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Abstract

The ever increasing number of manufacturing requirements is pushing original

equipment manufacturers (OEM) to design more complex systems to meet in-

dustrial needs. These systems are being fitted with more components which

bear stochastic and economic dependencies. Therefore maintaining such systems

is becoming more and more of a challenge, especially due to their degradation

processes becoming highly stochastic in nature.

This thesis is concerned with the prognostics and health management (PHM)

of such complex multi-component systems, whereby signal processing and health

indicator extraction, diagnostics, prognostics and maintenance decision making

in light of present stochastic and economic dependencies are considered.

We introduce several novel approaches for dealing with systems that have

multiple components. We first introduce a gearbox accelerated life testing plat-

form that was designed with the objective of gathering experimental data for

multi-component degradation models, for the reason that multi-component sys-

tems with inter-dependencies follow a highly stochastic degradation process which

depends to an extent on their complex mechanical design. We then present our

methodology for extracting accurate health indicators from multi-component sys-

tems by means of a time-frequency domain analysis. This sets the stage for

degradation modelling, and so we show the development of a generic degradation

model in which the degradation process of a component may be dependent on

the operating conditions, the component’s own state, and the state of the other

components. We then show how to fit the models to data using particle filter.

This method is then used for the data generated by the gearbox. Afterwards a

diagnostic procedure is presented and uses Gaussian mixture models. This is used

to uncover accelerated wear processes that take place when old worn out compo-

nents are coupled with new healthy components. Finally economic dependency is

considered where combining multiple maintenance activities has lower cost than

performing maintenance on components separately. To select a component or

xx



ABSTRACT xxi

components to be preventively maintained, adaptive preventive maintenance and

opportunistic maintenance rules are proposed. A cost model is developed to find

the optimal values of decision variables.

In our work, we find that stochastic dependencies between components lead

to accelerated degradation which causes unexpected faults and failures, and con-

sequent economic losses.

Although this work deals with stochastic dependence between components, it

involves some engineering knowledge of the systems under study, and this makes

application of the models on a large scale challenging to automate. Therefore, we

make recommendation for future research that includes the development of end-

to-end learning techniques such as deep learning. In doing so we can potentially

use the time wave data and automatically extract the most relevant features for

doing accurate prognostics, and therefore health management, of such systems.

The research work in this thesis was motivated by the problems faced by

industrial partners such as the world leading food system manufacturing company

Marel in the Netherlands, which were part of the sustainable manufacturing and

advanced robotics training network in Europe (SMART-e).
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1.1 Motivation

From a physics point of view, and especially considering the second law of ther-

modynamics, we know that the sum of the entropy of interacting thermodynamic

systems has to increase with time. Therefore in a general sense, systems that

have interactions in the likes of transfer of energy, heat and work, will eventually

degrade. Unfortunately all our machinery, be it mechanical or electronic, fall un-

der the category of such systems, thus their degradation processes are inevitable.

However these degradation processes can be slowed or even in some cases stalled

through the act of maintenance.

And so naturally one would come to think about automating such interven-

tions. This becomes especially attractive when one considers some self-healing

properties that occur in nature, taking for example the self-healing capabilities

of biological systems.

In (74), a self-repairing algorithm for self-reconfigurable modular robots is

presented. The robot is able to determine which of its modules is faulty, eject

it and replace it with a spare module. This gives the robot the capability to

detect and recover from failures. A similar approach is presented in (169). First,

the work reviews several types of self-repairing systems. Then the authors pro-

pose their approach for a self-repairing machine which presents component re-

dundancy, namely, it is made of only one type of unit. The system can change

functionality by modifying the local connection of its units and therefore its global

shape. When the system detects failure, the faulty units are automatically dis-

connected and redundant ones are used and moved to restore its original shape

and functionality. In (6), the concept of a self-healing vehicle is presented as a

vehicle capable of predict and detect faults and perform corrective interventions.

The authors propose a preliminary view of how the dynamic system architecture

should look like for such a vehicle. In particular, some key capabilities should

be: on-board diagnostics and prognostics of vehicle’s electronics; using compo-

nents and architectures that facilitate self healing; and perform diagnostics of

mechanical components for monitoring their wearing out processes.

Some self-healing polymers and composites are reviewed in (31), this work

discusses the self-healing capabilities of such materials in response to impact,

puncture, corrosion and during fatigue. However, although research is being

carried on such materials, they are yet to be incorporated as integral parts of

industrial machinery components. Also, in a recent study (78), the authors review
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the currently existing self-healing technologies in software engineering, materials,

mechanics and electronics. They state that research on self-healing mechanisms

is still considered to be in their infancy when it comes to engineering problems.

Consequently when we refer to the maintenance literature, we see that the

recent major advancements in the field fall under the following two categories:

condition based maintenance (CBM) (92, 115, 193), which in contrast to older

maintenance strategies is proactive in nature, and aims to carry out maintenance

interventions only when needed, see Section 2.2 for more detail; and, more re-

cently, prognostics and health management (PHM) (255, 140, 128, 190, 139),

which has many similarities with CBM, and which is principally seen as a key

enabler for CBM (245).

PHM is an engineering approach which allows system health state assessment

in real-time, as well as predicting its future health states. Thus in contrast to

CBM, PHM is more concerned with the actual health indicator extraction from

the acquired signals, and puts a lot of emphasis on the prognostics step which is

essential to performing optimal maintenance decision making. This will be topic

considered in this thesis, and will be described in more detailed in Section 2.3.

The key idea here is prognostics, whereby the end of life (EOL) of components

is predicted, and consequently the remaining useful lifetime (RUL) extracted, see

Eq 1.1

RULk = teol − tk (1.1)

where RULk represents the remaining useful life at a time tk, and teol denotes

the predicted end of life.

The three principal elements of PHM can be seen in Figure 1.1. When con-

sidering a system to be maintained, PHM starts by performing health indicators

extraction for the system at hand. These are then used to perform diagnostics

and prognostics. These, in turn, are used to take the best maintenance deci-

sion. This is typically done with the objective of reducing maintenance costs or

increasing the system reliability.

Often the degradation processes of components in a system are assumed to be

independent, see (35, 176, 248). But since real world systems are usually complex

and include multiple interacting components, such interactions can potentially

affect overall system availability, and jeopardise the effectiveness of PHM and

CBM.

In (78), the authors express their interest in investigating the claim that fail-
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Figure 1.1: Principal elements of prognostics and health management

ures in a system are mostly mutually independent. They explain that it seems

more likely that failures are correlated and that failures in some components

might lead to failures in others. Also, recent CBM literature has been showing a

growing interest in multi-component systems and their dependencies (125). The

modelling of stochastic dependence, whereby the health state of some compo-

nents can be affected by the health states of other components remains the least

explored (178). This falls more under the PHM aspect, and literature on the

topic are hardly found.

Therefore in this thesis we are concerned with the PHM of complex multi-

component systems, and the health indicator extraction, diagnostics, prognostics,

maintenance decision making and their sub-elements therein, in the light of the

stochastic and economic dependencies.

1.2 Main Contribution

We make a number of contributions to prognostics and health management that

deal with multi-component system degradation. These are the development of:

an experimental platform; a methodology for health indicator extraction; multi-

component degradation models and prognostics; clustering of degradation phases;

and maintenance optimisation.

Due to the nature of the case study and data that are considered throughout
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this thesis, the scope of these contributions mainly covers multi-component rotat-

ing machinery which play an essential role in industrial applications (140, 102).

The key contributions are presented in further detail next.

1.2.1 Multi-Component Experimental Platform

Although there exists a large number of experimental data-sets on degradation

(113, 173), few represent multi-component degradation, whereby data are present

for more than one component that are simultaneously degrading. And to our

knowledge no experimental platforms have been specifically constructed or data-

sets generated in order to study and represent the stochastic dependence between

components within a system. Therefore we have designed and developed an

experimental platform with the aim of providing such data that can allow us to

study the degradation processes of interacting components. This has resulted

in more insight about the true nature of such degradation. The design and

development of the experimental platform along with its results are presented in

Chapter 3. Another configuration of the same platform is presented in Chapter 4

and provides data that can be further analysed in the frequency domain.

1.2.2 Health Indicator Extraction

PHM is dependant on data acquisition and its processing (251). Key informa-

tion regarding a machine’s condition has to be acquired from sensors and then

processed. The main approaches for dealing with sensor signals include time

waveform analysis, frequency analysis and time-frequency analysis. However in

the literature we find that these techniques are mostly applied for single compo-

nents. Using the case study provided by the experimental platform presented in

Section 4.3.2, we show how time-frequency analysis techniques can be adapted

to analyse multi-component system signals, and therefore contribute to the PHM

body of literature by providing a methodology to deal with multi-component

signals in the presence of degradation. This is mainly described in Chapter 4.

1.2.3 Degradation Modelling

Multiple dependencies can exist between the multiple components of a complex

system. In the literature we find that these are mainly grouped into three different

types: structural dependencies; economic dependencies; and stochastic dependen-
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cies (237, 57, 177). Stochastic dependencies are concerned with the degradation

or failure interactions between components. In Chapter 5, we present our generic

degradation model where the degradation process of a component may be depen-

dent on the operating conditions, the component’s own state, and the state of

the other components. This will be an integral part of the PHM procedure since

it will allow us to model the degradation dependencies between components, and

is later used for performing prognostics. This could also be used for simulating

system degradation processes that would lead to choosing optimal maintenance

policies.

1.2.4 Prognostics

PHM puts a lot of emphasis on the prognostic step, and rightfully so, since

all decision regarding maintenance will be based on these predictions. Many

approaches can be taken regarding prognostics, and are mainly separated into

three categories, physics based, data-driven and hybrid models (128, 116). A

particularly successful one is the stochastic filtering method known as particle

filter (PF) which has lately gained a lot of attention in the field of prognostics

(119). We use this state-of-the-art approach and apply it in a multi-component

context using as a state model the degradation model developed in Chapter 5.

This allows us to efficiently estimate the parameters of the model and in turn

conduct accurate prognostics and EOL predictions.

1.2.5 Pattern Recognition

Although humans are capable of recognising and distinguishing a multitude of

patterns that occur naturally, we still face many difficulties when trying to un-

derstand and discriminate patterns that occur artificially such as the ones present

in signals and data generated by sensors. This becomes more of an overwhelming

challenge when we deal with large amounts of data. Recently, there has been

a surge in the number of applications that employ machine learning techniques

for finding patterns in signals and data (51, 114). These patterns might describe

specific situations, phases or events that can then be used to aid humans or ma-

chines in taking decisions. In Chapter 6, we demonstrate our diagnosis method.

This uses unsupervised learning, particularly Gaussian mixture model (GMM)

to distinguish different degradation phases using the case study of the gearbox

experimental platform introduced in Chapter 4. Here we note that the pro-
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posed approach can be applied to any system consisting of multiple components.

Therefore we contribute to the PHM literature by presenting a novel approach

for detecting degradation dependency phases within a multi-component system.

1.2.6 Maintenance Optimisation

Economic dependencies arise when it is cost-effective to combine certain main-

tenance interventions (125). In Chapter 7 we consider this dependence and we

describe our proposed maintenance policy and the optimisation process. Then the

utility of this proposed maintenance policy is demonstrated on the data resulting

from the gearbox experimental platform.

1.3 Thesis Outline

Having highlighted the purpose and scope of the thesis, the next Chapter 2 pro-

vides the introductory concepts and a literature review on CBM and related

maintenance strategies; PHM; and multi-component system dependencies. The

content in Chapters 3,4,5,6 and 7 contains the main body of the thesis, the details

of the previously mentioned contributions are herein presented. These chapters

begin with a chapter summary and end with a discussion around the results

obtained.

Chapter 3 presents a gearbox accelerated life testing platform. This chapter

includes the design and development of the platform, and primary results which

show stochastic dependence between components. In Chapter 4, we present our

methodology for extracting health indicators for multiple components within a

system. The different aspects of achieving this are then presented. This is applied

to vibration data resulting from the gearbox platform. The results are then

shown, and stochastic dependence between components is clearly highlighted. In

this chapter we obtain a time series representing the degradation trajectories of

the system components which is used in the following chapters. In Chapter 5 we

introduce our generic degradation model. This can be used to model stochastic

dependence along with other factors that affect system degradation. The model

is then fitted to the data generated by the gearbox using PF. This is used for

predicting the EOL of components. In Chapter 6 we demonstrate our multi-

component diagnostics approach. This is done using GMM and is applied on the

data generated by the gearbox platform to show different degradation phases.
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In Chapter 7 economic dependence is considered and a maintenance policy is

proposed. This policy is studied using simulation obtained from the degradation

model. This is followed by an analyses of the results. Finally, Chapter 8 concludes

the thesis and discusses the findings and limitations of this work, and proposes

future directions for research on multi-component system PHM.
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2.1 Chapter Summary

This chapter reviews some of the literature, and presents some introductory con-

cepts that are relevant to the work presented in this thesis. It covers an overview

on different maintenance strategies; outlines the different aspects of prognostics

and health management (PHM); and covers dependencies in systems with mul-

tiple components, discussing in more depth the topic of stochastic dependency

which is fundamental to this thesis.

Furthermore, this chapter includes an extensive literature review on different

prognostics approaches, since this is an integral aspect of PHM.

2.2 Maintenance Strategies

Failures are undesirable and have implications for safety and the environment.

Therefore achieving high reliability and availability is important for industry

(115). Nonetheless, all machinery will eventually degrade. Furthermore, it is

hard to anticipate all the environment variables for these systems once put into

operation, therefore a lot of randomness is introduced into their nominal degra-

dation behaviour.

Maintenance is thus used to underpin system reliability, and to prevent un-

expected faults and failures that might lead to downtime and economic losses, or

even hazardous situations where the safety of the operators or the public can be

jeopardised.

Maintenance planning has evolved trough three different stages (164, 115,

202): unplanned breakdown maintenance; planned scheduled maintenance; and

condition based maintenance (CBM), this is where PHM is considered. A further

illustration of the evolution of maintenance planning can be seen in Figure 2.1.

2.2.1 Unplanned Breakdown Maintenance

Unplanned breakdown maintenance is also known as reactive or corrective main-

tenance. It is the earliest form of maintenance, and as the name suggests, the

machinery is operated until there is breakdown and therefore maintenance is

performed after a failure has already occurred. For this reason this strategy is

considered passive. And although this approach can have the advantages of a low

cost policy and that it requires minimal management (164); these benefits can
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Figure 2.1: Evolution of maintenance in three different stages

be easily outweighed by the disadvantages. For instance it could result in high

downtime and therefore great economic losses and cause serious damage to other

healthy components of the system. In some cases failures can even cause severe

damage to the surrounding environment jeopardising safety.

2.2.2 Planned Scheduled Maintenance

Planned scheduled maintenance is also known as preventive or time based main-

tenance (TBM). This strategy is an improvement over unplanned breakdown

maintenance for degrading systems. The principle is that a machine is maintained

periodically regardless of its condition or state. This allows for maintenance re-

sources to be planned, such as spare part and maintenance crew availability. It

can also decrease the number of unforeseen faults and failures. However, this

strategy does not contribute to maximising the life of an asset, and in many

cases leads to over-maintenance since maintenance is carried out regardless of the

health state of the components of a system. This can lead to increased costs of

maintenance.

2.2.3 Condition Based Maintenance

Condition based maintenance is also known as predictive maintenance. This

maintenance strategy monitors the condition of a system and decides if main-

tenance needs to be done. It has been compared to the previously mentioned

strategies in (130), and shown to offer many benefits to industry.
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As an example, Figure 2.2 depicts how monitoring equipment using the inter-

net of things (IOT) may impact on costs in industry (73).

Figure 2.2: General Electric estimation (73) on how a 1% improvement from
Industrial Internet across specific global industry sectors could save 276 billion
USD

CBM is currently widely accepted as the best maintenance strategy in many

cases (202). However, there are still significant challenges for its implementation

(2).

Since CBM is based on the idea that maintenance is carried out only when

needed, it is then firmly associated with condition monitoring. And so to render

this strategy effective, reliable condition monitoring techniques are needed.

Furthermore, in order to optimally make decisions on maintenance and within

a timely manner, predictions on the future health states of the system must be

carried out. Moreover, in the context of maintenance it is specifically interesting

to predict the end of life (EOL) of a component; this is known as prognostics,

which is preceded by the step of health indicator extraction and which are the

main concern of PHM, and therefore treated extensively in this thesis.

Predicting the end of life EOL allows for the extraction of the remaining useful

lifetime (RUL) of the components of a system which then allows for effective de-

cision making. This is further discussed in Chapter 7, and RUL will be discussed

in more detail later in this chapter.
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2.3 Prognostics and Health Management

PHM is getting substantial attention from the maintenance community recently,

see (255, 140, 128, 190, 139). It is seen as a key enabler for CBM (245, 233).

According to (244) it can be described as an emerging engineering discipline which

studies and associates the degradation processes to system lifecycle management.

The disciplines of PHM and CBM share a lot of similarities. One attempt of

aligning these disciplines is described in (240), where first the appropriate mon-

itoring approach is adopted. This is then used to support optimal maintenance

decision making through an asset’s life cycle.

PHM is more concerned with the actual health indicator extraction from the

acquired signals, and puts a lot of emphasis on the prognostics step which is

essential to performing optimal maintenance decisions. Therefore, it allows for

entirely benefiting from CBM.

The term prognostics and health management was first adopted in the joint

strike fighter (JSF) F-35 program (36), whereby the proposed PHM concept,

design, and architecture were described. Thus the development of PHM was ini-

tially driven by the aerospace and defence industries, as it is historically linked

to safety and high maintenance cost issues (245). The U.S. Navy has been imple-

menting the strategy of developing, integrating, and demonstrating diagnostics,

prognostics, health monitoring, and estimating RUL for mechanical systems (98).

Some weapon platforms such as in the JSF Program (103), are in fact already

implemented with prognostics capabilities.

Many technical societies have lately focused on PHM. As mentioned in (128),

the two most representative ones are the PHM society which holds yearly confer-

ences on the topic since 2009 (227), and which publishes the international journal

of prognostics and health management (IJPHM); And, the IEEE reliability so-

ciety, which holds the yearly international conference on prognostics and heath

management (ICPHM) since 2008 (226), and which is responsible for publishing

the IEEE Transactions on reliability.

Recently, a great amount of research has been published on PHM. This shows

that it is now being applied to various industries such as aerospace, nuclear, wind

power, civil infrastructure, manufacturing and electronics (233, 276, 277).

PHM techniques have mostly advanced in the area of aerospace. Some ex-

amples are in detecting shaft unbalance, or gears and bearings degradation as in

(284), where the authors work on estimating the RUL of bearings of a helicopter’s
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oil cooler. Or in (245) for predicting cracks in the gear plate of helicopters. In

the electronics industry, some failure prognosis of commercial notebook comput-

ers by monitoring life cycle temperature data are presented in (249). A review

on the application of PHM in industrial electronics can be found in (276). Other

applications include methodologies for engine health assessment and prediction

as in (257). The manufacturing industry has also seen considerable amount of

work in PHM with the goal of minimising downtime (115, 139).

PHM comprises of three main elements. These are: health indicator extrac-

tion; diagnostics and prognostics; and maintenance decision making. A flowchart

of these three elements along with some of their sub-elements is presented in

Figure 2.3. These will be detailed in the following sections.

2.3.1 Data Acquisition

The first required step for implementing PHM is data acquisition. This process

can greatly affect the performance of prognostics and decision making. Usually

data that are used in PHM come in two forms:

• Event data: information about events such as the installation of new com-

ponents, faults, failures, etc.

• Condition monitoring data: information about general health condition

of the component. These data could be vibration, temperature, pressure,

electric currents. etc. usually acquired through sensors.

In the case of condition monitoring data, which are principally used for PHM,

various sensors can be used for data collection, usually attached to the component

to be monitored. These sensors include accelerometers, acoustic emission sensors,

infrared sensors and ultrasonic sensors. An overview of several sensor systems

and their performance needs for PHM applications can be found in (49). Also,

the parameters to be measured and the electrical and physical attributes are

presented. Once data are acquired from the system, they are then transmitted

and stored into a workstation through a data acquisition (DAQ) system.

The advancement of new technologies for fast and low-noise DAQ systems,

and the recent developments seen on the topic of IOT (15) are making PHM

increasingly convenient to implement.
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Figure 2.3: Flowchart of the different elements of PHM
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2.3.2 Signal Processing

Data processing is the foundation for building reliable models. The data pro-

cessing goal is to extract useful information from the raw signal data. These

data are in fact usually complicated and might carry noise. The main purpose

of signal processing is to reduce the noise; enhance the underlying information

by understanding the processes that generated the data themselves; and reduce

data size to enhance the degradation models’ effectiveness. In general, the meth-

ods for analysing raw data can be further divided into two steps, they are signal

pre-processing and signal processing.

Various signal processing techniques and algorithms have been proposed in

the literature. A review on such techniques applied to fault diagnosis of rolling

element bearings can be found in (199). These techniques fall mainly under three

categories: time domain analysis, frequency–domain analysis, and time frequency

domain analysis.

Time domain analysis deals directly on the original time sampled signals.

In frequency domain analysis the signal is decomposed into its frequency com-

ponents. This approach does not consider non-stationary measurement signals,

which are usually generated by machinery components. For this reason, time-

frequency domain analysis should be used when dealing with non stationary sig-

nals, as it is applied over both the time and frequency domains.

Nonetheless, all the above techniques have their own advantages and disad-

vantages, so experience and case-dependent knowledge are needed to choose the

appropriate approach.

In Chapter 4, we include a more detailed discussion regarding signal pre-

processing and processing. We then present our approach for performing signal

processing and extracting health indicators in the case of multi-component sys-

tems.

2.3.3 Diagnostics

Diagnostics is the process of detecting several fault attributes given the processed

signal; these attributes are then used and compared to previously designated fault

types. Some sources such as (245) discriminate between three different stages of

fault diagnosis: the detection of a fault, fault isolation, and fault identification.

The detection of a fault happens by comparing to baseline data. The baseline

data is sensory data about the components under examination when in healthy
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condition. A fault would then appear as a result of a difference between the

baseline data and the current signal. Fault isolation is about the fault size and

its location. Finally, fault identification tries to establish the pattern and severity

of the fault, whereby the pattern indicates any regularities that are exhibited

by specific faults, and severity is used to classify the failure mode based on its

consequence.

The topic of fault diagnosis is an old one and has seen its fair share of research,

and with the emergence of new data mining algorithms and recent developments

in PHM some surveys books can be found on the topic, such as (245, 80, 44).

