-mean
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number and cilia length and two physical parameters, namely magnetohydrodynamic (MHD)
body force parameter and couple stress non-Newtonian parameter. Analytical solutions are
numerically evaluated with MATLAB software. Axial velocity is observed to be enhanced in
the core region with greater wave number whereas it is suppressed markedly with increasing
cilia length, couple stress and magnetic parameters, with significant flattening of profiles with
the latter two parameters. Axial pressure gradient is decreased with eccentricity parameter
whereas it is elevated with cilia length, in the channel core region. Increasing couple stress
and magnetic field parameter respectively enhance and suppress pressure gradient across the
entire channel width. The pressure-flow rate relationship is confirmed to be inversely linear
and pumping, free pumping and augmented pumping zones are all examined. Bolus trapping
is also analyzed. The study is relevant to MHD biomimetic blood pumps.
ª 2019 Beihang University. Production and hosting by Elsevier B.V. on behalf of KeAi. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
)
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1. Introduction

Ciliated propulsion arises in numerous physiological and
biological systems. Cilia constitute small but intricate
appendage structures which protrude from vessel walls.
Cilia which average 10 mm in length can flex easily and
assist therefore in many sophisticated transport mechanisms.
They usually occur in high density arrays unlike flagella
which usually appear in nature as single structures or pairs.
Cilia beating mechanisms, which control the direction of
induced thrust, therefore differ significantly from flagellar
beating. They exhibit whip-like- motions and appear on
cells, plants, physiological organs, marine organisms. They
exert a substantial role across the biological spectrum and
feature in for example physiology [1], respiration [2], em-
bryonic mechano-transduction processes [3], coral reef
systems [4], ventricular cerebrospinal fluid dynamics [5].
The beating mechanisms of cilia tend to be dominated by
metachronal waves (these also dictate oscillations of
flagella). The highly efficient energy usage of cilia has been
documented in several studies including Gueron and Levit-
Gurevich [6], Guirao and Joanny [7] and Vilfan and Julicher
[8] in the latter, it has been shown that optimized perfor-
mance is achieved by hydrodynamic interactions which
result in synchronization of the cilia as nonlinear oscillators.
The importance of cilia in sensory reception, mucociliary
clearance and renal physiology disease has been addressed
by Inés Ibañez-Tallon [9]. Brueckner [10] has examined the
function of cilia in embryonic navigation.

The ciliated propulsion problem is attractive to fluid
dynamics researchers since it is characterized by many
geometric and viscous hydrodynamic features which are
amenable to mathematical modelling. Historically the field
of biological propulsion, specifically the fluid dynamics of a
beating flagellum, was initiated in the early 1950s by Taylor
(as lucidly reviewed in Lighthill [11]) who approximated the
locomotion induced on a body by a tail beating in a regular
manner in a Newtonian viscous medium. He derived an
approximate relation connecting the organism velocity to
the tail wave propagation speed. More recently there has
been a considerable resurgence in interest in ciliated hy-
drodynamics, largely motivated by the emerging areas of
biomimetics and bio-inspired engineering systems. Gener-
ally the approaches for simulating ciliated flows fall into two
broad categories. The first has become known as the enve-
lope model (followed in the current article) and the second
is the sub-layer model. In the envelope model the cilia are
densely packed and the engulfing fluid medium interacts
with a waving material surface enveloping the top of the
layer. Further sub-categories of the envelop approach feature
models of an actively driven semi-flexible filament (this

http://creativecommons.org/licenses/by-nc-nd/4.0/
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aims to recreate actual cilia beat mechanisms) and beat
shapes optimized based on pumping efficiency. A good
perspective of many different approaches to ciliated hy-
drodynamics has been provided by Elgeti and Gompper
[12]. Modern efforts have included both theoretical and
computational analyses. Dauptain et al. [13] presented two-
dimensional direct numerical simulation (DNS) results for
hydrodynamics of regular oscillating flexible cilia arrays
(ctenophore Pleurobrachia pileus), noting that power uti-
lized is enhanced with cilia beating frequency, in consis-
tency with actual behaviour reported in laboratory testing.
Vilfan and Jülicher [14] presented computational simula-
tions of flow fields produced by single and dual beating cilia
configurations, studying carefully the development of syn-
chronized states occur as a function of distance of cilia and
relative beat orientation. Yang et al. [15] presented a nu-
merical analysis of an unsteady viscous hydrodynamics for
an individual elastic cilium by linking the internal force
generation with the surrounding fluid as a simulation of
multi-ciliary interaction in ovum transport in the oviduct and
also mucus migration in the trachea. They showed that
hydrodynamic coupling does lead to both synchrony and
metachrony. Further investigations include the works of
Dillon et al. [16] and Dresdner et al. [17].

