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Abstract 26 

1. After decades of extensive surveying, knowledge of the global distribution of species 27 

still remains inadequate. In the short to medium term, such knowledge is unlikely to 28 

improve greatly given the often prohibitive costs of surveying and the typically 29 

limited resources available. 30 

2. By forecasting biodiversity patterns in time and space, predictive models can help fill 31 

critical knowledge gaps and prioritize research to support better conservation and 32 

management. 33 

3. The ability of a model to predict biodiversity metrics in novel environments is termed 34 

‘transferability’, and models with high transferability will be the most useful in this 35 

context. 36 

4. Despite their potential broad utility, little guidance exists on what confers high 37 

transferability to biodiversity models. 38 

5. We synthesise recent advances in biodiversity model transfers to facilitate increased 39 

understanding of what underpins successful model transferability, demonstrating that 40 

a consistent approach has so far been lacking but is essential for achieving high levels 41 

of repeatability, transparency, and accountability of model transfers. 42 

6. We provide a set of guidelines to support efficient learning and the improvement of 43 

model transferability. 44 

 45 

Keywords: 46 

Statistics, Applied ecology, Biodiversity, Conservation, Modelling, Extrapolation, 47 

Forecasting 48 

  49 
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Model Transferability as a Tool for Conservation and Management 50 

Effective conservation and management of biodiversity requires a robust understanding of the 51 

distribution and status of wildlife species. However, our existing knowledge of biological 52 

systems is frequently inadequate and field surveys too costly to generate the data necessary 53 

for addressing many immediate management needs (Margules and Pressey 2000). As a result, 54 

spatial planning is often constrained to proceed in the absence of relevant ecological 55 

information (Possingham et al. 2007). In these cases, indirect methods for estimating 56 

biodiversity patterns, such as predictive models, could be of great utility for decision-making. 57 

Indeed, correlative models relating ecological metrics to environmental and spatial predictors 58 

(henceforth biodiversity models) are now commonplace (see e.g., Franklin 2010 for a 59 

summary of methods used and a framework for spatial prediction of species occurrence) and 60 

play a critical role in supporting management and conservation efforts worldwide (Margules 61 

and Pressey 2000, Robinson et al. 2011). Such models are increasingly sought where data are 62 

scarce or non-existent, for example, when predicting the distributions of threatened or 63 

invasive species into unsampled locations, or under future climates (Austin and Meyers 1996, 64 

Elith et al. 2010, Duque-Lazo et al. 2016). While the literature on biodiversity models is now 65 

extensive, little guidance exists on how to maximise the utility of transferring these models. 66 

 The ability of a model developed for a specific site and/or time to predict biodiversity 67 

in a different time or place defines its transferability (Fig. 1), which can be tested for specific 68 

taxa or across taxa. Transferability therefore, encompasses the statistical concept of 69 

extrapolation which is embedded in the broader topic of model validation. Transferability has 70 

the potential to leverage legacy investments in sampling and increase the efficiency of 71 

management and conservation actions. However, whilst the development of biodiversity 72 

models and model validation has proceeded rapidly in the last decade (Fig. 2) (Elith et al. 73 

2006, Elith and Leathwick 2009), their transferability remains poorly understood (Robinson 74 
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et al. 2011), particularly in marine systems (e.g., Lauria et al. 2015, Sequeira et al. 2016b). 75 

Moreover, transferability assessments have not yet been standardised, leading to disparate 76 

interpretations that preclude comparisons of relative performance among model transfers. To 77 

address these knowledge gaps, we synthesise the emerging field of model transferability with 78 

the aim of fostering consistent and transparent model transfers in ecological studies. We 79 

begin by defining multiple scenarios under which model transfers can take place, reviewing 80 

lessons learnt, and describing modelling approaches applied to date. We then clarify critical, 81 

yet commonly ignored assumptions, discussing perceived constraints and limitations of 82 

model transferability, and highlighting the diversity of assessment metrics currently available. 83 

Building on these observations, we describe how the standardisation of transferability 84 

assessments among studies will catalyse the widespread application of model transfers in 85 

marine and terrestrial environments. We make practical recommendations on ways to achieve 86 

such consistency and advocate for future research that would improve the transferability of 87 

biodiversity models. 88 

From Reference to Target Systems 89 

A model must be developed for a reference system (location and/or point in time) where data 90 

are available at a number of sampling locations, before being transferred. This reference 91 

model is calibrated within a range of values for each predictor, and then projected, or 92 

transferred, to a target system (some other location or time). Model transferability can take 93 

many forms depending on the predictors available for the target system, their range of values, 94 

as well as those of the response variable (Fig. 1). The most straightforward situations are 95 

those where both response and predictor variables are within the same ranges in both the 96 

reference and target systems (e.g., Mannocci et al. 2015) (Fig 1a, External 1; and Fig 1b, blue 97 

ellipse). In this scenario, the environmental space is the same in both systems and the realised 98 

niche in the target system is fully contained in the model created for the reference system. 99 
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Good transferability can therefore be expected, assuming reasonable overlap in the 100 

combinations of response and predictor variables. When the range of predictors in the target 101 

system is within that used for model calibration in the reference system, but the response 102 

variable is not (e.g., when observed abundances are different in the target and reference 103 

systems) (e.g., Thogmartin et al. 2006, Owens et al. 2013), two situations can arise: (i) poor 104 

transferability should be expected where the relationship between response and predictor 105 

variables differs (Fig 1b, External 2), and (ii) when this relationship is similar (Fig 1b, 106 

External 3), transferred predictions will always be biased. If this bias is relatively consistent 107 

(e.g., always lower or higher), then a simple correction to the resulting predictions could 108 

allow for good transferability. For example, the probability of occurrence of a species in the 109 

target system might always be 20 % lower than in the reference system, in which case a 110 

simple correction to account for this bias could result in a shift from poor to good model 111 

transferability. Where sample sizes are sufficiently large, the predictive performance of the 112 

transferred model can be robustly tested, yielding potential insights into how model 113 

transferability is affected by novel conditions. When predictor values are within the range of 114 

those used in the reference model (Fig 1a, External 5), models transferred from an 115 

information-rich area may successfully predict species distributions and help inform new 116 

sampling designs in spite of data scarcity in the target system. However, when the range of 117 

predictor values in the target system extends beyond that encountered during model building 118 

for the reference system, model transfers will involve some mathematical extrapolation (Fig 119 

