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ABSTRACT 
  

Cost-sensitive multiclass classification problems, in which the task of assessing the impact of 

the costs associated with different misclassification errors, continues to be one of the major 

challenging areas for data mining and machine learning.  

 

The literature reviews in this area show that most of the cost-sensitive algorithms that have 

been developed during the last decade were developed to solve binary classification problems 

where an example from the dataset will be classified into only one of two available classes. 

 

Much of the research on cost-sensitive learning has focused on inducing decision trees, which 

are one of the most common and widely used classification methods, due to the simplicity of 

constructing them, their transparency and comprehensibility. 

 

A review of the literature shows that inducing nonlinear multiclass cost-sensitive decision 

trees is still in its early stages and further research could result in improvements over the 

current state of the art. Hence, this research aims to address the following question: 

 

How can non-linear regions be identified for multiclass problems and utilized to 

construct decision trees so as to maximize the accuracy of classification, and 

minimize misclassification costs? 

 

This research addresses this problem by developing a new algorithm called the Elliptical Cost-

Sensitive Decision Tree algorithm (ECSDT) that induces cost-sensitive non-linear (elliptical) 

decision trees for multiclass classification problems using evolutionary optimization methods 

such as particle swarm optimization (PSO) and Genetic Algorithms (GAs). In this research, 

ellipses are used as non-linear separators, because of their simplicity and flexibility in drawing 

non-linear boundaries by modifying and adjusting their size, location and rotation towards 

achieving optimal results. 

The new algorithm was developed, tested, and evaluated in three different settings, each with a 

different objective function. The first considered maximizing the accuracy of classification 

only; the second focused on minimizing misclassification costs only, while the third 

considered both accuracy and misclassification cost together. ECSDT was applied to fourteen 

different binary-class and multiclass data sets and the results have been compared with those 

obtained by applying some common algorithms from Weka to the same datasets such as J48, 

NBTree, MetaCost, and the CostSensitiveClassifier.  



xii 
 

The primary contribution of this research is the development of a new algorithm that shows 

the benefits of utilizing elliptical boundaries for cost-sensitive decision tree learning. The new 

algorithm is capable of handling multiclass problems and an empirical evaluation shows good 

results. More specifically, when considering accuracy only, ECSDT performs better in terms 

of maximizing accuracy on 10 out of the 14 datasets, and when considering minimizing 

misclassification costs only, ECSDT performs better on 10 out of the 14 datasets, while when 

considering both accuracy and misclassification costs, ECSDT was able to obtain higher 

accuracy on 10 out of the 14 datasets and minimize misclassification costs on 5 out of the 14 

datasets. The ECSDT also was able to produce smaller trees when compared with J48, 

LADTree and ADTree.
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Chapter 1 : INTRODUCTION 

 

 

1.1 Background 

 

Nowadays, due to the vast amounts of information available and the rapid development in the 

use of computers and modern information technologies, the optimal use of these data is a 

challenge for decision-makers who are struggling when they have to make the right decisions 

to ensure the best results whilst simultaneously achieving low costs associated with those 

decisions. Machine Learning is one of the most prominent fields of science that has been 

employed to assist decision-makers, scientists and researchers in various branches of science 

and knowledge discovery. Machine learning is the field through which decision-making 

criteria are learned and developed using the available data and utilizing information and 

knowledge that has been acquired from previous experiences in the field of study. It has 

become one of the most widely used subfields of computer science, largely because it is used 

in a wide variety of applications. Some examples of applications that use machine learning 

include processing natural language, speech and sound recognition, fraud detection, 

documents checking, computer visibility, and medical diagnosis. With the expansion of the 

use of the internet and social networking media, the amount of data exchanged between users 

has increased significantly. Because of these factors, there has been significant progress in the 

field of machine learning which provides many tools that can intelligently gather and analyse 

different types of data and then utilise this experience to produce valuable information. 

 

Classification is one of the vital tasks for machine learning and aims to build prediction 

models from labelled training data, so they can be used for determining the class or label of 

new unseen data. The last two decades has seen many studies that aim to develop algorithms 

that learn to perform accurate classification from data such as the Classification and 

Regression Tree (CART) algorithm (Breiman et al. 1984), the Iterative Dichotomiser 3 (ID3) 

algorithm (Quinlan 1986), the C4.5 algorithm (Hormann 1962), the Bagging algorithm 

(Breiman 1996), the Fuzzy Support Vector Machines algorithm for pattern classification  (Abe 

& Inoue 2001), the Stochastic Gradient Boosting algorithm (Friedman 2002) and the  

Improved Fuzzy Classifier Function (IFCF) algorithm (Celikyilmaz et al. 2009). But the main 

https://en.wikipedia.org/wiki/Classification_and_regression_tree
https://en.wikipedia.org/wiki/Classification_and_regression_tree
http://ieeexplore.ieee.org/abstract/document/939575/
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objective of most of these techniques was only to minimize the error rate and ignored costs 

associated with any type of misclassification as they assume that the costs of all types of 

misclassification are equal. 

Cost-sensitive learning is one of the most challenging recent research topics in data mining 

and machine learning that strives to develop solutions that help decision-makers make the 

right decisions at the lowest possible costs. For example, in real-world medical diagnostics, 

classifying a person with a serious illness as a healthy person is more critical and more costly 

than classifying a healthy person as a sickly one where the error in the first case may cost the 

life of the patient, while in the second case the cost will be limited to the cost that is associated 

to some extra medical tests. 

 

During the last decades, many cost-sensitive learning methods and algorithms have been 

developed in this field. Lomax and Vadera (2011) present a comprehensive survey of existing 

studies and algorithms that have been introduced for the purpose of cost-sensitive decision tree 

learning.  Their review identified over 50 algorithms for cost-sensitive learning, most of which 

focus on binary classification problems. Most authors tackle multiclass problems by 

converting them into many binary-class sub-problems and then applying the normal binary 

classifiers on them (Aly 2005) but intuitively the disadvantage of such methods is that they 

can give fairly unreliable results as if only one of the binary classifiers make a mistake, then it 

is possible that the entire prediction is wrong.  

 

Vadera (2010) notes that the majority of recent cost-sensitive decision tree induction 

algorithms, such as in WEKA and R, attempt to deal with classification problems by utilizing 

linear separators, such as using straight lines, or what is known as axis parallel splits to 

separate out non-linear regions. Clear visualisation is another challenge facing the current 

cost-sensitive algorithms. It has been stated in (Ankerst et al. 1999), that the effective 

visualization of large decision trees particularly in the learning process still requires efficient 

tools that make the visualization more clear and easy to understand. 
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1.2 Motivation 

 

The rapid development of powerful computer systems on one hand and the availability of a 

large amount of labelled or unlabeled data, on the other hand, provide an opportunity to build 

systems that learn from these data to help make the decisions that are not only accurate and 

reliable but also least costly. 

 

Although the literature shows a major effort aimed to develop effective cost-sensitive 

algorithms, it also shows that most of the effort is focused on two class problems. So, the main 

motivation for this research is to discover the power of non-linear classification methods 

(ellipses) that utilize optimization methods such as particle swarm optimization (PSO) and 

Genetic Algorithms (GAs) to induce non-linear cost-sensitive decision trees that consider the 

costs of different misclassification errors for multiclass problems, as well as producing 

decision trees that are effective and at the same time small in size. 

 

To understand the motivation for using elliptical boundaries, consider Figures 1.1 and 1.2. It is 

clear that using linear classifiers as shown in Figure 1.3 and Figure 1.4 to solve such non-

linear classification problems are not the suitable and appropriate solutions.  

 
Figure 1.1: Nonlinear classification (example - 1) 

 

 
Figure 1.2: Nonlinear classification (example - 2) 

 

 
Figure 1.3: Linear classification for (example - 1) 

 
Figure 1.4: Linear classification for (example - 2) 
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Instead of the above boundaries, Figures 1.5 and 1.6 show the elliptical nonlinear boundaries which are 

more appropriate visually. 

 
Figure 1.5: Elliptical classification for (example - 1) 

 
Figure 1.6: Elliptical classification for (example - 2) 

 

 

1.3 Problem Definition 

 

Given the motivation provided in the previous section, the problem is to develop a cost-

sensitive decision tree algorithm with the following properties: 

 The algorithm should be suitable for multiclass problems. For example, in an 

application involving credit assessment, the task could involve constructing a classifier 

that predicts whether a customer is low, medium, high or very high risk. 

 The algorithm should take account of costs of different misclassification cases. For 

example, when dealing with fraud detection related to granting loans, the costs should 

not only be based on the true and false predictions (fraud / non-fraud) but also should 

consider the different amount of cost involved in each misclassification case. 

 The algorithm should be able to learn non-linear boundaries that reflect the data.   

 The algorithm should reduce the size of decision trees to make them easy to 

understand and interpret. 

 

 

1.4 Aims and Objectives 

 

Given the above motivation, the main aim of this research is to develop a novel cost-sensitive 

classification algorithm that uses elliptical boundaries for classifying multiclass datasets and 

which improves over the current cost-sensitive classifiers in terms of accuracy, minimizing 
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misclassification cost and producing smaller decision trees that are easier to interpret and 

understand. 

In order to achieve this aim, the following objectives are developed: 

1- To conduct a deep survey of the field of cost-sensitive classification, in order to 

identify the strengths and weaknesses of existing approaches to cost-sensitive 

classification and problems faced by researchers addressing similar problems. 

2- To develop and implement the proposed new algorithm (ECSDT) that could make a 

step forward in enhancing the performance of cost-sensitive classifiers. 

3- To utilize and explore the performance of different evolutionary optimization methods 

such as Genetic Algorithms (GAs) and particle swarm optimization (PSO) during the 

implementation of the new algorithm (ECSDT).  

4- To compare the results obtained by the new algorithm (ECSDT) against some common 

accuracy-based classifiers and some cost-sensitive decision tree methods available in 

the Weka system (Witten et al. 2016) such as J48 that implements the standard C4.5 

algorithm (Hormann 1962), NBTree (Kohavi 1996), MetaCost (Domingos 1999) and 

CostSensitiveClassifier (Witten et al. 2016). 

 

 

1.5 Research Methodology 

 

This section describes the rationale for the particular research methodology adopted for this 

study. 

Creswell (2003) defines researchmethodologyas“a strategyorplanofaction that links

methods to outcomes, and it governs our choice and use of methods (e.g., experimental 

research,surveyresearch,ethnography,etc.)”.Researchmethodologydescribesthewaythat

will be followed towards solving the research problem. It shows the various steps that are 

generally adopted by a researcher in studying his research problem along with the logic behind 

them (Kothari 2009). Any research should be planned and conducted based on what will best 

help to answer its research questions. There are three major types of methodologies that can be 

adopted when conducting research (Barks, 1995; Kraska, 2010):  

 Quantitative research, that relies primarily on the collection of quantitative data. 

 Qualitative research, that relies primarily on the collection of qualitative data. 
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 Mixed research, which involves the mixing of quantitative and qualitative methods or 

other paradigm characteristics. 

 

 

1.5.1 Quantitative Research Methodology 

 

The literature provides many definitions of a quantitative research methodology and the 

majority of them share the core principles. The quantitative research methodology can be 

defined as:  

“Explainingphenomena by collecting numerical data that are analyzed using 

mathematically based methods (in particular statistics) ”(Sibanda 2009). 

This definition describes clearly that quantitative methods are used to solve or explain 

problems by gathering the required numerical data and then applying mathematical and 

statistical methods to verify claims and hypothesis, such as whether one algorithm performs 

better than another. 

 

This PhD research, which is in the field of machine learning, adopts an experimental 

quantitative research methodology because of the need for providing an objective statistical 

evaluation for the performance of the algorithm and also needs statistical comparisons with 

other algorithms. Figure 1.7 summarises the main steps of the methodology used in this study. 

First, a literature survey of the field, which in this research is a cost-sensitive decision tree 

learning and classification, was carried out. Strengths and weaknesses of existing algorithms 

were identified and then the research challenges were identified. After that, the main ideas and 

concepts of the new algorithm were formulated and various alternatives were explored and 

considered. One of the proposed ideas was then selected and an outline algorithm was 

developed. A suitable language and toolkit that enable implementation and exploration were 

then identified. The Java programming language with the Eclipse platform which is widely 

used was adopted. Given the need for optimization, a framework called MOEA (Multi-

Objective Evolutionary Algorithms) was also adopted. Then the algorithm was implemented 

and provided an experimental environment that enabled the exploration of variants of the main 

idea. 
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Figure 1.7: Methodology stages 

 

The exploration activity firstly was mainly on handcrafted data where the best results are 

known and then extended for a number of real datasets from the UCI repository (Lichman 

2013). When the exploration was over, the performance of the algorithm was evaluated against 

some of the well-known algorithms in this area. The empirical evaluation was done using a 10 

fold cross validation methodology (Mudry & Tjellström 2011). The measures used are 

consistent with those widely used in the field, namely accuracy and cost of misclassification 

(Turney 1995). Since one of the main objectives of developing the new algorithm is to reduce 

the size of the decision trees, so, the size of the produced decision trees has been adopted as 

another criterion for the comparison. A wide range of datasets was used from the UCI 

repository (Lichman 2013) and the results are compared with the current state of the art in the 

field including algorithms such as those available in WEKA. 

 

 

 
 
 
 

Evaluating the Performance of the New Algorithm by comparing it with the 
performance of the comparative algorithms. 

Testing and Validating the New Algorithm Using the 10-Fold Cross Validation 
Technique. 

Developing and Implementing the Outlines of the New Algorithm By Utilising 
the MOEA Framework 

Designing and Formulating the Main Concepts of the New Algorithm. 

Reviewing and Revising Research Objectives and Challenges. 

Identifing Strengths & Weaknesses of Existing Algorithms in the Area of Cost-
sensitive Non-inear Learning. 

Reviewing the Literature Related to Cost-sensitive Non-Linear Learning. 
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1.6 Research Contributions 

 

The main contributions of this research are: 

 Identifying weaknesses and strengths of the current algorithms in the field of cost-

sensitive classification. 

 Developing and introducing a novel non-linear method (ellipses) to separate classes. 

 Introducing a direct solution to multiclass classification problems without the need for 

dividing the multiclass problem into binary sub-problems as is the case with other 

algorithms when dealing with multiclass problems.  

 Exploring the performance of the new algorithm (ECSDT) when two different 

evolutionary optimization methods (PSO and GA) are applied and then comparing the 

results of the two methods. 

 

 

1.7 Outline of Thesis 

 

This PhD research is organized as follows.  

 Chapter 1 presents the general introduction to the research. This chapter sets out the 

motivation, problem definition, aims and objectives, research methodology, main 

contributions, and ends up with the outline of the thesis. 

 Chapter 2 contains two main sub-sections, the first sub-section presents the 

background for supervised learning and the second section presents the background for 

decision trees learning as they are both quite relevant to the area of research. The first 

sub-section presents, the main concepts of supervised learning, and gives some details 

on cross-validation techniques which are the most widely used methods for validating 

classification algorithms. The second sub-section provides a background on decision 

tree learning, gives some details about different feature selection methods that are 

adopted by different decision tree learning algorithms, and ends up with explanations 

of some measures that are adopted for evaluating the performance of decision tree 

algorithms. 

 Chapter 3 summarizes a literature review which was conducted on everything related 

to the research area. The literature review focuses on four areas: Cost-Sensitive 

Learning, Nonlinear Classification, Multiclass Classification and Evolutionary 

Optimization Methods. In this chapter, different cost-sensitive theories and strategies 
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are presented, different attempts and studies for inducing non-linear decision trees are 

presented, previous methods adopted for multiclass classification problems are 

illustrated, and ends up with a literature review about using evolutionary optimization 

methods such as GAs and PSO for inducing decision trees. 

 Chapter 4 describes the methodology adopted for developing the new algorithm, 

explains how ellipses are used to formulate cost-sensitive learning as an optimization 

problem, shows how ellipses are used to construct the decision tree, gives some 

explanations about the MOEA framework and how it is utilized for the implementation 

of the new algorithm and ends up with some illustrative examples of how the new 

algorithm works. 

 Chapter 5 provides some details about the datasets used for the empirical evaluation as 

well as some details about the comparative algorithms used to evaluate the 

performance of the new algorithm. This chapter also displays and discusses the results 

obtained when applying the three different implementations of the new algorithm 

(Accuracy only, cost only, and accuracy with cost) as well as comparisons of the 

obtained results with other algorithms.  

 Chapter 6 evaluates to what extent the new algorithm achieved its objectives, the 

primary contributions and conclusions and recommendations  for future work. 
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Chapter 2 : GENERAL BACKGROUNDS 

 

 

As mentioned in the introduction, this research aims for developing a new algorithm to induce 

cost-sensitive decision trees. As it is known, Decision tree learning is a supervised learning 

method, so that, this chapter firstly presents some relevant background on supervised learning 

which one of the main is fields of machine learning and then gives a general background on 

decision tree learning. Section 2.1 starts with a general background on the supervised learning 

field, and then explains the related basic concepts and terminology used in this field, after that 

lists the general steps for developing any supervised learning algorithm, and finally ends up 

with some detailed explanation about the Cross-Validation technique which is one of the most 

important techniques used in the development of the supervised learning algorithms. Section 

2.2 gives a general background on decision tree learning and also provides some details on 

two very important topics related to learning decision trees. The first topic presents some 

details on the common methods used for feature selection when constructing decision tree 

algorithms and the second topic covers the common measures used for evaluating the 

performance of decision tree algorithms. Section 2.3 presents two important concepts that 

should be considered when building cost-sensitive classifiers, namely: a confusion matrix and 

a cost matrix. 

 

 

2.1 Background of Supervised Learning 

 

Machine Learning (ML) can be used in different ways. Learning from existing data is one of 

the most successful applications of machine learning and data mining. It is difficult for 

decision makers to find the optimal solutions for problems which are characterized by a very 

large number of features that signify and differentiate among various data elements. Due to the 

multiplicity and a large number of features that describe some data sets, there are always 

chances that decision makers may make errors when performing analyses, or when trying to 

develop correlations between different features. These issues can be successfully resolved 

using machine learning and data mining techniques.  
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During the learning process adopted by machine learning algorithms, the learner interacts with 

the environment. Hence, the learning process may be explained as a means of using the 

experience to acquire skills and knowledge. The kind of interactions that are adopted by the 

machine learning algorithms during the learning process can help in grouping and categorize 

the learning processes into several categories. The distinction between supervised, semi-

supervised and unsupervised learning is observed quite frequently.  

 

 Supervised Learning: In this category, the classes in which the data elements were 

classified accordingly are well-known and clear, and there are well-specified 

boundaries for each class in a particular (training) data set, and the learning process 

will be accomplished using these classes (Suthaharan 2016). Every example (element) 

in supervised learning is a pair that involves an input feature(s) and a required output 

value. The training data is interpreted and evaluated by a supervised learning 

algorithm, which tries to determine how the input factors are related to the target 

factors. After this, an inferred function is created, known as a classifier model or a 

regression model. It is important that the produced model provides the correct output 

value for any new, valid, unobserved input element (Kotsiantis 2007). More details 

about supervised learning are given in section 2.1. 

 

 Unsupervised Learning: Unsupervised learning involves deducing and distinguishing 

different patterns in a particular dataset without knowing the class labels of any of the 

instances belonging to the dataset. With unsupervised learning, input data is processed 

by the learner to generate a summary or any targeted form of the data. A common 

example of this kind of learning is clustering in which a data set is clustered into 

subsets which have similarities in the targeted characteristics (Shalev-Shwartz & Ben-

David 2014). Another example of unsupervised learning is the association rules 

techniques. Association rule learning is used to find suitable rules that can characterise 

a large part of the dataset, such as the customers that buy an X extra of goods 

whenever they aim to buy Y goods (Oellrich et al. 2014). 

 

 Semi-Supervised Learning: Semi-supervised learning is a mix between supervised 

and unsupervised forms of learning where the dataset usually has a large amount of 

input data and only a few of the data is labelled whereas the majority is not labelled. In 

this type of learning, the model is first constructed using only the labeled data and then 
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testing the unlabeled data on the model to set predicted class-labels for them and then a 

new supervised model is constructed using all the data which consists of the actually 

labeled data with the unlabeled data that have been given a predicted class-label 

(Board & Pitt 1989). 

 

 

2.1.1 Basic Concepts of Supervised Learning 

 

In supervised learning, some data obtained from a particular domain is used by the learning 

algorithmasaninput,andthenamodelbasedonthedomain’sstructureiscreatedasan

output. That is, a model of the domain is created using a particular set of observations. The 

observations, on their own, are referred to as “instances” or “examples”,while a set of

observationsisreferredtoasa“dataset”.Ineveryinstance,thereisasetofvaluesknownas 

the instance’s “attributes”.Foreachdataset,thesamegroup of attributes is used to define 

every instance. It is assumed by the majority of the applications of machine learning 

algorithms that the attributesmay be of type “nominal” or of type “numeric”.Nominal 

attributes involve a set of unordered values, such as a set of colours {red, blue, green, etc.}, or 

a set of weather conditions {clear, rainy, windy, etc.}. Numeric attributes, in contrast, are 

either integers or real numbers. The space of every possible mix of attribute values is referred 

toas“instancespace”. 

 

Decisiontreesarepartofmachinelearningmodelsthatareknownas“classifiers”.Classifiers

aim to solve classification problems in which each instance of the dataset is labelled with a 

nominal attribute value knownasthe“actualclass”.Theinstancespaceisseparatedbythe

classifier into several separated sub-spaces, and then one class is allocated to every sub-space. 

That is, it is presumed that every instance in the instance space is tagged with one nominal 

attributevalue,knownasthe“predictedclass”oftheinstance. 

 

A learning algorithm aims to automatically induce a classifier from a set of “training”

instances, which have been obtained in practice from the search space and allocated class 

labels by some other procedure, such as by human professionals. A classifier is created by the 

learning algorithm by dividing the instance space in accordance with the class labels of the 
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training instances. In a perfect situation, the classifier will help in classifying all the examples 

correctly.   

When an instance is allocated the wrong class, then we refer to itasa“misclassified”instance 

or example. The predictive performance of a particular classifier is determined by its 

“accuracy”orbyits“errorrate”,andtheseshouldbedeterminedusinganindependentsetof

labelled instances which are not used with the learning algorithm when it creates the classifier. 

This set of instances is referredtoas“testingdata”.The noise that is caused by allocating 

“incorrect”classlabelstotraininginstancesmaymisguidethelearningalgorithm.Thisissue

arises as the learning algorithm builds a classifier in accordance with the class labels from the 

training data. Therefore, instances which are not labelled correctly need to be determined and 

it should be made certain that they have no impact on the construction of the classifier. When 

there is a close fit between the classifier and the training instances, then noisy instances may 

also fit with the classifier, making it a less valuable classifier. This problem is referred to as 

“overfitting”andausualtechniqueindecisiontreesistoremovethosepartsofaclassifierthat

may overfit thetrainingdata.Thisprocess,knownas“pruning”andithelpsinincreasingthe

accuracy as well as the comprehensibility of the induced classifier and also decreases the size 

of the classifier.  

 

 

2.1.2 Developing Supervised Learning Algorithms 

 

According to (Suthaharan 2016), four key stages should be followed to create a new 

supervised learning algorithm. These are training, testing, validation and evaluation, and are 

explained as follows: 

 

 Training Phase: Using a labelled dataset known as the training dataset, a systematic 

approach should be offered in this phase.Thisapproachcreatesaparameter’smodelto

choose the ideal parameters among others for building the classifier in each particular 

stage. In the training phase, good quantitative metrics such as the false positive and true 

positive ratios should be used so that the best parameters that decrease the error between 

the predicted class labels and the actual class labels can be chosen in the training dataset. 

The training phase normally includes the sub-processes which are explained in the 

following steps (Suthaharan 2016): 
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1. Data domain extraction: This step involves extracting the data domain that has been 

formed by the feature space from the given data set. This is done to compute the required 

statistical measures and the variance among the feature space variables.  

2. Response set extraction: The training data are provided with class labels, and hence, 

the labels of every observation can be extracted to develop some response sets that allow 

each data domains to be assigned to a particular response set. This set helps in computing 

the accuracy of the prediction and the prediction error by using the predicted responses 

extracted by the model and by its parameters.  

3. Modelling: It refers to creating a relationship between the different variables.  

4. Using class labels: The model training is a supervised learning approach; therefore, it 

is assumed that each instance of the training data has properly labelled with the proper 

class. If the labelling of the classes is not done properly, the training data considered as an 

invalid data because the accuracy of the prediction will be calculated as a ratio between 

the predicted class labels and the actual class labels for the dataset.  

5. Optimization: This step includes updating the values of the parameters so that most of 

the computed responses are closer and corresponding to the actual class labels. This can 

be done using some quantitative measures, like distance measures and probabilistic 

measures (entropy and information gain).  

 

 Testing Phase: Model testing is a process that includes analyzing the efficiency of the 

model trained by the algorithm. That is, it will be confirmed through the testing phase is that 

the trained model also works on different labelled dataset called (testing dataset) that is not 

used during the construction of the model. Majority of the steps of the training phase are also 

part of the testing phase, with the only distinction being that in the training phase, is that the 

steps are repeated so that the optimal parameters can be obtained; however, in the testing 

phase, these steps are performed only once.  

 

 Validation Phase: In the validation phase, a systematic approach also should be presented 

so that the model can be trained and tested in various conditions so that it can perform in an 

efficient manner on unobserved data. This is attained by first developing different mix of 

training and testing sets from a provided labeled dataset, and then the above training phase is 

applied on the training sets, after that, testing the parameters obtained in the training phase 

with the testing sets using a quantitative measure which has a significant role in this validation 

process. The results are subsequently combined and then an average is obtained. One of the 
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most common techniques used for the purpose of validation is the cross-validation method 

(Arlot & Celisse 2010). Through this validation, it is made certain that the overall dataset is 

completely trained, validated and tested so that the classification error can be minimized, and 

the accuracy can be maximized for the unseen data.  

 

 Evaluation Phase: In the evaluation phase, it is determined whether the trained and cross-

validated model is useful when a different data set is used, that had not been used earlier in the 

training or validation phases. The labelled data set is only used in this phase to test the results 

given by the final model with respect to some evaluation metrics, like classification accuracy 

and execution time. For this purpose, there are various measures known as qualitative 

measures as they can determine the quality of the performance of the trained model. The 

measures that are often used include accuracy, specificity, sensitivity and precision, as 

described in (Costa et al. 2007).  

 

 

2.1.3 Cross-Validation 

 

The purpose of cross-validation was to solve the problem of overoptimistic outcomes given by 

training an algorithm and evaluating its statistical performance on the same data set 

(Suthaharan 2016). It was asserted earlier that the cross-validation technique is the most 

widely used method for validating classification algorithms (Arlot & Celisse 2010). It is 

shown in machine learning literature that there are different methods used for cross-validation. 

The most widely used cross-validation methods are presented and discussed in the following 

sub-sections. 

 

 K-Fold Cross-Validation: In this method, the complete data set is initially shuffled 

and then divided into K disjointed subsets with the same sizes. The first step involves 

training the model using the first (K-1) folds, followed by testing it using the 𝐾𝑡ℎ fold 

data (which have not been used in the training). In the second step, the (𝐾 − 1)𝑡ℎ fold 

is chosen for testing, and the training involves the other folds. This process is then 

recursively repeated over other combinations of training and testing sets. This will 

provide K classification models that produce K accuracies (or any other qualitative 

measures), and this will be averaged as the final testing result (Anguita et al. 2012). 

When accuracy is considered as the fitness function for the classifier, then the 
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following equation can be used to obtain the average accuracy for the K testing folds: 

 

Average Accuracy =
1

K
∑ Accuracy of Testing Fold[i]

K

i=1
                                2.1 

 

Here, K refers to the number of testing folds. By applying the K-Fold Cross-Validation 

it can be made sure that all observations are used for training and validation, and every 

observation is used just once for validation (Anguita et al. 2012) 

 

 Leave-One-Out: This method is a special case of K-fold cross-validation, where K 

refers to the number of instances in the dataset. In every iteration, the entire data except 

a single observation is used for training the model, and testing the model takes place on 

that single eliminated observation (Arlot & Celisse 2010). It is found that the accuracy 

measure attained using this approach is almost unbiased; however, there is a high 

variance, which leads to unreliable results (Arlot & Celisse 2010). Despite those 

shortcomings, this method is still used on a wide scale when the data is quite rare, 

particularly in bioinformatics that has limited quantities of data samples.  

 

 Leave-P-Out: In this approach, the testing set contains a number equals to P 

instances from a dataset contains N instances, while the remaining (N-P) are used as 

training, and this procedure is repeated for all possible combinations from the N 

instances (Celisse & Robin 2008). This cross-validation method is quite expensive to 

use due to the long computation time it consumes (Arlot & Celisse 2010). 

 

 Random Subsampling: In this method, K data splits of the dataset are carried out. In 

each split, a fixed number of examples are chosen without replacement as a testing set 

and the remaining examples considered as the training set. In each data split, retraining 

of the model takes place from the scratch with the training examples, and estimation is 

computed using the testing examples. Then the average of the different estimates is the 

final estimate obtained (Steyerberg et al. 2001; Kohavi 1995). 

 

 Dividing datasets: In this approach, the dataset is divided into two or three parts 

using specific ratios. Techniques that divide the dataset into two parts; the first part is 

used for training, while the second part is used for testing. On the other hand, in those 

methods that divide the dataset into three parts, a third part is incorporated for validation 

purposes. The ratio used for dividing the dataset plays a significant role which has a 
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major and direct impact on the accuracy of the classification, as well as the 

computational complexity. It was mentioned by (Suthaharan 2016) that it is still quite 

difficult to divide datasets for training, validation and testing effectively, and no ideal 

method exists that can provide an optimal ratio for splitting the dataset.  

 

 

2.2 Background of Decision Tree Learning 

 

The purpose of data mining is to obtain valuable information from large datasets and to 

present it through illustrations that are easy to understand. One of the most successful methods 

of data mining is the decision tree that was initially presented in the 1960s. There is 

widespread use of decision trees in various fields (Song & Lu 2015). The main motivation to 

use a decision tree as the most widely used classifiers in the machine learning applications is 

that it can be used and understood easily.  

According to the description given in (Song & Lu 2015; Olivas 2007; Rokach & Maimon 

2005), a decision tree is a classifier that is presented as a recursive separation of the instance 

space. Therearethreekindsofnodesinthedecisiontree.Thefirstnodeisthe“rootnode”,

which is an independent node that is not generated by any other node. All other nodes of the 

decision tree (except the root node), they should be branched off from another node. A node 

which has outgoing branches is referred to as a test or decision node. The other nodes which 

are not split any more are all known as leaves or end nodes.  

 

In (Mitchell 1999; Song & Lu 2015; Olivas 2007; Tan et al. 2006), the way DT algorithms like 

ID3 (Quinlan 1986), C4.5 (Hormann 1962) and CART (Steinberg 2009) construct classifier 

models is explained, where every test node, including the root node, divides the instance space 

into two or greater sub-spaces consistent with a particular discrete function. Every leaf node is 

allocated to one class, which signifies the most widely occurring value. The new unseen 

instances are then labelled by passing them downwards from the root of the tree to a leaf, in 

accordance to the outcome ofthetestscarriedoutoverthepath,andconsideringtheleaf’s

class label as the prediction class for the new unseen instance.  

 

In the simplest and most widely occurring cases, the instance space is divided in accordance 

withaparticularfeature’svalue.Inthepracticalworld,thedomainoftheinstancespaceis

shown in a better manner by including several candidate features. However, most of these are 
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partially or entirely unnecessary or repetitive with respect to the target concept. It has been 

found in (Tang et al. 2014; Tan et al. 2006) that the efficiency, as well as the accuracy of the 

constructed decision trees, is influenced by the usage of some techniques that select only the 

most important features among others when developing DTs. This is because the aim of these 

methods is to select a small subset of the most influential features and removing the 

unnecessary ones in accordance with a particular evaluation criterion, leading to an improved 

learning performance (e.g., higher learning accuracy for classification, lower computational 

cost, lower running time for learning the algorithms, and better model interpretability). 

 

Four main steps were presented by (Dash, Manoranjan and Liu 1997; Kumar 2014) to be 

followed in a standard feature selection method. These include: 

 Choosing the feature subset by making use of one the appropriate techniques, like the 

complete approach, the random approach or the heuristic approach (Muni et al. 2006); 

 Analyzing and evaluating the subset being chosen to determine and assess the 

discriminating capability of the selected feature or subset of features so that the various 

class labels can be identified and distinguished; 

 Defining the stopping criterion so that it can be determined when the feature selection 

process should be stopped from operating continuously in the space of subsets. Some of 

the common stopping criteria are given in (Rokach & Maimon 2005), and are listed as the 

following conditions: 

1. When all instances in the training set are related to a single class. 

2. When the predefined highest tree depth has been attained. 

3. If the node were split, then the number of instances in one or more child nodes 

would be lower than the minimum number of instances permitted for child nodes. 

4. When the value of applying the splitting criteria is not better than the specific 

predefined threshold.  

 Validating the outcomes so that the validity of the chosen subset can be tested by 

performing various tests, and then contrasting the findings with the results obtained 

previously.  

 

The following sub-section gives some highlights for the most well-known methods used for 

the feature selection. 
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2.2.1 Feature Selection Methods for Decision Trees 

 

As demonstrated earlier, a decision tree is developed top-down from a root node and consists 

of dividing the data into appropriate subsets. Therefore, a significant query that arises is that 

“whichmeasureisthemostappropriateforchoosingthefeatureorsub-features that are most 

useful for dividing or categorizing a specified dataset”. Several algorithms have been

described in the past studies that make use of various techniques for choosing the best features 

for dividing the dataset in every decision node when building decision trees. Brief descriptions 

are presented in the following paragraphs which highlight some feature selection techniques 

that have been used in the most common decision tree algorithms, i.e. CART, ID3 and C4.5. 

 

 GINI Index - CART 

 

The CART algorithm was developed by Breiman in 1984. CART is an abbreviation that stands 

for Classification And Regression Trees.  

Decision trees constructed using the CART algorithm are usually binary decision trees, that is, 

every split relies on the value of a single predictor variable, and there will be only two child 

nodes of every parent node. The splitting selection criterion that is used by CART is based on 

what is known as the GINI index. For any training set S, the following equation is used to 

compute the GINI index of S (Gupta & Ghose 2015): 

𝐺𝑖𝑛𝑖 (𝑆) = 1 − ∑ 𝑝𝑖
2𝑘

𝑖=1
                                                             2.2 

Where (k) refers to the number of class labels, Pi refers to the probability that an instance in S 

is part of the class (i).                                

The GINI index for choosing the attributes A in the training dataset (S) is subsequently 

described as follows: 

Gini (A, S) =  Gini (S) –  Gini (A, S)         

                     =  Gini ( S) −  ∑
| 𝑆𝑖 |

| 𝑆 |
𝑛
𝑖=1  𝐺𝑖𝑛𝑖 (𝑆𝑖)                                      2.3 

Here, Si refer to the partition of S that has been induced by the value of attribute A, and the 

attribute having the largest GINI value is taken to be the ideal splitting attribute.  
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 Entropy and Information Gain - ID3  

 

ID3 is an abbreviation of (Iternative Dichotomizer 3), which is an entropy-based algorithm, 

where the split criterion is developed such that it seeks an improvement in the purity of leaves 

(Quinlan 1986). The basis of this criterion is the information theory, and the feature having the 

largest information gain is given preference. Information gain seeks to measure how well a 

specific feature sets apart the training examples on the basis of their target classification 

(Ballester & Mitchell 2010). The entropy that the ID3 algorithm adopts initially was based on 

the entropy concept discovered by Claude E. Shannon in (Shannon 1948) that computes the 

sample’shomogeneity.Whenthesampleis fully homogeneous, then the entropy is zero, and 

when the sample is equally divided, then there is entropy of one. Hence, the ideal choice for 

splitting is the feature that has the higher decrease in entropy (Peng et al. 2009).  

Shannon’sentropy(Shannon 1948) for an attribute A is described as follows: 

E(A) = − ∑ (pi  log2 pi)
n
i=1                                                           2.4 

Here, (n) refers to the number of classes, and (pi) is the probability of examples that are part 

of the class (i) in the set. 

 

Information gain is an add-on to the entropy concept and explains the significance of a 

specified attribute A of the feature vectors. It is also used to determine the way the more 

informative attributes are ordered in the nodes of a decision tree. The information gain for an 

attribute A in a given dataset S determines the variation in entropy from prior to and following 

the splitting of the training set S on the attribute A. The following equation can be used to 

calculate this information gain: 

IG (S, A)  =  E (S) –  E (A)                                                           2.5 

Here, E(S) refers to the entropy of the present training set prior to the splitting. The concept of 

developing a decision tree is based on determining the attribute that offers the largest 

information gain.  

 

 Gain Ratio - C4.5 

 

The C4.5 algorithm is an extension to the ID3 algorithm, both of which have been designed by 

Quinlan.  

The novel features for C4.5 in contrast to ID3 are: 
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 Continuous and discrete features are both approved. 

 Incomplete data points are managed. 

 The issue of over-fitting is resolved by adopting the bottom-up method, which is 

referredtoas“pruning”. 

One of the two given criteria can be adopted by C4.5. The First criterion is the information 

gain explained in the preceding section. The second criterion is an entropy-based criterion that 

is also based on the information gain. Information gain was found to show a preference for 

attributes that had a high degree of cardinality (having a large number of potential values). The 

ideal variable for splitting is one that is unique for every record. C4.5 computes the possible 

information from each partition (highest possible information) and contrasts it with the actual 

information. This is referred to as the Gain Ratio. Normalization to information gain is applied 

by the Gain Ratio, where a value defined as follows is used: 

SplitInfoA(S) = − ∑ (|𝑆𝑖|  /  |𝑆|)  log2(|𝑆𝑖|  /  |𝑆|)𝑣
𝑖=1                         2.6 

This value is indicative of the information produced by splitting the training dataset S into v 

partitions according to v results of a test on the attribute A. The gain ratio is subsequently 

explained as follows: 

Gain Ratio (A)  =  Information Gain (A) / SplitInfoA(S)                         2.7 

Here, IG (A) refers to the information gain for choosing attribute A and is computed as 

depicted in section (2.1.2.2). Once the Gain Ratio for every attribute is determined, the 

attribute having the largest gain ratio is chosen as the splitting attribute.  

 

 

2.2.2 DTs Performance Measures 

 

Once a new machine learning algorithm has been developed, it is important to find out how 

effective is the model based on metrics and datasets. Performance measures (or evaluation 

measures) play important roles in machine learning. These measures not only serve as the 

criteria to assess learning algorithms but also play the role of heuristics to develop learning 

models. The most widely used performance criterion for DTs are statistical measures like 

accuracy and error rate; however, the most appropriate DT for a certain classification problem 

can be selected by considering other significant measures that have a significant impact on the 

performance of DT. These include DT comprehensibility and stability of predictions (Osei-
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Bryson 2004). The most widely used performance criterion for assessing machine learning 

algorithms are presented in the following sub-sections.  

 

 

2.2.2.1 Statistical Measurements 

 

The literature of machine learning shows that various statistical performance tools were used 

to statistically analyze the efficiency of machine learning algorithms. The most widely used 

methods for this purpose are an Error rate, Accuracy Rate, Precision, Recall and F1-Score etc. 

A brief explanation of these evaluation metrics and how they are calculated are given in the 

following short paragraphs (Fawcett 2006; Powers 2011; Alvarez 2002; Davis & Goadrich 

2006). 

 

Accuracy Rate: It refers to the ratio that is attained by dividing the number of accurate 

estimations with the overall number of estimations.  

Accuracy =
TP+TN

TP+TN+FP+FN
                                                     2.8 

Error Rate: It is the ratio of all estimations that are not correct. It basically measures how 

inaccurate a model is. 

Error =
FP+FN

FP+FN+TP+TN
                                                                  2.9 

Precision Rate: It refers to the number of positive predictions divided by the overall number 

of positive class values estimated. That is, it is the ratio of True Positives to the overall number 

of True Positives as well as the number of False Positives. This is also referred to as the 

Positive Predictive Value (PPV).  

Precision (PPV) =
TP

TP+FP
                                                          2.10 

Recall Rate: It is the ratio of True Positives to the number of both True Positives and False 

Negatives. That is, it is the ratio of the positive estimations to the number of positive class 

values in the testing data. This ratio is also referred to as the Sensitivity or the True Positive 

Rate.  

Recall =
TP

TP+FN
                                                                  2.11 

F1-Score Rate: This ratio is also referred to as the F-Measure and demonstrates the balance 

between the Precision and the Recall.  
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F1 − Score = 2 ∗
Precision∗Recall

Precision+Recall
                                             2.12 

 

 

2.2.2.2 DT Comprehensibility 

 

Decision trees are usually considered to be the most precise and efficient classification 

methods, however, at times, DTs, particularly the bigger ones, are difficult to comprehend and 

explain. Therefore, they become incomprehensible to experts (J.R. Quinlan 1987), so it is vital 

to make sure that DTs are as easy to understand so that they can be interpreted even by non-

professionals. The complexity of DT is normally measured using one of the metrics given 

below (Olivas 2007): 

 The numbers of nodes that create and construct the tree. 

 The number of leaves that are created by the tree 

 The tree depth, i.e. the length of the largest path, from a root to the leaf, and a total 

number of attributes considered.  

 

Various techniques have been presented in the last few years to simplify trees. These include 

pruning methods that are possibly the methods used most extensively to decrease the size of 

DTs. In machine learning, pruning is the process of removing non-predictive subtrees 

(branches) of a model so that its accuracy can be increased, size can be decreased, and the 

issue of overfitting can be avoided (Patel & Upadhyay 2012). Pruning is of two kinds, pre-

pruning and post-pruning (Fürnkranz 1997). Pre-pruning is also known as forward pruning, 

which prevents the growth of trees early on, at the beginning of the process of constructing the 

DTs, so that the generation of unimportant branches can be avoided. Post-pruning is also 

known as backward pruning. In this method, the tree is first constructed and then, the 

unimportant branches of the decision trees are reduced.  

 

Another technique that is used to simplify decision trees includes decreasing the size of the 

original learning set (referred to as data reduction techniques). For this, the unimportant 

features are eliminated before the tree induction process (Sebban et al. 2000). 
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2.2.2.3 Stability of the Results 

 

Another important factor to consider when creating and assessing the efficiency of DTs is the 

stability of the DT prediction findings. The criterion of stability performance is important with 

respect to the quality of DT, as there should not be much difference in the predictive accuracy 

rate when a DT is used on various validation data sets (Osei-Bryson 2004). One of the most 

widely used methods by the developers is the k-fold cross-validation estimator (particularly 

when there is a limited amount of data) which helps to make sure that the outcomes attained 

by the various DTs are constant and also help in providing an optimal decrease in variance 

(Kale et al. 2011). More details on K-fold cross-validation is given before in section 2.1.3. 

 

 

2.3 Confusion and Cost Matrices 

 

To take account of misclassification costs, there are two important concepts that should be 

considered when building the classifier, namely: a confusion matrix and a cost matrix, which 

are introduced below. 

A confusion matrix, also known as an error matrix (Stehman 1997) is a table representing 

information about the actual and predicted classifications done by a classification system 

(Santra & Christy 2012). Table 2.1 shows the format of an ordinary confusion matrix for a 

binary classification problem which records the predicted outcomes against the actual 

outcomes. Table 2.2 shows the format of a cost matrix for a binary classification problem. The 

misclassification cost associated with classifying an instance from its real class (j) into a 

predicted class (i) is represented in a cost matrix using the notation C (i,j). The 

misclassification costs are usually determined and proposed by experts and specialists in the 

field under study, or they may be obtained and learned through other methods. It is normally 

presumed in cost-sensitive learning that this kind of cost matrix is specified and known. The 

binary cost matrix can be extended without any problems when there are multiple classes by 

including more rows and columns, based on the number of classes.  
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Confusion Matrix 
Predicted Class 

Pos (+) Neg (-) 

Actual Class 
Pos (+) TP FN 

Neg (-) FP TN 

Table 2.1: The confusing matrix for binary 

classification problem 

Cost Matrix 
Predicted Class 

Pos (+) Neg (-) 

Actual Class 
Pos (+) C (+,+) C (+,-) 

Neg (-) C (-,+) C (-,-) 

Table 2.2: The cost matrix for binary 

classification problem 
 

 

 

The ordinary binary confusion and cost matrixes described above can be extended to 

multiclass problems. For example Tables 2.3 and Table 2.4 respectively give the forms of a 

confusion matrix and a cost matrix for a problem labelled with three classes (A, B and C) 

wherein the confusion matrix: AA denotes the number of examples that are actually of class A 

and predicted as class A. AB denotes the number of examples that are actually of class A and 

predicted as class B and so on for the rest. And for the cost matrix C(AA) denotes the cost of 

(AA), C (AB) denotes the cost of misclassifying A as B and so on for the rest. 

Confusion   

matrix 

Predicted Class 

A B C 

Actual  

Class 

A AA AB AC 

B BA BB BC 

C CA CB CC 

Table 2.3: The confusion matrix for a 3-classes 

classification problem 

 

Cost   

matrix 

Predicted Class 

A B C 

Actual  

Class 

A C(AA) C(AB) C(AC) 

B C(BA) C(BB) C(BC) 

C C(CA) C(CB) C(CC) 

Table 2.4: The cost matrix for a 3-classes 

classification problem 

 

Elkan (Elkan 2001) and Ling & Sheng (2008) described how important it is to consider the 

misclassification costs in various cost-sensitive learning algorithms and mentioned that, when 

the cost matrix is defined, a new instance x should be classified into the class (i) that leads to 

the minimum expected cost  L(x, i)  which is expressed as: 

L(x, i) = ∑ p(j | x) ∗ c (i, j)
n

j=1
                                                2.13 

 

Where p ( j | x ) is the probability of classifying an instance x into class j, and c (i, j ) is the 

cost of predicting class (i) when the true class is j. 

The problem of cost-sensitive learning can be formulated as wanting to learn a classifier that 

minimises the expected total of misclassification cost, then from the previous two matrixes a 

set of equations can be derived for multiclass problems as follows: 
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 Accuracy Rate =   
∑      𝑻𝑪𝒊

𝒎
𝒊=𝟏

𝑵
                                                                        2.14 

Where m is the number of class-labels the dataset has, 𝑇𝐶𝑖 is the number of examples 

of Class C that have been classified correctly and N is the total number of examples. 

Then the accuracy rate for the confusion matrix depicted in Table 1.1 can be as the 

following form: 

Accuracy Rate = (AA +BB+ CC) / N       where, N is the total number of examples. 

   Error Rate =   
∑      𝑭𝑪𝒊

𝒎
𝒊=𝟏

𝑵
                                                                           2.15 

Where m is the number of class-labels the dataset has, 𝐹𝐶𝑖 is the number of examples 

of Class C that have been classified incorrectly and N is the total number of examples. 

Then the error rate for the confusion matrix depicted in Table (1.1) can be as the 

following form: 

Error Rate = (AB+ AC+ BA+ BC+ CA+ CB) / N      where, N is the total number of   

examples. 

  The error rate can also be calculated as a complement to the accuracy rate, then   

    Error Rate = 1 - Accuracy Rate                                                               2.16 

 Utilising the confusion matrix in Table 1.1 and the cost matrix in Table 1.2, we can 

calculate the total misclassification cost for the classifier using the Eq 1.1 as follows: 

Total Cost = AA*C(AA) + AB*C(AB) + AC*C(AC) + BA*C(BA) + BB*C(BB) + 

…………                

To illustrate the ideas in an applied manner, suppose that we have a multiclass problem with 

the following confusion and cost matrixes shown in Tables 2.5 and 2.6 respectively. 

Confusion 

matrix 

Predicted Class 

A B C 

Actual 

Class 

A 50 0 0 

B 0 45 5 

C 0 5 45 
Table 2.5: Confusion matrix (Example-1) 

Cost matrix 
Predicted Class 

A B C 

Actual 

Class 

A 0 5 5 

B 5 -5 50 

C 50 100 0 
Table 2.6: Cost matrix (Example-1) 
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Then,  

Accuracy Rate = (50+45+45) / 150 = 0.9333 = 93.33 % 

Error Rate = (5+5) / 150 = 0.0666 = 6.66 %   

Also the Error Rate can be calculated a complement to the Accuracy Rate as following: 

Error Rate = (1 - 0.9333 = 0.0666 = 6.66 %) 

The Total Cost = (0* 50) + (5*0) + (5*0) + (5*0) + (-5*45) + (50*5) + (50*0) + (100*5) + 

(0*45) = 525 units of cost.  

As we notice from the cost matrix above, the cost of BB is (-5), and this is allowed as (Turney 

1995) mentioned that assigning negative costs for classification can be interpreted as benefits. 

As a second example to illustrate the cost vs accuracy issue, using the same cost matrix shown 

in Table 2.6, consider a situation where another different algorithm is applied and results in the 

following confusion matrix: 

 

Confusion 

matrix 

Predicted Class 

A B C 

Actual 

Class 

A 50 0 0 

B 10 40 0 

C 10 0 40 
Table 2.7: Confusion matrix (Example-2) 

Then,  

Accuracy Rate = (50+40+40) / 150 = 0.8666 = 86.66 % 

Error Rate = (1 - 0.8666 = 0.1334 = 13.34 %) 

The Total Cost = (0* 50) + (5*0) + (5*0) + (5*10) + (-5*40) + (50*0) + (50*10) + (100*0) + 

(0*40) = 350 units of cost.  

