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ABSTRACT: A numerical investigation of the viscosity variation effect upon entropy generation in time-

dependent viscoelastic polymeric fluid flow and natural convection from a semi-infinite vertical plate is described. 

The Reiner-Rivlin second order differential model is utilized which can predict normal stress differences in dilute 

polymers. The conservation equations for heat, momentum and mass are normalized with appropriate 

transformations and the resulting unsteady nonlinear coupled partial differential equations are elucidated with the 

well-organized unconditionally stable implicit Crank-Nicolson finite difference method subject to suitable initial 

and boundary conditions. Average values of wall shear stress and Nusselt number, second-grade fluid flow 

variables conferred for distinct values of physical parameters.  Numerical solutions are presented to examine the 

entropy generation and Bejan number along with their contours. The outcomes show that entropy generation 

parameter and Bejan number both increase with increasing values of group parameter and Grashof number. The 

present study finds applications in geothermal engineering, petroleum recovery, oil extraction and thermal 

insulation, etc. 

 

KEYWORDS: Second-grade fluid; entropy generation; free convection; Bejan number; vertical flat plate; 

implicit method; thermal polymer processing. 

 

NOMENCLATURE 

Be        Bejan number  
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Br        Brinkman number  

𝑐𝑝        specific heat at constant pressure  (J kg−1 K−1 )   

𝐶𝑓        average dimensionless wall shear stress 

k          thermal conductivity ( Wm−1 K−1 ) 

𝑔          acceleration due to gravity ( ms−2  )       

Ns        dimensionless entropy heat generation number  

𝑁𝑢       average Nusselt number  

Pr        Prandtl number 

Gr        Grashof number 

𝑡′          time (s)  

t           dimensionless time 

𝑇′         temperature (K)   

𝑇          dimensionless temperature 

u, v       velocity components in (x, y) coordinate system ( ms−1  ) 

U, V     dimensionless velocity components in X, Y directions, respectively 

X          dimensionless axial coordinate 

x           axial coordinate 

y           transverse coordinate 

Y          dimensionless transverse coordinate 

Greek letters 

α         thermal diffusivity ( m2s−1  )    

𝜆         dimensional viscosity variation parameter ( K−1)   

β         second-grade fluid (viscoelasticity) parameter    

γ         dimensionless viscosity variation parameter  

𝛽𝑇        volumetric coefficient of thermal expansion ( K−1)    

Φ        viscous dissipation  

𝜌         density (kg m−3)    

𝜇         viscosity of the fluid ( kg m−1s−1  )       

𝜈         kinematic viscosity ( m2s−1  )    

Ω         dimensionless temperature difference 

𝐵𝑟Ω−1  dimensionless group parameter  

Subscripts 
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l, m        grid levels in (X, Y) coordinate system  

w          wall conditions 

∞          ambient conditions 

Superscript 

n           time level in finite difference computation 

 

1. INTRODUCTION 

      The buoyancy-induced flow [1-3] over a surface/plate and its associated fluid dynamic 

characteristics is of substantial interest in several industrial and engineering applications, for 

example, combustion flames and solar collectors, electronic equipment, building energy 

conservation, cooling systems, etc.  Hydrodynamics and heat transfer in non-Newtonian fluids 

is also a fervent area of research due to extensive technological applications. Such fluids exhibit 

shear-stress-strain relationships which vary considerably from the standard Newtonian model. 

Many physical models have been presented to explain the diverse manner of non-Newtonian 

fluids. Non-Newtonian fluids include molten plastics, glues, coal in water, pulps, synthetic 

lubricants, polymers, ink, emulsions, etc., which feature in numerous industries, for instance, 

polymer processing, chemicals, pharmaceuticals, cosmetics, food stuff processing (toothpastes, 

jams, jellies and marmalades). Non-Newtonian fluid flow under natural convection has 

received significant attention by many researchers. A key early investigation of free convective 

heat transfer past a vertical plate for the flow of a non-Newtonian fluid was presented by 

Acrivos [4]. Some attempts have also been made to simulate the flow of non-Newtonian liquids 

with various multi-physics aspects and external to different geometrical configurations (see 

refs. [5-9]). Recently, Mythili et al. [10] analysed the non-Newtonian Casson fluid transport 

from a cone and plate in a porous medium.  Among other non-Newtonian fluids, one theory 

that has gained prominence is the Rivlin-Ericksen theory of viscoelastic fluids. The fluids 

which fit this model in rheology are termed Rivlin-Ericksen viscoelastic fluids of differential 

type. This subclass of differential type fluids includes the second-grade fluid which was 

introduced originally by Coleman and Noll [11]. The second-grade fluid model can elegantly 

describe the consequences of normal stress (which may possibly lead to occurrences of ‘die-

swell’ and ‘rod-climbing’, which are indexes of the stresses that develop orthogonal to planes 
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of shear) in polymeric flow-fields [12]. This viscoelastic fluid model shows normal stress 

variances in shear flow and is an approximation to simple fluids in the sense of retardation. 

Examples of second-grade fluid model includes, polymer melts (e.g., high-viscosity silicone 

oils, manufacturing oils), molten plastics (e.g. coatings), bio-technological polymers mixed in 

Newtonian solvents, dilute polymer solutions (e.g., polyisobutylene, polyethylene oxide in 

water, methyl-methacrylate in n butyl acetate, etc.). Various well-modelled multi-physical 

boundary value problems have been studied with second-grade viscoelastic fluid theory since 

the constitutive equations are slightly easier and also quite accurate estimations may be made 

of realistic velocity distributions.  Significant modelling studies using second-grade fluid 

theory include thin film flow [13], magnetohydrodynamic (MHD) flows [14, 15], bio-fluid 

mechanics [16, 17], squeezing flow [18], and physiological hydrodynamics [19], etc. Second-

grade fluid flow with heat transfer from a horizontal plate has been addressed by Kai-Long and 

Cheng-Hsing [20]. Pakdemirli et al. [21] studied the dynamics of non-Newtonian flow from a 

porous plate using a combination of the power law and second-grade fluids. Transient flow of 

second-grade fluid from an impulsive vertical plate was reported by Umamaheswar et al. [22]. 

Recently, Rahman et al. [23] investigated convective-radiative heat transfer in second-grade 

flow over a stretching surface. 

        Many of the fluids encountered in process industries, chemical and biochemical are 

extremely viscous in nature. The viscosity of these fluids is strongly sensitive to temperature; 

the thermal diffusivity, however, remains comparatively constant. Temperature-dependent 

fluid properties in heat transfer can significantly modify thermal/fluid characteristics [24-27]. 

Also, the fluid viscosity is a measure of its resistance to the flow and the temperature variation 

of this key hydrodynamic property should be considered. Hence robust thermo-fluid models 

consider the viscosity variation with thermal conditions. Some relevant studies on temperature- 

dependent viscosity are provided in [28-33]. Prasad et al. [34] explored the effect of 

temperature-dependent viscosity on magnetohydrodynamic (MHD) second-grade fluid flow 

with heat transfer. Thereafter, the influence of temperature dependent viscosity on viscoelastic 

fluid has been investigated by Faraz and Khan [35]. Second-grade fluid flow from a sheet under 

the effect of temperature-dependent viscosity and variable thermal conductivity was considered 

quite recently by Akinbobola and Samuel [36].  