If performed manually, fault diagnosticss requires expertise and case-knowledge

of the area of study. And with the ever increasing complexity of machines, there

comes a need for more condition monitoring data to be collected and effectively

manipulated to be able to extract important features. This is promoting the use

of big data analytics and machine learning techniques to deal with such an issue.

In Chapter 6, we use such an approach by way of implementing unsupervised

machine learning, namely Gaussian Mixture Models (GMM). This is used for

performing system diagnosis and discriminating between different degradation

phases in multi-component systems.

2.3.4 Prognostics

Similarly to forecasting, whereby past and present available data are analysed in

order to predict future trends; prognostics follows the same process yet instead

of just projecting trends into the future, it is more concerned with predicting

the EOL time at which a specific failure threshold is reached, and consequently

extracting RUL estimation as seen in Eq 1.1. This is depicted in Figure 2.4, where

at time t = k an attempt to predict the EOL is made. Since EOL is uncertain, it

is usually represented by a probability density function (PDF), and consequently

so is the RUL.

RUL estimation relates to a common question in industry, which is how long

for can a component operate before reaching a certain failure threshold. Then,

based on the RUL estimation, appropriate actions can be taken. Therefore it is

the remaining time to maintenance from current time. Moreover, when consult-

ing the literature RUL is usually more addressed than EOL, however as Eq 1.1

suggests, these terms are strongly related. Furthermore, the lower bound of a con-

fidence interval of the RUL is usually considered for conservative purpose (128).
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Figure 2.4: An illustration of prognostics and RUL estimation

This is crucial from both a cost-effective and a safety point of view, especially for

critical equipment, such as aircraft engines, inertial navigation platforms used in

aerospace and integral equipment on a production line.

Traditional methods for RUL estimation are heavily dependent on the time-

to-failure data. However, these data are sometimes unavailable, as it is not always

possible to have runs until system failure because of economic and safety issues. In

such cases, data from degradation of components can be used as an alternative

resource for RUL estimation. Several papers have reviewed and compared the

main probabilistic prognostic methods for RUL estimation, see for example (223),

and (135).

From the above mentioned, we conclude that prognostics is a vital step that

helps industries manage their risks and prevents the occurrence of unforeseen

components failures. And based on these predictions of future fault occurrences,

maintenance and downtime costs can be minimised with CBM.

A holistic view of prognostics shows that it builds upon the following three

aspects:

• State estimation: based on the collected data, this step is used to give an

estimation of the degradation state of the component.

• State prediction: the task of state prediction is to predict the degradation
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tendency according to the information of the historical data.

• EOL and RUL prediction: serves for determining the time left under the

degradation curve before final failure or before a predetermined failure

threshold.

An extensive body of literature exists on prognostics approaches and applica-

tions, and therefore a considerable amount of review papers can be found where

the classification of different prognosis approaches is presented (115, 133, 190,

193, 223, 225, 245, 248). Mainly, prognostics approaches can be categorised into

three types: physics based prognosis, data-driven prognosis and hybrid prognos-

tics. They will be further detailed and their literature reviewed in the following

sections.

2.3.4.1 Physics Based Prognostics

Physics-based prognostics uses the physical model (or white-box model) of the

degradation behaviour of the component under examination. This is then com-

bined with the measured data to predict the degradation tendency and the RUL.

The approach takes into account the fundamental processes that create failures

such as mechanical, electrical, chemical and thermal processes. Also, it requires

the use of knowledge about geometry, and material properties of the monitored

system (191, 192).

Works present in literature that use physics-based approaches are suitable in

cases where the physics are known and the accuracy is of extreme importance as

in the case of aerospace health management (207). These models are generally

used for component level prognosis (260).

Although the physics-based prognostics method has its advantages, being very

intuitive and a white box model, generalising these models can only occur for

similar components. As one can imagine, the disadvantages of the approach are

mainly caused by necessity of having a thorough knowledge of the component

dynamics and physics. The model might also contain wrong assumptions and

errors leading to inaccurate predictions.

If we take the topic of aircraft structural components for example, physics

of failure models are developed by considering the effect of spectrum loading

(34, 212). And most of these models are established on standardised test coupon

geometry (37). Also these crack growth models of complex geometry are over-

simplified, which might lead to a large inaccuracy when performing predictions
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on real systems. And although finite element models can be used to more accu-

rately predict crack growth, this comes at a very high computational cost and is

therefore impractical (230). Therefore these models are sometimes combined in a

hybrid way with data-driven methods for updating the model parameters on-line.

2.3.4.2 Data-Driven Prognostics

These methods try to derive the future trend of the degradation process of the

system from previous and current collected data. The assumption at the basis of

the approach is that the statistical characteristics of the data from the components

are consistent until a fault occurs. The EOL and RUL predictions are then

formulated based on historical data (116).

Data-driven approaches are becoming more and more practical to implement

as many libraries are now available for data mining and machine learning. Also

the increasing computational power is making them more appealing to imple-

ment and are now considered as state-of-the-art in PHM. This is reflected by the

extensive body of literature on the topic.

In this work, we use data-driven prognostics for our approach, this is specifi-

cally done using particle filters, and is presented in Chapter 5.

However, although data driven prognostics are showing considerable success

recently, they still require knowledge about the system that is being monitored.

This is for example needed for choosing the type of sensors used, and to estimate

the amount of data needed for performing accurate prognostics.

Furthermore, since no physical knowledge is involved, this method could pro-

vide insights that are not considered in traditional modelling approaches, but

might also lead to counter-intuitive results that do not point to the root cause of

the failure.

We classify these data-driven approaches into two main classes, ML approaches

and statistical approaches. However the difference can be blurred at times, and

really depends on the referenced authors and what they consider their method

to be. This matter can be highlighted when performing multivariate regression

which is considered to be both a statistical approach and an ML approach.

Machine Learning Approaches ML approaches for prognosis are chosen

when the complexity of the system is too difficult to capture with classical mod-

els. Also, as this artificial intelligence (AI) branch learns by example, usually a

large amount of data is required for this approach to be effective.
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Depending on the type of data, the learning process could be divided into su-

pervised learning if the data are labelled, or unsupervised if the learning data are

just made of inputs and with unknown output, therefore the task becomes mainly

focused on clustering the data. Another less used variation is semi-supervised

learning that uses few labelled data and mostly unlabelled data. It is important

to note that even in beyond the field of PHM, supervised learning has attracted

most of the attention since it had the most successful applications. When we

talk about predicting future events, supervised learning is the ML approach com-

monly used, although some unsupervised and semi-supervised learning methods

are sometimes combined with different approaches to achieve such a task (51, 170).

Some key insights for applying machine learning successfully are presented in

(68). The main idea is that collecting large amounts of data is not enough, and

that emphasis on feature selection and engineering is required in order to achieve

good performance using ML. This however, to this day, remains the black art

of this approach (68), and on its basis most of the PHM research using ML is

published.

As the computational competencies of our systems advance and we are able

to manage more and more data, which are also becoming widely available, ML

approaches have been thriving in the field of PHM. Many reviews on these tech-

niques have appeared in the last years (275, 186, 276, 278, 134, 225, 76). We

are going to summarise the main approaches and some of their applications here.

Note that the categories are classified without restriction on supervised, unsuper-

vised, semi-supervised learning approaches.

In all of the ML approaches presented in the following, the accuracy of the

results relies heavily on the features used and engineered to train the learning

algorithm and to detect or estimate the fault propagation. It is crucial to use

a scheme that is capable of selecting the most representative features. In (163)

feature selection based on principal component analysis is presented and validated

for both supervised and unsupervised ML approaches. Other works use wavelet

packet transformations as in (146, 132), or Boltzmann machines (77).

We will not attempt to further divide ML methods into different classes, since

in application the difference between the different ML approaches is very blurred

and those classes suffer from a lack of consistency in the literature. We will

however point out what occurs as the broader classes.

Some of the ML methods that are sometimes referred to as connectionist meth-

ods model the studied phenomena as the emergent processes of interconnected
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networks. The examples are used to learn the intricate relations in the data. One

specific method stands out here. This is the universal function approximator, ar-

tificial neural networks (ANN) (285). ANNs have been recently used comprising

of multiple hidden layers and referred to as deep neural networks (DNN), or deep

Learning (DL) (138). Another important method that falls under this category

is fuzzy logic (282).

In ML, Bayesian methods, usually refer to probabilistic graphical methods

that are mainly used when uncertainty exists (131). Some approaches are: Markov

Models as Hidden Markov Models (HMM) (86). Sometimes they encompass state

estimation approaches or what is also referred to as stochastic filtering approaches

such as the Kalman filter (KF), particle filter (PF) and their variants (225).

Another class of methods that can be found in the literature is instance based

learning (IBL). These approaches, instead of performing explicit generalisation,

compare new problem instances with obtained knowledge acquired during training

that have been stored in memory. Some examples are the K-nearest neighbour

algorithm (189) or case-based reasoning for advanced IBL(24).

Finally the combination of different approaches is referred to as ensemble

methods (106, 19). These should not be confused with boosted methods, which

are in some sense similar, and use the same method a multitude of times and in

different feature combinations to reach more accurate results. A famous example

of boosted methods is random forests, and in an oversimplified explanation it

works by averaging the performance of many different decision trees to improve

prediction accuracy (62).

In (84) the authors used feedforward backpropagation networks ANN to es-

timate the RUL of bearings using vibration information. The bearings are run

until failure in their experimental setup and the data acquired are used to create

a database of degradation signals. These are fitted with an exponential model in

the form αeβt where the parameters α and β are estimated. In (101) a feedfor-

ward neural network approach is validated on pump vibration data. The model

is created using population characteristics and historical data. In (162) the au-

thors use an ANN which has as inputs time and fitted measurements of Weibull

hazard rates of RMS and kurtosis from its present and previous points, and uses

normalised life percentage as output. The authors show that the accuracy of the

prognosis is improved by using this method and these specific inputs. In (232)

the authors use an analytical method using neural network modelling of vibration

data in combination with short-time Fourier transform that is used to extract im-
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portant features for the training. The model only uses data from a healthy motor

component. Then the fault indicator is computed from fault condition used to

generate analytical residuals. In (145), ANN is applied on vibration data for

motor bearing fault diagnosis. The data have time-domain characteristics which

are presented to the neural network. In (96) the authors present an optimised

back propagation neural network method applied to fault detection in refrigerant

flow air conditioning systems. The correlation analysis method is used to elim-

inate redundant variables. Then, the association rule mining method is used to

optimise the features selection. In (165), unsupervised neural networks are used

to generate an automatic algorithm and applied for an on-line fault detection of

a three-phase induction motor. The approach uses stator currents as input vari-

ables. Then, the principal components of the stator current data are extracted

using a Hebbian-based unsupervised neural network. These are used to verify the

presence of the fault and its severity.

In (287), deep learning is investigated, specifically a deep convolutional neural

network (CNN) is proposed for bearing fault diagnosis with proven ability to work

under noisy environments and directly on raw signals. The importance of this

approach is its adaptability. The approach however is based on the assumption

that a big amount of data is available. In (146), vibratory and acoustic signals

from a gearbox are used for fault diagnosis based on a deep random forest. A

wavelet packet transform is used to extract information from the signals and two

deep Boltzmann machines are used to develop a deep representations of these

statistical parameters. The random forest is then applied. In this way, by fusing

together the output of 2 deep representations, the authors are able to achieve 98 %

accuracy for classification of faults in different conditions. (290) provides a survey

of deep learning applications in PHM. Mainly, as in other fields such as computer

vision, CNN seem to be the most successful in application. Furthermore, the

authors also present the advantages and disadvantages of deep learning. They

specifically discuss the difficulties that deep learning might face in PHM, most

notably: the fact that DL is considered as a black box model, and so its validation

for use on safety critical system might be jeopardised; also, that DL is by far the

data driven approach that requires most data for performing efficiently, on top

of that, data sets in PHM are usually unbalanced with very few fault and failure

observation which might bias the models.

In (75) the authors use an unsupervised learning technique for identifying a

fault. The feature vector characterises the status of the monitored equipment.
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The feature space is decomposed into multiple fuzzy regions which represent

the machine under different operating conditions. The model is essentially a

set of evolving GMM fuzzy clusters, that are dynamically updated every time

new features are available from data. In (201), the authors use a mathematical

morphology technique, a nonlinear spatial analysis method for noise removal from

data, and then fuzzy inference for detecting early faults in bearings of rotating

machinery. Vibration signal data were provided.

In (25), the proposed method is based on two steps: first a nonlinear reduction

of the features extracted from data, then these new features are used to train a

support vector machine (SVM) regression model. The model learns to asses and

predict the level of wear. In (132), a bearing fault detection method is presented

and applied to a three-phase induction motor. Also in this approach, SVM is

trained with features extracted from data. As signal-processing tool, a continuous

wavelet transform is used for analysing vibration data.

Statistical Approaches These approaches use the collected data together with

a probabilistic model of the system to estimate the RUL. The model is fitted to the

data and this is then used to forecast degradation trends. This kind of approach

requires a good amount of condition monitoring data which can create erroneous

behaviours if not sufficient; or if the models used are of the wrong nature, whereby

the condition is not accurately reflected.

In (223) a review on statistical approaches for prognosis is presented. Some

common statistical prognostics approaches are: regression based methods, stochas-

tic filtering, state estimation methods as Kalman filters, particle filters, Hidden

Markov Models etc.

Regression-based models are commonly used in industry and academia for

RUL estimation mainly due to their simplicity (151). The principle at the basis

of these methods is that the degradation state of the components is related to

some condition monitoring variables, then the RUL is predicted by monitoring

these variables and predicting when a certain failure threshold is reached.

In (160) the authors were among the first to introduce a general nonlinear

regression model for estimating a degradation trend. In (14) the authors pre-

sented a degradation model for light displays using nonlinear random coefficients

models, allowing for non-monotonic degradation paths. In (85) Bayesian meth-

ods that use real-time sensor based condition monitoring information were used

to update the parameters of a random coefficient model. This model assumed
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a Brownian motion (Wiener) error process. Then, they validate these models

to degradation signals from accelerated testing of bearings. However, one disad-

vantage of random coefficient regression models is that they cannot model the

temporal variability in the prediction of the RUL (188). Brownian motion with

drift (Wiener processes) is used in (153, 243) to determine the RUL of contact

image scanners. One disadvantage of Wiener processes is that only the current

data from degradation is used to build the model, and all the historical infor-

mation is ignored. This issue can be solved through an integrated model which

considers the cumulative degradation path of the component as seen in (242).

Gamma processes are usually used when the degradation process is monotonic

and evolving in one single direction, in the case for example of wear or fatigue

cracks. Their advantage is their relative simplicity, also they are able to take into

account temporal variability (188). A good review for Gamma processes in the

context of maintenance is presented in (248). These processes have been proven

to be useful in maintenance applications (178, 53). In one recent example (155),

a degradation analysis for characterising the health and quality of systems with

monotonic and bounded degradation is carried out using a Gamma process. The

method is applied on the light intensity of LEDs.

Markovian-based models have been extensively applied in prognostics. In

(126) the authors evaluated the failure time for a single-unit system considering

the wear as a Markovian process, while in (127) a semi-Markov-chain based model

in used to partially solve the issue of independent or memoryless assumption of

the system.

Hidden Markov model (HMM) based methods have been applied for RUL

estimation problems thanks to their clarity (38, 21, 40). For example, in (261)

a prognosis model based on a HMM and stochastic filtering is presented. The

extension of this approach, the hidden semi-Markov model (HSMM) has been

used as it overcomes the modelling limitation of HMM, as HSMMs do not follow

the Markov chain assumption (69). For example, in (70) HSMMs are applied to

fault classification of UH-60A Blackhawk’s main transmission planetary carriers

and prognosis of a hydraulic pump health monitoring application. In (166), a type

of Gaussians Hidden Markov Models (MoG-HMMs), represented by Dynamic

Bayesian Networks (DBNs), is used as a modelling tool. This allows the use

of both temporal and frequency features from the raw signals. The proposed

method is applied to real data form accelerated life tests of bearings.

Stochastic filtering-based models are one of the first methods to be used for
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prognostics. For instance, Kalman filtering was used in 1979 for health monitoring

of aero-engines (213). Nowadays, some works on stochastic filtering-based models

can be found in (122, 149), they usually use a particle filter approach in non-linear

stochastic systems for fault detection. In (42), a probabilistic filtering approach

is applied to the estimation of the RUL using oil-based wear information.

Covariate based hazard models are used when there is the need to assume

that one or more parameters are affecting the component’s wearing out process.

These parameters are called covariates. Some works are found in (250), where

RUL estimates are based on historic failure data from roller bearings, and (87),

where the authors address the problem of imperfect observations.

2.3.4.3 Hybrid Prognostics

Hybrid approaches use both physics-based and data-driven methods and combine

their advantages, and leverage their strengths to improve prediction performance.

This is because here the data-driven methods are used to update the physics-based

model parameters, which then maximises their prediction capability.

The knowledge on physical behaviour could in fact be used for creating the

mathematical model in data-driven methods. More information about these ap-

proaches is found in (154).

In (39) a methodology for predicting the RUL in aircraft actuator compo-

nents is presented using a fuzzy logic process for quantifying a system’s damage

index. This was implemented using rules derived from the knowledge of the

system. Then, Kalman filtering was applied to forecast the progression of the

degradation. Another example in (45), where the authors presented a prognosis

approach for power devices under thermal stress using data-driven and physics-

based methodologies.

2.3.5 Maintenance Management

This part of PHM builds upon the advancements already achieved in optimal

maintenance decision making in the field of CBM. The optimality of these de-

cision relies heavily on accurate prognostics and thus the RUL estimations that

are provided. The idea here is to perform life-cycle decision-making or lifetime-

extension of the systems at hand, aiming to achieve near-zero downtime and

maximising the reliability and performance of the equipment.

However difficulties are faced which allow for further research to be conducted.
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One of the main challenges in this area is transforming RUL estimates and PHM

insights into decision making support.

In (239) the authors conduct a study investigating the adoption of certain

prognostic approaches. They then provide a framework for implementing prog-

nostics with decision making. They also identify many challenges that companies

face when implementing prognostics of which the transformation of the actual

monitoring data into insightful maintenance decision support. In (206), aero-

nautical systems are considered. The authors combine the RUL estimates with

information on system architecture and therefore aim for the estimation of a

system-level RUL. Then a methodology for decision support regarding mainte-

nance planning is proposed.

2.4 Multi-Component Dependencies

The existing literature on CBM and PHM focuses on single component systems.

This is because the stochastic analysis, and the composition of optimal CBM

policies are much more difficult for multi-component systems (4).

According to the following literature reviews that mainly deal with the main-

tenance of multi-component systems (237, 57, 177), dependencies between com-

ponents can be grouped into three types, namely structural dependence, economic

dependence and stochastic dependence. However some reviews on the topic even

consider other types, such as resource dependence in (125).

Multi-component dependencies are fundamental to this thesis. Stochastic

dependence is specifically considered throughout this whole work. An overview

of the different multi-component dependencies is depicted in Figure 2.5

2.4.1 Structural Dependence

Structural dependence concerns on the physical structure of the system, whereby

inspecting or replacing one component may require intervention of other compo-

nents, for example their dismantlement. Also, it considers the manner in which

the components affect the system’s availability given the configuration of the

components themselves. We can mainly distinguish between two configurations,

series and parallel (30, 125). In a series system, if one component fails the whole

system fails. In a parallel system, the failure of one component is assumed to

have no effect on the operation of the whole system. Structural reliability is itself
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Figure 2.5: An overview of multi-component dependencies
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a distinct field (167).

For example, in (147) three parallel multi-component systems cases were stud-

ied and the effects of stochastic and economic dependencies were considered.

There, a maintenance policy is proposed that capitalises on the present depen-

dencies especially the economic one and provide flexible replacement dates for

maintenance grouping.

2.4.2 Economic Dependence

Economic dependence, which we consider in Chapter 7, deals with the cost ef-

fectiveness of certain maintenance policies, whereby combining the maintenance

of multiple components can lead to reduced costs, positive economic dependence;

or increased costs, negative economic dependence.

For an example of positive economic dependence we can consider offshore wind

turbines. Travelling to turbines individually to perform a maintenance interven-

tion could be costly. Therefore combining the maintenance of multiple compo-

nents is beneficial. In (222), multi-bladed offshore wind turbines are considered,

and an optimal opportunistic condition-based maintenance policy is proposed.

They attempt to optimise the alert threshold aiming to reduce the average long-

run maintenance cost, finally showing that the proposed policy shows benefits in

both servicing costs and in greenhouse gas emissions.

Therefore economic dependence should be studied when maintenance policies

are considered.

2.4.3 Stochastic Dependence

Often the deterioration processes of components are assumed to be independent,

see (35, 176, 248). But real world systems are usually complex and include

multiple interacting components. This brings about dependencies between the

components which potentially affect the overall system availability. This then

renders the single component CBM strategies sub-optimal. Recently however,

CBM research has been showing a growing interest in multi-component systems

(288, 125, 177).

Stochastic dependence is also known as probabilistic interaction (238), failure

interaction and probabilistic dependence (177).

This type of dependence means that the degradation of one component can

affect the degradation process of other components, usually accelerating the other
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components’ degradation leading to unexpected faults and failures.

Referring to the literature we see that we can distinguish between different

types of stochastic dependence. In (171), the authors were the first to propose a

distinction. Stochastic dependence was divided into three types; these are failure

interactions of types I, II and III. These failure interactions first considered a two

component system in (171), but some were later generalised into multi-component

systems in (172).

• A type I failure interaction occurs when a natural failure of one component

i can induce a failure in other components j 6= i. Considering 0 ≤ p, q ≤
1, the failure of component i can induce failure in a component j with

probability p, and is said to have no effect on the failure of a component j

with probability 1− p. A component j can induce failure in a component i

with probability q, and is said to have no effect on the failure of a component

i with probability 1− q. If components i and j are independently subjected

to degradation then p, q = 0.

• A type II failure interaction is considered as a shock that affects the failure

rate of the remaining components of a system after one component fails.

Therefore we can consider the failure rate of components by not just the

age, but the number of received shocks as well.

• A type III failure interaction is described as being the combination of failure

interactions of Type I and II.

In (125) stochastic dependencies are classified into three types as well: failure

induced damage, load sharing and common-mode deterioration.

