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ABSTRACT

The reduction of speech intelligibility in noise is usually domi-
nated by energetic masking (EM) and informational masking (IM).
Most state-of-the-art objective intelligibility measures (OIM) esti-
mate intelligibility by quantifying EM. Few measures model the
effect of IM in detail. In this study, an auditory saliency model,
which intends to measure the probability of the sources obtain-
ing auditory attention in a bottom-up process, was integrated into
an OIM for improving the performance of intelligibility predic-
tion under IM. While EM is accounted for by the original OIM,
IM is assumed to arise from the listener’s attention switching be-
tween the target and competing sounds existing in the auditory
scene. The performance of the proposed method was evaluated
along with three reference OIMs by comparing the model pre-
dictions to the listener word recognition rates, for different noise
maskers, some of which introduce IM. The results shows that the
predictive accuracy of the proposed method is as good as the best
reported in the literature. The proposed method, however, pro-
vides a physiologically-plausible possibility for both IM and EM
modelling.

1. INTRODUCTION

Speech communication often takes place in non-ideal listening en-
vironments. Speech intelligibility is often negatively affected by
background noise, leading to the potential failure of information
transmission. In order to efficiently quantify the extent to which
the background noise harms intelligibility, a great number of ob-
jective intelligibility measures (OIM) have been proposed in the
last decades. They have been used as a perceptual guide in activ-
ities such as development of modification algorithms for highly-
intelligible speech [1], speech enhancement [2], production of TV
or radio broadcast [3] and research in hearing impairment [4].
OIMs have an important role in developing speech and noise pro-
cessing algorithms for an inclusion.

Standard measures, such as the Speech Intelligibility Index
(SII, [5]) and the Speech Transmission Index [6], and early OIMs
(e.g. [4, 7]) make intelligibility predictions based on long-term
masked audibility (e.g. SII) or modulation reduction (e.g. STI) of
the target speech signal. More recent methods [8, 9, 10, 11] oper-
ate on short windows (10-300 ms), in order to improve the predic-
tive accuracy in temporally-fluctuating noise maskers. In addition,
some of the measures [10, 11] were developed on the basis of so-
phisticated auditory models, and have demonstrated more robust
predictive power in a wide range of conditions [12]. In the light
of the fact that listener do not need all time-frequency (T-F) in-
formation to successfully decode the speech [13], Cooke proposed

a glimpsing model of speech perception in noise [14]. In [14],
the percentage of the T-F regions of speech with a local speech-to-
noise ratio (SNR) meeting a given criteria was calculated as the in-
telligibility proxy, known as the glimpse proportion (GP). It can be
thought of the overall contribution from the local audibility of all
the T-F regions to intelligibility in noise. Tang and Cooke further
extended the GP to a complete intelligibility measure – the extend
GP (ext. GP) – which performs detail modelling of the masking ef-
fect taking place in the auditory peripheral from the outer-middle
ear, through the cochlea to the inner-hair cells. The predictions
by ext. GP are well correlated with listener word recognition per-
formance in various noise maskers, with correlation coefficients
greater than 0.85 [11].

Energetic masking (EM) and informational masking (IM) in-
troduced by the noise masker mainly account for the reduced intel-
ligibility. EM is the consequence of interactions of physical signals
acting in the auditory peripheral. IM is different as it obstructs au-
ditory identification and discrimination at the late stage of auditory
pathway, when a sound is perceived in the presence of other simi-
lar sounds [15, 16, 17]. However, this is overlooked by the afore-
mentioned OIMs, which can only quantify the impact of EM on
intelligibility from the physical attributes of the speech and noise
signals. When comparing the GP in speech-shaped noise (SSN)
and competing speech (CS), Tang and Cooke found that to achieve
the same intelligibility much fewer glimpses are required in SSN
than in CS, which introduces large IM [11]. They postulated that
IM made some glimpses ineffective.