      Thermodynamics laws are the essential principles on which all thermofluid systems are 

based. The first law of thermodynamics gives information regarding the energy of the system 

quantitatively. The second law of thermodynamics implies that entire natural processes are 
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irreversible and thus it is a useful approach to identify the irreversibility in any thermal system 

as well as to determine the optimum conditions under which the processes or devices are 

operated. The production of entropy measures the irreversibility in complex processes which 

are frequently encountered in industrial designs [37]. This methodology has therefore been 

successfully implemented in the various technological applications including rotating disk 

reactors, combustion, turbo-machinery, electronic cooling, solar energy collectors, porous 

media, electromagnetic materials processing and propulsion ducts. It has also been shown to 

achieve significant thermal efficiency improvements in power utilization, material processing, 

energy conservation, environmental effects, refrigeration system [38], fouling formation [39], 

nuclear swirl electromagnetic propulsion [40], pseudo-optimization design process modelling 

of solar heat exchangers [41], minimization of lost available work during process of heat 

transfer [42], multi-field flows [43], radiative channel flows of polar  fluids for slurry systems 

[44] and carbon nanotube-doped cilia-assisted biomimetic propulsion [45].  Interesting recent 

works deploying a second law analysis include improving heat sinks in electric machines [46] 

and robust design in applied thermal engineering [47]. Mankind and Tsehla [48] analysed the 

entropy generation for nanofluid in a channel flow. Karim and John [49] studied the entropy 

generation for electrodialysis. Several researchers have computed the entropy heat generation 

for different non-Newtonian fluids and various geometries. Nagaraju et al. [50] analysed the 

entropy heat generation for couple stress fluid flow between two rotating cylinders. A detailed 

analysis of entropy generation for micropolar fluid flow through a vertical channel was 

conducted by Srinivas et al. [51]. Shahri and Sarhaddi [52] studied the entropy generation for 

two-immiscible fluids in a channel flow with nanoparticles. A number of models have also 

been communicated on entropy generation in the thermal transport of viscoelastic fluids. 

Chauhan and Kumar [53] elaborated on third-grade viscoelastic convection flow in an annulus 

with temperature-dependent viscosity and the second law of thermodynamics. The effect of 

second-grade fluid on entropy generation over a stretching plate in a porous medium was 

discussed by Butt et al. [54]. Recently, Rashidi et al. [55] analysed the entropy generation for 

third-grade fluid flow due to stretching sheet.   

In light of the aforementioned studies, it is evident that rather limited work has been done with 

regard to entropy generation minimization in unsteady second-grade fluid flow over a vertical 

plate.  Motivated by applications of this regime to thermal polymer processing optimization, 

in the present article, a computational study has been carried out for second-grade elastic-

viscous natural convection flow over a semi-infinite vertical flat plate. A significant feature of 



6 
 

6 
 

polymers is temperature-dependent viscosity.  Research performed at Chevron, California in 

the 1960s confirmed the significant viscosity modification in many polymers with temperature 

[56]. Hence, temperature-dependent viscosity is taken in the current study. In this work the 

Crank-Nicolson implicit finite difference numerical scheme is employed to compute the non-

dimensional, transient second-grade boundary layer flow problem and the solutions are 

validated with earlier available results from the scientific literature. The transient properties of 

the second-grade fluid flow with entropy heat generation are calculated for the momentum and 

heat transport coefficients via careful variations in a number of thermo-physical and 

rheological parameters (Grashof number, viscoelasticity parameter etc). Additionally, the 

results achieved for second-grade fluids are compared with the Newtonian fluid case. 

Furthermore, for the first time, an attempt is made to compute Bejan lines for the present 

investigated problem. 

 

2. PROBLEM DESCRIPTION   

Consider the transient two-dimensional, laminar, incompressible, buoyancy-driven flow of a 

second-grade viscoelastic fluid from a heated vertical plate. The plate is vertically aligned with 

length l and is visualized in Fig. 1. The chosen coordinate geometry is a rectangular shape, in 

which the x-axis and y-axis are directed vertically upward and normal to the plate, respectively. 

The neighbouring fluid temperature is static and analogous to that of free stream 

temperature  𝑇∞
′ . In the beginning, i.e.,  𝑡′ = 0, the temperature 𝑇∞

′  is identical for the plate and 

the surrounding fluid. Later (𝑡′ > 0), the temperature of the vertical plate is amplified to 

 𝑇𝑤
′  (> 𝑇∞

′ ) and preserved uniformly there afterward.   

 

 The Cauchy stress tensor for a second-grade differential fluid [57-58] is given by:  

  𝑻 = −𝑃𝑰 + S ,                                                                                                                       (1) 

where  S =  𝜇B1 + 𝛼1B2 + 𝛼2B1
2 is the extra stress tensor. Also, I, µ, P, and 𝛼𝑖

′𝑠 (𝑖 = 1, 2) 

represents the identity tensor, dynamic viscosity, pressure and material constants, respectively. 

Further, B1, B2 represent the Rivlin–Ericksen tensors and are defined respectively by: 

                          B1 = (∇𝒒) + (∇𝒒)T , 

                        B2 =
dB1

dt
+ B1(∇𝒒) + (∇𝒒)TB1    
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 in which 
dB1

dt
 is the material time derivative, 𝒒 is the velocity and ∇ is the gradient operator.    

 2.1 Governing Flow-field Equations: 

The mathematical model for the current problem, with the help of above definitions and 

assumptions, is given by the following differential equations: 

 

(i) Law of conservation of mass: 

                          ∇. 𝒒 = 0                         

            ⇒       
  𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
 = 0                                                                                                 (2) 

(ii)  Law of conservation of momentum: 

                    𝜌 [
𝜕𝒒

𝜕𝑡′ + (𝒒. ∇)𝒒]  = ∇. 𝑻 

⇒            𝜌 [
𝜕

𝜕𝑡′ + 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
] 𝑣 = −

𝜕𝑝

𝜕𝑦
+

𝜕

𝜕𝑥
(𝑆𝑦𝑥) +

𝜕

𝜕𝑦
(𝑆𝑦𝑦)  

          𝜌 [
𝜕

𝜕𝑡′ + 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
] 𝑢 = −

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
(𝑆𝑥𝑥) +

𝜕

𝜕𝑦
(𝑆𝑥𝑦)  

in which  

𝑆𝑦𝑦 =  𝜇 (2
𝜕𝑣

𝜕𝑦
) + 𝛼1 [(

𝜕

𝜕𝑡′ + 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) (2

𝜕𝑣

𝜕𝑦
) + 2 {

2 (
𝜕𝑣

𝜕𝑦
)

2

+
𝜕𝑢

𝜕𝑦
(

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) +

𝜕𝑤

𝜕𝑦
(

𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)

}] +

                    𝛼2 {4 (
𝜕𝑣

𝜕𝑦
)

2

+ (
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)

2

+ (
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)

2
}  

𝑆𝑥𝑥 =  𝜇 (2
𝜕𝑢

𝜕𝑥
) + 𝛼1 [(

𝜕

𝜕𝑡′ + 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) (2

𝜕𝑢

𝜕𝑥
) + 2 {

2 (
𝜕𝑢

𝜕𝑥
)