1b, External 4 and Fig 1a, External 6 and 7). If the range of predictors in the target system is 120 

entirely outside that used in the reference model (Fig 1d, External 7), transferability tests 121 

would typically only serve to capture the potential distributions of species under novel 122 

environmental conditions. Despite the many possible different scenarios, confidence in the 123 

resulting predictions derived from transferred models is paramount and will depend strongly 124 
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on the identification of opportunities for robust model validation. Therefore the form of the 125 

transferability test being performed should always be explicitly described in model 126 

transferability studies, including a summary of the relationships between predictor and 127 

response variables for data from reference and target systems. 128 

 The amount of data available in each system will also be a key determinant of the 129 

model transfer protocols chosen in any given situation, and three different scenarios can be 130 

considered. First, where sufficient information exists for both response and predictor 131 

variables in the reference and target systems (data-rich), it is possible to directly test model 132 

transferability through empirical validation (Barbosa et al. 2009, Sequeira et al. 2016b). Such 133 

scenarios are useful to better understand the factors affecting model transfers (Fig. 3) and 134 

inform model transfer endeavours elsewhere. Second, when data for both response and 135 

predictor variables at the target system are insufficient (data-deficient), testing model 136 

transferability is only possible if alternative data sources for predictor variables are sought 137 

and/or if assumptions are made about the similarity of the covariate space and relationships 138 

between the response and predictor variables (Fig. 3) (Schadt et al. 2002). Third, when 139 

information is lacking for either response or predictor variables in the target system (Fig. 3) 140 

(data-sparse), several courses of action are possible (e.g., Sequeira et al. 2014). Where data 141 

for the target system are available for predictor variables but not response variables, the same 142 

set of predictor variables (p) need to be considered in both the reference and target systems, 143 

and it is preferable that the range of each predictor in both systems is similar, as detailed 144 

above. If the range of predictors in the target system exceeds that in the reference system, 145 

caution is advised (see extrapolation section). Examples and recommendations for each of the 146 

three scenarios presented are included in Fig 3. 147 
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Choice of Modelling Algorithms Can Affect Transferability 148 

The transferability of predictive models can be dataset, question, and algorithm-specific 149 

(Elith et al. 2006, Duque-Lazo et al. 2016). It is often thought that model simplicity and 150 

parsimony should be preferred over complexity. Simpler models are easier to interpret and 151 

also return smoother response curves that are relatively immune to overfitting and may 152 

therefore be more widely applicable (Vaughan and Ormerod 2005, Lauria et al. 2015). 153 

However, defining complexity of biodiversity models is not straightforward as it depends on 154 

the interplay between the complexity of the underlying processes and the amount of data 155 

available to build the model. For these reasons, past comparisons of model performance as a 156 

function of complexity may have been unfair (García-Callejas and Araújo 2015). New 157 

complexity indices are being studied (García-Callejas and Araújo 2015, Moreno-Amat et al. 158 

2015, Bell and Schlaepfer 2016), but further testing of their influence on the interpretation of 159 

model transferability is needed before clear advice can be given. 160 

 Similarly, best practice regarding algorithm choice for testing model transferability is, 161 

so far, not settled. For example, previous studies have reported better transferability in 162 

generalised additive or linear models (GAMs or GLMs), maximum entropy models (MaxEnt) 163 

and boosted regression trees (BRTs) compared to random forests (RFs) (Dobrowski et al. 164 

2011, Heikkinen et al. 2012). GAMs have also been seen as robust when predictions are 165 

needed beyond the range of sampled values (i.e., when extrapolating) (Fronzek et al. 2011), 166 

despite being unconstrained outside the bounds of the observations used during model 167 

calibration (unlike RFs, MaxEnt and BRTs). Similarly, in the history of machine learning 168 

studies, no clear preference for a specific method has been provided despite multiple 169 

comparisons (Fielding 1999, Hsieh 2009). Without consensus on the best algorithms or 170 

methods to develop more transferable models (Araujo and Guisan 2006, Randin et al. 2006), 171 

three different approaches to multi-model comparisons have been suggested: (i) adopt a 172 
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single modelling procedure regarded as the most suitable to the research problem being 173 

addressed; (ii) implement a suite of algorithms and proceed with the best performing one; or 174 

(iii) combine several approaches to generate “ensemble” forecasts. While it is hard to provide 175 

general guidance, ensemble approaches have been suggested to offer superior predictive 176 

power (Marmion et al. 2009, Grenouillet et al. 2011). 177 

 All of the approaches described above relate to correlative models. Although beyond 178 

the scope of this review, process-based mechanistic models are also worth considering in the 179 

context of transferability because they can explicitly incorporate the dynamics of biological 180 

processes thought to limit species’ ranges (Buckley et al. 2010) such as dispersal, 181 

connectivity, and trophic interactions. Mechanistic models, however, tend to be more 182 

challenging to construct and test, owing to greater demands on computational resources and 183 

data needed for calibration and validation. Consequently, the transfer of mechanistic models 184 

in predictive ecology remains rare despite their considerable promise in strengthening and 185 

guiding conservation practice under climate change and biological invasions (Kearney et al. 186 

2010, Cuddington et al. 2013). 187 

Common Assumptions Underlying Model Transfers  188 

Irrespective of the approach used, model transferability hinges on a number of assumptions 189 

that are commonly overlooked (Mesgaran et al. 2014, Werkowska et al. 2017) and may 190 

explain some difficulties in obtaining good model transferability. For example, species are 191 

often assumed to be at equilibrium with their environment and present in all suitable sites 192 