• Failure induced damage is described as the damage that can affect other

components when a certain component fails. The damage caused can be

origin of a major increase in degradation level of other components or even

cause them to fail.

• Load sharing is described as an increase in load on certain components

when one component fails. This is so the system keeps generating the

same output, and thus a load of work that was divided on an n number of

components is now considered to be divided on n−1 number of components.

This in turn leads to accelerated degradation of the other components that

are still functional.
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• Common-mode deterioration is described as the concurrent degradation of

multiple components. This is when multiple components are subjected to

the same working conditions and therefore an increase in degradation of

one component implies a proportional increase of degradation for other

components.

In (177, 204) the previously mentioned type I and type II failure interactions

are only considered, with the latter now called failure rate interactions, and more

recently this failure rate interaction is being referred to as degradation interaction

where a failure does not have to occur in order to affect the degradation behaviour

of other components.

In (152) degradation interactions are further divided into induced and inherent

dependence.

• Induced dependence is described as the damage caused to other components

when one component does not function properly. They refer to the shock

damage model as the typical model used in such cases.

• Inherent dependence is described as the degradation interaction that takes

place between multiple components caused by operational and load sharing

circumstances. Typically this is modelled using multivariate distributions

or couplas as used in (105).

The Two Main Groups of Stochastic Dependence In the case of all of

the previously mentioned stochastic dependencies we are really concerned about

one question, how does the health state of one component affect the health state

of other components. The health state itself can be defined in many ways. These

are typically whether a component is failed or not; or the age of the compo-

nent; or its performance; or other indices derived from condition monitoring; or

a combination of all these.

We can therefore organise the stochastic dependencies discussed earlier into

two main groups: failure interactions and degradation interaction.

Failure interactions are considered when we wait until the failure of one com-

ponent to see the effect on other components. This effect can be causing failure

of other components as considered in (219), where age based replacement and

opportunistic age based maintenance policies are considered to capitalise on the

economic dependence that exists in such a system. Or, the effect can be causing
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a change in the degradation behaviour of other components, usually accelerating

the degradation process. This is seen in (215) where a two component system is

considered, and where the component 1 is subjected to failure based on a Pois-

son process, and if component 1 fails a random amount of damage is caused to

component 2, this is accumulated until component 2 reaches its failure threshold.

A preventive replacement policy is then presented. However it is shown that this

does not necessarily lead to lowered expected maintenance cost.

In contrast with failure interactions, degradation interaction is considered

when all components are still in operation, i.e. no component has yet failed,

and where the health state of one component affects the degradation rates of

other components. This is referred to more recently as the state-rate interaction

(11, 205), this includes for example common mode deterioration. This kind of

interaction is being considered more frequently in recent works. This is not

surprising since achieving failure in components is highly unappreciated and since

recently there has been an increase in the use of sensors and IOT systems to

enable more condition monitoring, and because of the boost in development of

prognostics approaches and PHM in general. This kind of stochastic dependence

is covered in more detail in Chapter 5 and the results are a fundamental aspect

of this thesis.

2.5 Discussion

In this chapter we presented an overview of the field of PHM, starting from

the different maintenance strategies that can be considered and showing the im-

portance of CBM. We then moved into the topic of PHM where all its aspects

were detailed, namely data acquisition, signal processing, diagnostics, prognos-

tics and health management. We also presented an extensive literature review

on prognostics and specifically on data driven approaches, which are considered

state-of-the-art. We finally covered multi-component system dependencies which

are of great interest to this thesis, and specifically detailed stochastic dependence.

We therefore conclude this chapter with the following note. Although degra-

dation interactions are being considered lately, rarely do these studies focus on

the PHM aspect. And as was the case in 2008 (178) for failure interactions, these

stochastic dependencies are merely being used as a stepping stone to mainte-

nance optimisation, and the modelling of these dependencies itself is still scarce

in the literature. Therefore the work presented in this thesis aims at tackling this
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issue by presenting a study on multi-component systems from a PHM point of

view. Hence we present degradation modelling for such systems within the PHM

framework. This is the broad thrust of this thesis.
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3.1 Chapter Summary

Experimentation is a requirement to understand the dynamics of real world sys-

tems. This is especially true for complex behaviours such as degradation processes

of physical systems.

In this chapter we present a gearbox accelerated life testing platform. We

design it with the purpose of generating data that is suitable for studying multi-

component degradation; and for providing more intuition towards modelling such

complex behaviours. We therefore detail the design and development of the gear-

box, and analyse and discuss the data that we obtain.

3.2 Experimental Platforms

Although modelling and simulation of mechanical system dynamics and even

cyber-physical systems can be achieved, some well established scientific references

on these topics still consider it challenging to conceive of a demonstration which

can include all properties of real systems (124, 61). Therefore experiments of

real physical systems are still essential in order to investigate their real world

behaviour. This is even more crucial when considering complex behaviours such

as system degradation where physics based models have had their shortcomings

highlighted in the recent literature, see Section 2.3.4.1. For this reason many

experimental platforms have been developed for the sake of collecting monitoring

data which can later be analysed in order to improve our understanding of such

behaviours. By doing so, this makes it possible to more accurately perform

diagnostics and prognostics for these systems.

When it comes to the condition monitoring literature, two experimental plat-

forms along with their data sets stand out, and this is because of how often they

are considered and cited in the prognostics and health management (PHM) and

condition based maintenance (CBM) literature. They are: the NASA bearing

data set or IMS bearing data (113, 197) which consists of three tests to failure

of four bearings placed on a single shaft as seen in Figure 3.1; and PRONOSTIA

(173), which is an experimental platform for bearings accelerated life test and

that can be seen in Figure 3.2. This platform has been used to generated the

data set adopted in the IEEE ICPHM 2012 data challenge.
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Figure 3.1: NASA bearing test rig (113)



CHAPTER 3. GEARBOX TESTING PLATFORM 37

Figure 3.2: PRONOSTIA an experimental platform for bearing accelerated life
test (173)

3.3 Gearbox Experimental Platforms

Many means of mechanical power transmission exist, mainly including gears,

belts and chains. However gears are usually considered to be the most durable

and adapt, specifically when considering their power transmission efficiency that

is around 98 % (120). Accordingly, gearboxes are present in virtually any mechan-

ical system, playing the essential role of torque and speed conversion, therefore

unforeseen faults can lead to lowered machine up time and decreased plant effi-

ciency.

One example is the amount of attention that the condition monitoring litera-

ture pays to gearbox systems in the application of wind turbines (159, 180, 81).

This becomes very clear when referring to a study made on condition monitor-

ing and prognostics of utility scale wind turbines (111). This study shows that

30 % of maintenance costs can be attributed to the gearbox and generator. The

gearbox accounting for 12 % of all failures, coming second by just 1 % after the

electric control system, which accounts for 13 % of all failures. This can be clearly

seen in Figure 3.3.
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Figure 3.3: Causes of failure for wind turbines

3.3.1 Existing Gearbox Experimental Platforms

Although the experimental platforms mentioned in section 3.2 investigate bearing

degradation processes, other less frequently cited platforms have been developed

for acquiring condition monitoring data in a gearbox systems setting. Examples

include developing an experimental platform for diagnosing gear faults by inves-

tigating acoustic emission such as in the case of a vehicle gearbox in (5, 148); and

for a dynamic gear transmission test rig in (247). In (185) a gearbox platform

was used for investigating gear pitting via analysis of vibration signals emitted

by the gearbox. A gearbox developed to test different polymer base gears at

different rotational speeds and torques has been developed in (221), gear surface

temperature measurements were used for conducting failure analysis.

3.3.2 Gearbox Condition Monitoring Approaches

Gearbox condition monitoring can be achieved in many ways, the main ap-

proaches along with some of their main advantages are summarised in Table 3.1.

For further detail, the following references can be consulted (292, 159).

In our work we specifically consider gear degradation. And among the different

sensing approaches we consider vibration since it has been extensively studied and

successfully applied for the purposes of diagnosing industrial rotating machinery
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Sensing Monitored Com-
ponents

Advantages

Vibration

Gear

Bearing

Shaft

Reliable

Standardised (ISO10816)

Torque
Rotor

Gear
Direct measurement of rotor load

Oil and Debris
Analysis

Gear

Bearing
Direct characterisation of bearing
condition

Temperature Bearing Standardised (IEEE 841)

Acoustic
Emission

Gear

Bearing

Able to detect early-stage fault

Good for low-speed operation

Current and
Power

Gear

Bearing

No additional sensor needed

Inexpensive

Non-intrusive

Table 3.1: Gearbox condition monitoring approaches

(41). Vibration analysis is mainly used for components such as gears (137),

bearings (8, 235) and induction motors (23).

The principle of vibration analysis is that all machinery generates vibration.

This becomes more apparent when machines contain rotating components. These

vibrations have characteristics that differ for different components and for differ-

ent component conditions. Therefore when a machine is in a healthy operating

condition, its vibration signature is distinct from that of a faulty machine (117).

3.4 Description of the Developed Experimental

Platform

The experimental platforms presented in Sections 3.2 and 3.3 do not provide

data sets that are fit for studying multi-component system degradation. Still,

some do acquire data from multiple components such as in the NASA bearing

data set (113), where the test rig consists of degradation data acquired from four

accelerometers mounted on top of four shaft support bearings. However, this

data still can’t be used since once we investigate the experimentation design, we
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see that when a fault is identified, all components are then replaced in order to

initiate a new test run. This eliminates the possibility of validating the effects of

stochastic dependency on component lifespan.

For this reason we have developed a gearbox experimental platform (Figures

3.4 and 3.5) which aims to validate degradation models for multiple component

systems, giving more insight into the true nature of the degradation processes of

interacting parts in a real world environment. The choice of using a gearbox as

a testing platform is motivated by i) the fact that in a gearbox contains multiple

components (gears) which are interacting to form a gear train. and ii) a gearbox

is an integral component of almost all industrial machinery as discussed in Sec-

tion 3.3. Therefore it represents a desirable case study from the point of view of

PHM.

Figure 3.4: The experimental platform, side view

The platform has been designed and developed at the autonomous systems and

robotics lab at the University of Salford by using: computer aided design (CAD);

3D printing; the use of a lathe for cutting and preparing the reinforcement parts

which are made out of metal for stiffening the platform; and the use of an Arduino
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Figure 3.5: The experimental platform, top view

board based data acquisition (DAQ) system. The objective of this platform is to

gather experimental data for multi-component degradation models, for the reason

that multi-component systems with inter-dependencies follow a highly stochastic

degradation process which is inherit property of complex mechanical design.

This experimental platform can be divided into 3 main parts, which are: the

driving part, the load part, and the data acquisition part. The numbering of

the gears and mounted accelerometers, as well as accelerometer orientation are

depicted in Figure 3.6.

The platform can be operated using different configurations. It can test vari-

able gear modules (size and number of teeth), and which are made out of different

materials. Other parameters can also be adjusted such as: the driving part, the

load part, and the measurements part. This is further presented in Table 3.2.

A detailed description of the experimental platform configuration that is used

in this chapter is presented in the next sections.
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Figure 3.6: Accelerometer/Gear numbering and orientation

Gears Driving Part Load Part Measurements Part

Material Motor type Dynamometer brake Accelerometers

Module Torque DC generator Acoustic

Speed Pneumatic brake DAQ specifications

Table 3.2: Experimental platform adjustable parameters
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3.4.1 Driving Part

This part consists of a fixed bracket which holds a continuous turn servo motor,

and can be exchanged with different motor sizes and of different power. Feedback

is collected on the driving servo motor including motor position which allows

rounds per minute (RPM) to be measured, the load on the motor is also acquired

along with the motor’s instantaneous temperature, which allows for a fail-safe

threshold to be set and so prevent overheating. The motor is coupled with a

shaft which drives the platform. That shaft is mounted with a gear that meshes

with a second gear which in turn meshes with a third gear forming a gear train.

The three shafts are held each by two shaft support bearings on each side of the

rig. We restrict translational movement of the shafts by using small washers that

are in contact with the inner ring of the bearing from one side, and held in place

by a 3D printed shaft collar on the other side, creating a frictionless rotation all

while keeping the shaft in place, and thus preventing additional noise originating

from uncalculated loads as a result of friction.

The installed motor has a stall torque of 7.3 N.m and can reach speeds up

to 78 RPM. Both the speed and torque can be set by the user using a software

development kit (SDK) or a MATLAB script which in turn saves all commands

and records motor operating speed, current usage, torque and load on motor.

3.4.2 Load Part

The load is being applied through a pulley system that resembles a dynamometer

mechanism. The pulley is fixed on the last shaft, furthest from the driving shaft,

which is in turn held in place by another shaft support bearing. A strong filament

is wrapped around the pulley once, the filament is fixed at one side of the medium

density foam (MDF) base, and attached on the other side to a load hook where

some weights are hanged. This provides an opposing torque on the motor thus

creating a load that can be easily changed by adjusting the weights that are being

supported.

3.4.3 Measurements Part

Three sensors are used to collect vibration data from this rig, these sensors are

3-axis accelerometers, each mounted as close as possible to the centre line of the

shaft support bearing which avoids picking up distorted signals. This is realised
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by fixing the sensors in place using hex socket screws that pin the sensors to a 3D

printed housing, which in turn is fixed on the rig using other hex socket screws.

The 3 accelerometers have each a full sensing range of +/-3g. These ac-

celerometers are connected to an Arduino Mega 2560 board that plays the role

of a DAQ system. It converts the analogue signal into a 10bit digital signal with

a value range of 0-1023, the sampling frequency of this board can go up to a

10 kHz on 1 single channel. The digital data is then transmitted to MATLAB

via serial communication and a 2.0 USB port. Binary communication is used to

make sure that the speed of communication over a data channel or baud rate, is

never exceeded, and thus no information is lost. The sensor data is also coupled

with the Arduino’s internal microsecond clock reading. This provides us with the

time at which the analogue signal was read, and so gives us robust sampling time

and sampling frequency. This can be used to switch from time domain to the

frequency domain when processing the data.

3.5 Results

3.5.1 Experimental Setting

The data presented in this section is collected from the experimental platform

after running it continuously for 2 hours. This data has a sample size of 1000

corresponding to 2.5159 seconds of accelerometer readings. The load that is being

applied to the system corresponds to 1 N.m of opposing torque on the motor. The

motor that was used to produce these results is the MX-67 Dynamixel. The motor

was running at 14.8V and had an average current intake of 0.66A and thus using

9.768 Watts of Power. The running speed was 64-65 RPM. Using Eq. 3.1 and 3.2

we can calculate that the motor produces a torque of 1.43 N.m.

PWatt = VV olts × IAmps (3.1)

PWatt = τN.m × ωrad/s (3.2)

The gear train is made out of 3 gears meshing in series, all these gears have

the same number of teeth, 10. The gear meshing frequency is calculated to be

10.83 Hz at a running speed of 65 RPM. The sampling frequency for this data is

397 Hz.
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3.5.2 Experimental Platform Data

After collecting the raw data, we start with the pre-processing. We centre the

readings to 0, and then translate the digital signal that is received from Arduino

to a measurement in terms of acceleration of gravity G’s. The result can be seen

in Figure 3.7. A further discussion on this topic is provided in Chapter 4.

Figure 3.7: Accelerometer signal from the x-axis of the accelerometers

In Figure 3.8 we present the fast Fourier transform (FFT) of all 3 accelerom-

eters in the x orientation, we also highlight the gear meshing frequency at 10.7

Hz and its harmonics, using the dashed red lines.

3.5.3 Multi-Component Interaction

It is important to point out that each accelerometer is mounted over the shaft

supporting its respective gear, and so accelerometer 1’s signal corresponds mainly

to gear 1 and so on. Also, it is important to note that an increase in vibration

intensity for a certain gear will lead to a decrease in efficiency when it comes to

power transmission. This is caused by the absorption of some of the power that

is being transferred. Therefore the vibrating gear would then experience more

forces leading to a faster degradation.
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Figure 3.8: FFT of accelerometers’ x-axis readings. The gear meshing frequency
and its harmonics are highlighted in red

In more detail, this happens because during the gear meshing process, the

gears’ tooth flanks experience contact load, this is in the form of sliding and

rolling motions. The sliding motion causes material removal from the gear’s tooth

surfaces. This material loss changes the geometry of the tooth profile and renders

the dynamic characteristics of a gear to be sub-optimal, consequently vibration

increases and leads to more sliding motion and thus accelerated degradation (289).

To measure dependencies between system components the following experi-

ment was carried out:

• Only x-axis accelerometer data were collected, freeing 6 channels from ana-

logue to digital conversion and thus raising the sampling frequency to 655Hz

per accelerometer.

• Tooth surface wear was induced into gear number 3 uniformly on all 10

teeth.

• The induced tooth wear on gear number 3 happened in 4 stages, where at

each successive stage the wear was slightly increased.
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The experimentation platform ran at each stage after inducing wear, and the

accelerometers’ data were collected. The raw data were then pre-processed and

transformed into readings in G’s. Then for the signal processing part, the sig-

nal’s envelope was computed to give a clear indication of the change in vibration

intensity, see Figure 3.9. We used the Hilbert transform to get the envelope of

our vibration signal. the Hilbert transform takes the FFT of the vibration signal,

zeroes out the negative frequencies, and then performs an inverse fast Fourier

transform (IFFT). The absolute value of the real and imaginary parts of the

transform is the envelope.

Figure 3.9: Accelerometer data after wear stage 4, acceleration signal in red and
envelope in blue

In Figure 3.9, the envelope of the vibration signal shows a greater amplitude in

accelerometer 3 when compared to the other 2 accelerometers, and if we sum up

the values of the envelopes, we would then have a higher value for accelerometer

3 which is a clear indicator of the now elevated vibration intensity due to wear.

Some statistical properties for the accelerometer signals were also computed along

with the sum of the signal envelopes. These are presented as wear state indicators

of the gears in Figure 3.10.

We can see that after inducing wear on the teeth of gear 3, we get on av-
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Figure 3.10: Component wear state indicators of all 3 gears at the 4 wear stages

erage a higher maximum value and lower minimum value for gear 3 indicating

an increase in the range of vibration, peak to peak vibration, and thus indicates

higher vibration intensity. This increase in vibration intensity is represented even

clearer when we look at the standard deviation and the sum of the envelope of

the signal, we can see that there is always an increase in these 2 indicators the

more we induce wear onto gear 3.

From Figure 3.10 we can also observe dependency between the 3 components.

This is clear when analysing the standard deviation present in the lower left

corner of the figure, and the sum over the envelope values at each stage. We

notice that an increase in wear in gear 3 has a strong positive correlation with

the increase in vibration in gear 2, with which it is in direct contact and so has

direct dependence. A smaller positive correlation with gear 1’s vibration level

occurs. In this case there is an indirect contact and so an indirect dependence is

present. This dependence can be clearly illustrated if we compute the difference

between vibration intensity, indicated by the standard deviation or the sum over

the signal’s envelope, when moving from one experimental stage to another. We

then see the positive trend of vibration intensity which is incurred after each stage

of inducing wear on gear number 3.
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3.6 Discussion

In this chapter we have presented our gearbox accelerated life testing platform,

its design and its development. An experimental setting was run and condition

monitoring data in the form of vibration was acquired though the use of three

accelerometer sensors. The data were then pre-processed and processed in order

to extract heath state information about the gears. The results were then dis-

played showing a clear sign of degradation dependence between the interacting

gears. From a physics point of view we notice that when one gear is worn out,

the rate of degradation of the other gears is accelerated through an increase in

vibration.

A further investigation using another experimental configuration of this gear-

box platform is presented in Chapter 4. This considers continuous runs to failure

of two gears. In doing so we collect data in a continuous fashion, and consider

the gears to have failed when a certain vibration intensity is reached, this is done

also according to a threshold on power transmission efficiency, and gear state.

After a first run to failure, only one gear is replaced, and now coupled with a

worn out gear. Then the test runs again allowing us to estimate the parameters

of the degradation model that we discussed in Chapter 5.
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4.1 Chapter Summary

While prognostics and health management (PHM) puts considerable emphasis

on prognostics, that would in fact not be possible or result in poor predictive

capabilities if the health indicators were not correct, whereby they do not ac-

curately represent the health condition of the system (115, 202, 128). For this

reason the first step in PHM is to perform health indicator extraction. This relies

on condition monitoring and the proper processing of the acquired data.

In this chapter we begin by providing a detailed background on the three main

steps of the health indicator extraction process. These are: data acquisition, pre-

processing and processing. We then introduce our methodology for extracting

accurate health indicators from vibration signals, and transforming those into a

time series which represent the degradation trajectories of the different compo-

nents of a multi-component system.

4.2 Introduction and Background

Health indicator extraction sits at the heart of PHM, it is responsible for refining

the raw condition monitoring data so that diagnostics and prognostics can make

efficient use of it.

Monitoring the state of machine condition has received great attention in

industrial maintenance (259, 235). Usually, the measured signals from real data

contain some noise. Therefore, signal pre-processing and processing are necessary

steps that need to be performed after data acquisition. Signal pre-processing aims

to eliminate the noise in the signal and increase the signal-to-noise ratio (SNR).

The final step of health indicator extraction is signal processing which is used to

extract health indicators or fault-related information from machinery (142, 143).

These indicators would help us accurately diagnose and predict the future states

of the system.

This aspect of PHM is done in three main phases, data acquisition, pre-

processing and processing of the data. An overview can be seen in Figure 4.1.

4.2.1 Data Acquisition

Data acquisition is the first step of the health indicator extraction process. This

relies on acquiring information about the system, it is usually done directly with
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Figure 4.1: Overview of health indicator extraction steps
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the use of sensors (49), or indirectly, for example by means of analysing perfor-

mance or checking the states of lubricants that pass through the system. The

key concept here is to extract useful information about the internal state of the

system using external means, this is because the system is by preference kept in

operation.

The two most popular industrial techniques for achieving this are vibration

analysis and lubricant analysis (202). Vibration monitoring allows continuous

monitoring of the system, in contrast with lubricant analysis which in most

cases stands as intermittent monitoring. We could therefore immediately start

to see the advantages of vibration analysis over lubricant analysis. For this rea-

son among others, vibration analysis is considered as the most effective way of

conducting monitoring (202, 255). This is especially true when dealing with ma-

chinery that contains rotating equipment (41). In this work we use accelerometers

to capture vibration data.

An overview on the topic of data acquisition was presented in Section 2.3.1.

For a more in depth study of the topic of data acquisition techniques, we sug-

gest consulting the following sources (13, 129) for general applications, and (49)

regarding the application in the context of PHM.