2

+
𝜕𝑣

𝜕𝑥
(

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) +

𝜕𝑤

𝜕𝑥
(

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

}] +

                    𝛼2 {4 (
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

2

+ (
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)

2
}  

 𝑆𝑥𝑦 = 𝑆𝑦𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) + 𝛼1 [

(
𝜕

𝜕𝑡′ + 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) + 2

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

+2
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑦
(

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) +

𝜕𝑢

𝜕𝑥
(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) +

𝜕𝑤

𝜕𝑥
(

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)

] +

                           𝛼2 {2
𝜕𝑢

𝜕𝑥
(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) + (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) (

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) + 2

𝜕𝑣

𝜕𝑦
(

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)}     
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 where 𝑢 and 𝑣 signify the velocity components along the axial (x) and transverse (y) 

directions, respectively, 𝜌 is the density and 𝑆𝑥𝑥, 𝑆𝑥𝑦,  𝑆𝑦𝑥,  𝑆𝑦𝑦 are the extra stress components. 

  

The Clausius-Duhem inequality and the condition that the Helmholtz free energy is minimum 

at equilibrium hold provided the following conditions [59] are satisfied.  

                                 𝜇 ≥ 0,   𝛼1 ≥ 0,   𝛼1 + 𝛼2 = 0.                                                          (3)                                                                   

The flow is presumed to be along the axial direction only and hence by ignoring the transverse 

direction, the governing unsteady boundary layer equations for momentum and heat 

conservation of the second-grade fluid with the above inequality and restrictions in Eqn. (3) 

and using Boussinesq’s approximation are as follows:   

                     
 𝜕𝑢

𝜕𝑡′ + 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=  𝑔𝛽𝑇(𝑇′ − 𝑇∞

′ ) +
1

𝜌

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
)            

                                  +
𝛼1

𝜌
(

𝜕3𝑢

𝜕𝑦2𝜕𝑡′ +
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2 + 𝑢
𝜕3𝑢

𝜕𝑥𝜕𝑦2 + 𝑣
𝜕3𝑢

𝜕𝑦3 −
𝜕𝑢

𝜕𝑦

𝜕2𝑣

𝜕𝑦2

 
)                            (4) 

(iii)   Law of conservation of energy: 

[
𝜕𝑇′

𝜕𝑡′ + (𝒒. ∇)𝑇′] = 𝛼(∇2𝑇′)  

      ⇒               
 𝜕𝑇′

𝜕𝑡′ + 𝑢
𝜕𝑇′

𝜕𝑥
+ 𝑣

𝜕𝑇′

𝜕𝑦
= 𝛼

𝜕2𝑇′

𝜕𝑦2                                                                         (5)     

The associated initial and boundary conditions are given by: 

𝑡′ ≤ 0:    𝑇′ =  𝑇∞
′  , 𝑢 = 0, 𝑣 = 0                      for all x and y 

 𝑡′ > 0:   𝑇′ = 𝑇𝑤   
′ , 𝑢 = 0, 𝑣 = 0                     at  𝑦 =  0   

                𝑇′ = 𝑇∞ 
′  , 𝑢 = 0, 𝑣 = 0                     at  𝑥 = 0                        (6)                                                                             

                𝑇′ → 𝑇∞
′  , 𝑢 → 0,

𝜕𝑢

𝜕𝑦
→ 0, 𝑣 → 0        as  𝑦 → ∞              

We invoke the following non-dimensional quantities (for all symbols refer to the 

nomenclature):  

X = Gr−1 𝑥

𝑙
 ,  𝑌 =

𝑦

𝑙
 , 𝑈 = Gr−1 𝑢𝑙

𝜐
,  𝑉 =

𝑣𝑙

𝜐
,   𝑡 =

𝜐𝑡′

𝑙2 , 𝑇 =
𝑇′−𝑇∞

′

𝑇𝑤
′ −𝑇∞

′ , 𝐺𝑟 =
𝑔𝛽𝑇𝑙3(𝑇𝑤

′ −𝑇∞
′ )

𝜐2 ,      

𝑃𝑟 =  
𝜐

𝛼
 , 𝜐 = 

 𝜇∞

𝜌
  , 𝐵𝑟 =  

𝜇𝜐2

𝑘(𝑇𝑤
′ −𝑇∞

′ )𝑙2 ,  Ω =
(𝑇𝑤

′ −𝑇∞
′ ) 

𝑇∞
′  , β = 𝛼1/𝜌𝑙2  
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The viscosity variation with temperature is analysed by the robust models developed and 

applied by Ling and Dybbs [25] and Molla et al. [26]: 

 

                                           𝜇(𝑇′) ≅
𝜇∞

 (1+𝑏(𝑇′−𝑇∞
′ ))

                                                             

where 𝜇 is the viscosity of the fluid depending on temperature 𝑇′, 𝑏 is a constant and   

𝜇∞ denotes fluid dynamic viscosity at the temperature 𝑇∞
′ .  Let γ signifies the dimensionless 

viscosity variation parameter and is given by γ = 𝑏(𝑇𝑤
′ − 𝑇∞

′ ). It follows that the fluid viscosity 

in non-dimensional temperature can be written as   

                                          𝜇(𝑇) =
𝜇∞

(1+γ𝑇) 
                                                                         (7) 

Incorporating the above cited dimensionless numbers in Eqns. (2), (4), (5) and also in Eqn. (6), 

the conservations equations contract to the following: 

 

   
  𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0                                                                                                                   (8)  

 

 
 𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
=  𝑇 +

1

(1+γ𝑇) 

𝜕2𝑈

𝜕𝑌2 −
𝛾

(1+γ𝑇)2

𝜕𝑇

𝜕𝑌

𝜕𝑈

𝜕𝑌
            

                                  +β (
𝜕3𝑈

𝜕𝑌2𝜕𝑡
+

𝜕𝑈

𝜕𝑋

𝜕2𝑈

𝜕𝑌2 + 𝑈
𝜕3𝑈

𝜕𝑋𝜕𝑌2 + 𝑉
𝜕3𝑈

𝜕𝑌3 −
𝜕𝑈

𝜕𝑌

𝜕2𝑉

𝜕𝑌2

 
)                          (9) 

  
 𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
=

1

𝑃𝑟

𝜕2𝑇

𝜕𝑌2                                                                                              (10) 

 

𝑡 ≤ 0:    𝑇 =  0, 𝑈 = 0, 𝑉 = 0                       for all X and Y 

 𝑡 > 0:   𝑇 = 1, 𝑈 = 0, 𝑉 = 0                        at  𝑌 =  0 

              𝑇 = 0 , 𝑈 = 0, 𝑉 = 0                         at  𝑋 = 0          (11)                                                                                                                                                                                                                      

              𝑇 → 0 , 𝑈 → 0,
𝜕𝑈

𝜕𝑌
→ 0, 𝑉 → 0            as  𝑌 → ∞                

                                       