(Araujo and Pearson 2005). However, such equilibrium is taxon-dependent and inversely 193 

related to a taxon’s ability to track dynamic conditions, and should therefore be explicitly 194 

considered beforehand (Araujo and Pearson 2005). The set of conditions under which species 195 

can persist (niche, sensu Hutchinson 1957) is also commonly assumed to be stationary in 196 

both space and time (Wiens and Graham 2005). A discussion on the reasoning behind this 197 
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assumption should be clearly specified in any transfer test as it may not hold if existing biotic 198 

or abiotic interactions break down, shift, or new ones form (Broennimann et al. 2007, 199 

Martinez-Freiria et al. 2016). Moreover, increasing evidence for rapid niche shifts 200 

(Broennimann et al. 2007) may render static models invalid for predicting into space or time 201 

(Forester et al. 2013). Integrating information from mechanistic models can improve trust in 202 

the resulting predictions in this context (Elith et al. 2010). Species occurrences are also 203 

commonly assumed to be solely driven by environmental forces, but realised distributions 204 

can also reflect current/past disturbances and human uses, and so historical events should be 205 

considered when interpreting transferability results (Beans et al. 2012, Davis et al. 2014). 206 

Another common assumption is space-for-time substitutability (Blois et al. 2013), under 207 

which unobservable past or future temporal trends are inferred from contemporary spatial 208 

models of different aged locations. However, conflicting predictions generated by different 209 

models (Kharouba et al. 2009b) challenge the general validity of this assumption, and the 210 

current best advice is, whenever possible, to use models that have been successful at 211 

hindcasting (Kharouba et al. 2009a). 212 

Overall, the transferability of biodiversity models can be affected by a wide range of 213 

factors associated with the choice of study design, model algorithm, or target taxa, as well as 214 

with the type, quantity and quality of input data, and the characteristics of the environment 215 

(Table 1, and references within). To understand what confers transferability on biodiversity 216 

models, more will need to be learned about the consequences of violating assumptions. This 217 

highlights the need to encourage best practice when testing model transferability by explicitly 218 

checking the validity of assumptions wherever possible (Werkowska et al. 2017) or explicitly 219 

reporting why they cannot be checked and if they are likely to affect the results of the 220 

transferred model. Results of these checks need to be reported as they will be crucial for 221 

understanding and improving model transferability. 222 
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Common Methods for Assessing Model Transferability  223 

Model accuracy generally decreases when a model is transferred (Kharouba et al. 2009b, 224 

Dobrowski et al. 2011, Torres et al. 2015). Assessments of model results beyond where and 225 

when data were available (external evaluations) are commonly more variable than within the 226 

same location or time (internal evaluations) (Dobrowski et al. 2011). Furthermore, better fit 227 

during internal evaluation has not always resulted in greater model transferability (Heikkinen 228 

et al. 2012, Sequeira et al. 2016b) and the reported ability of transferred models to predict 229 

well has varied widely (Fielding and Haworth 1995, Randin et al. 2006, Martin et al. 2012, 230 

Sequeira et al. 2016b). 231 

 Part of this variability in transferability across studies may stem from the range of 232 

different metrics used during evaluation (Wang and Jackson 2014), with at least 17 different 233 

metrics reported to date (Table 2). Metrics derived from confusion matrices, such as 234 

sensitivity, area under the curve (AUC)/receiver operating characteristic (ROC), Cohen’s 235 

kappa statistic, or the c-index (Vaughan and Ormerod 2005), which are based on the number 236 

of true and false positives and negatives, have been favoured for models of presence/absence 237 

or presence-only data (Randin et al. 2006). ROC has however, been considered weak 238 

(Peterson et al. 2007), but see Phillips (2008). Spearman rank and coefficients of 239 

determination (R2) from linear regressions are commonly used for models using count data 240 

(Lauria et al. 2015) to assess the relationship between observed and predicted values. 241 

Compound performance metrics have also been proposed and applied, including the AUC-242 

based transferability index TRI (Table 2) (Randin et al. 2006), which compares internal and 243 

external evaluations made in both directions. Reciprocal model transferability is, however, 244 

not always possible or warranted (Sequeira et al. 2016b), and being AUC-based, TRI only 245 

applies to models of presence-absence data. Furthermore, indices focusing on the evaluation 246 

of model fit only provide partial assessments of transferability; they do not evaluate maps of 247 



11 
 

transferred predictions (Randin et al. 2006). To assess these predictions, other metrics have 248 

been proposed, including Kulczynski’s coefficient (Legendre and Legendre 2012), 249 

Schoener’s D (Warren et al. 2010), and the I similarity statistic (or Modified Hellinger 250 

Distance) (Warren et al. 2008). In face of such heterogeneity, standardised assessments of 251 

results across studies, modelling techniques, datasets and environmental settings are needed 252 

to improve the utility of model transfers for conservation. Such standardization will facilitate 253 

direct comparisons across studies and promote their transparent interpretation, thereby 254 

strengthening our ability to meaningfully address key knowledge gaps in model 255 

transferability. 256 

 Transferability assessments can also be model-focused, instead of data-focused, in 257 

which case the onus is on finding the most general model (Wenger and Olden 2012). So, 258 

when testing model transferability, a thorough assessment of model generality should also be 259 

performed (Wenger and Olden 2012). As a general principle, only models demonstrating 260 

good fit and evaluation for the reference system should be transferred, even if they do not 261 

always result in good transferability. For example, better transferability is expected of models 262 

developed for large, heterogeneous ecosystems where sampling effort has been sufficient to 263 

capture the full range of environmental conditions available (sensu Sequeira et al. 2016b). 264 