From the results of Example-2 we can observe that cost reduction can sometimes be at the 

expense of decreasing the accuracy rate, as in cost-sensitive classification problems, the 

accuracy rate can be sacrificed in order to obtain the lowest possible cost. 
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Chapter 3 : THE LITERATURE REVIEW 

 

 

 

Considering that the main objective of this research is the development of a new nonlinear 

cost-sensitive decision tree for multiclass problems by utilizing some multi-objective 

optimization methods, this chapter presents a review of the literature that covers four related 

areas Cost-Sensitive Decision Trees, Nonlinear Classification, Multiclass Classification and 

Multi-Objective Optimization. Section 3.1 starts by reviewing the general literature on cost-

sensitive learning and then gives some explanations on cost-sensitive strategies, after that, the 

categories of cost-sensitive algorithms according to the method adopted for implying the cost 

were presented, and finally, a more detailed literature on  cost-sensitive decision trees which is 

at the core of this research is presented. Section 3.2 covers nonlinear decision tree. Section 3.3 

presents some literature on multiclass classification, and Section 3.4 presents the field of 

multi-objective optimization using PSO and GAs.  

 

 

3.1 Cost-Sensitive Learning 

 
The literature on classification in data mining and machine learning shows that many 

approaches have been developed for data classification, including decision trees, Bayesian 

networks, neural networks, discriminant analysis, and support vector machines, among many 

others (Freitas et al. 2009). 

 

Prior to the emergence of cost-sensitive classification algorithms, the classification systems in 

the past only aim to enhance the classification and prediction accuracy for the classification 

system (Ling & Sheng 2008). Hence, in the previous decades, the cost-sensitive classification 

was considered to be an important topic to attract the attention of the researchers in the field of 

data mining and machine learning which led to the development of many methods and 

algorithms that take into account the costs when performing the classification (Lomax & 

Vadera 2011; Turney 1995). 

 

The supervised and unsupervised learning methods described in Chapter 2 were first 

introduced with a view to maximising accuracy (Lomax & Vadera 2011). In contrast, cost-
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sensitive learning techniques focus on those applications in which misclassification errors 

consist of various costs, and where some of the misclassification errors are more costly 

compared to others. In a medical diagnosis, for instance, an ill patient who is categorized as 

healthy is considered as a more expensive error (which can cause a loss of life) compared to 

categorizing a healthy patient as a sick one (which may merely require additional tests). 

Another example is when a company issues a credit card to a customer where the loss is 

normally costlier than an error of refusing a credit card to a good client (Jin Li et al. 2005).  

 

A taxonomy of various costs in learning classification problems has been presented by 

(Turney 2002). These include costs of testing, costs for misclassification errors, costs of 

interventions, costs of computation, costs of unwanted achievements, costs of instability, and 

costs of human-computer interaction.  

 

 

3.1.1 Cost-Sensitive Learning Theories and Strategies 

 

With cost-sensitive learning, the new example that is to be classified should be labelled with 

the class that leads to the lowest expected cost and the literature shows many attempts 

introduced by several authors to formalize the cost-sensitive learning problem (Elkan 2001; 

Turney 1995). These formulations are based on computing the cost of classification using a 

confusion matrix and a cost matrix. 

 

The differences in cost-sensitive learning algorithms are due to the way costs are included in 

the learning process. According to the literature, these algorithms can be grouped into two 

main groups direct and indirect methods (Nashnush & Vadera 2017). The goal of the first 

category is to construct classifiers that are cost-sensitive on their own, and this is referred to as 

the direct methods. Examples of direct cost-sensitive learning algorithms include the ICET 

(Turney 1995) and cost-sensitive decision tree (Ling et al. 2004; Drummond & Holte 2000). In 

theothergroup,a “wrapper” is constructedwhich transmits any existing cost-insensitive 

classifier into cost-sensitive one. The wrapper methods are also known as meta-learning cost-

sensitive approaches, and examples of these methods are MetaCost (Domingos 1999), Costing 

(Zadrozny et al. 2003) and Weighting (Ting 1998). 
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Another attempt for categorizing cost-sensitive learning algorithms is that presented at the 

comprehensive survey carried out by Lomax and Vadera (Lomax & Vadera 2011) which listed 

several ways to categorize the algorithms intended for inducing cost-sensitive decision trees. 

They listed some of the algorithms that are distinct in accordance with the kind of cost(s) 

included. The purpose of some of these algorithms was to decrease just the misclassification 

costs; others aim to minimize only the cost of obtaining the information, whereas some others 

aim to decrease both previous expenses. Then, they categorized the cost-sensitive algorithms 

depending on the approach adopted. It was asserted by them that there are two key techniques 

that were used in algorithms to develop the cost-sensitive decision tree. The greedy method is 

used in the foremost category, where a single tree is developed at a time. The most famous 

algorithms that use the greedy approach are ID3 (Quinlan 1986) and CART (Breiman et a., 

1984). The second category adopts the non-greedy approach that intended for inducing 

multiple trees. 

In the following sub-sections, these categories will be discussed in some details. In section 

3.1.1.1, Direct Cost-Sensitive Learning approaches will be described, section 3.1.1.2 gives 

some highlights related to the meta-learning cost-sensitive approaches. Since this research is 

about developing a new cost-sensitive decision tree algorithm, a separate sub-section 3.1.1.3 

has been allocated to give some detailed explanation on some common Cost-Sensitive 

Decision Tree algorithms. 

 

3.1.1.1 Direct Cost-Sensitive Learning 

 

When constructing direct cost-sensitive learning algorithms, the key concept is to directly 

include and use misclassification costs or other kinds of costs while developing the learning 

algorithms. Various algorithms were depicted in the previous studies that adopt direct cost-

sensitive learning techniques; one of the adopted methods is by changing cost-insensitive 

algorithms like (decision trees, Naïve Bayes, Neural Networks and Support Vector Machine) 

into cost-sensitive ones by modifying and changing the algorithm itself so that it includes 

functions that include costs while building the classifier . 

 

 Cost-sensitive naïve Bayes (CSNB): CSNB (Xiaoyong Chai et al. 2004) is a test cost-

sensitive classifier that alters the Naive Bayes Classifier by incorporating a test 

approach through which it is determined how unknown attributes are chosen to carry 
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out the test so as to decrease the total of misclassification cost and test cost. The same 

equation 2.13 given earlier is used in CSNB to classify test examples on the basis of 

the pre-produced probability created by the naïve Bayes.  

 

 Modifying Neural Network Algorithm: In data mining and machine learning, 

artificial neural networks are quite well-known and valuable tools that play an 

important part in classifications. A comparative analysis of various strategies for cost-

sensitive learning with neural networks was performed by Kukar and Kononenko 

(Kukar & Kononenko 1998). It was found in their study that neural networks that were 

trained utilizing the back-propagation version of the neural networks decreases the 

misclassification cost significantly and it is performing much better compared to the 

other techniques. The original back-propagation algorithm usually decreases the 

squared error of the neural network. Hence, the back-propagation learning process in 

its originality not appropriate for cost-sensitive learning. So, to reduce costs of the 

errors, the error function should be altered by considering the misclassification costs 

and that is by including the cost factor C(i, j) where j is the predicted class, and i is the 

actual class. Therefore, rather than decreasing the squared error, the altered back-

propagation learning process decreases the misclassification cost. One of the issues 

arises when using the back-propagation learning process is the over-fitting of training 

data. This issue arises because of the resulted over-sized network which leads to a 

decrease in the generalization capabilities of the network (Kukar & Kononenko 1998). 

 

 Modifying Support Vector Machine Algorithm: The basis of the Support Vector 

Machine (SVM) is the structural risk minimization (SRM) induction principle that was 

developed from the statistical learning theory. It has been found that SVMs are 

successful in various practical applications. A cost-sensitive SVM classifier was put 

forward by Funeral and Roli (Fumera & Roli 2002) by developing a unique form of 

the training activity as a non-convex optimization issue, and producing a particular 

learning algorithm to resolve it. This cost-sensitive learning technique offers a higher 

degree of flexibility to explain the decision boundaries, keeping in view the rejection 

method employed for typical SVMs. According to the experimental findings found by 

Funeral and Roli (Fumera & Roli 2002), for the majority of the data sets, the cost-

sensitive SVM that includes the reject option attained a better error-reject trade-off 

compared to the typical cost-insensitive SVMs. In another study (Masnadi-Shirazi & 
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Vasconcelos 2010), a novel method for learning cost-sensitive SVM classifiers was 

presented, in this study, the standard SVM is extended and amended by adding some 

cost-sensitive settings which aimed to the reduction of the related risk. This extension 

is based on the links between risk minimization and the probability estimation. The 

cost-sensitive SVM imposes cost sensitivity for separable as well as non-separable 

training data, that because the cost-sensitive SVM imposes a greater margin for the 

preferred class. 

 

 Cost-Sensitive Decision Tree Algorithms: As the new algorithm developed in this 

research (ECSDT) is a Cost-Sensitive decision tree method; therefore, a separate more 

detailed sub-section related to this category has been allocated in section (3.1.1.3).  

 

 

3.1.1.2 Meta-Learning Cost-Sensitive  

 

Cost-insensitive classifiers can be changed into cost-sensitive ones by using cost-sensitive 

meta-learning algorithms without making any alterations to original cost-insensitive 

algorithms. Therefore, cost-sensitive meta-learning algorithms can be considered as a 

middleware element through which the training data is reprocessed, or the output is post-

processed from the cost-insensitive learning algorithms.  

Various methods are adopted by the cost-sensitive meta-learning algorithms for the induction 

of cost-sensitive classifiers. It has been shown in the literature that there have been various 

attempts to group the cost-sensitive meta-learning algorithms into some correlated categories 

as presented in (Sheng & Ling 2006; Kotsiantis 2007; Song & Lu 2015; Ting 2008; Ling & 

Sheng 2008; Turney 2002). Some of the widespread categories of cost-sensitive meta-learning 

algorithms are sampling methods and non-sampling methods, and these are developed based 

on whether the distribution of the training data is modified or not in accordance with the 

misclassification costs. The following paragraphs describe these methods. 

 

Non-sampling methods can be further categorized into three sub-classes: relabeling, weighting 

and threshold adjusting. These are explained as follows: 

 

 Relabeling: In these methods, the class-labels of the examples are relabeled in 

accordance with the least expected cost criterion (Fulkerson et al. 1995). MetaCost 
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(Domingos 1999) is one of the most well-known cost-sensitive  algorithms that adopts 

the relabelling method that uses the concept of bagging (Breiman 1996) by creating n 

resamples of the data set (with replacement), then uses the learning process for every 

sample, and after that accumulates the findings for the n samples which gives more 

accurate findings. The training examples are then relabeled with their predicted least 

cost classes. The error-based learner is subsequently applied to the new training set to 

produce the ultimate cost-sensitive classifier (Domingos 1999; Vadera 2010). The 

same equation 2.13 given earlier is used to calculate the expected cost. 

 

 Weighting: In this method, a weight is allocated to each instance of the training data, 

which represents the impact of misclassifying an instance with respect to the cost 

incurred. One of the well-known examples using this method is an algorithm known as 

C4.5CS that was put forward by (Ting 1998) for inducing cost-sensitive trees through 

instance weighting by considering the C4.5 algorithm as the base classifier. Therefore, 

with C4.5CS, high weights are allocated to the examples of the rare class that have a 

greater misclassification cost. When C (j) is considered as the cost of misclassifying an 

example belonging to class j, then the following equation is used to calculate the 

weight of each example belonging to class j: 

W(j) = C(j) ∗  
N

∑ C(i)NI
                                                           3.1 

 

 AdaBoost (Adaptive Boosting): is another cost-sensitive classifier which uses the 

weighting method (Yoav Freund & Schapire 1999). This algorithm is a cost-sensitive 

boosting method that consists of generating several hypotheses ht and then integrating 

them to create a more accurate composite hypothesis having the form given in the 

equation below (Yoav Freund & Schapire 1999): 

f(x) = ∑ ∝t
T
t=1 ht(x)                                                            3.2 

Here, ∝t represents the degree of weight that should be given to ht(x).            

AdaBoost creates hi(x) in sequential trials using a learning system on weighted 

instances which are indicative of their significance. In the beginning, weights equal to 

the value of (1/N) are allocated to each example, where N is the number of training 

examples. The weights are adjusted at the end of each trial so as to increase the 

weights of misclassified examples; however, there will be a decrease in the weights of 

correct examples. Once a certain number of cycles have occurred, a series of trees or 
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hypotheses his  are presented and can be integrated to carry out classification. The 

classification that is eventually chosen is one that relies on choosing the class that 

provides the highest weighted vote. 

 

 Gradient Boosting with Stochastic Ensembles (GBSE): The target of the most boosting 

based algorithms is to sort out binary classification problems in which the 

classification algorithms can set the weights for the training examples in ratio to the 

cost of misclassifying them. Nevertheless, in multiclass classification problems, an 

instant could be misclassified into more than one class; therefore, the demonstration of 

the weights is difficult and unobvious. To solve this issue, an approach known as 

Gradient Boosting with Stochastic Ensembles (GBSE) was introduced in (Abe et al. 

2004) that makes use of boosting. GBSE induces a stochastic hypothesis H (y | x) for a 

class (y) that labels an instance (x). This hypothesis is founded on the individual 

hypotheses ℎ𝑡(x) that is attained by the following equation: 

H(y\x) =  
1

T
 ∑ I(ht(x) = y)T

t=1                                             3.3 

Where the value of I (E) will be 1 if the expression E is true and will be 0 if the value 

of the expression E is false. 

 

 Threshold Adjusting: These types of techniques utilize certain threshold functions to 

classify examples as positives or negatives by applying particular probability estimates 

(Elkan 2001), (Ling et al. 2006). Through thresholding, the ideal probability from the 

training examples is identified as the threshold, which is used to determine the class 

label of the test instances. A test example whose estimated probability is more than or 

the same as this threshold is considered as positive, while it is negative when it is the 

opposite.  

 

In contrast to the above methods, sampling methods modify the class distribution of the 

training data with regards to the cost function and then apply cost-insensitive classifiers on the 

re-sampled data for the classification. The basis of sampling methods is the assumption that, 

the misclassification costs for the minority-class instances are more than the misclassification 

costs of the majority-class examples. Therefore, through the sampling methods, the class 

distribution of the training data is altered so that it becomes more balanced, which makes the 

minority class more significant (Weiss et al. 2007; Li et al. 2005). With this approach, two 
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fundamental sampling techniques can be used; over-sampling and under-sampling. In over-

sampling, the number of the minority-class examples are increased by replicating some of 

them, while in under-sampling, the number of majority-class examples is decreased by 

disregarding some of them (Elkan 2001). 

Costing (Zadrozny et al. 2003) is one of the common algorithms that use the sampling method.  

The Costing algorithm implements a base learner over a sample of the data so that alternative 

classifiers can be produced. The purpose of every resample is to alter the distribution of the 

data so that the minimizing of the error rate on the modified distribution becomes equal to the 

minimizing of the cost of the initial distribution. It is depicted in (Zadrozny et al. 2003) that 

there was replication of cases in the training data caused by the proportional sampling with 

replacement, which then produces what is known as the over-fitting problem in the model 

building, so that it has been suggested in (Zadrozny et al. 2003) that“rejectionsampling”

should be used to prevent the replication. That by ensuring that, every instance in the initial 

training set is drawn one time, and it is included in the sample with the accepting probability C 

(j, i) / Z, where C (j, i) represents the misclassification cost of class i, and Z signifies the 

maximum cost of misclassifying an example. When the highest cost is given by Z, then this is 

the same as maintaining all instances of the rare class, and sampling the majority class without 

replacement.  

 

 

3.1.1.3 Cost-Sensitive Decision Tree Algorithms 

 

There are usually two stages in a typical decision tree algorithm, decision tree growing and 

decision tree pruning. The decision tree algorithm can be altered so that it becomes cost-

sensitive in both stages. When the decision tree is in the growing stage, the split criterion is 

usually altered so that costs are considered within the splitting criterion. In this field, 

researchers introduced various decision tree algorithms which consider the misclassification 

costs when creating the splits. Some common examples of such algorithms are briefly 

explained in the following sub-paragraphs. 
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 IDX: IDX (Norton 1989) refers to a decision tree algorithm in which a look-ahead 

strategy is used that considers n tests ahead. Here, n refers to a parameter that the user 

may fix. For splitting the data, IDX selects the attribute that maximizes the following 

function:                          C =
Ii

Ci
                                                                          3.4 

Here, Ii is the information gain that is related to the ith attribute at a particular stage in 

developing the decision tree, and Ci signifies the cost of calculating the ith attribute. 

 

 EG2: EG2 (Nuñez 1991) is a decision tree induction algorithm that adopts the 

Information Cost Function (ICF) for choosing attributes, and it is a modified form of 

the ID3 (Norton 1989). In EG2, the attributes are chosen by ICF on the basis of their 

information gain and their costs, and the overall cost can be decreased by choosing 

attributes with less test cost and higher information gain for the splitting. Different 

kinds of generalization are implemented by EG2, which simultaneously decreases the 

classification cost by using the previous knowledge that gives information for carrying 

out economic induction and presents limitations and directions for creating more 

general and appropriate decision trees. The following equation is used to describe the 

ICF for the 𝑖𝑡ℎ attribute: 

                                        ICFi =
2Ii−1

(Ci+1)w                                                              3.5 

Here, 𝑰𝒊 is the information gain related to the 𝑖𝑡ℎ attribute at a specific stage in the 

development of the decision tree, and  𝑪𝒊  is the cost of measuring the 𝑖𝑡ℎ attribute, 

while w is a modifiable parameter, having a value between 0 and 1. 

 

 Cost-Sensitive ID3 (CS-ID3): CS-ID3 signifies a cost-sensitive technique that is 

formulated on the basis of the ID3 decision tree algorithm (Quinlan 1986). It was 

explained earlier that ID3 chooses the attribute that increases information gain to be 

used for the splitting. ID3 is altered by CS-ID3 so that the feature selection measure 

includes the cost in addition to the information gain, choosing the split attribute that 

gives the highest value for the function given below: 

C =
Ii

2

Ci
                                                                           3.6                                                                            

Here, 𝑰𝒊 is the information gain related to the 𝑖𝑡ℎ attribute at a particular stage in the 

formulation of the decision tree and 𝑪𝒊 is the cost of measuring the 𝑖𝑡ℎ attribute.  
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 ICET: ICET (Turney 1995) is an abbreviation of Inexpensive Classification with 

Expensive Tests. ICET utilises a genetic algorithm known as GENESIS (Grefenstette 

1986) with an extension of the C4.5 algorithm (Hormann 1962) to include the 

misclassification costs into the fitness function obtained from the Information Cost 

Function (ICF) that is used with the EG2 system (Nuñez 1991) as a substitute measure 

of the information gain. Attributes are chosen by the ICET on the basis of their 

information gain and their cost, and the form given below is adopted by the ICF for the 

𝑖𝑡ℎ attribute: 

ICFI =  
2∆i−1

(Ci+1)w                                                             3.7       

Here, ∆𝑖 is the information gain related to the 𝑖𝑡ℎ attribute, 𝐶𝑖 is the cost of determining 

the 𝑖𝑡ℎ attribute and w signifies a bias parameter that regulate the degree of weight that 

should be awarded to the costs. Its value is between 0 and 1.                                   

The ICET constructs various trees, and these trees are then examined on an internal 

holdout data. Once various trials have been carried out, the ideal set of test cost 

determined by the genetic search is used to develop the ultimate decision tree for the 

complete training data set. 

  

 Test Cost-sensitive Decision Tree – TCSDT: TCSDT (Ling et al. 2004) is a method 

formed on the basis of the C4.5 algorithm and for the purpose of developing and 

testing decision trees. Misclassification costs and tests costs are both directly used by 

the TCSDT in the process of developing the decision tree. That is, with TCSDT, the 

best attribute by the expected total cost reduction is selected instead of minimizing the 

entropy in the attribute as in C4.5. Therefore, the best attribute that decreases the total 

sum of misclassification and test costs for each possible split will be chosen as the root 

of the tree or sub-tree. 

 

 CSTree: There is a subsequent adaption of TCSDT (Ling et al. 2004) into CSTree 

(Ling et al. 2006) that considers just the misclassification costs while disregarding the 

test costs. CSTree aimed for solving and addressing two-class classification problems, 

and the probability of the positive class is calculated by considering the relative cost of 

the two classes. This is then used to obtain a value for the expected cost. 
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 Cost-Sensitive Decision Trees with Multiple Cost Scales (CSDTWMCS): (Qin et 

al. 2004) established a cost-sensitive algorithm, known as Cost-Sensitive Decision 

Trees with Multiple Cost Scales on the basis of the TCSDT algorithm presented in 

(Ling et al. 2004). The authors of CSDTWMCS (Qin et al. 2004) supposed that there 

are two types of cost included in the test and the misclassification costs i.e. target costs 

and resource costs. These two types of cost (target, and resource) were specified on the 

basis of two dissimilar scales; for example, as a dollar cost and as a time cost 

associated with a medical diagnosis. The authors also made an assumption that the 

resources have maximum bounds for each, these bounds known as resource budgets. 

The target of the approach is to reduce one type of cost whilst manage the other one 

within the prescribed budget. Each of the attributes has two parameters, that are, test 

cost and constraint possessed by, similarly, each kind of misclassification owe a cost 

and a constrained value. These two values are utilized in the splitting criteria to 

develop a target-resource cost decision tree and are also incorporated in some 

functions that include target cost reduction (test cost) and the consumption of 

resources used for attaining missing data. The total cost of choosing an attribute (a) for 

splitting is calculated using the following equations. 

 

ICFa = (Cost0 − Costa)/Constraina                                                        3.8 

Constraina = (N − m) ∗ ra + p ∗ Cij(r) + n ∗ Cji(r) + m ∗ Cji(r)          3.9 

 

In which (Cost0) is defined as the misclassification cost prior to the splitting, (Costa) 

is the predicted cost in case attribute (a) is selected, ra, Cij(r) and Cji(r) are the 

resource costs for FN and FP respectively, (p) is the number of positives, (n) the 

number of negatives and (m) the number of instances that have missing attribute 

values. 

 

 CSNL: Vadera in (2010) presented a new non-linear decision tree learning algorithm 

called CSNL (Cost-sensitive Non-linear Decision Tree) which uses the 

misclassification cost for inducing the decision tree. The basis of the algorithm is the 

hypothesis that non-linear decision nodes give better outcomes for cost-sensitive 

decision tree induction compared to the axis-parallel decision nodes. In this algorithm, 

the discriminant analysis put forward by (Fisher 1936) is used to establish non-linear 
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classification boundaries that consider misclassification costs. CSNL algorithm is 

aimed at solving the only binary class problem, and it tries to determine a split that 

reduces ECM, the Expected Cost of Misclassification with the help of the equations 

given below: 

ECM = Cj,i ∗ P(j|i) ∗ Pi + Ci,j ∗ P(i|j) ∗ Pj                                   3.10 

 Here, 𝐶𝑖,𝑗  represents the cost of misclassifying an example in class i, when it is really 

in class j; P(i | j) represents the probability of categorizing an example in class i 

considering that it is in class j; and 𝑃𝑖 represents the probability of an example in class 

i. The algorithm was evaluated on 17 datasets and its performance was contrasted to 

the most popular algorithms in this domain, i.e. ICET and MetaCost. It was depicted in 

the findings that the performance of CSNL is the same, if not better, than that of the 

other algorithms for the majority of the datasets used (Vadera 2010). The shortcoming 

of this algorithm is that it is used for just binary classification problems and 

concentrates on just the misclassification costs. 

  

 MNCS_DT:  A modified version of the CSNL algorithm that has been presented by 

Vadera in (2010) was put forward by (Duan & Ding 2016), this algorithm known as 

MNCS_DT, which refers to Non-linear Cost-sensitive Decision Tree for Multi-

classification, which extends the binary classification problem in CSNL into multi-

classification problem by developing non-linear split nodes using the latest 

discriminant analysis in decision tree for multi-classification problems. MNCS_DT 

uses altered information gain ratio that combines costs to choose best attributes whose 

altered information gain ratios are greater than the average one. The main aim of 

MNCS_DT is to reduce the total ECM, the Expected Cost of Misclassification using 

the equation 3.1. 

Total EMC = ∑ EMCi,j
n
i,j,i≠j                                                           3.11 
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Where, 𝐸𝑀𝐶𝑖,𝑗 is the ECM related to each combination of two classes except when i=j, 

and is calculated utilizing the same Eq 3.12 introduced with the  CSNL (Vadera 2010). 

The main drawback of this method is that multivariate normal assumption is not 

always valid, as If the dataset comes with only a few of variables that may not follow 

multivariate normal distribution then the MNCS_DT algorithm cannot perform better 

(Duan & Ding 2016). 

 

 ECCO: Is a cost-sensitive evolutionary algorithm that was developed by (Omielan & 

Vadera 2012) in which the trees are directly encoded. ECCO is a shortcut for 

(Evolutionary Classifier with Cost Optimization) that incorporates certain features of 

the genetic algorithms, like crossover and mutation operators when developing the 

cost-sensitive decision trees. Unlike, ICET, ECCO uses binary strings to represent the 

decision trees, and then the typical crossover and mutation operators are applied on the 

binary strings. The Expected Cost of Misclassification ECM (as defined in Eq 3.12) is 

used as the fitness function.  

 

 

3.2 Nonlinear Decision Trees 

 

The main concern of the majority of the decision tree algorithms is to solve univariate 

classification problems in which axis-parallel tests are conducted at each decision node of the 

tree. When the classification problem is nonlinearly separable, the majority of the recent 

algorithms; for instance, classification algorithms in WEKA and R, tried to solve these 

nonlinear classification problems through incorporating linear separators to split the nonlinear 

search space (Vadera 2010). It had been recommended by many researchers in this area that 

this is not adequately expressive and usually results in more complex than multivariate splits 

(Lomax & Vadera 2011). The following sections present and highlight some related work and 

attempts for solving nonlinear classification problems. 

 

Recently, a number of optimization methods have been developed to construct non-linear 

classifiers for some large-scale applications, but instead of adopting direct non-linear 

classification, most utilize methods that in some way show the non-linear distribution of the 

classes to be represented as a new linearly separable distribution. Among those methods are 
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the algorithms that adopt Kernel Tricks (Passerini 2013) that make linear models work in 

nonlinear settings by mapping each instance x to a higher dimensional vector y(x) where it can 

exhibit linear patterns and then apply the linear model for the new classification space (Mika 

et al. 1999). To illustrate the idea of how Kernel Tricks work, let us consider the hypotheses 

binary classification problem illustrated in Figure 3.1. In this problem each example is defined 

by a two features x = {x1, x2} and it is obvious that linear separator is not an adequate 

solution for this data, so by using (Keren Tricks) each example in the feature space can be 

mapped into a higher dimension space Z that may take one of the forms shown below: 

x =  {x1, x2}  ==>  z =  {𝑋1
2, √2𝑋1𝑋2, 𝑋2

2}                                       3.12 

Then the results of the new feature space can be similar to the one illustrated in Figure 3.2 which is a 

linearly separable space. 

 

 
Figure 3.1: Classification problem before applying 

Kernel tricks 

 
Figure 3.2: Classification problem after applying 

Kernel tricks 

 

Kernel Tricks have been exploited by many classification algorithms, including Support 

Vector Machines - SVM (Fu et al. 2010; Suykens 2001), and Fisher Discriminant Analysis - 

FDA (Mika et al. 1999; Dai et al. 2006) which are briefly described below. 

 

The study presented in (Fu et al. 2010) introduced a new linear support vector machine 

(LSVM) combination pattern known as Mixture of Linear Support Vector Machines 

(MLSVM) that uses a divide and conquer policy for separating the feature space domain into 

sub-domains of linearly separable data points and then applies a SVM for each of these sub-

domains.  A generative pattern is attained by their approach through the utilization of the joint 

data and class-label allocations. 
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Dai et al. (2006) propose a Fisher discriminant analysis algorithm, known as Heteroscedastic 

Kernel Weighted Discriminant Analysis (HKWDA) for implementing nonlinear features 

extraction for classification frameworks. HKWDA can cater for non-homogenous data that are 

commonly found in real-world applications and pays high attention to the classes that are 

characterized by multiclass classification problems through the integration of a suitably 

selected weighting function into the discriminant function. HKWDA proposes that classes that 

are closer to each other in the feature space which may cause a possible reduction in the 

classification performance should be given more weights in the input space. 

 

 

3.3 Multiclass Classification 

 

With Multiclass classification, each example belongs to one of three or more available classes. 

There are many applications of multiclass classification involving text script classification, 

speech recognition, objects recognition, etc. (Ou & Murphey 2007). Some examples of 

multiclass problems from the UCI repository (Lichman 2013) that are commonly used in the 

area of machine learning are described below: 

 The Soybeans classification problem in which each example of the dataset represents 

different characteristics of a crop of soybeans and the classification task is to make a 

prediction to which one of nineteen possible diseases affecting soybeans crop the new 

example should be classified. 

 The IRIS classification problem in which a prediction for a new example is made to 

know to which one of three types of the IRIS flowers (Setosa, Versicolour and 

Virginica) the new example should be classified. 

 The Glass identification problem in which the instances represent the chemical 

combination of some types of glasses and the classification task is to make a prediction 

for one type of glass among seven known types of glasses. 

 

The literature in this field describes various techniques and algorithms that have been 

developed with the aim of solving multiclass classification problems. Mehra and Gupta (2013) 

and Aly (2005) survey and categorize these algorithms into different approaches. Some 

approaches extend and adjust the ordinary binary classification methods adopted by some 

algorithms such as Neural Networks  (Ou & Murphey 2007), Decision Trees (Vens et al. 

2008), Support Vector Machines (Hsu & Lin 2002) and K-nearest Neighbours (Min-Ling 
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Zhang & Zhou 2005) to solve the multiclass problem. Other approaches implement the theory 

of partitioning the multiclass problem into several binary classification problems, after that 

applying one of the ordinary binary classifiers for classifying each binary problem and then 

the results of all the binary classifications are combined together to obtain a final result for the 

multiclass problem. 

Price et al. (1994) introduced a method based on neural networks for solving multiclass 

classification problems through separating the actual  multi-classification problem into sub- 

binary-classification problems that consider only two classes, for each pair of classes, a 

(possibly small) neural network is learned by utilizing only the data of these two classes. The 

motivation for this method is to depict the ways in which the proposed approach unites the 

results of the two-class neural networks to attain the subsequent probabilities related to the 

class decisions. The findings of applying the method to some contemporary datasets show that 

the obtained results are comparable to the results obtained by applying other neural network 

techniques. 

 

Friedman (1996) recommended another method for multiclass classification problems. In line 

with the Friedman's technique, initially, the problem is split into various binary classification 

problems and afterwards, sorts out each of the binary problems separately. Later, the overall 

pairwise decisions are merged to formulate a multiclass decision that is used for testing the test 

observations. There is no doubt that Friedman's combination rule is pretty much intuitive, it 

allocates the new unseen observation to the class that gets the most pairwise comparisons.  

           

Mehra and Gupta (2013) and Aly (2005) both mentioned that Support Vector Machines 

(SVMs) are the most extensively utilized binary classifiers for solving multiclass classification 

problems. Originally, Support Vector Machines (SVMs) were developed by (Vapnik 2000) 

and aimed to solve only binary classification problems. Afterwards, many techniques were 

developed to offer solutions for solving multiclass problems by dividing multiclass problems 

into many binary classification problems (Mehra & Gupta 2013; Aly 2005). Some of these 

approaches include: 

 

 One-Against-All Multiclass Classification Technique: With this approach 

classifying a problem with (K>2) classes is accomplished through separating the 

search domain into K binary problems. To attain the 𝑁𝑡ℎ classification model, 

examples related to the 𝑁𝑡ℎ class of the training set are considered as positives and the 
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rest of the examples are considered as negatives. Then the model yielding the highest 

classification results is treated as the winner.  

 

 One-Against-One Multiclass Classification Technique: In this approach, if the 

classification problem comprises of K classes then a total of (K * (K-1) / 2) classifiers 

are required. At each time of building a different binary classifier, the algorithm will 

consider data of one class as positives and data of another class as negatives. This 

procedure is recursively repeated for each possible pair of a combination of the overall 

classes; whereas, the remaining classes are ignored. To assess and predict a new 

instance, voting is carried out between the classifiers and the model with the highest 

votes becomes the winner. 

 

 Directed Acyclic Graph SVM (DAGSVM): Platt et al. (2000) proposed this method 

and it is established on the idea of Decision Directed Acyclic Graph (DDAG) 

structure, which is arranged in a tree-like structure. DAGSVM is similar to the one 

against one technique in its training modules. For a K-class classification problem, the 

number of obtained binary classifiers is equal to k (k-1)/2 and each classifier is learned 

for classifying two classes of interest. In the graph structure, at each node, a binary-

class SVM is used. Nodes in DDAG are in a form of a triangle possessing a single root 

node that is at the topmost and is constantly elevating with an increase of one in each 

layer till the last layer contains k nodes. An input vector x that begins from the root 

node and moves towards the next layer on the basis of output values, is assessed by the 

DDAG. The motivation for the DDAG technique is to discard one class from the list 

that involves all the classes as it progresses down the tree. The first class against the 

last class within the list is assessed by each node. In case the assessment leads to one 

class out of the two classes then it is preferable to discard the other one. Then the same 

procedure repeated for the first and the last class in the new list and so on. The 

procedure ends when only one class exist in the list. The class label related to the input 

data will be treated as the class label of the node in the final layer of the assessment 

path or either the class left on the list. 

 

 Error Correcting Output Coding (ECOC): To resolve the multiclass classification 

problems, Dietterich and Bakiri (1995) implemented a new method called Error 

Correcting Output Coding (ECOC) on binary (two-class) classifiers. This technique is 
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applied by decomposing a multiclass problem into multiple binary classification 

problems. Firstly, an exclusive code-word that consists of a unique n-bit binary string 

is assigned to each class rather than assigning a class label, then a matrix called code-

matrix that consists of k rows and n columns is generated, each row in the matrix holds 

the unique code-word for a particular class whereas each column is a binary string that 

represents one of the classifiers. When a new unseen example to be tested it is applied 

to n binary classifiers and is given an output-binary-code. Then a particular distance 

called Hamming distances which are the number of unmatched bit locations between 

the output-binary-code of the new example with all code-words is calculated, and then 

the class label for that example is the code-word with the lowest Hamming distance. 

  

 Hierarchical Classification: Another approach for multiclass classification problem 

is called Hierarchical Classification (Mehra & Gupta 2013; Aly 2005). In this 

technique, a tree structure is used for the organization of the classes. The tree is 

designed in such a way that the parent node falls into two groups and both of them are 

child nodes. The process stops when a single class is determined at the leaf node. 

Every node of the tree contains a classifier mostly a binary classifier that distinguishes 

between the different child class groups. Similar examples of such approach are the 

BHS (Binary Hierarchical Classifier) approach proposed by Kumar et al. (2002), the 

BTS (Binary tree of SVM) method proposed by Fei and Liu (2006), the SVM-BDT 

(Support Vector Machines utilizing Binary Decision Tree) approach presented in 

(Madzarov et al. 2009) and the framework known as the DB2 (Divide-by-2) 

introduced in (Vural & Dy 2004). All these approaches use SVMs in the form of a 

binary tree structure in which a K-class problem is decomposed into K-1 binary-class 

problems through recursion. These methods begin constructing the tree from the root-

node and moving from top to down. At each node, the number of available classes is 

divided into two groups according to the Fisher Discriminant (Fisher 1936) which 

leads to constructing a binary tree whose leaf nodes depict the actual K classes. 

  

 

3.4 Evolutionary Optimization Methods 

 

The literature shows that a massive number of intelligent optimization methods and algorithms 

are developed for solving and optimizing problems (Bhuvaneswari 2015; Zitzler & Thiele 



Chapter 3: The Literature Review 

 

46 
 

1999). In the recent years the exploitation of evolutionary algorithms for inducing decision 

trees has witnessed a great interest by researchers in the field of data mining and knowledge 

discovery especially the use of Genetic Algorithms (GA), Genetic Programming (GP) and the 

Particle Swarm Optimization Algorithm (PSO) (Barros et al. 2012). With these algorithms 

instead of using the greedy top-down recursive partitioning strategy adopted by most decision 

tree induction algorithms, they perform a direct search in the space of candidate solutions 

(Barros et al. 2012). Evolutionary algorithms can make an evaluation for the solutions in a 

single run and the optimization process can be performed without any interventions from the 

decision makers to provide information regarding the preference of the objective (Ngatchou et 

al. 2005). The optimization will be achieved by utilizing particular mechanisms that nominate 

and store the best solutions for the problem under consideration (Carlos A Coello et al. 2010). 

Recent research works have demonstrated that genetic algorithm (GA) and particle swarm 

optimization (PSO) algorithms are amongst the most common distinguished algorithms that 

have powerful capabilities for optimizing problems (VonLückenetal.2014;Šeděnka&

Raida 2010; Hassan & Cohanim 2005), and more details about these algorithms are explained 

in the following sections. 

 

 

3.4.2.1 Optimization Methods Using Genetic Algorithms 

 

The evolutionary calculation can be stated as a heuristic exploration technique, which 

promotes Darwin's principle of natural selection. For such sort of simulation of evolution, 

Genetic Algorithms (GAs) and Genetic Programming (GP) are among many other approaches 

(Zhao 2007). 

 

The main idea of Genetic Algorithms was introduced by John Holland and his colleagues in 

the 1960s and mid of 1970s (Konak et al. 2006), where they illustrated that the way genetic 

algorithms work are influenced by the principles of genetics and evolution as they try to 

simulate the cloning behavior of biological populations towards solving the problem. The GAs 

utilize theconceptof“survivalof the fittest”whereonlystrong individualshavegreater

chance to pass their features to the new reproduced generations. GAs adopted an approach that 

is carried out through a number of iterations (Manda et al, 2012; Bandyopadhyay & Saha, 

2013), starting by generating and initializing random population, thereafter two genetic 

processes (crossover and mutation) are utilized for producing new future generations. 
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Crossover works by choosing from the population two individuals called parents with a 

preference towards fitness and swaps some features of them to produce two new instances 

called offsprings. Mutation plays a vital role to bring back and maintain the genetic diversity 

for the population to prevent premature convergence to local optima, and that is done by 

applying random changes into the characteristics of the individuals by turning over the 

characteristics of them randomly. 

The literature shows several attempts that utilise genetic algorithms to induce cost-effective 

decision trees. A survey conducted by (Lomax & Vadera 2011) listed some of these 

algorithms. ICET (Turney 1995) (Inexpensive Classification with Expensive Test) is an 

example of the most well-known algorithms in this field. ICET is a cost-sensitive algorithm 

that utilizes the genetic mechanisms for the purpose of cost-sensitive classification.  ICET 

considers both the cost of tests as well the misclassification costs and it approaches a 

combination of the greedy search with a genetic search algorithm. ICET utilises C4.5 with 

EG2’scostfunctiontoinducecost-sensitive decision trees, more details about ICET are given 

before in section (3.1.1.2). 

 

Another example of a genetic algorithm is the ECCO algorithm (Evolutionary Classifier With 

Cost Optimizer) that is developed by (Omielan & Vadera, 2012), this algorithm uses a direct 

genetic implementation for inducing decision trees and has been shown empirically to produce 

decision trees that are more cost-sensitive than ICET and more details about ECCO are given 

before in section (3.1.1.2). 

 

(Chen et al. 2011) presented a genetic algorithm-based technique to combine the connected 

weight optimization, parameter determination and feature selection in an evolutionary process. 

Moreover, for performance analysis, the cost preference is directly involved with the fitness 

function of the genetic algorithm. By using some contemporary data, the evaluation of the 

performance of the proposed algorithm is examined and the accomplished outcomes are 

further determined that the reduction of the number of features enhances the prediction ability. 

 

Another study (Kr&Grze’s2007) in the same field presented an evolutionary approach to 

decision tree learning intended for cost-sensitive classification known as GDT-MC (Genetic 

Decision Tree with Misclassification Costs). The classical top-down approach produces the 

individuals in the initial population; however, the tests are selected by utilising particular 
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criteria known as the dipolar criteria (Bobrowski & Kretowski 2000). Amongst the feature 

vectors existing in the examined node, two objects from various available classes are 

randomly chosen. A functional test, that divides two objects into sub-trees, is created 

randomly by taking into consideration only attributes with various feature values. When 

stopping condition (that is based on the least number of learning vectors in a node or 

homogeneity of a node) does not occur, then the recursive splitting will continue. Lastly, on 

the basis of the fitness function, the resultant tree is post-pruned. In case the fitness of the best 

individual in the population does not improve during the fixed number of generations, the 

algorithm terminates. Moreover, there is a restriction on the maximum number of generations 

that bounds the computation time if the convergence is slow. The objective of the fitness 

function utilized in GDT-MC is to consider the anticipated misclassification cost with the size 

of trees. In reference to the principle, the genetic operators in GDT-MC are as the same as the 

cross-over and mutation operators but there is one difference i.e. they function on trees. There 

are numerous possible modifications of nodes that are permitted by the adopted mutation 

operators, involving replacing a test with an alternative dipolar test, swapping of a test with a 

descendentnode’stest,replacementofanon-leaf node by a leaf node, and development of leaf 

node into a subtree. The upcoming generation is accomplished through a linear ranking 

scheme, together with an elitist assortment policy. 

 

In recent decades the role of genetic algorithms is extended to participate efficiently in solving 

the problems that have multiple objectives, as the literature review has revealed that there has 

been a massive effort directed to the development of a broad range of Multi-Objective 

EvolutionaryAlgorithms(MOEA’s)thatutilizetheprinciplesofGeneticAlgorithms(Konak 

et al. 2006; Godínez et al. 2010). A wide range of these algorithms is surveyed and presented 

in (Bhuvaneswari 2015; Coello et al. 2007; and Von Lücken et al. 2014). 

 

One of the most common multi-objective optimization algorithms is an algorithm called 

NSGA-II (Nondominated Sorting Genetic Algorithm II). NSGA-II -  which was first 

introduced by (Deb et al. 2005),  and perhaps it is the most popularly used in the current 

literature (Coello et al. 2010). NSGA-II aims to find multiple Pareto-optimal solutions in one 

single run. For optimizing a particular problem this algorithm mainly utilizes two mechanisms 

(elitism and crowded selection) to validate the quality of a given solution. The procedure 

followed by NSGA-II as stated in (Bandyopadhyay & Saha 2013; Coello et al. 2010) is 
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illustrated in the following points and depicted in the flowchart shown in Figure 3.4 

(Bhuvaneswari 2015). 

 The population is to be classified based on the fitness of the individuals into several 

nondomination fronts using a nondominated sorting, then elitism is recorded by 

reserving the best solutions that enhance convergence. 

 A selection process is to be done based on crowding distance in which the density of 

solutions around a particular objective in the population is to be estimated. 

 A solution is said to be better than another one if it is classified in a better rank, but if 

solutions classified in the same rank, then the one with better crowding distance will 

be selected. 

 Then crossover and mutation operations will be accomplished by the selected solutions 

to produce the offspring population. 

 
Figure 3.3: The flowchart of NSGA-II general procedure 
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Bhuvaneswari in (2015) pointed out some of the main advantages of applying NSGA-II for 

multi-objective optimization as presented below: 

i. NSGA-II depends on non-dominated ranking mechanisms to provide solutions that are 

most close to the Pareto-optimal solution. 

ii. Utilizes crowding distance mechanisms which are a measure of how close an 

individual is to its neighbours to ensure diversity in the solution. 

iii. Employs elitist techniques in order to maintain and keep the best solution for the 

current population to be inherited by the next generation. 

 

 

3.4.2.2 Optimization Methods Using Particle Swarm Algorithms 

 

Particle Swarm Optimization (PSO) is another successful example of the evolutionary 

approaches for solving optimization problems. PSO adopts the idea of simulating the 

movement behaviour of flocks of birds or schools of fishes while searching for food, travelling 

or escaping from predators. That idea of PSO was first introduced in (Eberhart & Kennedy 

1995). PSO represents an optimization solution in which an individual from the population is a 

potential solution to the collective goal (minimizing or maximizing a function (f)), and 

therefore to reach the collective goal, each particle collaborates with others in the swarm by 

exchanging information (Paquet & Engelbrecht 2003). Each particle xi always remembers its 

best solution (pBest) achieved so far towards the optimization function you, and the particle 

moves through the search space with a velocity vi. In every iteration, the position of the 

particle and its velocity are adjusted according to its (pBest) and according to the best global 

solution (gBest) achieved so far by all the swarm towards the optimization function (Bai 

2010). 

 

The velocity and positions of the particle are updated using the following equations (Kennedy 

& Eberhart 1995). 

 

v[ ] = w * v[ ]+[c1*rand( )*(pbest[ ] - present[ ])]+[c2*rand( )*( gbest[ ] - present[ ])]         3.13 

 

Then,           present[ ] = present[ ] + v[ ]                                                                         3.14 

 

Here, v[ ] is the particle velocity, w indicates the inertia weight factor ,present[ ] is the current 

particle (solution), pBest[ ] and gBest[ ] are defined as stated before, rand( ) is a random 
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number between (0,1), c1 and c2 are the cognition and social learning factors and usually c1 = 

c2 = 2. The pseudocode of a general single-objective PSO is described in the following Figure 

3.5. 

 
Figure 3.4: The pseudo code of general single-objective PSO 

 

 

Recently, research and studies proved that Particle Swarm Optimisers are able to compete with 

the most famous methods used in the field of classification. A study was done by (Sousa et al. 

2004), where three different particle swarm data mining algorithms were implemented and 

tested, and the results were compared with another algorithm such as J48. The results obtained 

at the end of the study show that PSO proved to be a suitable candidate for classification tasks 

and can obtain competitive results against J48 in the data sets used. 

 

Another study carried out by (Ardjani et al. 2010) implemented a combination of support 

vector classifier (SVM) with particle swarm optimization (PSO) to optimize the performance 

of classifying some benchmark datasets. Therefore, the study illustrated that the new 

combination approach PSO-SVM resulted in better classification accuracy, even though the 

execution time is increased. 

 

The literature review revealed that very little research was done in terms of the exploitation of 

PSO for inducing decision trees. One of the research studies is the paper presented by (Cho et 
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al. 2011), where it proposed a framework that uses an adaptive PSO to simultaneously 

determine the optimal thresholds of selecting variables for a decision tree (splitting criteria 

should be searched simultaneously); after that, the algorithm is validated using some artificial 

and real-world data sets. The results of the study show that, by using PSO, the computing 

process can be reduced and the optimal decision tree can be obtained with an improvement in 

the classification performance. More recently, the power of swarm intelligence has been 

introduced for effectively solving multi-objective problems (Ngatchou et al. 2005). As 

indicated in the survey work reported in (Coello & Reyes-Sierra 2006), all the present 

MOPSOs are featured with some new characteristics listed below: 

 The non-dominated solutions (leaders) found during the search are archived externally 

to keep them for future process. 

 Using voting mechanisms and some quality measures for choosing the appropriate 

leaders of the swarm. 

 Using the neighbourhood topologies for calculating the crowding distance factors. 

 An optional mutation operator can be applied. 

 

(Chen et al. 2014) offered an approach using the PSO algorithm for the optimisation of the 

classification accuracy accomplished using the C4.5 classifier, this approach is called 

PSOC4.5. The motive of this approach is to assemble the PSO method due to its tremendous 

search ability with the C4.5 for its powerful knowledge discovery and interpretation 

characteristic. To analyse the performance of the PSOC4.5 approach, it experimented on 11 

microarray datasets, and for validating the PSOC4.5, a five-fold cross-validation technique has 

been utilized. Besides, a comparison is carried between the performance of the approach with 

the other well-known algorithms in this area, i.e., SVM, Self-Organizing Map (SOM), Back 

Propagation Neural Network (BPNN), and C4.5. The attained statistical outcomes of the 

proposed algorithm have overtaken the results offered by the other techniques in terms of 

classification accuracy. 

 

Another particle swarm optimization method for cost-sensitive attribute reduction problem is 

the one introduced in (Dai et al. 2016) which is inspired by the PSO powerful search ability. In 

perspective of the main goal of the proposed algorithm, that is finding any one of the lower 

test cost models, each particle in the PSO is considered as a binary string that depicts a subset 

of attribute set and also specifies the fitness function taking into account positive region of 

rough set and the weights of the testing costs. The suggested method in (Dai et al. 2016) is 
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examined with three standard test cost distributions. The outcome of applying the new method 

pointed out that the proposed algorithm is effective and adequate for cost-sensitive attribute 

reduction problems. 

 

(Carlos A Coello et al. 2010) describe the pseudocode of a general multi-objective PSO as 

described in the following Figure 3.6 (Coello & Reyes-Sierra 2006). 

 

  

 
Figure 3.5: The pseudo code of general multi-objective PSO 

 

 

 

Optimized MOPSO (OMOPSO) is one of the well-known examples of multi-objective 

optimization algorithms that utilize the principles of PSO. This algorithm was firstly suggested 

by (Sierra & Coello 2005). OMOPSO uses the external archive based on the crowding 

distance for the purpose of selecting the leaders and the mechanism of Pareto dominance to 

limit the number of solutions stored in the archive as well as using the mutation operators to 

accelerate the convergence of the swarm. This algorithm employs two external archives: the 

first one for archiving the current leaders for proceeding the flight and the other one for 

archiving the final best solutions found during the entire search. 
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3.5 Summary of the Literature Review 

 

As the main objective of this research is the development of a new nonlinear cost-sensitive 

decision tree algorithm for multiclass problems by utilizing some multi-objective optimization 

methods, this chapter was divided into four main parts that presented a review of Cost-

Sensitive Decision Trees, Nonlinear Classification, Multiclass Classification and Multi-

Objective Optimization. 

The first part presented some details about cost-sensitive learning through which various 

techniques and strategies adopted by the previous work were reviewed and analysed. This 

section explained how important it is to consider different types of costs when building 

classifiers. Also in this section, one of the common ways for categorising cost-sensitive 

algorithms into direct and indirect methods was presented. The literature review for cost-

sensitive learning ended up with a detailed sub-section that presents cost-sensitive decision 

tree learning methods. 

For the second part of the literature review, the topic of nonlinear decision tree learning was 

covered which showed some different attempts and studies adopted by different authors 

towards solving nonlinear classification problems. One of the main concepts presented in this 

part is the concept of kernel tricks that can sometimes enable the use of linear models for 

nonlinear problems.  