After choosing the adequate data acquisition approach, signal pre-processing

and signal processing follow.

4.2.2 Signal Pre-Processing

Before processing the data and extracting important indicators, pre-processing

signals is a fundamental preparation step to reduce background noise, filter out

the errors of measurement systems, and improve the SNR.

Common techniques for data pre-processing are mean-centring, unit variance

scaling and signal filtering.

4.2.2.1 Signal Scaling and Centring

A first necessary step is to tailor the raw data so that future calculations are

more easily and efficient conducted. There are different ways of approaching this

pre-processing step of the signal.

Firstly, the trend component of a signal does not usually contain any impor-

tant information about mechanical faults. A systematic shift in the data can in

fact result from sensor drift. Therefore the trend of a signal should be removed
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before the signal processing step. This enables us to focus the analysis on the

fluctuations in the data. Also, data might have been detected from different sen-

sors, so each stream of data could show different numerical ranges. It is therefore

very important to standardise raw data.

These steps can be accomplished by applying unit variance scaling and mean

centring. We denote x to represent a vector containing all the raw data. The

mean of a set of data values is represented by xm and is calculated as:

xm =

∑N
n=1 x(n)

N
(4.1)

where N is the number of data points, and n is the nth value. The standard

deviation is represented by xsd and is calculated as:

xsd =

√∑N
n=1 (x(n)− xm)2

N − 1
(4.2)

And so we centre the data by subtracting the mean value of the signal from all

data points as in:

xc = x− xm (4.3)

where xc represents a vector of the now centred data. Unit variance scaling is

then accomplished by dividing all the centred data by the standard deviation s

as in:

xUV =
xc

xsd
(4.4)

where xUV denotes the data after unit variance scaling is applied.

4.2.2.2 Signal Filtering

Signal filtering (59) is the process of eliminating unwanted frequencies from the

signal and the interference of noise. This can significantly improve the visibility

of the signal.

The frequency response can be classified into a number of different bandforms

describing which frequency band the filter passes, the passband, and which it

rejects, the stopband.

There are many way of classifying filters. According to amplitude–frequency

characteristics, describing which frequency bands the filter passes and which it

rejects, the filters are commonly divided into four categories: low-pass, high-pass,
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band-pass, and band-stop filters.

The filters work based on their cutoff frequency wc. A low-pass filter is a

filter that passes signals with a frequency lower than wc. The frequency range

w which occurs w < wc is called passband while w > wc is the stopband of

the filter. Likewise, the passband of a high-pass filter is w > wc and stopband

w < wc. Instead, for a band-pass filter all the frequencies within the interval

wc1 < w < wc2 will pass, while the stopband is w < wc1 and wc2 < w. Band-stop

filters work as the opposite of a band-stop filter.

Referring to the properties of the signal that is being filtered, the filters can

also be grouped into analog and digital filters. The latter category is additionally

divided into infinite impulse response (IIR) and finite impulse response (FIR)

filters.

Let’s assume that an acquired signal x(t) = s(t) + n(t) contains a useful

component s(t), and a noise component n(t). By using a general filter, we want

to compute a filtered signal y(t). The notion of conventional filter is developed

on the basis of signal analysis in the frequency domain. The filtered signal in

frequency domain will be:

Y (w) = X(w)H(w) (4.5)

where Y (w) and X(w) are the Fourier Transform (FT) results of the signals y(t)

and x(t) respectively, and H(w) is the transfer function of the filter itself.

If noise and useful components are in different frequency bands, the filter

can be designed so that it can preferentially remove noise and keep the useful

components. The transfer function of the filter will be: H(w) = 1, S(w) 6= 0

H(w) = 0, S(w) = 0

where S(w) is the FT of the useful components of the acquired signal x(t).

The filter can be also constructed when working in time-domain. However,

instead of using the product operator, in time-domain, we have to use the convo-

lution operator ~.

y(t) = x(t) ~ h(t) (4.6)

where h(t) is the inverse FT of H(w), namely unit impulse response function
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of the filter. In other words, the concept underlying the formulas is the time-

domain-frequency-domain duality.

4.2.3 Signal Processing

Signal processing is the step where health features are actually extracted from

the signal. This is performed as an analysis in one of the three different domains:

the time domain, frequency domain, and time frequency domain. An overview

of these analysis approaches is given here. They will be further detailed in the

following subsections.

• Time-domain analysis, which is applied directly on the time waveform of

the acquired signal. Features are then extracted from the time waveform,

usually descriptive statistics such as the peak to peak interval, the mean,

standard deviation, crest factor, root mean square, skewness, kurtosis etc.

• Frequency-domain analysis, which is based on the frequency domain of the

acquired signal, such as spectrum analysis using the Fourier Transform (FT)

and the Fast Fourier Transform (FFT). The advantage in using the fre-

quency domain over the time domain is that certain frequency components

of interest could be isolated, and so this can lead to more robust and tar-

geted health indicators.

• Time-Frequency domain analysis, where the analysis is performed on both

time and frequency domains. Techniques such as the short time Fourier

transform (STFT), which is used in this work, can be applied to perform

such analysis. The advantage over the frequency domain analysis is the abil-

ity to handle non-stationary waveform signals, which are of great interest

when working with machinery faults.

4.2.3.1 Time-Domain Analysis

Time-domain analysis is directly performed on the acquired time–domain wave-

form to identify specific signatures.

When dealing with a stationary signal, time-domain approaches extract the

signal characteristics using statistics like mean, variance, root mean square (RMS),

standard deviation, etc.
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If the signal is non-stationary, the extracted characteristics could inherit some

non-linearities which can then complicate the successive step of prognostics. Non-

statistical approaches comprise of auto-regressive moving average (ARMA), or

signal processing methods like synchronous averaging or correlation (270).

Commonly extracted statistical features in the time domain are presented in

Table 4.1.

Statistical feature Formula

Signal mean value xm =
∑N

n=1 x(n)

N

Standard deviation xsd =

√∑N
n=1 (x(n)−xm)2

N−1

Root amplitude xroot =
(∑N

n=1

√
|x(n)|

N

)2

Root mean square xrms =

√∑N
n=1 (x(n))2

N

Peak xpeak = max|x(n)|

Skewness xskewness =
∑N

n=1

(
x(n)−xm)

)3
(N−1)x3sd

Kurtosis value xkurtosis =
∑N

n=1

(
x(n)−xm)

)4
(N−1)x4sd

Crest factor xcrest =
xpeak
xrms

Clearance factor xclearance =
xpeak
xroot

Shape factor xshape = xrms
1
N

∑N
n=1 |x(n)|

Impulse factor ximpulse =
xpeak

1
N

∑N
n=1 |x(n)|

Table 4.1: Commonly extracted statistical features in the time domain

where N is the number of data points. xm, xroot, xrms, xpeak are especially

useful when working with vibration signals. This is because in general a fault

usually excites mechanical vibration, which is then reflected in the amplitude of

the signal. xkurtosis, xcrest, xshape, ximpulse can instead indicate incipient faults as

they are sensitive to sharp impulses in the signal.

For example, in (195), 15 time-based features are initially calculated from

bearing vibration data. Then their significance is analysed and reduced using

feature dimentionality reduction, namely discriminant analysis. Finally 6 features

were used for training a neural network based classifier.

Another well utilised time-domain analysis approach is called time synchronous

average (TSA) (55), it uses the ensemble average of a raw signal over time as

shown in Eq 4.7 and is used on signals that contain excessive noise with the aim
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of reducing that.

x̄(t) =
1

N

N∑
n=1

x(t+ nT )

0 ≤ t < T

(4.7)

where T is the averaging period and N is the number of samples for averaging.

An extensive review on TSA in the field of PHM can be found in (22).

More advanced approaches apply time series models to the signals, from where

features are extracted. The autoregressive (AR) model is used to regress the

variable on its own past values, it is usually presented as AR(p) where p denotes

the number of lags. The AR model can be combined with a moving average (MA)

approach which is usually presented as MA(q) where q denotes the number of

lags for the MA. The combination or AR and MA is the autoregressive moving

average (ARMA) model:

xt = a1xt−1 + ...+ apxt−p + εt + b1εt−1 + ...+ bqεt−q (4.8)

The above is an ARMA model of order p, q, where ε represents white noise,

and ai, bi are the parameters of the AR and MA models respectively.

In the literature AR models were applied for extracting features from vibration

signals of an induction motor such as in (194), support vector machine (SVM)

based classification was then applied on the extracted features. SVM was also

applied on features that were extracted by means of frequency domain analysis,

namely power spectrum density, cepstrum analysis and signal processing with

higher order spectra. It was shown that the AR extracted features allowed SVM

to have the best classifiaction performance, with 100 % classification accuracy.

However, in this work the classification accuracy is not fully justifiable since

metrics such as precision-recall, and f1 score were not reported.

However, in (16), the authors perform a comparison of the AR model, back

propagation neural networks and radial basis function where these techniques

were applied on different signal lengths. In this comparison, the linear AR model

is ranked superior in terms of speed of operation, however back propagation neu-

ral networks outperformed the other techniques in terms of accuracy. In fact, the

modelling technique based on back propagation neural networks required shorter

signal lengths, almost half of the vibration data and performed more accurately

when classifying induced rolling element faults. This shows the better noise rejec-
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tion ability of the back propagation network when compared to traditional linear

methods.

4.2.3.2 Frequency-Domain Analysis

Frequency-domain analysis identifies and isolates frequency components of the

signals, so it is generally considered more effective than time domain analysis for

fault diagnosis application.

The most applied technique in frequency domain analysis, and which allows

for transforming time waveform signals into the frequency domain, is the dis-

crete Fourier transform (DFT), and more specifically the FFT which is a more

computationally efficient variation of DFT.

The main advantage of using these frequency-domain techniques for fault di-

agnosis is that they are appropriate for stationary signals (139) and they have

already been applied for feature extraction in several categories in the field of

PHM, as in (50) for studying the effect of localised changes in stiffness mag-

nitude and phase of gear systems, and in (229) for identifying faulty brushless

three-phase synchronous generators by representing their flux-density distribution

trough FFT.

The most commonly used tool in the frequency domain is the power spec-

trum. The power spectrum shows the portion of a signal’s power falling within

given frequency bins. It is defined as E[X(f)X∗(f)] where X(f) is the Fourier

transform of signal, E is the expectation and ∗ denotes the complex conjugate.

Other than the power spectrum, other useful spectra for signal processing have

been developed in the last years. Other methods are cepstrum, spectral analysis,

higher-order spectra and envelop analysis, which are also identified in (115).

Some useful auxiliary tools for spectrum analysis can be found in the lit-

erature. In (104) the authors apply an envelope spectrum together with a self-

adaptive noise cancellation method in order to remove discrete frequency masking

signals. The envelope is achieved by using the Hilbert transform technique. The

approach is validated on simulated and actual vibration signals. Also, a band-

pass filter and a shift in frequency are applied to the raw signal so that the

reduced number of samples could improve the computational costs. In (231),

an amplitude modulation (AM) detecting technique is presented for identifying

single-point defects in rolling element bearings and applied to simulations and real

vibration data from bearings. The approach relies on checking the characteristic



CHAPTER 4. HEALTH INDICATOR EXTRACTION 60

fault frequencies in the power spectrum and searching for some peaks of energy

to characterise a fault. A bispectrum analysis is also performed, which, together

with the AM detector could detect faults in the components. The authors show

that by using these three tools they could accurately detect incipient faults.

Other frequency analysis techniques proposed for fault detection and diagnosis

are side band structure analysis (32) and Hilbert transform (HT)(279, 200, 72).

However, one of the main limitation of frequency domain analysis is the inef-

ficiency when dealing with non-stationary signals, which are commonly measured

from degrading machinery. Also, frequency domain analysis lacks temporal in-

formation which is crucial for performing prognostics (139).

4.2.3.3 Time-Frequency-Domain Analysis

Time-frequency domain analysis investigates signals in both time and frequency

domains, this is done in order to show fault patterns on specific frequencies in

time, and thus allows for more accurate diagnostics.

These techniques are advantageous in the case of non-stationary signals. For

example, the short time Fourier transform (STFT) which was first introduced by

Gabor et al. in (79), divides the whole signal into short-time windows and then

apply Fourier transform to each one of them.

This idea of being able to work with evolving frequencies throughout time has

been applied thoroughly and many techniques other than STFT have emerged.

For example in (123) vibration signals are acquired from a gearbox operating

under several loads, and where artificial defects were introduced in one of the

gears. A measure of the current drawn by the motor is also stored. A discrete

wavelet transform (DWT) is then applied to these signals where its output is sent

to a STFT to recover health features. The authors show how the health features

extracted from the frequency windows can predict a change in the energy of the

gear mesh frequencies and therefore can be used as a monitoring tool.

However, as STFT works by diving the signal into windows, this brings some

limitations as it can only be applied to signals with slow change in their dynamics.

Other approaches in time-frequency-domain are Wigner-Ville Distribution

(33). These are bilinear transformations which do not divide the signal into win-

dows as the STFT, thus overcoming this limitation. However, these approaches

present a more difficult interpretation of their estimated distribution.

Wavelet transform (WT) (52) is a time-scale representation of a signal, which
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has also been widely used in signal denoising. It is especially used for vibration

content characterisation as in (48). In this work the authors use a variant of the

classical WT, an overcomplete rational dilation discrete wavelet transform, as a

fault feature extraction technique. This method is applied for showing hidden

periodical impulses of low energy in the signals.

In (283) a wavelet packet transform is used for bearing fault detection. A

stator current is measured and decomposed into sub-bands at predetermined

levels using the wavelet packet algorithm. Then coefficient energies in different

frequency bands are calculated. In comparison with a healthy condition, the

energy coefficients are higher in the frequency bands related to defects, therefore

they are used as a fault index.

Also, a combination of WT and FT was proposed in (254) to enhance feature

extraction capability.

Empirical Mode Decomposition (EMD) (108), is among one of the most power-

ful time–frequency analysis techniques suitable for non-linear and non-stationary

processes (234). However, some drawbacks include a high sensitivity to noise.

Other common approaches are the Hilbert-Huang Transform (HHT) (109),

spectral kurtosis (9) and cyclostationary analysis (82).

Based on the advantages that are presented by the time-frequency domain

analysis; and since we are interested in isolating a specific frequency of interest,

namely the mesh frequency and observing its evolution over time, time-frequency-

domain analysis will be considered in this thesis, and this should be the case when

considering multi-component systems.

4.3 Extracting Heath Indicators for Systems

with Multi-Component Wear Interactions

The following sections details our methodology for obtaining component health

state data from multi-component systems. This is then evaluated on a new con-

figuration of the gearbox accelerated life testing platform that was presented in

Chapter 3. Our methodology for state indicator extraction is presented as a

flowchart in Figure 4.2.
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Figure 4.2: Methodology for extracting components’ health state indicators in a
multi-component system with wear interactions
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4.3.1 Methodology

Data Acquisition As shown in Figure 4.2, we start by acquiring data from

sensors, specifically using accelerometers to gather vibration data, since it has

been extensively studied and successfully used for the purposes of diagnosing in-

dustrial rotating machinery, mainly for components such as gears (137), bearings

(8, 235) and induction motors (23).

In a multi-component system setting, it is wise to use multiple accelerometers.

The placement of these accelerometers should be scattered evenly around the

system, or at least the aim should be not to have them too close together. This

grants different vantage points for data collection, and should be done so that the

different components of the system can be easily differentiated, especially when

dealing with similar components that can emit signals around similar frequencies.

Signal Pre-Processing After performing the data acquisition step on a multi-

component systems, and since clean data are not often encountered in an indus-

trial setting, a pre-processing step for that data should be considered. It is

therefore advised to first clean the data specifically from any outliers that are

present. This is because any other pre-processing step that would be performed

afterwards such as the ones seen in Section 4.2.2, and which usually heavily rely

on the signals’ statistical properties, would then have erroneous outcomes.

This cleaning however could be a tedious task to perform manually if not

impossible. Therefore we suggest the use of Algorithm 1, which could easily

automate such a process. First a window of data points based on the operating

profile of the system should be specified and fed to the algorithm. Then the

median value or geometric mean of the data and the median absolute deviation

(MAD) are computed for that window. The values that exceed the median plus

or minus the MAD value, are then filtered by replacing them with a random

variable sampled as X ∼ N (med, mad), thus preserving as much as possible the

true nature of the signal. This is important for diagnostics and prognostics.

Data detrending and centering should then follow. Scaling should be done

if necessary, depending on the presence of dissimilar sensors or if different data

ranges are used. Filtering the data can follow after this step, this depends on

the frequency band of interest and whether other unnecessary frequencies can be

rejected without loss of information. This was detailed in Section 4.2.2.2.

Finally the physical meaning of the signal should be obtained, so that an
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Algorithm 1: Outlier Removal Algorithm

w represents the window length;
input : A signal Sig, a row matrix of size m× w
output: Signal Sig with no outliers

for i← 1 to m do
med←ComputeMedian(Sig(i));
mad←ComputeMAD(Sig(i));
for j ← 1 to w do

if Sig(i, j) < (med−mad) or Sig(i, j) > (med+mad) then
Sig(i, j) = X ∼ N (med, mad)

end

end

end

engineering perspective can be added. This depends on the specifics of the sensors

used. For example if accelerometers are used, this step should be applied and

would result with a signal that has its acceleration denoted in acceleration of

gravity (G), instead of the generic digital signal value.

Signal Processing At this point we can apply signal processing to the signal

with the aim of extracting health state representative features from the signal.

A major challenge for modelling existing stochastic dependency in a multi-

component system is the complex nature of the signals acquired. Each signal

may represent a mixture of the signals of all components at once, but to varying

degrees. Therefore, an accurate way of acquiring component specific degradation

state information from multi-component systems is to consider time-frequency

domain analysis.

Time-frequency analysis is used in blind source separation (273, 1), in which

mixed signals are separated without the aid of information. This is performed

by exploiting the difference in the time-frequency signatures of the sources to

be separated. Much of the literature in this field focuses on audio applications

(196) and machine sound signals (291). Applications of time-frequency analysis

for identifying various sources of vibrations data can be found in (253, 58).

A further motivation for this choice over the other data analysis approaches,

namely time-domain analysis and frequency domain analysis has been presented

in Section 4.2.3.

Consequently, an STFT can be applied on the cleaned signal, and allow for
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the analysis to be performed in both time and frequency domains, isolating the

frequency components of interest all while representing the evolution of their

energy through time.

The STFT can be applied over the time-waveform data of a component i in

the following manner:

s
′

i = STFT{si[n]}(τ, ω) =
+∞∑

n=−∞

h[n− τ ]s[n] exp−jωn (4.9)

Where s
′
represents the short-time Fourier transform of the input signal s(t), and

h(t) the window function. Optimum window length depends on the application.

A high resolution in time and in frequency cannot be accomplished simultane-

ously. If high resolution in time domain is needed, the size of the window should

be reduced. If the application demands frequency domain information to be more

specific, then the size of the window should be increased (121, 214). Therefore,

if we want to resolve the fundamental and harmonics of a signal, a long window

should be used. If it is needed to detect the onset or presence of some events, a

short window should be used. Some examples of window functions are Gaussian

and a Hamming windows (99, 118).

After the STFT is applied on the signal, the frequency root mean square

(FRMS) can be computed over the frequency band of interest. This is done in

order to estimate how the magnitude of the frequency band of interest evolves in

time. This is applied as such:

XFRMS =

√√√√ 1

N

N∑
i=1

s
′2
i (4.10)

where N is the number of data points, and n is the nth value.

In this way, we can study a time series signal that describes the evolution of

the health condition of the components over time. This makes the prognostics

aspect of PHM easier and more effective.

4.3.2 Case Study

In an industrial setting, gearboxes are present in virtually any mechanical system,

playing the essential role of torque and speed conversion. Therefore, unforeseen

faults can lead to lowered machine up time and reduced plant efficiency. A
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gearbox is a good example of a system with multiple components. Therefore with

the aim of collecting data on multi-component interactions we carried out our

experiments on the gearbox accelerated life testing platform shown in Figure 4.3.

Figure 4.3: Gearbox accelerated life testing platform

The gearbox experimental platform that is considered here is the same as

presented in Chapter 3. However it has a different configuration, this is detailed

in the following.

The gearbox testing platform is comprised of three gears forming a gear train

mounted in series. The gears are arranged as gear 1 (G1) on the left, gear 2 (G2)

in the middle and gear 3 (G3) on the right. Each gear is fixed on a shaft. These

shafts have restricted translation motion due to a friction-less rotation system.
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Such restriction is provided by small washers that are held against the inner

ring of the shaft supporting bearings using shaft collars. Friction-less rotation is

essential as it prevents additional noise originating from friction and unwanted

additional loads. A fixed bracket holds the driving motor. This can be seen

on the left of Figure 4.3. This is a 24 Volt, 250 Watt motor that can reach up

to 2750 Revolutions per minute (RPM). Feedback from an encoder is collected

for extracting exact rotational velocity and steady state behaviour, along with

a temperature feedback controller that is used for setting the fail-safe threshold.

The gearbox is coupled to a dynamometer system that provides the load.

Vibration analysis has been extensively researched and has become a standard

for gearbox system diagnostics and prognostics (137, 211), this is also discussed

in Section 3.3.2. Therefore we use three accelerometers, each mounted on one of

the three gear supporting shafts, to collect vibration data from the gearbox. This

allows the vibration signals of each gear to be distinguished more accurately. The

accelerometer signals were transmitted using a data acquisition card (DAQ) to a

PC workstation where they are processed. The three accelerometer sensors collect

data on three axis and have a full sensing range of ±3Gs. To avoid distortion

of vibration signals, these accelerometers are each mounted over the centerline of

the shaft supporting bearing. We do this by fixing these sensors using hex socket

screws to a 3D printed housing that lies on top of the frame of the gearbox.

4.3.2.1 Experimental Scenario

To demonstrate the stochastic dependency between components, specifically the

degradation state rate interactions, we will only consider a two gear system. Gear

1 and gear 2, referred to as G1 and G2 respectively.

The experimental runs of the gearbox were designed for accelerated life testing,

thus achieving failure in a shorter amount of time than it would usually take under

normal operating conditions. These runs are an alternating sequence of two types

of cycles; the first cycle is a low speed low load cycle, referred to as LSLL; and

the second type is a high speed high load cycle, referred to as HSHL.

Due to the nature of the HSHL cycle, a high level of noise is present in the

acceleration data. We therefore only use vibration data that are collected in the

LSLL cycles in order to improve the signal to noise ratio. These LSLL cycles last

for three minutes.