Therefore, when transferring models it is important to clearly justify the choice of a particular 265 

model for any particular situation. 266 

A Standardised Roadmap for Model Transferability Studies 267 

When quantifying transferability, three aspects of model performance are commonly 268 

compared (adapted from Randin et al. 2006). These include the fit to the set of observations 269 

on which the model was built in the reference system, evaluation against observed data in the 270 

reference system not used for model training, and the model predictive power to the target 271 
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system by comparison with observations or to the results of models developed in the new 272 

location or time. 273 

 Comparisons of model fit between reference and target systems are relevant for 274 

transferability assessments (see Fig. 3 for options when model fit in the target system is poor) 275 

but are not universally applicable because comparable results are only expected in special 276 

cases, such as when covariance structures are similar in both systems. By contrast, focusing 277 

on model evaluation and comparison of prediction results should allow meaningful insights to 278 

be obtained on the relevance of distinct modelling approaches relative to available datasets 279 

and study sites. Even though the choice of metric for comparing predictive results might vary 280 

between studies (Table 2), most metrics can be derived from a small set of basic statistics. 281 

These include confusion matrices (TP, FP, TN and FN; refer to Table 2) and comparisons of 282 

grid-cell values, such as predicted probabilities from a presence-only model or predicted 283 

abundances or differences between observed and predicted values. If these basic statistics are 284 

reported alongside the results for the metric chosen in each study, they can then be used to 285 

derive most other metrics commonly used. They can also be used to calculate additional 286 

descriptive statistics (e.g., mean, standard deviation, covariance, collinearity or correlation) 287 

for datasets resulting from any model type. Such reporting will facilitate comparisons across 288 

studies (Koricheva et al. 2013), and improve our ability to provide clearer guidance in the 289 

future. Moreover, to further expedite comparisons, we suggest as a minimum that one metric, 290 

the coefficient of determination (R2), should always be reported. 291 

 In relation to model predictive power, the assessment of predictions from transferred 292 

models should also estimate uncertainty and spatial dependencies among grid-cells. This can 293 

be achieved using the structural similarity index (SSIM) (Jones et al. 2016), which was 294 

designed to compare distribution maps of different species groups, and to assess the similarity 295 

in the two sets of spatial data (i.e. maps). SSIM provides an overall measure of similarity 296 
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ranging between -1 and 1, and could, therefore, be used in the context of model transferability 297 

to test the predictive power of the transferred model through comparison with predictions 298 

obtained from a model developed for the target system. SSIM also compares the mean, 299 

variance, and covariance of both datasets, and provides information on where dissimilarities 300 

might be greatest(?). Such information will be relevant for understanding where and why a 301 

model may fail to transfer well (see example of application of SSIM to model transferability 302 

in Fig. 4). 303 

 These ways of standardising transferability assessments are appropriate for data-rich 304 

scenarios. However, models are usually transferred because data are lacking for the target 305 

system, making direct validation challenging. Where sufficient predictor data are available, 306 

model transferability can still be tested and result in informative predictions (Fig. 3; data-307 

sparse scenarios). Trust in transferred predictions, however, can be increased by selecting 308 

models that have already been successfully transferred to other analogous target system(s), in 309 

a similar way as hindcasting is used to increase confidence in climate change predictions. 310 

Resulting predictions should then be used to inform new survey designs for the target system, 311 

and validation should be contemplated as these data become available. Such procedures can 312 

provide transparent assessments prior to decision-making, and allow for adaptive learning in 313 

support of the best possible management outcomes at each step. The ‘holy grail’ of model 314 

transferability is, clearly, to achieve reliable predictions into unsampled space/time, an 315 

exercise that involves some kind of extrapolation (mathematical, geographical or 316 

combinatorial, i.e., derived from novel combinations of covariates within the univariate 317 

range). Indeed, overcoming challenges associated with predicting into unknown space/time is 318 

becoming urgent in face of accelerating environmental change. 319 
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The Uncharted Waters of Mathematical Extrapolation: “Here Be Monsters”? 320 

More and more models are being projected into non-homologous environments (Elith et al. 321 

2011b), even though predictions obtained under previously unobserved conditions are prone 322 

to both statistical and ecological error (Dormann 2007), and despite the problems associated 323 

with extrapolation being long-known (Perrin 1904). Regardless of such potential errors, the 324 

immediate need for solutions to wildlife management problems within new temporal or 325 

spatial domains often overrides caution in extrapolation, with forecasts frequently treated as 326 

reliable (Fitzpatrick and Hargrove 2009, Jimenez-Valverde et al. 2011). Because attention to 327 

extrapolation risks is central to effective decision-making, the development of techniques that 328 

can diagnose or address the consequences of extrapolation when transferring models has been 329 

considered a research priority (Araujo and Guisan 2006). 330 

 Various strategies have been suggested for dealing with extrapolation. These include 331 

avoidance, mitigation, and explicit description. The ‘avoidance’ strategy is based on the 332 

subjective rule of thumb that extrapolation errors increase with distance from the envelope of 333 

the observed data. It has been suggested that, if predictions are not made beyond 1/10th of the 334 

sampled parameter range, extrapolation might be considered negligible (Dormann 2007). 335 

Extrapolation mitigation can be achieved by minimising the likelihood of encountering novel 336 

combinations of environmental conditions, e.g., by modelling the complete range of a species 337 

given its dispersal abilities and any major biogeographical transitions when projecting future 338 

distributions (Thuiller et al. 2004). Methodologies have also been proposed to explicitly 339 

highlight extrapolated predictions, e.g. by discriminating the areas where the data used most 340 

resemble the characteristics of the reference system or by explicitly defining prediction 341 

intervals (which highlight the probability that a new result will lie within certain values) (e.g., 342 

Kampichler and Sierdsema 2017). Examples include the Multivariate Environmental 343 

Similarity Surface (MESS) within MaxEnt (Elith et al. 2011a), which relies on a rectilinear 344 
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(univariate) detection of extrapolation. Other techniques to highlight extrapolated predictions 345 

include ‘extrapolation detection’ (Mesgaran et al. 2014), ‘environmental overlap mask’ 346 

(Owens et al. 2013), ‘envelope uncertainty maps’ (Platts et al. 2008), ‘prediction uncertainty 347 

assessments using residual variation’ (Rödder and Engler 2012), and ‘mobility-oriented 348 

parity’ (Zurell et al. 2012) are also capable of highlighting different types of environmental 349 

novelty arising from mathematical and combinatorial extrapolation (Capinha and Pateiro-350 