The third part of the literature reviewed the previous work related to multiclass classification 

and various techniques and algorithms that have been developed with the aim of solving 

multiclass classification problems were described. 

The fourth part explored and presented some evolutionary algorithms for inducing decision 

trees and focused mainly on two well-known evolutionary algorithms namely: Genetic 

Algorithms (GAs) and the Particle Swarm Optimization Algorithms (PSO). 

Based on the review, the key observations are: 

 Considering cost when solving classification problems is very important and plays a 

vital role in getting optimum solutions for cost-sensitive classifications problems. 

There are different types of costs, such as misclassification costs, test costs and costs 



Chapter 3: The Literature Review 

 

55 
 

due to delays in decision making.  Misclassification costs are the most obvious and 

significant costs, and hence the focus of this thesis 

 The majority of current classification algorithms use axis parallel univariate divisions 

to separate the data, which may cause some problems when the problem to be solved is 

nonlinearly separable. The literature in this field shows that there is a need to introduce 

and develop new nonlinear classification methods that introduce nonlinear boundaries 

to solve nonlinear classification problems. 

 To classify multiclass problems, most of the current algorithms do not introduce a 

direct solution for the multiclass problems, but instead, use some indirect tricks and 

methods through which the multiclass problem is divided into several sub-binary 

problems.  The solution of the binary classifiers is then combined to establish the final 

solution for multiclass problems. Hence, there is a need to introduce and develop direct 

methods for solving multiclass classification problems without dividing them into sub-

binary problems. 

 

In the next chapter, the different stages of developing the new algorithm (ECSDT) for 

nonlinear multiclass cost-sensitive classification are presented. 
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Chapter 4 : DEVELOPMENT OF THE NEW ALGORITHM 

 

 

4.1 Introduction 

 

As mentioned in the literature review chapter, most of the current cost-sensitive algorithms 

aim to solve the multiclass problem by adopting solutions that divide the multiclass problem 

into sub-binary problems and then classifying them by the binary classifiers (Mehra & Gupta 

2013; Aly 2005). In addition to that, as presented in (Vadera 2010), the majority of cost-

sensitive algorithms, such as decision tree learning methods, deal with non-linear classification 

problems using linear separators which are not adequate for solving such problems. As pointed 

out in Section 3.2, the literature shows a number of methods that produce indirect non-linear 

classifiers like Kernel methods, Support Vector Machines, and Neural Networks (Fung et al. 

2002; Lee & Mangasarian 2001). These methods adopt some tricks to make linear models 

work in nonlinear settings by mapping each instance x to a higher dimensional vector y(x) 

where it can exhibit linear patterns and then apply the linear model for the new space (Mika et 

al. 1999). These methods have shown some success in many cases, but drawbacks remain 

including: 

1. Mapping each instance in large datasets to a higher dimensional vector can generate 

massive storage problems. 

2. Using linear separating methods for non-linear problems can result in very big 

decision trees. 

3. Interpreting the classifier’s output can be challenging, so, for example, neural 

networks are not very transparent and decision trees can become very large when 

viewed with axis parallel boundaries. 

 

This chapter develops a new algorithm for cost-sensitive classification for multiclass problems 

based on the use of evolutionary optimisation methods such as GA and PSO. The new 

algorithm is called Elliptical Cost-Sensitive Decision Tree (ECSDT) and utilises elliptical 

boundaries in the nodes of decision trees for splitting the data. This chapter is organised as 

follows. Section 4.2 formulates the problem for optimisation, presents some background, and 

shows the pseudocode for the new algorithm, Section 4.3 describes how decision trees are 

constructed using ellipses, Section 4.4 describes the implementation of the algorithm using a 



Chapter 4: Development of the New Algorithm 

 

57 
 

framework known as Multi-Objective Evolutionary Algorithms (MOEA) (Hadka 2014), and 

Section 4.5 gives some details of how the new algorithm works with illustrative examples. 

 

 

4.2 Formulation of Cost-Sensitive Learning as an Optimization Problem 

 

Most decision tree algorithms focus on linear axis parallel tests at each internal node of a tree 

(Ittner & Schlosser 1996; Vadera 2010), but for non-linearly separable classes where there is 

no good linear separator between the distributions of the classes, and even the best linear 

classifiers might not perform well, so using nonlinear classifiers for such cases are often more 

accurate than linear classifiers and may produce DTs that are smaller in size (Vadera 2010). 

To illustrate the idea of the new non-linear classification algorithm (ECSDT), let us consider 

the hypothetical 3-class classification problem shown in Figure 4.1 and Figure 4.2. As we see 

from Figure 4.1, we need 10 linear decision nodes (axis parallel lines) to get the optimal 

boundaries for splitting the classes, whereas, as Figure 4.2 illustrates, having non-linear 

regions (ellipses), would seem to be more appropriate for such cases and only 4 non-linear 

decision nodes (ellipses) are required to get the same classification accuracy. 

 

 

The new algorithm (ECSDT) developed in this research induces decision trees that utilise 

elliptical nonlinear decision boundaries, like those illustrated in Figure 4.2, for splitting the 

dataset instead of the traditional ways that adopt the axis-parallel splitting.  

 

Given the intuition from the example in Figure 4.2, the main task of the new algorithm is to 

find a suitable number of ellipses and place them so that some measures such as 

misclassification error and cost are minimized.  

Figure 4.1: Linear classification Figure 4.2: Elliptical classification 
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As the new algorithm (ECSDT) proposes using ellipses, some important definitions related to 

geometric ellipse are given below: 

A geometric ellipse can be defined as (Korn & Korn 2000):  

“The Figure consisting of all points for which the sum of their distances to two fixed 

points (called the foci) is a constant”   

Ellipses that are centred on the origin and the major and minor axes are parallel to the 

coordinate system (rotation angle = 0), can be defined as the shape created by all points that 

satisfy the following equation (Chandrupatla & Osier 2010). 

  x2

a2 +
y2

b2 = 1                                                                4.1  

Where x and y are the coordinates of any point on the ellipse; a and b are the radiuses of 

the ellipse on the x-axes and y-axes respectively. 

For ellipses that are not centred at the origin and have no rotation, the general equation can be 

defined by the following equation: 

(𝑥−ℎ)2

𝑎2 +
(𝑦−𝑘)2

𝑏2 = 1                                                     4.2 

Where x and y are the coordinates of any point on the ellipse; h and k are the centre point of 

the ellipse, (a) is the ellipse radius on the x-axis, and (b) is the ellipse radius on of the y-axis. 

For rotated ellipses through an angle = (α), the general equation can be defined by the 

following equations: 

Ellipses centred at the origin 

(x cosα+y sinα)2

a2
+

(x sinα−y cosα)2

b2
= 1                          4.3 

 

 

 

 

http://www.mathopenref.com/ellipseaxes.html


Chapter 4: Development of the New Algorithm 

 

59 
 

Ellipses not centred at the origin 

((x−h) cosα+(y−k) sinα)2

a2 +
((x−h)sinα−(y−k) cosα)2

b2 = 1                 4.4 

Where x, y, h, k, a and b are as explained above and αistherotationangle. 

With the new algorithm, the above equations especially Eq 4.4 are used for the purpose of 

checking either a particular instance is located inside an ellipse or not. This is done by 

applying Eq 4.4 to a point (x,y) and if it results in a value less than or equal to 1, it can be 

assumed to be within the boundaries of the ellipse. 

To formulate the optimisation problem, let us suppose that we focus on L ellipses to produce a 

solution (S). Suppose that we have two variables x and y that are selected from the available 

features, then, each ellipse in the solution is represented by five parameters x, y, a, b, and α 

which are the geometric parameters for the ellipse as described in equation 4.1 and equation 

4.4. The general optimisation task for each of the 3 aspects can be formulated as: 

 

For the first Aspect:  

 Maximising overall accuracy of Solution (S). 

Overall Accuracy =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 

 

For the second Aspect:  

 Minimising average cost per example for a solution (S). 

Overall Cost =
∑ Conf(i | j) ∗ Cost (i , j)n

i=1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 

Where, n is the number of classes, Conf (i | j) is the number of examples from 

class i that have been misclassified as class j, and Cost (i | j) is the cost of 

misclassifying an example of class i as class j. 

 

For the third Aspect:  

 Maximising overall accuracy of solution (S) considering cost as a penalty. 

Where, Objective-Function = Overall Accuracy - Overall Cost 
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Placing the ellipses can lead to situations where some examples are not covered, hence to 

achieve the maximum overall accuracy of solution (S), and the minimum overall 

misclassification cost for a solution(S), two functions should be minimised for each 

solution(S) as follows: 

 

  ∑   𝑴𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝒆𝒙𝒂𝒎𝒑𝒍𝒆𝒔𝑵
𝒊=𝟎                                                         4.5 

Minimise 

   ∑   𝑼𝒏𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝒆𝒙𝒂𝒎𝒑𝒍𝒆𝒔𝑵
𝒊=𝟎                                                        4.6 

 

Where N is the total number of examples used for training the classifier. 

 

As mentioned earlier, in theory, different optimization methods, such as genetic algorithms 

(GAs) and Particle Swarm Optimisation (PSO), can be attempted to solve such multi-objective 

optimization problem. However, placing ellipses in only one level (there are no inner and 

outer ellipses) is not adequate in general, so, placing inner ellipses within ellipses as necessary 

leads to more accurate classification. For example, consider Figure 4.3 below in which only 

one level of ellipses is used, we can observe that some ellipses have errors related to other 

classes. In this case, placing inner ellipses within ellipses as shown in Figure 4.4 leads to more 

accurate classification and gives a clear vision about the construction of a decision tree. In 

such cases, the outer ellipses are called parent ellipses and the inner ellipses are called child 

ellipses. 

 
Figure 4.3: One level placement of ellipses 

 
Figure 4.4: Multi-levels placement of ellipses 

 

Based on the ideas and points explained above, an outline of the new algorithm that utilizes 

elliptical decision trees can be described in the following paragraphs and some illustrative 

examples of how (ECSDT) works are presented in Section 4.5. 
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The new algorithm (ECSDT) starts by initialising a pool of S solutions; where each solution 

consists of L ellipses; where each ellipse is represented by seven variables: the first two 

variables represent the two selected features used to obtain the geometric information for the 

ellipse, and the remaining five variables are the geometric parameters of the ellipse as 

described earlier. After initialising the pool of solutions, the algorithm makes a call to the 

optimisation method (GA or PSO) to improve the performance of each solution related to the 

pool and then only the parameters of the ellipses that form the best solution is returned back. 

Figure 4.5 below; shows the outline for the (ECSDT) algorithm. 

 

 

1: Input: 

A. Dataset = {𝑒𝑥1, 𝑒𝑥2, … … . . , 𝑒𝑥𝑛} where each 𝑒𝑥𝑖 has features {𝑓1, 𝑓2, … … . . , 𝑓𝑚} 

and a class-label 𝑐𝑖. 

B. Cost-Matrix = {𝐶𝑠1, 𝐶𝑠2, … … . . , 𝐶𝑠𝑘} where k= number of classes, and 𝐶𝑠𝑖 = the 

cost of misclassifying  𝑐𝑙𝑎𝑠𝑠𝑖 . 

C. L = Number of the ellipses will be used to construct the tree. 

D. Z = Population size: The number of solutions that will be optimized to reach the 

optimal solution. 

 

2: Initialize the Pool with 

 P = {𝑠1, 𝑠2, … … . . , 𝑠𝑧} where 

 𝑠𝑖 is a solution that consists of a set of L ellipses that establish one possible 

complete tree,  𝑠𝑖 = {𝑒𝑙𝑙1, 𝑒𝑙𝑙2, … … . . , 𝑒𝑙𝑙𝑒}. 

 Each 𝑒𝑙𝑙𝑖 has seven parameters    𝑒𝑙𝑙𝑖 = {𝑥𝑖 , 𝑦𝑖, 𝑐𝑥𝑖 , 𝑐𝑦𝑖, 𝑟𝑥𝑖, 𝑟𝑦𝑖, 𝛼𝑖}. 

3: Let Objective Functions = maximize accuracy and minimize cost. 

4: Best Ellipses = Call related Optimizer (GA or PSO) with (Dataset, P, Objective- 

Functions, No. of cycles). 

5: Best Tree = Call Conversion-to-Tree (Best Ellipses, Dataset) 

6: Output: DT = Best Tree 

Figure 4.5: The outline for the (ECSDT) algorithm 
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4.3 Constructing Trees from Ellipses 

 

The algorithm presented in Section 4.2 results in a set of ellipses.  This section presents how 

this set is transformed into a decision tree. Based on the general concept of building decision 

trees, which are constructed a from the top to the down, starting with the root node and then 

branching down based on relationships between the children-nodes and the parent-nodes. 

Building the decision tree using the new algorithm (ECSDT) depends on the identification of 

three types of relationships between the ellipses that establish the best solution. The first type 

of relationship that should be identified is the so-called“independencerelationship”,which

determines which ellipses are independent and which ones are non-independent. Independent 

ellipse is an ellipse that is either does not intersect with any other ellipse or the ellipse that is 

partially intersected with another ellipse but it is not completely contained by the ellipses 

which intersect with it, while a non-independent ellipse is an ellipse that is completely 

contained within another ellipse.  

 

The second type of relationship that should be identified and used in the construction of the 

treeiscalledthe“parentalrelationship”,whichdetermineswhichoftheellipsesareconsidered

as parents, which ones are considered as children and which ones are considered as siblings. A 

parent ellipse is an ellipse that contains another complete ellipse (s) and a child ellipse as 

shown above with the child relationship, is an ellipse that is fully contained by another ellipse. 

Sibling ellipses are those ellipses on the same level and sharing the same parent. 

 

More formally, an ellipse (𝑒𝑖) is independent relative to a set of ellipses (Se) if: 

   independent (𝑒𝑖, Se)  = for all 𝑒𝑗 in Se, not a child (𝑒𝑖, 𝑒𝑗) 

Where the child relationship is defined by: 

   child (𝑒𝑖, 𝑒𝑗) = if  𝑒𝑖 is completely contained by  𝑒𝑗 

 

The third relationship that may occur between ellipses called the overlapping relationship, in 

which a partial intersection between two or more ellipses occurs. 

 

Based on the explanation of the relationships given above, we can derive the following 

relationships between the ellipses shown in Figure 4.4: 

 Ellipses A, B, C and H are independent ellipses. 

 Ellipses D, E, F and G are non-independent ellipses. 



Chapter 4: Development of the New Algorithm 

 

63 
 

 Ellipse D is a child of ellipse A, or in other words, ellipse A is a parent of ellipse D. 

 Ellipse F is a child of ellipse E and ellipse E is a child of ellipse C, but ellipse F is not 

considered as a child of ellipse C. 

 Ellipses A, B, C and H have a sibling relationship to each other. 

 The child ellipses G and E also have a sibling relationship to each other. 

 

ECSDT was developed, tested, and evaluated using three different approaches: (i) in the first 

approach only accuracy is considered as an objective function, (ii) in the second approach only 

cost is considers as an objective function, and (iii) the third approach considers accuracy that 

is influenced by cost as an objective function. Therefore, the tree construction varies slightly 

from one approach to another according to the main objective function. Figure 4.6 presents the 

outline for the methodology for constructing a decision tree regardless of the adopted 

approach. 

 

Conversion-to-Tree (Best Ellipses, Dataset) 

 

A. Let 𝑑𝑎𝑡𝑎𝑖 = data inside  𝑒𝑙𝑙𝑖𝑝𝑠𝑒𝑖. 

 

B. Let root-node = best independent ellipse. 

 

C. Let decision-nodes = best ellipses according to the following priorities: 

 Independent before non-independent. 

 Ellipses with no children. 

 Ellipses with no intersection. 

 Ellipses with a better result (based on the adopted approach). 

 Parent ellipses come before child ellipses. 

 

D. If a decision-node = an ellipse with no children like ellipses B, D, G and F, then Let:  

Left-Branch = Leaf-node with the majority class of the ellipse.  

Right-Branch = The following options according to order priority: 

 If the ellipse is independent like ellipse B, then  

Right-Branch = Decision-node with the next best independent ellipse (if 

any), OR, Right-Branch = Leaf-node with the majority class of the nearest 

independent ellipse. 

 If the ellipse is non-independent like ellipses D, G and F, then  

Right-Branch = Decision-node with the next best sibling ellipse (if any), 

OR, Right-Branch = Leaf-node with the majority class of the parent ellipse. 

 

E. If decision-node = an ellipse with only one child like ellipses A and E, then Let: 
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Left-Branch = Decision-node with the child ellipse. 

Right-Branch = following the same Right-Branch options listed in point D. 

 

F. If decision-node = an ellipse with more than one child like ellipse C, then Let: 

Left-Branch = Decision-node with the best child ellipse.  

Right-Branch = following the same Right-Branch options listed in point D. 

 

G. If decision-node = an ellipse that is the last ellipse on the path of one of the tree 

branches (has no child(ren) and no sibling(s) like ellipses D and F, then Let: 

Left-Branch = Leaf-node with the majority class of the ellipse. 

Right-Branch = Leaf-node with the majority class of the parent ellipse. 

 

H. When an overlapping occurs between some ellipses, then the ellipse that has the best 

results according to the priorities shown in point C will be tested first before the 

others. 

 

I. Repeat the processes in D, E, F, G and H recursively for both (Left-Branches & Right-

Branches) for each Decision-node. 

 

J. Return DT. 

Figure 4.6: The outline for constructing the DT using (ECSDT) 

 

For further explanation of the methodology used to construct a decision tree, let us assume 

that, ECSDT is adopting the first approach in which the only accuracy is considered as an 

objective function and let us also consider the example shown in Figure 4.4, then when 

applying the concepts that have been presented in Figure 4.6, the decision tree for the example 

shown in Figure 4.4 is as shown in Figure 4.7 below. 
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Figure 4.7: The decision tree for the example shown in Fig (4.4) 

 

As mentioned above, the root node of the decision tree will be an independent ellipse with the 

highest accuracy among others. As we can observe from Figure 4.4, ellipses A, B, C and H are 

independent ellipses, that, they are not contained by any other ellipses, but ellipse H is the 

most likely to be the root node for the tree because it is a clean ellipse that has no children, no 

intersection with other ellipses and has the highest accuracy rate =100%. On the other hand, 

we can observe that ellipses D, E, F and G cannot be assigned as the root node of the tree 

because they are considered as non-independent ellipses (children-ellipses) because they are 

contained by other ellipses.  



Chapter 4: Development of the New Algorithm 

 

66 
 

Given a DT with root (node), the algorithm for classifying a new example (x) is outlined in 

Figure 4.8. Some examples that illustrate this algorithm are given below and illustrated in 

Figure 4.9. 

Classification (x, node) 

 

Case-1: node is an ellipse with no-children & no-intersection; 

              If x inside the ellipse 

                    Then {Return class-label as the Maj-class of the ellipse;} 

              Else 

                  {  If node ≠ last-node 

                          Then {Classification (x, right -node) ;} 

                      Else {Return class-label as the Maj-class of the nearest ellipse;}                                   

                  } 

 

Case-2: node is a parent ellipse; 

              If x inside the ellipse 

                     Then { If x inside any child of the ellipse 

                                      Then{ Classification (x, left-node ); 

                                  Else { If node is an overlapped ellipse; 

                                                Then { If x inside the intersection 

                                                                Then { Return class-label as the Maj-class of the nearest   

                                                                                         ellipse;} 

                                                            Else { Return class-label as the Maj-class of the ellipse;} 

                                                          } 

                                             Else { Return class-label as the Maj-class of the ellipse;}                                                     

                                          }       

                                } 

              Else {  If node ≠ last-node 

                                 Then {Classification (x, right -node); } 

                          Else {Return class-label as the Maj-class of the nearest ellipse;}                                   

                         } 

                   } 

 

Case-3: node is an overlapped ellipse and not a parent; 

              If x inside the ellipse 

                    Then { If x inside the intersection 

                                        Then {Return class-label as the Maj-class of the nearest ellipse;} 

                                 Else {Return class-label as the Maj-class of the ellipse;} 

              Else {  If node ≠ last-node 

                              Then {Classification (x, right-node);} 

                          Else {Return class-label as the Maj-class of the nearest ellipse;}                                   

                      } 

Figure 4.8: The outline for classifying new examples using ECSDT 
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Figure 4.9: Examples of classifying new instances using ECSDT 
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Based on the outline algorithm in Figure 4.6 for constructing a DT and on the outline 

algorithm in Figure 4.8 for classifying new examples, Figure 4.9 above; illustrates 6 different 

examples that show the path followed to make a prediction for 6 unseen examples. The figures 

marked 1, 2, 4 and 5 show the paths followed to make a prediction for a new example whose 

feature values fall within the boundaries of ellipses H, B, F, E and C respectively. The figure 

marked as 3 shows an example whose feature values fall within the overlapped area between 

ellipse B and ellipse C, and the figure marked as 6 shows the path followed to make a class 

prediction of any new example whose feature values do not fall within the boundaries of any 

of the ellipses. 

 

As mentioned before, a multi-objective framework called MOEA was utilised to implement 

ECSDT. Section 4.4 presents this framework and how it is utilised for optimising the problem 

and Section 4.5 presents details of the implementation of the new algorithm with illustrative 

examples. 

 

 

4.4 Implementing ECSDT in the MOEA Framework 

 

The ECSDT is an evolutionary algorithm because it has been developed by exploiting the 

evolutionary approach of two evolutionary algorithms, namely NSGAII which is a genetic 

algorithm (GA) and OMOPSO which is a particle swarm optimisation (PSO) algorithm. 

 

The optimisation part of ECSDT is implemented using a framework called MOEA. MOEA is 

an abbreviation of (Multi-Objective Evolutionary Algorithms) and is available as an open 

source Java library developed by Hadka (2014) which can be easily imported into common 

Java development platforms such as Eclipse or NetBeans. MOEA comes with a vast collection 

of tools and packages that help developers design, develop, execute and statistically test the 

performance of common evolutionary optimization algorithms on different optimization 

problems. One of the powerful features of the MOEA framework is the ability for developers 

to identify and introduce their new own problems into the MOEA framework to be optimized 
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and this is the aspect in which this framework has been utilized in the process of developing 

the new algorithm. 

The optimisation process for a particular problem in MOEA is accomplishing in two main 

steps or phases. The first phase is to define the problem to be optimised, and the second phase 

is to execute the problem: 

 

 Defining the problem:  

TodefineanyproblemsinMOEA,aclassrelatedtotheframeworkcalled“Problem

interface” should be implemented indirectly by extending another class called 

“AbstractProblem”.Thisclassprovidesthemethodsfordescribing and representing 

the problem and then evaluating solutions to the problem. The “AbstractProblem” 

class includes two main methods required for defining the problem as stated below: 

 The “newSolution” method which is responsible for producing new instances of 

solutions for the problem by defining the bounds for the decision variables used to 

solve the problem. At the end of this method, a new solution instance will be 

returned. 

 The “evaluate” method which is responsible for evaluating solutions to the 

problem that have been generated by the optimization algorithm. Thus most of the 

definitions and methods related to the problem are defined inside this method as 

well as setting the objective functions to be optimized and the constraints of the 

problem. 

 

 Executing the problem:  

To execute the problem using an optimization algorithm, a class called “executer” 

related to MOEA is used. The executer class requires, at least, three pieces of 

information: 

 The problem to be optimized (which is the problem defined in the previous steps), 

and it can be called by the “executer” using a direct reference to the problem class 

using the "withProblemClass" method. 

 The algorithm that will be used for optimizing the problem by using its name as an 

argument for the “withAlgorithm” method. 

  The number of evaluation loops required for getting the optimum solution for the 

problem using the “withmaxevaluations” method. 
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As mentioned earlier with the outline for the (ECSDT) algorithm, the process starts with the 

initialisation of a pool of solutions, and then the“executer”class makes a connection between 

the initialised pool of solutions, the Problem class and the algorithm to optimize the solutions 

and return the best one among them. The pseudo code for the top-level of the new algorithm 

using the MOEA framework is depicted in Figure 4.10 where the outer for loop creates the 

initial pool of p solutions and for each of these the inner loop creates the ellipses.  Once the 

population and problem are defined, the optimizer is called (Call Optimization) and then the 

tree constructed (Call Tree maker). 

 

 

The top-level for the new algorithm using MOEA: 

 

Let numberOfEllipses = The appropriate number of ellipses for the optimization process 

Initialise Pool (populationsize) 

   { 

      for (int p = 0; p < populationSize; p ++) 

         { 

Solution solution[p] = new Solution (numberOfEllipses) 

   { 

      for (int ell = 0; ell < numberOfEllipses; ell ++) 

         { 

            solution.setVariables [ell]= [(𝑥𝑖, 𝑦𝑖, 𝑟𝑥𝑖, 𝑟𝑦𝑖, 𝑎𝑙𝑝ℎ𝑎𝑖) ] 

          } 

    } 

} 

    } 

Best solution = Call Optimization (Dataset, Problem Class, Optimisation Algorithm 

                            , maximum evaluation, Objective functions, Initialisation of the Pool); 

Tree = CALL Tree-maker (Best solution) 

 

Figure 4.10: The pseudo code of the top-level for the new algorithm 
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The general pseudocode for optimising a particular solution is shown in Figure 4.11. 
 

The Call Optimisation Method using the “executer” class in MOEA: 
 

Let Objective-Function-1 = maximise classification accuracy; 

Let Objective-Function-2 = minimise misclassification costs; 

For each solution[p] Do 

    { 

          Let Data[i] be set of data contained in Ellipse[i] 

          If Ellipse[i] is a Child of Ellipse[j], Then  

                 { 

                     Remove Data[i] from Data[j]; 

                 } 

          Else 

                 {  

                     If Data[i] is inside an overlapped area between Ellipse[i] and Ellipse[j], Then 

                          { 

                              Remove Data[i] from the farthest ellipse; 

                          } 

          Set Predicted-Class Data[i] = Majority-Class of Ellipse[i]; 

          Calculate Accuracy & Cost for solution[p]; 

          If solution[p] better that Best-Solution, Then 

              { 

                 Best-Solution = solution[p]; 

              } 

    } End Do; 

Return (Best-Solution); 
 

Figure 4.11: The pseudo code of the optimisation process                           

 

ECSDT calculates the value of the accuracy objective function by subtracting the rate of 

unclassified examples from the accuracy rate. The accuracy rate and the unclassified rate 

are calculated using the following equations. 

                Accuracy Rate =   
∑      TCi

m
i=1

N
                                                                             4.7 

                Unclassified Rate =   
No.Unclassified examples

N
                                                    4.8 

Where, 𝑇𝐶𝑖 is the total number of correctly classified examples belonging to the class 𝐶𝑖 

and N is the total number of examples. 

Using the two previous Eq 4.7 and 4.8 we can derive the equation for calculating the value 

of the accuracy-based objective function as follows: 

Acc_Obj_Function =  Accuracy Rate −  Unclassified Rate                   4.9 
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To calculate the total cost of the classification errors, ECSDT uses a similar formula as 

shown in equation 2.13 : 

Total Cost = ∑ Conf(i | j) ∗ Cost (i, j)n
i=1                                                

Where, Conf (i | j) is the number of examples from class i that have been misclassified as class 

j, and Cost (i | j) is the cost of misclassifying an example of class i as class j. 

 

 

4.5 Illustrative Examples of How (ECSDT) Works: 

 

To illustrate the way (ECSDT) calculates accuracy and misclassification costs when building 

the classifier; let us consider the hypothetical multiclass classification problem shown in 

Figure 4.12 that depicts a 3-class classification problem that includes a total of 60 examples 

classified into 3 classes (C1 = triangle = 19, C2 = circle = 30, and C3 = rectangle = 11). Figure 

4.13 and Figure 4.15 present two examples of different possible solutions for this problem in 

which four ellipses (A, B, C and D) are placed for each solution. Based on the steps listed in 

the pseudo code shown in Figure 4.11, the calculation of accuracy and cost depends mainly on 

the way of allocating Data[i] to the ellipses. Based on that, when considering the proposed 

solution example-1 depicted in Figure 4.13, then the ECSDT assigns each example to the 

appropriate ellipse as shown in Figure 4.14. 

 
 

Figure 4.12: Hypothetical multiclass classification 

problem 

 
 

Figure 4.13: Elliptical classification example-1 

 

 

Figure 4.14 contains 6 different sub-figures 4.14.1, 4.14 .2, 4.14.3, 4.14 .4, 5 and 4.14.6 that 

show how ECSDT assigns each individual example to only one particular ellipse. Sub-figures 

4.14.1, 4.14.2, 4.14.3 and 4.14.4 show examples that fall into only one ellipse, therefore the 

ECSDT will assign each example to the ellipse that contains it. Sub-figure 4.14.5 shows the 
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examples that lie in the intersection between ellipses; in this case the ECSDT assigns each 

example to the ellipse with the nearest center, as we see that the examples located in the 

intersection between ellipse A and ellipse B were all assigned to ellipse A because the distance 

between each example and the center of ellipse A is less than the distance between them and 

the center of ellipse B. The same scenario is repeated to the examples located in the 

intersection between ellipse B and ellipse C where all examples are assigned to ellipse C 

because they are closer to ellipse C than ellipse B. Sub-figure 4.14.6 shows the examples that 

have not been contained in any of the ellipses (Out of all), in such a case, ECSDT does not 

assign these examples to any ellipse, but instead of that, ECSDT calculates the percentage of 

these examples over the total number of examples and then imposes this percentage as a 

penalty on the accuracy rate that decreases the accuracy rate that to stimulate the algorithm to 

reduce the number of examples that have not been contained in any of the ellipses (Out of all). 

 
Figure 4.14: Assigning examples to ellipses 
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From Figure 4.14, the confusion matrix shown in table 4.1 can be observed. 

Confusion matrix 
Predicted Class 

C1 C2 C3 Out 

Actual Class 

C1 17 0 0 2 

C2 3 22 2 3 

C3 0 0 8 3 
Table 4.1: The confusion matrix obtained when applying ECSDT for example-1 

 

Using Eq 4.7, Eq 4.8 and Eq 4.9, then the following results can be calculated for example-1: 

              Accuracy Rate = (T𝐶1 +T𝐶2+ T𝐶3) / N                                 

                                      = ( 17 + 22 + 8 )/ 60 ≃ 78.33 % 

   Unclassified Rate =  ( 2 + 3 + 3)/ 60 ≃ 13.33 % 

                Acc_Obj_Function =  78.33 – 13.33 =  65 % 

As mentioned before, ECSDT keeps trying recursively to improve the overall performance of 

the classifier by maximising the accuracy and minimising the unclassified rate. Figure 4.15 

below depicts another possible solution example-2 for the same problem shown in Figure 4.12 

in which the performance is improved over the previous solution shown with example-1 in 

Figure 4.13. 

 

Confusion matrix 
Predicted Class 

C1 C2 C3 Out 

Actual Class 

C1 19 0 0 0 

C2 2 28 0 0 

C3 0 0 11 0 

Table 4.2: The confusion matrix obtained for 

example-2 

 

From Figure 4.15, the confusion matrix shown in Table 4.2 can be observed and the following 

results can be calculated for example-2.  

Accuracy Rate = (19 + 28 +11) / 60 ≃ 96.67 % 

Unclassified Rate = 0.0 % 

Acc_Obj_Function = 96.67 - (0.0) = 96.67 % 

 

From the previous examples and explanations, it can be observed that the perfect optimal 

solution for any classification problem using ECSDT can be achieved when the Accuracy Rate 

Figure 4.15: Elliptical classification example-2 
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= 100% and the Unclassified Rate = 0.0 %, then the value of the accuracy fitness function will 

be 100%. 

To highlight the cost calculation methodology adopted by the ECSDT algorithm, let us again 

consider both previous examples (example-1 and example-2) along with their associated 

confusion matrixes are shown in Table 4.1 and Table 4.2 respectively. As mentioned before, to 

calculate the misclassification costs, a cost matrix should be predefined an expert. Suppose 

that the cost matrix for both examples was suggested by an expert as given in Table 4.3. 

Cost matrix 
Predicted Class 

C1 C2 C3 Out 

Actual Class 

C1 0.0 5.0 5.0 5.0 

C2 20.0 0.0 20.0 20.0 

C3 10.0 10.0 0.0 10.0 
Table 4.3: The cost matrix of (example-1 and example-2) 

 

By using Eq 4.10, then the total misclassification costs associated with example-1 and 

example-2 can be calculated as follows:  

Total cost for (example-1)  

= [(17* 0.0) + (0*5.0) + (0*5.0) + (2*5.0)] + [(3*20.0) + (22*0.0) + (2*20.0)  

          + (3*20.0)] + [(0*10.0) + (0*10.0) + (8*0.0) + (3*10.0)]  

      = [10.0] + [160.0] + [30.0] = 200.0  

 

Average Cost per example (example-1) = 200 / 60 ≃ 3.33  

 

Total cost for (example-2) = (2*20.0) = 40.0  

 

Average Cost per example (example-2) = 40 / 60 ≃ 0.66  
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Chapter 5 : EMPIRICAL EVALUATION OF THE NEW ALGORITHM 

 

 

Chapter 4 presented the development of the new algorithm ECSDT and explained how it was 

implemented using MOEA. 

This chapter carries out an empirical evaluation of ECSDT relative to other algorithms. 

Section 5.1 presents a summary of the data sets used which have been obtained mainly from 

the UCI Machine Learning Repository (Lichman 2013).  As outlined in the literature review 

chapter, there are many different algorithms for decision tree induction and Section 5.2, 

therefore, outlines a selection that was used for comparison. Section 5.3 presents and analyses 

the empirical results from the different algorithms when a 10-fold cross validation 

methodology is adopted. 

 

 

5.1 Datasets 

 

For the purposes of this research, common data mining datasets from the UCI Machine 

Learning Repository (Lichman 2013) have been used in building the classifier and testing its 

classification accuracy. 

Fourteen datasets from the UCI Machine Learning Repository (Lichman 2013) named (Iris, 

Seeds, Glass, Hepatitis, Bupa, Heart, Diabetes, Haberman, Ecoli, Hayes, Tae, Thyroid, WDBC 

and WPBC) were used in this research. These datasets are selected to cover several aspects 

such as the diversity in the areas from which they were derived, the diversity in the number of 

classes, the diversity in the number of features contained in each dataset, and the diversity in 

the number of examples contained in each dataset. 

The main characteristics of the datasets used in this research are summarized in Table 5.1 and 

more details about these datasets are provided in Appendix A. 
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Dataset Name Area 
No. 

Classes 

No. 

Features 

No. 

Examples 

Bupa-Liver Disorders Medical 2 7 345 

Hepatitis Medical 2 20 155 

Statlog Heart Disease Medical 2 14 270 

Haberman’sSurvival Medical 2 4 306 

Diabetes Medical 2 20 768 

Breast Cancer Wisconsin (Diagnostic) WDBC Medical 2 32 569 

Breast Cancer Wisconsin (Prognostic) WPBC Medical 2 34 198 

IRIS Medical 3 4 150 

Hayes-Roth Social 3 5 160 

Seeds Medical 3 7 210 

Teaching Assistant Evaluation 

Tae 
Education 3 5 151 

Thyroid Disease Medical 3 21 216 

Glass Identification Physical 7 10 214 

Ecoli Medical 8 8 336 
Table 5.1: Datasets characteristics 

 

The algorithms were evaluated based on the classification accuracy rate, total misclassification 

cost and the size of the induced decision trees. The methodology adopted for the empirical 

evaluation was 10-fold cross-validation which has been widely used by many other studies 

(Anguita et al. 2012). 

 

In order to get reliable results, the datasets should be filtered and cleaned as much as possible 

from different types of noises which include, for instance, data entry mistakes, missing values, 

data instability and other factors that may affect the results (Zhang et al. 2003). 

For both stages of developing and evaluating the new algorithm ECSDT, the datasets were 

manipulated and prepared in a way that works with the new algorithm without problems. That 

is, the data was prepared to take account of the following points: 

1. The algorithm works only with numerical values so that if the dataset contained 

nominal attributes, they were converted to a numerical format including the nominal 

class labels which were converted to numerical values as well. The conversion was 

done by modifying the data in Excel by giving all the similar nominal attribute values 

a certain numerical value. For example, with IRIS dataset, the 3 types of IRIS flowers 

Setosa, Versicolour and Virginica were converted to 3 numeric values 1, 2 and 3 

respectively. Another example of this conversion is what happened with the Thyroid 

disease dataset in which the values of some nominal features has been changed to 
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numericvaluessuchaschangingthevaluesofthefeature“sex”fromM=male and 

F=female to 1 and 2 respectively, also changing the values of the features that have 

values of T=true and F=false to 1 and 2 respectively. 

2. The algorithm does not deal with datasets with missing values, so only datasets that do 

not have missing values were used. 

3. When using (.csv) dataset files, the dataset heading, which labels the columns of the 

attributes must be on the first row of the dataset. 

4. The column that holds the class labels should be in the last column of the dataset table. 

 

 

5.2 Comparative Algorithms 

 

The evaluation was made by comparing the results obtained when applying ECSDT to each of 

the datasets mentioned above along with the results obtained when applying four well-known 

algorithms to the same datasets considering the same conditions and circumstances. The 

algorithms selected for assessing and comparing the accuracy of classification are: the J48 

algorithm, NBTree algorithm, BFTree, ADTree, LADTree and REPTree; whereas for 

comparing the cost sensitivity of the ECSDT, two meta-learning algorithms named 

CostSensitiveClassifier and MetaCost are used. All of these algorithms are provided in the 

WEKA system which is a collection of a diversity of machine learning algorithms and data 

mining preprocessing tools (Frank et al. 2016). The algorithms selected for comparison are 

summarized below: 

 J48: Is a decision tree learner in Weka (Witten et al. 2016) that implements the 

standard C4.5 algorithm (Hormann 1962) which is an extension of the ID3 algorithm 

(Quinlan 1986). More details about ID3 and C4.5 are given in Chapter 2. J48 has more 

features over the ID3 and C4.5 such as taking into account missing values, pruning the 

tree, the ability to deal with continuous values, etc.(Kaur & Chhabra 2014). 

 

 NBTree: The NBTree algorithm (Kohavi 1996) combines features from both decision 

trees and Naive Bayes. The decision-making process is based on the structure of the 

tree that is constructed recursively. However, leaf-nodes are set using Naive-Bayes 

techniques. For features with continuous values, the algorithm uses a particular 

threshold to reduce the value of the entropy measure. The nodes are evaluated by 

http://weka.wikispaces.com/CostSensitiveClassifier
http://weka.wikispaces.com/MetaCost
http://weka.wikispaces.com/CostSensitiveClassifier
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calculating the average of the five-fold cross-validation using Naïve-Bayes at the node. 

The NBTree algorithm attempts to test if the calculated accuracy using Naive-Bayes at 

every leaf-node is greater than the result obtained by applying an individual Naive-

Bayes classifier at the present node. 

 

 BFTree: (Best-First Tree), with BFTree, the best node to split on is the one that has a 

maximum reduction of the impurity value among others. The produced tree is the same 

as the one produced by standard algorithms as C4.5 and CART except for the way the 

decision tree is constructed. BFTree builds binary trees, that is each decision node will 

have exactly two outgoing branches (Shi 2007). 

 

 ADTree: (Alternating Decision Tree), ADTree (Freund & Mason 1999) is a 

classification method that integrates decision trees with boosting into a collection of 

classification rules that are small in size and easy to understand. ADTree is mainly 

aimed at solving binary classification problems and then expanded to include 

multiclass problems.  

 

 LADTree: (Logical Analysis of Data Tree), LADTree (Holmes et al. 2002) is a 

classification method that was originally introduced for solving binary classification 

problems. LADTrees are constructed using logical expressions that can differentiate 

between positive and negative examples. Building LADTrees usually include the 

creation of a large set of models and then selecting a subset from the models that 

satisfy particular predefined requirements (S. R. Kalmegh 2015). 

 

 REPTree: (Reduced Error Pruning Tree), RepTree (J.R. Quinlan 1987) is a rapid 

decision tree induction method that is founded on the base of calculating the 

information-gain with entropy and reducing the errors that emerge from inconsistency. 

RepTree produces multiple trees in various repetitions that employ the regression tree 

logic for constructing the trees. Then the best tree is chosen from the others as the 

representative tree (S. Kalmegh 2015; Devasena & Hyderabad 2015). 

 

 CostSensitiveClassifier: Is a meta-classifier that utilise two cost-sensitive methods to 

construct the model. The first method attempts to reweight the training examples based 

http://weka.wikispaces.com/CostSensitiveClassifier
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on the total cost allocated to each class, whereas, the second method endeavour to 

make predictions to the class with the lower expected misclassification cost rather than 

making the prediction to the majority class (Witten et al. 2016). 

 

 MetaCost: This meta-classifier is one of the most well-known methods for converting 

base classifiers to cost-sensitive (Domingos 1999). More details about MetaCost are 

given in Chapter 3. 

 

 

5.3 Empirical Evaluation 

 

The evaluation phase of the ECSDT includes three different aspects. The first aspect considers 

accuracy only as the main objective where the ideal solution is the solution that gives the 

highest accuracy regardless of the cost, whereas, for the second aspect, misclassification costs 

are the main target for the classifier, and for the third aspect, the target is to explore the impact 

of misclassification cost on the accuracy that by subtracting the average cost from the accuracy 

rate which ensures that the higher the accuracy and the lower the cost, the better the objective 

function result will be. 

All experiments were carried out using 10 fold cross-validations in which the dataset is 

randomly divided into 10 folds of equal sizes. Of the 10 folds, 1 fold is held for testing the 

classifier and the remaining folds are used for training the classifier.  For experiments in which 

the cost is taken into account, trials were conducted on different sets of cost ratios in order to 

assess the cost sensitivity of the new algorithm. More details about the cost ratios used in this 

research are presented later in Section 5.3.2. 

As mentioned before, this algorithm follows a new method which uses ellipses instead of 

straight lines for data separation and classification. One of the challenges facing this algorithm 

is how to determine the appropriate number of ellipses that should be used to build the 

decision tree for each classification problem. For this reason, all experiments were repeated 

five times with a different number of ellipses to determine the number of ellipses that gives the 

best results compared to the other alternatives. The number of ellipses used varies from one 

dataset to another according to the nature of the dataset and according to the number of 

classes. The methodology used to determine the number of ellipses was based on the number 

http://weka.wikispaces.com/MetaCost
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of classes. The number of ellipses used for each dataset usually starts with a number equal to 

the number of classes and then this number is gradually increased with a particular increment. 

For example, with 2-class datasets, the tested numbers of ellipses are 2, 4, 6, 8 and 10 ellipses 

and with 3-class databases, the tested numbers of ellipses are 3, 6, 9, 12 and 15 ellipses. For 

the Glass dataset which is a 7-class problem and for the Ecoli dataset which is an 8-class 

problem, it is obvious that following the same methodology will lead to the production of very 

large decision trees, so the numbers of ellipses used with both datasets was limited to 6, 8, 10, 

12 and 14 ellipses. After determining the optimal number of ellipses for each dataset the 

results obtained from applying the optimal number of ellipses in each optimization method are 

compared with the results obtained by applying the other comparative algorithms on the same 

datasets with the same conditions and circumstances. 

The experiments were performed with both optimization methods namely: OMOPSO and 

NSGA-II that are available in MOEA framework. These optimization methods are controlled 

by several parameters, ECSDT uses these methods with only the default values. Some 

examples of these properties are populationSize, mutationProbability, maxEvaluations and 

archiveSize. 

As an example, but not exclusively, Figure 5.1 below depicts the general methodology used in 

the evaluation process for each dataset. 



Chapter 5: Empirical Evaluation of the New Algorithm 

 

82 
 

 
Figure 5.1: General methodology for the evaluation process 

 

The following sub-sections highlight and discuss the evaluation processes and show the 

comparison results obtained in each of the three evaluation aspects mentioned above, namely: 

accuracy only, cost only and both accuracy and cost as one objective function. Each sub-

section presents an evaluation for the results of all datasets, and then for further clarification, 

detailed explanations of the results related to three datasets namely: Bupa, IRIS and Ecoli are 

given in separate sub-sections. These 3 datasets were selected to represent a sample of datasets 

labelled with different numbers of classes, where Bupa is a 2-class dataset, IRIS is a 3-class 

dataset and Ecoli is an 8-class dataset.  

 

5.3.1 Empirical Comparison Based on Accuracy 

 

In the first aspect where accuracy is considered as the only objective function for building, 

testing and evaluating the classifier; the comparative algorithms used to evaluate the 

performance of the ECSDT algorithm are: J48, NBTree, BFTree, ADTree, LADTree and 

REPTree.  
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For accuracy-based experiments, the primary objective is to compare classification accuracy 

only; so, it has been assumed that all classification errors similarly have the same cost which 

has been set to only 1 unit of cost during the stage of building the classifier. For each dataset 

and for each of the optimization methods (GA and PSO) the best accuracy results along with 

the associated decision tree sizes are compared with those obtained by the other algorithms. 

The following sub-sections explain and discuss the results obtained from the accuracy-based 

evaluation. Section 5.3.1.1 gives a general discussion for the accuracy-based results for all 

datasets in general and as mentioned above, sub-sections 5.3.1.2, 5.3.1.3 and 5.3.1.4 are 

devoted to a detailed explanation of the results obtained for Bupa, IRIS and Ecoli datasets 

respectively. All tables and results related to this aspect are provided in Appendix B. 

 

 

5.3.1.1 Discussion for Accuracy-based results 

 

As mentioned previously, one of the most important steps in the evaluation of the new 

algorithm ECSDT is to determine the appropriate number of ellipses for each dataset and then 

to compare the results obtained with those from other algorithms. Table 5.2 shows the 

classification accuracy obtained when ECDT is applied to each dataset when using a different 

number of ellipses and when both optimization methods (GAs and PSO) are used. 

It is reasonable to think that increasing the number of ellipses will always lead to increased 

accuracy rates, but we note from Table 5.2 that this is not always true as in some cases 

although the number of ellipses is increased, the accuracy results remain in the same range, or 

even reduces slightly. The other thing that can be seen from the table is that the general 

performance when using the GA optimization method (NSGA-II algorithm) is better than the 

general performance of using the PSO optimization method (OMOPSO algorithm), as we can 

observe that applying the NSGA-II algorithm has better results than the OMOPSO algorithm 

in 44 out of the 70 trials, while applying the OMOPSO algorithm achieved better results than 

the NSGA-II algorithm in only 20 trials and the performance of both algorithms was equal in 

only 6 trials. 

Table 5.3 presents the results achieved by the comparative algorithms along with the results 

from ECSDT when it is used with the ideal number of ellipses determined at the previous 

stage. 
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Figure 5.2 and Figure 5.3 graphically illustrate the accuracies and decision tree sizes that are 

shown in Table 5.3. Figure 5.2 shows that the ECSDT algorithm achieved better results for the 

majority of datasets especially when the NSGA-II algorithm is used as the optimization 

method where it recorded better accuracy on 10 out of the 14 datasets. The datasets with which 

the ECSDT algorithm recorded the best accuracy results are: Bupa, Hepatitis, Hart, Huberman, 

Diabetes, WPBC, IRIS, Seeds, Thyroid, and Ecoli. In addition to the promising accuracy 

results achieved by the ECSDT algorithm, it was able to produce smaller decision trees than 

the J48 algorithm on 6 out of the 10 datasets with which the ECSDT algorithm produced the 

best accuracy results. The datasets with which the ECSDT algorithm recorded the best 

accuracy with the smallest decision trees are: Bupa, Hart, Diabetes, WPBC, IRIS, Thyroid, 

and Ecoli. For example, with Bupa, the ECSDT algorithm obtained an accuracy rate of 

72.35% with a decision tree size of 17 nodes, while the best accuracy rate achieved by other 

algorithms was produced by the J48 algorithms with an accuracy value of 68.70% and a 

decision tree size of 51 nodes. Also, with the Diabetes dataset, the ECSDT algorithm obtained 

an accuracy rate of 78.28% with a decision tree size of 13 nodes, while the best accuracy rate 

achieved by other algorithms was produced by the REPTree algorithms with an accuracy value 

of 75.26% and a decision tree size of 49 nodes. 
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Dataset  Optimizer 
No.  

Ell 
Accuracy SE 

No.  

Ell 
Accuracy SE 

No.  

Ell 
Accuracy SE 

No.  

Ell 
Accuracy SE 

No.  