3. FINITE DIFFERENCE NUMERICAL SOLUTION   

To solve the nonlinear time-dependent governing Eqns. (8) - (10) together with initial and 

boundary conditions (11), a stable (unconditionally) implicit scheme “Crank-Nicolson 

method” is applied. This implicit scheme remains very versatile in unsteady heat transfer and 

fluid dynamics.  It has been employed in viscoelastic flows by Prasad et al. [60] for unsteady 

flat plate free convection flows. An excellent description of the Crank-Nicolson method in the 
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context of natural convection flows is provided in Cebeci [61]. Let 𝐴 =
1

1+𝜆(
𝑇𝑙,𝑚

𝑛+1+𝑇𝑙,𝑚
𝑛

2
)

, then the 

finite difference equations corresponding to the above Eqns. (8)-(10) take the form:    

 

𝑈𝑙,𝑚
𝑛+1−𝑈𝑙−1,𝑚

𝑛+1 +𝑈𝑙,𝑚
𝑛 −𝑈𝑙−1,𝑚

𝑛

2Δ𝑋
+

𝑉𝑙,𝑚
𝑛+1−𝑉𝑙,𝑚−1

𝑛+1 +𝑉𝑙,𝑚
𝑛 −𝑉𝑙,𝑚−1

𝑛

2Δ𝑌
 = 0                                                          (12) 

 
𝑈𝑙,𝑚

𝑛+1−𝑈𝑙,𝑚
𝑛

Δ𝑡
+

𝑈𝑙,𝑚
𝑛

2Δ𝑋
(𝑈𝑖,𝑗

𝑘+1 − 𝑈𝑖−1,𝑗
𝑘+1 + 𝑈𝑖,𝑗

𝑘 − 𝑈𝑖−1,𝑗
𝑘 )+

𝑉𝑖,𝑗
𝑘

4Δ𝑌
(𝑈𝑙,𝑚+1

𝑛+1 − 𝑈𝑙,𝑚−1
𝑛+1 + 𝑈𝑙,𝑚+1

𝑛 − 𝑈𝑙,𝑚−1
𝑛 )    

=  
𝑇𝑙,𝑚

𝑛+1+𝑇𝑙,𝑚
𝑛

2
+ 𝐴 (

𝑈𝑙,𝑚+1
𝑛+1 −2𝑈𝑙,𝑚

𝑛+1+𝑈𝑙,𝑚−1
𝑛+1 +𝑈𝑙,𝑚+1

𝑛 −2𝑈𝑙,𝑚
𝑛 +𝑈𝑙,𝑚−1

𝑛

2(∆𝑌)2
)    

      −𝜆𝐴2 (
𝑇𝑙,𝑚+1

𝑛+1 −𝑇𝑙,𝑚−1
𝑛+1 +𝑇𝑙,𝑚+1

𝑛 −𝑇𝑙,𝑚−1
𝑛

4(∆𝑌)
) (

𝑈𝑙,𝑚+1
𝑛+1 −𝑈𝑙,𝑚−1

𝑛+1 +𝑈𝑙,𝑚+1
𝑛 −𝑈𝑙,𝑚−1

𝑛

4(∆𝑌)
)        

         +β [
𝑈𝑙,𝑚+2

𝑛+1 −2𝑈𝑙,𝑚
𝑛+1+𝑈𝑙,𝑚−2

𝑛+1 −𝑈𝑙,𝑚+2
𝑛 +2𝑈𝑙,𝑚

𝑛 −𝑈𝑙,𝑚−2
𝑛

4(∆𝑌)2∆𝑡
] 

+β𝑈𝑙,𝑚
𝑛 [

𝑈𝑙,𝑚+1
𝑛+1 −𝑈𝑙−1,𝑚+1

𝑛+1 −2𝑈𝑙,𝑚
𝑛+1+2𝑈𝑙−1,𝑚

𝑛+1 +𝑈𝑙,𝑚−1
𝑛+1 −𝑈𝑙−1,𝑚−1

𝑛+1 +𝑈𝑙,𝑚+1
𝑛 −𝑈𝑙−1,𝑚+1

𝑛 −2𝑈𝑙,𝑚
𝑛 +2𝑈𝑙−1,𝑚

𝑛 +𝑈𝑙,𝑚−1
𝑛 −𝑈𝑙−1,𝑚−1

𝑛

2(∆𝑌)2∆𝑋
]  

+β𝑉𝑙,𝑚
𝑛 [

(𝑈𝑙,𝑚+2
𝑛+1 −2𝑈𝑙,𝑚+1

𝑛+1 +2𝑈𝑙,𝑚−1
𝑛+1 +𝑈𝑙,𝑚−2

𝑛+1 +𝑈𝑙,𝑚+2
𝑛 −2𝑈𝑙,𝑚+1

𝑛 +2𝑈𝑙,𝑚−1
𝑛 +𝑈𝑙,𝑚−2

𝑛 )

4(∆𝑌)3
]      

 +β [
𝑈𝑙,𝑚

𝑛 −𝑈𝑙−1,𝑚
𝑛

Δ𝑋
] [

𝑈𝑙,𝑚+1
𝑛+1 −2𝑈𝑙,𝑚

𝑛+1+𝑈𝑙,𝑚−1
𝑛+1 +𝑈𝑙,𝑚+1

𝑛 −2𝑈𝑙,𝑚
𝑛 +𝑈𝑙,𝑚−1

𝑛

2(∆𝑌)2
] 

−β [
𝑈𝑙,𝑚

𝑛 −𝑈𝑙,𝑚−1
𝑛

Δ𝑌
] [

𝑉𝑙,𝑚+1
𝑛+1 −2𝑉𝑙,𝑚

𝑛+1+𝑉𝑙,𝑚−1
𝑛+1 +𝑉𝑙,𝑚+1

𝑛 −2𝑉𝑙,𝑚
𝑛 +𝑉𝑙,𝑚−1

𝑛

2(∆𝑌)2
]   

−β [
𝑈𝑙,𝑚+1

𝑛 −2𝑈𝑙,𝑚
𝑛 +𝑈𝑙,𝑚−1

𝑛

(∆𝑌)2
] [

𝑈𝑙,𝑚+1
𝑛+1 −𝑈𝑙,𝑚−1

𝑛+1 +𝑈𝑙,𝑚+1
𝑛 −𝑈𝑙,𝑚−1

𝑛

4(∆𝑌)
]                                                           (13) 

  
T𝑙,𝑚

𝑛+1−T𝑙,𝑚
𝑛

Δ𝑡
+

𝑈𝑙,𝑚
𝑛

2Δ𝑋
(T𝑙,𝑚

𝑛+1 − T𝑙−1,𝑚
𝑛+1 + T𝑙,𝑚

𝑛 − T𝑙−1,𝑚
𝑛 )+

𝑉𝑙,𝑚
𝑛

4Δ𝑌
(T𝑙,𝑚+1

𝑛+1 − T𝑙,𝑚−1
𝑛+1 + T𝑙,𝑚+1

𝑛 − T𝑙,𝑚−1
𝑛 )   

        = [
T𝑙,𝑚+1

𝑛+1 −2T𝑙,𝑚
𝑛+1+T𝑙,𝑚−1

𝑛+1 +T𝑙,𝑚+1
𝑛 −2T𝑙,𝑚

𝑛 +T𝑙,𝑚−1
𝑛

2𝑃𝑟(∆𝑌)2
]                                                                  (14) 