López 2014, Conn et al. 2015b). ‘Explicit description’ has therefore been suggested by many 351 

researchers as a way to deal with extrapolation, echoing the solution presented by Steel et al. 352 

(2013) of ‘being honest’. Others have also highlighted the issues of extrapolation as 353 

sometimes being more philosophical than statistical (Conn et al. 2015a). 354 

 Ultimately, the ‘monsters’ that lurk in the waters of extrapolation will be less 355 

ferocious if the uncertainties underlying model projections are not ignored. And here, we 356 

focus on Just as mean values should be reported with their associated confidence intervals, 357 

there is mounting support for reporting of extrapolated results in prediction maps (Fitzpatrick 358 

and Hargrove 2009, Mesgaran et al. 2014). Because excluding areas as uninhabitable is 359 

currently impossible for most taxa, particularly data-poor ones (Fitzpatrick and Hargrove 360 

2009), validation of results will need to be prioritized and comparisons across models and 361 

modelling techniques (sensu Fielding 1999, Hsieh 2009) will continue to be helpful in the 362 

context of model transferability. We suggest that standardisation in the presentation of 363 

extrapolated results by explicitly using one of the three strategies suggested above would 364 

assist our general understanding of model transferability. Importantly, wherever possible, 365 

extrapolation results should be tested to improve the performance of transferred models 366 

through adaptive learning (Dormann 2007). 367 
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Towards Better Practice in Model Transferability 368 

A number of rules of good practice for testing model transferability have already been put 369 

forward in the literature and are summarised in Table 1. Key principles highlighted relate to 370 

the consideration of species characteristics, chosen predictors, and modelling approaches 371 

(Werkowska et al. 2017). For example, it has been suggested that only models of species 372 

whose physiological constraints will remain similar throughout their ranges should be used 373 

for testing (Pearman et al. 2008). While such constraints might be difficult to establish, one 374 

possible way to promote best practise would be to compare forecasts from transferred models 375 

only for species for which hindcasting has demonstrated good predictive performance 376 

(Kharouba et al. 2009b). Predictions of species distributions in different areas should also be 377 

tested (Lauria et al. 2015) including those separated by thousands of km (Sundblad et al. 378 

2009, Sequeira et al. 2016a). Suggestions that individual species traits and functional groups 379 

should be well known prior to testing transferability have also been put forward, as well as 380 

the previous assessment of the effects of population demographics and conservation status. 381 

Furthermore, competition among species should also be considered, especially when such 382 

interactions are dynamic. 383 

 The careful choice of predictors has been advised due to potential effects of using 384 

proxy data and scale dependencies (see Table 1 for details). In particular, the discriminative 385 

ability and effect sizes of the predictor variables should be assessed before models are 386 

transferred. Also, predictors included in the models, their estimated coefficients, and resulting 387 

predictions should all be fully reported. Exploration of other traits (e.g., fine scale traits such 388 

as molecular data) that might be more correlated with specific geographical features, has also 389 

been encouraged. 390 

 Best practice in modelling includes careful checks of model assumptions, and 391 

reporting on residuals to allow better interpretation of the results. The use of multiple 392 
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modelling approaches should also be considered to test appropriateness for different 393 

applications. This will be useful to reduce or quantify uncertainty, acknowledging though that 394 

models resulting in good internal evaluation (and interpolation) will not always transfer well. 395 

The effects of model complexity should also be explored, as they are highly dependent on the 396 

system and on the data at hand. Finally, we argue here that best practice should include 397 

standardisation of the presentation of results to facilitate cross-study comparisons and allow 398 

for general improvements in model transferability and in our understanding of what affects or 399 

hinders the transferability of biodiversity models. We therefore suggest that model 400 

transferability studies specifically include a summary section where each of the optional steps 401 

are clearly stated (Box 1). 402 

Conclusion 403 

The future of model transferability and its utility for conservation and management will rely 404 

on the careful consideration of each of the above recommendations, together with the 405 

presentation of standardised results from transferability assessments. To promote advances in 406 

model transferability, we propose that ten key points should be addressed. While the focus of 407 

this manuscript is on correlative models, most of these guidelines will also be applicable to 408 

mechanistic models: 409 

1- Define the situation according to the scheme presented in Fig 1 410 

2- Summarise the relationships between predictor and response variables in the reference 411 

and target systems 412 

3- Justify assumptions and check their validity where possible  413 

4- Decide on a strategy to deal with extrapolation: avoidance, mitigation or 414 

discrimination 415 

5- Check the list of suggestions for best practise included in Table 1 and address the 416 

relevant points for the study 417 
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6- Decide on the modelling approach; using the procedure most suitable for the study, 418 

implementing a suite of algorithms and selecting the best performing one, or using an 419 

ensemble approach 420 

7- Develop reference models following Fig. 3, depending on the amount of data 421 

available for the study 422 

8- Check model fit and assess model performance focusing on: 423 

a. Evaluation by reporting the basic statistics (e.g., observed vs predicted comparisons 424 

or true and false positives and negatives, for continuous or categorical variables, 425 

respectively) that can be used to calculate common metrics, including, as a minimum, 426 

R2, which can be considered equivalent to the normalised chi-squared (i.e., the ratio of 427 

the observed chi-squared to the maximum possible chi-squared for categorical 428 

data)(Rosenberg 2010) and provides a score between 0 and 1 for the overall 429 

assessment. 430 

b. Predictive power by using the SSIM where applicable (i.e., data-rich scenarios) 431 

9- Clearly indicate where predictions are the result of extrapolation 432 

10- Report a minimum standardized set of results to facilitate comparisons between 433 

studies (see Box 1). 434 

 435 

 Transferring predictive biodiversity models has the potential to become a time- and 436 

cost-effective tool for management and conservation, provided it is done in a consistent way 437 

that guarantees transparency, comparability and confidence in model outputs. The 438 

information we synthesise here (Table 1 and Fig. 3) can assist in dealing with different 439 

scenarios where model transfers may be helpful. The careful consideration of the issues we 440 

outline will improve the performance of model transfers in ecological studies and 441 

management practice, and more importantly, will help us learn what confers transferability on 442 
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biodiversity models. As understanding increases, these recommendations may evolve but the 443 

need for standardisation will remain. Lastly, because model transferability is relevant in other 444 

fields, such as transport (Ibeas et al. 2012, Rashidi et al. 2013), health and economics 445 