Ell 
Accuracy SE 

Bupa 
OMOPSO 2 49.41 0.51 4 59.71 0.87 6 58.82 0.51 8 65.85 0.43 10 68.52 0.77 

NSGA-II 2 53.53 0.43 4 59.41 0.76 6 60.59 0.62 8 66.47 0.39 10 72.35 0.46 

Hepatitis 
OMOPSO 2 81.42 0.96 4 82.86 1.12 6 85.71 1.16 8 84.29 1.71 10 84.29 1.05 

NSGA-II 2 80.00 1.90 4 82.86 1.47 6 85.71 0.95 8 88.57 0.60 10 87.14 1.05 

Heart 
OMOPSO 2 68.15 1.33 4 73.7 0.82 6 77.40 0.59 8 73.70 0.40 10 84.81 0.44 

NSGA-II 2 67.40 0.57 4 71.48 0.67 6 80.37 0.58 8 77.03 0.51 10 83.33 0.80 

Haberman 
OMOPSO 2 73.33 0.90 4 76.00 0.56 6 76.66 0.38 8 78.00 0.74 10 78.66 0.52 

NSGA-II 2 74.66 0.89 4 75.00 0.65 6 78.00 0.50 8 79.66 0.57 10 80.00 0.41 

Diabetes 
OMOPSO 2 74.73 0.57 4 75.52 0.35 6 76.97 0.41 8 78.81 0.36 10 75.13 0.46 

NSGA-II 2 73.42 0.52 4 76.44 0.30 6 78.28 0.28 8 77.89 0.43 10 76.84 0.48 

WDBC 
OMOPSO 2 85.88 0.99 4 92.14 0.24 6 85.35 1.22 8 93.20 0.16 10 87.32 0.54 

NSGA-II 2 85.71 1.07 4 88.92 0.58 6 90.88 0.46 8 93.34 0.23 10 89.63 0.33 

WPBC 
OMOPSO 2 76.84 0.44 4 77.35 0.89 6 78.42 1.17 8 76.84 0.50 10 77.90 0.88 

NSGA-II 2 76.84 0.75 4 78.42 0.97 6 75.26 1.02 8 76.31 0.93 10 73.16 0.76 

IRIS 
OMOPSO 3 95.33 0.30 4 98.66 0.28 5 97.33 0.34 6 96.66 0.35 7 95.33 0.32 

NSGA-II 3 94.66 0.52 4 98.66 0.28 5 96.66 0.46 6 96.00 0.34 7 95.33 0.44 

Hays 
OMOPSO 3 57.5 1.43 6 61.87 0.85 9 65.62 1.03 12 68.12 0.85 15 62.50 0.77 

NSGA-II 3 60.62 0.72 6 68.12 1.08 9 68.12 0.95 12 71.25 0.94 15 63.12 1.33 

Seeds 
OMOPSO 3 83.32 1.27 6 87.62 0.78 9 87.14 0.87 12 91.90 0.50 15 86.66 0.83 

NSGA-II 3 85.71 0.86 6 89.52 0.66 9 87.14 0.71 12 93.33 0.41 15 89.04 0.59 

Tae 
OMOPSO 3 44.00 1.26 6 51.33 1.17 9 51.33 1.04 12 54.00 1.23 15 50.00 1.30 

NSGA-II 3 43.33 1.22 6 47.33 1.06 9 49.32 0.95 12 50.00 0.90 15 55.32 0.83 

Thyroid 
OMOPSO 3 85.70 1.22 6 91.43 0.86 9 87.14 0.45 12 87.61 0.68 15 89.04 0.45 

NSGA-II 3 88.56 0.93 6 94.28 0.49 9 92.37 0.51 12 89.52 0.54 15 91.90 0.55 

Glass 
OMOPSO 6 79.04 1.63 8 89.04 0.45 10 90.47 0.40 12 92.37 0.58 14 93.32 0.81 

NSGA-II 6 81.89 0.94 8 90.47 0.38 10 93.32 0.33 12 94.28 0.43 14 95.23 0.38 

Ecoli 
OMOPSO 6 72.72 0.85 8 76.35 0.68 10 76.35 0.46 12 82.78 0.20 14 74.50 0.57 

NSGA-II 6 73.32 0.51 8 77.26 0.55 10 76.96 0.21 12 83.33 0.54 14 76.35 0.46 

Table 5.2: Accuracy-based results for all datasets using different number of ellipses when ECSDT is applied
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Dataset 
J48 NBTree BFTree ADTree 

Size Acc SE Size Acc SE Size Acc SE Size Acc SE 

Bupa 51 68.70 0.5 11 66.38 0.48 19 64.92 0.50 31 59.71 0.47 

Hepatitis 11 85.89 0.172 5 84.61 0.35 5 83.33 0.38 31 87.17 0.31 

Heart 39 77.40 0.44 17 80.74 0.38 37 77.40 0.44 31 79.25 0.38 

Haberman 5 71.89 0.43 3 72.54 0.42 5 73.52 0.44 31 71.56 0.43 

Diabetes 39 73.8 0.44 1 73.56 0.42 5 73.56 0.44 31 72.91 0.41 

WDBC 25 92.97 0.26 23 92.79 0.25 17 92.97 0.25 31 94.72 0.18 

WPBC 21 73.73 0.49 11 71.21 0.47 1 75.75 0.43 31 73.23 0.43 

IRIS 9 96.00 0.15 9 94.66 0.17 11 94.66 0.17 

   

Hays 23 83.12 0.27 13 64.37 0.38 29 81.25 0.27 

Seeds 15 91.90 0.23 7 90.95 0.22 19 93.33 0.21 

Tae 67 59.60 0.46 7 58.27 0.43 28 57.61 0.45 

Thyroid 17 92.09 0.21 7 93.02 0.20 17 92.09 0.23 

Glass 11 96.72 0.09 7 93.45 0.11 11 98.13 0.07 

Ecoli 41 79.76 0.20 13 80.05 0.20 57 78.86 0.21 

Overall Average 26.71 81.68 0.31 9.57 79.76 0.32 18.64 81.24 0.32 31 76.94 0.37 

 

Dataset 
LADTree REPTree ECSDT+OMOPSO ECSDT+NSGA-II 

Size Acc SE Size Acc SE Size Acc SE Size Acc SE 

Bupa 31 65.50 0.46 23 64.05 0.49 21 68.52 0.77 21 72.35 0.46 

Hepatitis 31 80.76 0.40 11 87.17 0.31 13 85.70 1.16 17 88.57 0.60 

Heart 31 80.00 0.36 7 76.66 0.42 21 84.81 0.44 21 83.33 0.80 

Haberman 31 73.52 0.44 5 71.24 0.45 21 78.66 0.52 21 80.00 0.41 

Diabetes 31 74.08 0.42 49 75.26 0.42 17 78.81 0.36 13 78.28 0.28 

WDBC 31 95.60 0.18 9 92.44 0.25 17 93.20 0.16 17 93.34 0.23 

WPBC 31 75.25 0.44 7 72.22 0.45 13 78.42 1.17 9 78.42 0.97 

IRIS 31 94.00 0.19 5 94.00 0.19 9 98.66 0.56 9 98.66 0.46 

Hays 31 82.50 0.26 25 83.75 0.27 25 68.12 0.85 25 71.25 0.94 

Seeds 31 91.90 0.20 5 90.00 0.24 25 91.90 0.59 25 93.33 0.46 

Tae 31 59.60 0.43 29 53.64 0.46 25 54.00 1.23 31 55.32 0.90 

Thyroid 31 93.95 0.18 7 92.09 0.22 13 91.43 0.86 13 94.28 0.49 

Glass 28 98.13 0.07 11 98.59 0.06 29 93.32 0.40 29 95.23 0.38 

Ecoli 31 82.44 0.18 25 76.78 0.21 25 82.72 0.38 25 83.33 0.26 

Overall Average 30.79 81.95 0.3 15.57 80.56 0.32 19.57 82.02 0.68 19.71 83.26 0.55 

Table 5.3: Accuracy-based Results for all datasets when applying different algorithms 
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Figure 5.2: Accuracy comparison (Accuracy-based aspect) 

 

 
Figure 5.3: DT-size comparison (Accuracy-based aspect) 
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With the Seeds dataset, the ECSDT algorithm managed to achieve better classification results 

than the rest of the algorithms which reached a value of 95.71% while the highest accuracy 

rate obtained by the rest of the algorithms is 93.33% which is achieved by the BFTree 

algorithm, but getting better accuracy was at the expense of a larger tree: ECSDT resulted in a 

tree with 25 nodes which exceeds the sizes of most of the trees produced by other algorithms. 

The other algorithms performed better than the ECSDT algorithm on only 4 out of 14 datasets, 

which are: WDBC, Hayes, Tae and Glass.  

 

 

5.3.1.2 Accuracy-based results for the Bupa dataset 

 

Table 5.4 below presents the results obtained when a different number of ellipses (2, 4, 6, 8, 

and 10) are used with each of the optimization method (OMOPSO and NSGA-II) along with 

the results obtained when applying the comparison algorithms. 

 

Algorithm DT Size Accuracy SE 

J48 51 68.7 0.50 

NBTree 11 66.38 0.48 

BFTree 19 64.927 0.50 

ADTree 31 59.71 0.47 

LADTree 31 65.507 0.46 

REPTree 23 64.058 0.49 

ECSDT + 

OMOPSO 

2-ell 5 49.41 0.51 

4-ell 9 59.71 0.87 

6-ell 13 58.82 0.51 

8-ell 17 65.85 0.43 

10-ell 21 68.52 0.77 

ECSDT + 

NSGA-II 

2-ell 5 53.53 0.43 

4-ell 9 59.41 0.76 

6-ell 13 60.59 0.62 

8-ell 17 66.47 0.39 

10-ell 21 72.35 0.46 

Table 5.4: Accuracy-based results (Bupa) 
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Figure 5.4: Line chart for the Accuracy-based results (Bupa) 

 

From Table 5.4 and Figure 5.4, we can observe that the accuracy obtained with ECSDT using 

both optimization methods (OMOPSO and NSGA-II) improves by increasing the number of 

ellipses with the exception of some minor cases that result in a slight decrease. For example, 

we see that the classification accuracy rate using the OMOPSO optimizer with 4 ellipses 

reached a value of 59.71%, but after increasing the number of ellipses to 6 ellipses, the value 

fell a bit to 58.82 %. Intuitively we may think that increasing the number of ellipses for the 

optimization process should always lead to improved results. However, this may not always be 

true for two reasons:  first, the ellipses used are initially generated randomly with different 

sizes, locations and angles of rotation, and secondly since increasing the number of ellipses 

may results in complicated overlapping ellipses, making it difficult for the optimization 

algorithms to achieve a good classification accuracy. Using 10 ellipses with the utilization of 

the genetic algorithm NSGA-II as an optimizer, the ECSDT algorithm achieved better 

accuracy results than all the other algorithms that reached 72.35%. When considering both 

accuracy rates and decision tree sizes as a double criterion for evaluation, we found that the 

ECSDT algorithm performs better than the other algorithms (J48, BFTree, ADTree, LADTree, 

and REPTree). In contrast with (J48, ADTree, LADTree, and REPTree), the ECSDT 

algorithm was able to achieve better accuracy of 72.35% with a smaller size of tree of only 21 

nodes, whereas the best accuracy obtained by the 4 algorithms was 68.7% which was achieved 

by the J48 algorithm, and the smallest tree size was 23 nodes that achieved by the REPTree 

algorithm. In contrast with the BFTree algorithm, the ECSDT algorithm was able to achieve 

better accuracies and smaller trees with both optimization methods. ECSDT was able to 

achieve an accuracy of 65.85% with the OMOPSO method and an accuracy of 66.47% with 
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the NSGA-II method and both accuracies achieved with decision trees of size 17 nodes, 

whereas the BFTree obtained less accuracy of 64.92% with a larger decision tree of size 19 

nodes. 

 

 

5.3.1.3 Accuracy-based results for the IRIS dataset 

 

IRIS is a 3-class dataset and it is one of the most widely used multiclass datasets for evaluating 

classifiers. This dataset describes some measurements such as petal length, petal width, sepal 

length and sepal width for 3 types of iris flowers namely: Iris Setosa, Iris Versicolour and Iris 

Virginica. The goal is to classify a new plant to one of the 3 types of iris plants based on some 

given measurements of the flower. 

Many studies suggest that a small number of boundaries are sufficient for this problem. Hence, 

for the IRIS data, the proposed five different numbers of ellipses that are tried are (3, 4, 5, 6, 

and 7). Table 5.5 presents the results obtained for IRIS dataset when using the different 

number of ellipses with each of the optimization methods along with the results obtained by 

the comparison algorithms. The ADTree algorithm was excluded from the comparison process 

since it is intended for only binary classification problems and does not deal with multiclass 

problems. 

 

Algorithm DT Size Accuracy SE 

J48 9 96.00 0.158 

NBTree 9 94.66 0.170 

BFTree 11 94.66 0.175 

ADTree /// /// /// 

LADTree 31 94.0 0.193 

REPTree 5 94.0 0.193 

ECSDT + 

PSO 

3ell 7 95.33 0.30 

4ell 9 98.66 0.28 

5ell 11 97.33 0.34 

6ell 13 96.66 0.35 

7ell 15 95.33 0.32 

ECSDT + 

GA 

3ell 7 94.66 0.52 

4ell 9 98.66 0.28 

5ell 11 96.66 0.46 

6ell 13 96 0.34 

7ell 15 95.33 0.44 

Table 5.5: Accuracy-based results (IRIS) 
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Figure 5.5: Line chart for the Accuracy-based results (IRIS) 

 

 

From Table 5.5 and Figure 5.5 above, we note that the increase in the number of ellipses does 

not always lead to improvements in accuracy. The fluctuation in results can be attributed to the 

same reason that was previously mentioned with Bupa's accuracy-based results which are 

based primarily on the complex overlapping which could happen between the increased 

numbers of ellipses, and also having too many ellipses can lead to overtraining in which the 

produced classifier is too close to the training data. 

In general, the new algorithm was able to achieve higher accuracy than the other 

algorithms with an equal or even smaller decision tree. For the REPTree algorithm we can 

see that it was able to produce the smallest tree, but at the same time, it could not improve 

upon other algorithms in terms of accuracy. 

 

 

5.3.1.4 Accuracy-based results for the Ecoli dataset 

 

The Ecoli dataset is a multiclass classification dataset with 336 instances and 8 classes. 

The main objective of using this dataset in classification is to make a prediction for the 

localization area of proteins of the bacteria cell by utilizing some measurements of the cell. 

Table 5.4 presents the results obtained for the Ecoli dataset when using a different number 

of ellipses with each of the optimization methods along with the results obtained by the 

comparison algorithms.  
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Algorithm DT Size Accuracy SE 

J48 41 79.76 0.42 

NBTree 13 80.06 0.39 

BFTree 29 78.86 0.51 

ADTree N/A N/A N/A 

LADTree 31 82.44 0.38 

REPTree 25 76.79 0.55 

ECSDT + 

PSO 

6ell 12 72.72 0.37 

8ell 17 76.35 0.48 

10ell 21 76.35 0.44 

12ell 25 82.72 0.55 

14ell 29 74.50 0.52 

ECSDT + 

GA 

6ell 12 73.32 0.52 

8ell 17 77.26 0.48 

10ell 21 76.96 0.46 

12ell 25 83.33 0.54 

14ell 29 76.35 0.48 

Table 5.6: Accuracy-based results (Ecoli) 

 

Table 5.6 presents the results obtained for the Ecoli dataset when implementing the 

different number of ellipses (6, 8, 10, 12, and 14) with each of the optimization methods 

along with the results obtained by the comparison algorithms.  

 

 

Figure 5.6: Line chart for the Accuracy-based results (Ecoli) 

 

From Table 5.6 and Figure 5.6 above, we note that ECSDT with both optimization 

methods was able to achieve higher accuracy rates than other algorithms with a decision 

tree of size 25 nodes which is smaller than the trees produced by other algorithms except 

for that produced by NBTree which is of size 13 nodes, but with result in less accuracy of 

80.06% than that obtained by ECSDT. 
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When comparing the performance of the two optimization methods, we find that the 

performance of NSGA-II is slightly better than the performance of OMOPSP with all the 

numbers of used ellipses. 

 

 

5.3.2 Empirical Comparison Based on Cost 

 

For the second aspect that considers only cost as the only objective function for building, 

testing and evaluating the classifier; the performance of ECSDST is compared with that of two 

meta-classifiers named CostSensitiveClassifier and MetaCost. With these two meta-classifiers, 

J48 and NBTree were used as the base learners for inducing the decision trees. Like the 

accuracy-based approach, experiments with a number of ellipses were carried out. Each 

alternative number of ellipses is examined with a number of cost ratios to assess the cost 

sensitivity of the ECSDT algorithm. The cost matrices adopted vary from one dataset to 

another depending on the number of classes, where it is obvious that adopting cost ratios to 

evaluate the cost sensitivity of the ECSDT algorithm on 2-class problems certainly will not be 

adequate for evaluating the algorithm on 3-class problems, and the cost ratios used on 3-class 

problems will not be adequate for 4-class problems and so on. These cost ratios are shown in 

Table 5.7. 

For the cost-based experiments, the primary objective is to compare the misclassification 

costs. Therefore, for each optimization method (OMOPSO and NSGA-II) only the results 

related to the number of ellipses that gives the lowest average cost per example for all cost 

ratios is considered and its results compared with the corresponded results obtained from the 

other algorithms. The average cost for each alternative number of ellipses is calculated using 

the following Eq 5.1. 

Cost_Average(𝑘)𝑒𝑙𝑙𝑖𝑝𝑠𝑒𝑠 =
∑ Costi

N
i=1

N
                                      5.1          

Where, k indicates the number of ellipses used, N is the number of cost ratios and Costi is the 

cost obtained when using the ith cost ratio with K ellipses. 

And in the same way, the average cost for the results obtained by the comparative algorithms 

is calculated using the following Eq 5.2. 



Chapter 5: Empirical Evaluation of the New Algorithm 

 

94 
 

Cost_Average𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝑔) =
∑ Costi

N
i=1

N
                                     5.2 

Where N is the number of cost ratios and Costi is the cost obtained when using the ith cost 

ratio with the algorithm (g). 

2 

Class 

Datasets 

 
Cost Ratios 

1 2 3 4 5 6 7 8 9 10 

Class-1 1 1 1 1 1 10 50 100 500 1000 

Class-2 10 50 100 500 1000 1 1 1 1 1 

 

3 

Class 

Datasets 

 

 
Cost Ratios 

1 2 3 4 5 6 7 8 9 

Class-1 1 100 10 1 10 5 150 250 200 

Class-2 10 1 100 5 1 10 200 150 250 

Class-3 100 10 1 10 5 1 250 200 150 

 

6 

Class 

Datasets 

 
Cost Ratios 

1 2 3 4 5 6 

Class-1 1 1000 500 100 50 10 

Class-2 10 1 1000 500 100 50 

Class-3 50 10 1 1000 500 100 

Class-4 100 50 10 1 1000 500 

Class-5 500 100 50 10 1 1000 

Class-6 1000 500 100 50 10 1 

 

8 

Class 

Datasets 

 
Cost Ratios 

1 2 3 4 5 6 7 8 

Class-1 1 1000 500 250 100 50 10 5 

Class-2 5 1 1000 500 250 100 50 10 

Class-3 10 5 1 1000 500 250 100 50 

Class-4 50 10 5 1 1000 500 250 100 

Class-5 100 50 10 5 1 1000 500 250 

Class-6 250 100 50 10 5 1 1000 500 

Class-7 500 250 100 50 10 5 1 1000 

Class-8 1000 500 250 100 50 10 5 1 
 

Table 5.7: Misclassification cost ratios used in all experiments 

 

The following sub-sections explain and discuss the results obtained from the cost-based 

evaluation. Section 5.3.2.1 presents the results for all the datasets; Sections 5.3.2.2, 5.3.2.3 and 

5.3.2.4 provide some more detailed discussion for three data sets, namely Bupa, IRIS and 

Ecoli datasets respectively. All tables and results related to this aspect are provided in 

Appendix C. 
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5.3.2.1 Discussion for Cost-based results 

 

The methodology adopted to compare the algorithms in terms of cost sensitivity was by 

calculating the average costs obtained when applying all cost ratios for each number of 

ellipses and then dividing the results by the total number of examples to get the average cost 

for each example. 

Table 5.8 below depicts the average misclassification cost per example along with the 

associated accuracy obtained for each of the cost-based experiments for all datasets when 

using different numbers of ellipses for both optimization methods. From the table we can see 

that: (i) NSGA-II is able to achieve lower costs than OMOPSO on 8 out of 14 datasets, (ii) 

OMOPSO is better than NSGA-II on 4 datasets, and (iii) their performance is equal on only 2 

datasets.  

More specifically, NSGA-II is better than OMOPSO in 47 out of the 70 trials, OMOPSO 

achieved better results in only 17 trials and the performance of both algorithms was equal in 6 

trials. The table also shows that increasing the number of ellipses has a positive effect in 

reducing costs in about 92.86% of the total number of trials and the best results recorded for 

the majority of datasets are achieved when using the largest proposed number of ellipses. 

To compare the cost-based results of ECSDT with those obtained by the comparative 

algorithms, the costs obtained using all cost ratios for each algorithm is averaged. For ECSDT, 

only the results associated with the numbers of ellipses that gives the lowest average cost are 

selected for comparison. 

Table 5.9 presents these results in terms of costs, associated accuracies and decision tree sizes 

and the comparisons are graphically illustrated in Figures 5.7, 5.8, 5.9 and 5.10. Figure 5.7 and 

Figure 5.8 presents the cost comparison; Figure 5.9 presents the accuracy comparison, and 

Figure 5.10 presents a comparison of the size of decision trees. 

From Figure 5.7 and Figure 5.8, we can notice that the ECSDT algorithm was able to achieve 

lower costs on 10 out of the 14 datasets, and in addition to that, it was also able to achieve 

higher accuracy with 5 of the 10 datasets. The datasets with which the ECSDT algorithm 

recorded both, the lowest cost and the highest accuracy are: Bupa, Hart, Haberman, Diabetes 

and Thyroid, whereas the datasets with which the ECSDT algorithm succeeded in recording 

lowest costs but failed to record a higher accuracy rates are: WDBC, IRIS, Tay, Glass, Ecoli.  
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Haberman was one of the datasets with which ECSDT achieved good results in terms of cost 

reduction and increased accuracy. ECSDT with NSGA-II was able to achieve lower expected 

cost than the other algorithms at an average cost of 0.43 units per example, and also was able 

to achieve higher accuracy than the other algorithms of 56.21%, while the lowest average cost 

and the highest accuracy rate recorded by the other algorithms were 0.50 and 50.33% 

respectively. 

When comparing the general performance of the two optimization methods in this aspect, we 

find that their performance is fairly close where the overall cost average per example recorded 

by each method for all datasets is 7.92 for the OMOPSO and 7.97 for the NSGA-II. 

For comparing tree sizes, we note that the new algorithm in both optimization methods was 

able to obtain lower costs only with larger tree sizes compared to other algorithms. As we can 

see from Table 5.9, ECSDT with both optimization methods produced an average tree size of 

24.14 nodes which is higher than the other algorithms, except that recorded when applying (C-

S-C + J48) which recorded the worst general average of the tree sizes with an average size of 

25.37 nodes. Where the ECSDT was able to produce smaller decision trees than when 

applying (C-S-C + J48) on 6 out of the 10 datasets with which the ECSDT algorithm produced 

the best accuracy results. 
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Dataset Optimizer 
No. 

Ell 

Avrg 

Cost 

Accur 

-acy 
SE 

No. 

Ell 

Avrg 

Cost 

Accur 

-acy 
SE 

No. 

Ell 

Avrg 

Cost 

Accur 

-acy 
SE 

No. 

Ell 

Avrg 

Cost 

Accur 

-acy 
SE 

No. 

Ell 

Avrg 

Cost 

Accur 

-acy 
SE 

Bupa 
OMOPSO 2 7.86 46.23 0.66 4 2.81 51.30 0.75 6 1.62 52.63 0.80 8 0.57 54.08 0.83 10 0.50 54.12 0.90 

NSGA-II 2 8.33 46.14 0.72 4 2.32 52.92 0.82 6 1.43 53.13 0.72 8 0.69 53.24 0.88 10 0.49 55.12 0.89 

Hepatitis 
OMOPSO 2 5.03 66.79 1.68 4 4.72 72.18 1.53 6 2.44 66.92 1.84 8 2.40 70.90 1.59 10 2.45 66.79 1.90 

NSGA-II 2 4.96 67.61 1.58 4 4.54 71.15 1.74 6 2.45 67.82 1.89 8 2.41 69.97 1.65 10 2.44 68.46 1.98 

Heart 
OMOPSO 2 9.27 48.58 0.41 4 3.76 52.48 0.62 6 1.85 56.74 0.58 8 0.97 58.70 0.58 10 0.40 60.29 0.89 

NSGA-II 2 8.32 48.70 0.43 4 3.51 51.81 0.61 6 1.67 56.40 0.73 8 0.97 58.85 0.61 10 0.39 61.11 0.90 

Haberman 
OMOPSO 2 3.26 49.08 2.38 4 2.29 50.43 2.40 6 1.79 54.02 2.20 8 0.63 55.65 2.14 10 0.44 55.98 2.21 

NSGA-II 2 3.06 49.25 2.41 4 2.07 50.20 2.38 6 1.52 54.18 2.16 8 0.70 55.13 2.07 10 0.44 56.21 2.14 

Diabetes 
OMOPSO 2 7.67 49.31 1.44 4 2.37 52.05 1.35 6 1.18 55.57 1.40 8 0.45 57.12 1.35 10 0.43 56.85 1.23 

NSGA-II 2 6.94 49.23 1.42 4 2.27 52.21 1.33 6 0.98 54.79 1.32 8 0.44 57.66 1.19 10 0.42 57.98 1.29 

WDBC 
OMOPSO 2 1.92 65.91 1.37 4 1.45 73.02 1.09 6 0.98 80.41 0.98 8 0.62 85.77 0.88 10 0.39 88.93 0.48 

NSGA-II 2 1.89 66.17 1.30 4 1.40 73.01 1.07 6 0.89 80.58 0.96 8 0.61 86.20 0.93 10 0.42 89.19 0.49 

WPBC 
OMOPSO 2 8.52 38.98 2.56 4 7.10 42.68 2.61 6 4.56 48.32 2.90 8 2.26 53.11 3.41 10 1.00 56.31 3.53 

NSGA-II 2 8.52 38.98 2.56 4 7.14 42.43 2.53 6 4.31 47.98 3.00 8 2.22 53.12 3.40 10 0.79 57.07 3.55 

IRIS 
OMOPSO 3 6.68 86.96 0.62 4 2.47 90.52 0.71 5 2.92 89.70 0.86 6 2.42 91.26 0.72 7 2.85 89.26 0.76 

NSGA-II 3 6.07 87.48 0.67 4 2.43 90.96 0.67 5 2.89 90.59 0.62 6 2.34 91.62 0.65 7 3.04 88.89 0.82 

Hays 
OMOPSO 3 34.08 45.84 0.36 6 31.19 50.63 0.65 9 28.70 54.27 0.73 12 25.52 59.17 0.82 15 21.91 63.44 0.83 

NSGA-II 3 34.27 45.94 0.46 6 30.90 50.84 0.62 9 28.41 54.17 0.70 12 25.36 58.86 0.81 15 22.36 63.03 0.90 

Seeds 
OMOPSO 3 27.01 60.90 0.36 6 22.51 64.60 0.51 9 17.63 71.11 0.42 12 12.42 77.72 0.28 15 8.15 82.80 0.32 

NSGA-II 3 27.02 61.37 0.36 6 22.36 64.55 0.46 9 17.83 70.68 0.45 12 12.27 77.30 0.34 15 8.46 82.91 0.30 

Tae 
OMOPSO 3 63.11 30.40 0.33 6 57.11 34.80 0.37 9 49.05 40.90 0.73 12 37.17 48.50 1.30 15 32.45 54.80 1.15 

NSGA-II 3 62.28 31.00 0.40 6 56.58 35.10 0.49 9 49.28 40.50 0.79 12 37.70 48.50 1.20 15 32.46 54.50 1.20 

Thyroid 
OMOPSO 3 14.76 82.33 0.32 6 11.17 86.44 0.13 9 6.89 90.93 0.24 12 5.09 91.39 0.42 15 4.51 93.95 0.13 

NSGA-II 3 13.21 82.87 0.47 6 10.43 87.52 0.27 9 5.73 91.16 0.34 12 4.65 92.48 0.27 15 4.63 94.26 0.18 

Glass 
OMOPSO 6 32.09 52.50 0.24 8 24.71 54.21 0.23 10 17.08 59.27 0.30 12 11.56 64.17 0.26 14 5.55 70.02 0.31 

NSGA-II 6 30.82 52.49 0.18 8 24.23 54.44 0.19 10 16.94 59.03 0.30 12 11.01 65.26 0.38 14 5.24 70.95 0.37 

Ecoli 
OMOPSO 6 30.20 48.44 1.58 8 26.28 51.41 1.64 10 23.33 53.76 1.71 12 20.06 58.78 1.90 14 19.83 62.99 1.96 

NSGA-II 6 29.76 48.93 1.56 8 26.22 51.82 1.71 10 22.15 56.25 1.83 12 20.06 59.08 1.92 14 14.69 62.39 1.96 

Table 5.8: Cost-based results for all datasets using different number of ellipses
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Dataset 
C-S-C + J48 C-S-C + NBTree MetaCost + J48 

Size Acc SE Cost SE Size Acc SE Cost SE Size Acc SE Cost SE 

Bupa 51 54.38 1.07 13.40 1.13 11 50.03 0.83 0.53 2.78 7.4 51.27 0.83 0.56 2.75 

Hepatitis 2.6 64.49 3.14 0.60 1.90 5 58.72 3.12 0.50 2.00 3 60.64 3.16 0.60 2.00 

Heart 39 57.33 0.75 11.50 2.37 17 57.37 0.99 0.80 2.38 8.2 55.07 0.92 0.52 2.66 

Haberman 5 50.13 2.46 1.04 0.30 3 50.00 2.48 0.50 0.84 3 50.33 2.44 0.50 0.84 

Diabetes 39 54.04 1.24 6.95 1.69 1 54.50 1.38 0.53 1.70 9.8 54.29 1.47 0.51 1.80 

WDBC 25 88.31 1.79 1.63 0.61 23 86.70 1.05 1.07 0.05 22.3 90.65 0.43 0.48 0.54 

WPBC 11.5 58.67 3.73 4.37 0.53 8.5 53.62 4.31 0.85 2.99 12.8 56.90 3.62 1.45 2.39 

IRIS 8.11 91.41 0.95 3.95 0.31 9 90.74 0.65 3.98 0.33 6.44 91.85 0.75 3.84 0.19 

Hays 23 81.67 0.61 16.95 3.13 9.67 60.42 0.67 33.99 3.11 21.3 80.10 0.49 20.84 3.27 

Seeds 15 87.44 1.05 6.32 2.41 8 85.18 0.96 7.10 2.63 14 85.98 0.42 8.17 2.56 

Tae 67 56.00 0.56 41.97 1.56 7 50.90 1.22 42.87 1.66 42 52.10 0.93 43.41 3.12 

Thyroid 17 92.09 0.10 8.10 0.09 7 92.63 0.17 6.57 1.62 15 90.39 0.17 9.11 0.92 

Glass 11 96.73 0.0 9.06 1.61 7 70.40 2.63 12.09 1.58 11 95.40 0.26 5.39 1.28 

Ecoli 41 66.52 1.96 37.45 3.62 13 55.65 2.14 28.74 2.90 32 65.07 1.87 27.85 2.01 

Overall Average 25.37 71.37 1.39 11.66 0.0 9.23 65.49 1.61 10.01 0.0 14.87 70.0 1.27 8.8 0.0 

 

Dataset 
MetaCost + NBTree ECSDT+OMOPSO ECSDT+NSGA-II 

Size Acc SE Cost SE Size Acc SE Cost SE Size Acc SE Cost SE 

Bupa 1 50.12 0.83 0.51 0.81 21 54.12 0.90 0.50 0.80 21 55.12 0.89 0.49 0.81 

Hepatitis 2.4 59.23 3.2 0.50 0.10 17 70.90 1.59 2.40 0.20 17 69.97 1.65 2.41 0.20 

Heart 3 53.40 0.89 0.51 0.67 21 60.30 0.89 0.40 0.78 21 61.11 0.90 0.39 0.79 

Haberman 1 50.00 2.48 0.50 0.48 21 55.98 2.21 0.44 0.90 21 56.21 2.14 0.43 0.90 

Diabetes 2 52.47 1.47 0.49 0.80 21 56.85 1.23 0.43 0.80 21 57.98 1.29 0.42 0.80 

WDBC 16.3 89.07 0.33 0.53 0.49 21 88.93 0.48 0.39 0.65 21 89.19 0.49 0.42 0.60 

WPBC 6.17 52.69 4.37 0.61 1.23 21 56.31 3.53 1.00 0.84 21 57.07 3.55 0.79 0.34 

IRIS 7.67 87.63 0.87 5.11 1.46 13 91.26 0.72 2.42 0.21 13 91.62 0.65 2.33 0.30 

Hays 1.33 56.88 1.19 35.73 2.38 31 63.44 0.83 32.39 4.72 31 63.03 0.90 33.10 3.01 

Seeds 7 81.06 1.19 8.91 2.82 31 82.80 0.32 8.15 3.58 31 82.91 0.30 8.46 1.27 

Tae 8.33 46.80 1.24 45.94 1.59 31 54.80 1.15 32.45 4.08 31 54.50 1.20 32.46 4.07 

Thyroid 8 90.85 0.17 9.79 1.60 31 93.95 0.13 4.51 1.68 31 94.26 0.18 4.63 1.56 

Glass 9 64.49 3.45 13.66 2.00 29 70.02 0.31 5.55 10.12 29 70.95 0.37 5.24 1.43 

Ecoli 13 53.05 2.78 25.61 2.78 29 63.00 1.96 19.83 6.00 29 62.39 1.96 20.07 4.76 

Overall Average 6.16 63.41 1.75 10.6  24.14 68.76 1.16 7.92 0.0 24.14 69.02 1.18 7.97 0.0 

Table 5.9: Cost-based results for all datasets when applying different algorithms 
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Figure 5.7: Cost comparison (Cost-based aspect) 

 

 

 

 
Figure 5.8: Cost comparison (Cost-based aspect) 
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Figure 5.9: Accuracy comparison (Cost-based aspect) 

 

 
Figure 5.10: DT-size comparison (Cost-based aspect)
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5.3.2.2 Cost-based results for the Bupa dataset: 

 

Table 5.10 and Table 5.11 below present the misclassification costs along with the associated 

accuracies that are obtained when ECSDT is used with a different number of ellipses, each 

with different cost ratios applied to the Bupa dataset for both the optimization methods. From 

the tables, it can be observed that utilizing 10 ellipses in both optimization methods produced 

the lowest average costs per example from all the 10 used cost ratios. 

  

  

ECSDT + OMOPSO 

2 ell 4 ell 6 ell 8 ell 10 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 0.72 43.76 0.71 0.57 42.61 0.67 0.58 42.03 0.54 0.59 48.69 0.71 0.53 48.82 0.62 

Ratio - 2 1.00 42.89 0.54 0.81 47.24 0.57 0.80 48.40 0.72 0.80 48.98 0.56 0.57 43.19 0.49 

Ratio - 3 1.18 39.71 0.48 0.83 45.50 0.77 1.10 47.53 0.58 0.84 44.92 0.52 0.54 46.37 0.53 

Ratio - 4 3.50 39.13 0.54 3.47 42.02 0.49 3.47 42.02 0.66 0.57 43.18 0.78 0.56 44.05 0.55 

Ratio - 5 9.32 37.10 0.60 6.34 44.63 0.81 3.42 47.53 0.57 0.54 46.37 0.63 0.53 46.66 0.74 

Ratio - 6 1.41 48.11 0.54 0.51 57.10 0.58 0.48 57.39 0.61 0.41 59.71 0.68 0.39 60.86 0.66 

Ratio - 7 4.91 48.98 0.72 0.68 60.00 0.73 0.54 60.57 0.77 0.50 64.63 0.58 0.50 63.76 0.72 

Ratio - 8 5.06 53.33 0.49 0.99 58.84 0.55 0.65 63.76 0.82 0.66 62.31 0.93 0.63 65.21 0.84 

Ratio - 9 19.26 54.20 0.76 4.77 57.10 0.67 1.87 57.68 0.52 0.39 60.86 0.62 0.37 62.60 0.56 

Ratio - 10 32.30 55.07 0.98 9.11 57.97 0.65 3.30 59.42 0.84 0.39 61.15 0.55 0.40 59.71 0.59 

Average 7.86 46.23 0.64 2.81 51.30 0.65 1.62 52.63 0.66 0.57 54.08 0.66 0.50 54.12 0.63 

Table 5.10: Bupa Cost-Based results for each number of ellipses (ECSDT+OMOPSO) 

 

  
  

ECSDT + NSGA-II 

2 ell 4 ell 6 ell 8ell 10 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 0.70 42.05 0.52 0.64 44.05 0.65 0.57 44.41 0.63 0.55 47.24 0.66 0.52 50.72 0.58 

Ratio - 2 1.00 42.60 0.46 0.66 48.69 0.67 0.68 46.67 0.68 0.56 43.76 0.61 0.54 45.50 0.54 

Ratio - 3 1.19 38.55 0.55 0.81 47.82 0.51 0.81 47.82 0.53 0.56 44.34 0.52 0.52 46.66 0.54 

Ratio - 4 3.51 37.97 0.71 3.45 44.05 0.72 1.96 48.69 0.84 1.99 46.08 0.48 0.54 45.50 0.67 

Ratio - 5 12.21 36.81 0.69 6.36 42.89 0.39 3.44 45.50 0.57 0.56 43.76 0.53 0.54 46.08 0.74 

Ratio - 6 1.14 50.72 0.48 0.46 59.71 0.77 0.48 57.39 0.55 0.39 60.57 0.72 0.38 61.73 0.55 

Ratio - 7 4.03 50.72 0.58 0.66 62.31 0.97 0.56 58.26 0.77 0.56 58.26 0.82 0.53 61.15 0.56 

Ratio - 8 5.06 53.33 0.67 0.64 64.34 0.69 0.64 64.34 0.49 0.93 64.63 0.55 0.62 66.37 0.58 

Ratio - 9 19.26 54.20 0.72 3.32 57.39 0.33 1.87 57.68 0.70 0.38 61.73 0.75 0.35 64.63 0.81 

Ratio - 10 35.20 54.49 0.55 6.21 57.97 0.58 3.29 60.57 0.58 0.38 62.02 0.63 0.37 62.89 0.76 

Average 8.33 46.14 0.59 2.32 52.92 0.63 1.43 53.13 0.63 0.69 53.24 0.63 0.49 55.12 0.63 

Table 5.11: Bupa Cost-Based results for each number of ellipses (ECSDT+NSGA-II)  

 

Therefore, the results obtained when using 10 ellipses were used in comparing the 

performance of ECSDT with the other algorithms as presented below in Table 5.12. 
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Algorithm 

Bupa Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 46.67 1.08 51 43.77 2.55 51 43.8 4.58 51 

MetaCost+J48 50.14 0.81 37 42.32 0.72 1 42.6 0.57 1 

C.S.C+NBTree 42.32 0.66 11 42.32 0.58 11 42.3 0.58 11 

MetaCost+NBTree 43.19 0.57 1 42.03 0.58 1 42.00 0.58 1 

ECSDT-PSO-10ell 48.82 0.53 21 43.19 0.57 21 46.37 0.54 21 

ECSDT-GA-10ell 50.72 0.52 21 45.50 0.54 21 46.66 0.52 21 

 

Algorithm 
Ratio - 4 Ratio - 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 43.77 20.81 51 43.77 41.10 51 66.96 0.72 51 

MetaCost+J48 42.03 0.58 1 42.03 0.58 1 61.74 0.49 23 

C.S.C+NBTree 42.03 0.58 11 42.03 0.58 11 57.68 0.48 11 

MetaCost+NBTree 42.03 0.58 1 42.03 0.58 1 57.97 0.42 1 

ECSDT-PSO-10ell 44.05 0.56 21 46.66 0.53 21 60.86 0.39 21 

ECSDT-GA-10ell 45.50 0.54 21 46.08 0.54 21 61.73 0.38 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 63.80 2.21 51 63.77 4.09 51 63.77 19.17 51 

MetaCost+J48 58.00 0.56 7 57.97 0.42 1 57.97 0.42 1 

C.S.C+NBTree 57.70 0.57 11 57.97 0.42 11 57.97 0.42 11 

MetaCost+NBTree 58.00 0.42 1 57.97 0.42 1 57.97 0.42 1 

ECSDT-PSO-10ell 63.76 0.50 21 65.21 0.63 21 62.60 0.37 21 

ECSDT-GA-10ell 61.15 0.53 21 66.37 0.62 21 64.63 0.35 21 

 

Algorithm 
Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size 

C.S.C+J48 63.77 38.01 51 54.38 13.43 51 

MetaCost+J48 57.97 0.42 1 51.27 0.56 7.4 

C.S.C+NBTree 57.97 0.42 11 50.02 0.53 11 

MetaCost+NBTree 57.97 0.42 1 50.11 0.50 1 

ECSDT-PSO-10ell 59.71 0.40 21 54.12 0.50 21 

ECSDT-GA-10ell 62.89 0.37 21 55.123 0.49 21 

Table 5.12: Bupa Cost-Based results obtained by the comparative algorithms  

 

From Table 5.12, we can see that applying the CostSensitiveClassifier with J48 (C.S.C+J48) 

on Bupa dataset always gives the worst results in terms of cost compared to all other 

algorithms. It has therefore been excluded from the cost comparison chart presented in Figure 

5.11. Figure 5.11 and Figure 5.12 below; give a better idea about the results listed above in 

Table 5.12. The first chart presents a comparison in terms of cost, excluding the results of 

(C.S.C+J48) for the reason mentioned above, and the second chart presents a comparison in 

terms of accuracy including the results of the (C.S.C+J48). 
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Figure 5.11: Bupa cost comparison for the Cost-Based aspect 

 
 

 
Figure 5.12: Bupa accuracy comparison for the Cost-Based aspect 
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see from Figure 5.13 below, the sizes of the trees produced by the ECSDT algorithm 

with most of the cost ratios were bigger than those produced by most other algorithms 

except that with the (C.S.C+J48) that produced the largest trees compared to all other 

algorithms. 

 With respect to the use of the MetaCost which in most cases produced the smallest 

trees, it is worth noting that it often produces trees with a size of 1 node only, and this 

is due to the fact that MetaCost usually neglects the less-costly class by placing only 

one splitting boundary which ensures that all examples belonging to the more-costly 

class fall within that boundary. 

 

 
Figure 5.13: Bupa DT-size comparison for the Cost-Based aspect 
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ECSDT + OMOPSO 

3 ell 4 ell 5 ell 6 ell 7 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 1.73 82.66 0.56 0.93 90.66 0.55 0.93 90.66 0.66 1.47 85.33 0.63 1.07 89.33 0.61 

Ratio - 2 0.50 86.00 0.57 0.39 84.67 0.56 0.39 84.67 0.64 0.22 90.00 0.67 0.25 87.33 0.52 

Ratio - 3 1.58 74.00 0.55 0.13 86.66 0.48 0.77 89.33 0.58 0.10 90.00 0.58 0.80 86.00 0.52 

Ratio - 4 0.57 92.00 0.49 0.23 77.33 0.62 0.28 72.00 0.58 0.23 77.33 0.53 0.27 73.33 0.56 

Ratio - 5 0.13 90.00 0.63 0.09 94.00 0.42 0.09 94.00 0.72 0.06 96.66 0.73 0.12 90.66 0.58 

Ratio - 6 0.24 88.00 0.66 0.12 94.00 0.4 0.17 88.66 0.57 0.07 93.33 0.49 0.15 91.33 0.77 

Ratio - 7 21.33 90.00 0.52 8.33 94.00 0.58 9.67 95.33 0.55 7.00 96.66 0.52 8.33 94.00 0.48 

Ratio - 8 17.33 89.33 0.52 5.00 96.66 0.45 7.00 96.00 0.49 5.00 96.66 0.57 7.00 96.00 0.55 

Ratio - 9 16.67 90.66 0.47 7.00 96.66 0.51 7.00 96.66 0.61 7.67 95.33 0.64 7.67 95.33 0.65 

Average 6.68 86.96 0.55 2.47 90.52 0.51 2.92 89.7 0.6 2.42 91.26 0.6 2.85 89.26 0.58 

Table 5.13: IRIS Cost-Based results for each number of ellipses (ECSDT+OMOPSO) 

 

 

 

 

ECSDT + NSGA-II 

3 ell 4 ell 5 ell 6 ell 7 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 1.73 82.66 0.58 1.07 85.33 0.54 0.93 90.66 0.64 1.07 85.33 0.59 1.33 86.66 0.55 

Ratio - 2 0.50 86.00 0.58 0.31 87.33 0.54 0.23 88.66 0.66 0.23 88.66 0.53 0.33 86.00 0.53 

Ratio - 3 1.58 74.00 0.46 0.77 89.33 0.77 0.77 89.33 0.57 0.10 90.00 0.47 0.13 86.66 0.61 

Ratio - 4 0.47 93.33 0.44 0.20 80.00 0.34 0.23 77.33 0.51 0.19 80.66 0.75 0.28 72.00 0.67 

Ratio - 5 0.13 90.00 0.61 0.07 96.00 0.83 0.09 94.00 0.62 0.06 96.66 0.71 0.09 94.00 0.81 

Ratio - 6 0.24 88.00 0.68 0.09 90.66 0.42 0.16 90.00 0.58 0.07 93.33 0.54 0.16 90.00 0.62 

Ratio - 7 16.33 92.66 0.49 7.33 96.66 0.63 8.33 94.00 0.55 7.33 96.66 0.58 8.67 93.33 0.53 

Ratio - 8 15.33 92.00 0.52 5.00 96.66 0.34 8.00 95.33 0.57 5.00 96.66 0.55 6.00 96.66 0.57 

Ratio - 9 18.33 88.66 0.54 7.00 96.66 0.38 7.33 96.00 0.60 7.00 96.66 0.49 10.33 94.66 0.66 

Average 6.07 87.48 0.54 2.43 90.96 0.53 2.9 90.59 0.59 2.34 91.62 0.58 3.04 88.89 0.62 

Table 5.14: IRIS Cost-Based results for each number of ellipses (ECSDT+NSGA-II)  

 

From the above tables, it can be observed that utilizing 6 ellipses in both optimization methods 

produced the lowest average costs per example from the 9 cost ratios. Therefore, the results 

obtained when using 6 ellipses were used in the comparison with the results of other 

algorithms as shown in Table 5.15. 
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Algorithm 

IRIS Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 96.00 1.54 9 96.00 0.82 9 69.33 1.03 9 

MetaCost+J48 93.33 1.75 4 94.00 0.84 7 74.00 0.38 3 

C.S.C+NBTree 84.00 2.44 9 80.67 0.55 9 84.67 0.15 9 

MetaCost+NBTree 84.00 2.62 11 85.33 0.37 9 68.67 1.21 5 

ECSDT-PSO-6ell 85.33 1.47 13 90.00 0.22 13 90.00 0.10 13 

ECSDT-GA-6ell 85.33 1.07 13 88.66 0.23 13 90.00 0.10 13 

 

Algorithm 
Ratio - 4 Ratio - 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 93.33 0.41 11 94.67 0.14 5 90.00 0.31 7 

MetaCost+J48 94.67 0.28 7 93.33 0.18 7 93.33 0.09 9 

C.S.C+NBTree 94.67 0.40 9 95.33 0.13 9 93.33 0.13 9 

MetaCost+NBTree 91.33 0.51 9 90.67 0.15 1 90.00 0.19 9 

ECSDT-PSO-6ell 77.33 0.23 13 96.66 0.06 13 93.33 0.07 13 

ECSDT-GA-6ell 80.66 0.19 13 96.66 0.06 13 93.33 0.07 13 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 96.00 8.33 7 92.67 12.67 7 94.66 10.33 9 

MetaCost+J48 94.67 11.33 7 95.33 8.33 7 94.00 11.33 7 

C.S.C+NBTree 94.67 12.00 9 94.67 9.33 9 94.66 10.67 9 

MetaCost+NBTree 92.67 16.33 9 92.67 12.67 9 93.33 12.00 7 

ECSDT-PSO-6ell 96.66 7.00 13 96.66 5.00 13 95.33 7.67 13 

ECSDT-GA-6ell 96.66 7.33 13 96.66 5.00 13 96.66 7.00 13 

 

Algorithm 
Averages 

 

Acc Cost Size 

C.S.C+J48 91.41 3.95 8.11 

MetaCost+J48 91.85 3.83 6.44 

C.S.C+NBTree 90.74 3.98 9.00 

MetaCost+NBTree 87.63 5.12 7.67 

ECSDT-PSO-6ell 91.26 2.42 13.00 

ECSDT-GA-6ell 91.62 2.34 13.00 

Table 5.15: IRIS Cost-Based results obtained by the comparative algorithms (IRIS) 

 

Figure 5.14, Figure 5.15 and Figure 5.16; present the results in charts. The first chart presents 

a comparison in terms of cost, the second chart presents a comparison in terms of accuracy and 

the third chart compares the sizes of the trees produced by the algorithms. 

From the above table and figures, it can be observed that: 

 ECSDT with both optimization methods obtained better results compared to the other 

algorithms in terms of reducing the misclassification costs with all cost ratios. 

 ECSDT was able to achieve higher accuracy with 5 of the 9 cost ratios used. 

 ECSDT with both optimization methods achieved higher accuracies than the NBTree 

in 8 of 9 cost ratios and higher accuracies than the J48 in 5 of 9 cost ratios. 
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 Although J48 was able to achieve better accuracy results than ECSDT in 3 of 9 cost 

ratios, it couldn’t achieve lower costs than the ECSDT. 

 As shown in the Figure 5.16, ECSDT sacrificed the size of decision trees in order to 

achieve better results.  

 

 

Figure 5.14: IRIS cost comparison for the Cost-Based aspect 

 

 

 

Figure 5.15: IRIS accuracy comparison for the Cost-Based aspect 
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Figure 5.16: IRIS DT-size comparison for the Cost-Based aspect 

 

 

5.3.2.4 Cost-based results for the Ecoli dataset 

 

Table 5.16 and Table 5.17 present the results that are obtained when the cost-based aspect of 

ECSDT is used with a different number of ellipses, each with different cost ratios applied to 

the Ecoli dataset for both the optimization methods (OMOPSO and NSGA-II).  