  

In the above equations (12), (13) and (14), l and m are the subscripts which represent the mesh 

points along the X and Y coordinates, respectively, where 𝑋 = 𝑙∆𝑋 and 𝑌 = 𝑚∆𝑌 and the 

superscript n describes a value of the time 𝑡(= 𝑛Δ𝑡) with ∆𝑋, ∆𝑌 and ∆𝑡 the grid sizes in the 

X, Y and t axes, respectively. The numerical equations are solved on the rectangular grid with 

𝑋𝑚𝑎𝑥 = 1, 𝑋𝑚𝑖𝑛 = 0, 𝑌𝑚𝑎𝑥 = 20 and 𝑌𝑚𝑖𝑛 = 0, where 𝑌𝑚𝑎𝑥 relates to Y = ∞ which lies far 

away from the heat and momentum transport boundary layers.  
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4. GRID (MESH) INDEPENDENCE STUDY 

  To obtain an efficient consistent grid (mesh) system for the numerical simulations, a grid 

independency test is performed for different mesh sizes of 25 X 125, 50 X 250, 100 X 500 and 

200 X 1000 and the values of the 𝑁𝑢 on the boundary Y = 0 corresponding to each of these 

grids are documented in Table 1. It is noticed from Table 1 that 100 X 500 (grid size) compared 

with 50 X 250 and 200 X 1000 (grid sizes) does not incur any significant modification on the 

results of average heat transport coefficient. Thus, 100 X 500 (grid size) is demonstrably 

adequate for this problem with the step sizes of 0.01 and 0.04 in axial and transverse directions, 

respectively. Similarly, in order to produce reliable results with respect to time, a grid-

independence test has been performed for different time step sizes, as shown in Table 2. The 

effective selected time step size Δ𝑡 (𝑡 = 𝑛Δ𝑡, 𝑛 = 0, 1, 2, … ) is fixed as 0.01.   

 

 The finite difference technique starts by computing the solution for the thermal boundary layer 

Eqn. (14), which provides the temperature field. Next solving the conservation of momentum 

and mass Eqns. (13) and (12) provides the solution for the velocity field. Eqns. (13) - (14) at 

the (n+1)th  stage are stated in the following tri-diagonal and penta-diagonal forms:   

 

                    𝑎𝑙,𝑚Ω𝑙,𝑚−1
𝑛+1 + 𝑏𝑙,𝑚Ω𝑙,𝑚

𝑛+1 + 𝑐𝑙,𝑚Ω𝑙,𝑚+1
𝑛+1 =   𝑑𝑙,𝑚

𝑛 ,  

      𝐴𝑙,𝑚ω𝑙,𝑚−2
𝑛+1 + 𝐵𝑙,𝑚ω𝑙,𝑚−1

𝑛+1 + 𝐶𝑙,𝑚ω𝑙,𝑚
𝑛+1 + 𝐷𝑙,𝑚ω𝑙,𝑚+1

𝑛+1 + 𝐸𝑙,𝑚ω𝑙,𝑚+2
𝑛+1 =  𝐹𝑙,𝑚

𝑛 ,                (15) 

 

Here Ω and ω indicates the transient flow-field variables T and U. Thus, Eqns. (13) -(14) at 

each interior grid point on a precise l-level comprise a system of tri-diagonal and penta-

diagonal equations. Further detailed descriptions of this finite difference method can be found 

in the available literature [62].   

 

 

 

 

 5. RESULTS AND DISCUSSION  

     To analyse the transient nature of the flow-field profiles, such as velocity and temperature, 

their values are shown at various locations which are adjacent to the vertical plate.  

       The computed flow-field variables for the case of Newtonian fluids (β = 0.0) are related 

with those of Takhar et al. [63] for Pr = 0.7, γ = 0, and are shown in Fig. 2. The numerical 
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values are found to be in good agreement. This confirms the accuracy and validity of the 

existing numerical scheme. Variation of simulated flow-field variables is plotted with different 

control parameter values such as second-grade fluid parameter (β), viscosity variation 

parameter (γ), Grashof number (Gr), group parameter (𝐵𝑟Ω−1) and Prandtl number (Pr) in 

subsequent Figures. 

The result of choosing viscosity variation parameter (γ) given in the Eqn. (7). If γ < 0,  then 

𝜇(𝑇) is large, the influence of variable viscosity can be neglected. If γ ≥ 0, then 𝜇(𝑇) is small, 

and the effect of variable viscosity is taken into consideration.  

The range of second grade fluid parameter β is chosen from the following definition (β =

𝛼1/𝜌𝑙2) (Dunn and Rajagopal [59]), in which 𝛼1 is the normal stress moduli. If 𝛼1 is positive, 

the model has a good behaviour in the sense that stability and unboundedness may be achieved, 

whereas if 𝛼1is taken to be negative, then in quite arbitrary flows, instability and boundedness 

are unavoidable. Therefore, they have concluded that the only second grade fluid to be found 

in nature is one with  β ≥ 0.    

The Grashof number states the ratio between the buoyancy force and the viscous force. When 

Gr is high, the viscous force is negligible as compared to the buoyancy and inertial forces. 

When buoyant forces overcome the viscous forces, the flow starts a transition to the turbulent 

regime. Furthermore, at smaller values of Grashof number the induced flow moves upward 

making a smooth turn around the hot vertical plate.   

 

 5.1   Velocity and Temperature Variables  

       In this sub-section, the effects of dimensionless physical parameters on the velocity 

components are analysed, based on Figs. 3-4. Figure 3 depicts the variation of simulated 

transient velocity (U) versus time (t) at the position (0, 1.56) for distinct values of viscosity 

variation parameter (γ) and viscoelastic parameter (𝛽). At all locations, the velocity curve 

augments with time, attain the temporal maxima, then slightly decrease, and finally, they turn 

out to be independent of time. The non-linear characteristics of the unsteady momentum 

equation in consistency with certain values of non-dimensional viscosity 1/(1 + γ𝑇) and non-

dimensional thermal diffusivity 1/Pr are probably the cause of the velocity overshoot. The 

time-dependent U profile initially upturns with increasing γ. With increasing γ the size of the 

velocity term reduced (refer to Eq. (9)) which produces less resistance to the fluid flow in the 

region of the temporal peak velocities. Also, fluid viscosity is decreased with greater γ and this 

reduces viscous forces in the boundary layer which accelerates the flow. With rising values of 
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viscoelasticity parameter, β the flow is decelerated since greater elastic effects are induced as 

per the definition of this parameter (=
𝛼1

𝜌𝑙2). This energizes the flow and assists momentum 

development.  

Figure 4 illustrates the time-independent state velocity curves for different control parameters 

(β and γ) against Y coordinate. It is perceived that the U curves in this figure begin with the 

no-slip boundary condition, attains its peak and then drops to zero along the Y coordinate 

satisfying the outlying boundary conditions. In the environs of the hot vertical plate, the 

magnitude of dimensionless axial velocity (U) is amplified with greater Y values, attaining a 

peak close to the wall into the boundary layer. Further, the time taken to reach the steady-state 

condition reduces as γ increases while the reverse trend is seen for β. Additionally, it is apparent 

that in the vicinity of the hot wall the velocity magnitude is high for γ compared to β since 

viscosity decreasing with increasing γ, i.e. γ have a more profound accelerating influence on 

axial velocity.   