(Drummond et al. 2009), and urban pollution (Patton et al. 2015), cross-fertilization among 446 

these communities of practice has the potential to further enhance our confidence in 447 

transferring models, their resulting predictions, and their application to real-world situations.  448 
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Box 1. Summary section needed for standardisation of the presentation of results from model 683 

transfer studies 684 

1. Type of transferability (as per Fig. 1) 685 

2. Summary of range of responses and predictors (e.g., boxplot) 686 

3. Assumptions made (equilibrium, stationarity, environment versus human drivers, space-for-time 687 

substitutability)  688 

4. Models and algorithms used 689 

5. Data scenario: rich, sparse, poor 690 

6. Summary of model fit and performance (including R2 as a minimum, and SSIM where applicable). 691 

 692 
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Tables 693 

Table 1: Summary of features reported so far to affect model transferability. 694 

Some features have been reported to clearly improve (green; +) or impair (red; -) model transferability. Others have yielded conflicting results in empirical 695 

studies, and their influence is therefore unclear (grey; +/-). References are provided in the Supplementary Information Appendix S1. 696 

Feature Effect Explanation 
 

Ref. 
 

Field sampling  

Larger than known geographic extent + To guarantee that the tails of a species' response curve are adequately captured. [5, 76] 

Central position within the species range + 
As species thrive in a more varied array of habitats at the centre of their 

distribution and are more restricted to specialized habitats towards the margins. 
[65, 87]  

Large sample size + 
To capture variability in habitat conditions and to allow more precise estimates of 

model parameters. 
[61, 88, 93] 

Systematic vs. random design +/- 

Systematic sampling may lead to wider environmental coverage and reduce 

autocorrelation. However, random sampling has desirable statistical properties 

and avoids spatial bias. 

[23, 40] 

Uneven or incomplete coverage - 
As biased sampling may add noise to the data, constrain the range of habitat 

variability being captured, and introduce taxonomic and environmental biases. 
[6, 48, 81] 

Imperfect detectability - 
May lead to biased samples and misleading inferences of species-environment 

relationships. 
[18, 95] 

Model building, calibration and validation  

Model training in more than one region + 
Multi-region models place less emphasis on locally dominant environmental 

features making them more structurally similar and transferable. 
[4, 32, 80] 

Correct choice of calibration areas + May reduce the rate of false positives. [21] 

Validation with independent data + 
Allows for objective assessment of predictions to novel conditions and of the 

relative importance and nature of uncertainty sources. 

[20, 28, 32, 

82] 
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Accounting for true absences + 

True absences contain valuable information on the conditions that are 

unfavourable for a given species, and support the modelling of the realized, rather 

than potential, distributions. 

[44] 

Choice of model algorithm +/- No superior method has yet been identified (refer to text for details). [22] 

Model complexity +/- 
Complex models may overfit data while simpler models often yield better 

transferability, but more needs to be learned. 

[30, 39, 47, 53, 

55, 57, 83] 

Direction of model transferability test +/- Can depend on asymmetries in environments or be species-specific. [43, 65, 73] 

Calibration and projection at different scales 

(local vs. regional) 
+/- 

Regional model stability tends to be site and taxon-specific while adjacent areas 

are more likely to be similar. 

[7, 52, 59, 71, 

77] 

Accounting for autocorrelation +/- 
Reducing autocorrelation may be necessary, but the added autocorrelation term 

may fail to account for some biological structure affecting transferability. 

[14, 35, 69, 

74] 

Multi-model inference and model averaging +/- 
Consensus forecasts are generally seen as more robust, though recent studies 

suggest that their extrapolative performance may be species- and context-specific. 
[10, 15, 68] 

Model misspecification - 
Erroneous choices of error distributions may limit the effectiveness of model 

transferability. 
[47] 

Overfitting - Can lead to weak correlations among variables and incorrect inferences. [65, 85] 

Data and predictor variables  

Use of direct, functional and ecologically 

relevant predictors 
+  To allow estimation of ecologically sound predictor–response relationships. 

[16, 32, 65, 73, 

80] 

Large training dataset + To minimising the variance in parameter estimates. [72, 84] 

Including biotic interactions + 
To better describe species distributions and range margins at broad spatial extents, 

thereby maximising model transferability.  

[2, 8, 31, 36, 

41, 62, 79, 89] 

Higher quality and resolution of predictors + 
To capture relevant ecological processes and detect local variations more 

effectively. 
[3, 5, 38, 80] 



29 
 

Adequate geographical projection + 

To minimise biases associated with grid-cell sizes (i.e., increased apparent sample 

size at high latitudes as a degree of longitude decreases in length from the equator 

to the poles) 

[12] 

Use of independent remote sensing data + 

To capture complex spatial features where data are and measure environmental 

variability directly indicating limiting environmental conditions beyond climatic 

suitability. 

[13, 17] 

Inclusion of climatic extremes + 
Because they affect demographic processes including growth, regeneration and 

mortality in some organisms. 
[94] 

Contingent absences + To improve descriptive and predictive potential of models. [5] 

Use of surrogate predictors - 
May fail to express the true habitat requirements of the species, particularly if 

relationships vary spatially and temporally. 