With a classification of the glimpsed T-F regions based on en-
ergy, it was further found that the regions with energy above the
average are more robust in noise. Those with energy under the
average are more susceptible to both EM and IM [11]. Impor-
tantly, the amount of high-energy glimpses is broadly consistent
for the same speech signal in SSN and CS under SNRs leading to
the similar listener performance. Although this method, know as
high-energy glimpse proportion (HEGP), is a crude approach for
making consistent predictions when the masker is in presence or
absence of IM, it confirmed an early hypothesis that IM may affect
the effectiveness of the glimpsed T-F regions available for speech.

One possible explanation is that the listener switches attention
between the target and the competing sources, leading to some of
the target components that have triggered activities at the auditory
peripheral not being further processed by the brain. The percep-
tual and cognitive resources that a human’s nervous system can
use to process the input sensory stimuli received in a short time
window is limited. Consequently, the brain temporarily and se-
lectively stores only a subset of available sensory information in
short-term working memory for further processing [18, 19, 20].
This selection is a combination of rapid bottom-up signal-driven
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(task-independent) attention, as well as slower top-down cognitive
(task-dependent) attention. First, the bottom-up processing occurs
and attracts attention towards conspicuous or salient locations of
the scene in an unconscious manner. Then, the top-down process-
ing shifts the attention voluntarily towards locations of cognitive
interest. Only the information selectively attended to is allowed
to progress through the cortical hierarchy for high-level process-
ing and detailed analysis [20, 21]. Therefore, saliency detection
is considered to be a key attentional mechanism used to economi-
cally allocate and efficiently use the brain’s limited processing ca-
pacity [22, 23].

The saliency of an object is the state or quality by which it
stands out relative to its neighbours or background. In a com-
plex auditory scene, a salient sound object may stand a bigger
chance relative to other competing sources to gain a listener’s at-
tention. Saliency-based approaches were initially proposed as a
major component in modelling bottom-up visual attention [24, 25,
26, 18]. The way in which the auditory cortex responds to sound
stimuli is similar in terms of feature analyses on spectral or tem-
poral modulation for instance [27, 28, 29, 30]. Many studies (e.g.
[31, 32, 33, 34, 35]) on auditory saliency adopt the same analyti-
cal feature extraction mechanism to model auditory attention. The
features used mainly include intensity, temporal contrast, spectral
contrast and orientation which simulates the dynamics of the audi-
tory neuron responses to moving ripples [36, 37]. In general, the
modelling of auditory attention closely resembles that of visual
attention, in which features essentially approximate the receptive
field sensitivity profile of orientation-selective neurons in the pri-
mary visual cortex [38].

The output of the saliency analysis is usually a spectro-temporal
representation called a saliency map. Kayser et al. generated the
saliency map from intensity, temporal and spectral contrasts using
a standard Fourier analysis [31]. By comparing the model predic-
tion to the results from behavioural studies on human listeners and
macaque monkeys, it was confirmed that different primate sensory
systems rely on common principles for extracting relevant sensory
events. In more recent studies [32, 33, 34, 35], the features used
for composing the saliency map were extracted from the output of
auditory peripheral analysis instead of via Fourier. This in prin-
ciple provided a more physiologically-valid representation for the
saliency analysis. Besides the same features used in [31], Kalinli
and Narayanan included the orientation information in the saliency
map [32]. A saliency score, which was a function of time, was fur-
ther computed by collapsing the saliency map across frequencies
followed by normalisation. This was used to predict the ‘promi-
nent’ syllables and words in sentences drawn from a speech cor-
pus. Their model achieved a better accuracy than when orientation
information was excluded. However, further adding pitch infor-
mation did not improve the model accuracy. Some other features
were also used for generating a saliency map. Kaya and Elhilali
added temporal envelope, rate and bandwidth as features to further
emphasise the impact of the spectro-temporal modulations [35].