The gearbox platform was run three times, these runs consisted of tests to
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failure and were conducted in the following manner:

Run 1: The first run consisted of a new G1 and a new G2. The gearbox was

run alternating between HSHL and LSLL until high levels of vibration were

observed in the gearbox (meshing frequency magnitude exceeding 1800) at

which point the experimental run was terminated.

Run 2: After the first run, G1 was replaced with a new gear, while G2 remained

unchanged, so the second run consisted of a new G1 and a worn out G2.

The gearbox was ran alternating between the HSHL and LSLL cycles until

high vibration was observed; on this run high system vibration occurred in

a shorter amount of time, and after terminating the run, G2 showed more

severe damage on its teeth surface than that observed after the termination

of run 1.

Run 3: In the third run, G1 was replaced with a new gear, while G2 remained

unchanged, so we find ourselves with a similar condition scenario as in run

2, this time however with a more worn out G2. The gearbox ran alternating

between the HSHL and LSLL cycles until high vibration was observed. This

run lasted an even shorter amount of time than in run 2, and so the run

was terminated earlier than in run 1 and run 2.

The different gear conditions that resulted from these experiments can be seen

in Figure 4.4.

4.3.2.2 Component Health State Extraction

Vibration signals were collected from the accelerometers in all three runs. Fig-

ure 4.5 shows a two second sample of the raw signals just after the analogue to

digital conversion.

The signals were treated following the methodology discussed in section 4.3.1.

First, they were input to the outlier removal algorithm so that any outliers can be

removed, some might occur due to transmission of the signal between the DAQ

and the PC workstation. The data is then centered and filtered using a high pass

filter with a cutoff frequency of 180Hz. This is because in this study we are only

concerned with the fundamental frequency, and to enable quicker computation.

Finally the signal was transformed and represented in G’s. The result of this

pre-processing is shown over a two second sample in Figure 4.6.
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Figure 4.4: The three different gear conditions that were distinguished
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Figure 4.5: Raw accelerometer signals of Gears 1 and 2 after the analogue to
digital conversion

Figure 4.6: Pre-processed accelerometer signals of Gears 1 and 2, represented in
Gs.
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After the pre-processing steps, the time waveform vibration signals were then

turned into time-frequency domain data using STFT. This results in a spectro-

gram which is shown in Figure 4.7.

Figure 4.7: Visual representation of the spectrum of frequencies of Gear 1 in
Run 1 varying with time

We compute the average SNR of the signal to be 10.6 dB. This is done using

the following two equations:

SNR =
Psignal
Pnoise

(4.11)

SNRdB = 10 log10(SNR) (4.12)

Then, we were interested in monitoring the evolution of the gear meshing

frequency magnitude fmesh over time. This is computed as:

fmesh = RPM ×N (4.13)

where RPM stands for revolutions per minute, and N stands for the number of

teeth of the gears which is equal to 16 in this case.

Due to the motor speed slightly fluctuating and affecting fmesh, we used a
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dynamic windowing approach in order to accurately capture the fmesh. We chose

a 5Hz frequency band that guarantees to contain the fmesh at its peak magnitude,

and so we can then calculate the RMS of that frequency band, and monitor its

evolution over time. fmesh is calculated to be around 120Hz.

Here we would like to note that the choice of cutoff frequency requires engi-

neering knowledge of the system at hand. For instance, in this work we use the

fundamental meshing frequency to assess the health state of the gears which is

computed to be 120Hz; we can therefore remove all frequency elements that are

greater that this value without affecting the information that is contained around

our frequency of interest. We therefore choose a cutoff frequency of 180Hz for

our high pass filter.

We then compute the RMS value for each time step, and the gear mesh

frequency is normalised for the range [0 1800]. This results in the degradation

time series shown in Figure 4.8. The experimental runs are separated by the

black dashed vertical lines, the silver dotted vertical lines represent the start of

a new data collection cycle, i.e. an LSLL cycle. Note that a) between every 2

LSLL cycles there exists an HSHL cycle, and b) the HSHL vibration data are not

used and is thus not represented in this figure.

Figure 4.8: RMS degradation trajectories for Gears 1 and 2
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4.3.3 Results

Based on the experimental runs, the vibration signals emitted, and the different

phases of wear that was observed on the gear tooth surfaces, we can set the two

failure thresholds that are seen in Figure 4.8.

Failure threshold F is reached when the gear meshing frequency magnitude

reaches 0.45. At this stage the gears show tooth surface wear. This threshold is

further motivated by computing the average gear meshing frequency magnitude

of each LSLL cycle of G2 in run 2. This does not go below 0.45. At this stage

G2 is already considered worn out or faulty, but still operable.

Failure threshold L is reached when the gear meshing frequency magnitude

reaches 0.65. At this stage the gearbox platform emits high levels of vibration

and is therefore stopped. We consider this to be the hard failure of the system.

This threshold is considered to be effectively reached once a moving average of

window 5 over the RMS degradation trajectory reaches it.

Now in order to indicate the degradation interactions between the two gears,

we compute the average of each LSLL cycle and display the obtained values in

Table 4.2. We consider the failure threshold F , since the gears are already faulty

at that point.

Note that here the average vibration doesn’t necessarily increase at every

LSLL cycle, this small fluctuation is due to the change between HSHL and LSLL

which can distort the signal acquired by the accelerometers when capturing vibra-

tion data. However, we can already see that there is a general trend of increase in

vibration with the increase in LSLL cycle count which indicates the degradation

of the Gears.

The degradation interactions can already be detected when looking at Table

4.2, however for a better view of the interactions that are taking place, we can

look at Table 4.3 which indicates the time to failure of the components. There we

can clearly see the accelerated degradation of the Gears that is caused by their

interaction.

As shown from Table 4.2, in run 1, it takes seven cycles to reach the G1 failure

limit when both gears are new. We can consider this as normal degradation be-

haviour of the components and so we can say that in this case, the life expectancy

of a component when coupled with a new component is 100%. Now looking at

run 2, we see that it takes four cycles to reach the G1 failure limit when G1

is new and G2 is worn out. Thus compared to run 1, where both gears were
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LSLL Cycle Number

Run Gear 1 2 3 4 5 6 7 8 9 10

1 1 .283 .260 .257 .373 .230 .279 .183 .518 .735 .624

1 2 .347 .267 .325 .360 .253 .388 .283 .580 .560 .602

2 1 .314 .255 .366 .303 .606 .507

2 2 .464 .465 .489 .477 .626 .604

3 1 .358 .344 .507 .571

3 2 .595 .490 .570 .667

Table 4.2: Average Gear meshing frequency magnitude for each LSLL cycle for
both gears in all there runs.

Gear 1 Gear 2 Gear 1 Cycles to Failure Gear 1 Life Expectancy (%)

Run 1 new new 7 100

Run 2 new worn out 4 57

Run 3 new severely worn out 2 29

Table 4.3: Effect of deterioration on component interactions

new, we see that having a new component coupled with a worn out component

would lead to accelerated wear of the new component and so the life expectancy

is reduced to only 57%, in this case, in comparison with normal degradation of

the components. Finally in run 3 we see that it only takes two cycles until G1

reaches its failure limit when G1 is new and G2 is severely worn out. This means

that in comparison to normal degradation behaviour, G1 has in this case, a life

expectancy of 29% relative to that under normal degradation. This is clearly

shown in summary in Table 4.3.

These results clearly demonstrate the importance of modelling stochastic de-

pendency between components when performing prognostics on a multi-component

system. For if we are to replace a specific component in the system with a new

one, ignoring the accelerated degradation effect that results from it being coupled

with a now worn out component, there would arise unexpected failures and faults.

These would be caused by the reduced lifetime of the new installed components

that are not degrading in nominal fashion.
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4.4 Discussion

In this chapter we started by providing an introduction and background on health

indicator extraction for PHM. We covered data acquisition, signal pre-processing

and signal processing approaches, while providing a comprehensive review of the

literature in the context of PHM.

We then presented our developed methodology for extracting accurate health

indicators for components of a multi-component system. This started with the

data collection process and went through the selection of a time-frequency do-

main analysis for processing the waveform data that should be collected. Finally,

this resulted in a time series signal representing the degradation trajectory for

each component in the system. We validated this approach and demonstrated

our analysis on experimental data collected from a gearbox accelerated life test-

ing platform. Here we showed that when a new gear is coupled with a worn out

gear, the life expectancy of the new gear may be reduced to 29% of that of a new

gear coupled with another new gear. Through this work we demonstrated the im-

portance of accounting for stochastic dependence, since degradation dependence

between old-new component couplings can ultimately lead to accelerated wear of

the system.
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5.1 Chapter Summary

This chapter is concerned with the degradation modelling of multi-component

systems, and their prognostics. We start by presenting a review on the recent lit-

erature on stochastic dependence, which motivates the work presented here. This

is then followed by the description of our generic degradation model for multi-

component systems. This is used to generate simulated degradation trajectories

of a three component system. The parameters of the model are fitted to the data

generated by the gearbox platform as presented in Chapter 4, this is achieved us-

ing a particle filter which is considered as a state-of-the-art technique in the PHM

literature. The importance of using this technique is shown through an overview

and background, and a literature review of its use within PHM. The results are

then presented which show the advantages of modelling stochastic dependence

between components.

5.2 Introduction

The ever increasing number of manufacturing requirements is pushing original

equipment manufacturers (OEM) to design more complex systems to meet in-

dustrial needs. Such machines are becoming increasingly difficult to maintain

(276, 277). This is especially due to their degradation processes which are highly

stochastic in nature. These degradation processes limit the accuracy of diagnos-

tics and prognostics, which in turn leads to poor remaining useful lifetime (RUL)

predictions. This incurs an increase in the number of unforeseen faults and fail-

ures, and a reduction in the reliability of multi-component systems in industrial

environments.

Consider for example a system with two components, an induction motor with

a lifetime, say, up to 5 years that is coupled with bearings that have a lifetime

that is but a fraction of this. In many multi-component systems like these, it is

almost inevitable that after running the system for a long enough time, old worn

out components are then coupled with new healthy components. And since old

worn out components may potentially accelerate the degradation process of new

components, it is in effect this old-new component coupling that affects the relia-

bility of a system, and leads to a system wearing out in an unforeseen accelerated

fashion. Thus, modelling degradation interactions such as old-new component

couplings in multi-component systems can play a crucial role in diagnosing and



CHAPTER 5. DEGRADATION MODELLING AND PROGNOSTICS 78

performing prognostics on the health state of a system.

However, the degradation processes of components in complex system are usu-

ally assumed to be independent, see (35, 176, 248). But since real world systems

typically include multiple interacting components, it is very unlikely that there

exists no interactions between the components themselves. And, as mentioned

earlier, this can severely jeopardise system reliability and overall availability.

And although condition based maintenance (CBM) research is showing a

growing interest in multi-component systems (125), rarely are they considered

in a prognostics and health management (PHM) context. And although the issue

of stochastic dependence is actually addressed in CBM, this is usually not done

with the aim of modelling it (178).

5.2.1 Literature Review

Further to the overview on stochastic dependence present in Section 2.4, we now

review the recent and relevant literature on the topic, this serves as motivation

to the work that is present in this chapter.

In (157) the authors develop a CBM policy for systems with multiple fail-

ure modes. They consider that failures can occur before reaching a maintenance

threshold, and that the failure rate of components can be influenced by the age

of the system, the overall state of the system or both. This work however does

not model the degradation dependence between components and focuses mainly

on the CBM policy rather than degradation modelling itself. In (97) the authors

present a methodology for mixed signal separation of identical components using

independent component analysis (ICA), they specifically consider the case where

there exists limiting constraints over sensor placement. Then, they use the sep-

arated signals as indicators of degradation severity for each of the components,

and validate their approach via a numerical example using simulated degradation

signals. Although this work is an essential step for modelling the degradation of

such multi-component systems, it does not specifically model the degradation

dependence between components. In (29) the authors use stochastic differential

equations to model the degradation between components. They specifically study

how the degradation rate of one component can be influenced by the degradation

state of other components with the aim of predicting the residual lifetime of com-

ponents. They then evaluate their approach using simulated data and compare it

to a benchmark approach which assumed component degradation independence.



CHAPTER 5. DEGRADATION MODELLING AND PROGNOSTICS 79

Finally they show the importance of capturing degradation dependencies between

components. Although this work deals with deterioration dependence between

components, it does not account for other interfering factors. In (152) the authors

discuss what they refer to as the fault propagation phenomenon. This is described

as the co-existence of inherent dependence and induced dependence when consid-

ering degradation dependence between components. A continuous time Markov

chain approach is developed to capture fault propagation characteristics. How-

ever this approach might suffer from the state-space explosion problem and does

not consider other factors that may influence degradation. Therefore it does

not describe the full underlying mechanism of system degradation. In (205) and

(65) the works consider state-rate degradation interactions. Both works study

two component systems where they either consider a numerical simulation of a

degradation process in (65), or perform degradation modelling for the particular

case at hand in (205). They both use the results for optimising the CBM policy.

These works mainly deal with the optimisation of the CBM policy rather than

developing a general degradation model for interdependent components.

Further to the works mentioned above, and considering the extensive body

of literature on degradation modelling, see (258) and (248) for an overview. The

literature shows that the degradation process of components may depend on the

system operating conditions such as the load on the system, vibration, humid-

ity, temperature etc. see (18, 60, 228) and (66). And it is also shown that a

degradation process system may depend on its current state, see (224).

We therefore aim to develop a generic multi-component degradation model

whereby the degradation process of a component may be dependent on the op-

erating conditions, the component’s own state, and the state of the other com-

ponents. The model’s capability will be first demonstrated through a numerical

simulation. We then show how to fit the model to data using particle filter (PF).

This method is then used on the degradation trajectory data generated by the

gearbox, as seen in Section 4.3.3.

5.3 Generic Multi-Component Degradation

Model

In this section we present our generic degradation model. It has the capability of

encompassing multiple component stochastic dependencies all while considering
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the operational effect, and the intrinsic degradation effect.

5.3.1 Degradation Model

Consider a multi-component system with nc number of components. The degra-

dation state of each component i is represented by an accumulation of wear over

time which is assumed to be described by a scalar random variable X i
t . Com-

ponent i fails if its degradation state reaches a threshold value Li. If any of the

components fail we consider the system to have failed, and if a component is not

operating for whatever reason, no change occurs to its degradation state unless a

maintenance intervention is carried out.

We assume the evolution of the degradation state of component i is repre-

sented by:

X i
t+1 = X i

t + ∆X i
t (5.1)

where ∆X i
t represents the degradation increment of component i during one time

step.

The degradation of a component i at time step t may depend on the operating

conditions, the state of component i, and also the state of other components to

a varying degree. Thus we suggest a general stationary model for the increment

∆X i
t :

∆X i
t = ∆Oi

t + ∆X ii
t +

∑
j 6=i

∆Xji
t (5.2)

where:

• ∆Oi
t represents the degradation increment of component i that is caused by

the operating conditions during one time step t. ∆Oi
t can be specified as a

deterministic or as a random variable.

• ∆X ii
t represents the degradation increment which is intrinsic to i at time

step t. In other words ∆X ii
t depends on the degradation state of component

i at time step t. ∆X ii
t can also be specified to be a deterministic or random

variable.

•
∑

j 6=i ∆X
ji
t represents the sum of all degradation increments which are

caused by the interaction of component i with the other components of the

system. The degradation interaction between a component i and another

component j may be considered to be a deterministic or random variable.
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We can now specify different variants of the proposed model:

Case 1: ∆Oi
t > 0, ∆X ii

t = 0 and ∆Xji
t = 0, in this case there is neither an

intrinsic nor an interaction effect, and so the proposed model is reduced to

a model of homogeneous degradation behaviour of independent components

as seen in (248).

Case 2: ∆Oi
t > 0, ∆X ii

t > 0 and ∆Xji
t = 0, in this case there is no degradation

interaction between the components, and so the proposed model becomes a

model describing non-homogeneous degradation behaviour as seen in (224).

Case 3: ∆Oi
t = 0, ∆X ii

t = 0 and ∆Xji
t > 0, in this case the components have

degradation inter-dependencies only, and the proposed model corresponds

to the degradation model that was introduced in (205).

Case 4: ∆Oi
t > 0, ∆X ii

t = 0 and ∆Xji
t > 0, in this case the components have

degradation inter-dependencies but no intrinsic degradation is present; this

case then corresponds to the models presented in (29) and (65).

Case 5: ∆X ii > 0 and ∆Xji > 0, the components are stochastically dependent

and the increment in the degradation level of component i may depend not

only on the state of component i but also on the state of the other compo-

nent; this case is considered in (27) for prognostics of a system lifetime, in

which a random intrinsic effect is considered and described by a Brownian

motion process. The interaction effects were considered deterministic and

proportional to the degradation level of other components.

Case 6: ∆Oi
t > 0, ∆X ii

t > 0 and ∆Xji
t > 0, in this case the degradation pro-

cesses of the components are dependent on the interaction between the

components, the intrinsic degradation of the components and the operating

conditions of the system.

We will use the following model for the quantification of degradation influence

between multiple components:

∆Xji
t = µji × (X i

t)
σji

(5.3)

where Xji
t represents the degradation impact of component j on component i at

time t. And where µji and σji are non-negative real numbers which are used
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Case Description

µji = 0 Component j does not have any influence on the
degradation behaviour of component i

µji = 0 and µij = 0 Component j and i are independently subject to
gradual degradation

µji > 0 and σji = 0 the impact of component j on the degradation of
component i does not depend on the health state of
component j

Table 5.1: Degradation influence between multiple components

to quantify component j’s influence on component i. This is represented more

clearly in Table 5.1.

The effect of component j on component i does not have be similar to the

effect of component i on component j. And especially when considering systems

with a nc > 2 number of components, the degradation influences µji and σji

between the components of the system can be better represented using square

hollow matrices of size nc × nc as seen in Eq. 5.4.

µji =


0 µ12 . . . µ1n

µ21 0 . . . µ2n

...
... 0

...

µn1 . . . . . . 0

 , σji =


0 σ12 . . . σ1n

σ21 0 . . . σ2n

...
... 0

...

σn1 . . . . . . 0

 (5.4)

This can also be extended in the sense where hollow matrices are not used for

µji and σji, but where the diagonals entries of the matrices are occupied by µii

and σii which represent the intrinsic degradation influence of the components on

themselves; i.e. the intrinsic degradation rate of the component might depended

on the degradation level of the component itself, as would be the case when

specific protection coatings of components start to fade (144).

Although the proposed degradation model can encompass as many compo-

nents as we would like, the number of components to be considered when perform-

ing degradation modelling should be kept to the minimum. This is because adding

more components would lead to an increase in model complexity and computa-

tion, and the composition of optimal CBM policies becomes more difficult and

computationally complex. This is an already identified issue in multi-component

maintenance literature (4).
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5.3.2 Simulation

For the purpose of illustrating the interactions that can influence the degradation

process of components in a multi-component system, we will use Case 5 from the

generic degradation model to create a numerical simulation of the degradation

process of a three component system.

Since the degradation of most mechanical components accumulates wear over

time, we can then use a gamma process to represent this. This is because it is a

stochastic process with independent, non-negative increments, see Appendix A.1

for further details on the gamma distribution. It is therefore well suited to model

the gradual degradation which accumulates over time as seen in (187, 248). And

so for every component i among the nc components of the system, we assume that

the corresponding ∆X ii
t follows a gamma distribution with distinct parameters,

shape αi and scale βi as shown in:

fαi,βi =
(βi)α

i

Γ(αi)
xα

i−1 exp−β
ix (5.5)

based on the generic degradation model presented in the previous section, we can

now model the degradation of the system at hand as follows:

X i
t+1 = X i

t + ∆X i
t (5.6)

∆X i
t = ∆X ii

t +
∑
j 6=i

µji × (Xj
t )
σji

(5.7)

So a simulation can be initiated using the gamma process parameters which

are shown in Table 5.2 for ∆X ii
t , and the values for the degradation influence

between components µji and σji shown below. This then generates degradation

trajectories as seen in Figure 5.1.

µji =


0 0.254 0.1080

0.384 0 0.346

0.242 0.118 0

 , σji =


0 0.54 0.7290

0.785 0 0.836

0.838 0.555 0


From Figure 5.1, we can see the normal degradation trajectories of all 3 com-

ponents from time step 1 till 40 since the system is considered to have started

with all components having a healthy new state. We can now compare the nor-

mal degradation trajectory of component 1 with its accelerated degradation after
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Parameter Value

Component 1 Component 2 Component 3

Shape α 4.944 4.35 5.193

Scale β 3.919 1.09 2.257

Table 5.2: Simulation parameter values

Figure 5.1: Illustration of degradation evolution with rate-state interactions
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being replaced at time step 42 and being coupled with the other two worn out

components. We can clearly see two phases of accelerated degradation after com-

ponent 1 has been replaced with a new component. A highly accelerated degra-

dation from time step 42 till 48, then a somewhat less accelerated degradation

from time step 49 till 56. The first highly accelerated degradation is due to the

fact that a new component 1 was interacting with a worn out component 2 and a

severely worn out component 3 that was above 75% degraded; subsequently, the

less accelerated degradation is a result of the replacement of component 3 with a

new component at time step 49.

This old-new component coupling is clearly influencing the lifetimes of the

components after being replaced with new ones. This kind of interaction can

lead to accelerated degradation of the components and the system as a whole,

thus resulting in unexpected faults and failures.

The degradation trajectories simulated using our generic degradation model

are similar to the ones obtained from the experimentation using the gearbox accel-

erated life testing platform, which were presented and analysed in Section 4.3.3.

5.4 Prognostics for Multi-Component Systems

Prognostics is the process whereby past and present condition monitoring data

of a system or component is used to project its health state into the future. This

is done with the specific aim of predicting the end of life (EOL) of components,

and consequently, the estimation of remaining useful life (RUL) (216).

Many prognostics methods have been developed in the last years. A thorough

review has been presented in Chapter 2, additionally literature review articles on

the topic can be found in (3, 135).

However, the comparison between different prognostic methods is not an easy

task. Generally speaking, the are no metrics that are universally accepted to

quantify the benefit of a prognostics method. Nonetheless, methods for quanti-

fying the performance of prognostics algorithms have gained particular attention

in the last years (216, 217, 136). In this work, we will use the difference between

real EOL and the predicted EOL to assess the prognostics performance of the

proposed approach.