        Figure 5 describes the effect of γ and β on transient temperature profile (T) against time 

(t) at the spatial location (0, 0.68). From this graph, initially, temperature is accentuated with t, 

attains a maximum and thereafter is weakly decreased, finally attaining the time independent-

state.  Temperature is reduced with greater values of γ. This is due to the fact that as γ increases 

the viscosity of the fluid decreases [refer to Eqn. (7)] which allows leads to a decrease also in 

thermal diffusion and plummet in temperature profiles. Also, for escalating 𝛽, temperature is 

clearly increased. The upsurge in the temperature of the fluid is attributable to stronger elastic 

forces in the medium and also a modification in viscosity which enhances motion of the fluid. 

For all transient T profiles, asymptotically smooth declines are seen in the free stream 

confirming the imposition of an adequately large infinity boundary condition in the Crank-

Nicolson numerical code. 

     Figure 6 depicts the time-independent T profiles versus transverse coordinate (Y) for 

different values of γ and β. These outlines originate with the boundary value of 𝑇 = 1 and then 

decrease to zero. It is well-known that, as γ increases, the temperature decreases. Also 

enhancing β eventually results in a boost in temperature as revealed in Fig. 6. Also, it is noted 

that the time-independent state T profiles have coincided with each other for various values of 

γ and β as Y increases from 0 to 3. Hence, the influence of γ or β on T profiles have less impact 

related to the U profiles as revealed in Fig. 4. This is logical since the physical parameters γ 
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and β appear only in the momentum equation (9) and therefore the dominant influence is on 

velocity.         

 

 5.2 Friction and Heat Transport Coefficients 

From the thermal engineering view point the wall shear-stress and heat transfer rate 

quantities are significant design parameters. This is also the case for a non-Newtonian 

fluid (second-grade fluid), since these design quantities are substantially influenced by the 

natural convection process. For the current second-grade fluid flow problem, the dimensionless 

average momentum and heat transfer coefficients are defined as:  

 

 𝐶𝑓 =
1

(1+γ)
∫ (

𝜕𝑈

𝜕𝑌
)

𝑌=0
𝑑𝑋

1

0
                                                                                               (16) 

 

 𝑁𝑢 = − ∫ (
𝜕𝑇

𝜕𝑌
)

𝑌=0
𝑑𝑋

1

0
                                                                                                   (17) 

The above coefficients are evaluated using 5-point approximation and Newton–Cotes 

quadrature formulae. 

 

    Figures 7-8 illustrate transient  𝐶𝑓  and 𝑁𝑢 profiles against time (t) of second-grade fluid 

flow for a variation in the parameters, γ and β. Figure 7 shows that, in the beginning,  𝐶𝑓 

upsurges with time t and later a certain interval of time it achieves the steady-state magnitude. 

There is a significant decrease in   𝐶𝑓 with viscosity parameter (γ) owing to the deceleration in 

the flow with greater viscosity effects. This trend is similar to that of the time-dependent 

velocity profile computed in Fig. 3. Also, rising values of β manifest in a marked reduction in 

 𝐶𝑓  𝑖. 𝑒. a strong deceleration at the wall is induced with stronger viscoelastic effects.         

Figure 8 demonstrates that initially, 𝑁𝑢 declines significantly, a trend which is followed by a 

slight increase in magnitudes and subsequent attainment of the steady-state. Moreover, it is 

observed that initially, the 𝑁𝑢 curves of second-grade fluid coincide with each other and they 

deviate after some time interval. These figures designate that at the initiation of the buoyancy-

driven flow, thermal conduction heat transfer dominates over convection; only with 

progression in time are the free convection currents mobilized. Also, it is also evident that  𝑁𝑢 

upsurges with increasing values of γ  which are physically reliable with an upsurge in 



15 
 

15 
 

temperatures in the boundary layer (computed earlier). Whereas for enhancing β, the  𝑁𝑢 

shows decreasing trend.  

5.3 Entropy Heat Generation Analysis and Bejan Number Computation  

The entropy generation for a second-grade fluid per unit volume with constant density is given 

by the following expression:   

                          𝑆𝑔𝑒𝑛 =
𝑘

𝑇∞
′2 (∇𝑇′)2 +

1

𝑇∞
′ Φ 

     ⇒               𝑆𝑔𝑒𝑛 =
𝑘

𝑇∞
′2 (

𝜕𝑇′

𝜕𝑦
)

2

+ {
𝜇̅

𝑇∞
′ (

𝜕𝑢

𝜕𝑦
)

2

+
𝛼1

𝑇∞
′ [

𝜕2𝑢

𝜕𝑦𝜕𝑡′

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2 + 𝑢
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
]}        (18)  

The equation (18) can be rewritten as    

                                       𝑆𝑔𝑒𝑛 = 𝑆1 + 𝑆2   

         where   𝑆1 =
𝑘

𝑇∞
′2 (

𝜕𝑇′

𝜕𝑦
)

2

,  

                       𝑆2 =
𝜇̅

𝑇∞
′ (

𝜕𝑢

𝜕𝑦
)

2

+
𝛼1

𝑇∞
′ [

𝜕2𝑢

𝜕𝑦𝜕𝑡′

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2 + 𝑢
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
] .   

 Here  𝑆1 indicates the entropy generation due to heat flow,  𝑆2 represents the entropy 

generation due to viscous dissipation.  

The dimensionless entropy heat generation parameter Ns is defined as the ratio of the 

volumetric entropy heat generation rate to the characteristic entropy heat generation rate [64]. 

Thus, the entropy generation number for the current problem can be written as: 

𝑁𝑆 = (
𝜕𝑇

𝜕𝑌
)

2

+
Br(Gr)2

Ω
{

1

(1+γ𝑇)
(

𝜕𝑈

𝜕𝑌
)

2

+ β (
𝜕2𝑈

𝜕𝑌𝜕𝑡

𝜕𝑈

𝜕𝑌
+ 𝑉

𝜕𝑈

𝜕𝑌

𝜕2𝑈

𝜕𝑌2 + 𝑈
𝜕𝑈

𝜕𝑌

𝜕2𝑈

𝜕𝑋𝜕𝑌
)}                      (19)  

where Ω =
(𝑇𝑤

′ −𝑇∞
′ ) 

𝑇∞
′  is the dimensionless temperature difference, and the characteristic entropy 

heat generation is  
𝑘(𝑇𝑤

′ −𝑇∞
′ )2

𝑇∞
′2𝑙2  . Eqn. (19) can be rewritten in the following compact form   

                                            𝑁𝑆 = 𝑁1+𝑁2                                                                           (20)  

 

Here the following definitions apply: 

 𝑁1 = (
𝜕𝑇

𝜕𝑌
)

2

 and 𝑁2 =
Br(Gr)2

Ω
{

1

(1+γ𝑇)
(

𝜕𝑈

𝜕𝑌
)

2

+ β (
𝜕2𝑈

𝜕𝑌𝜕𝑡

𝜕𝑈

𝜕𝑌
+ 𝑉

𝜕𝑈

𝜕𝑌

𝜕2𝑈

𝜕𝑌2 + 𝑈
𝜕𝑈

𝜕𝑌

𝜕2𝑈

𝜕𝑋𝜕𝑌
)}         (21) 

 

N1 and N2 describe the irreversibility due to heat transfer and fluid friction (viscous dissipation), 

respectively.    