The above investigations have invariably considered the
biological fluid medium to be Newtonian i.e. they have
ignored rheological effects. It is now firmly established for
many decades that the vast majority of physiological media
are characterized by substantial non-Newtonian properties.
Accurate simulations therefore require non-Newtonian
models. These models may be classified as biorheological
models [18] and include viscoplastic fluids (e.g. Bingham
model, Vocadlo model etc), thixotropic (time-dependent
shear-thinning) fluids, rheopetic (anti-thixotropic) fluids,
viscoelastic fluids (e.g. Oldroyd-B, FENE-P, PPT, Wil-
liamson, Maxwell etc) fluids and so on. Unfortunately these
models although they include extra terms in the amended
Navier-Stokes equations, the non-Newtonian models do not
introduce length dependent effects which are associated with
particles suspended in biofluids. These give rise to couple
stresses which can exert a non-trivial influence on shear (and
other) characteristics of physiological liquids. Stokes [19]
introduced the “couple stress” fluid model in the mid-
1960s to provide a framework for simulating biological
and other industrial suspensions more precisely, by extend-
ing the conventional Cauchy stress. Couple stress or “polar”
fluid models therefore are more elegant than the classical
non-polar models. They also have the advantage that
although they lead to boundary value problems with higher
order than the Navier-Stokes, the supplementary terms are
linear. This feature has stimulated considerable interest
among engineers and applied physicists. Stokes [20] pre-
sented closed-form solutions for thermal conduction and
convection in couple stress flows. Soundalgekar [21]
investigated hydrodynamic solute dispersion in channel
couple stress flows. Devakar et al. [22] considered couple
stress fluid flows in several classical cases (Couette,
Poiseuille and generalized Couette flow) observing that
couple stresses decelerate the flow. Rammkissoon [23]
conducted a detailed analytical study of drag effects in
couple stress flow past a sphere using a Galerkin-type
formulation and stream function due to a concentrated
point force. Ramanaiah and Sarkar [24] used the polar model
to analyse lubrication performance of infinitely long slider
bearings, deriving expressions for load capacity, frictional
force and centre of pressure and noting that greater couple
stress effect enhances load capacity but decreases shear
stress (wall frictional coefficient) i.e. induces deceleration. A
number of biological couple stress flow models have also
been communicated. These studies have considered peri-
staltic pumping in porous media [25], pulsatile blood flows
[26], synovial tribology [27], stenotic hemodynamics with
catheter and wall slip [28], micro-organism swimming dy-
namics [29], capillary transport with wall permeability
[30,31] and mildly stenosed bifurcated arterial blood flow
[32]. Excellent details of polar fluid dynamics are provided
in Cowin [33] and more recently by Eringen [34].