The main objectives of prognostics can be summed up with the following:

• Estimate the degradation of components at present time t = k
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• Estimate the degradation of components at a future time r > k

• Estimate the RUL of components RUL = teol − k. where teol denotes time

instant where the degradation prediction of a component crosses the failure

threshold.

The generic degradation model that was presented in Section 5.3 can be used

for performing predictions of teol for multi-component systems. The procedure for

performing prognostics using any of the variants of the model starts by the proper

selection of the variant type, and specifying its different parameters. Parameter

identification then follows and can be done using different approaches. We suggest

the use of particle filter, and this will be motivated in the next section.

Once the model parameters are identified, the model can be easily used to

simulate and predict the health state of a component X i
tk

at a future time r > k.

This is done until the degradation trajectory hits the failure threshold which

indicates teol. At that point the RUL can easily be extracted, and a maintenance

decision can be taken accordingly.

5.4.1 Particle Filter in PHM

There exists an extensive body of literature on the topic of parameter identifica-

tion, see for example (7, 83, 158). In practice, if the degradation model is not too

complex, we can fit the model parameters using maximum likelihood estimation

(MLE). However, in the case of multi-component systems this is highly unlikely.

Therefore if the model is too complex, or if we are collecting online observation

on the health condition of the components and want to achieve real time prog-

nostics, we suggest to use sequential Monte Carlo methods, specifically the PF

method which is a very popular approach for parameter estimation (71).

PF allows for an online numerical estimation of the parameter values by means

of a recursive Bayesian inference approach. The posterior distribution of the

model parameters can be then obtained using a number of particles and their

corresponding weights. This method is very flexible and can be used for non-

linear models where the noise is not necessarily Gaussian. Such an approach has

been successfully used in the field of prognostics for model parameter estimation,

and for prognostics as seen in the following works:

In (183) the PF approach has been successfully applied to show faulty axial

crack growths in an UH-60 planetary carrier plate. The authors use 2 sequential
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modules. The first module is the state-space model together with a PF algorithm

that is used to evaluate the PDF of the system and the probability of a fault.

The other module is used for the prediction of the fault and the RUL, employing

unknown time-varying parameters and a PF algorithm which updates the state

estimates. In (236) the issue of the number of particles to be used is addressed

and proposed as a trade-off between prognosis performance and computational

costs. The state model and the noise PDF parameters are adjusted via a feedback

loop, and short-term predictions are used to improve the generation of long-term

predictions. The approach was validated for predicting crack growth on a test

coupon based on different fault mode assumptions. In (293) the proposed PF

is implemented together with other estimators to improve the accuracy of the

method. This is used for the estimation of the evolution of a nonlinear fatigue

crack growth. The authors advise that some challenges remain open:

• The state estimators and predictors should carry a measure of the error,

which is important to foresee the confidence on the predictions and thus

the actions to take.

• As in general processes change with time, the prognostic approach should

account for these changes and work well in different working conditions.

• When considering timely prognostics, the computational costs must be flex-

ible enough depending on the application.

• It is important to consider the existence of multiple fault conditions.

Battery condition effectively degrades with time, and thus entails reduced

system performance and economic loss. Therefore predicting battery functionality

has attracted many researchers in the field of PHM, see for example the works in

(88, 119, 181).

The work presented in (168) introduces an improvement to the PF algorithm

where the unscented particle filter (UPF) uses as proposal distribution the re-

sults obtained from an unscented Kalman filter (UKF). However, the degradation

model is built based on the particular application of lithium-ion batteries. Also

in (54), the authors detail the implementation of a particle filter based prognostic

in the case of lithium ion batteries. For the state model, a lumped parameter

battery model which considers the dynamic characteristics and internal processes

of the battery has been used. In more recent work (107) on lithium ion batter-

ies prognostics, it is assumed that degradation trajectories in similar components
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are unavailable. They use PF and kernel smoothing-based approaches together in

order to solve the problem. In (94), the authors compare the capabilities of four

different re-sampling algorithms: multinomial re-sampling, residual re-sampling

stratified re-sampling and systematic re-sampling. Data sets of lithium-ion bat-

teries from NASA data repository are used to analyse and compare the results.

The same author in (95) proposes the F-distribution particle filter approach by dy-

namically adjusting the particles’ weights through the F kernel and demonstrates

the feasibility of the approach on real data generated by a hydraulic actuator. In

order to update the weights, their approach uses historical observations. Other

works on battery prognostics using PF can be found in (100), (267).

The work in (284) relies on using vibration data from rolling element bearings

of a helicopter’s oil cooler for an on-line parameter adaptation solution. The

work is an attempt to approach multi-fault modelling using PF. Also in (182),

vibration data from a cracked gearbox plate in a critical aircraft component is

used with PF assisted with regularisation algorithms. Vibration data is a good

indicator of the failure time of a bearing (198), since its natural frequency and

acceleration amplitude can be related to its damage mechanics.

Another interesting approach for PF in PHM uses Rao-Blackwellised PF for

estimation of the parameters in the railway vehicle dynamic model (150). In (220)

the authors use a hidden Gamma process model for capturing the necessary health

features. Then, an approach based on PF is used and applied in the context of

semiconductor manufacturing on generated synthetic helium flow signals.

5.4.2 Proposed Degradation Model using Particle Filter

Particle filter draws upon stochastic filtering, Bayesian statistics and Monte Carlo

techniques. It is usually also referred to as sequential Monte Carlo, however it

should be distinguished from sequential Monte Carlo (SMC), since SMC methods

encompass a broader range of algorithms (71), such as the well known Gibbs

sampling and Metropolis-Hastings algorithms. PF is also called a Bootstrap filter

(93), this is the case of the standard particle filter algorithm which is presented

in Algo. 2, and which is implemented in this work.

It is worth noticing that compared to typical works on PF, whereby filtering

is mainly considered, prognostics concerns itself with future time horizons, this

means that this field tries to go beyond the filtering step. In view of this, PF for

prognostics should be used in accordance to the necessity of forecasting the state
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at future times, mostly without additional observations, adjusting the weights if

necessary. Moreover, recent reviews about PF for PHM such as (119) suggest an

increasing amount of work on PF in PHM. Therefore this approach is considered

as a state-of-the-art technique in PHM.

Some common requirements for performing prognostics are presented in the

following:

• Some measures of the degradation status

• A state model that deals with component degradation

• A measurement equation

• A fault detection threshold

In this work measures of the degradation status of multi-component systems

can be obtained using the health indicator extraction method described in Chap-

ter 4. We assume measurements are still noisy, accordingly we can add a noise

term to the measurement equation. As for the state model, we propose the use

of the generic degradation model that is described in section 5.3. Regarding the

failure threshold, this is system specific, and needs to be set based on previous

runs to failure of a system, or based on domain knowledge.

Consider our goal is to estimate the parameters of a degradation model that

corresponds to Case 5, and where two components are present. Let’s assume the

intrinsic effect is stochastic and follows a gamma distribution ∆X ii
t is i.i.d. Γ(αi, βi).

Furthermore, to be coherent with the notation present in the particle filter lit-

erature, we denote the future state Xt+1 as Xt, and the current state Xt as the

previous state Xt−1.

Then the deterioration model can then be rewritten as:

X i
t = X i

t−1 + Γ(αi, βi) + µji × (Xj
t−1)σ

ji

(5.8)

In this case there exists two sets of parameters Θ1 and Θ2. Where Θ1 =

(α1, β1, µ21, σ21, ε) and Θ2 = (α2, β2, µ12, σ12, ε), with ε representing the variance

of the observation noise which can be assumed to be Gaussian. For each set of

parameters we generate a specific np number of particles, each having 5 param-

eter values selected at random from a prior distribution. We then generate a

prediction of the next health condition X̃ i,n
t for n = 1 : np. After observing the

next health condition yit we can calculate the importance weight of each particle
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by computing the likelihood of that observation given the predicted values of

each particle p(yt|X̃ i,n
t+1). We then normalise the weights and perform bootstrap-

importance sampling i.e. we re-sample with replacement np particles from the

previous set of particles according to their weights. We then repeat the process

using the new set of particles. This is shown in Algorithm 2. And a generic PF

approach using 10 particles is illustrated in Figure 5.2.

Algorithm 2: Particle Filter Algorithm

input : np number of particles
Initialisation
t = 0
for i← 1 to np do

Sample xi0 ∼ p(x0)
end
for t← 1 to tend do

Importance Sampling
for i← 1 to np do

Sample x̃nt ∼ p(xt|xit−1)
Set x̃i0:t = (xi0:t−1, x̃

i
t)

end
for n← 1 to np do

Evaluate importance weights w̃nt = p(yt|x̃nt )
end
Normalise importance weights w̃nt

Particle Selection
for n← 1 to np do

Considering w̃nt , re-sample with replacement np particles
end

end

5.5 Case Study

Here we fit the generic multi-component degradation model to the data generated

from the gearbox accelerated life testing platform presented in Chapter 4. We

refer to gear 1 and 2 as component 1 (C1), and component 2 (C2) respectively.
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Figure 5.2: A generic illustration of a particle filter

5.5.1 Model Parameter Estimation

After performing the health indicator extraction step in Chapter 4, we acquire the

RMS degradation trajectories for C1 and C2. These are presented in Figure 5.3.

The RMS values inform us of the vibration energy in the machine that originates

from the gears. Therefore they represent the degradation level of the components

since the higher the vibration energy, the more the gears are degraded and the

more prone the gearbox is to damage. This proness of a gear to damage is the

manifestation in reality of the terms ∆X ii
t and ∆Xji in the model Eq. 5.8, the

former because the gear itself is worn, and the latter because the other gear is

worn. We consider a component to be severely worn out or to have failed once it

reaches the threshold vibration magnitude of Li = 0.65 for i = 1, 2 as described

in Section 4.3.3.

Due to the physical characteristics of the gears, we know that the degradation

level of components C1 and C2 increases with time, and that this degradation level

cannot decrease without maintenance intervention. Therefore, both components

are considered to have inherent degradation that increases with time. Conse-

quently we assume that these degradation increments are gamma-distributed, see

Appendix A.1 for more detail. These increments are denoted by ∆X11 and ∆X22

for C1 and C2 respectively. Thus, ∆X11 ∼ Γ(α1, β1) and ∆X22 ∼ Γ(α2, β2).

Next, we model the degradation interactions between the two components.

From Figure 5.3 it appears that the state of C2 affects the rate of degradation of

C1. This can be seen when we observe the time to failure of C1 when coupled

with a worn out C2 in both runs 2 and 3, and that in run 3, where C2 was more

worn out, the time to failure of C1 was shorter than run 2. Thus the degradation



CHAPTER 5. DEGRADATION MODELLING AND PROGNOSTICS 92

Figure 5.3: Evolution of degradation of the gears in all three runs, represented
by the mesh frequency magnitude

rate of C1 appears to be dependant on the degradation level of C2 and vice versa.

This has been further analysed in Section 4.3.3.

∆X21 is used to denote the increment in the degradation level of C1 due to

C2, and ∆X12 the increment in the degradation level of C2 due to C1.

We denote the degradation states for C1 and C2 at time t by X1
t and X2

t

respectively. Further, since in our model ∆X ii > 0 and ∆Xji > 0, the generic

degradation model can be seen as Case 5 of the different variants presented in

Section 5.3. Thus, the evolution of degradation for C1 is described as:

X1
t = X1

t−1 + ∆X1
t ,

∆X1
t = ∆X11 + ∆X21,

∆X1
t = Γ(α1, β1) + µ21 × (X2

t−1)σ
21

.

(5.9)

and for C2 as:

X2
t = X2

t−1 + ∆X2
t ,

∆X2
t = ∆X22 + ∆X12,

∆X2
t = Γ(α2, β2) + µ12 × (X1

t−1)σ
12

.

(5.10)

There are four parameters to be estimated for each component from the data,
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these sets of parameters are denoted by Θ1 and Θ2. Where Θ1 = (α1, β1, µ1, σ1)

and Θ2 = (α2, β2, µ2, σ2). We use the PF method presented in Section 5.4.2 to

estimate these parameters. In this case we use np = 1000

We obtain the mean estimated value of each parameter in Table 5.3. Note

that since the degradation level is normalised between 0 and 1, the greater the

value of the parameter sigmai the smaller the impact that is to be considered

from the other component on component i.

Component αi βi µi σi

C1 0.0233 0.0425 0.0995 7.6659

C2 0.0125 0.0914 0.0493 9.7375

Table 5.3: Estimated parameter values

To further validate the parameter values of the degradation model considering

the interactions between the 2 components, we compute the R2 values for the

fit of the average estimated degradation trajectory resulting from the particle

filter to the real degradation trajectories. For component 1 this is R2
1 = 0.792

and for component 2 it is R2
2 = 0.753. If we were to consider a reduced model

whereby no stochastic dependence is considered between the two components and

we were left with a gamma process describing the evolution of the degradation

level, the average fit of such models would result in a R2
1 = 0.671 and R2

2 = 0.575.

The further advantage of considering the interactions between components is

motivated in section 7.5.3.

Figure 5.4 shows the particle filter fit to the degradation data of run 1 for

both components 1 and 2.

In Figure 5.4, the silver dots represent the estimated degradation level at

each time step according the np different particles. The yellow dashed line rep-

resents the average of these np estimates. In green, a moving average of window

5 is applied for both smoothing the observed degradation trajectory and provid-

ing effective indication that a component has failed once it reaches the failure

threshold L.

5.5.2 Predicting End of Life of Components

Here we use the degradation model with the estimates obtained in Table 5.3

and generate 1000 simulation using the model in order to predict the degrada-
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Figure 5.4: Fit of particle filter estimates to degradation data of components 1
and 2

tion trajectories of the components. In the following figures these are referred to

as ”With Interaction”. These simulations are also performed using the reduced

model, whereby no stochastic dependence is considered, these are referred to as

”No Interaction”. This is done so that we can compare the prognostic perfor-

mance difference between the case where we consider degradation dependence in

degradation modelling, and in the case where we do not.

The simulations are performed for C1 in run 1 Figure 5.5, and for C2 in run

1 Figure 5.6. Then, since C2 remains unchanged for run 2, we only simulate the

degradation trajectory for C1 in runs 2 and 3 as shown in Figures 5.7 and 5.8,

all while considering the state of C2 in those runs.

From the figures it is clear that considering degradation dependencies provides

an advantage when attempting to predict the real degradation trajectories of

the components. This is clearly seen when considering the time instance where

the degradation of a component is supposed to reach the failure threshold teol.

Table 5.4 summarises the different teol estimates.

From Table 5.4 we see that the difference between the actual observed teol

and the predicted teol for C1 when not considering stochastic dependence shows

a strict growth trend. It starts from 53 in run 1, to 168 in run 2, and then 190 in

run 3. This is because the parameters of the models are estimated in run 1 using
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Figure 5.5: Simulated degradation trajectories for component 1 in run 1

Figure 5.6: Simulated degradation trajectories for component 2 in run 1
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Figure 5.7: Simulated degradation trajectories for component 1 in run 2

Figure 5.8: Simulated degradation trajectories for component 1 in run 3
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Actual teol teol with interaction teol no interaction

C1 C2 C1 C2 C1 C2

Run 1 248 227 239 259 301 429

Run 2 133 157 301

Run 3 111 118 301

Table 5.4: Actual time of end of life, and average predicted time of end of life
for components 1 and 2

PF. Therefore the reduced model cannot account for the accelerated degradation

that is due to a new C1 being coupled with a worn out C2. On the other hand this

difference does not show this trend when we consider the stochastic dependence.

The difference is 9 in run 1, then 24 in run 2, and then just 7 in run 3. This clearly

indicates the criticality of modelling stochastic dependencies between components

when attempting to do prognostics.

Furthermore, Figures 5.9 and 5.10 represent probability histograms of the es-

timated degradation distributions at the actual time of failure of the components.

Once again it is shown that modelling stochastic dependence has a great impact

on predicting the actual degradation trajectory of the components. This is be-

cause the average of the estimated degradation level is always closer to the failure

threshold value than when not considered.

Finally, a note regarding the prognostics using the generic model provided in

this chapter. These prediction of teol are simulated at t = 0 in runs 2 and 3.

Therefore, if PF is used for an online update of the parameters after receiving

new observations of the component health, we assume that the predictions would

then be even more accurate. This would also allow for considering break points

in the component’s health state, in the likes of shocks that might occur due to

environmental effects or sudden excess loading.

5.6 Discussion

This chapter motivated the importance of modelling stochastic dependencies in

systems with multiple components. For enabling such a task, we presented a

generic degradation model in which the degradation process of a component may

be dependent on the operating conditions, the component’s own state, and the
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Figure 5.9: Probability histograms of the estimated degradation distribution at
the actual failure time of components 1 and 2 in run 1

Figure 5.10: Probability histograms of the estimated degradation distribution at
the actual failure time of component 1 in runs 2 and 3
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state of the other components. We then showed how to fit the models to data

using particle filter. This method is then used for the data generated by the

gearbox. The results showed a comparative study between the model where

stochastic dependence is considered, and a reduced model where this dependence

is not considered. From this we conclude that considering stochastic dependence

allows for more accurate predictions of teol. This is essential since this is directly

linked to RUL and therefore affects maintenance decision making.
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6.1 Chapter Summary

Performing diagnostics of a system is not straight forward, the principle is to

be able to discriminate novelties that represent a change in system state. In

this chapter we start by introducing automatic pattern recognition through un-

supervised machine learning. We then review the literature on this topic in the

context of PHM. Afterwards, we present our methodology for performing diagnos-

tics of multi-component systems. This is done using Gaussian mixture models for

partitioning degradation data, and aims to uncover different degradation phases

in such systems. Moreover, this allows discriminating nominal degradation be-

haviour from accelerated ones.

6.2 Introduction

In light of what is presented in the previous chapters, we notice that stochastic

dependence can accelerate the degradation rate of components leading to un-

expected faults and failures that jeopardise system reliability. It is therefore

important to identify this accelerated degradation behaviour. In this chapter we

show our approach to partitioning data collected from the gearbox system with

the aim of identifying different degradation rates. Such an approach is further

justified when considering the prognostics and health management (PHM) con-

text, since it is not guaranteed that the condition monitoring data are always

labelled, whereby monitoring data are associated with the health state of the sys-

tem being monitored. Furthermore the scarcity or unavailability of such labels

make it difficult to infer useful information and thus make meaningful decisions.

Diagnostics is the process of detecting faulty attributes within a condition

monitoring signal. See Section 2.3.3 for more detail. However, although humans

are capable of recognising and distinguishing a multitude of patterns that occur

naturally, we still face many difficulties when trying to understand and discrim-

inate patterns that occur artificially such the ones present in signals and data

generated by sensors. This becomes more of an overwhelming challenge when we

deal with large amounts of data in the likes of condition monitoring data. Re-

cently however, there has been a surge in the number of applications which employ

machine learning techniques for finding patterns in signals and data (51, 114).

Unsupervised learning is the branch of machine learning that can be used to

automatically recognise patterns inside the data. It does so by partitioning the
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unlabelled data into different clusters, this is commonly referred to as clustering.

The available algorithms for clustering differ between each other in the way they

cluster the data.

The notion of proximity, similarity and dissimilarity is integral to clustering

algorithms, since the partitioning of the data is usually performed on data points

that are near one another. For example, a measure of proximity like Euclidean

distance can be used to show similarity between data points.

There exists two main classes for performing clustering, hierarchical clustering

and non-hierarchical clustering (268).

Hierarchical clustering methods work in a way where initially each point is

a cluster by itself, and then repeatedly combines the two nearest clusters into

one. It is however highly demanding of computational resources with algorithms

having a computational complexity of O(N3) or O(N2 logN) at best. Therefore

it is not suitable for real time applications and thus unattractive for the field of

PHM.

On the other hand, non-hierarchical clustering methods start by assigning

data points to clusters based on some randomly allocated cluster centres. They

maintain this set of clusters while shifting them slowly over the state space, and

then work by adjusting the placement of points into their nearest cluster. They

are considerably more efficient than hierarchical clustering methods and therefore

have been implemented extensively in the field of PHM. This will be reviewed in

the following subsection.

6.2.1 Literature Review

The most commonly implemented techniques for clustering in the PHM context

are: K-means, Fuzzy C-means clustering (FCM), self organising maps (SOM),

and Gaussian mixture model (GMM).

K-Means K-means (161) is one of the simplest and easy to implement unsu-

pervised clustering method. The method works by initially selecting a k number

of means and randomly placing them over the data. The data points are then

associated to the most relevant or nearest mean forming a cluster, this is the

assignment step. After this the centroid of each of those clusters is computed and

becomes the new mean, this is the update step. The assignment and update steps

are repeated until convergence, that is, when the centroids no longer change, or
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until a specific termination criteria is achieved.

A major limitation of this algorithm is that it is very sensitive to the initial

starting conditions. Because of this, many works have developed different vari-

ations and strategies for choosing the starting point for the cluster centres. An

efficient approach would be to have multiple runs of this clustering algorithm and

then choose the outcome that is best.

In (272), a vibration model which describes the physics of the dynamic be-

haviour of defective rolling element bearings is used to simulate data. Then,

frequency-domain features and signal envelope are extracted from the simulated

data. These features are used as a starting strategy to select the initial cluster

centres, giving robustness to the K-means approach. Finally, the method is ap-

plied on real data to check whether a bearing fault exists or not and to identify the

type of defect. Compared to the general k-means method, the authors reported

a substantial improvement of the classification results.

Fuzzy C-means The Fuzzy C-means algorithm (26) is one of the most well-

known and used algorithms for clustering, and seen as a an extended version of

the K-means algorithm. The K-means algorithm in fact, assigns each data sample

to one of the clusters, without any likelihood of that sample belonging to that

cluster. FCM overcomes this issue as it provides a fuzzy strategy, by which it

assigns the data samples to clusters with a certain grade of membership.

In (141) the authors propose an improved FCM algorithm for fault diagnosis.

In fact, this work tries to take into account the different contributions that the

features bring to clustering, contrarily to the general FCM approach in which

the different importance degrees of the features are not taken into consideration.

In this work, time-domain and frequency-domain features are computed from the

data. Then, a compensation distance evaluation technique is used to compute the

weights for each feature and reflect their different sensitivities to the clustering;

then, the improved FCM clustering algorithm is applied to fault diagnosis of

locomotive roller bearings. Other works on feature-weight assignments can be

found in (262, 47).