 

 

 

ECSDT + OMOPSO 

6 ell 8 ell 10 ell 12 ell 14 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 13.61 21.13 0.66 11.96 22.92 0.58 11.06 24.11 0.63 10.62 23.81 0.53 10.30 26.79 0.71 

Ratio - 2 30.12 50.3 0.52 29.33 55.65 0.46 27.10 56.85 0.66 24.67 61.31 0.57 24.81 60.12 0.62 

Ratio - 3 42.09 60.42 0.50 36.70 64.88 0.58 35.51 66.67 0.52 30.39 69.35 0.51 35.99 72.92 0.57 

Ratio - 4 24.95 59.52 0.59 21.15 62.2 0.52 18.74 66.37 0.58 16.87 71.13 0.63 14.62 75.6 0.52 

Ratio - 5 24.74 56.55 0.73 19.79 58.33 0.62 15.70 61.9 0.62 11.78 68.15 0.63 13.11 72.02 0.48 

Ratio - 6 48.32 51.49 0.56 42.09 52.08 0.46 36.10 54.76 0.47 30.57 63.69 0.59 27.75 70.83 0.57 

Ratio - 7 35.61 44.35 0.62 28.40 48.51 0.58 28.02 50.6 0.54 23.85 55.95 0.58 20.50 63.99 0.58 

Ratio - 8 22.17 43.75 0.72 20.81 46.7 0.55 14.41 48.81 0.59 11.75 56.85 0.50 11.56 61.61 0.65 

Average 30.2 48.44 0.61 26.28 51.41 0.54 23.33 53.76 0.58 20.06 58.78 0.57 19.83 62.99 0.59 

Table 5.16: Ecoli Cost-Based results for each number of ellipses (ECSDT+OMOPSO) 
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ECSDT + NSGA-II 

6 ell 8 ell 10 ell 12 ell 14 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 13.45 22.02 0.51 12.59 23.21 0.56 11.07 24.11 0.54 10.36 24.7 0.49 10.27 25.89 0.65 

Ratio - 2 29.52 51.19 0.53 29.03 55.95 0.64 25.72 58.63 0.56 24.07 60.42 0.56 23.92 62.8 0.63 

Ratio - 3 40.57 60.4 0.56 36.02 65.77 0.73 31.29 69.05 0.47 30.07 67.56 0.67 34.50 73.81 0.51 

Ratio - 4 24.50 60.12 0.54 20.69 64.58 0.44 18.24 70.24 0.61 16.63 72.92 0.65 14.69 74.7 0.57 

Ratio - 5 24.74 56.55 0.64 18.84 58.63 0.63 16.71 63.99 0.62 13.59 71.13 0.51 12.59 69.94 0.61 

Ratio - 6 47.87 52.08 0.58 42.41 54.17 0.52 35.21 58.63 0.53 30.06 64.88 0.58 27.93 69.05 0.52 

Ratio - 7 35.28 45.24 0.59 28.45 47.92 0.53 24.60 55.65 0.65 23.81 56.85 0.53 25.01 62.8 0.63 

Ratio - 8 22.17 43.8 0.62 21.72 44.35 0.49 14.34 49.7 0.67 11.91 54.17 0.66 11.62 60.12 0.55 

Average 29.76 48.93 0.57 26.22 51.82 0.57 22.15 56.25 0.58 20.06 59.08 0.58 20.07 62.39 0.58 

Table 5.17: Ecoli Cost-Based results for each number of ellipses (ECSDT+NSGA-II)  

 

From Tables 5.16 and 5.17, it can be observed that, when applying OMOPSO with ECSDT, 

14 ellipses produced the lowest average costs per example, whereas, when applying NSGA-II 

with ECSDT, 12 ellipses produced the lowest average costs per example. Therefore, the 

associated results of using 14 ellipses with OMOPSO and the associated results of using 12 

ellipses with NSGA-II are used in the comparison with the results obtained by other 

algorithms as shown in Table 5.18. 

Algorithm 

Ecoli Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 31.84 31.19 41 66.07 41.95 41 78.27 57.06 41 

MetaCost+J48 32.14 19.55 21 65.17 40.94 31 78.86 33.52 17 

C.S.C+NBTree 26.48 20.07 13 63.98 31.42 13 74.70 44.68 13 

MetaCost+NBTree 25.00 19.19 9 61.01 34.99 23 76.78 37.24 13 

ECSDT-PSO-12ell 26.79 10.30 29 60.12 24.81 29 72.92 35.99 29 

ECSDT-GA-14ell 24.70 10.36 25 60.42 24.07 25 67.56 30.07 25 

 

Algorithm 
Ratio - 4 Ratio - 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 77.67 32.95 41 75.29 22.48 41 75.29 50.99 41 

MetaCost+J48 78.27 20.02 29 74.40 17.81 25 74.40 42.50 41 

C.S.C+NBTree 72.61 28.77 13 66.66 24.49 13 66.66 37.28 13 

MetaCost+NBTree 72.61 28.80 13 65.17 21.83 5 65.17 35.16 9 

ECSDT-PSO-12ell 75.60 14.62 29 72.02 13.11 29 70.83 27.75 29 

ECSDT-GA-14ell 72.92 16.63 25 71.13 13.59 25 64.88 30.06 25 

 

Algorithm 
Ratio - 7 Ratio - 8 Averages 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 69.34 40.40 41 57.44 22.56 41 66.40 37.45 41.00 

MetaCost+J48 62.50 31.65 43 60.71 16.78 45 65.81 27.85 31.50 

C.S.C+NBTree 47.32 24.06 13 38.392 19.14 13 57.11 28.74 13.00 

MetaCost+NBTree 50.59 27.60 11 14.583 32.12 19 53.87 29.62 12.75 

ECSDT-PSO-12ell 63.99 20.5 29 61.61 11.56 29 62.99 19.83 29.00 

ECSDT-GA-14ell 56.85 23.81 25 54.17 11.91 25 59.08 20.06 25.00 

Table 5.18: Ecoli Cost-Based results obtained by the comparative algorithms 
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From the previous table and Figures 5.17, 5.18 and 5.19 we can observe the following 

conclusions for the Ecoli related cost-based results: 

 With both optimization methods (OMOPSO and NSGA-II), ECSDT was able to obtain 

the lowest costs with all cost ratios compared to the other algorithms. 

 OMOPSO achieved lower costs than NSGA-II in 7 of the 8 used cost ratios. 

 In addition to the lowest costs achieved by OMOPSO, it also managed to achieve 

higher accuracies than C.S.C+NBTree and MetaCost+NBTree on 6 of the 8 cost ratios. 

 As presented in Table 5.18 and shown in the Figure 5.19, ECSDT produced smaller 

trees on average compared to C.S.C+J48 and MetaCost+J48 while maintaining lower 

cost averages with both optimization methods.  

 
Figure 5.17: Ecoli cost comparison for the Cost-Based aspect 

 

 
Figure 5.18: Ecoli accuracy comparison for the Cost-Based aspect 

10

15

20

25

30

35

40

45

50

55

60

1 2 3 4 5 6 7 8

C
o

st
 V

al
u

e
s 

Cost Ratios 

C-S-C + J48

MCost + J48

C-S-C + NBTree

MCost + NBTree

ECSD-PSO-14ell

ECSD-GA-12ell

20

25

30

35

40

45

50

55

60

65

70

75

80

1 2 3 4 5 6 7 8

A
cc

u
ra

cy
 R

at
e

s 

Cost Ratios 

C-S-C + J48

MCost + J48

C-S-C + NBTree

MCost + NBTree

ECSD-PSO-14ell

ECSD-GA-12ell



Chapter 5: Empirical Evaluation of the New Algorithm 

 

111 
 

 
Figure 5.19: Ecoli DT-size comparison for the Cost-Based aspect 

 

 

5.3.3 Empirical Comparison Based on Both Accuracy and Cost 

 

As mentioned before in Section 5.3, this aspect considers accuracy that is influenced by the 

misclassification cost as the objective function for inducing the decision trees and ECSDT 

aims to find a solution that gives the best value when subtracting the average cost from the 

accuracy rate. 

The methodology adopted for the comparison in this aspect is that, for each optimization 

method only the results related to the number of ellipses that gives the best accuracy are 

selected along with its associated cost for the comparison, and because the cost was included 

in this aspect, therefore the same algorithms used with the previous aspect namely 

CostSensitiveClassifier and MetaCost with J48 and NBTree were included for the assessment 

of the ECSDT in this aspect. 

The following sub-sections explain and discuss the results obtained from the (Accuracy + cost) 

based evaluation. Section 5.3.3.1 presents the results for all the datasets; Sections 5.3.3.2, 

5.3.3.3 and 5.3.3.4 provide some more detailed discussion for three data sets, namely Bupa, 

IRIS and Ecoli datasets respectively. All tables and results related to this aspect are provided 

in Appendix D. 
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5.3.3.1 Discussion for (Accuracy + Cost) based results 

 

Table 5.19 depicts both accuracy and misclassification costs obtained from the (Accuracy + 

cost) based experiments for all datasets when using different numbers of ellipses in both 

optimization methods. From the table we can see that: 

 Increasing the number of ellipses has a positive effect on improving the performance 

of ECSDT for both cost and accuracy with all datasets. 

 The use of the NSGA-II method obtained higher accuracy results than the use of the 

OMOPSO method on 10 of 14 datasets and also recorded lower costs on 9 of those 10 

datasets, while the use of the OMOPSO method achieved higher accuracy results than 

the NSGA-II method on only 3 of the 14 datasets and achieved lower cost with 2 of 

those 3 datasets. 

 With the Diabetes and the IRIS datasets, the NSGA-II method was able to achieve 

better results in both accuracy and cost than the OMOPSO method and with fewer 

ellipses. As we can see from the table, for the Diabetes, NSGA-II obtained an accuracy 

rate of 63.20% and an average cost of 0.48 with 8 ellipses, whereas, the lowest average 

cost obtained by OMOPSO is 0.77 with an accuracy rate of 60.95% with the use of 10 

ellipses. For IRIS, NSGA-II obtained an accuracy rate of 95.40% and an average cost 

of 2.79 with only the use of 6 ellipses, whereas,  the lowest average cost obtained by 

OMOPSO is 3.32 with an accuracy rate of 93.26% and that is with the use of 7 

ellipses. 
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Dataset  
Optimization 

Method 

No. 

Ell 

Accu- 

racy 

Avrg 

Cost 

No. 

Ell 

Accu- 

racy 

Avrg 

Cost 

No. 

Ell 

Accu- 

racy 

Avrg 

Cost 

No. 

Ell 

Accu- 

racy 

Avrg 

Cost 

No. 

Ell 

Accu- 

racy 

Avrg 

Cost 

Bupa 
OMOPSO 2 48.12±0.63 9.39 4 55.64±0.58 4.04 6 56.37±0.60 2.80 8 57.85±0.56 2.30 10 59.92±0.63 1.41 

NSGA-II 2 49.53±0.63 8.27 4 56.36±0.59 3.23 6 56.80±0.61 3.67 8 58.67±0.58 2.00 10 61.09±0.65 1.37 

Hepatitis 
OMOPSO 2 69.10±1.13 9.08 4 75.13±0.85 6.83 6 80.25±0.82 4.45 8 81.79±0.54 4.44 10 82.04±0.72 4.43 

NSGA-II 2 70.74±1.11 8.99 4 76.15±0.76 6.69 6 81.66±0.69 5.08 8 82.30±0.49 4.43 10 82.56±0.61 4.43 

Heart 
OMOPSO 2 51.48±0.57 12.47 4 57.77±0.67 6.77 6 63.52±0.53 2.99 8 67.51±0.56 2.25 10 69.84±0.57 1.61 

NSGA-II 2 53.07±0.71 11.03 4 59.33±0.61 5.70 6 64.11±0.58 2.71 8 67.81±0.58 1.91 10 69.58±0.61 1.54 

Haberman 
OMOPSO 2 49.28±2.44 4.61 4 51.99±2.45 3.39 6 55.95±2.14 2.69 8 59.48±2.13 1.57 10 61.21±2.16 1.48 

NSGA-II 2 49.84±2.45 4.23 4 51.99±2.45 3.20 6 57.19±2.11 2.61 8 59.35±2.04 1.52 10 61.63±2.22 1.48 

Diabetes 
OMOPSO 2 49.70±1.38 8.28 4 54.58±1.27 3.38 6 59.92±1.26 2.04 8 62.97±1.28 1.20 10 60.95±1.42 0.77 

NSGA-II 2 49.82±1.39 7.61 4 55.47±1.22 3.36 6 60.42±1.16 1.80 8 63.20±1.26 0.48 10 61.73±1.45 0.77 

WDBC 
OMOPSO 2 68.10±1.38 2.43 4 75.39±1.08 2.00 6 82.60±1.04 1.53 8 88.23±0.86 0.98 10 91.65±0.50 0.55 

NSGA-II 2 68.89±1.29 2.34 4 74.52±1.14 2.02 6 82.69±1.03 1.53 8 87.96±1.09 0.97 10 91.30±0.55 0.55 

WPBC 
OMOPSO 2 39.39±2.48 8.97 4 43.85±2.43 7.67 6 50.59±2.95 4.51 8 54.71±3.35 2.63 10 59.09±3.52 1.25 

NSGA-II 2 40.49±2.52 8.77 4 44.11±2.57 7.54 6 50.08±2.81 4.77 8 55.97±3.30 2.39 10 59.51±3.52 1.12 

IRIS 
OMOPSO 3 88.07±0.55 7.26 4 95.33±0.51 3.18 5 93.03±0.60 3.81 6 94.14±0.60 3.33 7 93.26±0.58 3.32 

NSGA-II 3 89.03±0.54 7.02 4 95.48±0.53 3.17 5 93.85±0.59 3.08 6 95.40±0.58 2.79 7 93.92±0.62 3.69 

Hays 
OMOPSO 3 46.25±0.56 36.08 6 52.92±0.85 32.74 9 57.29±1.03 30.12 12 62.02±1.07 26.12 15 68.27±1.27 22.56 

NSGA-II 3 47.08±0.60 36.13 6 52.78±0.85 33.16 9 58.47±1.01 29.14 12 62.15±0.93 26.04 15 69.45±1.18 22.34 

Seeds 
OMOPSO 3 59.00±0.42 27.66 6 68.00±0.55 22.94 9 75.00±0.51 18.46 12 83.00±0.43 12.65 15 87.00±0.41 8.58 

NSGA-II 3 59.00±0.41 27.72 6 67.00±0.46 22.71 9 75.00±0.55 18.32 12 83.00±0.44 12.46 15 87.00±0.36 8.81 

Tae 
OMOPSO 3 32.20±0.34 66.11 6 36.40±0.46 60.35 9 42.90±0.70 51.10 12 50.80±1.15 37.83 15 55.60±1.04 34.28 

NSGA-II 3 32.90±0.30 65.58 6 36.20±0.38 60.79 9 42.50±0.74 51.06 12 50.80±1.12 38.03 15 55.40±1.01 34.61 

Thyroid 
OMOPSO 3 83.46±0.27 15.65 6 88.06±0.13 12.28 9 93.17±0.18 7.48 12 92.78±0.33 6.09 15 95.49±0.14 5.58 

NSGA-II 3 84.57±0.03 15.12 6 88.29±0.27 12.46 9 93.56±0.30 7.04 12 94.02±0.32 5.61 15 96.19±0.11 4.73 

Glass 
OMOPSO 6 53.04±0.29 36.30 8 56.23±0.27 31.57 10 62.07±0.38 23.33 12 67.06±0.40 16.77 14 74.92±0.32 8.45 

NSGA-II 6 53.36±0.25 36.10 8 56.23±0.27 32.23 10 61.60±0.50 22.22 12 68.77±0.30 14.77 14 75.08±0.29 8.38 

Ecoli 
OMOPSO 6 50.78±0.56 35.67 8 54.95±0.54 31.93 10 59.75±0.59 28.23 12 63.58±0.58 24.34 14 67.48±0.56 23.27 

NSGA-II 6 51.32±0.59 35.51 8 55.36±0.60 31.57 10 60.64±0.56 27.31 12 64.36±0.59 24.13 14 67.90±0.64 22.99 

Table 5.19: (Accuracy + Cost) based results for all datasets using different number of ellipses
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Table 5.20 compares the best results obtained by the ECSDT when considering both 

accuracy and cost as a combined multi-objective function along with those obtained by the 

comparative algorithms. These results are presented graphically in Figures 5.16, 5.17, 5.18 

and 5.19. Figure 5.16 and Figure 5.17 presents the cost comparison. Figure 5.18 presents 

the accuracy comparison and Figure 5.19 presents a comparison of the decision tree sizes. 

Dataset 
C-S-C + J48 C-S-C + NBTree MetaCost + J48 

Size Acc SE Cost SE Size Acc SE Cost SE Size Acc SE Cost SE 

Bupa 51 54.38 1.07 13.40 3.27 11 50.03 0.83 0.53 0.63 7.4 51.27 0.83 0.56 0.60 

Hepatitis 2.6 64.49 3.14 0.60 0.70 5 58.72 3.12 0.50 0.80 3 60.64 3.16 0.60 0.80 

Heart 39 57.33 0.75 11.50 3.09 17 57.37 0.99 0.80 0.65 8.2 55.07 0.92 0.52 0.93 

Haberman 5 50.13 2.46 1.04 0.55 3 50.00 2.48 0.50 0.59 3 50.33 2.44 0.50 0.59 

Diabetes 39 54.04 1.24 6.95 1.18 1 54.50 1.38 0.53 0.20 9.8 54.29 1.47 0.51 0.30 

WDBC 25 88.31 1.79 1.63 0.30 23 86.70 1.05 1.07 0.26 22.3 90.65 0.43 0.48 0.85 

WPBC 11.5 58.67 3.73 4.37 1.31 8.5 53.62 4.31 0.85 0.21 12.8 56.90 3.62 1.45 0.61 

IRIS 8.11 91.41 0.95 3.95 0.14 9 90.74 0.65 3.98 0.12 6.44 91.85 0.75 3.84 1.26 

Hays 23 81.67 0.61 16.95 2.30 9.67 60.42 0.67 33.99 4.28 21.3 80.10 0.49 20.84 3.44 

Seeds 15 87.44 1.05 6.32 2.74 8 85.18 0.96 7.10 2.96 14 85.98 0.42 8.17 2.89 

Tae 67 56.00 0.56 41.97 4.33 7 50.90 1.22 42.87 4.42 42 52.10 0.93 43.41 4.89 

Thyroid 17 92.09 0.10 8.10 2.87 7 92.63 0.17 6.57 1.40 15 90.39 0.17 9.11 2.13 

Glass 11 96.73 0.0 9.06 3.24 7 70.40 2.63 12.09 3.21 11 95.40 0.26 5.39 1.91 

Ecoli 41 66.52 1.96 37.45 4.54 13 55.65 2.14 28.74 3.16 32 65.07 1.87 27.85 3.05 

Overall Average 25.37 71.37 1.39 11.66 0.0 9.23 65.49 1.61 10.01 0.0 14.87 70.0 1.27 8.8 0.0 

 

Dataset 
MetaCost + NBTree ECSDT+OMOPSO ECSDT+NSGA-II 

Size Acc SE Cost SE Size Acc SE Cost SE Size Acc SE Cost SE 

Bupa 1 50.12 0.83 0.51 0.65 21 59.92 0.63 1.41 0.75 21 61.09 0.65 1.37 0.79 

Hepatitis 2.4 59.23 3.2 0.50 0.90 21 82.04 0.72 4.43 0.10 21 82.56 0.61 4.43 1.10 

Heart 3 53.40 0.89 0.51 0.94 21 69.84 0.57 1.61 0.84 21 69.58 0.61 1.54 0.91 

Haberman 1 50.00 2.48 0.50 0.59 21 61.21 2.16 1.48 0.61 21 61.63 2.22 1.48 0.62 

Diabetes 2 52.47 1.47 0.49 0.30 21 62.97 1.28 1.20 0.41 17 63.20 1.26 0.48 0.26 

WDBC 16.3 89.07 0.33 0.53 0.80 21 91.65 0.50 0.55 0.38 21 91.30 0.55 0.55 0.38 

WPBC 6.17 52.69 4.37 0.61 0.45 21 59.09 3.52 1.25 0.81 21 59.51 3.52 1.12 0.94 

IRIS 7.67 87.63 0.87 5.11 1.00 9 95.33 0.18 3.17 1.92 13 95.47 0.20 3.17 0.39 

Hays 1.33 56.88 1.19 35.73 2.55 31 68.27 1.27 22.56 3.05 31 69.45 1.18 22.34 3.43 

Seeds 7 81.06 1.19 8.91 2.15 31 87.00 0.41 8.58 2.48 31 87.00 0.36 8.81 2.25 

Tae 8.33 46.80 1.24 45.94 4.35 31 55.60 1.04 34.28 4.79 31 55.40 1.01 34.61 3.28 

Thyroid 8 90.85 0.17 9.79 1.81 31 95.49 0.14 5.58 1.38 31 96.19 0.11 4.73 1.24 

Glass 9 64.49 3.45 13.66 3.63 29 74.92 0.32 8.45 2.85 29 75.08 0.29 8.38 2.92 

Ecoli 13 53.05 2.78 25.61 3.29 29 67.48 2.02 23.27 3.63 29 67.90 1.93 22.99 3.91 

Overall Average 6.16 63.41 1.75 10.6  24.14 73.38 1.09 8.47  24.14 73.88 1.05 8.29 0.0 

Table 5.20: (Accuracy + Cost) based results for all datasets when applying different algorithms 
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From the results shown in the Table 5.20 and from the charts shown in the Figures 5.20, 5.21, 

5.22 and 5.23, we can summarise the following findings: 

 ECSDT was able to achieve higher accuracy than other algorithms on 10 of the 14 

datasets. 

 ECSDT achieved lower costs than other algorithms on 5 of the 14 datasets. 

 In general, the performance of the two optimization methods of ECSDT is similar, 

both optimization methods able to achieve better overall average accuracy and cost. 

More specifically, ECSDT obtained an overall average accuracy of 73.38% and an 

overall average cost of 8.47 when utilizing OMOPSO and an overall average accuracy 

of 73.88% with an overall average cost of 8.29 when utilizing the NSGA-II. In 

contrast, the highest overall average accuracy obtained by other algorithms was 

71.37%, which was achieved by CostSensitiveClassifier with J48, and the lowest 

average cost recorded by other algorithms was 8.8, which was achieved by MetaCost 

with J48. 

 Similar to what happened with the previous aspect, the improvements by ECSDT, 

noted above, however, are at the expense of larger trees except that when applying (C-

S-C + J48) which recorded the worst general average of the tree sizes with an average 

size of 25.37 nodes. Where the ECSDT was able to produce smaller decision trees than 

when applying (C-S-C + J48) on 5 out of the 10 datasets with which the ECSDT 

algorithm produced the best accuracy results.
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Figure 5.20: Cost comparison (Accuracy + Cost) based aspect 

 

 
Figure 5.21: Cost comparison (Accuracy + Cost) based aspect 
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Figure 5.22: Accuracy comparison (Accuracy + Cost) based aspect 

 

 
Figure 5.23: DT-size comparison (Accuracy + Cost) based aspect
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5.3.3.2 Accuracy + Cost based results for the Bupa dataset 

 

Tables 5.21 and 5.22 below present the results when ECSDT is applied to the Bupa dataset 

considering both accuracy and cost for building, testing and evaluating the classifier. The 

tables show that utilizing 10 ellipses in both optimization methods produced the lowest 

average costs as well the highest accuracy for all the 10 used cost ratios. Therefore, the 

associated results of using 10 ellipses in both methods were compared with those obtained by 

other algorithms as shown in Table 5.23. 

  
  

ECSDT + OMOPSO 

2 ell 4 ell 6 ell 8 ell 10 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 0.74 44.1 0.72 0.59 48.7 0.61 0.63 49.1 0.56 0.60 50.7 0.54 0.56 54.8 0.66 

Ratio - 2 1.14 42.6 0.56 0.79 46.7 0.73 0.82 45.9 0.53 0.81 47.2 0.51 0.65 49.6 0.58 

Ratio - 3 1.43 42.9 0.58 1.39 47.2 0.68 0.80 48.4 0.64 0.79 50.1 0.48 0.76 52.5 0.52 

Ratio - 4 4.92 41.4 0.58 3.45 44.6 0.55 3.42 47.2 0.68 3.40 49.6 0.59 1.95 49.9 0.83 

Ratio - 5 12.14 43.8 0.70 9.21 48.1 0.58 6.32 47.0 0.56 6.28 51.0 0.60 3.39 50.4 0.67 

Ratio - 6 1.09 51.3 0.64 0.55 65.8 0.53 0.54 67.0 0.52 0.44 68.7 0.64 0.40 70.4 0.75 

Ratio - 7 2.74 53.3 0.62 0.79 63.8 0.55 0.78 64.3 0.52 0.62 66.7 0.59 0.45 69.0 0.49 

Ratio - 8 5.05 54.2 0.59 1.25 61.4 0.63 0.94 63.8 0.58 0.92 64.3 0.57 0.91 66.7 0.64 

Ratio - 9 26.51 52.8 0.56 7.59 64.6 0.50 4.69 64.9 0.65 2.94 66.4 0.49 1.76 68.4 0.56 

Ratio - 10 38.10 54.8 0.78 14.82 65.5 0.47 9.03 66.1 0.71 6.15 63.8 0.55 3.22 67.5 0.59 

Average 9.39 48.12 0.63 4.04 55.64 0.58 2.8 56.37 0.6 2.3 57.85 0.56 1.41 59.92 0.63 

Table 5.21: Bupa (Accuracy + Cost) based results for each number of ellipses (ECSDT+OMOPSO) 

 

  
  

ECSDT + NSGA-II 

2 ell 4 ell 6 ell 8ell 10 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 0.73 45.2 0.68 0.64 48.5 0.53 0.59 53.2 0.57 0.60 53.0 0.66 0.57 55.7 0.63 

Ratio - 2 1.31 41.8 0.61 0.82 46.1 0.55 1.08 48.5 0.51 0.66 47.6 0.46 0.63 51.3 0.67 

Ratio - 3 1.42 43.8 0.53 0.79 49.3 0.64 0.81 47.2 0.66 0.79 49.6 0.57 0.76 52.8 0.58 

Ratio - 4 7.81 42.9 0.58 4.87 47.0 0.63 4.83 50.4 0.64 4.85 49.0 0.55 1.93 51.3 0.55 

Ratio - 5 12.14 43.8 0.53 9.21 47.8 0.72 9.20 48.7 0.70 6.29 50.1 0.63 3.37 52.5 0.72 

Ratio - 6 0.85 54.5 0.63 0.58 65.5 0.47 0.52 63.8 0.63 0.46 69.3 0.60 0.39 71.3 0.81 

Ratio - 7 2.15 55.7 0.67 0.78 64.9 0.61 0.66 62.9 0.56 0.46 68.4 0.57 0.43 70.7 0.66 

Ratio - 8 4.76 54.5 0.80 0.93 64.1 0.66 0.94 63.8 0.51 0.92 65.5 0.54 0.60 68.4 0.70 

Ratio - 9 22.12 58.0 0.77 4.69 65.2 0.50 6.15 63.7 0.59 1.76 68.4 0.49 1.74 70.4 0.64 

Ratio - 10 29.41 55.1 0.52 9.03 65.2 0.58 11.92 65.8 0.72 3.24 65.8 0.70 3.23 66.7 0.56 

Average 8.27 49.53 0.63 3.23 56.36 0.59 3.67 56.8 0.61 2.00 58.67 0.58 1.37 61.09 0.65 

Table 5.22: Bupa (Accuracy + Cost) based results for each number of ellipses (ECSDT+NSGA-II) 
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Algorithm 

Bupa (Accuracy + Cost) based Results 

Ratio - 1 Ratio - 2 Ratio - 3 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 46.67 1.08 51 43.77 2.55 51 43.8 4.58 51 

MetaCost+J48 50.14 0.81 37 42.32 0.72 1 42.6 0.57 1 

C.S.C+NBTree 42.32 0.66 11 42.32 0.58 11 42.3 0.58 11 

MetaCost+NBTree 43.19 0.57 1 42.03 0.58 1 42.00 0.58 1 

ECSDT-PSO-10ell 54.80 0.56 21 49.60 0.65 21 52.50 0.76 21 

ECSDT-GA-10ell 55.70 0.57 21 51.30 0.63 21 52.80 0.76 21 

 

Algorithm 
Ratio - 4 Ratio - 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 43.77 20.81 51 43.77 41.10 51 66.96 0.72 51 

MetaCost+J48 42.03 0.58 1 42.03 0.58 1 61.74 0.49 23 

C.S.C+NBTree 42.03 0.58 11 42.03 0.58 11 57.68 0.48 11 

MetaCost+NBTree 42.03 0.58 1 42.03 0.58 1 57.97 0.42 1 

ECSDT-PSO-10ell 49.90 1.95 21 50.40 3.39 21 70.40 0.40 21 

ECSDT-GA-10ell 51.30 1.93 21 52.50 3.37 21 71.30 0.39 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 63.80 2.21 51 63.77 4.09 51 63.77 19.17 51 

MetaCost+J48 58.00 0.56 7 57.97 0.42 1 57.97 0.42 1 

C.S.C+NBTree 57.70 0.57 11 57.97 0.42 11 57.97 0.42 11 

MetaCost+NBTree 58.00 0.42 1 57.97 0.42 1 57.97 0.42 1 

ECSDT-PSO-10ell 69.00 0.45 21 66.70 0.91 21 68.40 1.76 21 

ECSDT-GA-10ell 70.70 0.43 21 68.40 0.60 21 70.40 1.74 21 

 

Algorithm 
Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size 

C.S.C+J48 63.77 38.01 51 54.38 13.43 51 

MetaCost+J48 57.97 0.42 1 51.27 0.56 7.4 

C.S.C+NBTree 57.97 0.42 11 50.02 0.53 11 

MetaCost+NBTree 57.97 0.42 1 50.11 0.50 1 

ECSDT-PSO-10ell 67.50 3.22 21 59.92 1.405 21 

ECSDT-GA-10ell 66.70 3.23 21 61.09 1.365 21 

Table 5.23: Bupa (Accuracy + Cost) based results obtained by the comparative algorithms 

 

Similar to what happened previously with the cost-based aspect, Table 5.23 shows that the 

CostSensitiveClassifier with J48 (C.S.C+J48) on the Bupa dataset results in very high costs 

compared to other algorithms, so that it has been excluded from the cost comparison chart 

presented in Figure 5.24. The results listed above in Table 5.23 are graphically illustrated in 

Figures 5.24, 5.25 and 5.26 for cost, accuracy and tree sizes respectively. 
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Figure 5.24: Bupa cost comparison for the (Accuracy + Cost) based aspect 

 

 
Figure 5.25: Bupa accuracy comparison for the (Accuracy + Cost) based aspect 
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 ECSDT with both optimization methods (PSO and GA) obtained lower costs than the 

use of CostSensitiveClassifier with J48 with all cost ratios. 

 The reason for not achieving lower costs can be attributed to the fact that the cost has 

been included in the objective function only as a penalty for accuracy and not as a 

main objective of the optimizations process. 
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 The performance of ECSDT is slightly better when using GAs than when using PSO 

for optimization. 

 ECSDT failed to produce smaller trees than other algorithms except with the 

(C.S.C+J48) that produced the largest trees compared to all other algorithms. 

 MetaCost + NBTree produced the smallest trees in most cases, and that is due to the 

same fact that has been mentioned earlier that MetaCost sometimes neglects the less-

costly class and places all examples into the more-costly class. 

 

 
Figure 5.26: Bupa DT-size comparison for the (Accuracy + Cost) based aspect 
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ECSDT + OMOPSO 

3 ell 4 ell 5 ell 6 ell 7 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 2.80 90.00 0.56 1.53 96.66 0.55 1.80 94.00 0.66 1.87 93.33 0.63 1.80 94.00 0.61 

Ratio - 2 0.69 90.67 0.57 0.28 96.00 0.56 0.87 91.33 0.64 0.47 94.66 0.67 0.88 90.00 0.52 

Ratio - 3 2.25 72.66 0.55 1.40 92.00 0.48 1.46 86.00 0.58 0.73 92.66 0.58 1.45 87.33 0.52 

Ratio - 4 0.73 86.66 0.49 0.37 95.33 0.62 0.37 95.33 0.58 0.57 90.66 0.53 0.40 94.00 0.56 

Ratio - 5 0.19 91.33 0.63 0.14 96.66 0.42 0.19 91.33 0.72 0.17 94.00 0.73 0.17 93.33 0.58 

Ratio - 6 0.33 91.33 0.66 0.19 93.33 0.4 0.24 94.00 0.57 0.17 94.66 0.49 0.19 93.33 0.77 

Ratio - 7 23.33 89.33 0.52 9.00 96.00 0.58 13.33 94.00 0.55 7.67 96.66 0.52 9.00 96.00 0.48 

Ratio - 8 18.33 90.00 0.52 6.00 96.66 0.45 9.00 94.66 0.49 6.00 96.66 0.57 8.00 95.33 0.55 

Ratio - 9 16.67 90.66 0.47 9.67 95.33 0.51 7.00 96.66 0.61 12.33 94.00 0.64 8.00 96.00 0.65 

Average 7.26 88.07 0.55 3.18 95.33 0.51 3.81 93.03 0.6 3.33 94.14 0.6 3.32 93.26 0.58 

Table 5.24: IRIS (Accuracy + Cost) based results for each number of ellipses (ECSDT+OMOPSO) 

 

 

 

ECSDT + NSGA-II 

3 ell 4 ell 5 ell 6 ell 7 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 2.53 92.66 0.58 1.53 96.66 0.54 1.87 93.33 0.64 1.53 96.66 0.59 1.80 94.00 0.55 

Ratio - 2 0.61 92.66 0.58 0.21 96.66 0.54 0.73 92.66 0.66 0.28 96.00 0.53 0.61 92.66 0.53 

Ratio - 3 2.23 74.66 0.46 1.41 91.33 0.77 1.43 88.66 0.57 0.73 92.66 0.47 0.76 90.00 0.61 

Ratio - 4 0.73 86.66 0.44 0.33 96.00 0.34 0.27 96.66 0.51 0.27 94.66 0.75 0.33 95.33 0.67 

Ratio - 5 0.19 91.33 0.61 0.14 96.66 0.83 0.17 93.33 0.62 0.16 94.66 0.71 0.16 94.66 0.81 

Ratio - 6 0.26 92.00 0.68 0.24 94.00 0.42 0.21 91.33 0.58 0.17 94.66 0.54 0.19 93.33 0.62 

Ratio - 7 24.00 89.33 0.49 10.67 95.33 0.63 9.00 96.00 0.55 9.00 96.00 0.58 11.67 94.66 0.53 

Ratio - 8 16.00 91.33 0.52 6.00 96.66 0.34 7.00 96.00 0.57 6.00 96.66 0.55 8.00 95.33 0.57 

Ratio - 9 16.67 90.66 0.54 8.00 96.00 0.38 7.00 96.66 0.60 7.00 96.66 0.49 9.67 95.33 0.66 

Average 7.02 89.03 0.54 3.17 95.48 0.53 3.08 93.85 0.59 2.79 95.4 0.58 3.69 93.92 0.62 

Table 5.25: IRIS (Accuracy + Cost) based results for each number of ellipses (ECSDT+NSGA-II)  

 

From the tables, it can be observed that when using OMOPSO, utilizing 4 ellipses produced 

the lowest average costs per example, while when using NSGA-II, 6 ellipses produced the 

lowest average costs per example. Therefore, the results associated with the use of 4 ellipses 

with the OMOPSO optimization methods and the results associated with the use of 6 ellipses 

with the NSGA-II optimization methods were used in the comparison with the results of other 

algorithms. Table 5.26 summarizes the results and Figures 5.27 to 5.29 present the comparison 

in terms of cost, accuracy and size of trees.  

When the (Accuracy + Cost) method is adopted and applied to the IRIS dataset, the following 

points are observed: 

 ECSDT was able to obtain higher accuracies compared to all other algorithms with all 

cost ratios. 
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 The performance of OMOPSO and NSGA-II was very close, where they perform 

equally in 4 of the 9 cost ratios, the NSGA-II was better with 3 cost ratios whereas the 

OMOPSO was better with 2 cost ratios. 

 ECSDT was able to achieve the best overall averages of both accuracy and cost with 

both optimization methods. ECSDT recorded with NSGA-II an average accuracy of 

95.40% associated with an average cost per example of 2.79, and recorded with 

OMOPSO an average accuracy of 95.33% associated with an average cost of 3.18, 

while the highest average accuracy recorded by other algorithms was 91.85% that is 

obtained by MetaCost+J48 and the lowest average cost recorded by other algorithms 

was 3.83. 

 ECSDT with the use of OMOPSO achieved higher accuracies than all other algorithms 

and satisfactory costs in about 7 of the 9 cost ratios, and this was achieved with trees 

of similar or even smaller size to the other methods.  

Algorithm 

IRIS (Accuracy + Cost) based Results 

Ratio - 1 Ratio - 2 Ratio - 3 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 96.00 1.54 9 96.00 0.82 9 69.33 1.03 9 

MetaCost+J48 93.33 1.75 4 94.00 0.84 7 74.00 0.38 3 

C.S.C+NBTree 84.00 2.44 9 80.67 0.55 9 84.67 0.15 9 

MetaCost+NBTree 84.00 2.62 11 85.33 0.37 9 68.67 1.21 5 

ECSDT-PSO-4ell 96.66 1.53 9 96.00 0.28 9 92.00 1.40 9 

ECSDT-GA-6ell 96.66 1.53 13 96.00 0.28 13 92.66 0.73 13 

 

Algorithm 
Ratio - 4 Ratio - 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 93.33 0.41 11 94.67 0.14 5 90.00 0.31 7 

MetaCost+J48 94.67 0.28 7 93.33 0.18 7 93.33 0.09 9 

C.S.C+NBTree 94.67 0.40 9 95.33 0.13 9 93.33 0.13 9 

MetaCost+NBTree 91.33 0.51 9 90.67 0.15 1 90.00 0.19 9 

ECSDT-PSO-4ell 95.33 0.37 9 96.66 0.14 9 93.33 0.19 9 

ECSDT-GA-6ell 94.66 0.27 13 94.66 0.16 13 94.66 0.17 13 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 96.00 8.33 7 92.67 12.67 7 94.66 10.33 9 

MetaCost+J48 94.67 11.33 7 95.33 8.33 7 94.00 11.33 7 

C.S.C+NBTree 94.67 12.00 9 94.67 9.33 9 94.66 10.67 9 

MetaCost+NBTree 92.67 16.33 9 92.67 12.67 9 93.33 12.00 7 

ECSDT-PSO-4ell 96.00 9.00 9 96.66 6.00 9 95.33 9.67 9 

ECSDT-GA-6ell 96.00 9.00 13 96.66 6.00 13 96.66 7.00 13 

 

Algorithm 
Averages 

 

Acc Cost Size 

C.S.C+J48 91.41 3.95 8.11 

MetaCost+J48 91.85 3.83 6.44 

C.S.C+NBTree 90.74 3.98 9.00 

MetaCost+NBTree 87.63 5.11 7.67 

ECSDT-PSO-4ell 95.33 3.18 9.00 

ECSDT-GA-6ell 95.40 2.79 13.00 

Table 5.26: IRIS (Accuracy + Cost) based results obtained by the comparative algorithms 
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Figure 5.27: IRIS cost comparison for the (Accuracy + Cost) based aspect 

 

 
Figure 5.28: IRIS accuracy comparison for the (Accuracy + Cost) based aspect 

 

 
Figure 5.29: IRIS DT-size comparison for the (Accuracy + Cost) based aspect 
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5.3.3.4 Accuracy + Cost based results for the Ecoli dataset 

 

Table 5.27 and Table 5.28 below present the results obtained for Ecoli dataset when the 

(Accuracy + Cost) aspect is considered. The tables show the accuracy along with the 

associated misclassification costs when ECSDT is used with a different number of ellipses, 

each with different cost ratios and the two optimization methods (OMOPSO and NSGA-II).  

 

 
 

ECSDT + OMOPSO 

6 ell 8 ell 10 ell 12ell 14 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 28.32 23.21 0.56 23.50 25.89 0.48 22.27 28.57 0.53 19.31 26.79 0.58 17.19 31.25 0.56 

Ratio - 2 40.47 55.65 0.58 35.38 59.23 0.56 31.79 62.80 0.62 29.52 66.67 0.47 27.46 64.88 0.52 

Ratio - 3 52.18 66.67 0.53 45.93 70.24 0.48 40.10 73.81 0.62 32.74 75.89 0.62 38.76 81.24 0.47 

Ratio - 4 31.11 64.88 0.49 27.40 68.15 0.55 22.71 74.70 0.59 19.74 77.38 0.53 18.98 80.95 0.62 

Ratio - 5 24.98 57.74 0.53 22.15 62.20 0.60 18.59 67.56 0.72 15.41 73.81 0.66 15.15 77.68 0.58 

Ratio - 6 48.76 50.6 0.66 46.06 55.95 0.56 43.66 60.42 0.57 36.93 66.67 0.69 30.25 72.62 0.51 

Ratio - 7 37.63 45.83 0.52 34.18 51.19 0.51 29.34 56.85 0.56 25.61 61.90 0.48 21.26 66.37 0.53 

Ratio - 8 21.90 41.67 0.62 20.81 46.73 0.54 17.36 53.27 0.53 15.43 59.52 0.57 17.14 64.88 0.67 

Average 35.67 50.78 0.56 31.93 54.95 0.54 28.23 59.75 0.59 24.34 63.58 0.58 23.27 67.48 0.56 

Table 5.27: Ecoli (Accuracy + Cost) based results for each number of ellipses (ECSDT+OMOPSO) 

 

 

 

 

ECSDT + NSGA-II 

6 ell 8 ell 10 ell 12ell 14 ell 

Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE Cost Acc SE 

Ratio - 1 27.35 24.70 0.55 22.91 26.49 0.50 22.47 26.79 0.64 17.68 30.06 0.59 15.73 33.63 0.59 

Ratio - 2 40.01 57.44 0.56 34.64 59.52 0.54 30.72 64.58 0.66 30.11 67.26 0.66 27.74 66.37 0.48 

Ratio - 3 53.07 65.48 0.56 45.04 70.83 0.70 38.90 75.30 0.49 32.83 74.40 0.57 37.63 80.36 0.56 

Ratio - 4 30.97 66.67 0.64 27.57 68.45 0.63 23.01 74.40 0.67 19.51 78.87 0.53 18.89 81.85 0.67 

Ratio - 5 24.53 59.63 0.54 21.34 63.99 0.56 18.95 66.37 0.52 15.34 74.70 0.49 15.24 76.79 0.80 

Ratio - 6 48.32 51.49 0.68 45.96 57.44 0.62 37.92 63.69 0.56 36.49 67.26 0.67 30.21 74.40 0.62 

Ratio - 7 37.84 44.94 0.49 34.18 51.19 0.59 29.23 58.33 0.45 25.49 63.69 0.66 21.31 65.77 0.73 

Ratio - 8 22.01 40.18 0.67 20.95 44.94 0.65 17.26 55.65 0.48 15.59 58.63 0.52 17.18 63.99 0.65 

Average 35.51 51.32 0.59 31.57 55.36 0.6 27.31 60.64 0.56 24.13 64.36 0.59 22.99 67.9 0.64 

Table 5.28: Ecoli (Accuracy + Cost) based results for each number of ellipses (ECSDT+NSGA-II)  

 

The tables show that increasing the number of ellipses has a positive effect in reducing the 

cost with the majority of the used cost ratios, so the use of 14 ellipses with both optimization 

methods produced the lowest average costs per example. Therefore, the associated results of 

using 14 ellipses with both optimization methods are used in the comparison with the results 

obtained by other algorithms as shown in Table 5.29. 
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Algorithm 

Ecoli (Accuracy + Cost) based Results 

Ratio - 1 Ratio - 2 Ratio - 3 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 31.84 31.19 41 66.07 41.95 41 78.27 57.06 41 

MetaCost+J48 32.14 19.55 21 65.17 40.94 31 78.86 33.52 17 

C.S.C+NBTree 26.48 20.07 13 63.98 31.42 13 74.70 44.68 13 

MetaCost+NBTree 25.00 19.19 9 61.01 34.99 23 76.78 37.24 13 

ECSDT-PSO-12ell 31.25 17.19 29 64.88 27.46 29 81.24 38.76 29 

ECSDT-GA-14ell 33.63 15.73 29 66.37 27.74 29 80.36 37.63 29 

 

Algorithm 
Ratio - 4 Ratio - 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 77.67 32.95 41 75.29 22.48 41 75.29 50.99 41 

MetaCost+J48 78.27 20.02 29 74.40 17.81 25 74.40 42.50 41 

C.S.C+NBTree 72.61 28.77 13 66.66 24.49 13 66.66 37.28 13 

MetaCost+NBTree 72.61 28.80 13 65.17 21.83 5 65.17 35.16 9 

ECSDT-PSO-12ell 80.95 18.98 29 77.68 15.15 29 72.62 30.25 29 

ECSDT-GA-14ell 81.85 18.89 29 76.79 15.24 29 74.40 30.21 29 

 

Algorithm 
Ratio - 7 Ratio - 8 Averages 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 69.34 40.40 41 57.44 22.56 41 66.40 37.45 41.00 

MetaCost+J48 62.50 31.65 43 60.71 16.78 45 65.81 27.85 31.50 

C.S.C+NBTree 47.32 24.06 13 38.392 19.14 13 57.11 28.74 13.00 

MetaCost+NBTree 50.59 27.60 11 14.583 32.12 19 53.87 29.62 12.75 

ECSDT-PSO-12ell 66.37 21.26 29 64.88 17.14 29 67.48 23.27 29.00 

ECSDT-GA-14ell 65.77 21.31 29 63.99 17.18 29 67.90 22.99 29.00 

Table 5.29: Ecoli (Accuracy + Cost) based results obtained by the comparative algorithms 

 

From the previous table and using Figures 5.30, 5.31 and 5.32 we can get the following 

conclusions for the Ecoli related (Accuracy+cost) based results: 

 ECSDT was able to obtain lowest costs than other algorithms in 6 of the 8 cost ratios. 

 ECSDT was also able to obtain higher accuracies than other algorithms in 6 of the 8 

cost ratios. 

 The performance of both OMOPSO and NSGA-II was similar; each achieved the 

highest accuracy with 3 cost ratios and the lowest cost with 3 cost ratios. 

 In general, ECSDT with both optimization methods achieved the highest averages of 

accuracy that reached 67.48% for OMOPSO and 67.90% for NSGA-II and also 

achieved the lowest averages of costs with both optimization methods that recorded 

23.27% for OMOPSO and 22.99% for NSGA-II. These achievements in terms of 

accuracy and cost were achieved with trees, which on average were smaller than those 

produced by C.S.C+J48 and MetaCost+J48. 
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Figure 5.30: Ecoli cost comparison for the (Accuracy + Cost) based aspect 

 

 
Figure 5.31: Ecoli accuracy comparison for the (Accuracy + Cost) based aspect 

 

 
Figure 5.32: Ecoli DT-size comparison for the (Accuracy + Cost) based aspect 
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Chapter 6 : CONCLUSION AND FUTURE WORK 

 

 

The area of learning cost-sensitive multiclass decision trees continues to be one of the major 

challenging areas of data mining and machine learning. Cost-sensitive multiclass learning 

aims to build classifiers that minimize the expected misclassification costs for multiclass 

problems. 

 

Decision trees are one of the most common and widely used classification methods for cost-

sensitive learning, due to the simplicity of constructing them, their transparency and 

comprehensibility. Most of the cost-sensitive algorithms that have been developed during the 

last decade are aimed at solving binary classification problems where examples are classified 

into one of two available classes. 

 

A review of the literature shows that research on inducing nonlinear multiclass cost-sensitive 

decision trees is still in its early stages and further research may result in improvements over 

the current state of the art. Hence, this thesis has explored the following question: 

 

How can non-linear regions be identified for multiclass problems and utilized to 

construct decision trees so as to maximize the accuracy of classification, and 

minimize costs? 

 

Hence, the main goal of this research was to develop a new algorithm called the Elliptical 

Cost-Sensitive Decision Tree algorithm (ECSDT) that induces elliptical cost-sensitive decision 

trees for multiclass classification problems using two different evolutionary optimization 

methods: OMOPSO which is a particle swarm optimization method (PSO) and NSGA-II 

which is a genetic algorithm (GA).  

 

In Chapter 1, a set of objectives that would help find a solution to the above question were 

listed. Section 6.1 revisits these objectives, summarizes the main findings and presents to what 

extent these objectives have been accomplished and Section 6.2 presents directions for future 

work. 
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6.1 Evaluating the Achievement of the Objectives  

 

This section reviews the research objectives, summarizes the main findings and shows how 

well the research objectives have been accomplished by presenting each research objective 

separately and discussing the extent to which it has been achieved. 

1- For the literature review, firstly a study was conducted on a range of topics such as 

supervised learning, experimental methods and decision tree learning. This was 

followed by a deep survey of the field of cost-sensitive classification which included 

different cost-sensitive learning theories and strategies as well some ways of 

categorizing cost-sensitive learning methods such as direct cost-sensitive learning 

methods and meta-learning methods. The literature review covered four main areas 

related to the research which are cost-sensitive decision tree learning, nonlinear 

decision trees, multi-class classification and multi-objective optimization methods. 

Theliteraturereviewrevealedthattherewasn’tmuchresearchondevelopingnon-

linear cost-sensitive decision tree learning algorithms for multi-class problems. 

2- For the development and the implementation of the proposed algorithm, the ECSDT 

algorithm has been developed for learning cost-sensitive classifiers for multiclass 

problems. ECSDT uses ellipses for splitting the data and the main task is to find a 

suitable number of ellipses and place them in the instances space so that some 

measures such as misclassification error and cost are minimized. To minimise these 

measures, two different optimisation methods, namely genetic algorithms (GAs) and 

particle swarm optimization (PSO) were explored. The ECSDT algorithm was 

implemented in a framework known as MOEA, which provides implementations of 

PSO (OMOPSO) and GAs (NSGAII). 

3- For training, testing and evaluating the accuracy and the cost-sensitivity of ECSDT, 

14 different real-world datasets from the UCI Machine Learning Repository 

(Lichman 2013) named (Iris, Seeds, Glass, Hepatitis, Bupa, Heart, Diabetes, 

Haberman, Ecoli, Hayes, Tae, Thyroid, WDBC and WPBC) have been used. The 

results obtained when applying ECSDT have been compared against some common 

cost-sensitive decision tree methods available in the Weka system such as the J48, 

NBTree, MetaCost and CostSensitiveClassifier. 