Many physiological liquids are electrically-conducting
owing to the presence of ions and iron content (e.g. hae-
moglobin in red blood cells). Such fluids are responsive to
electrical and magnetic fields. Magnetohydrodynamic
(MHD) pumping [35] has emerged as a robust mechanism
for transporting such fluids in clinical applications (extra-
corporeal surgical blood flow control). MHD pumps utilize
the Lorentz effect which involves the injection of an electric
current into two electrodes positioned at sidewalls facing
each other in a micro-channel. This charge injection gen-
erates a transversal ionic current in the micro-channel which
can be regulated by applied magnetic fields. The Lorentz
force acting on the ionic current in the solution mobilizes a
fluid flow in the micro-channel direction. Bi-directional
pumping is also possible since flow reversal is induced by
a reversal of the electric current or the magnetic field vector.
Gastric flows may also be doped with magnetic particles to
enable MHD endoscopy treatments. Several excellent
studies of MHD pumping in medical engineering have been
made which have included both theoretical and fabrication
aspects. These include Zhong et al. [36] and Lim and Choo
[37]. Recently Ponalagusamy and Selvi [38] simulated the
magnetohydrodynamic blood flow in stenotic arterial flow
with viscosity and peripheral plasma layer effects. Couple
stress magnetohydrodynamic pumping flows have also
received some attention. Tripathi and Bég [39] derived
approximate solutions for velocity, pressure gradient, local
wall shear stress and volumetric flow rate in hydromagnetic
peristaltic pumping of couple stress fluids, considering both
non-integral and integral numbers of waves. They high-
lighted the retarding effects of both couple stresses and
magnetic field. Srinivasacharya and Rao [40] used a finite
difference numerical method to compute the magnetized
pulsating arterial couple stress blood flow, presenting
extensive solutions for shear stress, flow rate and impedance
near the apex, noting the significant deceleration by couple
stresses in streaming blood flow near the lateral junction and
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secondary flow damping by magnetic field near the apex in
the daughter artery. Magnetic polar physiological hydrody-
namic include periodic spinning blood magnetohydrody-
namic separation device modelling was studied by Bég et al.
[41]. Slip hydromagnetic couple stress flow in distensible
channels was analyzed by El Shennawy and Elkhair [42].
Couple stress magnetic biological bearing tribology was
simulated by Naduvinamani et al. [43] in which a Reynolds
polar lubrication equation and the Christensen stochastic
theory for roughness were used. Further studies include bio-
thermodynamics of two-fluid couple stress liquids with
thermal radiation for ablation therapy as examined by
Murthy et al. [44] and thermo-magnetic Hall couple stress
peristaltic pumping as reported by Hayat et al. [45]. Several
researchers have also attempted to simulate ciliated mag-
netohydrodynamic flows. Siddiqui et al. [46] considered
Newtonian channel flows and derived analytically the ve-
locities, stream function and axial pressure gradient as a
function of the cilia and metachronal wave velocity and also
computed numerically the pressure rise per wavelength.
They showed that trapping is reduced substantially with
stronger magnetic field. Akbar et al. [47] used a viscoplastic
fluid model to investigate hydromagnetic metachronal cili-
ated flow and heat transfer under an inclined magnetic field
with wall slip and thermal jump effects. Akbar et al. [48]
further investigated the ciliated propulsion of magnetized
nanofluids using an elliptic beating cilia model. Bhatti et al.
[49] have presented a theoretical study on the effects of
magnetohydrodynamics on the peristaltic flow of Jeffrey
fluid in a rectangular duct. Hayat et al. [50] have discussed
the magnetohydrodynamic peristaltic motion based on the
constitutive equations of a Carreau fluid in a channel.
Saleem et al. [51] have constructed a mathematical model
for MHD blood flow through an artery with mild stenosis.
Saleem and Munawar [52] have studied the flow of blood
through a stenotic artery in the presence of a uniform
magnetic field. Ellahi et al. [53] have studied the peristaltic
flow of a viscous fluid in a non-uniform rectangular duct.
Bhatti et al. [54] have discussed the simultaneous effects of
coagulation (blood clot) and variable magnetic field on
peristaltically induced motion of non-Newtonian Jeffrey
nanofluid containing gyrotactic microorganisms through an
annulus. Bhatti et al. [55] have investigated the effects of
variable magnetic field on peristaltic flow of Jeffrey fluid in
a non-uniform rectangular duct having compliant walls.

In the current work a mathematical model is developed
for hydromagnetic pumping of electrically-conducting
couple stress physiological liquids (e.g. blood) through a
two-dimensional ciliated channel under with metachronal
waves generated by beating of the cilia. The Stokes’ couple
stress (polar) rheological model is employed. Closed-form
solutions are developed for the problem under lubrication
approximations and extensive computations are presented
using MATLAB symbolic software for axial pressure
gradient, axial (longitudinal) velocity, volumetric flow rate,
wall shear stress function and pressure rise. Streamline
visualization is also included to scrutinize bolus (trapping)
phenomena. The study is relevant to MHD biomimetic
blood pumps [36] and also may be of interest in simulating
the hydrodynamics of micro-/nano-scale robots in biomed-
ical devices [56].

2. Mathematical model

Consider the flow of an incompressible electrically-
conducting couple stress non-Newtonian fluid through a
symmetric channel with inner surfaces that are ciliated. We
select Cartesian co-ordinates (X, Y ), where the X-axis lies
along the centre of the body and Y-axis is transverse to the
fluid flow. The flow is generated due to a metachronal wave
propagation which is produced by the collective, rhythmic
beating of the cilia with constant wave speed c, along the
channel walls. The schematic structure of the problem under
consideration is depicted in Fig. 1. The geometry of the
metachronal wave form proposes that the whip-like dy-
namics of the cilia may be simulated according to:

Y Z f ðX ; tÞZ�
�
aþ aε cos

�
2p

l
ðX � ctÞ

��
Z�H ð1Þ

The experimental studies of Sleigh [57] confirm that the
cilia tips move in elliptical paths. Therefore, the vertical
position of the cilia tips can be written as:

X ZgðX ; tÞZX0 þ aεa sin

�
2p

l
ðX � ctÞ

�
ð2Þ

Here a is the mean width, H is the semi-width of the channel, l is
the wavelength, t is time, a is the measure of the eccentricity, ε is
the cilia length parameter and X0 is indicated position of the par-
ticle. If the no slip hydrodynamic condition is imposed at the
channel walls, then the velocities of the transporting fluid are
merely those produced by the cilia tips, which can be given as:

UZ
vX

vt

����
X0

Z
vg

vt
þ vg

vX

vX

vt
Z

vg

vt
þ vg

vX
U ð3Þ

V Z
vY

vt

����
X0

Z
vf

vt
þ vf

vX

vX

vt
Z

vf

vt
þ vf

vX
U ð4Þ

Invoking Eqs. (1) and (2) in Eqs. (3) and (4), readily
yields the following expressions for the longitudinal ve-
locity (U ) and transverse velocity (V) components at the
boundaries:

UZ
��

2p
l

�
acεa cos

�
2p
l
ðX � ctÞ�

1� �
2p
l

�
aεa cos

�
2p
l
ðX � ctÞ� ð5Þ

VZ

�
2p
l

�
acεa sin

�
2p
l
ðX � ctÞ�

1� �
2p
l

�
aεa cos

�
2p
l
ðX � ctÞ� ð6Þ



Fig. 1 Symmetric MHD metachronal wave propagation in a channel with ciliated walls.
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In view of this formulation of the boundary conditions
we are able to distinguish between the effective stroke of the
cilia and the effective recovery stroke by approximately
accounting for the shortening of the cilia. The governing
equations for two-dimensional unsteady flow of an incom-
pressible electrically-conducting couple stress (polar) fluids
under the effect of a magnetic field applied transverse to the
XeY plane (which generates two Lorentzian drag compo-
nents in the X and Y directions respectively, viz �sB2

0U and
� sB2

0V ) may be written as follows:

vU

vX
þvV

vY
Z0 ð7Þ

r

�
vU

vt
þU

vU

vX
þV

vU

vY

�
Z� vP

vX
þ m

�
v2U

vX 2 þ
v2U

vY 2

�

�h

�
v4U

vX 4 þ 2
v4U

vX 2vY 2 þ
v4U

vY 4

�
� sB2

0U

ð8Þ

r

�
vV

vt
þU

vV

vX
þV

vV

vY

�
Z� vP

vY
þ m

�
v2V

vX 2 þ
v2V

vY 2

�

�h

�
v4V

vX 4 þ 2
v4V

vX 2vY 2 þ
v4V

vY 4

�
� sB2

0U

ð9Þ

Here vP
vX is axial pressure gradient and vP

vY is transverse pressure
gradient. To determine analytical solutions, it is advantageous to
define the transformation between the laboratory (unsteady) frame
and wave (steady) frame, for the present moving boundary value
problem. The appropriate coordinate transformations are defined
as:

xZX � ct; yZY ;uðx; yÞZUðX ;Y ; tÞ � c
vðx; yÞZV ðX ;Y ; tÞ;pðx; yÞZpðX ;Y ; tÞ ð10Þ

Furthermore, we introduce the following non-
dimensional parameters and hydrodynamic parameters:
xZ
x

l
; yZ

y

a
;uZ

u

c
; vZ

v

c
;HZ

H

a
; tZ

ct

l

pZ
a2p

lmc
;bZ

a

l
;ReZ

rca

m

gZ

ffiffiffi
m

h

r
a;MZ

ffiffiffi
s

m

r
B0a

ð11Þ
Where x; y; u; v; H ; t; p ; b; Re; g; M ;
denote non-dimensional axial coordinate, dimensionless transverse
coordinate, non-dimensional axial velocity, dimensionless trans-
verse velocity, dimensionless channel semi-width, dimensionless
time, dimensionless pressure, wave number, Reynolds number,
couple stress (polar) fluid parameter and Hartmann magnetic
number, respectively. In the limit g/N, polar effects are
neglected and the governing equations reduce to the classical
Navier-Stokes equations for magnetohydrodynamic ciliated pro-
pulsion of a Newtonian fluid. Applying lubrication theory ap-
proximations i.e. long wavelength (b << 1) and low Reynolds
number (Re/0) (i.e. Stokes flow) assumptions, implementing
Eqs. (10) and (11) in Eqs. (1)e(9), after dropping the bars, the
following linearized equations are generated:
vp

vx
Z

v2u

vy2
� 1

g2

v4u

vy4
�M 2ðuþ1Þ ð12Þ

vp

vy
Z0 ð13Þ

vu

vy
Z0;

v3u

vy3
Z0 at yZ0 ð14Þ

The non-dimensional forms of the physical boundary
conditions emerge as:
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uZ� 1� 2pεab cosð2pxÞ
1� 2pεab cosð2pxÞ

v2u

vy2
Z0 at yZhZ1þ ε cosð2pxÞ:

ð15Þ

It is important to note here that couple stress fluids are
much simpler than another group of microstructural non-
Newtonian fluids i.e. micropolar fluids [58], since they
possess no microstructure at the kinematic level and there-
fore the kinematics of such fluids is totally described using
the velocity field i.e. angular velocity (micro-rotation) field
is not required. The higher order gradient boundary condi-
tions for axial velocity in Eqs. (14) and (15) are the so-called
“stress-free conditions” which physically imply that couple
stresses vanish at the channel wall inner surfaces.