[16, 32, 65, 73, 

80] 

Multicollinearity - 
Can lead to the misidentification of the most relevant predictors and biases in 

estimated coefficients and their standard errors. 
[33, 45, 78] 

Type of scenario in climate projections - May lead to over-confidence in single maps of future distributions.  [27, 64] 

Niche shifts - Can compromise model predictions. [60] 

Species  

Abundance data + 
Can improve detection of the relative suitability of habitats, particularly for 

species with low prevalence. 
[42] 

Assemblage composition + 
Enables the detection of general trends that are more immune to the idiosyncrasies 

of individual taxa. 
[46, 63, 71] 

Free movement in space + May provide better representation of suitable habitats. [43] 

Ecological traits +/- Are a species-specific characteristic but can result in greater model transferability. 
[1, 20, 26, 37, 

54, 65, 75, 92] 

Endemism +/- 
Should result in better species-habitat relationships but some studies have found 

better transferability of models based on non-endemic species. 
[20, 43] 
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Prevalence and rarity +/- 

Common species yield more false positive predictions, whilst more false 

negatives are expected for rarer taxa, suggesting that intermediate levels of 

prevalence may be optimal for transferability. 

[20, 28, 34, 49, 

65, 67] 

Eurytopic species - 
May persist in a wide array of conditions that are not easily defined by data, 

independent variables or model design. 
[25, 70, 72] 

Dispersal ability - 
Is a source of autocorrelation likely to influence the accuracy of projections across 

time and space in changing environments. 
[14, 20, 90] 

Behavioural plasticity - 
Model projections may be misleading if the capacity of a species to adapt to new 

conditions is ignored. 
[58] 

Ecotypes - 
Being selectively adapted to localised environmental conditions, model 

transferability may not be applicable. 
[65] 

Environment  

Non-analogue conditions - 
May result in the truncation of species response curves under unobserved 

conditions rendering extrapolating risky. 

[9, 24, 29, 50, 

56, 66, 76, 77, 

91, 96] 

Non-stationarity - 
Will impede model transferability due to inconsistent relationships across space or 

time. 
[43, 86] 

History of human use - 
May lead to inconsistent model transferability due to different disturbance 

regimes, management practices, or histories of human use between regions/times. 

[11, 19, 51, 

53] 
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Table 2: Metrics used for assessment of model transferability (i.e., external evaluation) 698 

All metrics are used for presence-absence or presence-only (PO) data and result in a score between 0 and 1 (or 0 and 100 %), with the exception 699 

of the c-index, which varies between 0.5 and 1. P: probability distribution with x1 and x2 representing the response variable predicted by the two 700 

models being compared; cov: covariance; σ: standard deviation; A and B represent distinct spatial regions; TP, FP, FN and TN refer to each 701 

position in a confusion matrix including true positives, false positive, false negative and true negatives, respectively; N: sum of all positives and 702 

negatives. Examples of the use of each metric in a model transferability context are given in the last column. For AUC, ‘i’ represents a range of 703 

cut-off values used to build the plot of sensitivity (SE) versus 1 – specificity (SP). 704 

Metric Calculation / Definition 
References 

(see Appendix S2) 

Presence-only data 

*Modified Hellinger Distance 

(I similarity statistic) 
𝐼 = 1 −  

1

2
 √∑(√𝑃𝑋1 − √𝑃𝑋2)

2

𝑖

 [6, 14, 15, 16] 

*Schoener's D D = 1 −  
1

2
 ∑|𝑃𝑋1 − 𝑃𝑋2|

𝑖

 [15, 17] 

Presence-absence data 
 

Accuracy (overall)  𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑁
 𝑥 100 [1]  

Area under the curve (AUC) 

(or concordance c- index) 
𝐴𝑈𝐶 = ∑

𝑆𝐸𝑖 + 𝑆𝐸𝑖−1

2
𝑥|𝑆𝑃𝑖−1 − 𝑆𝑃𝑖|

𝑖=2

 [2 – 7] 
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Coefficient of determination 

(or Calibration curve; CU) 
𝑅2 = 1 − 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
 [8 – 10] 

Cohen's Kappa 𝐾 =
(𝑇𝑃 + 𝑇𝑁) −

(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁)
𝑁

𝑁 −  
(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑁)(𝐹𝑁 + 𝑇𝑁)

𝑁

 [2, 11 – 12] 

Correct classification rate  𝐶𝐶𝑅 =
𝑇𝑃 + 𝑇𝑁

𝑁
 [2, 4, 9] 

Extrapolative transferability 

index 
EX − TR =

𝐴𝑈𝐶𝐸𝑥𝑡𝑟𝑎𝑝𝑜𝑙𝑎𝑡𝑒𝑑

𝐴𝑈𝐶𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
 [12] 

Minimal predicted area 𝑀𝑃𝐴 =  
𝑃𝑖𝑥𝑒𝑙𝑠 𝑎𝑏𝑜𝑣𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑁
 [13] 

Percentage of FN or FP - [5] 

*Point biserial 

(Pearson correlation) 
ρ =

𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
 [10] 

Sensitivity 𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 [1, 4, 18, 19] 

Spearman Rank ρ =
𝑐𝑜𝑣(𝑥𝑟𝑎𝑛𝑘𝑒𝑑, 𝑦𝑟𝑎𝑛𝑘𝑒𝑑)

𝜎𝑥𝑟𝑎𝑛𝑘𝑒𝑑
𝜎𝑦𝑟𝑎𝑛𝑘𝑒𝑑

 [10, 20 – 22] 

Specificity 𝑆𝑃 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 [4] 

Transferability index TRI =

1
2 ((1 −

|𝐴𝑈𝐶𝐴→𝐴 − 𝐴𝑈𝐶𝐴→𝐵|
0.5

) + (1 −
|𝐴𝑈𝐶𝐵→𝐵 − 𝐴𝑈𝐶𝐵→𝐴|

0.5
))

1 + ||
𝐴𝑈𝐶𝐴→𝐴 − 𝐴𝑈𝐶𝐴→𝐵

0.5
| − |

𝐴𝑈𝐶𝐵→𝐵 − 𝐴𝑈𝐶𝐵→𝐴

0.5
| |

 [11] 

Transferability test 

(one-sided χ2 test) 
TR =

√N (TP TN − FP FN)

√(TP + FP)(FN + TN)(TP + FN)(FP + TN)
  [23, 24] 
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True skill statistic TSS =
𝑇𝑃 𝑇𝑁 − 𝐹𝑃 𝐹𝑁

(TP + FN)(FP + TN)
 [25] 