In (274) the authors propose a method called Fuzzy positivistic C-means clus-

tering for fault detection and identification in the context of vehicle suspension

systems. In fact, it is very complicated to construct physics-based models of sus-

pension systems and these approaches are non satisfactory. Instead data-driven

models can be used to extract the meaningful information contained in process
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measurements. The approach proposed in this work is divided into three steps. 1)

data pre-processing, the number of clusters c is roughly identified based on prin-

cipal component analysis (PCA). 2) the data set is clustered into the c different

clusters using fuzzy positivistic C-means clustering. In this step fault identifica-

tion metrics are defined. Fault lines are structured in the data space, and faults

are identified based on the distance from the centre of the cluster to the fault

lines. This approach serves for identifying the occurrence and the type of fault.

3) Fisher discriminant analysis is used to isolate the major factors for the faults.

Finally, the method’s performance is demonstrated on benchmark accelerometer

data.

Self Organising Maps Self organising maps is a type of artificial neural net-

works (ANN) that is trained in an unsupervised manner. A SOM is a collection

of neurons represented in a one or two dimensional array. Each neuron has a

weight vector that corresponds to a point in the data space or feature space.

Each data point is then assigned to one of the neurons according to its proximity

to the weight vectors. The idea here is to train the SOM by adjusting the weight

vectors so that the vectors for neighbouring neurons are in proximity to each

other in the feature space. Accordingly nearby data points are assigned to the

same neuron or its neighbours. This brings about clusters by grouping nearby

data points together.

for example in (110), vibration data from bearing is used to recover features

in time and frequency-domain. Then the data is normalised and fed into a SOM.

The SOM is used to cluster the unlabelled data. The output vector contains a

minimum quantisation error index which is sent to a back propagation neural

network. The MQE indicates how far the new data deviate from the normal

operation data sets that were used to train SOM. Finally, in the last stage, the

back propagation neural network trained with a degradation database, has its

weights chosen according to the failure times method. It can therefore identify

how the MQE index predicts the RUL of a bearing. The method is validated

experimentally on a bearing vibration database resulting in accurate predictions

of RUL.

In (266) A SOM-based radial-basis-function (RBF) neural-network is pro-

posed for early fault detection and preventive maintenance in the context of

induction machines, where faults are usually related to rotor faults. In this work,

four features are computed from the power spectra of machine vibration data.
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These features are used as inputs to a RBF neural network. In order to find the

optimal network architecture, an extended SOM comprising of a cell-splitting grid

algorithm is used to self-adjust the number of hidden neurons in the network. The

advantage of this approach is that the appropriate network architecture modelling

does not require many trial tests for the training phase. To verify the effective-

ness of the method, the authors apply it on vibration signals from electrical and

mechanical faults. Results show that the approach is able to classify different

types of machine faults and indicate the extent of the faults.

Gaussian Mixture Model In this thesis we choose to use Gaussian mixture

models for performing clustering. This is due to the many advantages it represents

over other approaches in the context of PHM. This choice is detailed along with

the GMM background in the next section.

In (280) the authors propose an unsupervised learning method for bearing

performance degradation assessment. Locality preserving projections (LPP) is

used for feature extraction from the original vibration data set which is repre-

sented in time-domain, frequency-domain, and time–frequency-domain signals.

In fact, in this application, the original data set is generally high dimensional so

it needs to be reduced. The authors propose LPP for dimentionality reduction,

since compared to PCA, it preserves the local structure of the data set. Then, a

GMM-base model is constructed using a healthy data set. This approach guaran-

tees to provide a method for online machine monitoring, every time a new signal

is used as input. GMM in fact, performs the log likelihood of each new input and

indicates how it follows the probability distribution of the initially GMM trained

healthy data set. This is used to evaluate whether a bearing is starting to degrade

and shows the degradation propagation.

In (281) GMM is used as a tool to construct baseline clusters only out of

healthy data of components. Then, an adaptive GMM with dynamic learning

rate is used to update the parameters of the Gaussian components. In this way,

the adaptive GMM will learn the changes in the state of the components online. A

quantification index is then used to evaluate whether the component is in current

degraded state. The quantification index is a Kullback–Leibler divergence (KL)

between the adaptive GMM and baseline GMM, which measures the similarity

between two probability density distributions of the Gaussian components. Time

domain statistical features and wavelet energy are generated from multi-sensor

signals, i.e. acoustic emission sensors signal and vibration sensor signals from a
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milling machine. Then, the final features are extracted by PCA and are used in

the GMM and adaptive GMM. Results show that the adaptive GMM can learn

to update parameters when the conditions of the components are changed from

healthy to degraded. Also, the KL-divergence shows the degradation propagation

as early as possible by increasing its value when the degradation occurs.

A highly cited work can be found in (241). A mixture of Gaussian hid-

den Markov models (MoG-HMM) is used for the estimation of RUL. A Wavelet

Packet Decomposition (WPD) technique is used to extract features from raw

data. These features are used in the unsupervised learning process of estimating

the parameters of a MoG-HMM model. In this case, the MoG-HMM model allows

to describe the different states and operating conditions of components. In this

learning phase, each raw data history is used to compute the mean duration and

standard deviation for which the component has been in each state of the cor-

responding MoG-HMM model. Also, the number of visits of in the component’s

history for each state are calculated. The second phase of the process uses the

online data to check the component’s state and computing its RUL. This is done

in three steps. 1) After computing the sequence of the component’s state in the

MoG-HMM model, the most persistent state in the last observations is used to

identify the current state of the component. 2) The probability of the component

to find the critical path, from the current state to the failure state, is computed.

The probability is computed in the case of short transition between the states, a

fast degradation process, and slow transition. 3) The RUL is estimated by using

the probabilities of transition. The method is then applied on data from bearings

and shows correct estimation of RUL. However, these predictions can only occur

once degradation starts.

6.3 Proposed Diagnostics Approach

In this section we first motivate our choice of using Gaussian mixture models for

performing clustering on multi-component degradation data, and then present

our approach for performing diagnostics for multi-component systems.

Most of the classical clustering algorithms such as hierarchical clustering, self-

organising maps, k-means and Fuzzy C-means; are largely heuristically motivated

and do not present a rigorous approach for determining an optimal number of

clusters (271). In comparison, clustering methods that are based on probabil-

ity models provide a great advantage since they allow the choice of an optimal
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number of clusters based on statistical criteria (56, 184), this is the case of the

Gaussian mixture model. Successful applications of GMM-based clustering have

been reported in the literature (17, 46, 269). Next, we further illustrate the advan-

tages of using GMM for clustering by providing a comparison with the K-means

clustering algorithm.

The K-means clustering algorithm is powerful and simple to implement, the

clusters are defined by a centre which is a single point in feature space, and we

then assign each data point to its nearest cluster. However, when we have groups

that overlap in the feature space, then it is hard to know which assignment is right.

K-means also best uses Euclidean distance to the centre. So if our clusters are

defined in a non-circular shape, for example data points that could be clustered

into 2 clusters where one has its spread over one dimension, and the other on the

other dimension; and both clusters are centred around the same place; K-means

will not perform optimally, and so not discover the right assignment of points to

their corresponding groups.

GMM is a very successful clustering technique that is based on probability

density estimation, it uses a mixture of Gaussian models and the expectation

maximisation (EM) procedure in order to fit the model parameters. Gaussian

mixture models can be seen as an extension of the K-means model, in this case

clusters are formed using Gaussian distributions. Thus, we now have a mean and

covariance which could describe ellipsoidal shapes. We could then fit the model

by observing the likelihood of the observed data using the EM algorithm, which

will assign the observations to each one of the clusters using a soft probability.

So since GMM assigns each observation in the data with a probability of

membership to a specific cluster, this eliminates the need for hard boundaries.

Such a thing is essential in the field of fault diagnosis because it would lead to

a lowered false alarm rate (75), which is a major challenge for maintenance, and

allows for smooth transition from one cluster to the other. In our case the different

degradation behaviours which in real life do not usually change suddenly, further

justifying the use of soft cluster boundaries versus hard ones.

Also, in GMM, after the clustering takes place, we obtain a generative model

for the data, which means that we could use that to sample new examples which

are similar to the real observations. This advantage can prove to be crucial in

degradation modelling, and could then lead to accurate simulation of the degra-

dation processes leading to more optimal maintenance strategies. Furthermore,

this could be used for balancing data sets, since fault and failure data are usually
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scarce. It would therefore reduce the risk of high bias when performing prognos-

tics.

Therefore we decide to use GMM as our pattern recognition technique due to

the many advantages that it presents to the field of PHM.

We aim to cluster degradation behaviour of multiple components within a

systems into different phases. GMM is highly appreciated in such a task since

it provides all data points with probabilities of belonging to all the clusters,

therefore even though a data point is clustered in a healthy degradation phase,

it might be belonging to a more critical cluster but to a lesser degree. This can

be monitored and allows for incipient fault detection.

When clustering different degradation behaviours we attempt to point out

that the degradation behaviour of components can sometimes deviate from what

is nominal. This is due to the stochastic dependence that is present between

components, and which can present degradation state-rate interaction, whereby

the degradation state of one component can affect the degradation rate of other

components. If correctly done, this should uncover different phases of degra-

dation rate, and especially point out to accelerated degradation behaviour in

multi-component systems. Consequently, appropriate precaution measures can

be taken.

6.3.1 Deciding on Cluster Count

A major issue that one might think of in the general case of unsupervised learning

is the cluster count, so how can the number of clusters can be chosen beforehand.

This is studied when considering cluster analysis, and many approaches have been

conceived.

The silhouette method stands out as one of the most successful ways of deter-

mining the cluster count (174, 209). The silhouette method is used to determine

the optimal number of clusters, which basically iterates between different cluster

numbers, and computes what is called a silhouette coefficient for the data, which

ranges between +1 and −1. Coefficients close to the value +1 indicate that the

data sample is far from the neighbouring clusters, while coefficients close to −1

indicate that the data sample is in the wrong cluster, and so the approach is to

aim for a higher average silhouette coefficient to obtain the optimal number of

clusters in that way.

Therefore we use the silhouette method in our approach. Also, we would like
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to note that since we are aiming at clustering different degradation phases, it is

important to cluster the data into more than two clusters. This is because it

is highly undesirable to switch from one cluster where degradation behaviour is

nominal, to a cluster where degradation behaviour is considered critical without

passing through a medium cluster. The reason for this is that such a switch would

not allow for the right measures to be taken so that a fault or failure is prevented.

6.3.2 Gaussian Mixture Model Background

For training GMM, we begin with several mixture components, indexed using c,

each of which is described by a Gaussian distribution. So each has a mean µc, a

variance or covariance σc, and a mixing coefficient πc.

We can now see how the joint probability distribution of multiple components c

is to be defined by the weighted average of the individual components, such as:

p(x) =
C∑
c=1

πcN (x;µc, σc) (6.1)

where C is the number of clusters. A way to interpret this joint probability

distribution over x in a simple generative manner, is if we were to draw a sample

from p(x), we first select one of the components with discrete probability π,

thus components with large π are selected more often. And so, select a mixture

component with probability π as:

p(z = c) = πc (6.2)

Then, given the component assignment z = c, we could draw a value for x from

the corresponding Gaussian distribution as in:

p(x|z = c) = N (x;µc, σc) (6.3)

So together the above mentioned two distribution make a joint model over x and

z. Discarding the value of z gives a sample from the marginal p(x) defined in 6.1.

Such models are called latent variable models (LVM) (170), the data x are mod-

elled jointly with an additional variable z that we don’t get to observe, and so is

considered hidden. This presence of the unknown value of z helps explain pat-

terns in the values of x, in this case the clusters.
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Since we will be using multivariate features, we will use a multivariate Gaussian,

which has same quadratic form, but uses vectors for µ of length n, or the total

number of features in a data point x, and a n× n covariance matrix Σ as in:

µ̂(x;µ,Σ) =
1

(2π)d/2
|Σ|1/2exp(−1

2
(x− µ)TΣ−1(x− µ)) (6.4)

where underbars represent vector form.

The EM algorithm basically proceeds iteratively in 2 steps, namely the expecta-

tion and maximisation steps. If we were given data from a multivariate Gaussian,

the maximum likelihood estimates for the model parameters are as such:

µ̂ =
1

n

∑
i

xi (6.5)

Σ̂ =
1

n

∑
i

(xi − µ̂)T (xi − µ̂) (6.6)

Where µ̂ represents the first moment of the data, or the mean, and Σ̂ represents

the second moment of the data, or the covariance estimate, which is the mean of

the n× n matrices formed by the outer product of x− µ with itself.

Concerning the first step, the expectation or E-Step of the EM algorithm, it

considers the Gaussian parameters µc,Σc, and πc as fixed. For each data point

i and each cluster c, it computes the responsibility value ric, i.e. the relative

probability that data point xi belongs to a specific cluster c. It does that by

computing the probability of x under the model component c, which is a weighted

Gaussian, and then normalises by the total of all the values of c:

ric =
πcN (xc;µc, σc)∑C
j=1 πjN (xj;µj, σj)

(6.7)

This yields a n × C sized matrix, which sums to 1 over the index c. Practically

if xi is very likely under the cth Gaussian, it would get a high weight.

For the second step of EM, the maximisation or M-Step, we fix the assignment

responsibilities ric and update the parameters of the clusters µc,Σc, and πc. Then

for each cluster c, we update its parameters using an estimate weighted by the

probabilities ric as if it observed a fraction ric of the data point i. So cluster c

sees a total number of data points nc which is the sum of the soft memberships
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or fractional weights assigned to cluster c as in:

nc =
∑
i

ric (6.8)

then πc equals nc normalised by the total number of data n, so this is seen as the

fraction of the data point probabilities that is assigned to cluster c:

πc =
nc
n

(6.9)

The weighted mean µc is the weighted average of the data:

µc =
1

nc

∑
i

ricx
i (6.10)

Similarly the covariance matrix is a weighted average of the n×n matrices formed

by taking the outer product of xi minus its cluster c’s mean:

Σc =
1

nc

∑
i

ric(x
i − µc)T (xi − µc) (6.11)

These iterations of the EM algorithm increase the log likelihood of the model,

and so increase its fit to the data. The log likelihood is then the log probability

of the data points under the mixture model. Therefore it is the sum of the data

points of log of the probability which is a mixture of Gaussians.

The EM algorithm is considered as a form of coordinate descent, so it is

guaranteed to converge. In practice the algorithm is stopped when the parameters

or the log likelihood objective start changing slowly. However, convergence is

not guaranteed to a global optimum, and so we can start from several different

initialisation and then use the log likelihood to select the best. Then for new

unseen data, we perform the E–step of the algorithm to assign it to a specific

cluster.

6.4 Case Study

We consider the case of the gearbox platform presented in Chapter 4 for applying

the diagnostics approach. In the following sections, we demonstrate our use of

GMM for clustering the degradation data of the two gear components. This is

done in 2D, whereby the degradation state of gear 1 is considered against the
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degradation state of gear 2.

6.4.1 Clustering of Different Degradation Phases

We use the RMS gear mesh frequency magnitude to represent the degradation

level of the components. These degradation data are provided from run 1 to the

GMM. They are then clustered after running 10 repetition of the clustering algo-

rithm. This is done since the final outcome might be sensitive to initial starting

conditions. Each repetition consists of 200 EM steps. The covariance matrix of

the GMM are chosen to be diagonal since this is more computationally efficient

than non-diagonal matrices. This then allows this method to be implemented in

less time and therefore could more frequently update its clusters in the presence

of a new data set. Moreover, the covariance matrices are not shared, this means

that they differ from one cluster to another. This adds flexibility to the clusters,

since some may span over a different range than others.

After using a silhouette analysis, the optimal cluster count is shown to be 3

clusters. The silhouette plot result is shown in Figure 6.1 and has presented the

highest average between different cluster counts. Specifically a cluster count of 3

to 6 were considered, and their silhouette averages measured.

Figure 6.1: Silhouette plot of three clusters. The dashed red line represents the
average value



CHAPTER 6. UNSUPERVISED LEARNING FOR PHM 113

The clustering result of the degradation data from run 1 can be seen in Fig-

ure 6.2. We can see three different clusters, each represented by a multivariate

Gaussian with distinct mean values and covariance matrices.

Figure 6.2: Degradation data from run 1 partitioned into three different clusters

From Figure 6.2 we can clearly see the three different clusters. Interpreting

these clusters and according to the degradation levels that they span over. We are

initially lead to the realisation that the clusters represent different stages of wear

of the components. The green cluster represents a healthy state for components;

the blue cluster represents a state where components start to wear out; and the

red cluster represents a state where components can be considered as severely

worn out.

6.4.2 Results

After partitioning the degradation data from run 1 into three different clusters,

we can use the clustering model to cluster new incoming data. This can be used

as basis for diagnosis of the system.

Next, we show how this can be done by clustering the data from runs 2 and

3. An overlay plot showing the time series degradation trajectories where each

time step belongs to a different cluster, can be seen in Figure 6.3.
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Figure 6.3: Degradation phases overlaid on the time series degradation data of
the two gears

From Figure 6.3 we see that straight from the start of run 2 the degradation

data points are clustered in the blue cluster. If we look at the start of run 3, we

see that the data points are clustered to the red cluster. This was expected since

we know that gear 2 was not replaced in runs 2 and 3, but that only gear 1 was

replaced. Therefore we can conclude that these three clusters do not only indicate

the degradation state, but also the degradation rate of the components. Since we

know that that gear 1 reaches failure earlier in run 2, we can thus link that fact to

being clustered in the blue cluster. Furthermore, gear 1 is clustered into the red

cluster at the start of run 3, and we also know that it reaches failure in that run

at a quicker rate than in runs 1 and 2. Thus, we can conclude that these clusters

do not only represent the degradation state of the system, but also degradation

rate. Accordingly three different degradation phases can be identified in the case

of this multi-component system.

Inspired by what we have seen in Section 4.3.3, we can denote the green cluster

to represent normal degradation, the blue cluster to represent accelerated degra-

dation and the red cluster represent excessive degradation. Therefore based on

the clustering of the incoming degradation data, this can be used as an indication

of incipient faults in a multi-component system.

Incipient faults are more clearly shown when we consider the probabilities of
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belonging to different clusters. This is something that can be achieved when using

GMM. Since a probability is associated to each degradation data point linking it

to all clusters at variant degrees. This is illustrated in Figures 6.4, 6.5 and 6.6. In

these figures, a moving average of window 30 is applied. This corresponds to the

loading cycle length in the experimental scenarios discussed in Section 4.3.2.1.

This is done in order to smooth out the transitions between the different clusters,

and thus grant a better indication of incipient faults.

Figure 6.4: Degradation data probability of belonging to the three different
clusters in run 1

In Figure 6.4, which corresponds to run 1, we see that the probability of

assigning data points to the clusters is oscillating between the clusters green

and blue at the start of the run. We can assume this is due to the different

loading cycles of the experimental platform. However, although very small, we

can see that the degradation data points start acquiring non-zero probabilities of

belonging to cluster red between time step 100 and 125, and then again between

150 and 200. At time step 205 the degradation data points are then assigned to

the red cluster.

In Figure 6.4, which corresponds to run 2, we see that from the start the

dominant cluster is the blue cluster. Also the cluster probabilities show a positive

trend of belonging to cluster red. This is until the probabilities are assigned to

the red cluster at around time step 130.
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Figure 6.5: Degradation data probability of belonging to the three different
clusters in run 2

Figure 6.6: Degradation data probability of belonging to the three different
clusters in run 3



CHAPTER 6. UNSUPERVISED LEARNING FOR PHM 117

In Figure 6.6, the dominant cluster is the red cluster, this is exchanged with

the blue cluster for a small interval between time steps 40 and 60. In this run

gear 1 reaches failure quicker than in runs 2 and 3.

What is shown in Figures 6.4, 6.5 and 6.6, demonstrates one of the strong

points of using GMM for clustering degradation data. In some sense these moving

averages can be used not only for diagnosing the system degradation phase, but

also this shows promise for performing prognostics. However, this aspect still

requires further study and validation.

Further to what was presented in this section, we would like to note that the

cluster model can be updated once a set of new data is available. This is very

useful for real world application, and should be done so that the clusters converge

to a more representative position over the degradation data. We do this for the

degradation data of runs 1 and 2, and then for runs 1, 2 and 3, these are visualised

in Figures 6.7 and 6.8 respectively.

Figure 6.7: Degradation data from runs 1 and 2 partitioned into three different
clusters

6.5 Discussion

In this chapter we presented our methodology for performing diagnostics of a

multi-component system. This was done through implementing unsupervised
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Figure 6.8: Degradation data from all three runs partitioned into three different
clusters

learning with Gaussian mixture models. The principle was to cluster the degra-

dation trajectory data of different components into different degradation phases.

This is done in order to discriminate accelerated degradation behaviour of a sys-

tem which arises out of stochastic dependency between the components.

This methodology was applied to the gearbox degradation data. The results

showed a successful implementation and therefore partitioning of the data into

three different clusters. These clusters indicated three types of degradation: nor-

mal degradation; accelerated degradation; and excessive degradation. Whereby

the last two types indicate that components tend to wear out faster than usual.

Therefore, this methodology allows the detection of incipient faults, even just af-

ter performing a maintenance intervention, by which a component can be replaced

but starts degrading in an abnormal manner due to stochastic dependence.
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7.1 Chapter Summary

After discussing and showing our work on multi-component system health indi-

cator extraction; and prognostics and diagnostics; we now move on to the final

aspect of prognostics and health management, health management, and introduce

a maintenance policy for such systems.

This chapter is concerned with economic dependence of multi-component sys-

tems. We begin by discussing multi-component dependencies. Nonetheless, in

contrast to what was presented in Chapter 2, here we put more emphasis on the

economic dependency, and present our modelling. We then describe the proposed

maintenance policy and the optimisation process. To demonstrate the utility of

the proposed maintenance policy we consider the case of the gearbox system and

the resulting data from Chapter 4. We then show our results and include sen-

sitivity analyses. We finally present our conclusions and discuss the managerial

implications of the work.

7.2 Introduction

Maintenance involves preventive and corrective actions that are carried out to

retain a technical system in, or restore it to an operating condition. Mainte-

nance optimisation aims to determine effective and efficient maintenance plans

for each component of a system in order to meet operator requirements for safety,

reliability and value.

In the literature, many policies have been developed for the maintenance of

single-component systems (63, 256). Such maintenance policies may be applied

to multi-component systems when the dependencies between components in these

systems are neglected. However, for many technical systems it is not reasonable

to assume components are independent, and it is necessary to model component

dependencies.