As both contemporary auditory saliency and glimpse analyses
are performed on T-F representations, it is therefore possible to use
a common representation at the early stage of the models for the
purposes. This study aims to integrate saliency analysis into the
ext. GP measure, in an attempt of quantifying the IM effect in a
physiologically-plausible approach. The performance of the pro-
posed method were evaluated along with another three reference
OIMs, by comparing the model predictions to measured subjec-
tive intelligibility in noise maskers, some of which introduce IM.

2. PROPOSED METHOD

The proposed method consists of two main parts, as illustrated in
Fig. 1. The first part is the ext. GP [11], which models the ener-
getic masking taking place at the auditory peripheral. The second
part (shaded and on the left of Fig. 1) performs saliency analysis
on the given auditory scene as a whole, quantifying the probabil-
ity of the T-F regions on the scene gaining processing in the later
stage of the auditory pathway in a bottom-up process. The out-
put of this part, the saliency map SM , is subsequently combined
with glimpse representationG′ from ext. GP, in order to adjust the
contribution of the glimpses to the final intelligibility.

2.1. Quantifying energetic masking

Energetic masking is modelled using ext. GP [11]. To generate the
auditory representations – the spectro-temporal excitation patterns
(STEP) – for the signals, the clean speech signal s and noise signal
n are passed through 64-gammatone filterbanks1. The centre fre-
quencies of the 64 filters are evenly distributed on the equivalent
rectangle bandwidth (ERB) scale, ranging from 100 to 7500 Hz,
with a spectral resolution of 0.51 ERB. An outer-middle ear trans-
fer function [39] is applied to the filter outputs, in order to account
for the auditory sensitivity (i.e. hearing threshold) to the level of
the signal at different frequencies. The Hilbert envelopes of each
frequency band, E(f), is then extracted, smoothed by a leaky in-
tegrator with an 8 ms time constant and downsampled to 100 Hz.
A log-compression is imposed on the final output.

The glimpses are determined by comparing the STEP of the
speech signal STEPs against that of the noise signal STEPn.
A glimpsed T-F region must possess a local SNR above a given
threshold (∆=3 dB), and be above the hearing level (HL, set to
25 dB),

G(t, f) = STEPs(t, f) > max(STEPn(t, f) + ∆, HL) (1)

To account for forward masking, the raw glimpses G are fur-
ther validated using an inner-hair cell model (IHC, [40]), which
also takes the envelopes of speech-plus-noise mixture Em as the
input. The glimpsed T-F regions surviving from simultaneous mask-
ing are considered valid only when their corresponding IHC out-
puts are not masked during the IHC depleting and replenishing
process. Hence, the IHC-validated glimpse G′ is defined as,

G′(t, f) = G(t, f) ∧ ¬g(t, f) (2)

where ∧ indicates logic ‘and’, and g denotes the masked glimpses
due to forward masking. For the rules for IHC validation, see [11]
for details.

The plots in the second row of Fig. 2 exemplify the valid
glimpsed T-F regions on a speech signal in SSN and CS at 1 and
-7 dB SNR, respectively. The chosen SNRs led to a similar intelli-
gibility in the two maskers [41].

2.2. Generating saliency map

A saliency map is also a T-F representation produced from STEP.
Generating a saliency map often involves feature extraction, nor-

1Saliency analysis requires a greater number of filters to maintain the
T-F resolution of its output than previously used for ext. GP. Instead of 34-
channel described in [11], 64-channel STEPs were used here for ext. GP,
in order to keep the representations consistent. Tests have shown that filter
numbers above 34 have little impact to the performance of ext. GP.
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Figure 1: Diagram of the proposed system. The shaded part on the left performs saliency analysis, partly accounting for the effect of
informational masking. The unshaded part on the right describes the mechanism of the extended GP [11].

malisation, combination and resizing. After [42, 32, 33], the fea-
tures F (σ, θ, α) including intensity F I , spectral contrast FS , tem-
poral contrast FT and orientation FO are extracted from the STEP
of the speech-plus-noise mixture STEPm. This is performed in a
multi-scale manner [18]: eight scales σ = {1, ..., 8} are used, and
the input STEPm is filtered and decimated by a factor of two iter-
atively for seven times; the output of the last iteration is the input
of the next. This results in size reduction factors ranging from 1:1
to 1:128. The resized STEPs are then convolved by the Gabor fil-
ters (which are the product of a cosine grating and a 2D Gaussian
envelope) with different θ, which represents one of the four target
features, as listed in Table 1:

Table 1: Parameters of the Gabor filters for each feature

Feature θ α

Intensity π/2 0

Spectral contrast 0 1

Temporal contrast π/2 1

Orientation {π/4, 3π/4} 1

In order to mimic the properties of local cortical inhibition,
the ‘centre-surrounding’ differences are calculated after extracting
features at multiple scales, yielding a set of feature mapsFM(c, s).
This is done by across-scale subtraction between a centre finer
scale c ∈ {2, 3, 4} and a surrounding coarser scale s:

FM(c, s) = |FM(c)− FM(s)| (3)

where s = c + δ, δ ∈ {3, 4}. As the size of the feature repre-

sentation varies across scales, it (from scale 1 to 8) needs to be
be normalised prior to the across-scale subtraction. Here the rep-
resentations for each feature are resized to that of scale 4. The
centre-surrounding step finally results in 6× 5 feature maps2, 6 of
which represent each of the features in different scales.

Across-scale combination aims to generate a so-called ‘con-
spicuity map’, CM , for each feature from the feature maps at dif-
ferent scales, using across scale addition. Due to different dynamic
ranges resulting from the extraction process for each feature, the
feature maps must be first handled by a nonlinear normalisation
procedure in order to bring them into a comparable scale. Another
purpose of the normalisation is to simulate competition between
neighbouring salient locations [43]. This nonlinear normalisation
consists of certain number of iterations (three times is used here),
each of which consists of self-excitation and inhibition induced by
neighbours. To implement, a 2-D difference of Gaussians (DoG)
filter is convolved with each feature map, followed by clamping the
negative values to zero. A feature map FM is then transformed in
each iteration as follow:

CM ←− |FM + FM ∗DoG− 0.02| ≥ 0 (4)

After normalisation, the normalised feature maps of different
scales can then be summed up to a single conspicuity map. This
is repeated for all the four features, resulting in four maps. The
final saliency map, SM , is a linear combination of all the four
normalised maps. A further resizing is required to recovery the
map size (currently at scale 4) back to the original size (at scale 1,
same to the STEPm).

2Due to orientation having two sub-conditions (i.e., θ ∈
{pi/4, 3π/4}), there are therefore 12 feature maps for orientation in to-
tal.
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Figure 2: Spectrograms, IHC-validated glimpses (G′), saliency
maps (SM ) and saliency-weighted glimpses (G′′) of the sentence
‘the birch canoe slid on the smooth planks’ in SSN (left column)
and CS (right column) at 1 and -7 dB SNR, respectively.

The plots in the third row of Fig. 2 show saliency maps of the
same speech signal corrupted by SSN and CS. While the T-F re-
gions where the glimpses occur are mostly salient in SSN, this is
not always the case in CS. For CS, the glimpsed fricative com-
ponents of speech that have energy concentrated at mid-high fre-
quencies are scarcely salient in the example. These glimpses might
have very limited contribution to intelligibility due to IM.

2.3. Intelligibility prediction

The final saliency-adjusted glimpsesG′′ is the product of the IHC-
validated glimpse G′ and the saliency map SM . The effect of this
operation on the glimpses is visualised in the plots at the bottom
of Fig. 2. The remaining procedure follows the calculation of ext.
GP:G′′ is subsequently weighted by the band importance function
K [5] , followed by a quasi-logarithmic compression in a form of

v(x) = log(1 + x/0.01)/ log(1 + 1/0.01),

OSI = v

[
1

T

F∑
f=1

(
K(f)

T∑
t=1

G′(t, f) · SM(t, f)
)]

(5)

where F=64 and T are the number of frequency bands and time
frames, respectively. The final predictive index falls between 0 and
1, with the greater number indicating the better intelligibility.