4- ECSDT was evaluated in three different settings, each with a different objective 

function:  the first setting considered the accuracy of classification only, the second 



Chapter 6: Conclusion and Future Work 

 

130 
 

setting considered misclassification costs only, while the third considered accuracy 

and cost together. 

5- To determine the appropriate number of ellipses that gives the best results compared 

to the other alternatives, all experiments were repeated five times with a different 

number of ellipses for each individual experiment and then the number of ellipses 

that gives the best results is selected. 

6- To evaluate performance, ECSDT and several well-known algorithms were applied 

on 14 data sets and the results compared. 

7- For the first approach that considers accuracy only, 6 accuracy-based algorithms 

from the Weka system were used for the comparison, namely J48, NBTree, BFTree, 

ADTree, LADTree and REPTree. 

8-  For the second and third approaches that consider misclassification costs, two cost-

sensitive meta-classifiers, CostSensitiveClassifier and MetaCost with the use of two 

decision tree base learners named J48 and NBTree were used. 

9- Based on the empirical evaluations, we can conclude that: 

 

(a) Applying ECSDT with the first approach that takes into account accuracy 

only, ECSDT has achieved its goal of achieving higher accuracy to a 

reasonable extent as it was able to obtain the highest accuracy on 10 out of 

the 14 datasets and also was able to produce smaller trees when compared 

with J48, LADTree and ADTree. 

(b) Applying ECSDT with the second approach that takes into account cost 

only, ECSDT achieved its goal of achieving lower costs to a reasonable 

extent as it was able to record the lowest cost on 10 out of the 14 datasets, 

but that was at the expense of larger trees than those produced by other 

algorithms. 

(c)  When ECSDT considers cost and accuracy, it achieved higher accuracy on 

10 out of the 14 datasets. However, for cost results, ECSDT was able to 

record the lowest cost on only 5 out of the 14 datasets, and also that was at 

the expense of larger trees than those produced by other algorithms. 

 

Although ECSDT performs well on many of the datasets, there are some where its 

performance is not as good as existing algorithms.  The reasons why machine learning 

algorithms work for some datasets and others vary and attempts to resolve this issue have led 
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to studies such as meta-learning (Shilbayeh & Vadera 2014). The most likely reasons for 

ECSDT not performing well on some of the datasets can be attributed to some factors such as: 

 The nature of the dataset, where in some cases the classes overlap in a way which 

makes it very difficult to separate using ellipses as the case with Hays and Tae 

datasets. 

 Some datasets are unbalanced such that there are very few examples belonging to 

some classes but many belonging to other classes. An example of that is the Glass 

dataset where the number of examples in each of the 7 classes is 70, 76, 17, 0, 13, 9, 

and 29. 

  When there are many features, with several that may be irrelevant. The ECSDT 

optimization process (GAs, PSO) uses a fixed number of cycles which may not 

converge to selecting the optimal features in cases where there are many features as 

the case with the WDBC dataset. 

 As mentioned previously, an important factor that plays a vital role in improving the 

performance of the algorithm is determining the optimal number of ellipses to be used 

for inducing the decision tree. When visualizing the datasets in Weka it was clear that 

with some datasets, increasing the number of ellipses might have improved 

performance. 

 

Some of the above issues, such as the effect of imbalanced data and having many features also 

affect other algorithms.  There are methods, such as sampling and feature selection methods 

that can be adopted to improve performance (Chandrashekar & Sahin 2014). Further work, 

specifically on developing a method for deciding the most ellipses and integration of feature 

selection methods in ECSDT could lead to improved versions of ECSDT in the future. 

 

 

6.2 Future Work 

 

Despite the satisfactory results achieved by the ECSDT algorithm, there are some limitations 

and some ideas that could be explored in the future:  

 ECSDT deals with only numeric data but does not deal with nominal data. To use 

ECSDT at present, the nominal values are converted to numeric values.  A future 
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implementation that codes nominal values might reduce search time and improve 

results. 

 In this research, only misclassification costs were considered and the other cost types 

such as test costs were not considered. Turney (1995) mentioned that there is a trade-

off between the cost of misclassification errors and the cost of tests in classification 

learning. For example, in medical diagnoses, blood tests or x-rays may help in 

reducing the misclassification costs, but when the cost of conducting the required tests 

are much more costly than the costs of misclassification errors, then it is obvious that 

there is no point in conducting the tests. So, in the future, this trade-off between the 

cost of misclassification errors and the cost of tests could be examined by including 

the different cost tests associated with each classification problem in the objective 

function. 

 The cost-sensitivity performance of ECSDT algorithm was evaluated by comparing its 

results with those obtained by two other meta-learning algorithms:  MetaCost and 

CostSensitiveClassifier. In the future, a comparison will be extended to include other 

cost-sensitive algorithms such as ICET (Turney 1995) and CSNL (Vadera 2010). 

 As mentioned in Section 5.3, one of the challenges facing ECSDT is how to determine 

the appropriate number of ellipses that should be used to build the decision tree for 

each classification problem. The methodology followed in this research was to 

determine the appropriate number of ellipses based on the number of classes.  

Therefore, in the future, we suggest adopting a specific methodology by which to 

determine the appropriate number of ellipses. One of the ideas that can be explored is 

by increasing the number of ellipses by 1 in each turn until a specific condition is 

achieved such as reaching a specific high accuracy rate, recording certain low-cost 

value or a particular maximum number of ellipses are reached. 

 In this research, 14 diverse datasets were used which vary in the number of classes, 

number of features, number of examples, etc. However, to make the research more 

comprehensive and more diverse, we recommend applying the algorithm to more real-

world datasets that have more of examples, more features and also have a diversity of 

datatypes(numeric,nominal,discrete,continuous,real,integer,…etc.). 

 ECSDT takes advantage of two optimization methods, OMOPSO and NSGA-II that 

are available in MOEA framework. These optimization methods are controlled by 

several parameters, ECSDT uses these methods with only the default values. Some 
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examples of these properties are populationSize, mutationProbability, maxEvaluations 

and archiveSize, and the effect of changing these properties on the performance of 

ECSDT was not examined and could be explored in the future. 

 

In conclusion, the main hypothesis explored in this thesis is that using evolutionary 

optimization methods such as GAs and PSO to induce elliptical boundaries provides a basis 

for a new cost-sensitive learning algorithm for multiclass problems and that such an algorithm 

will perform better than existing algorithms in terms of classification accuracy, cost 

minimisation, and decision tree size. The primary contribution of this study is, therefore, the 

development of a novel cost-sensitive decision tree algorithm called the Elliptical Cost-

Sensitive Decision Tree algorithm (ECSDT) that induces cost-sensitive elliptical decision trees 

for multiclass classification problems using two different evolutionary optimization methods 

called OMOPSO which is a particle swarm optimization method and NSGA-II which is a 

genetic algorithm. The algorithm achieved promising results in terms of reducing the cost of 

classification errors as well as maintaining good rates of classification accuracy compared to 

the other algorithms. 
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APPENDIX – A: Details of the Datasets Used in the Research 
 

This appendix gives some details about the datasets used in this PhD search. 

 

 

Bupa-Liver Disorders: 

The Liver Disorders (BUPA) dataset is a medical dataset that has been created by BUPA 

Medical Research Ltd (McDermott & Forsyth 2016) and it is available in the UCI machine 

learning repository (Lichmakn 2013a). This dataset is a binary classification problem which 

contains 345 instances with 7 features (attributes) and a class label for each instance. The 

Bupa dataset analyses some liver disorders that might emerge from extreme alcohol 

consuming. The classification task of using this dataset is to predict if a particular person is 

suffering from alcoholism or not. The 345 instances are divided into 2 classes; class1=145 

instances and class2= 200 instances. 

The data set is available for download from UCI machine learning repository using the 

following link.  

https://archive.ics.uci.edu/ml/datasets/liver+disorders 

 

 

Hepatitis Dataset 

The Hepatitis dataset is a medical dataset available in the UCI machine learning repository 

(Lichmakn 2013a). This dataset is a binary classification problem which contains 155 

instances with 20 features (attributes) and a class label for each instance. The Hepatitis dataset 

analyses some information about a particular patient and the symptoms that are related to the 

Hepatitis disease that can appear on the patient. The classification task is to make a prediction 

for the patient if his illness may lead him to death or there is a big hope in life based on the 

symptoms that the particular has (Diaconis & Efron 1983  ).The data set is available for 

download from UCI machine learning repository using the following link.  

https://archive.ics.uci.edu/ml/datasets/hepatitis 

 

https://archive.ics.uci.edu/ml/datasets/liver+disorders
https://archive.ics.uci.edu/ml/datasets/hepatitis
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Statlog Heart Disease 

The Statlog Heart Disease dataset is a medical dataset available in the UCI machine learning 

repository (Lichmakn 2013a). This dataset is a binary classification problem which contains 

270 instances with 14 features (attributes) and a class label for each instance. The Statlog 

Heart Disease dataset analyses some personal and life style information about a particular 

patient and some results of medical tests that are related to the Heart Disease. The 

classification task is to diagnosis and makes a prediction for the patient if he or she suffers 

from the disease or not. 

The data set is available for download from UCI machine learning repository using the 

following link.  

http://archive.ics.uci.edu/ml/datasets/statlog+(heart) 

 

 

Haberman’sSurvivalDataset 

This dataset is a medical binary classification dataset available in the UCI machine learning 

repository (Lichmakn 2013a) which contains some information about the survival of patients 

who had undergone surgery for breast cancer. This information obtained from a study that was 

carried out at the Billings Hospital-University of Chicago's. This dataset contains 306 

instances with 4 features (attributes) and a class label for each instance. The classification task 

with this dataset is to make a prediction for the survival of patients who had undergone 

surgery for breast cancer. 

The data set is available for download from UCI machine learning repository using the 

following link.  

https://archive.ics.uci.edu/ml/datasets/Haberman's+Survival 

 

 

 

 

 

http://archive.ics.uci.edu/ml/datasets/statlog+(heart)
https://archive.ics.uci.edu/ml/datasets/Haberman's+Survival
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Diabetes Dataset 

This dataset is also a medical binary classification dataset available in the UCI machine 

learning repository (Lichmakn 2013a) which contains some information about the daily 

lifestyle for a person such as the times and amounts of meals a person takes a day as well as 

the number of times and the type of the exercises and activities performed by the person on the 

day. This dataset also contains some information on the types and doses of insulin taken in the 

day as well as many readings and measurements of different blood tests performed on patients. 

This dataset contains 768 instances with 20 features (attributes) and a class label for each 

instance. The classification task with this dataset is to make a prediction for a particular person 

whether his information show signs of having diabetes or not. 

The data set is available for download from UCI machine learning repository using the 

following link.  

https://archive.ics.uci.edu/ml/datasets/diabetes 

 

 

Breast Cancer Wisconsin (Diagnostic) – WDBC Dataset 

The Breast Cancer Wisconsin (Diagnostic) dataset is a medical dataset available in the UCI 

machine learning repository (Lichmakn 2013a). This dataset is a binary classification problem 

which contains 569 instances with 32 features (attributes) and a class label for each instance. 

The WDBC dataset analyses some measurements that are computed for the nuclei of some 

cells on the tumor. The classification task is to makes a prediction for the type of the tumor as 

either malignant or benign. 

The data set is available for download from UCI machine learning repository using the 

following link.  

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) 

 

 

 

 

https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Breast Cancer Wisconsin (Prognostic) – WPBC Dataset 

The Breast Cancer Wisconsin (Prognostic) dataset is similar to WDBC mentioned before. It 

contains 198 instances with 34 features (attributes). The classification task is also similar to 

WDBC where it makes a prediction for the type of the tumor as either malignant or benign. 

The data set is available for download from UCI machine learning repository using the 

following link.  

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic) 

 

 

IRIS Datase: 

The IRIS dataset was originally introduced by (Fisher 1936). It is one of the most well-known 

datasets that is widely used in the fields of data mining and pattern recognition. The data set 

comprises of 3 classes that represent 3 different types of iris plants, each class consists of 50 

instances. One class can be separated linearly from the other two, but the other two cannot be 

separated linearly from each other. The dataset contains 4 Real-valued attributes in addition to 

the class label as follows:  

1. Sepal length in cm  

2. Sepal width in cm  

3. Petal length in cm  

4. Petal width in cm  

5. The class label that holds one of 3 types of iris plants: 

 Iris Setosa - 1 

 Iris Versicolour - 2 

 Iris Virginica – 3 

The classification task is to predict to which one of the three types of IRIS flowers a new 

unseen IRIS flowre will be classified. 

The data set is available for download from UCI machine learning repository using the 

following link. 

https://archive.ics.uci.edu/ml/datasets/iris 

 

 

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic)
https://archive.ics.uci.edu/ml/datasets/iris
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Hayes-Roth Dataset 

This database is a social artificial dataset created by Barbara and Frederick Hayes-Roth (1977) 

to examine the behaviour of classifiers. It is a 3-class classification problem that contains 160 

examples and 5 numerical attributes which are: name, hobby, age, educational level, marital 

status and the class label. 

The data set is available for download from UCI machine learning repository using the 

following link. 

https://archive.ics.uci.edu/ml/datasets/Hayes-Roth 

 

 

Seeds Dataset: 

Seeds dataset comprised of 7 geometric parameters related to the kernels of three different 

types of wheat named: the Kama, Rosa and Canadian, each variety represented by 70 instances 

(Charytanowicz et al. 2010). The dataset contains 7 Real-valued attributes in addition to the 

class label as follows: 

1. Area 

2. Perimeter 

3. Compactness 

4. Length of kernel 

5. Width of kernel 

6. Asymmetry coefficient  

7. Length of kernel groove 

8. The class label that holds one of 3 types of wheat: 

 Kama - 1 

 Rosa - 2 

 Canadian – 3 

The classification task is to predict to which one of the three types of wheat a new unseen 

wheat seed will be classified. 

The data set is available for download from UCI machine learning repository using the 

following link. 

https://archive.ics.uci.edu/ml/datasets/seeds 

https://archive.ics.uci.edu/ml/datasets/Hayes-Roth
https://archive.ics.uci.edu/ml/datasets/seeds
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Teaching Assistant Evaluation -Tae 

The dataset is a 3-class problem that presents an estimation of teaching performance for 3 

winter semesters and 2 summer semesters of 151 teaching assistant (TA) assignments. The 

classification task is to predict to which one of the three score categories ("low", "medium", 

and "high") a teaching assistant (TA) assignments will be classified.  

The data set is available for download from UCI machine learning repository using the 

following link. 

http://archive.ics.uci.edu/ml/datasets/Teaching%2BAssistant%2BEvaluation 

 

 

Thyroid Disease Dataset 

The Thyroid Disease dataset is a medical dataset available in the UCI machine learning 

repository (Lichmakn 2013a). This dataset is a 3-class problem which contains 216 instances 

with 21 features (attributes). The Thyroid Disease dataset contains some information about the 

medical history of the patient and some of the required test results. The classification task is to 

makes a prediction for the patient if he is normal or suffers from hyperthyroidism or 

hypothyroidism. 

The data set is available for download from UCI machine learning repository using the 

following link.  

http://archive.ics.uci.edu/ml/datasets/thyroid+disease 

 

 

Glass Identification Dataset 

The Glass identification dataset is a 7-class dataset that presents 7 different types of glass that 

are used to assists investigators in forensic science to find forensic evidences at crime scenes. 

This dataset contains 214 instances with 9 features (attributes) that give the characteristics of 

the different 7 types of glass. The data set is available for download from UCI machine 

learning repository using the following link.  

https://archive.ics.uci.edu/ml/datasets/glass+identification 

http://archive.ics.uci.edu/ml/datasets/Teaching%2BAssistant%2BEvaluation
http://archive.ics.uci.edu/ml/datasets/thyroid+disease
https://archive.ics.uci.edu/ml/datasets/glass+identification
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Ecoli Dataset 

The Ecoli dataset is a medical 8-class dataset that presents 8 different localization sites of 

proteins that are presented as measures about the cell. This dataset contains 336 instances with 

9 features (attributes). The main goal of using this dataset is to make a prediction for the 

localization site of proteins by using the provided measures of the cell. 

The data set is available for download from UCI machine learning repository using the 

following link.  

https://archive.ics.uci.edu/ml/datasets/ecoli 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://archive.ics.uci.edu/ml/datasets/ecoli
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APPENDIX – B: Results of the Empirical Comparison Based on 

Accuracy 
 

This appendix presents the results obtained by the ECSDT when adopting the first aspect 

which considers accuracy only as an objective function for the evaluation. 

Bupa Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 51 68.70 0.50 

NBTree 11 66.38 0.48 

BFTree 19 64.92 0.50 

ADTree 31 59.71 0.47 

LADTree 31 65.50 0.46 

REPTree 23 64.05 0.49 

ECSDT + 

OMOPSO 

2-ell 5 49.41 0.51 

4-ell 9 59.71 0.87 

6-ell 13 58.82 0.51 

8-ell 17 65.85 0.43 

10-ell 21 68.52 0.77 

ECSDT + 

NSGA-II 

2-ell 5 53.53 0.43 

4-ell 9 59.41 0.76 

6-ell 13 60.59 0.62 

8-ell 17 66.47 0.39 

10-ell 21 72.35 0.46 

Table Apx-B-01: Bupa Accuracy-based results 

Hepatitis Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 11 85.89 0.17 

NBTree 5 84.61 0.35 

BFTree 5 83.33 0.38 

ADTree 31 87.17 0.31 

LADTree 31 80.76 0.40 

REPTree 11 87.17 0.31 

ECSDT + 

OMOPSO 

2-ell 5 81.43 0.46 

4-ell 9 82.86 0.62 

6-ell 13 85.71 0.49 

8-ell 17 84.29 0.55 

10-ell 21 84.29 0.41 

ECSDT + 

NSGA-II 

2-ell 5 80.00 0.44 

4-ell 9 82.86 0.57 

6-ell 13 85.71 0.44 

8-ell 17 88.57 0.49 

10-ell 21 87.14 0.54 

Table Apx-B-02: Hepatitis Accuracy-based results 

 

 

 

 

Heart Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 39 77.40 0.44 

NBTree 17 80.74 0.38 

BFTree 37 77.40 0.44 

ADTree 31 79.25 0.38 

LADTree 31 80.00 0.36 

REPTree 7 76.66 0.42 

ECSDT + 

OMOPSO 

2-ell 5 68.15 0.53 

4-ell 9 73.70 0.57 

6-ell 13 77.40 0.44 

8-ell 17 73.70 0.46 

10-ell 21 84.81 0.48 

ECSDT + 

NSGA-II 

2-ell 5 67.40 0.48 

4-ell 9 71.48 0.46 

6-ell 13 80.37 0.51 

8-ell 17 77.03 0.54 

10-ell 21 83.33 0.52 

Table Apx-B-03: Heart Accuracy-based results 

Haberman Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 5 72.00 0.46 

NBTree 3 73.00 0.43 

BFTree 5 74.00 0.40 

ADTree 31 72.00 0.48 

LADTree 31 74.00 0.44 

REPTree 5 71.00 0.53 

ECSDT + 

OMOPSO 

2-ell 5 73.00 0.53 

4-ell 9 76.00 0.49 

6-ell 13 77.00 0.47 

8-ell 17 78.00 0.56 

10-ell 21 79.00 0.55 

ECSDT + 

NSGA-II 

2-ell 5 75.00 0.54 

4-ell 9 75.00 0.57 

6-ell 13 78.00 0.47 

8-ell 17 80.00 0.44 

10-ell 21 80.00 0.53 

Table Apx-B-04: Haberman Accuracy-based results 
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Diabetes Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 39 73.80 0.44 

NBTree 1 73.56 0.42 

BFTree 5 73.56 0.44 

ADTree 31 72.91 0.41 

LADTree 31 74.08 0.42 

REPTree 49 75.26 0.42 

ECSDT + 

OMOPSO 

2-ell 5 74.73  0.52 

4-ell 9 75.52  0.53 

6-ell 13 76.97 0.49 

8-ell 17 78.81 0.44  

10-ell 21 75.13 0.45 

ECSDT + 

NSGA-II 

2-ell 5 73.42 0.46 

4-ell 9 76.44 0.51  

6-ell 13 78.28 0.53  

8-ell 17 77.89 0.46  

10-ell 21 76.84 0.44  

 Table Apx-B-05: Diabetes Accuracy-based results 

WDBC Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 25 92.97 0.26 

NBTree 23 92.79 0.25 

BFTree 17 92.97 0.25 

ADTree 31 94.72 0.18 

LADTree 31 95.60 0.18 

REPTree 9 92.44 0.25 

ECSDT + 

OMOPSO 

2-ell 5 85.88 0.34 

4-ell 9 92.14 0.36 

6-ell 13 85.35 0.28 

8-ell 17 93.20 0.25 

10-ell 21 87.32 0.26 

ECSDT + 

NSGA-II 

2-ell 5 85.71 0.28 

4-ell 9 88.92 0.31 

6-ell 13 90.88 0.29 

8-ell 17 93.34 0.28 

10-ell 21 89.63 0.25 

Table Apx-B-6: WDBC Accuracy-based results 

 

 

 

 

WPBC Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 21 73.73 0.49 

NBTree 11 71.21 0.47 

BFTree 1 75.75 0.43 

ADTree 31 73.23 0.43 

LADTree 31 75.25 0.44 

REPTree 7 72.22 0.45 

ECSDT + 

PSO 

2-ell 5 76.84 0.57 

4-ell 9 77.35 0.54 

6-ell 13 78.42 0.49 

8-ell 17 76.84 0.47 

10-ell 21 77.90 0.53 

ECSDT + 

GA 

2-ell 5 76.84 0.56 

4-ell 9 78.42 0.51 

6-ell 13 75.26 0.55 

8-ell 17 76.31 0.48 

10-ell 21 73.16 0.48 

Table Apx-B-07: WPBC Accuracy-based results 

IRIS Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 9 96.00 0.158 

NBTree 9 94.66 0.170 

BFTree 11 94.66 0.175 

ADTree N/A N/A N/A 

LADTree 31 94.00 0.193 

REPTree 5 94.00 0.193 

ECSDT + 

PSO 

3ell 7 95.33 0.30 

4ell 9 98.66 0.28 

5ell 11 97.33 0.34 

6ell 13 96.66 0.35 

7ell 15 95.33 0.32 

ECSDT + 

GA 

3ell 7 94.66 0.52 

4ell 9 98.66 0.28 

5ell 11 96.66 0.46 

6ell 13 96.00 0.34 

7ell 15 95.33 0.44 

Table Apx-B-08: IRIS Accuracy-based results 
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Hayes Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 23 83.12 0.27 

NBTree 13 64.37 0.38 

BFTree 29 81.25 0.27 

ADTree N/A N/A N/A 

LADTree 31 82.50 0.26 

REPTree 25 83.75 0.27 

ECSDT + 

PSO 

3ell 7 57.50 0.36 

6ell 13 61.87 0.33 

9ell 19 65.62 0.41 

12ell 25 68.12 0.29 

15ell 31 62.50 0.31 

ECSDT + 

GA 

3ell 7 60.62 0.33 

6ell 13 68.12 0.34 

9ell 19 68.12 0.29 

12ell 25 71.25 0.28 

15ell 31 63.12 0.35 

Table Apx-B-09: Hayes Accuracy-based results 

Seeds Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 15 91.90 0.23 

NBTree 7 90.95 0.22 

BFTree 19 93.33 0.21 

ADTree N/A N/A N/A 

LADTree 31 91.90 0.23 

REPTree 5 90.00 0.24 

ECSDT + 

PSO 

3ell 7 83.32 0.33 

6ell 13 87.62 0.35 

9ell 19 87.14 0.29 

12ell 25 93.80 0.29 

15ell 31 86.66 0.33 

ECSDT + 

GA 

3ell 7 85.71 0.34 

6ell 13 89.52 0.36 

9ell 19 87.14 0.28 

12ell 25 95.71 0.25 

15ell 31 89.04 0.27 

Table Apx-B-10: Seeds Accuracy-based results 

 

 

 

 

Tae Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 67 59.60 0.46 

NBTree 7 58.27 0.43 

BFTree 28 57.61 0.45 

ADTree N/A N/A N/A 

LADTree 31 59.60 0.43 

REPTree 29 53.64 0.46 

ECSDT + 

PSO 

3ell 7 44.00 0.55 

6ell 13 51.33 0.57 

9ell 19 51.33 0.52 

12ell 25 54.00 0.48 

15ell 31 50.00 0.46 

ECSDT + 

GA 

3ell 7 43.33 0.49 

6ell 13 47.33 0.52 

9ell 19 49.32 0.52 

12ell 25 50.00 0.44 

15ell 31 55.32 0.47 

Table Apx-B-011: Tae Accuracy-based results 

Thyroid Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 17 92.09 0.21 

NBTree 7 93.02 0.20 

BFTree 17 92.09 0.23 

ADTree N/A N/A N/A 

LADTree 31 93.95 0.18 

REPTree 7 92.09 0.22 

ECSDT + 

PSO 

3ell 7 85.70 0.29 

6ell 13 91.43 0.27 

9ell 19 87.14 0.32 

12ell 25 87.61 0.29 

15ell 31 89.04 0.26 

ECSDT + 

GA 

3ell 7 88.57 0.28 

6ell 13 94.28 0.24 

9ell 19 92.37 0.31 

12ell 25 89.52 0.29 

15ell 31 91.90 0.24 

Table Apx-B-012: Thyroid Accuracy-based results 
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Glass Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 11 96.72 0.22 

NBTree 7 93.45 0.19 

BFTree 11 98.13 0.21 

ADTree N/A N/A N/A 

LADTree 28 98.13 0.21 

REPTree 11 98.59 0.20 

ECSDT + 

PSO 

6ell 12 79.04 0.30 

8ell 17 89.04 0.28 

10ell 21 90.47 0.31 

12ell 25 92.37 0.27 

14ell 29 93.32 0.29 

ECSDT + 

GA 

6ell 12 81.89 0.29 

8ell 17 90.47 0.27 

10ell 21 93.32 0.33 

12ell 25 94.28 0.31 

14ell 29 95.23 0.26 

Table Apx-B-13: Glass Accuracy-based results 

Ecoli Accuracy-based Results 

Algorithm DT Size Accuracy SE 

J48 41 79.76 0.42 

NBTree 13 80.06 0.39 

BFTree 29 78.86 0.51 

ADTree N/A N/A N/A 

LADTree 31 82.44 0.38 

REPTree 25 76.79 0.55 

ECSDT + 

PSO 

6ell 12 72.72 0.37 

8ell 17 76.35 0.48 

10ell 21 76.35 0.44 

12ell 25 82.72 0.55 

14ell 29 74.50 0.52 

ECSDT + 

GA 

6ell 12 73.32 0.52 

8ell 17 77.26 0.48 

10ell 21 76.96 0.46 

12ell 25 83.33 0.54 

14ell 29 76.35 0.48 

Table Apx-B-014: Ecoli Accuracy-based results 
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APPENDIX – C: Results of the Empirical Comparison Based on Cost 
 

This appendix presents the results obtained by the ECSDT when adopting the second aspect which considers cost only as an objective 

function for the evaluation. 

Algorithm 

Bupa Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio - 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 46.67 1.08 51 43.77 20.81 51 43.77 20.81 51 43.77 20.81 51 43.77 41.10 51 66.96 0.72 51 

MetaCost+J48 50.14 0.81 37 42.03 0.58 1 42.03 0.58 1 42.03 0.58 1 42.03 0.58 1 61.74 0.49 23 

C.S.C+NBTree 42.32 0.66 11 42.03 0.58 11 42.03 0.58 11 42.03 0.58 11 42.03 0.58 11 57.68 0.48 11 

MetaCost+NBTree 43.19 0.57 1 42.03 0.58 1 42.03 0.58 1 42.03 0.58 1 42.03 0.58 1 57.97 0.42 1 

ECSDT-PSO-2ell 43.76 0.72 5 42.89 1.00 5 39.71 1.18 5 39.13 3.50 5 37.1 9.32 5 48.11 1.41 5 

ECSDT-PSO-4ell 42.608 0.57 9 47.24 0.81 9 45.5 0.83 9 42.02 3.47 9 44.63 6.34 9 57.1 0.51 9 

ECSDT-PSO-6ell 42.028 0.58 13 48.4 0.80 13 47.53 1.10 13 42.02 3.47 13 47.53 3.42 13 57.39 0.48 13 

ECSDT-PSO-8ell 48.69 0.59 17 48.98 0.80 17 44.92 0.84 17 43.18 0.57 17 46.37 0.54 17 59.71 0.41 17 

ECSDT-PSO-10ell 48.82 0.53 21 43.19 0.57 21 46.37 0.54 21 44.05 0.56 21 46.66 0.53 21 60.86 0.39 21 

ECSDT-GA-2ell 42.05 0.70 5 42.6 1.00 5 38.55 1.19 5 37.97 3.51 5 36.81 12.21 5 50.72 1.14 5 

ECSDT-GA-4ell 44.05 0.64 9 48.69 0.66 9 47.82 0.81 9 44.05 3.45 9 42.89 6.36 9 59.71 0.46 9 

ECSDT-GA-6ell 44.41 0.57 13 46.67 0.68 13 47.82 0.81 13 48.69 1.96 13 45.5 3.44 13 57.39 0.48 13 

ECSDT-GA-8ell 47.24 0.55 17 43.76 0.56 17 44.34 0.56 17 46.08 1.99 17 43.76 0.56 17 60.57 0.39 17 

ECSDT-GA-10ell 50.72 0.52 21 45.5 0.54 21 46.66 0.52 21 45.5 0.54 21 46.08 0.54 21 61.73 0.38 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 63.80 2.21 51 63.77 4.09 51 63.77 19.17 51 63.77 38.01 51 54.378 13.43 51 

MetaCost+J48 58.00 0.56 7 57.97 0.42 1 57.97 0.42 1 57.97 0.42 1 51.275 0.56 7.4 

C.S.C+NBTree 57.70 0.57 11 57.97 0.42 11 57.97 0.42 11 57.97 0.42 11 50.028 0.53 11 

MetaCost+NBTree 58.00 0.42 1 57.97 0.42 1 57.97 0.42 1 57.97 0.42 1 50.115 0.50 1 

ECSDT-PSO-2ell 48.98 4.91 5 53.33 5.06 5 54.2 19.26 5 55.07 32.30 5 46.228 7.86 5 

ECSDT-PSO-4ell 60.00 0.68 9 58.84 0.99 9 57.10 4.77 9 57.97 9.11 9 51.301 2.81 9 

ECSDT-PSO-6ell 60.57 0.54 13 63.76 0.65 13 57.68 1.87 13 59.42 3.30 13 52.633 1.62 13 

ECSDT-PSO-8ell 64.63 0.50 17 62.31 0.66 17 60.86 0.39 17 61.15 0.39 17 54.08 0.57 17 

ECSDT-PSO-10ell 63.76 0.50 21 65.21 0.63 21 62.6 0.37 21 59.71 0.40 21 54.123 0.50 21 

ECSDT-GA-2ell 50.72 4.03 5 53.33 5.06 5 54.2 19.26 5 54.49 35.20 5 46.144 8.33 5 

ECSDT-GA-4ell 62.31 0.66 9 64.34 0.64 9 57.39 3.32 9 57.97 6.21 9 52.922 2.32 9 

ECSDT-GA-6ell 58.26 0.56 13 64.34 0.64 13 57.68 1.87 13 60.57 3.29 13 53.133 1.43 13 

ECSDT-GA-8ell 58.26 0.56 17 64.63 0.93 17 61.73 0.38 17 62.02 0.38 17 53.239 0.69 17 

ECSDT-GA-10ell 61.15 0.53 21 66.37 0.62 21 64.63 0.35 21 62.89 0.37 21 55.123 0.49 21 

Table Apx-C-1: Bupa Cost-based results 
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Algorithm 

Hepatitis Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 79.49 0.55 9 64.1 1.62 5 58.97 1.68 5 19.23 0.81 1 19.23 0.81 1 80.77 0.19 1 

MetaCost+J48 70.51 0.64 13 60.26 0.40 9 32.05 1.95 1 19.23 0.81 1 19.23 0.81 1 82.05 0.18 1 

C.S.C+NBTree 70.51 0.64 5 39.74 1.23 5 28.21 0.72 5 25.64 0.74 5 19.23 0.81 5 80.77 0.31 5 

MetaCost+NBTree 73.08 0.73 5 50 0.50 5 26.92 0.73 5 19.23 0.81 1 19.23 0.81 3 80.77 0.31 1 

ECSDT-PSO-2ell 55.12 0.56 5 61.53 1.64 5 67.94 2.86 5 43.58 6.96 5 43.58 13.37 5 78.2 0.45 5 

ECSDT-PSO-4ell 60.25 0.51 9 71.79 0.91 9 82.05 1.45 9 51.28 6.88 9 48.71 13.32 9 80.76 0.31 9 

ECSDT-PSO-6ell 58.97 0.41 13 55.12 0.45 13 41.02 0.59 13 52.56 0.47 13 50 0.50 13 80.76 0.19 13 

ECSDT-PSO-8ell 58.97 0.41 17 64.1 0.36 17 48.71 0.51 17 60.25 0.40 17 56.41 0.44 17 82.05 0.18 17 

ECSDT-PSO-10ell 55.12 0.45 21 57.69 0.42 21 43.58 0.56 21 47.43 0.53 21 50 0.50 21 84.61 0.27 21 

ECSDT-GA-2ell 47.43 0.64 5 69.23 1.56 5 65.38 2.88 5 50.5 6.90 5 47.43 13.33 5 78.2 0.45 5 

ECSDT-GA-4ell 51.28 0.60 9 43.58 1.19 9 83.33 1.44 9 61.53 6.78 9 58.97 13.22 9 80.76 0.31 9 

ECSDT-GA-6ell 60.25 0.40 13 57.69 0.42 13 43.58 0.56 13 46.15 0.54 13 53.84 0.46 13 84.61 0.27 13 

ECSDT-GA-8ell 58.97 0.41 17 61.25 0.38 17 48.71 0.51 17 57.69 0.42 17 53.84 0.46 17 80.76 0.19 17 

ECSDT-GA-10ell 55.12 0.45 21 55.12 0.45 21 37.17 0.63 21 57.69 0.42 21 57.69 0.42 21 85.89 0.26 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 64.49 0.64 2.6 

MetaCost+J48 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 60.64 0.56 3 

C.S.C+NBTree 80.77 0.19 5 80.77 0.19 5 80.77 0.19 5 80.77 0.19 5 58.72 0.52 5 

MetaCost+NBTree 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 59.23 0.47 2.4 

ECSDT-PSO-2ell 80.76 2.08 5 78.2 2.76 5 79.49 6.60 5 79.49 13.01 5 66.79 5.03 5 

ECSDT-PSO-4ell 78.2 1.47 9 80.76 2.73 9 83.33 6.56 9 84.62 12.96 9 72.18 4.71 9 

ECSDT-PSO-6ell 82.05 0.81 13 82.05 1.45 13 82.05 6.58 13 84.62 12.96 13 66.92 2.44 13 

ECSDT-PSO-8ell 85.89 0.77 17 82.05 1.45 17 84.62 6.55 17 85.9 12.95 17 70.90 2.40 17 

ECSDT-PSO-10ell 82.05 0.81 21 80.76 1.46 21 82.05 6.58 21 84.62 12.96 21 66.79 2.45 21 

ECSDT-GA-2ell 78.2 1.47 5 80.76 2.73 5 79.49 6.60 5 79.49 13.01 5 67.61 4.96 5 

ECSDT-GA-4ell 80.76 0.82 9 80.76 1.46 9 84.62 6.55 9 85.9 12.95 9 71.15 4.53 9 

ECSDT-GA-6ell 80.76 0.82 13 80.76 1.46 13 85.9 6.54 13 84.62 12.96 13 67.82 2.44 13 

ECSDT-GA-8ell 80.76 0.82 17 84.61 1.42 17 87.17 6.53 17 85.9 12.95 17 69.97 2.41 17 

ECSDT-GA-10ell 84.61 0.78 21 84.61 1.42 21 82.05 6.58 21 84.62 12.96 21 68.46 2.44 21 

Table Apx-C-2: Hepatitis Cost-based results 
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Algorithm 

Heart Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 68.51 1.11 39 60.00 2.40 39 60.00 4.43 39 60.00 20.73 39 60.00 41.10 39 67.40 0.96 39 

MetaCost+J48 66.29 0.64 31 61.11 0.39 15 55.55 0.44 1 55.55 0.44 1 55.55 0.44 1 71.11 0.52 29 

C.S.C+NBTree 74.44 0.39 17 67.03 0.51 17 60.37 0.40 17 58.88 0.41 17 55.55 0.44 17 66.29 0.60 17 

MetaCost+NBTree 70.00 0.50 11 56.66 0.43 1 55.55 0.44 1 55.55 0.44 1 55.55 0.44 1 62.96 0.57 11 

ECSDT-PSO-2ell 49.62 1.04 5 51.11 2.48 5 50.74 5.26 5 51.85 18.96 5 52.96 26.37 5 53.33 0.47 5 

ECSDT-PSO-4ell 53.7 0.46 9 56.66 0.94 9 57.77 1.89 9 58.14 5.96 9 54.44 11.56 9 60.37 0.40 9 

ECSDT-PSO-6ell 54.81 0.45 13 55.18 0.63 13 63.33 0.73 13 56.29 4.13 13 63.70 4.06 13 65.18 0.35 13 

ECSDT-PSO-8ell 66.66 0.33 17 62.22 0.38 17 62.22 0.38 17 55.55 0.44 17 56.29 0.44 17 67.77 0.32 17 

ECSDT-PSO-10ell 68.88 0.31 21 68.14 0.32 21 65.92 0.34 21 64.44 0.36 21 58.55 0.41 21 72.59 0.27 21 

ECSDT-GA-2ell 47.77 1.22 5 51.85 2.30 5 50.74 4.89 5 52.22 17.11 5 53.70 26.36 5 54.07 0.46 5 

ECSDT-GA-4ell 50.74 0.49 9 53.70 1.37 9 61.11 1.49 9 55.92 5.99 9 54.81 11.55 9 58.88 0.41 9 

ECSDT-GA-6ell 55.55 0.44 13 57.03 0.61 13 67.40 0.69 13 58.51 2.26 13 62.56 4.07 13 65.18 0.35 13 

ECSDT-GA-8ell 65.92 0.34 17 63.70 0.36 17 55.55 0.44 17 68.14 0.32 17 55.56 0.44 17 65.18 0.35 17 

ECSDT-GA-10ell 70.37 0.30 21 66.29 0.34 21 67.03 0.33 21 65.55 0.34 21 60.74 0.39 21 73.33 0.27 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 50.74 1.76 39 48.88 3.08 39 48.88 13.45 39 48.88 26.41 39 57.33 11.54 39 

MetaCost+J48 52.22 0.66 1 44.44 0.56 1 44.44 0.56 1 44.44 0.56 1 55.07 0.52 8.2 

C.S.C+NBTree 52.22 1.02 17 48.14 1.25 17 45.55 2.39 17 45.18 0.55 17 57.37 0.80 17 

MetaCost+NBTree 44.44 0.56 1 44.44 0.56 1 44.44 0.56 1 44.44 0.56 1 53.41 0.51 3 

ECSDT-PSO-2ell 46.66 1.62 5 43.33 2.03 5 43.33 11.66 5 42.96 22.77 5 48.59 9.27 5 

ECSDT-PSO-4ell 50.74 1.04 9 43.33 1.30 9 45.92 6.09 9 43.70 7.96 9 52.48 3.76 9 

ECSDT-PSO-6ell 54.44 0.82 13 46.66 0.90 13 51.11 2.34 13 56.66 4.13 13 56.74 1.85 13 

ECSDT-PSO-8ell 58.88 0.41 17 52.59 0.47 17 54.44 2.30 17 50.37 4.20 17 58.70 0.97 17 

ECSDT-PSO-10ell 56.66 0.43 21 50.74 0.49 21 50.37 0.50 21 46.66 0.53 21 60.30 0.40 21 

ECSDT-GA-2ell 46.66 1.44 5 43.33 0.57 5 42.96 9.81 5 43.70 19.06 5 48.70 8.32 5 

ECSDT-GA-4ell 48.88 1.06 9 42.59 0.57 9 45.18 4.24 9 46.29 7.94 9 51.81 3.51 9 

ECSDT-GA-6ell 52.96 0.83 13 46.29 0.90 13 52.59 2.32 13 45.92 4.24 13 56.40 1.67 13 

ECSDT-GA-8ell 55.55 0.44 17 53.70 0.46 17 53.70 2.31 17 51.48 4.19 17 58.85 0.97 17 

ECSDT-GA-10ell 57.03 0.43 21 55.92 0.44 21 49.25 0.51 21 45.55 0.54 21 61.11 0.39 21 

Table Apx-C-03: Heart Cost-based results 
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Algorithm 

Haberman Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 73.529 0.26 5 73.529 0.26 5 73.529 0.26 5 73.529 0.26 5 73.529 0.26 5 27.777 0.75 5 

MetaCost+J48 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 29.738 0.76 21 

C.S.C+NBTree 73.529 0.26 3 73.529 0.26 3 73.529 0.26 3 73.529 0.26 3 73.529 0.26 3 26.47 0.74 3 

MetaCost+NBTree 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 26.47 0.74 1 

ECSDT-PSO-2ell 72.22 0.57 5 72.55 0.75 5 70.92 1.58 5 71.57 3.55 5 71.24 6.82 5 26.47 1.06 5 

ECSDT-PSO-4ell 71.9 0.46 9 72.88 0.59 9 72.88 1.24 9 74.84 3.51 9 73.53 3.53 9 28.1 0.87 9 

ECSDT-PSO-6ell 74.51 0.31 13 77.12 0.39 13 74.84 0.90 13 72.88 1.90 13 75.16 3.51 13 33.66 0.75 13 

ECSDT-PSO-8ell 75.49 0.25 17 76.46 0.24 17 76.8 0.23 17 73.86 0.26 17 76.8 0.23 17 38.56 0.67 17 

ECSDT-PSO-10ell 77.12 0.23 21 77.78 0.22 21 77.12 0.23 21 74.84 0.25 21 77.78 0.22 21 34.97 0.65 21 

ECSDT-GA-2ell 72.55 0.51 5 70.92 0.93 5 72.88 1.57 5 70.92 3.55 5 73.53 6.79 5 26.8 1.08 5 

ECSDT-GA-4ell 72.88 0.39 9 71.24 0.61 9 71.9 0.93 9 73.2 3.53 9 74.84 3.52 9 28.76 0.83 9 

ECSDT-GA-6ell 75.16 0.31 13 72.88 0.43 13 74.51 0.25 13 74.18 1.89 13 76.47 3.50 13 34.97 0.74 13 

ECSDT-GA-8ell 74.51 0.25 17 73.53 0.26 17 73.2 0.59 17 75.16 0.25 17 77.12 0.23 17 37.91 0.68 17 

ECSDT-GA-10ell 77.12 0.23 21 76.14 0.26 21 76.47 0.24 21 75.82 0.24 21 77.12 0.23 21 36.6 0.63 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 26.47 0.90 5 26.47 1.06 5 26.47 2.37 5 26.47 4.00 5 50.13 1.04 5 

MetaCost+J48 26.47 0.74 1 26.47 0.74 1 26.47 0.74 1 26.47 0.74 1 50.33 0.50 3 

C.S.C+NBTree 26.47 0.74 3 26.47 0.74 3 26.47 0.74 3 26.47 0.74 3 50.00 0.50 3 

MetaCost+NBTree 26.47 0.74 1 26.47 0.74 1 26.47 0.74 1 26.47 0.74 1 50.00 0.50 1 

ECSDT-PSO-2ell 26.14 1.70 5 25.82 2.03 5 26.8 7.25 5 26.8 7.26 5 49.05 3.26 5 

ECSDT-PSO-4ell 26.8 1.37 9 27.12 1.70 9 27.45 5.62 9 28.76 3.98 9 50.43 2.29 9 

ECSDT-PSO-6ell 33.99 0.98 13 33.99 1.31 13 31.37 3.95 13 32.68 3.94 13 54.02 1.79 13 

ECSDT-PSO-8ell 34.97 0.81 17 36.6 0.96 17 34.97 1.95 17 32.03 0.68 17 55.65 0.63 17 

ECSDT-PSO-10ell 35.62 0.64 21 35.95 0.64 21 35.29 0.65 21 33.33 0.67 21 55.98 0.44 21 

ECSDT-GA-2ell 25.82 1.54 5 26.47 1.71 5 25.82 5.63 5 26.8 7.26 5 49.25 3.06 5 

ECSDT-GA-4ell 26.8 1.21 9 26.8 1.70 9 27.45 3.99 9 28.1 3.98 9 50.20 2.07 9 

ECSDT-GA-6ell 32.35 0.84 13 32.68 1.00 13 33.33 2.30 13 35.29 3.91 13 54.18 1.52 13 

ECSDT-GA-8ell 34.64 0.81 17 35.62 0.97 17 36.93 2.26 17 32.68 0.67 17 55.13 0.70 17 

ECSDT-GA-10ell 36.93 0.63 21 35.29 0.65 21 34.97 0.65 21 35.62 0.64 21 56.21 0.44 21 

Table Apx-C-04: Haberman Cost-based results 
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Algorithm 

Diabetes Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 65.10 0.60 39 64.71 1.31 39 64.71 2.29 39 64.71 10.10 39 64.71 19.86 39 57.16 0.83 39 

MetaCost+J48 70.05 0.44 19 65.10 0.35 1 65.10 0.35 1 65.10 0.35 1 65.10 0.35 1 62.11 0.67 57 

C.S.C+NBTree 68.62 0.44 1 65.63 0.41 1 65.10 0.35 1 65.10 0.35 1 65.10 0.35 1 59.90 0.62 1 

MetaCost+NBTree 65.63 0.34 7 65.10 0.35 1 65.10 0.35 1 65.10 0.35 1 65.10 0.35 1 55.86 0.58 3 

ECSDT-PSO-2ell 61.72 0.69 5 62.89 1.46 5 62.90 2.56 5 62.89 12.72 5 62.50 28.99 5 45.31 0.66 5 

ECSDT-PSO-4ell 60.94 0.43 9 62.50 0.63 9 66.41 1.37 9 64.84 2.95 9 65.63 6.85 9 52.34 0.55 9 

ECSDT-PSO-6ell 66.80 0.36 13 68.75 0.38 13 67.96 0.58 13 70.31 1.60 13 65.23 2.95 13 57.81 0.45 13 

ECSDT-PSO-8ell 70.31 0.30 17 68.75 0.31 17 66.41 0.34 17 69.14 0.31 17 66.80 0.33 17 63.28 0.37 17 

ECSDT-PSO-10ell 68.36 0.32 21 67.58 0.32 21 66.02 0.34 21 67.58 0.32 21 66.80 0.33 21 59.77 0.40 21 

ECSDT-GA-2ell 60.16 0.84 5 62.89 1.46 5 62.89 2.56 5 62.89 12.72 5 62.50 28.99 5 46.09 0.64 5 

ECSDT-GA-4ell 63.67 0.49 9 63.28 0.62 9 64.45 1.13 9 64.97 2.95 9 64.45 6.86 9 51.95 0.54 9 

ECSDT-GA-6ell 65.23 0.37 13 66.41 0.40 13 66.41 0.46 13 64.06 1.66 13 67.19 1.63 13 59.77 0.43 13 

ECSDT-GA-8ell 69.53 0.30 17 68.36 0.32 17 66.80 0.33 17 68.48 0.32 17 64.84 0.35 17 62.89 0.37 17 

ECSDT-GA-10ell 67.58 0.32 21 69.14 0.31 21 67.58 0.32 21 67.97 0.32 21 67.97 0.32 21 66.80 0.33 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 41.02 1.55 39 39.45 2.54 39 39.45 10.35 39 39.45 20.12 39 54.05 6.95 39 

MetaCost+J48 44.40 0.62 15 36.20 0.64 1 34.90 0.65 1 34.90 0.65 1 54.30 0.51 9.8 

C.S.C+NBTree 44.14 0.75 1 40.76 0.72 1 35.81 0.64 1 34.90 0.65 1 54.50 0.53 1 

MetaCost+NBTree 38.15 0.62 3 34.90 0.65 1 34.90 0.65 1 34.90 0.65 1 52.47 0.49 2 

ECSDT-PSO-2ell 33.33 1.62 5 34.11 1.95 5 34.11 7.16 5 33.33 18.88 5 49.31 7.67 5 

ECSDT-PSO-4ell 38.80 1.25 9 36.85 1.28 9 35.68 3.89 9 36.46 4.54 9 52.05 2.37 9 

ECSDT-PSO-6ell 40.23 0.79 13 39.19 0.87 13 38.80 1.91 13 40.63 1.89 13 55.57 1.18 13 

ECSDT-PSO-8ell 41.80 0.71 17 44.53 0.68 17 38.02 0.62 17 42.19 0.58 17 57.12 0.45 17 

ECSDT-PSO-10ell 46.88 0.53 21 45.70 0.54 21 42.19 0.58 21 37.63 0.62 21 56.85 0.43 21 

ECSDT-GA-2ell 32.55 1.50 5 34.51 1.82 5 33.72 6.51 5 34.11 12.37 5 49.23 6.94 5 

ECSDT-GA-4ell 39.19 1.05 9 37.24 1.27 9 35.29 3.25 9 37.63 4.53 9 52.21 2.27 9 

ECSDT-GA-6ell 42.58 0.77 13 40.23 0.86 13 37.24 1.28 13 38.80 1.91 13 54.79 0.98 13 

ECSDT-GA-8ell 44.14 0.62 17 45.31 0.68 17 42.58 0.57 17 43.62 0.56 17 57.66 0.44 17 

ECSDT-GA-10ell 47.66 0.52 21 43.75 0.56 21 42.97 0.57 21 38.41 0.62 21 57.98 0.42 21 

Table Apx-C-05: Diabetes Cost-based results 
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Algorithm 

WDBC Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 92.97 0.31 25 92.26 1.28 25 66.43 2.42 25 45.69 8.44 25 45.69 16.34 25 92.97 0.40 25 