16 
 

16 
 

To evaluate the irreversibility distribution, the parameter Be (Bejan number) is utilized and this 

is defined as the ratio of entropy heat generation due to heat transfer to the overall entropy heat 

production and is given by  

 

          𝐵𝑒 =  
𝑁1

𝑁1+𝑁2
                                                                                                               (22) 

 

From the Eq. (22), it is clear that the range of Bejan number is from 0 to 1 i.e. 0 ≤ 𝐵𝑒 ≤ 1. 

Subsequently, 𝐵𝑒 = 0 reveals that the 𝑁2 parameter dominates the  𝑁1 parameter, whereas 

𝐵𝑒 = 1 designates that the 𝑁1 parameter dominates the  𝑁2 parameter. It is observable that at 

𝐵𝑒 = 0.5, the contribution of fluid friction in the entropy generation production is the same as 

heat transfer irreversibility, i.e. 𝑁2 =  𝑁1.    

 

      The effect of the various physical parameters on entropy heat generation (Ns) distribution 

against time (t) at the spatial location (0, 0.76) is depicted in Fig. 9. The influence of viscosity 

variation parameter (γ), the second-grade fluid parameter (β), group parameter (𝐵𝑟Ω−1) and 

Grashof number (Gr) on the unsteady distribution of Ns are shown in Figs. 9(a) – 9(b), 

respectively. From all these graph, it is find out that, in the beginning, the Ns curves upsurges 

drastically, then decreases, again upsurges, attains the temporal peak, and towards the end it 

emerges that it is independent of time. The significant observation to be made from these 

transient graphs is that, in the initial time stage, all Ns curves are combined and split later for 

all values of physical parameters. This specifies that at preliminary time levels (i.e., t < 6) 

thermal conduction is dominant over the thermal convection heat transfer. Later, after a certain 

elapse of time, the rate of heat-transfer is dominated by the influence of free convection with 

escalating entropy production. Before attainment of the steady-state, overshoots of the entropy 

generation profile occur. From Fig. 9(a), it is seen that the Ns increase with increasing γ. 

Whereas reverse trend is observed for the viscoelastic parameter. In the Fig. 9(b), the Ns curves 

follow the similar transient tendency as described in the Fig. 9(a). Thus, from the Fig. 9(b) is 

noted that intensifying the values of flow-field parameter results in high entropy production, 

especially with increasing group parameter, 𝐵𝑟Ω−1. With greater values of this composite 

parameter, entropy generation due to the fluid friction is boosted in the regime. 

 The computer-generated steady-state entropy curves for various control parameters 𝛾,  𝛽, 

𝐵𝑟𝛺−1 and Gr against Y at X = 1.0 are shown in Figures 10(a)-10(b), respectively. Here, it is 
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seen that as the transverse coordinate rises, the Ns magnitudes noticeably increase and achieve 

their maximum magnitudes, then decrease swiftly and decay to zero. Also, it is apparent that 

the entropy production acquires thinner boundary layer for all values of physical parameters. 

This is as a consequence of greater production of entropy which is generated in close proximity 

to the plate which produces a thinner boundary layer. Figure 10(a) depicts the variation of γ 

and β on Ns. From this graph, it is apparent that in the neighbourhood of the hot plate (i.e., in 

the interval 𝑌 ∈ [0, 1.2]) the steady-state Ns curves increases for augmenting values of γ and 

decreases for rising values of β. Whereas the trend is reversed when 𝑌 > 1.2. Figure 10(b) 

signifies that the entropy rises in the vicinity of the hot plate then drops and approaches to zero 

along the Y coordinate. Also, it is noted that with greater values of 𝐵𝑟Ω−1 and Gr, the Ns curves 

upsurge considerably, since for higher values of the group parameter or Grashof number, the 

entropy production owing to the fluid friction is enhanced.   

Figures 11(a) – 11(b) illustrate the evolution of Bejan number (Be) with time (t) at Y = 0.76 

and X = 1.0, for various values of physical parameters. The patterns indicate that at 

commencement of the flow, Be has zero value, upsurges slightly with t, then decreases 

negatively in the interval of time 𝑡 ∈ (2.4, 4.6), rises drastically and reaches the maximum 

value, then falls marginally, and lastly exhibits no tangible dependence on time. At the 

initiation of the thermal convection flow, the irreversibility caused by heat transfer regulates 

the entropy and when t > 5, the fluid friction dominates.  From Fig. 11(a) in the main, it is 

apparent that as γ increases the Bejan number reduces. Also, it is evident that increasing β 

causes an enhancing value in Be. From the Fig. 11(b) it is clear that as 𝐵𝑟Ω−1 or Gr increases, 

the Bejan number increases i.e. viscous heating and thermal buoyancy both enhance Bejan 

number.  

 Lastly, Fig. 12 shows the steady-state Be against the transverse coordinate (Y ) for different 

parameter values. The influence of γ, β, 𝐵𝑟Ω−1 and Gr on Be are revealed in Figs. 12(a)-12(b), 

respectively. From all these plots, it is observed that the time-independent state features of 

Bejan number are quite different from that of steady state entropy generation (Ns) which is 

revealed in the Figs. 10(a) – 10(b).  In particular, it may be deduced that, irreversibility owing 

to heat transfer arises in the transverse coordinate interval, i.e., 𝑌 ∈ (1.2, 1.8) which accounts 

for the negative values in Be. Generally, it is noted from Fig. 12(a), that the steady-state Be 

upsurges for an increase in the values of all physical parameters. Also, inspection of Fig. 12(b) 

reveals that Be is boosted with greater values of 𝐵𝑟Ω−1 and Gr. The significant implication 
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from these graphs is that the steady-state entropy production exceeds the Bejan number 

adjacent to the wall. This verifies that smaller Be produces an escalation in N2, i.e., N1 < N2 

(Refer Eq. 22) and thus irreversibility due to heat transfer is dominated by fluid friction which 

manifests in intensified entropy production in the neighbourhood of the hot wall.  

    Figures 13(a)-13(d) present the entropy lines for various parameter values (γ, β, 𝐵𝑟Ω−1and 

Gr). In all these graphs, it is seen that the entropy lines rise in the vicinity of the hot plate for 

all values of physical parameters.  From Figs. 13(a)-13(b) it is also noticed that at any point of 

position (𝑋, 𝑌) the entropy contour value upsurges for augmenting values of γ and decreases 

for augmenting values of β. A similar tendency is observed for values of 𝐵𝑟Ω−1 and Gr which 

is shown in Figs.13(c)-13(d). It is perceived that in the two-dimensional rectangular coordinate 

system i.e. 0 < 𝑋 ≤ 1, 0, 0 < 𝑌 ≤ 0.5, the entropy lines fluctuate with a change in the values 

of 𝐵𝑟Ω−1 and Gr as compared to γ and β. Also, nearby the forefront of the vertical plate the 

entropy contours show higher values for γ, 𝐵𝑟Ω−1 and Gr as compared to β. This is attributable 

to the fact that the entropy production is high for γ, 𝐵𝑟Ω−1 and Gr near to the boundary layer 

leading edge of the plate as compared to β.    