The instantaneous volume flow rate in the fixed frame is
given by

QZ

ZH
0

UðX ;Y ; tÞdY ð16Þ

The above expression in the wave frame becomes

qZ

Zh

0

uðx; yÞdy ð17Þ

From Eqs. (10), (16) and (17), the expression for the
volume flow rate can be written as

QZqþ ch ð18Þ

The time-mean flow over time period T at fixed position
X is defined as

QZ
1

T

ZT

0

Qdt ð19Þ

Using Eq. (18) into Eq. (19) and then integrating, yields

QZqþ ac ð20Þ

Defining the dimensionless time-mean flows, Q and F, in
the laboratory and wave frame, respectively, as

QZ
Q

ac
and FZ

q

ac
ð21Þ

From Eq. (20), the flow rate in the non-dimensional form
can be written as follows:
SfZ
m1m2

ðm2
2 �m2

1

�� 1

1� 2pεab cosð2pxÞ �
1

M 2

dp

dx
þ 1

g2

�
�
m1 sinhðm2yÞ
coshðm2hÞ �m2 sinhðm1yÞ

coshðm1hÞ �m1m2

g2

�
m2 sinhðm2yÞ
coshðm2hÞ �m1 sinh

coshð
QZF þ 1 ð22Þ

where. FZ
R h
0 udy

3. Analytical solutions

The normalized boundary value problem is well-posed and
admits exact solutions. The closed-form solutions of Eqs.
(12) and (13) subject to the dimensionless boundary con-
ditions Eqs. (14) and (15) are obtained as:

uZ
1

ðm2
2 �m2

1

�� 1

1� 2pεab cosð2pxÞ �
1

M 2

dp

dx
þ 1

g2

�
�
m2

1 coshðm2yÞ
coshðm2hÞ �m2

2 coshðm1yÞ
coshðm1hÞ

�

� 1

M 2

dp

dx
þ 1

g2

ð23Þ
dp

dx
Z

F �A1

A2
ð24Þ

where,

m1Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 4M 2

p
2

s
ð25aÞ

m2Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 4M 2

p
2

s
ð25bÞ

A1Z
1

ðm2
2 �m2

1

�� 1

1� 2pεab cosð2pxÞ þ
1

g2

�
�
m2

1 sinhðm2hÞ
m2 coshðm2hÞ �

m2
2 sinhðm1hÞ

m1 coshðm1hÞ
�
þ 1

g2

ð25cÞ

A2Z � 1

M 2

�
hþ 1

ðm2
2 �m2

1Þ
�
m2

1 sinhðm2hÞ
m2 coshðm2hÞ

� m2
2 sinhðm1hÞ

m1 coshðm1hÞ
��

ð25dÞ

The dimensionless wall shear stress distribution for the
present problem is given by

Sf Z
vu

vy
� 1

g2

v3u

vy3
ð26Þ
ðm1yÞ
m1hÞ

�� ð27Þ
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Upon substituting the Eq. (18) into Eq. (20), we obtain
the solution for shear stress distribution as follows:

The non-dimensional pressure rise ðDpÞ is computed by
the following expression:

DpZ

Z1

0

�
dp

dx

�
dx ð28Þ

The stream function in the wave frame obeying the

Cauchy-Riemann equations

�
uZ vj

vy and vZ � vj
vx

�
may

be computed by using Eq. (23). Numerical evaluation of
the exact solutions is executed in MATLAB which permits
a parametric assessment of the flow characteristics. Also
visualization of streamlines is achieved with MATLAB
software which allows an examination of bolus formation
and trapping.
Fig. 2 Velocity profiles for different flow parameters for fixed values
of. ðaÞ εZ0:5; aZ0:2; xZ1; QZ2; gZ3; MZ2:5; ðbÞ aZ0:1;

bZ0:1; xZ1; QZ2; gZ2; MZ3ðcÞ εZ0:5; aZ0:1; bZ0:1;

xZ1; QZ2; MZ3; ðdÞ εZ0:5; aZ0:1; bZ0:1; xZ1; QZ2;

gZ3.
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4. Computational results and interpretation

Selected computations for velocity, axial pressure gradient,
shear stress and pressure rise characteristics, and also
streamline distributions are illustrated in Figs. 2e7.
Generally flow rate (Q) is prescribed as 2 and a relatively
strong magnetic field is imposed (M is at least set to 2 in all
the graphs, unless otherwise indicated, in consistency with
actual MHD blood pump devices e see Zhong et al. [36]
and Lim and Choi [37] wherein generally double the mag-
netic Lorentz force relative to the viscous hydrodynamic
force is recommended). All data is provided in the captions.