MetaCost+J48 90.68 0.19 23 88.57 0.63 23 86.64 1.00 27 37.60 0.62 1 37.26 0.63 1 92.97 0.12 17 

C.S.C+NBTree 92.26 0.35 23 87.87 1.24 23 78.20 1.78 23 71.88 6.42 23 72.06 10.81 23 93.14 0.31 23 

MetaCost+NBTree 89.45 0.20 23 89.10 0.71 27 88.40 0.81 7 44.81 3.18 19 39.37 0.61 5 91.73 0.10 19 

ECSDT-PSO-2ell 73.64 0.50 5 58.88 1.70 5 53.60 2.90 5 73.64 3.74 5 58.88 1.70 5 65.20 0.66 5 

ECSDT-PSO-4ell 76.80 0.39 9 70.47 1.33 9 60.98 2.13 9 77.33 2.49 9 70.47 1.33 9 74.17 0.51 9 

ECSDT-PSO-6ell 83.13 0.29 13 79.44 1.07 13 68.89 1.70 13 83.66 1.38 13 79.96 0.98 13 83.13 0.26 13 

ECSDT-PSO-8ell 86.82 0.20 17 86.29 0.65 17 75.22 1.29 17 90.51 0.96 17 88.4 0.72 17 88.93 0.16 17 

ECSDT-PSO-10ell 88.93 0.17 21 88.40 0.46 21 83.66 0.69 21 92.09 0.60 21 90.51 0.61 21 89.46 0.11 21 

ECSDT-GA-2ell 73.64 0.50 5 58.88 1.70 5 55.18 2.71 5 73.64 3.74 5 53.60 2.90 5 65.20 0.66 5 

ECSDT-GA-4ell 76.80 0.39 9 70.47 1.33 9 60.89 2.13 9 78.91 2.65 9 60.98 2.13 9 75.75 0.37 9 

ECSDT-GA-6ell 85.76 0.27 13 79.96 0.98 13 69.42 1.52 13 84.71 1.54 13 68.89 1.70 13 82.60 0.25 13 

ECSDT-GA-8ell 84.18 0.19 17 88.40 0.72 17 75.75 1.11 17 89.46 0.80 17 75.22 1.29 17 88.40 0.15 17 

ECSDT-GA-10ell 88.93 0.17 21 90.51 0.61 21 83.66 0.69 21 92.09 0.60 21 83.66 0.69 21 88.93 0.11 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages  

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 92.61 1.80 25 92.61 3.55 25 92.61 17.61 25 92.61 35.19 25 88.31 1.63 25 

MetaCost+J48 92.97 0.33 21 92.09 0.60 23 73.28 3.43 19 62.74 2.13 15 90.65 0.48 22.3 

C.S.C+NBTree 88.92 1.14 23 79.78 1.59 23 72.40 4.66 23 72.58 7.30 23 86.7 1.07 23 

MetaCost+NBTree 89.98 0.53 17 85.76 0.84 5 66.60 0.33 3 63.09 0.37 15 89.07 0.53 16.3 

ECSDT-PSO-2ell 70.47 2.02 5 73.64 3.74 5 73.64 0.50 5 73.64 3.74 5 65.91 1.92 5 

ECSDT-PSO-4ell 76.80 1.70 9 78.91 2.65 9 76.80 0.39 9 77.33 2.49 9 73.02 1.45 9 

ECSDT-PSO-6ell 83.13 1.03 13 84.71 1.54 13 83.13 0.29 13 83.66 1.38 13 80.41 0.98 13 

ECSDT-PSO-8ell 87.87 0.64 17 89.46 0.80 17 86.82 0.20 17 90.51 0.96 17 85.77 0.62 17 

ECSDT-PSO-10ell 91.04 0.35 21 92.09 0.60 21 88.93 0.17 21 92.09 0.60 21 88.93 0.40 21 

ECSDT-GA-2ell 70.47 2.02 5 73.64 3.74 5 73.64 0.50 5 73.64 3.74 5 66.17 1.89 5 

ECSDT-GA-4ell 76.80 1.70 9 77.33 2.49 9 76.80 0.39 9 78.91 2.65 9 73.01 1.40 9 

ECSDT-GA-6ell 82.07 0.95 13 83.66 1.38 13 85.76 0.27 13 84.71 1.54 13 80.58 0.89 13 

ECSDT-GA-8ell 89.98 0.53 17 90.51 0.96 17 84.18 0.19 17 89.46 0.80 17 86.2 0.61 17 

ECSDT-GA-10ell 91.04 0.35 21 92.09 0.60 21 88.93 0.17 21 92.09 0.60 21 89.19 0.42 21 

Table Apx-C-6: WDBC Cost-based results 
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Algorithm 

WPBC Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 72.72 1.41 21 29.79 3.67 21 29.79 6.70 21 29.79 3.67 21 29.79 6.70 21 73.23 1.18 21 

MetaCost+J48 44.95 1.14 25 37.87 2.85 31 29.80 3.70 9 37.87 2.85 1 29.80 3.70 1 76.76 0.28 1 

C.S.C+NBTree 47.98 1.25 11 23.23 1.01 11 23.23 1.27 11 23.23 1.01 11 23.23 1.27 11 75.76 0.33 11 

MetaCost+NBTree 39.39 1.29 11 24.75 0.75 1 23.73 0.76 1 24.75 0.75 1 23.73 0.76 1 75.76 0.38 1 

ECSDT-PSO-2ell 28.28 2.08 5 24.75 4.46 5 22.22 6.78 5 24.75 4.46 5 22.22 6.78 5 51.52 2.71 5 

ECSDT-PSO-4ell 30.81 1.46 9 27.78 2.95 9 26.77 5.73 9 27.78 2.95 9 26.77 5.73 9 58.59 2.19 9 

ECSDT-PSO-6ell 34.85 1.11 13 30.81 1.93 13 31.80 5.68 13 30.81 1.93 13 31.80 5.68 13 62.63 1.60 13 

ECSDT-PSO-8ell 40.40 1.01 17 32.32 1.67 17 31.31 2.69 17 32.32 1.67 17 31.31 2.69 17 71.72 0.69 17 

ECSDT-PSO-10ell 43.43 0.93 21 34.85 1.15 21 33.33 1.17 21 34.85 1.15 21 33.33 1.17 21 76.77 0.28 21 

ECSDT-GA-2ell 28.28 2.08 5 24.75 4.46 5 22.22 6.78 5 24.75 4.46 5 22.22 6.78 5 51.52 2.71 5 

ECSDT-GA-4ell 31.31 1.46 9 27.78 2.95 9 26.80 5.73 9 27.78 2.95 9 26.80 5.73 9 57.07 2.16 9 

ECSDT-GA-6ell 35.86 1.05 13 29.80 2.19 13 29.29 4.21 13 29.80 2.19 13 29.29 4.21 13 63.13 1.55 13 

ECSDT-GA-8ell 39.90 0.96 17 32.83 1.41 17 31.31 2.69 17 32.83 1.41 17 31.31 2.69 17 71.72 0.69 17 

ECSDT-GA-10ell 44.44 0.96 21 35.35 0.89 21 33.84 1.16 21 35.35 0.89 21 33.84 1.16 21 76.76 0.28 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages  

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 73.23 4.47 21 73.23 8.77 21 73.23 1.18 21 73.23 4.47 21 58.67 4.37 11.5 

MetaCost+J48 75.76 0.49 1 76.26 0.24 1 76.76 0.28 1 75.76 0.49 1 56.9 1.45 12.8 

C.S.C+NBTree 75.76 0.49 11 75.76 0.74 11 75.76 0.33 11 75.76 0.49 11 53.62 0.85 8.5 

MetaCost+NBTree 76.26 0.24 1 76.26 0.24 1 75.76 0.38 1 76.26 0.24 1 52.69 0.61 6.17 

ECSDT-PSO-2ell 51.52 12.61 5 55.56 22.44 5 51.52 2.71 5 51.52 12.61 5 38.98 8.52 5 

ECSDT-PSO-4ell 55.05 10.84 9 57.07 19.43 9 58.59 2.19 9 55.05 10.84 9 42.68 7.10 9 

ECSDT-PSO-6ell 64.14 6.30 13 65.66 10.84 13 62.63 1.60 13 64.14 6.30 13 48.32 4.58 13 

ECSDT-PSO-8ell 69.19 3.77 17 73.74 3.76 17 71.72 0.69 17 69.19 3.77 17 53.11 2.26 17 

ECSDT-PSO-10ell 74.24 1.25 21 75.25 1.25 21 76.77 0.28 21 74.24 1.25 21 56.31 1.00 21 

ECSDT-GA-2ell 51.52 12.61 5 55.56 22.44 5 51.52 2.71 5 51.52 12.61 5 38.98 8.52 5 

ECSDT-GA-4ell 54.55 11.10 9 57.07 19.43 9 57.07 2.16 9 54.55 11.10 9 42.43 7.14 9 

ECSDT-GA-6ell 64.65 6.05 13 65.15 10.85 13 63.13 1.55 13 64.65 6.05 13 47.98 4.31 13 

ECSDT-GA-8ell 69.19 3.77 17 73.74 3.76 17 71.72 0.69 17 69.19 3.77 17 53.12 2.22 17 

ECSDT-GA-10ell 76.26 0.73 21 75.76 0.74 21 76.76 0.28 21 76.26 0.73 21 57.07 0.80 21 

Table Apx-C-07: WPBC Cost-based results 
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Algorithm 

IRIS Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 96.00 1.54 9 96.00 0.82 9 69.33 1.03 9 93.33 0.41 11 94.67 0.14 5 90.00 0.31 7 

MetaCost+J48 93.33 1.75 4 94.00 0.84 7 74.00 0.38 3 94.67 0.28 7 93.33 0.18 7 93.33 0.09 9 

C.S.C+NBTree 84.00 2.44 9 80.67 0.55 9 84.67 0.15 9 94.67 0.40 9 95.33 0.13 9 93.33 0.13 9 

MetaCost+NBTree 84.00 2.62 11 85.33 0.27 9 68.67 1.21 5 91.33 0.51 9 90.67 0.15 1 90.00 0.19 9 

ECSDT-PSO-3ell 82.66 1.73 7 86.00 0.50 7 74.00 1.58 7 92.00 0.57 7 90.00 0.13 7 88.00 0.24 7 

ECSDT-PSO-4ell 90.66 0.93 9 84.67 0.39 9 86.66 0.13 9 77.33 0.23 9 94.00 0.09 9 94.00 0.12 9 

ECSDT-PSO-5ell 90.66 0.93 13 84.67 0.39 13 89.33 0.77 13 72.00 0.28 13 94.00 0.09 13 88.66 0.17 13 

ECSDT-PSO-6ell 85.33 1.47 17 90.00 0.22 17 90.00 0.10 17 77.33 0.23 17 96.66 0.06 17 93.33 0.07 17 

ECSDT-PSO-7ell 89.33 1.07 21 87.33 0.25 21 86.00 0.80 21 73.33 0.27 21 90.66 0.12 21 91.33 0.15 21 

ECSDT-GA-3ell 82.66 1.73 7 86.00 0.50 7 74.00 1.58 7 93.33 0.47 7 90.00 0.13 7 88.00 0.24 7 

ECSDT-GA-4ell 85.33 1.07 9 87.33 0.31 9 89.33 0.77 9 80.00 0.20 9 96.00 0.07 9 90.66 0.09 9 

ECSDT-GA-5ell 90.66 0.93 13 88.66 0.23 13 89.33 0.77 13 77.33 0.23 13 94.00 0.09 13 90.00 0.16 13 

ECSDT-GA-6ell 85.33 1.07 17 88.66 0.23 17 90.00 0.10 17 80.66 0.19 17 96.66 0.06 17 93.33 0.07 17 

ECSDT-GA-7ell 86.66 1.33 21 86.00 0.33 21 86.66 0.13 21 72.00 0.28 21 94.00 0.09 21 90.00 0.16 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 96.00 8.33 7 92.67 12.67 7 94.66 10.33 9 91.41 3.95 8.11 

MetaCost+J48 94.67 11.33 7 95.33 8.33 7 94.00 11.33 7 91.85 3.84 6.44 

C.S.C+NBTree 94.67 12.00 9 94.67 9.33 9 94.66 10.67 9 90.74 3.98 9 

MetaCost+NBTree 92.67 16.33 9 92.67 12.67 9 93.33 12.00 7 87.63 5.11 7.67 

ECSDT-PSO-3ell 90.00 21.33 7 89.33 17.33 7 90.66 16.67 7 86.96 6.68 7 

ECSDT-PSO-4ell 94.00 8.33 9 96.66 5.00 9 96.66 7.00 9 90.52 2.47 9 

ECSDT-PSO-5ell 95.33 9.67 13 96.00 7.00 13 96.66 7.00 13 89.70 2.92 13 

ECSDT-PSO-6ell 96.66 7.00 17 96.66 5.00 17 95.33 7.67 17 91.26 2.42 17 

ECSDT-PSO-7ell 94.00 8.33 21 96.00 7.00 21 95.33 7.67 21 89.26 2.85 21 

ECSDT-GA-3ell 92.66 16.33 7 92.00 15.33 7 88.66 18.33 7 87.48 6.07 7 

ECSDT-GA-4ell 96.66 7.33 9 96.66 5.00 9 96.66 7.00 9 90.96 2.43 9 

ECSDT-GA-5ell 94.00 8.33 13 95.33 8.00 13 96.00 7.33 13 90.59 2.90 13 

ECSDT-GA-6ell 96.66 7.33 17 96.66 5.00 17 96.66 7.00 17 91.62 2.34 17 

ECSDT-GA-7ell 93.33 8.67 21 96.66 6.00 21 94.66 10.33 21 88.89 3.04 21 

Table Apx-C-8: IRIS Cost-based results 
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Algorithm 

Hays Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 84.38 0.16 23 74.38 0.37 23 81.88 1.03 23 84.38 0.16 23 74.38 0.37 23 81.88 1.03 23 

MetaCost+J48 84.38 0.16 17 77.50 0.23 21 76.25 1.20 21 84.38 0.16 17 77.50 0.23 23 76.25 1.20 19 

C.S.C+NBTree 54.38 1.13 13 57.50 0.80 13 64.38 1.10 1 54.38 1.13 13 57.50 0.80 13 64.38 1.10 5 

MetaCost+NBTree 59.38 0.41 1 55.00 0.65 1 44.38 2.06 1 59.38 0.41 1 55.00 0.65 1 44.38 2.06 3 

ECSDT-PSO-3ell 45.63 2.91 7 43.75 5.40 7 42.50 4.57 7 48.13 1.36 7 48.75 1.98 7 43.75 2.69 7 

ECSDT-PSO-6ell 48.13 1.53 13 51.88 2.51 13 46.25 4.19 13 53.13 0.98 13 56.25 1.16 13 52.50 1.88 13 

ECSDT-PSO-9ell 51.25 1.16 19 52.50 2.45 19 54.38 3.38 19 60.00 0.76 19 58.13 0.84 19 55.63 1.57 19 

ECSDT-PSO-12ell 56.25 0.72 25 58.75 1.14 25 57.50 2.51 25 64.38 0.56 25 64.38 0.54 25 61.25 1.35 25 

ECSDT-PSO-15ell 63.13 0.37 31 63.13 1.04 31 68.75 1.38 31 69.38 0.38 31 69.38 0.36 31 62.50 1.10 31 

ECSDT-GA-3ell 44.38 2.47 7 45.00 5.14 7 42.50 4.57 7 50.00 1.33 7 48.75 1.98 7 43.75 2.69 7 

ECSDT-GA-6ell 48.13 1.53 13 51.88 2.45 13 46.30 4.19 13 53.13 0.95 13 56.25 1.16 13 52.50 1.88 13 

ECSDT-GA-9ell 52.50 1.09 19 52.50 2.28 19 55.63 3.26 19 58.75 0.86 19 57.50 0.78 19 56.25 1.51 19 

ECSDT-GA-12ell 54.38 0.91 25 59.38 1.08 25 57.50 2.51 25 63.13 0.56 25 64.38 0.54 25 61.25 1.35 25 

ECSDT-GA-15ell 64.38 0.36 31 64.38 0.98 31 69.38 1.32 31 70.63 0.29 31 68.13 0.32 31 62.50 1.10 31 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 83.13 28.44 23 83.13 34.69 23 83.13 37.19 23 81.67 16.98 23 

MetaCost+J48 80.63 31.56 21 81.88 36.56 27 80.00 55.31 21 80.1 20.84 21.3 

C.S.C+NBTree 59.38 60.94 1 62.50 68.75 13 64.38 71.25 13 60.42 33.99 9.67 

MetaCost+NBTree 63.13 61.88 1 55.63 75.31 1 63.75 74.06 1 56.88 35.73 1.33 

ECSDT-PSO-3ell 45.00 92.81 7 45.63 92.19 7 43.75 102.81 7 45.84 48.97 7 

ECSDT-PSO-6ell 47.50 86.56 13 46.25 87.81 13 48.13 94.06 13 50.63 45.41 13 

ECSDT-PSO-9ell 48.75 80.00 19 52.50 79.06 19 50.63 89.06 19 54.27 41.88 19 

ECSDT-PSO-12ell 52.50 74.69 25 56.88 66.56 25 55.63 79.06 25 59.17 37.13 25 

ECSDT-PSO-15ell 59.38 60.94 31 62.50 56.25 31 57.50 75.31 31 63.44 32.39 31 

ECSDT-GA-3ell 45.00 92.81 7 44.38 94.69 7 43.75 102.81 7 45.94 49.38 7 

ECSDT-GA-6ell 47.50 86.56 13 48.75 82.81 13 46.88 96.56 13 50.84 44.99 13 

ECSDT-GA-9ell 47.50 85.31 19 51.88 76.56 19 53.13 84.06 19 54.17 41.51 19 

ECSDT-GA-12ell 51.88 75.63 25 56.88 66.56 25 55.63 79.06 25 58.86 37.28 25 

ECSDT-GA-15ell 58.13 63.44 31 61.88 56.88 31 56.88 76.56 31 63.03 33.1 31 

Table Apx-C-09: Hays Cost-based results 
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Algorithm 

Seeds Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 89.05 3.02 15 62.86 2.54 15 91.43 1.41 15 89.05 0.40 15 91.90 0.58 15 91.43 0.34 15 

MetaCost+J48 86.19 0.74 11 77.62 2.75 13 81.43 1.60 15 86.67 0.26 17 86.19 0.89 13 86.19 0.41 15 

C.S.C+NBTree 70.95 0.59 7 70.47 1.75 7 86.19 3.44 7 87.62 0.28 7 92.38 0.37 7 88.57 0.54 7 

MetaCost+NBTree 67.14 0.46 7 61.90 2.48 7 70.95 3.38 15 87.62 0.22 1 86.19 0.67 3 88.10 0.40 5 

ECSDT-PSO-3ell 60.48 3.40 7 54.76 3.02 7 56.19 3.44 7 59.05 1.05 7 60.95 1.06 7 61.90 1.10 7 

ECSDT-PSO-6ell 73.81 1.93 13 66.67 2.13 13 66.19 2.52 13 68.57 0.75 13 65.24 1.02 13 65.24 0.92 13 

ECSDT-PSO-9ell 76.19 1.31 19 73.33 1.81 19 77.14 1.86 19 75.24 0.52 19 71.90 0.81 19 70.95 0.65 19 

ECSDT-PSO-12ell 80.00 0.71 25 77.14 1.43 25 82.86 1.29 25 78.57 0.40 25 77.14 0.51 25 80.95 0.32 25 

ECSDT-PSO-15ell 82.86 0.39 31 78.57 1.40 31 85.71 1.21 31 87.14 0.21 31 81.43 0.32 31 83.33 0.30 31 

ECSDT-GA-3ell 60.48 3.40 7 55.71 3.14 7 58.10 3.50 7 60.00 1.00 7 60.95 1.06 7 61.90 1.10 7 

ECSDT-GA-6ell 72.86 1.85 13 66.67 2.13 13 65.24 2.58 13 68.10 0.80 13 64.29 1.05 13 65.24 0.92 13 

ECSDT-GA-9ell 75.71 1.31 19 74.76 1.88 19 77.10 1.86 19 73.81 0.60 19 70.48 0.86 19 71.43 0.63 19 

ECSDT-GA-12ell 80.48 0.75 25 76.19 1.49 25 83.33 1.24 25 79.05 0.38 25 75.71 0.54 25 79.52 0.30 25 

ECSDT-GA-15ell 83.33 0.47 31 80.95 1.50 31 85.70 1.21 31 87.14 0.21 31 80.95 0.33 31 82.86 0.30 31 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 91.90 15.48 15 91.90 17.86 15 91.90 15.24 15 87.44 6.32 15 

MetaCost+J48 87.62 24.76 15 90.00 20.95 15 88.10 21.19 19 85.98 8.17 14 

C.S.C+NBTree 90.95 20.71 7 91.43 18.10 7 91.43 18.10 7 85.18 7.10 8 

MetaCost+NBTree 87.14 25.00 7 89.05 23.33 7 87.14 24.29 7 81.06 8.91 7 

ECSDT-PSO-3ell 55.24 75.24 7 52.38 80.48 7 56.19 74.29 7 60.9 27.01 7 

ECSDT-PSO-6ell 61.90 63.10 13 57.62 70.71 13 61.90 59.52 13 64.6 22.51 13 

ECSDT-PSO-9ell 67.62 50.48 19 65.71 57.14 19 71.90 44.05 19 71.11 17.63 19 

ECSDT-PSO-12ell 74.76 39.29 25 76.19 37.14 25 79.52 30.71 25 77.72 12.42 25 

ECSDT-PSO-15ell 81.90 27.14 31 84.76 22.86 31 87.61 19.52 31 82.8 8.15 31 

ECSDT-GA-3ell 55.24 75.24 7 52.38 80.48 7 56.19 74.29 7 61.37 27.02 7 

ECSDT-GA-6ell 63.81 60.24 13 58.57 69.29 13 60.48 62.38 13 64.55 22.36 13 

ECSDT-GA-9ell 68.57 49.05 19 63.81 60.00 19 70.48 44.29 19 70.68 17.83 19 

ECSDT-GA-12ell 72.86 40.71 25 78.10 34.29 25 79.52 30.71 25 77.3 12.27 25 

ECSDT-GA-15ell 80.95 30.48 31 84.76 22.86 31 88.09 18.81 31 82.91 8.46 31 

Table Apx-C-010: Seeds Cost-based results 
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Algorithm 

Tae Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 54.30 1.85 67 54.96 1.82 67 50.99 2.10 67 57.61 83.44 67 54.96 1.82 67 56.95 82.78 67 

MetaCost+J48 46.35 2.55 33 51.65 1.56 35 45.03 2.03 45 59.60 78.81 33 51.65 1.56 37 54.30 85.43 35 

C.S.C+NBTree 40.39 1.91 7 47.01 1.49 7 46.35 1.83 7 56.29 87.42 7 47.01 1.49 7 56.29 86.09 7 

MetaCost+NBTree 36.42 2.18 11 45.03 1.66 3 40.39 1.97 11 50.33 97.02 11 45.03 1.66 7 53.64 85.76 3 

ECSDT-PSO-3ell 28.47 3.76 7 30.46 2.81 7 27.80 2.89 7 32.50 123.84 7 30.46 2.81 7 30.50 127.48 7 

ECSDT-PSO-6ell 32.45 2.74 13 33.77 2.58 13 33.11 2.60 13 36.40 114.24 13 33.77 2.58 13 34.40 114.57 13 

ECSDT-PSO-9ell 35.10 2.44 19 42.38 1.89 19 35.76 2.23 19 44.40 97.68 19 42.38 1.89 19 43.00 97.35 19 

ECSDT-PSO-12ell 40.40 1.68 25 43.71 1.49 25 40.40 1.60 25 55.60 73.18 25 43.71 1.49 25 53.60 76.16 25 

ECSDT-PSO-15ell 50.33 1.19 31 50.33 1.16 31 46.36 1.30 31 61.60 62.25 31 50.33 1.16 31 56.30 70.86 31 

ECSDT-GA-3ell 28.47 3.76 7 31.13 2.78 7 27.80 2.89 7 33.80 121.85 7 31.13 2.78 7 32.50 124.50 7 

ECSDT-GA-6ell 33.77 2.67 13 33.77 2.58 13 31.13 2.73 13 36.40 114.24 13 33.77 2.58 13 35.80 112.25 13 

ECSDT-GA-9ell 34.44 2.45 19 42.38 1.89 19 34.44 2.30 19 44.40 97.68 19 42.38 1.89 19 43.00 97.35 19 

ECSDT-GA-12ell 40.40 1.68 25 45.70 1.42 25 40.40 1.60 25 54.30 75.17 25 45.70 1.42 25 53.60 76.16 25 

ECSDT-GA-15ell 50.33 1.19 31 50.33 1.16 31 45.03 1.37 31 61.60 62.25 31 50.33 1.16 31 56.30 70.86 31 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 57.61 83.44 67 56.95 82.78 67 60.92 79.80 67 55.96 41.97 67 

MetaCost+J48 59.60 78.81 51 54.30 85.43 45 55.62 90.07 51 52.09 43.41 42 

C.S.C+NBTree 56.29 87.42 7 56.29 86.09 7 58.94 78.48 7 50.88 42.87 7 

MetaCost+NBTree 50.33 97.02 11 53.64 85.76 11 54.96 87.09 7 46.8 45.94 8.33 

ECSDT-PSO-3ell 32.50 123.84 7 30.50 127.48 7 32.45 117.88 7 30.36 63.11 7 

ECSDT-PSO-6ell 36.40 114.24 13 34.40 114.57 13 38.41 105.96 13 34.76 57.11 13 

ECSDT-PSO-9ell 44.40 97.68 19 43.00 97.35 19 45.00 92.72 19 40.94 49.05 19 

ECSDT-PSO-12ell 55.60 73.18 25 53.60 76.16 25 57.00 68.87 25 48.45 37.16 25 

ECSDT-PSO-15ell 61.60 62.25 31 56.30 70.86 31 63.60 57.95 31 54.75 32.45 31 

ECSDT-GA-3ell 33.80 121.85 7 32.50 124.50 7 32.50 117.88 7 31.03 62.28 7 

ECSDT-GA-6ell 36.40 114.24 13 35.80 112.25 13 39.74 104.97 13 35.1 56.57 13 

ECSDT-GA-9ell 44.40 97.68 19 43.00 97.35 19 44.40 94.04 19 40.51 49.28 19 

ECSDT-GA-12ell 54.30 75.17 25 53.60 76.16 25 56.30 70.20 25 48.45 37.70 25 

ECSDT-GA-15ell 61.60 62.25 31 56.30 70.86 31 63.60 57.95 31 54.53 32.46 31 

Table Apx-C-011: Tae Cost-based results 
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Algorithm 

Thyroid Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 93.02 0.27 17 91.16 0.47 17 92.09 0.40 17 92.09 15.12 17 92.09 16.74 17 92.09 15.58 17 

MetaCost+J48 89.30 0.24 11 88.83 0.47 11 91.16 0.43 11 91.16 16.51 17 91.16 18.14 11 90.70 18.84 13 

C.S.C+NBTree 90.69 0.44 7 92.56 0.25 7 93.02 0.33 7 93.02 14.88 7 93.48 12.33 7 93.02 11.16 7 

MetaCost+NBTree 92.09 0.33 1 89.77 0.34 1 92.09 0.39 1 90.23 20.23 9 90.70 17.44 1 90.23 20.00 9 

ECSDT-PSO-3ell 78.60 0.70 7 82.79 0.67 7 82.33 0.67 7 83.72 28.84 7 84.19 29.30 7 82.33 28.37 7 

ECSDT-PSO-6ell 85.58 0.43 13 86.98 0.52 13 86.98 0.49 13 86.05 23.72 13 87.44 20.00 13 85.58 21.86 13 

ECSDT-PSO-9ell 88.37 0.35 19 91.62 0.42 19 91.62 0.32 19 92.55 11.63 19 90.23 15.35 19 91.16 13.26 19 

ECSDT-PSO-12ell 88.37 0.27 25 88.84 0.22 25 90.69 0.27 25 94.40 8.84 25 92.09 11.86 25 93.95 9.07 25 

ECSDT-PSO-15ell 93.95 0.17 31 92.55 0.19 31 94.88 0.22 31 94.40 8.37 31 93.95 9.07 31 93.95 9.07 31 

ECSDT-GA-3ell 78.60 0.70 7 82.79 0.67 7 82.33 0.67 7 83.72 28.84 7 87.44 20.00 7 82.33 28.37 7 

ECSDT-GA-6ell 87.91 0.44 13 88.37 0.47 13 85.58 0.52 13 86.51 23.49 13 90.23 15.35 13 86.51 22.33 13 

ECSDT-GA-9ell 89.77 0.30 19 88.37 0.32 19 90.23 0.30 19 93.95 10.47 19 92.09 11.86 19 92.56 11.16 19 

ECSDT-GA-12ell 90.69 0.22 25 90.69 0.24 25 91.62 0.24 25 93.95 9.07 25 93.95 9.07 25 93.95 9.07 25 

ECSDT-GA-15ell 95.81 0.20 31 93.95 0.17 31 93.95 0.19 31 94.88 7.67 31 92.55 11.16 31 94.42 8.37 31 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 91.16 0.47 17 92.09 0.40 17 92.09 15.12 17 92.09 8.10 17 

MetaCost+J48 88.83 0.47 17 91.16 0.43 13 91.16 16.51 17 90.39 9.11 15 

C.S.C+NBTree 92.56 0.25 7 93.02 0.33 7 93.02 14.88 7 92.63 6.57 7 

MetaCost+NBTree 89.77 0.34 9 92.09 0.39 9 90.23 20.23 11 90.85 9.79 8 

ECSDT-PSO-3ell 82.79 0.67 7 82.33 0.67 7 83.72 28.84 7 82.33 14.76 7 

ECSDT-PSO-6ell 86.98 0.52 13 86.98 0.49 13 86.05 23.72 13 86.44 11.17 13 

ECSDT-PSO-9ell 91.62 0.42 19 91.62 0.32 19 92.55 11.63 19 90.93 6.89 19 

ECSDT-PSO-12ell 88.84 0.22 25 90.69 0.27 25 94.40 8.84 25 91.39 5.09 25 

ECSDT-PSO-15ell 92.55 0.19 31 94.88 0.22 31 94.40 8.37 31 93.95 4.51 31 

ECSDT-GA-3ell 82.79 0.67 7 82.33 0.67 7 83.72 28.84 7 82.87 13.21 7 

ECSDT-GA-6ell 88.37 0.47 13 85.58 0.52 13 86.51 23.49 13 87.52 10.43 13 

ECSDT-GA-9ell 88.37 0.32 19 90.23 0.30 19 93.95 10.47 19 91.16 5.73 19 

ECSDT-GA-12ell 90.69 0.24 25 91.62 0.24 25 93.95 9.07 25 92.48 4.65 25 

ECSDT-GA-15ell 93.95 0.17 31 93.95 0.19 31 94.88 7.67 31 94.26 4.63 31 

Table Apx-C-12: Thyroid Cost-based results 
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Algorithm 

Glass Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 Average 

Acc Cost Size Acc Cost Size Acc Acc Acc Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 96.73 12.67 11 96.73 10.29 11 96.73 8.27 11 96.73 3.33 11 96.73 10.14 11 96.73 9.64 11 96.73 9.06 11 

MetaCost+J48 95.32 4.45 11 95.79 6.68 11 97.66 7.34 11 93.93 4.64 11 93.46 6.52 11 96.26 2.72 11 95.40 5.39 11 

C.S.C+NBTree 50.47 22.75 7 64.02 11.58 7 82.71 12.50 7 88.32 4.96 7 81.31 5.98 7 55.61 14.74 7 70.40 12.09 7 

MetaCost+NBTree 34.58 13.41 11 55.14 11.29 9 80.37 24.71 5 85.51 7.44 7 80.84 10.74 9 50.47 14.39 13 64.49 13.66 9 

ECSDT-PSO-6ell 52.34 12.83 13 50.47 16.68 13 54.70 87.37 13 53.27 46.98 13 52.80 19.62 13 51.40 9.06 13 52.50 32.09 13 

ECSDT-PSO-8ell 53.74 5.40 17 51.87 5.78 17 55.60 74.75 17 53.74 38.10 17 55.61 16.82 17 54.67 7.43 17 54.21 24.71 17 

ECSDT-PSO-10ell 58.88 3.48 21 56.07 4.60 21 60.75 44.38 21 59.81 32.96 21 61.21 10.98 21 58.88 6.07 21 59.27 17.08 21 

ECSDT-PSO-12ell 65.42 1.78 25 64.95 3.25 25 65.42 32.23 25 64.95 16.60 25 62.62 10.28 25 61.68 5.23 25 64.17 11.56 25 

ECSDT-PSO-14ell 69.63 0.71 29 71.96 2.06 29 72.43 8.36 29 69.63 11.93 29 69.16 6.54 29 67.29 3.73 29 70.02 5.55 29 

ECSDT-GA-6ell 52.34 12.83 13 50.47 16.68 13 53.74 79.39 13 52.34 47.91 13 52.80 19.62 13 53.27 8.50 13 52.49 30.82 13 

ECSDT-GA-8ell 54.21 5.30 17 52.34 5.31 17 55.60 74.75 17 54.21 35.76 17 55.14 17.05 17 55.14 7.19 17 54.44 24.23 17 

ECSDT-GA-10ell 59.81 3.38 21 56.07 4.60 21 61.68 41.57 21 58.88 33.89 21 58.41 12.38 21 59.35 5.84 21 59.03 16.94 21 

ECSDT-GA-12ell 66.82 1.89 25 63.55 3.27 25 69.16 28.49 25 64.95 16.60 25 63.55 9.81 25 63.55 5.98 25 65.26 11.01 25 

ECSDT-GA-14ell 71.50 0.81 29 69.16 1.46 29 75.23 7.46 29 70.56 11.00 29 69.16 6.54 29 70.09 4.20 29 70.95 5.24 29 

Table Apx-C-013: Glass Cost-based results 
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Algorithm 

Ecoli Cost-based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 31.85 31.19 41 66.07 41.95 41 78.27 57.06 41 77.67 32.95 41 75.30 22.48 41 76.19 50.99 41 

MetaCost+J48 32.14 19.55 21 65.18 40.94 31 78.87 33.52 17 78.27 20.02 29 74.40 17.81 25 68.45 42.50 41 

C.S.C+NBTree 26.49 20.07 13 63.99 31.42 13 74.70 44.68 13 72.62 28.77 13 66.67 24.49 13 55.06 37.28 13 

MetaCost+NBTree 25.00 19.19 9 61.01 34.99 23 76.79 37.24 13 72.62 28.80 13 65.18 21.83 5 58.63 35.16 9 

ECSDT-PSO-6ell 21.13 13.61 13 50.30 30.12 13 60.42 42.09 13 59.52 24.95 13 56.55 24.74 13 51.49 48.32 13 

ECSDT-PSO-8ell 22.92 11.96 17 55.65 29.33 17 64.88 36.70 17 62.20 21.15 17 58.33 19.79 17 52.08 42.09 17 

ECSDT-PSO-10ell 24.11 11.06 21 56.85 27.10 21 66.67 35.51 21 66.37 18.74 21 61.90 15.70 21 54.76 36.10 21 

ECSDT-PSO-12ell 23.81 10.62 25 61.31 24.67 25 69.35 30.39 25 71.13 16.87 25 68.15 11.78 25 63.69 30.57 25 

ECSDT-PSO-14ell 26.79 10.30 29 60.12 24.81 29 72.92 35.99 29 75.60 14.62 29 72.02 13.11 29 70.83 27.75 29 

ECSDT-GA-6ell 22.02 13.45 13 51.19 29.52 13 60.40 40.57 13 60.12 24.50 13 56.55 24.74 13 52.08 47.87 13 

ECSDT-GA-8ell 23.21 12.59 17 55.95 29.03 17 65.77 36.02 17 64.58 20.69 17 58.63 18.84 17 54.17 42.41 17 

ECSDT-GA-10ell 24.11 11.07 21 58.63 25.72 21 69.05 31.29 21 70.24 18.24 21 63.99 16.71 21 58.63 35.21 21 

ECSDT-GA-12ell 24.70 10.36 25 60.42 24.07 25 67.56 30.07 25 72.92 16.63 25 71.13 13.59 25 64.88 30.06 25 

ECSDT-GA-14ell 25.89 10.27 29 62.80 23.92 29 73.81 34.50 29 74.70 14.69 29 69.94 12.59 29 69.05 27.93 29 

 

Algorithm 
Ratio - 7 Ratio - 8 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 69.35 40.40 41 57.44 22.56 41 66.52 37.45 41 

MetaCost+J48 62.50 31.65 43 60.71 16.78 45 65.07 27.85 32 

C.S.C+NBTree 47.32 24.06 13 38.39 19.14 13 55.65 28.74 13 

MetaCost+NBTree 50.60 27.60 11 14.88 32.12 19 53.09 29.62 13 

ECSDT-PSO-6ell 44.35 35.61 13 43.75 22.17 13 48.44 30.20 13 

ECSDT-PSO-8ell 48.51 28.40 17 46.70 20.81 17 51.41 26.28 17 

ECSDT-PSO-10ell 50.60 28.02 21 48.81 14.41 21 53.76 23.33 21 

ECSDT-PSO-12ell 55.95 23.85 25 56.85 11.75 25 58.78 20.06 25 

ECSDT-PSO-14ell 63.99 20.50 29 61.61 11.56 29 62.99 19.83 29 

ECSDT-GA-6ell 45.24 35.28 13 43.80 22.17 13 48.93 29.76 13 

ECSDT-GA-8ell 47.92 28.45 17 44.35 21.72 17 51.82 26.22 17 

ECSDT-GA-10ell 55.65 24.60 21 49.70 14.34 21 56.25 22.15 21 

ECSDT-GA-12ell 56.85 23.81 25 54.17 11.91 25 59.08 20.06 25 

ECSDT-GA-14ell 62.80 25.01 29 60.12 11.62 29 62.39 20.07 29 

Table Apx-C-014: Ecoli Cost-based results 
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APPENDIX – D: Results Of the Empirical Comparison Based on Accuracy and Cost 
 

This appendix presents the results obtained by the ECSDT when adopting the third aspect which considers both accuracy and cost as a multi-

objective function for the evaluation. 

Algorithm 

Bupa Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio - 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 46.67 1.08 51 43.77 20.81 51 43.77 20.81 51 43.77 20.81 51 43.77 41.10 51 66.96 0.72 51 

MetaCost+J48 50.14 0.81 37 42.03 0.58 1 42.03 0.58 1 42.03 0.58 1 42.03 0.58 1 61.74 0.49 23 

C.S.C+NBTree 42.32 0.66 11 42.03 0.58 11 42.03 0.58 11 42.03 0.58 11 42.03 0.58 11 57.68 0.48 11 

MetaCost+NBTree 43.19 0.57 1 42.03 0.58 1 42.03 0.58 1 42.03 0.58 1 42.03 0.58 1 57.97 0.42 1 

ECSDT-PSO-2ell 44.06 0.74 5 42.60 1.14 5 42.89 1.43 5 41.44 4.92 5 43.76 12.14 5 51.30 1.09 5 

ECSDT-PSO-4ell 48.69 0.59 9 46.66 0.79 9 47.24 1.39 9 44.63 3.45 9 48.11 9.21 9 65.79 0.55 9 

ECSDT-PSO-6ell 49.11 0.63 13 45.88 0.82 13 48.40 0.80 13 47.24 3.42 13 46.95 6.32 13 66.95 0.54 13 

ECSDT-PSO-8ell 50.72 0.60 17 47.24 0.81 17 50.14 0.79 17 49.56 3.40 17 51.01 6.28 17 68.69 0.44 17 

ECSDT-PSO-10ell 54.78 0.56 21 49.56 0.65 21 52.46 0.76 21 49.85 1.95 21 50.43 3.39 21 70.43 0.40 21 

ECSDT-GA-2ell 45.21 0.73 5 41.76 1.31 5 43.76 1.42 5 42.89 7.81 5 43.76 12.14 5 54.49 0.85 5 

ECSDT-GA-4ell 48.52 0.64 9 46.08 0.82 9 49.27 0.79 9 46.96 4.87 9 47.82 9.21 9 65.50 0.58 9 

ECSDT-GA-6ell 53.23 0.59 13 48.53 1.08 13 47.24 0.81 13 50.43 4.83 13 48.69 9.20 13 63.76 0.52 13 

ECSDT-GA-8ell 53.04 0.60 17 47.64 0.66 17 49.56 0.79 17 48.98 4.85 17 50.14 6.29 17 69.27 0.46 17 

ECSDT-GA-10ell 55.65 0.57 21 51.30 0.63 21 52.75 0.76 21 51.30 1.93 21 52.46 3.37 21 71.30 0.39 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 63.80 2.21 51 63.77 4.09 51 63.77 19.17 51 63.77 38.01 51 54.378 13.43 51 

MetaCost+J48 58.00 0.56 7 57.97 0.42 1 57.97 0.42 1 57.97 0.42 1 51.275 0.56 7.4 

C.S.C+NBTree 57.70 0.57 11 57.97 0.42 11 57.97 0.42 11 57.97 0.42 11 50.028 0.53 11 

MetaCost+NBTree 58.00 0.42 1 57.97 0.42 1 57.97 0.42 1 57.97 0.42 1 50.115 0.50 1 

ECSDT-PSO-2ell 53.33 2.74 5 54.20 5.05 5 52.75 26.51 5 54.78 38.10 5 48.11 9.39 5 

ECSDT-PSO-4ell 63.76 0.79 9 61.44 1.25 9 64.63 7.59 9 65.50 14.82 9 55.65 4.04 9 

ECSDT-PSO-6ell 64.34 0.78 13 63.76 0.94 13 64.92 4.69 13 66.08 9.03 13 56.36 2.80 13 

ECSDT-PSO-8ell 66.66 0.62 17 64.29 0.92 17 66.37 2.94 17 63.76 6.15 17 57.84 2.30 17 

ECSDT-PSO-10ell 68.98 0.45 21 66.66 0.91 21 68.40 1.76 21 67.53 3.22 21 59.91 1.40 21 

ECSDT-GA-2ell 55.65 2.15 5 54.49 4.76 5 57.97 22.12 5 55.07 29.41 5 49.51 8.27 5 

ECSDT-GA-4ell 64.92 0.78 9 64.05 0.93 9 65.21 4.69 9 65.21 9.03 9 56.35 3.23 9 

ECSDT-GA-6ell 62.89 0.66 13 63.76 0.94 13 63.67 6.15 13 65.79 11.92 13 56.80 3.67 13 

ECSDT-GA-8ell 68.40 0.46 17 65.50 0.92 17 68.40 1.76 17 65.79 3.24 17 58.67 2.00 17 

ECSDT-GA-10ell 70.72 0.43 21 68.40 0.60 21 70.43 1.74 21 66.66 3.23 21 61.10 1.37 21 

Table Apx-D-01: Bupa Accuracy + Cost based results 
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Algorithm 

Hepatitis Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 79.49 0.55 9 64.1 1.62 5 58.97 1.68 5 19.23 0.81 1 19.23 0.81 1 80.77 0.19 1 

MetaCost+J48 70.51 0.64 13 60.26 0.40 9 32.05 1.95 1 19.23 0.81 1 19.23 0.81 1 82.05 0.18 1 

C.S.C+NBTree 70.51 0.64 5 39.74 1.23 5 28.21 0.72 5 25.64 0.74 5 19.23 0.81 5 80.77 0.31 5 

MetaCost+NBTree 73.08 0.73 5 50 0.50 5 26.92 0.73 5 19.23 0.81 1 19.23 0.81 3 80.77 0.31 1 

ECSDT-PSO-2ell 62.82 0.83 5 57.69 2.31 5 62.82 2.91 5 58.97 13.21 5 56.41 26.05 5 78.20 0.56 5 

ECSDT-PSO-4ell 74.35 0.60 9 69.23 1.56 9 69.23 2.85 9 62.82 13.17 9 66.66 25.95 9 82.05 0.41 9 

ECSDT-PSO-6ell 80.76 0.42 13 78.20 0.85 13 75.64 1.51 13 64.10 6.76 13 76.92 13.04 13 88.46 0.23 13 

ECSDT-PSO-8ell 85.89 0.37 17 78.20 0.85 17 78.20 1.49 17 80.76 6.59 17 73.07 13.08 17 84.61 0.27 17 

ECSDT-PSO-10ell 80.76 0.42 21 80.76 0.82 21 78.20 1.49 21 67.94 6.72 21 78.20 13.03 21 88.46 0.23 21 

ECSDT-GA-2ell 67.94 0.67 5 65.38 1.60 5 61.53 2.92 5 55.12 13.24 5 58.97 26.03 5 80.76 0.54 5 

ECSDT-GA-4ell 71.79 0.63 9 70.51 1.55 9 71.79 1.55 9 70.51 13.09 9 65.38 25.96 9 84.61 0.38 9 

ECSDT-GA-6ell 82.05 0.41 13 78.20 0.85 13 78.20 1.49 13 70.51 13.09 13 74.35 13.06 13 91.02 0.21 13 

ECSDT-GA-8ell 80.76 0.42 17 80.76 0.82 17 78.20 1.49 17 78.20 6.62 17 74.35 13.06 17 85.89 0.26 17 

ECSDT-GA-10ell 85.89 0.37 21 82.05 0.81 21 75.64 1.51 21 75.64 6.64 21 76.92 13.04 21 84.61 0.27 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 64.49 0.64 2.6 

MetaCost+J48 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 60.64 0.56 3 

C.S.C+NBTree 80.77 0.19 5 80.77 0.19 5 80.77 0.19 5 80.77 0.19 5 58.72 0.52 5 

MetaCost+NBTree 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 80.77 0.19 1 59.23 0.47 2.4 

ECSDT-PSO-2ell 80.76 2.08 5 76.92 4.04 5 78.20 13.01 5 78.20 25.83 5 69.099 9.08 5 

ECSDT-PSO-4ell 82.05 1.44 9 80.76 2.73 9 82.05 6.58 9 82.05 12.99 9 75.125 6.83 9 

ECSDT-PSO-6ell 84.61 0.78 13 87.17 1.40 13 82.05 6.58 13 84.61 12.96 13 80.252 4.45 13 

ECSDT-PSO-8ell 87.17 0.76 17 87.17 1.40 17 80.76 6.59 17 82.05 12.99 17 81.788 4.44 17 

ECSDT-PSO-10ell 87.17 0.76 21 85.89 1.41 21 87.17 6.53 21 85.89 12.95 21 82.044 4.43 21 

ECSDT-GA-2ell 80.76 2.08 5 78.02 4.03 5 78.20 13.01 5 80.76 25.81 5 70.744 8.99 5 

ECSDT-GA-4ell 80.76 1.45 9 82.05 2.72 9 82.05 6.58 9 82.05 12.99 9 76.15 6.69 9 

ECSDT-GA-6ell 84.61 0.78 13 84.61 1.42 13 84.61 6.55 13 88.46 12.92 13 81.662 5.08 13 

ECSDT-GA-8ell 85.89 0.77 17 84.61 1.42 17 87.17 6.53 17 87.17 12.94 17 82.3 4.43 17 

ECSDT-GA-10ell 91.02 0.72 21 87.17 1.40 21 84.61 6.55 21 82.05 12.99 21 82.56 4.43 21 

Table Apx-D-02: Hepatitis Accuracy + Cost based results 
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Algorithm 

Heart Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 68.51 1.11 39 60.00 2.40 39 60.00 4.43 39 60.00 20.73 39 60.00 41.10 39 67.40 0.96 39 

MetaCost+J48 66.29 0.64 31 61.11 0.39 15 55.55 0.44 1 55.55 0.44 1 55.55 0.44 1 71.11 0.52 29 

C.S.C+NBTree 74.44 0.39 17 67.03 0.51 17 60.37 0.40 17 58.88 0.41 17 55.55 0.44 17 66.29 0.60 17 

MetaCost+NBTree 70.00 0.50 11 56.66 0.43 1 55.55 0.44 1 55.55 0.44 1 55.55 0.44 1 62.96 0.57 11 

ECSDT-PSO-2ell 54.44 1.62 5 57.03 2.61 5 58.89 7.74 5 56.66 30.00 5 53.33 30.07 5 57.41 1.26 5 

ECSDT-PSO-4ell 65.18 0.61 9 63.33 1.46 9 62.96 4.04 9 63.33 11.46 9 56.29 22.64 9 64.07 0.76 9 

ECSDT-PSO-6ell 71.11 0.49 13 68.51 0.68 13 65.93 2.17 13 65.55 4.04 13 65.55 7.74 13 67.41 0.53 13 

ECSDT-PSO-8ell 74.81 0.45 17 72.96 0.45 17 70.33 1.76 17 68.88 4.01 17 67.03 7.73 17 73.33 0.47 17 

ECSDT-PSO-10ell 77.03 0.36 21 75.92 0.42 21 70.33 1.03 21 72.96 2.12 21 69.26 4.01 21 76.66 0.40 21 

ECSDT-GA-2ell 58.52 1.58 5 58.14 2.78 5 57.41 7.03 5 58.89 26.29 5 55.55 26.34 5 60.74 1.06 5 

ECSDT-GA-4ell 63.70 0.70 9 65.55 1.43 9 62.96 3.30 9 65.93 9.59 9 59.63 15.20 9 65.18 0.68 9 

ECSDT-GA-6ell 71.48 0.49 13 68.51 0.68 13 67.41 1.79 13 65.93 5.89 13 65.93 7.74 13 70.00 0.50 13 

ECSDT-GA-8ell 74.81 0.45 17 74.44 0.44 17 72.22 0.64 17 70.37 2.14 17 63.70 7.76 17 73.33 0.43 17 

ECSDT-GA-10ell 77.77 0.36 21 76.66 0.41 21 70.33 0.66 21 71.85 2.13 21 67.03 4.03 21 77.77 0.39 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 50.74 1.76 39 48.88 3.08 39 48.88 13.45 39 48.88 26.41 39 57.33 11.54 39 