3. EVALUATION

For the reference performance, ext. GP, HEGP and SII were eval-
uated along with the proposed method.

3.1. Subjective data

The subjective data was drawn from [41, 44]. In the two stud-
ies, the listener intelligibility was measured as the sentence-level
word recognition rate in SSN and CS at three SNR levels for each
masker, i.e. -9, -4 and 1 dB for SSN and -21, -14 and -7 dB for CS.
The chosen SNRs led to the intelligibility of approximately 25%,
50% and 75% in each masker. While the target sentences were ut-
tered by a male native English speakers, the CS was produced by
a female speaker. In contrast to SSN, CS is able to cause strong
IM [45]. In total, this corpus offers 180 conditions, covering the
intelligibility range from 5% to 95%. As this corpus consists of 30
types of speech including those algorithmically-modified for bet-
ter intelligibility and synthetic speech, it is rather challenging for
OIMs to predict from. Tang et al. evaluated up to seven state-of-
the-art OIMs using this corpus, the average overall performance
– the correlation between the listener performance and the model
predictions – across all the OIMs was merely 0.67, with 0.83 be-
ing the best [12]. Nevertheless, the use of SSN and CS maskers in
the corpus provided this study with an ideal experiment protocol
(i.e. inclusion of maskers which do or do not introduce IM) for
evaluation the proposed method.

3.2. Procedure

The raw model output, O, was transformed to the estimated lis-
tener performance using a two-parameter sigmoid function (Eqn. 6),
in order to make a direct comparison with the subjective data.

W =
1

1 + exp(−(a+ b ·O))
(6)

where a and b are the two open parameters, the values of which
are chosen to give a best fit to the subjective data for each OIM;
values are presented in Table 2.

Table 2: Values of parameters a and b used in the sigmoid trans-
formation for the OIMs

proposed ext. GP HEGP SII

a -2.201 -2.864 -4.007 -1.009

b 8.284 5.837 8.024 5.339

The main performance of the OIM was evaluated as the Pear-
son correlation coefficient ρ between the measured and estimated
intelligibility, as well as the root-mean-square error RMSE.
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Figure 3: Listener intelligibility versus model predictions in all 180 conditions. The dashed line in each plot is the sigmoid fitting for the
OIM.

Table 3: Subjective-model Pearson correlation correlations ρ and
RMSEs (in parentheses) as the model performance in each sub-
conditions. Figure in squared brackets indicates the number of
data points from which ρ and RMSE were calculated.

proposed ext. GP HEGP SII

SSN [90] 0.89 (13.0) 0.88 (13.0) 0.88 (13.1) 0.87 (13.5)

CS [90] 0.82 (14.0) 0.81 (14.4) 0.83 (13.7) 0.77 (15.7)

natural [132] 0.86 (13.5) 0.73 (17.8) 0.87 (13.0) 0.70 (18.7)

synthetic [48] 0.92 (9.0) 0.79 (13.5) 0.93 (8.0) 0.74 (14.8)

overall [180] 0.82 (15.2) 0.71 (18.5) 0.84 (14.4) 0.68 (19.2)

3.3. Results

Fig. 3 compares the model predictions against the measured intel-
ligibility in the 180 conditions. Overall, ext GP and SII exhib-
ited visually poorer performance than the other two due to the
discrepancy between the predictions in SSN (solid circles) and
in CS (open circles). While ext GP overestimated in CS or un-
derestimated in SSN, SII displays opposite behaviour. This will
be discussed later. By accounting for the effect of IM using the
saliency map to further weight the contribution of glimpses, the
proposed method decreases the discrepancy observed for ext. GP
in Fig. 3. This led to a significant improvement in accuracy for
the proposed method (ρ = 0.82) over ext. GP (ρ = 0.71) [Z =
3.216, p < 0.01]. SII performance was similar to ext. GP (ρ =
0.48) [Z = 0.781, p = 0.535]. With such overall listener-model
correlation, the proposed method performed as almost the best as
reported in [12] (ρ = 0.83). The proposed is also comparable to
HEGP [Z = 0.970, p = 0.332], despite the latter leading to the
highest correlation (ρ = 0.84).