Table 1 gives the comparison of velocity distribution for
the present and earlier literature (Newtonian fluid). In the
benchmark study of Ramesh [59], cilia effects were not
considered, therefore in our model we have set ε (cilia
length parameter) Z 0, a (measure of the eccentricity) Z 0,
b (wave number) Z 0, Q (ddimensionless time-mean flow
in the laboratory frame) Z 1, g (couple stress (polar) fluid
parameter)/N (i.e. Newtonian case) and M (Hartmann
magnetic number)/0 (electrically non-conducting case i.e.
vanishing magnetic field). Furthermore, porous medium and
slip effects do not appear in our model and therefore data
from Ramesh [59] which corresponds to the simplest case in
that study (i.e. where the porous medium vanishes [infinite
permeability] and there is no channel wall slip) is selected to
ensure that the exact same conditions are enforced in both
models. The legend used in Table 1 therefore is ε Z 0:5;
aZ 0; bZ 0; QZ 1; g/N; M/0:It is evident

that our results are in close agreement with that of Ramesh
[59]. Confidence in the present analysis is therefore justifi-
ably high.

Fig. 2(a)e(d) illustrate the evolution in axial velocity
across the entire channel span (�1.5 � y�þ1.5) for
respectively a variation in metachronal wave number (b),
cilia length (ε), couple stress parameter (g) and magnetic
field parameter (M ). Generally with the exception of
Fig. 2(c), different responses are induced in the core zone
and the edge zones (near the ciliated walls). Increasing
wave number (Fig. 2(a)) is found to accelerate the axial



Fig. 3 Pressure gradient profiles for different flow parameters for
fixed values of. ðaÞ εZ0:5; bZ0:1; yZ0; QZ1; gZ7; MZ7; ðbÞ
aZ0:1; bZ0:1; yZ0; QZ1; gZ7; MZ7ðcÞ εZ0:5; aZ0:1; bZ
0:1; yZ0; QZ1; MZ7; ðdÞ εZ0:5; aZ0:1; bZ0:1; yZ0;QZ1;

gZ7.

Fig. 4 Pressure rise profiles for different flow parameters for fixed
values of. ðaÞ εZ0:5; aZ0:1; yZ0; gZ2; MZ2; ðbÞ aZ0:1; bZ
0:1; yZ0; gZ2; MZ2ðcÞ εZ0:5; aZ0:1; bZ0:1; yZ0; MZ2;

ðdÞ εZ0:5; aZ0:1; bZ0:1; yZ0; gZ2.
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flow in the core zone but to decelerate it in the end zones.
Peak axial velocity is computed logically at the channel
centre line.
The parameter bZ a
l
, where a is the mean width and l

is the wavelength of the metachronal wave. Clearly greater
wavelengths reduce the wave number and vice versa for
shorter wavelengths. In the channel core region, shorter



Fig. 5 Shear stress distribution for different flow parameters for
fixed values of ðaÞ εZ0:5; bZ0:1; QZ2;gZ7; MZ7;

ðbÞ aZ0:1; bZ0:1; QZ2;gZ3; MZ3ðcÞ εZ0:5; aZ0:1; bZ
0:1; QZ2;MZ3; ðdÞ εZ0:5; aZ0:1; bZ0:1; QZ2;gZ5.

Fig. 6 Streamline patterns for different values of wave number for
fixed values of. ε Z 0:5; aZ 0:1; QZ 1;gZ 2; MZ 2:5
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wavelengths therefore result in acceleration whereas they
induce deceleration in the proximity of the ciliated walls.
The converse response is associated with larger wavelengths
(smaller wave numbers). A similar observation for power-



Fig. 7 Streamline patterns for different values of Hartmann number
for fixed values of. ε Z 0:5; aZ 0:1; QZ 1;gZ 2; bZ 0:1.
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law and Newtonian fluids in ciliated channel wave propa-
gation has been reported by Siddiqui et al. [60]. Fig. 2(b)
shows that increasing cilia length induces a strong decel-
eration in the core region and also causes a substantial
acceleration in the end zones (near wall regions). Clearly
greater cilia length will offer more resistance to the axial
flow which will impede pumping in the core region. The
impact of cilia length is minimal at the walls since the
protuberances exert a greater effect deeper into the channel.
This manifests in a boost in axial velocity at the boundaries.
Several studies have highlighted this including Sleigh [61]
and more recently Khaderi et al. [62]. Elasticity of the
cilia will also inevitably influence axial flow although this
aspect has not been considered in the present work. It could
be simulated in future by using a ratio between the viscous
force and the elastic force in the cilia [62]. An increase in
couple stress (polar) parameter, g, as depicted in Fig. 2(c), is
found to consistently decrease the axial velocity. The rise in
g, clearly leads to a reduction in the couple stress term in
Eq. (12) � 1

g2
v4u
vy4. The retarding nature of couple stresses as

demonstrated in many other investigations [18e25] is
confirmed by the present computations. Symmetry is sus-
tained across the channel span in consistency with the wall
boundary conditions. However very little flow reversal is
induced compared with the near-wall axial flow field
response in Fig. 2(a) and (b). Fig. 2(d) shows that an in-
crease in magnetic body force parameter, M, stifles the bulk
axial flow in the core zone but accelerates it towards the
wall zones. This is a classical result from magnetohydro-
dynamics, confirmed in many standard works including
Sutton and Sherman [63]. Significant backflow is induced
close to both the lower and upper channel walls (approxi-
mately one third of the plots are below the zero line).
Magnetic field is generally found to inhibit bulk flow of the
couple stress fluid which is desirable in MHD pumping
operations for enhanced flow control [36].