   Figures 14(a)-14(d) visualize the Bejan lines for various values of γ, β, 𝐵𝑟Ω−1 and Gr, 

respectively. In all these graphs, the Bejan lines show a unique trend for all physical parameters 

as compared to entropy lines which are shown in Figs. 13(a) -13(d). Further, in the proximity 

of the hot plate it is well-known that Bejan lines are inclined to move away from the plate with 

increase in the physical parameters γ and β as Y increases, whereas these lines tend to adhere 

to the plate with modification in the values of 𝐵𝑟Ω−1 and Gr. Also, it is noteworthy that the 

Bejan lines occur only in the region close to the hot vertical plate.  

5.4 Comparison between Second-grade Viscoelastic and Newtonian Fluid Flows 

Figure 15 reveals the flow-field variable contours for the second-grade and Newtonian fluid 

flows. Fig. 15(a) represents the Newtonian fluid case and Fig. 15(b) corresponds to the second-

grade fluid. The velocity of the second-grade fluid flow is found to be lower compared to that 

of the Newtonian fluid flow; however, with regard to the temperature distribution, the reverse 

trend is noticed. Furthermore, the steady-state temperature contours for the second-grade fluid 

are somewhat different and a thicker thermal boundary layer is achieved compared with the 

Newtonian fluid.  
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6. CONCLUDING REMARKS   

In the present research article, the heat transfer and entropy generation distributions for time-

dependent second-grade fluid from a semi-infinite vertical plate with viscosity variation have 

been studied numerically. A Crank-Nicolson finite difference method is applied to solve the 

normalized mass, momentum, and energy conservation boundary layer equations under 

appropriate initial and boundary conditions with the help of Thomas and penta-diagonal 

algorithms. The entropy generation and Bejan numbers are derived and evaluated with the help 

of flow variables. Velocity, temperature, average momentum (skin friction) and heat transport 

(Nusselt number) coefficients are computed and displayed graphically. The effects of viscosity 

variation parameter, viscoelastic parameter, Brinkman combined parameter and Grashof 

number on these thermal/flow characteristics in addition to entropy generation number and 

Bejan number are evaluated. The salient conclusions from the current study may be 

summarized as follows: 

1. The velocity is enhanced whereas the temperature decreases with rising values of γ and 

the converse response are observed with an increase β. 

2. The time taken to attain the time-independent state decreases as temperature-dependent 

viscosity (γ) is increased, and the opposite behaviour is induced with increasing 

viscoelastic parameter (β).  

3. Average wall shear stress ( 𝐶𝑓) and wall heat transfer rate (𝑁𝑢) are reduced with 

augmenting values of viscoelastic parameter (β).   

4. Entropy heat generation number is reduced with greater values of viscoelastic 

parameter (β). The reverse trend is induced by increasing viscosity variation parameter, 

Brinkman combined group parameter and Grashof number (thermal buoyancy 

parameter). 

5. Bejan number is elevated with a rise in the values of all the thermophysical or 

rheological parameters except the viscosity variation parameter,  γ. 
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Table 1. Grid independence test for selecting mesh size. 

   

 

 

 

 

 

 

 

 

 

 

                      

                            

 

 

 

 

 

Table 2. Grid independence test for selecting time step size. 

 

Grid size 

Average  𝑁𝑢  for 

Pr = 0.71, γ = 0.3, β = 0.2 

Average  (−𝐶𝑓) for 

Pr = 0.71, γ = 0.3, β = 0.2 

 

25 X 125 

 

0.85652520 

 

      0.36779620 

 

50 X 250 

 

0.91484030 

 

       0.29038550 

 

100 X 500 

 

0.92885720 

 

       0.18117390 

 

200 X 1000 

 

0.92997830 

 

       0.18070360 

 

Time 

step size      

(∆𝑡 ) 

   

Average  𝑁𝑢  for 

 Pr = 0.71, γ = 0.3, β = 0.2 

Average  (−𝐶𝑓)  for 

Pr = 0.71, γ = 0.3, β = 0.2 

 

0.5 

 

0.99753640 

 

          2.19088000  

 

0.1 

 

0.98363640  

 

         1.59130600 

 

0.08 

 

0.97937370 

 

          1.44454600 

 

0.05 

 

0.96879970 

 

         1.08572900 

 

0.02 

 

0.92986860 

 

          0.18888760 

 

0.01 

 

0.92885720 

        

          0.18117390  
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Fig. 1:  Flow geometry and coordinate system.  
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                                        Fig. 2. Comparison of the flow-field variables. 
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Fig. 3. Time-dependent velocity profile (U) versus time (t) for various values of  γ and β at the 

location (0, 1.56). 
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Fig. 4. Simulated time-independent state velocity profile (U) versus Y at X = 1.0 for various 

values of γ and β. 

 

 

 

 

 

 

 

 

 

Fig. 5. Simulated time-dependent temperature profile (𝑇) versus time (t) for various values of 

γ and β at the location (0, 0.68). 
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Fig. 6. Simulated time-independent state temperature profile (T) versus Y at X = 1.0 for various 

values of  γ and β. 

  

 

 

 

 

 

 

 

       

              

Fig. 7. Average momentum transport coefficient (𝐶𝑓) for various values of  γ and β. 
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                   Fig. 8. Average heat transport coefficient (𝑁𝑢 ) for distinct values of  γ and β. 
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                                                                         9(a) 

                                                                

9(b) 

Fig. 9. The transient entropy generation number (Ns) against time (t) for different values of (a)  

γ and β; & (b) 𝐵𝑟Ω−1 and Gr. 
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                                                                          10(a) 

                                                                             10(b) 

Fig. 10. The steady-state entropy generation number (Ns) against Y at X = 1.0 for different 

values of (a) γ and β; & (b) 𝐵𝑟Ω−1 and Gr. 
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                                                                            11 (b) 

Fig. 11. The transient Bejan number (Be) against time (t) for different values of (a) γ and β; & 

(b) 𝐵𝑟Ω−1 and Gr. 
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                                                                       12(a) 

                                                                         12(b) 

Fig. 12. The steady-state entropy Bejan number (Be) versus Y at X = 1.0 for various values of 

(a) γ and β; & (b) 𝐵𝑟Ω−1 and Gr. 
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Fig. 13a,b. The steady-state entropy contours (Ns) for different values of (a) γ and  β; & (b) 

𝐵𝑟Ω−1 and Gr. 
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Fig. 14a,b. The steady-state Bejan contours (Be) for different values of (a) γ and β; & (b) 

𝐵𝑟Ω−1 and Gr. 



39 
 

39 
 

 

 

 

 

 

 

 

 

 

 

                                            

 

 

 

 

 

 

 

 

 

 

Fig.  15. The steady-state velocity (U) and temperature (T) contours for (a) Newtonian fluid 

(β = 0.0); and (b) second-grade fluid (β = 0.2). 