The performances of the OIMs were also examined in a se-
ries of sub-conditions, as displayed in Table 3. For individual
maskers, all the OIMs achieved similar performance [allχ2(3) ≤
3.923, p ≥ 0.270]. When making predictions separately for natu-
ral and synthetic speech, the proposed was equivalent to the HEGP
[allZ ≤ 0.797, p ≥ 0.426], however was clearly more robust
than the other two OIMs [allZ ≥ 2.927, p < 0.01], especially for
synthetic speech.

4. DISCUSSION

The current study aimed to improve the predictive power of the
ext. GP metric [11] under informational masking by incorporating
an auditory saliency model into the OIM. Having observed that
the speech-dominant T-F regions contribute to intelligibility dif-
ferently in the face of different maskers [11], a weighting based
on the likelihood of a region being selected for further auditory
processing in a bottom-up procedure, can help account for the IM
effect. Hence, improved performance over the original ext. GP
metric is seen, especially when performing across maskers which
do or do not introduce IM.

The overall performance of both ext. GP and SII suffers from
the separation of their outputs in the two maskers, as seen in Fig. 3.
Since speech is more tolerant of EM in CS (i.e. fluctuating masker)
than in SSN (stationary masker) at the same SNR level, speech in
CS must be presented at a lower global SNR to obtain the same
intelligibility level as in SSN. However, due to its large envelope
modulations, CS provides more opportunities for glimpsing T-F
regions on the target signal than in SSN. Even so, the additional
glimpses in CS are not translated to intelligibility gain. The over-
estimation of ext. GP in CS is thus attributed to the IM effect not
being accounted for. On the other hand, Tang et al. explained that
SII scores lower in CS than in SSN is due to its long-term spec-
tral SNR-based calculation being sensitive to any change in global
SNR [12], which is a more dominant factor to speech intelligibility
in noise than IM [45].

The proposed method achieved the same performance as the
HEGP metric, which assumes that the amount of the high-energy
T-F regions on the speech signal is determinant for intelligibility
prediction in noise. In terms of EM, more energy offers bigger
chance of surviving from the masking to this group of T-F re-
gions, it is therefore more likely for them to be glimpsed by the
listener. In the meantime, relatively high intensity in these regions
may cause large spectral and temporal contrasts across both the
time and frequency at the boundaries when intensity dramatically
increases or decreases, e.g. at the transition between a consonant
and a vowel. Consequently, these T-F regions are likely to be more
salient than others, and hence more probable to win the completion
of the auditory attention during the bottom-up processing. Despite
the similar fundamental mechanism and predictive performance,
the proposed method presents a finer and more transparent mod-
elling of speech intelligibility in noise than HEGP. As it quantifies
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the EM and IM effects in different components, modelling of each
effect could be further improved and extended separately. There is
some evidence suggesting that in English the glimpses taking place
on vowels are more important to the intelligibility than those on
consonants [46, 47], implying that the contribution of the glimpsed
T-F regions could be further re-weighted for voicing and invoicing
segments. In addition, a top-down auditory spotlight searching
[48] could be also considered in the metric for better modelling of
IM.

5. CONCLUSIONS

An auditory saliency model was used in conjunction with a state-
of-the-art OIM to improve the accuracy for intelligibility predic-
tion under IM. The evaluation confirmed the validity of this ap-
proach, whose performance for the given dataset was comparable
to the best reported in the literature. This study presents a detailed
and yet physiologically-plausible approach for modelling both EM
and IM to speech intelligibility. The proposed method could be
thus used as a perceptual guide in audio production and reproduc-
tion, where speech intelligibility is a concern. However, the com-
plexity of IM occurring at the later stage of the auditory pathway
warrants investigations in future.
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