MetaCost+J48 52.22 0.66 1 44.44 0.56 1 44.44 0.56 1 44.44 0.56 1 55.07 0.52 8.2 

C.S.C+NBTree 52.22 1.02 17 48.14 1.25 17 45.55 2.39 17 45.18 0.55 17 57.37 0.80 17 

MetaCost+NBTree 44.44 0.56 1 44.44 0.56 1 44.44 0.56 1 44.44 0.56 1 53.41 0.51 3 

ECSDT-PSO-2ell 49.63 2.32 5 41.85 3.51 5 42.96 15.36 5 42.59 30.17 5 51.48 12.47 5 

ECSDT-PSO-4ell 53.33 1.56 9 51.11 1.96 9 47.77 7.91 9 50.37 15.30 9 57.77 6.77 9 

ECSDT-PSO-6ell 58.15 1.14 13 59.25 1.14 13 55.92 4.14 13 57.78 7.82 13 63.52 2.99 13 

ECSDT-PSO-8ell 65.92 0.52 17 63.33 0.73 17 60.37 2.24 17 58.15 4.12 17 67.51 2.25 17 

ECSDT-PSO-10ell 63.70 0.73 21 65.18 0.71 21 65.92 2.19 21 61.48 4.09 21 69.84 1.61 21 

ECSDT-GA-2ell 50.74 2.13 5 42.59 3.14 5 43.70 13.50 5 44.44 26.46 5 53.07 11.03 5 

ECSDT-GA-4ell 53.33 1.37 9 53.70 1.56 9 50.74 7.89 9 52.59 15.27 9 59.33 5.70 9 

ECSDT-GA-6ell 59.25 0.95 13 60.00 0.77 13 54.07 4.16 13 58.52 4.11 13 64.11 2.71 13 

ECSDT-GA-8ell 64.81 0.50 17 63.33 0.73 17 61.11 2.24 17 60.00 3.73 17 67.81 1.91 17 

ECSDT-GA-10ell 63.70 0.73 21 64.44 0.72 21 63.33 2.21 21 62.96 3.74 21 69.58 1.54 21 

Table Apx-D-3: Heart Accuracy + Cost based results 
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Algorithm 

Haberman Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 73.529 0.26 5 73.529 0.26 5 73.529 0.26 5 73.529 0.26 5 73.529 0.26 5 27.777 0.75 5 

MetaCost+J48 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 29.738 0.76 21 

C.S.C+NBTree 73.529 0.26 3 73.529 0.26 3 73.529 0.26 3 73.529 0.26 3 73.529 0.26 3 26.47 0.74 3 

MetaCost+NBTree 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 73.529 0.26 1 26.47 0.74 1 

ECSDT-PSO-2ell 71.25 0.58 5 72.22 1.24 5 71.90 2.22 5 73.53 5.16 5 73.53 10.08 5 26.80 1.08 5 

ECSDT-PSO-4ell 74.51 0.49 9 74.84 0.89 9 74.51 1.55 9 76.47 3.50 9 76.14 6.77 9 30.72 0.93 9 

ECSDT-PSO-6ell 77.77 0.40 13 76.80 0.55 13 74.18 0.91 13 76.47 3.50 13 75.82 6.77 13 36.60 0.81 13 

ECSDT-PSO-8ell 80.72 0.31 17 79.74 0.52 17 78.76 0.53 17 80.72 1.82 17 78.48 3.48 17 39.87 0.72 17 

ECSDT-PSO-10ell 83.33 0.25 21 81.70 0.34 21 82.35 0.50 21 78.76 1.84 21 82.35 3.44 21 40.20 0.69 21 

ECSDT-GA-2ell 73.53 0.56 5 72.22 1.40 5 73.20 1.89 5 72.55 5.17 5 73.86 10.06 5 27.45 1.05 5 

ECSDT-GA-4ell 75.82 0.45 9 73.86 0.90 9 74.51 1.23 9 76.47 5.13 9 75.82 6.77 9 29.74 0.94 9 

ECSDT-GA-6ell 78.76 0.33 13 74.18 0.42 13 76.80 0.88 13 78.76 3.47 13 77.45 6.75 13 37.25 0.77 13 

ECSDT-GA-8ell 82.68 0.26 17 76.80 0.39 17 76.80 0.56 17 78.76 1.84 17 78.48 3.48 17 41.18 0.71 17 

ECSDT-GA-10ell 83.33 0.25 21 82.35 0.34 21 83.33 0.49 21 81.70 1.81 21 83.01 3.43 21 40.85 0.68 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 26.47 0.90 5 26.47 1.06 5 26.47 2.37 5 26.47 4.00 5 50.13 1.04 5 

MetaCost+J48 26.47 0.74 1 26.47 0.74 1 26.47 0.74 1 26.47 0.74 1 50.33 0.50 3 

C.S.C+NBTree 26.47 0.74 3 26.47 0.74 3 26.47 0.74 3 26.47 0.74 3 50.00 0.50 3 

MetaCost+NBTree 26.47 0.74 1 26.47 0.74 1 26.47 0.74 1 26.47 0.74 1 50.00 0.50 1 

ECSDT-PSO-2ell 25.16 2.03 5 26.47 2.68 5 25.49 7.27 5 26.47 13.79 5 49.28 4.61 5 

ECSDT-PSO-4ell 28.76 1.67 9 27.78 2.02 9 28.76 5.60 9 27.45 10.52 9 51.99 3.39 9 

ECSDT-PSO-6ell 36.27 1.28 13 37.91 1.59 13 34.97 3.91 13 32.68 7.20 13 55.95 2.69 13 

ECSDT-PSO-8ell 38.89 0.93 17 39.22 1.25 17 38.24 2.25 17 40.20 3.86 17 59.48 1.57 17 

ECSDT-PSO-10ell 41.50 0.75 21 41.83 0.91 21 41.18 2.22 21 38.89 3.88 21 61.21 1.48 21 

ECSDT-GA-2ell 26.80 1.69 5 26.80 2.67 5 25.49 7.27 5 26.47 10.53 5 49.84 4.23 5 

ECSDT-GA-4ell 28.76 1.67 9 28.10 2.01 9 27.45 5.62 9 29.41 7.24 9 51.99 3.20 9 

ECSDT-GA-6ell 38.89 1.09 13 35.95 1.29 13 36.60 3.90 13 37.25 7.16 13 57.19 2.61 13 

ECSDT-GA-8ell 36.93 0.95 17 40.85 0.92 17 40.52 2.23 17 40.52 3.86 17 59.35 1.52 17 

ECSDT-GA-10ell 42.16 0.74 21 38.56 0.94 21 38.89 2.24 21 42.16 3.84 21 61.63 1.48 21 

Table Apx-D-4: Haberman Accuracy + Cost based results 
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Algorithm 

Diabetes Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 65.10 0.60 39 64.71 1.31 39 64.71 2.29 39 64.71 10.10 39 64.71 19.86 39 57.16 0.83 39 

MetaCost+J48 70.05 0.44 19 65.10 0.35 1 65.10 0.35 1 65.10 0.35 1 65.10 0.35 1 62.11 0.67 57 

C.S.C+NBTree 68.62 0.44 1 65.63 0.41 1 65.10 0.35 1 65.10 0.35 1 65.10 0.35 1 59.90 0.62 1 

MetaCost+NBTree 65.63 0.34 7 65.10 0.35 1 65.10 0.35 1 65.10 0.35 1 65.10 0.35 1 55.86 0.58 3 

ECSDT-PSO-2ell 60.55 0.80 5 62.50 1.65 5 63.28 2.69 5 62.50 13.37 5 62.50 28.99 5 47.66 0.78 5 

ECSDT-PSO-4ell 66.80 0.51 9 65.63 0.73 9 65.23 1.39 9 65.63 4.24 9 66.02 10.75 9 55.47 0.62 9 

ECSDT-PSO-6ell 71.88 0.40 13 72.66 0.53 13 71.88 0.80 13 67.97 2.92 13 68.36 5.52 13 64.45 0.47 13 

ECSDT-PSO-8ell 74.61 0.32 17 74.61 0.38 17 73.44 0.52 17 73.83 0.91 17 71.88 2.88 17 68.75 0.41 17 

ECSDT-PSO-10ell 70.70 0.33 21 71.48 0.35 21 74.61 0.38 21 73.83 0.91 21 73.44 1.57 21 64.06 0.43 21 

ECSDT-GA-2ell 61.72 0.73 5 62.11 1.85 5 62.89 2.82 5 63.67 11.41 5 62.50 28.99 5 46.88 0.77 5 

ECSDT-GA-4ell 67.58 0.49 9 66.41 0.72 9 66.41 1.37 9 65.63 4.24 9 65.23 10.75 9 56.25 0.60 9 

ECSDT-GA-6ell 70.70 0.39 13 70.31 0.55 13 69.53 0.69 13 68.75 2.91 13 70.31 4.28 13 66.80 0.43 13 

ECSDT-GA-8ell 74.22 0.32 17 73.83 0.33 17 74.61 0.51 17 72.66 0.92 17 72.27 2.88 17 70.31 0.40 17 

ECSDT-GA-10ell 71.09 0.32 21 74.22 0.32 21 72.27 0.41 21 74.60 0.90 21 73.44 1.57 21 68.75 0.42 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 41.02 1.55 39 39.45 2.54 39 39.45 10.35 39 39.45 20.12 39 54.05 6.95 39 

MetaCost+J48 44.40 0.62 15 36.20 0.64 1 34.90 0.65 1 34.90 0.65 1 54.30 0.51 9.8 

C.S.C+NBTree 44.14 0.75 1 40.76 0.72 1 35.81 0.64 1 34.90 0.65 1 54.50 0.53 1 

MetaCost+NBTree 38.15 0.62 3 34.90 0.65 1 34.90 0.65 1 34.90 0.65 1 52.47 0.49 2 

ECSDT-PSO-2ell 35.68 2.56 5 35.68 2.71 5 33.33 10.41 5 33.33 18.88 5 49.70 8.28 5 

ECSDT-PSO-4ell 41.80 1.67 9 39.45 1.64 9 38.41 5.16 9 41.41 7.09 9 54.59 3.38 9 

ECSDT-PSO-6ell 46.88 1.08 13 44.92 1.07 13 43.75 3.16 13 46.48 4.44 13 59.92 2.04 13 

ECSDT-PSO-8ell 49.61 0.82 17 47.66 0.78 17 47.66 1.82 17 47.66 3.13 17 62.97 1.20 17 

ECSDT-PSO-10ell 51.56 0.61 21 50.39 0.63 21 38.80 0.61 21 40.63 1.89 21 60.95 0.77 21 

ECSDT-GA-2ell 35.29 2.24 5 35.68 2.58 5 32.94 9.77 5 34.51 14.96 5 49.82 7.61 5 

ECSDT-GA-4ell 43.75 1.46 9 41.02 1.75 9 40.23 5.15 9 42.19 7.08 9 55.47 3.36 9 

ECSDT-GA-6ell 47.66 0.91 13 45.70 0.93 13 46.09 2.49 13 48.44 4.42 13 60.43 1.80 13 

ECSDT-GA-8ell 50.00 0.82 17 47.27 0.79 17 48.05 1.17 17 48.83 3.11 17 63.21 1.12 17 

ECSDT-GA-10ell 52.73 0.60 21 51.17 0.62 21 37.24 0.63 21 41.80 1.88 21 61.73 0.77 21 

Table Apx-D-05: Diabetes Accuracy + Cost based results 
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Algorithm 

WDBC Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 92.97 0.31 25 92.26 1.28 25 66.43 2.42 25 45.69 8.44 25 45.69 16.34 25 92.97 0.40 25 

MetaCost+J48 90.68 0.19 23 88.57 0.63 23 86.64 1.00 27 37.60 0.62 1 37.26 0.63 1 92.97 0.12 17 

C.S.C+NBTree 92.26 0.35 23 87.87 1.24 23 78.20 1.78 23 71.88 6.42 23 72.06 10.81 23 93.14 0.31 23 

MetaCost+NBTree 89.45 0.20 23 89.10 0.71 27 88.40 0.81 7 44.81 3.18 19 39.37 0.61 5 91.73 0.10 19 

ECSDT-PSO-2ell 75.75 0.56 5 60.98 2.28 5 55.71 3.57 5 67.31 0.72 5 73.64 2.85 5 75.22 4.60 5 

ECSDT-PSO-4ell 78.91 0.45 9 72.58 1.82 9 63.62 3.15 9 76.8 0.55 9 78.91 2.36 9 81.55 3.66 9 

ECSDT-PSO-6ell 85.24 0.38 13 81.55 1.48 13 70.47 2.73 13 85.76 0.32 13 85.76 1.52 13 86.82 2.74 13 

ECSDT-PSO-8ell 88.93 0.30 17 89.46 0.97 17 77.86 1.96 17 91.56 0.21 17 90.51 0.96 17 91.04 1.48 17 

ECSDT-PSO-10ell 91.56 0.21 21 90.51 0.61 21 86.29 1.01 21 93.67 0.16 21 93.67 0.58 21 94.2 0.75 21 

ECSDT-GA-2ell 75.75 0.56 5 62.57 2.10 5 57.82 3.38 5 66.78 0.74 5 73.64 2.85 5 76.8 4.41 5 

ECSDT-GA-4ell 77.33 0.51 9 72.58 1.82 9 61.51 3.17 9 77.33 0.51 9 77.86 2.46 9 80.49 3.67 9 

ECSDT-GA-6ell 87.35 0.36 13 82.6 1.38 13 70.47 2.73 13 85.76 0.32 13 84.18 1.63 13 85.76 2.75 13 

ECSDT-GA-8ell 88.4 0.32 17 88.93 0.97 17 75.22 2.16 17 90.51 0.22 17 91.04 0.86 17 93.67 1.28 17 

ECSDT-GA-10ell 91.56 0.21 21 90.51 0.61 21 85.24 1.02 21 94.73 0.12 21 93.67 0.58 21 92.09 0.78 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages  

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 92.61 1.80 25 92.61 3.55 25 92.61 17.61 25 92.61 35.19 25 88.31 1.63 25 

MetaCost+J48 92.97 0.33 21 92.09 0.60 23 73.28 3.43 19 62.74 2.13 15 90.65 0.48 22.3 

C.S.C+NBTree 88.92 1.14 23 79.78 1.59 23 72.40 4.66 23 72.58 7.30 23 86.7 1.07 23 

MetaCost+NBTree 89.98 0.53 17 85.76 0.84 5 66.60 0.33 3 63.09 0.37 15 89.07 0.53 16.3 

ECSDT-PSO-2ell 73.64 0.50 5 58.88 1.70 5 55.71 3.57 5 73.64 2.85 5 68.1 2.43 5 

ECSDT-PSO-4ell 76.8 0.39 9 70.47 1.33 9 63.62 3.15 9 78.91 2.36 9 75.4 2.00 9 

ECSDT-PSO-6ell 83.13 0.29 13 79.44 1.07 13 70.47 2.73 13 85.76 1.52 13 82.6 1.53 13 

ECSDT-PSO-8ell 86.82 0.20 17 86.29 0.65 17 77.86 1.96 17 90.51 0.96 17 88.23 0.98 17 

ECSDT-PSO-10ell 88.93 0.17 21 88.4 0.46 21 86.29 1.01 21 93.67 0.58 21 91.65 0.55 21 

ECSDT-GA-2ell 73.64 0.50 5 58.88 1.70 5 57.82 3.38 5 73.64 2.85 5 68.89 2.34 5 

ECSDT-GA-4ell 76.8 0.39 9 70.47 1.33 9 61.51 3.17 9 77.86 2.46 9 74.52 2.02 9 

ECSDT-GA-6ell 85.76 0.27 13 79.96 0.98 13 70.47 2.73 13 84.18 1.63 13 82.69 1.53 13 

ECSDT-GA-8ell 84.18 0.19 17 88.4 0.72 17 75.22 2.16 17 91.04 0.86 17 87.96 0.97 17 

ECSDT-GA-10ell 88.93 0.17 21 90.51 0.61 21 85.24 1.02 21 93.67 0.58 21 91.3 0.55 21 

Table Apx-D-06: WDBC Accuracy + Cost based results 
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Algorithm 

WPBC Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 72.72 1.41 21 29.79 3.67 21 29.79 6.70 21 29.79 3.67 21 29.79 6.70 21 73.23 1.18 21 

MetaCost+J48 44.95 1.14 25 37.87 2.85 31 29.80 3.70 9 37.87 2.85 1 29.80 3.70 1 76.76 0.28 1 

C.S.C+NBTree 47.98 1.25 11 23.23 1.01 11 23.23 1.27 11 23.23 1.01 11 23.23 1.27 11 75.76 0.33 11 

MetaCost+NBTree 39.39 1.29 11 24.75 0.75 1 23.73 0.76 1 24.75 0.75 1 23.73 0.76 1 75.76 0.38 1 

ECSDT-PSO-2ell 28.28 2.08 5 25.76 4.95 5 23.70 8.76 5 51.52 2.71 5 53.54 12.34 5 53.54 22.96 5 

ECSDT-PSO-4ell 33.84 1.66 9 29.29 3.68 9 28.79 7.71 9 57.58 2.24 9 56.57 11.32 9 57.07 19.43 9 

ECSDT-PSO-6ell 37.88 1.30 13 33.84 2.64 13 31.82 5.68 13 65.66 1.62 13 67.17 6.52 13 67.17 9.33 13 

ECSDT-PSO-8ell 43.43 1.11 17 33.33 1.90 17 33.33 3.67 17 73.23 0.86 17 73.23 3.48 17 71.72 4.78 17 

ECSDT-PSO-10ell 45.96 0.99 21 37.88 1.11 21 36.36 2.14 21 77.78 0.31 21 78.79 1.70 21 77.78 1.22 21 

ECSDT-GA-2ell 29.80 2.02 5 25.76 4.95 5 24.75 8.25 5 53.54 2.60 5 53.54 12.34 5 55.56 22.44 5 

ECSDT-GA-4ell 33.84 1.66 9 28.79 3.68 9 27.78 7.72 9 58.59 2.19 9 57.58 11.07 9 58.08 18.92 9 

ECSDT-GA-6ell 38.89 1.25 13 33.33 2.65 13 32.32 5.18 13 64.14 1.68 13 66.16 6.53 13 65.66 11.34 13 

ECSDT-GA-8ell 42.93 1.12 17 35.35 1.73 17 35.86 3.14 17 73.23 0.86 17 74.75 3.22 17 73.74 4.26 17 

ECSDT-GA-10ell 46.46 0.99 21 37.88 1.36 21 36.87 1.63 21 78.79 0.30 21 78.79 1.20 21 78.28 1.22 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Ratio - 10 Averages  

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 73.23 4.47 21 73.23 8.77 21 73.23 1.18 21 73.23 4.47 21 58.67 4.37 11.5 

MetaCost+J48 75.76 0.49 1 76.26 0.24 1 76.76 0.28 1 75.76 0.49 1 56.9 1.45 12.8 

C.S.C+NBTree 75.76 0.49 11 75.76 0.74 11 75.76 0.33 11 75.76 0.49 11 53.62 0.85 8.5 

MetaCost+NBTree 76.26 0.24 1 76.26 0.24 1 75.76 0.38 1 76.26 0.24 1 52.69 0.61 6.17 

ECSDT-PSO-2ell 28.28 2.08 5 24.75 4.46 5 51.52 2.71 5 53.54 12.34 5 39.39 8.97 5 

ECSDT-PSO-4ell 30.81 1.46 9 27.78 2.95 9 57.58 2.24 9 56.57 11.32 9 43.86 7.67 9 

ECSDT-PSO-6ell 34.85 1.11 13 30.81 1.93 13 65.66 1.62 13 67.17 6.52 13 50.59 4.51 13 

ECSDT-PSO-8ell 40.40 1.01 17 32.32 1.67 17 73.23 0.86 17 73.23 3.48 17 54.71 2.63 17 

ECSDT-PSO-10ell 43.43 0.93 21 34.85 1.15 21 77.78 0.31 21 78.79 1.70 21 59.09 1.25 21 

ECSDT-GA-2ell 28.28 2.08 5 24.75 4.46 5 53.54 2.60 5 53.54 12.34 5 40.49 8.77 5 

ECSDT-GA-4ell 31.31 1.46 9 27.78 2.95 9 58.59 2.19 9 57.58 11.07 9 44.11 7.54 9 

ECSDT-GA-6ell 35.86 1.05 13 29.80 2.19 13 64.14 1.68 13 66.16 6.53 13 50.08 4.77 13 

ECSDT-GA-8ell 39.90 0.96 17 32.83 1.41 17 73.23 0.86 17 74.75 3.22 17 55.98 2.39 17 

ECSDT-GA-10ell 44.44 0.96 21 35.35 0.89 21 78.79 0.30 21 78.79 1.20 21 59.51 1.12 21 

Table Apx-D-07: WPBC Accuracy + Cost based results 
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Algorithm 

IRIS Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 96.00 1.54 9 96.00 0.82 9 69.33 1.03 9 93.33 0.41 11 94.67 0.14 5 90.00 0.31 7 

MetaCost+J48 93.33 1.75 4 94.00 0.84 7 74.00 0.38 3 94.67 0.28 7 93.33 0.18 7 93.33 0.09 9 

C.S.C+NBTree 84.00 2.44 9 80.67 0.55 9 84.67 0.15 9 94.67 0.40 9 95.33 0.13 9 93.33 0.13 9 

MetaCost+NBTree 84.00 2.62 11 85.33 0.27 9 68.67 1.21 5 91.33 0.51 9 90.67 0.15 1 90.00 0.19 9 

ECSDT-PSO-3ell 90.00 2.80 7 90.67 0.69 7 72.66 2.25 7 86.66 0.73 7 91.33 0.19 7 91.33 0.33 7 

ECSDT-PSO-4ell 96.66 1.53 9 96.00 0.28 9 92.00 1.40 9 95.33 0.37 9 96.66 0.14 9 93.33 0.19 9 

ECSDT-PSO-5ell 94.00 1.80 13 91.33 0.87 13 86.00 1.46 13 95.33 0.37 13 91.33 0.19 13 94.00 0.24 13 

ECSDT-PSO-6ell 93.33 1.87 17 94.66 0.47 17 92.66 0.73 17 90.66 0.57 17 94.00 0.17 17 94.66 0.17 17 

ECSDT-PSO-7ell 94.00 1.80 21 90.00 0.88 21 87.33 1.45 21 94.00 0.40 21 93.33 0.17 21 93.33 0.19 21 

ECSDT-GA-3ell 92.66 2.53 7 92.66 0.61 7 74.66 2.23 7 86.66 0.73 7 91.33 0.19 7 92.00 0.26 7 

ECSDT-GA-4ell 96.66 1.53 9 96.66 0.21 9 91.33 1.41 9 96.00 0.33 9 96.66 0.14 9 94.00 0.24 9 

ECSDT-GA-5ell 93.33 1.87 13 92.66 0.73 13 88.66 1.43 13 96.66 0.27 13 93.33 0.17 13 91.33 0.21 13 

ECSDT-GA-6ell 96.66 1.53 17 96.00 0.28 17 92.66 0.73 17 94.66 0.27 17 94.66 0.16 17 94.66 0.17 17 

ECSDT-GA-7ell 94.00 1.80 21 92.66 0.61 21 90.00 0.76 21 95.33 0.33 21 94.66 0.16 21 93.33 0.19 21 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 96.00 8.33 7 92.67 12.67 7 94.66 10.33 9 91.41 3.95 8.11 

MetaCost+J48 94.67 11.33 7 95.33 8.33 7 94.00 11.33 7 91.85 3.84 6.44 

C.S.C+NBTree 94.67 12.00 9 94.67 9.33 9 94.66 10.67 9 90.74 3.98 9 

MetaCost+NBTree 92.67 16.33 9 92.67 12.67 9 93.33 12.00 7 87.63 5.11 7.67 

ECSDT-PSO-3ell 89.33 23.33 7 90.00 18.33 7 90.66 16.67 7 88.07 7.26 7 

ECSDT-PSO-4ell 96.00 9.00 9 96.66 6.00 9 95.33 9.67 9 95.33 3.17 9 

ECSDT-PSO-5ell 94.00 13.33 13 94.66 9.00 13 96.66 7.00 13 93.03 3.81 13 

ECSDT-PSO-6ell 96.66 7.67 17 96.66 6.00 17 94.00 12.33 17 94.14 3.33 17 

ECSDT-PSO-7ell 96.00 9.00 21 95.33 8.00 21 96.00 8.00 21 93.26 3.32 21 

ECSDT-GA-3ell 89.33 24.00 7 91.33 16.00 7 90.66 16.67 7 89.03 7.03 7 

ECSDT-GA-4ell 95.33 10.67 9 96.66 6.00 9 96.00 8.00 9 95.48 3.17 9 

ECSDT-GA-5ell 96.00 9.00 13 96.00 7.00 13 96.66 7.00 13 93.85 3.08 13 

ECSDT-GA-6ell 96.00 9.00 17 96.66 6.00 17 96.66 7.00 17 95.40 2.79 17 

ECSDT-GA-7ell 94.66 11.67 21 95.33 8.00 21 95.33 9.67 21 93.92 3.69 21 

Table Apx-D-08: IRIS Accuracy + Cost based results 
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Algorithm 

Hays Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 84.38 0.16 23 74.38 0.37 23 81.88 1.03 23 84.38 0.16 23 74.38 0.37 23 81.88 1.03 23 

MetaCost+J48 84.38 0.16 17 77.50 0.23 21 76.25 1.20 21 84.38 0.16 17 77.50 0.23 23 76.25 1.20 19 

C.S.C+NBTree 54.38 1.13 13 57.50 0.80 13 64.38 1.10 1 54.38 1.13 13 57.50 0.80 13 64.38 1.10 5 

MetaCost+NBTree 59.38 0.41 1 55.00 0.65 1 44.38 2.06 1 59.38 0.41 1 55.00 0.65 1 44.38 2.06 3 

ECSDT-PSO-3ell 52.50 1.79 7 48.75 1.98 7 43.75 2.69 7 45.00 92.81 7 45.63 92.19 7 44.38 119.69 7 

ECSDT-PSO-6ell 59.38 1.46 13 58.75 1.43 13 54.38 1.94 13 47.50 86.56 13 48.75 88.44 13 50.63 104.06 13 

ECSDT-PSO-9ell 63.75 1.19 19 64.38 0.99 19 58.75 1.66 19 50.00 81.25 19 52.50 79.06 19 52.50 99.38 19 

ECSDT-PSO-12ell 68.75 0.81 25 70.63 0.72 25 58.75 1.54 25 55.63 71.56 25 58.13 68.44 25 57.50 86.88 25 

ECSDT-PSO-15ell 75.63 0.50 31 77.50 0.41 31 63.75 1.26 31 62.50 56.88 31 64.38 56.56 31 58.75 83.75 31 

ECSDT-GA-3ell 52.50 1.79 7 50.00 1.86 7 45.00 2.56 7 43.75 94.69 7 46.88 89.69 7 43.75 121.25 7 

ECSDT-GA-6ell 58.75 1.49 13 58.75 1.43 13 55.00 1.88 13 48.75 84.69 13 48.75 88.44 13 48.13 110.31 13 

ECSDT-GA-9ell 63.75 1.19 19 66.25 0.93 19 58.75 1.66 19 51.88 78.13 19 52.50 79.06 19 54.38 94.69 19 

ECSDT-GA-12ell 67.50 0.91 25 68.75 0.76 25 61.25 1.35 25 55.63 71.56 25 57.50 67.81 25 57.50 86.88 25 

ECSDT-GA-15ell 75.63 0.50 31 77.50 0.41 31 65.63 1.19 31 62.50 50.88 31 66.25 51.50 31 60.00 77.63 31 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 83.13 28.44 23 83.13 34.69 23 83.13 37.19 23 81.67 16.98 23 

MetaCost+J48 80.63 31.56 21 81.88 36.56 27 80.00 55.31 21 80.1 20.84 21.3 

C.S.C+NBTree 59.38 60.94 1 62.50 68.75 13 64.38 71.25 13 60.42 33.99 9.67 

MetaCost+NBTree 63.13 61.88 1 55.63 75.31 1 63.75 74.06 1 56.88 35.73 1.33 

ECSDT-PSO-3ell 43.75 2.69 7 45.00 92.81 7 45.63 92.19 7 46.67 51.86 7 

ECSDT-PSO-6ell 52.50 1.88 13 47.50 86.56 13 46.25 87.81 13 53.23 47.31 13 

ECSDT-PSO-9ell 55.63 1.57 19 48.75 80.00 19 52.50 79.06 19 56.98 43.92 19 

ECSDT-PSO-12ell 61.25 1.35 25 52.50 74.69 25 56.88 66.56 25 61.57 38.32 25 

ECSDT-PSO-15ell 62.50 1.10 31 59.38 60.94 31 62.50 56.25 31 67.09 33.23 31 

ECSDT-GA-3ell 43.75 2.69 7 45.00 92.81 7 44.38 94.69 7 46.98 51.97 7 

ECSDT-GA-6ell 52.50 1.88 13 47.50 86.56 13 48.75 82.81 13 53.02 48.04 13 

ECSDT-GA-9ell 56.25 1.51 19 47.50 85.31 19 51.88 76.56 19 57.92 42.61 19 

ECSDT-GA-12ell 61.25 1.35 25 51.88 75.63 25 56.88 66.56 25 61.36 38.21 25 

ECSDT-GA-15ell 62.50 1.10 31 58.13 63.44 31 61.88 50.88 31 67.92 32.85 31 

Table Apx-D-09: Hays Accuracy + Cost based results 
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Algorithm 

Seeds Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 89.05 3.02 15 62.86 2.54 15 91.43 1.41 15 89.05 0.40 15 91.90 0.58 15 91.43 0.34 15 

MetaCost+J48 86.19 0.74 11 77.62 2.75 13 81.43 1.60 15 86.67 0.26 17 86.19 0.89 13 86.19 0.41 15 

C.S.C+NBTree 70.95 0.59 7 70.47 1.75 7 86.19 3.44 7 87.62 0.28 7 92.38 0.37 7 88.57 0.54 7 

MetaCost+NBTree 67.14 0.46 7 61.90 2.48 7 70.95 3.38 15 87.62 0.22 1 86.19 0.67 3 88.10 0.40 5 

ECSDT-PSO-3ell 62.86 4.57 7 56.19 3.74 7 58.57 4.23 7 62.86 1.10 7 62.86 1.51 7 63.81 1.43 7 

ECSDT-PSO-6ell 75.71 3.24 13 69.52 2.83 13 69.52 3.05 13 72.86 0.81 13 68.57 1.14 13 68.57 1.10 13 

ECSDT-PSO-9ell 79.52 1.96 19 76.67 2.08 19 78.57 2.27 19 77.62 0.59 19 75.71 1.01 19 76.67 0.81 19 

ECSDT-PSO-12ell 86.66 0.90 25 80.48 1.57 25 86.66 1.50 25 84.76 0.45 25 84.76 0.52 25 85.71 0.36 25 

ECSDT-PSO-15ell 84.29 0.76 31 82.38 1.76 31 89.52 1.39 31 89.52 0.24 31 92.85 0.38 31 90.95 0.30 31 

ECSDT-GA-3ell 62.86 4.57 7 58.10 3.55 7 58.60 4.23 7 62.86 1.10 7 62.86 1.51 7 63.81 1.43 7 

ECSDT-GA-6ell 73.81 3.26 13 69.52 2.83 13 70.00 3.00 13 69.50 0.85 13 66.19 1.20 13 68.57 1.10 13 

ECSDT-GA-9ell 80.95 1.90 19 78.57 1.50 19 75.71 2.39 19 78.57 0.61 19 77.62 0.96 19 75.71 0.84 19 

ECSDT-GA-12ell 84.76 0.84 25 80.48 1.57 25 86.70 1.50 25 85.71 0.42 25 82.86 0.56 25 87.14 0.32 25 

ECSDT-GA-15ell 87.61 0.65 31 84.29 1.66 31 88.57 1.44 31 89.52 0.24 31 90.47 0.43 31 90.95 0.30 31 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 91.90 15.48 15 91.90 17.86 15 91.90 15.24 15 87.44 6.32 15 

MetaCost+J48 87.62 24.76 15 90.00 20.95 15 88.10 21.19 19 85.98 8.17 14 

C.S.C+NBTree 90.95 20.71 7 91.43 18.10 7 91.43 18.10 7 85.18 7.10 8 

MetaCost+NBTree 87.14 25.00 7 89.05 23.33 7 87.14 24.29 7 81.06 8.91 7 

ECSDT-PSO-3ell 56.67 77.14 7 53.81 80.95 7 56.19 74.29 7 59.31 27.66 7 

ECSDT-PSO-6ell 64.29 63.33 13 60.00 70.48 13 62.86 60.48 13 67.99 22.94 13 

ECSDT-PSO-9ell 69.52 52.86 19 65.71 59.52 19 71.90 45.00 19 74.65 18.46 19 

ECSDT-PSO-12ell 76.19 39.52 25 78.57 36.90 25 80.48 32.14 25 82.70 12.65 25 

ECSDT-PSO-15ell 82.86 27.62 31 85.71 24.29 31 87.61 20.48 31 87.30 8.58 31 

ECSDT-GA-3ell 55.24 79.29 7 54.76 79.52 7 56.19 74.29 7 59.48 27.72 7 

ECSDT-GA-6ell 64.29 63.33 13 60.48 69.29 13 62.86 59.52 13 67.25 22.71 13 

ECSDT-GA-9ell 70.00 51.90 19 65.24 60.24 19 72.86 44.52 19 75.03 18.32 19 

ECSDT-GA-12ell 74.76 41.67 25 80.48 34.05 25 80.48 31.19 25 82.60 12.46 25 

ECSDT-GA-15ell 80.95 30.48 31 85.71 24.29 31 88.09 19.76 31 87.35 8.81 31 

Table Apx-D-010: Seeds Accuracy + Cost based results 
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Algorithm 

Tae Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 54.30 1.85 67 54.96 1.82 67 50.99 2.10 67 57.61 83.44 67 54.96 1.82 67 56.95 82.78 67 

MetaCost+J48 46.35 2.55 33 51.65 1.56 35 45.03 2.03 45 59.60 78.81 33 51.65 1.56 37 54.30 85.43 35 

C.S.C+NBTree 40.39 1.91 7 47.01 1.49 7 46.35 1.83 7 56.29 87.42 7 47.01 1.49 7 56.29 86.09 7 

MetaCost+NBTree 36.42 2.18 11 45.03 1.66 3 40.39 1.97 11 50.33 97.02 11 45.03 1.66 7 53.64 85.76 3 

ECSDT-PSO-3ell 29.80 4.04 7 32.45 3.05 7 29.80 3.44 7 34.40 124.83 7 32.50 2.81 7 34.40 130.79 7 

ECSDT-PSO-6ell 33.77 3.25 13 36.42 2.72 13 33.11 3.15 13 38.40 116.56 13 36.40 2.58 13 40.40 115.89 13 

ECSDT-PSO-9ell 37.75 2.64 19 44.37 2.12 19 37.75 2.49 19 45.70 99.01 19 44.40 1.89 19 47.70 97.68 19 

ECSDT-PSO-12ell 43.71 2.18 25 46.36 1.85 25 43.71 2.10 25 55.60 73.18 25 56.30 1.49 25 58.90 60.54 25 

ECSDT-PSO-15ell 48.30 1.91 31 52.98 1.36 31 48.34 1.54 31 56.30 70.20 31 56.30 1.16 31 62.25 59.93 31 

ECSDT-GA-3ell 30.46 3.97 7 32.45 3.05 7 31.13 3.34 7 34.40 124.83 7 34.40 2.78 7 34.40 120.79 7 

ECSDT-GA-6ell 33.77 3.25 13 35.76 2.75 13 33.77 3.15 13 37.10 119.21 13 37.10 2.58 13 39.74 116.89 13 

ECSDT-GA-9ell 36.42 2.68 19 42.38 2.25 19 38.41 2.42 19 46.40 97.35 19 43.70 1.89 19 47.70 97.68 19 

ECSDT-GA-12ell 45.03 2.11 25 48.34 1.72 25 41.72 2.20 25 57.00 71.19 25 55.00 1.42 25 57.60 71.52 25 

ECSDT-GA-15ell 48.30 1.91 31 53.64 1.35 31 47.68 1.57 31 58.28 67.22 31 56.30 1.16 31 62.25 59.93 31 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 57.61 83.44 67 56.95 82.78 67 60.92 79.80 67 55.96 41.97 67 

MetaCost+J48 59.60 78.81 51 54.30 85.43 45 55.62 90.07 51 52.09 43.41 42 

C.S.C+NBTree 56.29 87.42 7 56.29 86.09 7 58.94 78.48 7 50.88 42.87 7 

MetaCost+NBTree 50.33 97.02 11 53.64 85.76 11 54.96 87.09 7 46.8 45.94 8.33 

ECSDT-PSO-3ell 30.46 127.48 7 30.50 107.48 7 32.50 123.84 7 32.23 66.104 7 

ECSDT-PSO-6ell 33.77 114.57 13 34.40 104.57 13 36.40 114.24 13 36.42 60.348 13 

ECSDT-PSO-9ell 42.38 97.35 19 43.00 77.35 19 44.40 97.68 19 42.95 51.098 19 

ECSDT-PSO-12ell 43.71 76.16 25 53.60 56.16 25 55.60 68.18 25 50.76 37.832 25 

ECSDT-PSO-15ell 50.33 70.86 31 56.30 50.86 31 61.60 62.25 31 54.08 35.514 31 

ECSDT-GA-3ell 31.13 114.50 7 32.50 104.50 7 33.80 116.85 7 32.87 65.579 7 

ECSDT-GA-6ell 33.77 112.25 13 35.80 96.25 13 36.40 104.24 13 36.21 60.795 13 

ECSDT-GA-9ell 42.38 97.35 19 43.00 77.35 19 44.40 97.68 19 42.5 51.061 19 

ECSDT-GA-12ell 45.70 76.16 25 53.60 56.16 25 54.30 75.17 25 50.78 38.035 25 

ECSDT-GA-15ell 50.33 70.86 31 56.30 49.86 31 61.60 62.25 31 32.23 35.022 31 

Table Apx-D-11: Tae Accuracy + Cost based results 
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Algorithm 

Thyroid Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 93.02 0.27 17 91.16 0.47 17 92.09 0.40 17 92.09 15.12 17 92.09 16.74 17 92.09 15.58 17 

MetaCost+J48 89.30 0.24 11 88.83 0.47 11 91.16 0.43 11 91.16 16.51 17 91.16 18.14 11 90.70 18.84 13 

C.S.C+NBTree 90.69 0.44 7 92.56 0.25 7 93.02 0.33 7 93.02 14.88 7 93.48 12.33 7 93.02 11.16 7 

MetaCost+NBTree 92.09 0.33 1 89.77 0.34 1 92.09 0.39 1 90.23 20.23 9 90.70 17.44 1 90.23 20.00 9 

ECSDT-PSO-3ell 80.47 0.80 7 84.65 0.88 7 84.65 0.81 7 84.19 30.70 7 84.19 29.30 7 83.72 31.40 7 

ECSDT-PSO-6ell 88.37 0.56 13 87.91 0.65 13 88.84 0.63 13 87.44 24.42 13 88.84 20.93 13 86.96 26.51 13 

ECSDT-PSO-9ell 92.56 0.33 19 91.62 0.42 19 93.95 0.44 19 94.41 13.02 19 92.55 15.58 19 93.95 15.12 19 

ECSDT-PSO-12ell 90.23 0.31 25 91.62 0.29 25 92.09 0.37 25 92.55 14.42 25 94.40 10.70 25 95.81 10.47 25 

ECSDT-PSO-15ell 95.81 0.21 31 94.88 0.22 31 96.74 0.28 31 95.81 10.47 31 94.40 10.70 31 95.35 11.63 31 

ECSDT-GA-3ell 84.19 0.68 7 84.65 0.88 7 84.65 0.81 7 84.65 29.77 7 84.65 28.60 7 84.65 30.00 7 

ECSDT-GA-6ell 90.69 0.48 13 88.37 0.63 13 88.84 0.63 13 86.51 25.81 13 86.51 23.49 13 88.84 23.72 13 

ECSDT-GA-9ell 92.56 0.33 19 93.02 0.39 19 94.88 0.39 19 95.34 11.63 19 90.69 15.81 19 94.88 13.72 19 

ECSDT-GA-12ell 93.48 0.24 25 90.69 0.30 25 94.88 0.34 25 96.27 9.30 25 93.95 11.63 25 94.88 11.86 25 

ECSDT-GA-15ell 96.74 0.20 31 95.34 0.21 31 96.74 0.28 31 96.74 8.14 31 95.34 9.30 31 96.28 10.23 31 

 

Algorithm 
Ratio - 7 Ratio - 8 Ratio - 9 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 91.16 0.47 17 92.09 0.40 17 92.09 15.12 17 92.09 8.10 17 

MetaCost+J48 88.83 0.47 17 91.16 0.43 13 91.16 16.51 17 90.39 9.11 15 

C.S.C+NBTree 92.56 0.25 7 93.02 0.33 7 93.02 14.88 7 92.63 6.57 7 

MetaCost+NBTree 89.77 0.34 9 92.09 0.39 9 90.23 20.23 11 90.85 9.79 8 

ECSDT-PSO-3ell 80.47 0.80 7 84.65 0.88 7 80.47 45.70 7 83.65 15.65 7 

ECSDT-PSO-6ell 88.37 0.56 13 87.91 0.65 13 88.37 34.42 13 88.06 12.28 13 

ECSDT-PSO-9ell 92.56 0.33 19 91.62 0.42 19 92.56 23.02 19 93.17 7.484 19 

ECSDT-PSO-12ell 90.23 0.31 25 91.62 0.29 25 90.23 24.42 25 92.78 6.092 25 

ECSDT-PSO-15ell 95.81 0.21 31 94.88 0.22 31 95.81 18.47 31 95.5 5.584 31 

ECSDT-GA-3ell 84.19 0.68 7 84.65 0.88 7 84.19 44.77 7 84.57 15.12 7 

ECSDT-GA-6ell 90.69 0.48 13 88.37 0.63 13 90.69 35.81 13 88.29 12.46 13 

ECSDT-GA-9ell 92.56 0.33 19 93.02 0.39 19 92.56 20.63 19 93.56 7.043 19 

ECSDT-GA-12ell 93.48 0.24 25 90.69 0.30 25 93.48 15.30 25 94.03 5.612 25 

ECSDT-GA-15ell 96.74 0.20 31 95.34 0.21 31 96.74 12.14 31 96.2 4.729 31 

Table Apx-D-012: Thyroid Accuracy + Cost based results 
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Algorithm 

Glass Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 Average 

Acc Cost Size Acc Cost Size Acc Acc Acc Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 96.73 12.67 11 96.73 10.29 11 96.73 8.27 11 96.73 3.33 11 96.73 10.14 11 96.73 9.64 11 96.73 9.06 11 

MetaCost+J48 95.32 4.45 11 95.79 6.68 11 97.66 7.34 11 93.93 4.64 11 93.46 6.52 11 96.26 2.72 11 95.40 5.39 11 

C.S.C+NBTree 50.47 22.75 7 64.02 11.58 7 82.71 12.50 7 88.32 4.96 7 81.31 5.98 7 55.61 14.74 7 70.40 12.09 7 

MetaCost+NBTree 34.58 13.41 11 55.14 11.29 9 80.37 24.71 5 85.51 7.44 7 80.84 10.74 9 50.47 14.39 13 64.49 13.66 9 

ECSDT-PSO-6ell 52.34 12.83 13 50.47 16.68 13 54.67 87.37 13 52.34 61.00 13 55.14 23.36 13 53.27 16.58 13 53.04 36.30 13 

ECSDT-PSO-8ell 55.61 10.50 17 53.74 13.03 17 57.94 75.22 17 55.61 53.99 17 57.94 21.02 17 56.54 15.70 17 56.23 31.57 17 

ECSDT-PSO-10ell 60.75 9.12 21 58.41 11.39 21 63.55 51.34 21 62.15 38.10 21 64.95 16.82 21 62.62 13.22 21 62.07 23.33 21 

ECSDT-PSO-12ell 68.22 2.52 25 67.76 6.82 25 69.63 32.93 25 67.29 29.22 25 62.62 17.99 25 66.82 11.12 25 67.06 16.77 25 

ECSDT-PSO-14ell 74.77 2.29 29 75.70 3.62 29 77.57 9.63 29 75.70 18.00 29 73.83 7.94 29 71.96 9.25 29 74.92 8.45 29 

ECSDT-GA-6ell 52.34 12.83 13 51.40 15.75 13 54.70 87.37 13 52.34 61.00 13 55.14 23.36 13 54.21 16.30 13 53.36 36.10 13 

ECSDT-GA-8ell 56.54 10.21 17 53.74 10.69 17 55.61 82.70 17 55.61 53.99 17 58.41 20.56 17 57.48 15.23 17 56.23 32.23 17 

ECSDT-GA-10ell 60.75 9.12 21 56.54 11.41 21 65.42 43.86 21 63.08 37.40 21 62.62 17.99 21 61.21 13.55 21 61.60 22.22 21 

ECSDT-GA-12ell 70.09 2.42 25 68.69 6.73 25 71.50 24.52 25 66.36 30.15 25 67.76 14.01 25 68.22 10.79 25 68.77 14.77 25 

ECSDT-GA-14ell 74.77 2.29 29 74.77 3.67 29 78.50 9.16 29 74.77 18.94 29 74.30 7.71 29 73.36 8.55 29 75.08 8.38 29 

Table Apx-D-013: Glass Accuracy + Cost based results 
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Algorithm 

Ecoli Accuracy + Cost based Results 

Ratio - 1 Ratio - 2 Ratio - 3 Ratio - 4 Ratio – 5 Ratio - 6 

Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 31.85 31.19 41 66.07 41.95 41 78.27 57.06 41 77.67 32.95 41 75.30 22.48 41 76.19 50.99 41 

MetaCost+J48 32.14 19.55 21 65.18 40.94 31 78.87 33.52 17 78.27 20.02 29 74.40 17.81 25 68.45 42.50 41 

C.S.C+NBTree 26.49 20.07 13 63.99 31.42 13 74.70 44.68 13 72.62 28.77 13 66.67 24.49 13 55.06 37.28 13 

MetaCost+NBTree 25.00 19.19 9 61.01 34.99 23 76.79 37.24 13 72.62 28.80 13 65.18 21.83 5 58.63 35.16 9 

ECSDT-PSO-6ell 23.21 28.32 13 55.65 40.47 13 66.67 52.18 13 64.88 31.11 13 57.74 24.98 13 50.60 48.76 13 

ECSDT-PSO-8ell 25.89 23.50 17 59.23 35.38 17 70.24 45.93 17 68.15 27.40 17 62.20 22.15 17 55.95 46.06 17 

ECSDT-PSO-10ell 28.57 22.27 21 62.80 31.79 21 73.81 40.10 21 74.70 22.71 21 67.56 18.59 21 60.42 43.66 21 

ECSDT-PSO-12ell 26.79 19.31 25 66.67 29.52 25 75.89 32.74 25 77.38 19.74 25 73.81 15.41 25 66.67 36.93 25 

ECSDT-PSO-14ell 31.25 17.19 29 64.88 27.46 29 81.24 38.76 29 80.95 18.98 29 77.68 15.15 29 72.62 30.25 29 

ECSDT-GA-6ell 24.70 27.35 13 57.44 40.01 13 65.48 53.07 13 66.67 30.97 13 59.63 24.53 13 51.49 48.32 13 

ECSDT-GA-8ell 26.49 22.91 17 59.52 34.64 17 70.83 45.04 17 68.45 27.57 17 63.99 21.34 17 57.44 45.96 17 

ECSDT-GA-10ell 26.79 22.47 21 64.58 30.72 21 75.30 38.90 21 74.40 23.01 21 66.37 18.95 21 63.69 37.92 21 

ECSDT-GA-12ell 30.06 17.68 25 67.26 30.11 25 74.40 32.83 25 78.87 19.51 25 74.70 15.34 25 67.26 36.49 25 

ECSDT-GA-14ell 33.63 15.73 29 66.37 27.74 29 80.36 37.63 29 81.85 18.89 29 76.79 15.24 29 74.40 30.21 29 

 

Algorithm 
Ratio - 7 Ratio - 8 Averages 

 

Acc Cost Size Acc Cost Size Acc Cost Size 

C.S.C+J48 69.35 40.40 41 57.44 22.56 41 66.52 37.45 41 

MetaCost+J48 62.50 31.65 43 60.71 16.78 45 65.07 27.85 32 

C.S.C+NBTree 47.32 24.06 13 38.39 19.14 13 55.65 28.74 13 

MetaCost+NBTree 50.60 27.60 11 14.88 32.12 19 53.05 25.61 13 

ECSDT-PSO-6ell 45.83 37.63 13 41.67 21.90 13 50.78 35.67 13 

ECSDT-PSO-8ell 51.19 34.18 17 46.73 20.81 17 54.95 31.93 17 

ECSDT-PSO-10ell 56.85 29.34 21 53.27 17.36 21 59.75 28.23 21 

ECSDT-PSO-12ell 61.90 25.61 25 59.52 15.43 25 63.58 24.34 25 

ECSDT-PSO-14ell 66.37 21.26 29 64.88 17.14 29 67.48 23.27 29 

ECSDT-GA-6ell 44.94 37.84 13 40.18 22.01 13 51.32 35.51 13 

ECSDT-GA-8ell 51.19 34.18 17 44.94 20.95 17 55.36 31.57 17 

ECSDT-GA-10ell 58.33 29.23 21 55.65 17.26 21 60.64 27.31 21 

ECSDT-GA-12ell 63.69 25.49 25 58.63 15.59 25 64.36 24.13 25 

ECSDT-GA-14ell 65.77 21.31 29 63.99 17.18 29 67.90 22.99 29 

Table Apx-D-014: Ecoli Accuracy + Cost based results 

 