Fig. 3(a)e(d) present the response in axial pressure
gradient (dp/dx) to alteration in cilia eccentricity parameter
(a), cilia length (ε), couple stress parameter (g) and mag-
netic field parameter (M ) plotted against axial coordinate
(channel length coordinate). An increase in eccentricity of
the beating cilia induces a weak deceleration in the core
flow and a corresponding acceleration in the edge flow, as
illustrated in Fig. 3(a). The modifications in pressure
gradient are more pronounced at the walls than in the core
region. An increase in cilia length has a much more sig-
nificant impact than cilia eccentricity, as plotted in Fig. 3(b).
Considerable elevation is produced in the axial pressure
gradient in the core zone with even greater depletion in axial
pressure gradient in the end zones. Clearly the presence of
longer elastic appendages (cilia) emanating from the walls
interacts more intensively with the flow field than shorter
cilia. There is never any skewness in the profiles which are
all perfectly symmetric about the channel centre line. An
increase in axial pressure gradient is generated with greater
couple stress parameter (Fig. 3(c)) and once again this trend
is enforced across the entire channel span. This enhance-
ment in pressure gradient is physically consistent with the
deceleration in axial flow computed earlier. Increasing
magnetic field is also observed to diminish the axial pres-
sure gradient, a characteristic feature of MHD pumps



Table 1 Comparison of velocity profile when.ε Z 0:5; aZ 0; bZ 0; QZ 1; g/N; M/0.

y Newtonian fluid Ramesh [59] Present study

�1.5 �1.000000000000000 �0.999999999998181 �1.000000000000000
�1.2 �0.460000008344650 �0.460057371537914 �0.460063751198660
�0.9 �0.040000021457672 �0.040003307696679 �0.040008760610394
�0.6 0.260000005364418 0.260032609010523 0.260030306976534
�0.3 0.439999967813492 0.440053078913479 0.440053451562123
0 0.499999970197678 0.500059722193328 0.500062152979211
0.3 0.439999967813492 0.440053078913479 0.440053451562123
0.6 0.260000005364418 0.260032609010523 0.260030306976534
0.9 �0.040000021457672 �0.040003307696679 �0.040008760610394
1.2 �0.460000008344650 �0.460057371537914 �0.460063751198660
1.5 �1.000000000000000 �0.999999999998181 �1.000000000000000
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[36,37]. This reduction is sustained across the entire channel
i.e. there is no switch-over in profiles at the walls.

Fig. 4(a)e(d) illustrate the evolution of pressure rise (Dp)
with volumetric flow rate (Q) with variation in respectively
metachronal wave number (b), cilia length (ε), couple stress
parameter (g) and magnetic field parameter (M ). The
classical inverse relationship between pressure rise and
volumetric flow rate (known for Newtonian fluids-see e.g.
Wu [1] is also obtained for couple stress (polar) fluids for all
plots. With increasing wave number (Fig. 4(a)), pressure rise
is consistently decreased for all flow rates. However, with
increasing cilia length (Fig. 4(b)), pressure rise is elevated in
the pumping region ðDp > 0Þ whereas it is depressed in the
augmented pumping region Dp < 0, with increasing flow
rate. It is known that cilia spacing and length influences the
viscous resistance per cilium and thereby the axial flow. The
latter is assisted with greater cilia length and this aids in
pressure rise in the lower channel half space (Fig. 4(b)). The
introduction of extra energy to the flow at the lower wall
however must be compensated for by an extraction at the
upper wall, and these features are also related to synchro-
nicity of beating cilia [2e10]. The pressure rise is therefore
found to decrease with greater cilia length in the upper
channel half space. The special case ε Z 0 although not
plotted implies vanishing cilia and absence of a metachronal
wave - in this scenario the flow is a purely peristaltic
mechanism due to flexibility of the walls. Maximum pres-
sure rise therefore occurs for εZ 0.6, in the pumping region
and the minimum pressure rise also corresponds to ε Z 0.6,
but in the augmented region. There is a significantly greater
spread of linear decay profiles in Fig. 4(b) compared with
the other plots. In the pumping region ðDp > 0Þ, the pres-
sure rise decreases with greater couple stress parameter (g),
whereas the opposite effect is induced in the augmented
pumping region, as observed in Fig. 4(c). An increase in
magnetic field parameter is conversely found to enhance
pressure rise in the pumping region whereas it reduces
pressure rise in the augmented pumping region, as shown in
Fig. 4(d). In all the plots there exist also free pumping zones
(Dp Z 0) although this is essentially a cross-over point in
Fig. 4(b)e(d). The impact of wave number on pressure
difference is generally weak at all flow rates; however the
cilia length, couple stress parameter and magnetic field
impart a tangible modification to the pressure difference in
the channel.