Abundance data 
 

Coefficient of determination 

(or Calibration curve; CU) 
𝑅2 = 1 − 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
 [8 – 10] 

Spearman Rank ρ =
𝑐𝑜𝑣(𝑥𝑟𝑎𝑛𝑘𝑒𝑑, 𝑦𝑟𝑎𝑛𝑘𝑒𝑑)

𝜎𝑥𝑟𝑎𝑛𝑘𝑒𝑑
𝜎𝑦𝑟𝑎𝑛𝑘𝑒𝑑

 [10, 20 – 22] 

Absolute difference (or root-

mean square difference) 

Dif = |𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒| 

(RMS = √
1

𝑛
(𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑛

2)) 
[26] 
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Figure captions 706 

 707 

Figure 1. Examples of range of conditions where model transferability might be tested. 708 

‘Internal’ refers to conditions modelled in the reference system, while ‘External’ to model 709 

transfers to a target system (adapted from Mesgaran et al. 2014). The slope of each ellipse 710 

reflects the nature of the relationship between the associated variables in the x and y axes. In 711 

a) we consider scenarios in which the range of response and predictor variables varies in both 712 

the reference and target systems. For example, the range of predictor and response variables 713 

might overlap (External 1), the external range of predictors might fall, at least partially, 714 

within that of internal (i.e., could be External 2 on ‘a’) but the range of the response variable 715 

differ and the relationship might also different (External 2), the range of predictors might 716 

overlap in both systems but not the range of responses however response predictor 717 

relationship (slope) is similar (External 3), and the range of predictors might differ in both 718 

systems but the range of responses is same as is the relationship (slope) between response and 719 

predictor variables (External 4). In b) we consider examples concerning the range of values 720 

for two environmental predictors used in each system and showing situations where: the 721 

external range of predictors lies within the range of internal predictors (External 5), there is 722 

some overlap in predictor range (External 6), and no overlap in predictors (External 7). 723 

 724 

Figure 2. Temporal trends in published papers related to biodiversity models (lighter colours) 725 

and model transferability (darker colours). Bars indicate the cumulative number of peer-726 

reviewed journal articles listed on the ISI Web of Science (webofknowledge.com). Search 727 

details included in Supplementary Information.  728 

 729 
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Figure 3: Summary of possible scenarios and recommended actions when testing model 730 

transferability. Transferability refers to the predictive performance of a model developed at a 731 

reference location and used to make predictions at a different target location. The transfer 732 

possibilities and the actions that can be undertaken depend on the availability of data for the 733 

response and predictor variables, and occur or ‘data rich’ situation. For example, in a ‘data 734 

sparse’ situation, home ranges for Eurasian Lynx  were predicted in Germany based on data 735 

from the Swiss Jura Mountains (action 1) and then validated results using telemetry data from 736 

Czech Republic and Slovenia (action 2) (image adapted from Schadt et al. (2002), and photo 737 

credit to National Geographic). The future geographical distribution of whales sharks (‘data 738 

deficient’ situation) was predicted based on existing knowledge for their occurrence and 739 

using modelled sea surface temperature for 2070 (action 1) while assuming that relationships 740 

between response and predictors will be maintained (action 2) (image adapted from Sequeira 741 

et al. (2014), and photo credit to Brian J. Skerry; National Geographic). The distributions of 742 

the Iberian desman were predicted comparing results from a reference and target model with 743 

validation data (actions 1 and 2, ‘data rich’ situation) before producing a general model 744 

combining data from both reference and target locations (action 3) (image adapted from 745 

Barbosa et al. (2009) and photo credit to Réseau Education Pyrénées Vivantes). 746 

 747 

Figure 4: Application of the SSIM approach in a model transferability context, using the 748 

prediction results of a reference model developed for Ningaloo Reef (NR; on the west coast 749 

of Australia), and those from a model transferred from the Great Barrier Reef (on the east 750 

coast Australia) to NR; adapted from Sequeira et al. (2016a). Here we applied the SSIM 751 

index to both sets of prediction maps and results show that local means and variances are 752 

similar (SIM = 0.992; SIV = 0.691: maps to the left) with resulting maps showing mostly red 753 

and pink color indicating high similarity. When using SSIM to explore the pattern of spatial 754 
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covariance, we obtained a positive correlation (> 0) in both maps (SIP = 0.122). The overall 755 

SSIM obtained thus reflects the combination of the three components (0.992 x 0. 691 x 0.122 756 

= 0.080) resulting in only a slightly positive similarity between the transferred and the native 757 

maps for NR.  758 
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Figure 1 759 
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Glossary 767 

Biodiversity models: family of predictive statistical models commonly known as “species 768 

distribution models”, “environmental niche models”, “resource selection functions”, “habitat 769 

suitability” or “distribution models” or “climate envelope” or “climate matching models”, 770 

and including those operating at a community level (e.g., species richness and total 771 

abundance as response variables). 772 

Geographical extrapolation: prediction made for an area beyond the location where 773 

calibration data were collected, but where predictor values remain within the range of 774 

observed values. 775 

Interpolation: prediction made within the range of parameter values used during model 776 

calibration, where the relationships between the response and predictor variables are known 777 

(e.g., prediction for the area within two sampled points). 778 

Mathematical extrapolation: prediction made beyond the range of parameter values used 779 

during model calibration and beyond known relationships between the response and predictor 780 

variables. 781 

Model generality (also known as “generalizability”): a model’s ability to capture species-782 

environment interactions, and therefore, be applied across a large number of systems or 783 

conditions (model-focused concept). 784 

Model transferability: a model’s ability to yield accurate and reliable predictions of a given 785 

response variable in a new context, be in another geographical area, time period, or both 786 

(Elith and Leathwick 2009) (data-focused concept) - commonly and interchangeably referred 787 

to in the literature as “hindcasting”, “forecasting” or “back-casting”, “generality” or 788 

“generalizability”, “interpolation” or “extrapolation”, and also “projection”. 789 

Predictor: independent variable used to predict the value of a dependent/response variable. 790 

Target: system (location or time) to where a model is transferred. 791 