Fig. 5(a)e(d) present the shear stress distributions for
various values of cilia eccentricity (a), cilia length (ε),
couple stress parameter (g) and magnetic field parameter
(M ). The oscillatory nature of shear (frictional wall force) is
clearly captured and this is in synchrony with the meta-
chronal beating of the cilia. Peaks and troughs are observed
alternately in each of the plots. Increasing eccentricity ratio
is found in Fig. 5(a) to considerably elevate the peak
magnitudes of shearing stress but only weakly decrease the
minimum values. More oblate topologies are also observed
at the peaks compared with the troughs which are sharper.
The shear stress direction is however never changed with a
variation in eccentricity ratio (values are invariably nega-
tive) i.e. there is no flow reversal in the MHD pump chan-
nel. Fig. 5(b) indicates that peak shear stress values are
mildly elevated with increasing cilia length whereas the
troughs are very sharply decreased. The influence of cilia
length is markedly greater than cilia eccentricity. Fig. 5(c)
shows that with increasing couple stress parameter both the
peaks and troughs are strongly reduced which is consistent
with flow deceleration in polar fluids. In this plot there is
also a weak flow reversal computed at low values of couple
stress parameter, although this is quickly eliminated with
higher values. Fig. 5(d) illustrates that increasing magnetic
field similarly damps the shear stress strongly. The greater
Lorentzian magnetic drag generated with higher M values
retards the ciliated propulsion and the couple stress fluid
shears therefore more slowly against the inner surfaces of
the walls.

Finally in Fig. 6(a)e(d) and 7(a)e(d), MATLAB software
has been used to plot streamline visualizations for the influ-
ence of two parameters, namely metachronal wave number
(b) and magnetic field parameter (M ), respectively. In both
sets of plots the doubly symmetric dual bolus structure pat-
terns are captured.With increasingmetachronal wave number
(b) i.e. decreasingwave length the central streamlines become
increasingly distorted generating new bolus structures which
grow symmetrically outwards into the channel space.
Conversely with increasing magnetic parameter the newly
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emerging bolus structures are contracted and vortex intensity
is decreased in the channel. Trapping phenomena are there-
fore non-trivially influenced by both the metachronal wave
length and applied magnetic field.

5. Conclusions

A theoretical investigation is presented for metachronal-
wave generated propulsion of electro-conductive couple
stress fluids in a channel with inner ciliated walls, motivated
by simulating bio-inspired MHD pumps. The metachronal
wave is aligned to the axial pumping direction and is
simulated via an elliptical geometric model. Closed-form
solutions for the transformed linearized boundary value
problem are derived. Visualization of the analytical solu-
tions is evaluated with symbolic software, MATLAB. The
present computations have shown that:

� There is an inverse relationship between pressure rise and
flow rate for variation in all geometric, material and
magnetic control parameters.

� Increasing metachronal wave number elevates axial ve-
locity in the core zone (whereas it induces axial flow
retardation at the channel walls), generates decreasing
pressure difference in the pumping and augmented
pumping regions and encourages the growth of new
secondary bolus structures in the channel.

� Increasing cilia eccentricity generates decreases axial
pressure gradient in the core region (and increases it in
the near-wall zones),

� Increasing cilia length decelerates the axial flow, in-
creases the axial pressure gradient (in the core region),
boosts pressure difference in the pumping region (posi-
tive pressures) and reduces it in the augmented pumping
region (negative pressures) and furthermore weakly in-
creases peak shear stresses and strongly reduces trough
magnitudes.

� Increasing couple stress parameter retards the axial flow,
elevates the axial pressure gradient across the full span of
the channel, reduces pressure difference in the pumping
zone, increases pressure difference in the augmented
zone and enhances both peak and trough shear stress
values.

� Increasing magnetic body force parameter decelerates the
axial flow, reduces axial pressure gradient across the
entire channel span, enhances pressure difference in the
pumping zone, suppresses pressure difference in the
augmented pumping zone, depresses both peak and
trough shear stress values and mitigates the development
of new bolus structures in the channel space.

The present study has presented a simple but interesting
model for MHD physiological ciliated pumping systems. It
has provided some useful benchmarks for further analysis
which is presently being explored with ANSYS FLUENT
computational fluid dynamics software. This will allow
generalization to three-dimensional geometries and will also
incorporation of elasticity of the ciliated structures. Efforts
in this regard will be communicated in the near future.
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