As seen in Chapter 2, dependencies can be classified into three types (179): (i)

economic dependence, whereby the cost of joint maintenance of a group of com-

ponents does not equal the sum of individual maintenance costs for these com-

ponents; (ii) stochastic dependence, whereby the state evolution of a component

influences the state evolution of other components; (iii) structural dependence,

whereby components structurally form a part, so that maintenance of a failed

component implies maintenance or at least the dismantling of other components
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that have still not failed. A fourth type of dependence is logistical dependency,

that exists for example if a single repairman is responsible for the maintenance

activities of various units or systems, or if a single stock of spare parts is used for

the replacement of multiple units.

Taking into consideration dependencies between components when modelling

maintenance of multi-component systems has recently shown an increase in pop-

ularity among researchers (28, 67, 89, 112, 179, 218). An overview about re-

cent advances on condition-based maintenance for systems with multiple depen-

dent components is given in (125). In fact, economic dependence has been in-

vestigated and integrated in a number of multi-component maintenance models

(67, 156, 179, 246). However, in these works, stochastic and structural depen-

dence are not considered. Failure dependence between components, whereby

the failure of a component can induce the failure of others has been studied in

the context of inspection by (89); and maintenance and warranty optimisation

by (218, 286) for two-component systems. In the latter, several block replace-

ment models considering both economic and failure interaction are proposed.

Condition-based maintenance (CBM), in which the preventive maintenance de-

cision is based on the observed system condition, has been introduced and has

become an important model in maintenance optimisation frameworks. Condition-

based maintenance has also been developed for two-component systems, see for

example (20, 43, 156). However, in such maintenance models, again only economic

dependence is considered. Recently, degradation interaction or state dependence,

which implies that the degradation evolution of a component depends on both its

degradation level and that of other components, has been introduced in (27, 28)

for prognostics of system lifetime, and in (203) for maintenance optimisation.

However, this latter work considers neither economic dependence nor intrinsic

state dependence whereby state evolution of a component depends on its own

state. Thus, there is a need to consider multiple dependencies in CBM.

With this in mind we propose a CBM model for a two-component system with

rate-state interaction, whereby the degradation rate of each component depends

not only on its own state but also on the state or degradation level of the other

component. This dependence phenomenon can be found in a number of industrial

systems, e.g., the state or quality of oil may directly impact the degradation

process of the crank and vice versa; wear on a pulley may impact the rate of wear

of a belt and vice versa; and likewise for chains and gears.

In our model, we suppose that inspections occur at regular time intervals and
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identify the state of each component. Maintenance actions are then optimally

planned based on the current, inspected state of the components, and broadly

corresponds to a choice of: do nothing; replace component 1 and not component

2; vice versa; replace both. An interesting consequence of the rate-state inter-

action that we study is that when one component is replaced but not the other,

obviously the system is not perfectly maintained, i.e. it is not renewed, but more

interestingly the new component will degrade at a different rate to that when the

system was new, because the degradation rate of the new component depends on

the state of the old component, for more detail see Section 4.3.2.1.

This partial replacement, or imperfect maintenance, of the system is then

an imperfect ”repair” that considers imperfect repair in a different way to the

existing approaches in the literature, in which age/hazard reduction models pre-

dominate (63, 265, 264). It is important to note that when considering state

dependence between components, existing CBM models may lead to sub-optimal

policies, this can be concluded from the results of Chapter 5. This is because

degradation modelling has a significant impact on finding optimal maintenance

policy in CBM and, in these existing CBM models, state dependence is not yet

considered. Therefore, an important contribution of this work is to propose and

develop a CBM policy in which adaptive preventive maintenance and oppor-

tunistic maintenance rules to select a component or group of components to be

maintained, and in so doing to open a new strand of thinking in the modelling of

imperfect maintenance.

This chapter develops a model for a condition-based maintenance policy which

is applied on the case study and degradation modelling results that are detailed

in Chapters 4 and 5. A cost model is developed to find the optimal maintenance

policy. We argue that ignoring stochastic dependence will lead to a maintenance

policy that is cost-inefficient. Thus, in our view, our model makes a contribution

to the literature that will not only lead to further developments in maintenance

optimisation for systems with stochastic dependence but also be useful for prac-

tical application. Furthermore a study of the impact of economic dependence is

considered via a sensitivity analysis.
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7.3 System Description and Dependency

Modelling

We refer to our generic multi-component degradation model which is described

fully in 5. However, we consider a series system with only two dependent com-

ponents.

When one or both components fail the system fails. Each component i is

subject to a continuous accumulation of degradation in time that is assumed to be

described by a scalar random variable X i
t . Component i is considered as failed if

its degradation level reaches the failure threshold Li, i = 1, 2. When a component

is not operating for whatever reason, its degradation level remains unchanged

during the stoppage period if no maintenance is carried out. We assume that

on replacement of a component, the degradation level of the component is reset

to zero. Thus, when the two components are replaced together, the system is

returned to the ”as new” state, renewal.

In our model, we will use the term replacement of a component to denote the

maintenance action whereby the degradation level of the replaced component is

reset to zero. In reality, such an action may not in fact be a replacement but

instead a ”repair”. Nonetheless, the model will assume a repair and a replacement

are synonymous.

7.3.1 Economic Dependence Modelling

All necessary maintenance resources such as spare parts, maintenance tools, re-

pairmen, etc. that are required to execute maintenance actions are assumed

always available at a planned inspection time. It is also assumed that mainte-

nance actions, such as replacements and inspections are carried out at discrete

times. Replacements may be corrective, that is on failure of the system; or pre-

ventive, prior to system failure; and that in the standard manner the costs differ

in the two cases.

7.3.1.1 Individual Maintenance Costs

If a preventive replacement is individually carried out, a preventive cost is then

incurred. In a general way, the preventive cost of component i, denoted Ci
p, can

be divided into two parts: Ci
p = cip + cd.di where cd.di is the downtime cost due
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to production loss during replacement that takes di time units, and cip includes

all other costs such as spares, labour, set-up.

In the same manner, the cost of corrective replacement of component i is

Ci
c = cic + cd.di, (cic ≥ cip).

Note, by preventive replacement of a component, we mean the replacement

of a component when it has not yet failed, and by corrective replacement of a

component, we mean the replacement of a component when it is failed. Full

details of the maintenance policy follow in Section 7.4.

7.3.1.2 Economic Dependence and Cost Saving

When two components are simultaneously replaced, total maintenance cost can

be reduced (179, 67, 263). In our model, this cost saving arises from the sharing

of the replacement set-up cost, and the reduction of replacement duration. In

this way, we define the cost-saving of joint replacement as

CS−,− = a.(c1
− + c2

−) + b.(d1 + d2).cd, (7.1)

where:

• ci− (i = 1, 2) could be either cip or cic, i.e. preventive or corrective;

• a (0 ≤ a < min(c1
−, c

2
−)/(c1

− + c2
−)) is the cost-saving factor for joint re-

placement of two components. It is shown in (263), that the cost saving

is typically equal to 5% of the total replacement cost of the components

(a = 0.05);

• b (0 ≤ b ≤ min(d1, d2)/(d1 + d2)) is the duration-saving factor for joint

replacement.

In this way, a and b express the economic dependence degree between the two

components. When a = 0 and b = 0, the two components are economically inde-

pendent. The larger the a and b values are, the stronger the economic dependence

between the two components. Note, the effect of economic dependence on the

availability of a system is studied in (64).

It is important to note that, in this work, the economic dependence is positive

(CS−,− ≥ 0). However, in parallel or complex structure systems where a failure

of a component or a group of group of components may not lead to a failure of

the system, the economic dependence may be positive or negative, see (175, 252).



CHAPTER 7. MAINTENANCE OPTIMISATION 125

In this work, the elements of the economic dependence are integrated into an

opportunistic maintenance model that is described in the next section.

7.4 Maintenance policy

We assume that the degradation level of each component is measured at an in-

spection that is instantaneous, perfect, and non-destructive. An inspection incurs

a cost cI . A failure of a component is assumed to be instantaneously revealed by

a self-announcing mechanism, but that replacement can commence only at the

next inspection. In this way, the usual practical requirement to prepare for a

replacement is modelled while the system downtime due to failure is known.

7.4.1 Description of the Proposed Maintenance Policy

We assume that the two components of the system are inspected at regular time

intervals with inter-inspection interval ∆T . ∆T is a decision variable to be opti-

mised. More precisely, for each component i (i = 1, 2), the degradation level at

inspection times Tk = k∆T (k = 1, 2, ...) is X i
Tk

= xiTk . The maintenance policy

is as follows. For i = 1, 2:

• if component i fails between (Tk−1, Tk) (when its degradation level reaches

the failure threshold Li), then it is replaced at time Tk;

• if at time Tk, component i is still functioning, it is inspected. Based on the

inspection results and the preventive maintenance rules, a decision about

whether or not component i should be replaced at time Tk will be taken.

We specify rules for individual preventive replacement and for opportunistic

preventive replacement.

Individual Preventive Replacement If the degradation level of component

i (i = 1, 2) at time Tk is greater or equal to a fixed threshold mi
p ( xiTk ≥ mi

p),

component i is immediately replaced. mi
p, called the preventive threshold of

component i, and is a decision variable to be optimised.

Opportunistic Replacement The main idea of the proposed opportunistic

replacement model is to capitalise on both the economic dependence and the

stochastic dependence between the two components. The economic dependence
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is manifested in the shared set-up and the cost-saving therein; The stochastic

dependence, through the term ∆Xji in Eq 5.2 may also incentivise, depending

on the strength of the dependence, joint replacement. To this end, for each com-

ponent i, an opportunistic threshold, denoted mi
o (0 < mi

o ≤ mi
p), is introduced.

The opportunistic maintenance decision rule is the following. If component j

(j = 1, 2 and j 6= i) is correctively replaced or selected to be preventively re-

placed at time Tk, component i is preventively replaced together with component

j if the degradation level of component i is such that xiTk ≥ mi
0. The latter implies

that the system is renewed at time Tk. m
i
o (i = 1, 2) is also a decision variable

that must be optimised.

An illustration of the proposed opportunistic maintenance policy is shown in

Figure 7.1.

0 20 40 60 80 100 120
0

20

40

60

80

0 20 40 60 80 100 120
0

20

40

60

80

Time

Time

Preventive replacement of component 1

m2o

X2t

X1t m1p

m1o

m2p

L2

L1
Component 1 fails

Opportunistic replacement of component 2

Corrective replacement of component 1

Inspection interval

Figure 7.1: Illustration of components’ degradation evolution and the proposed
maintenance policy

We label this general policy as policy V. To study the impacts of opportunistic

replacement, two special cases of this policy are herein considered as follows

• When m1
p = m1

o and m2
p = m2

o, there is no opportunistic replacement, the

policy becomes a classical condition-based maintenance policy (175) with

discrete inspections, which we call policy V1;

• When m1
o = m2

o = 0, two components are jointly replaced together, the

proposed policy becomes a joint replacement policy, which we call policy

V2.
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To investigate the effects of economic and stochastic dependence, we compare

the cost-rates of these three policies V, V1 and V2 in Section 7.5.2.

7.4.2 Optimisation of the Proposed Maintenance Policy

As described, ( ∆T,m1
p,m

1
o,m

2
p,m

2
o) are the decision variables of the general op-

portunistic replacement policy that we study. Their optimal values must be

determined, given some suitable criterion. For this purpose, a cost model is de-

veloped in this section. In particular, we use the long-run expected cost per unit

of time (or cost-rate) including replacement and inspection costs.

The cost-rate is defined generally as:

C∞(∆T,m1
p,m

1
o,m

2
p,m

2
o) = lim

t→∞

Ct(∆T,m1
p,m

2
o,m

2
p,m

2
o)

t
, (7.2)

where Ct(∆T,m1
p,m

2
o,m

2
p,m

2
o) is the cumulative total maintenance (replacement

and inspection) cost in period (0 t]. According to the renewal theory (208), Eq.

(7.2) can be rewritten as follows:

C∞(∆T,m1
p,m

2
o,m

2
p,m

2
o) =

E[CTre(∆T,m1
p,m

2
o,m

2
p,m

2
o)]

E[Tre]
, (7.3)

where E[.] is mathematical expectation and Tre is the length of the first renewal

cycle of the system, i.e., all components of the system are replaced at time Tre.

Without losses of generality, we assume that that Tre = ∆T.m (m is a positive

integer), and so we get:

CTre(∆T,m1
p,m

2
o,m

2
p,m

2
o) =

∑m
k=1(Ck

ins + Ck
main) + Tdown.cd

m ·∆T
,

with:

• Ck
ins = u.cI with u (u = 0, 1, 2) being the number of components inspected

at Tk, noting that failed components are not inspected;

• Ck
main = C1

p + C2
p − CSp,p if the two components are jointly, preventively

replaced; Ck
main = Ci

p if only component i is preventively replaced; Ck
main =

Ci
p+C

j
c−CSp,c if component i is preventively replaced and component j (j 6=

i) is correctively replaced; Ck
main = Ci

c if only component i is correctively

replaced and Ck
main = 0 if no replacement is performed at Tk.
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Obtaining a closed-form expression for the cost-rate in Equation (7.3) is

very difficult or even impossible. In (91), an efficient method based on semi-

regenerative processes theory is introduced to obtain a closed-form expression

for the cost-rate. However, this analytical method is applicable for single-unit

degrading systems with time-homogeneous degradation behaviour. Therefore,

in this work, the cost-rate is evaluated, given ∆T,m1
p,m

1
o,m

2
p,m

2
o, using Monte

Carlo simulation. By varying the values of the decision variables and performing

an exhaustive search, the minimum cost-rate can be identified.

C∞(∆T ∗,m1∗
p ,m

1∗
o ,m

2∗
p ,m

2∗
o ) =

min{C∞(.)0<∆T,0 < m1
p ≤ L1,0 < m1

o ≤ m1
p,0 < m2

p ≤ L2,0 < m2
o ≤ m2

p
}. (7.4)

7.5 Case Study

We will consider the case study presented in Chapter 4. With multiple interacting

components, we saw that the degradation trajectories of each of the components

of a new gearbox, whereby all components are new, to be different to those of a

partially gearbox, whereby some components are new.

This stochastic dependence, and the economic dependence arising from shared

set-up costs, mean that an opportunistic maintenance policy is appropriate.

Therefore, in what follows, we show how the opportunistic replacement policy

can be i) optimised and ii) used in practice.

It should be noted that the data are scaled and all parameters are given in

arbitrary units, either arbitrary cost unit (acu) or arbitrary time unit (atu).

The inspection cost is 10 acu (cI = 10). When each gear is individually

replaced, the replacement cost and the maintenance duration are c1
p = c1

c = 500

acu, c2
p = c2

c = 600 acu and d1 = d2 = 1 atu. When both gears are replaced

together, 5% of the total replacement cost of the components is saved (a = 0.05)

and the total maintenance duration is reduced by 50% (b = 0.5). In addition,

when the system fails we have to pay 100 acu per downtime unit (cd = 100). The

downtime cost (due to system failure) is taken to be the (negative of the) average

of the output performance over the period of observation of the system, although

in principle the downtime cost could be specified in other ways.

Regarding the state interactions, we will consider the model presented in

Chapter 5, and in particular using the estimated parameters on the gearbox data
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that were shown in Section 5.5.

Next, the fitted degradation model is integrated with the proposed mainte-

nance model to find the optimum policy.

7.5.1 Optimum Maintenance Policy

To evaluate the cost-rate, a very large number of life cycles of the system were sim-

ulated with above data. To find the optimal decision parameters (∆T,m1
p,m

1
o,m

2
p,m

2
o),

the cost-rate C∞(∆T,m1
p,m

1
o,m

2
p,m

2
o) is evaluated for different values of ∆T

(∆T > 0), m1
p (0 < m1

p ≤ L1), m1
o (0 < m1

o ≤ m1
p), m

2
p (0 < m2

p ≤ L2)

and m2
o (0 < m2

o ≤ m2
p) using Equation (7.3). With a precision of 0.010

specified for the cost-rate, the convergence of the cost-rate is reached from 10000

renewal cycles. The optimum values of the decision parameters are ∆T ∗ = 60,

m1∗
p = 0.55, m1∗

o = 0.50, m2∗
p = 0.50 and m2∗

o = 0.40 with the minimum cost-rate

C∞(∆T ∗,m1∗
p ,m

1∗
o ,m

2∗
p ,m

2∗
o ) = 2.90 acu. It is interesting to note that the prob-

ability of individual replacement is 0.31 for C1 and 0.38 for C2. The probability

of joint replacement is approximately 0.31.

Figure 7.2 shows the relationships between the minimum cost-rate and the

inter-inspection interval ∆T for the proposed opportunistic policy (policy V),

non-opportunistic policy (policy V1) and the joint replacement policy (policy

V2). Each point represents an optimal policy with a given value of ∆T .

It is shown that the proposed opportunistic maintenance policy (policy V)

always provides the lowest cost-rate. We observe that when the inspection interval

∆T < ∆T ∗ the maintenance cost increases rapidly with a decreasing ∆T , and

that when ∆T gets smaller, the difference between the three policies gets smaller.

However, when ∆T > ∆T ∗, the cost-rate of the non-opportunistic policy (policy

V1) increases rapidly with an increasing of ∆T . While the cost-rate of policies

V and V2 increases slowly with the increasing of ∆T . These interesting results

mean that the opportunistic replacement and the joint replacement can better

compensate a sub-optimally large ∆T .

7.5.2 Impact of Economic Dependence on the Cost

We now analyse the impact of economic dependence on the opportunistic replace-

ment maintenance policy. This is carried out by analysing the sensitivity of the

minimum cost-rate for three policies V, V1 and V2 to the economic dependence

degree (a, b) between the two components.
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Figure 7.2: Cost-rate as a function of inter-inspection interval ∆T

To study the performance of these three policies, a relative excess-cost in the

minimum cost-rate of the proposed opportunistic policy V compared to policy

Vi, denoted ∆Ci (i = 1, 2), is used. It is defined as follows:

∆Ci =
C∞V i − C∞(∆T ∗,m1∗

p ,m
1∗
o ,m

2∗
p ,m

2∗
o )

C∞V i
· 100%

where C∞V i is the minimum cost-rate of policy Vi with i = 1, 2. According to the

definition, ∆Ci > 0 means that policy V is more effective than policy Vi and less

effective in the opposite case.

7.5.2.1 Sensitivity Analysis to a

We vary a from 0 to 20% while the others parameters remain unchanged. For each

value of a the minimum cost-rate of each policy is determined and the excess-cost

is then evaluated. Summary results are shown in Figure 7.3.

Figure 7.3(a) shows that the cost-rate decreases with the cost-saving factor a.

This can be explained by the fact that maintenance costs reduce as a increases.

It is not surprising that the proposed opportunistic policy V always provides a
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Figure 7.3: Cost-rate (a) and excess-cost (b) as a function of a

lowest cost-rate. This is because policies V1 and V2 are two special cases of

policy V.

Figure 7.3(b) shows that when a < 10% the excess-cost related to policy

V2 increases with an increasing of a. This means that the cost-rate of policy

V2 decreases more slowly than that of policy V as a increases. However, when

a > 10%, the cost-rate of policy V2 decreases more rapidly than the cost-rate

of policy V. While the cost-rate of policy V1 decreases more slowly than that of

policy V1 with an increasing of a. This can be explained by the fact that when

the two components tend to be jointly replaced when the cost-saving factor is

high.

To study more the impact of economic dependence degree on the maintenance

cost, we consider sensitivity with respect to the duration-saving factor b.

7.5.2.2 Sensitivity Analysis to b

Here we vary b from 0 to 50% while the others parameters remain unchanged.

For each value of b the minimum cost-rate of each maintenance policy is deter-

mined and the excess-cost is then evaluated. The results obtained are shown in

Figure 7.4.

It is not surprising again that an increasing of b (or equivalently a reduction

on maintenance duration when two components are replaced together) leads to a

decreased cost-rate. However, the effect for both the opportunistic policy (V) and

non-opportunistic policy (V1) are broadly the same, in a similar manner to that

for a varying a. This suggests that for both policies there is a tendency that re-

placements of components are simultaneous. This is natural for the opportunistic

policy because this is its purpose. However it might have been expected that the
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Figure 7.4: Cost-rate (a) and excess-cost (b) as a function of b

non-opportunistic policy to show less dependence on a and b. Our explanation

for this is as follows:

When there is no opportunistic replacement, then the threshold for preven-

tive replacement compensates (for component C1 in this case). It is lower (than

with the opportunistic policy) so that more often than not, the replacement of

components is simultaneous (and set up cost is saved). If it were not the case

that replacements are simultaneous then the cost-rate for policy V1 would not

depend on a and b in the way it does. This effect only occurs because of the pos-

itive stochastic dependence. If there was no positive stochastic dependence then

the simultaneous replacement of the components when one reaches a preventive

replacement threshold would be inefficient.

Thus, when there is no stochastic dependence between components, oppor-

tunistic policies become more effective as the extent of economic dependence

increases. This is well known and obvious. However, it would appear that when

there is also positive stochastic dependence this phenomenon is much less ap-

parent. This is because a non-opportunistic policy will then compensate for the

absence of opportunities for replacement by lowering the threshold for preventive

replacement of the components. The positive stochastic dependence ensures that

replacements usually remain simultaneous because components will tend to cross

their replacement thresholds together. That said, this degrading together phe-

nomenon will tend be more apparent when the lifetimes of the components are

broadly similar as is the case for the gearbox system.
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7.5.2.3 Optimum Policies When a = 0 and b = 0

We suppose now that two components are economically independent, i.e., a = 0

and b = 0. The optimum maintenance policies are given in Table 7.1 where

Pjoint indicates the probability that two components are jointly replaced at each

maintenance.

Optimum decision variables Pjoint Minimum cost-rate

Policy V

∆T ∗ = 60,

m1∗
p = 0.6,m1∗

o = 0.55,

m2∗
p = 0.5,m2∗

o = 0.45

0.18 3.22

Policy V1 ∆T ∗ = 60,m1∗
p = 0.6,m2∗

p = 0.5 0.12 3.26

Policy V2 ∆T ∗ = 50,m1∗
p = 0.55,m2∗

p = 0.65 1 3.69

Table 7.1: Optimum maintenance policies when a = b = 0

The obtained results show that when two components are economically inde-

pendent, the proposed opportunistic policy V is still slightly better than the non-

opportunistic policy V1. This is thanks to the opportunistic thresholds which

allow policy V to become more flexible and better take into consideration the

stochastic dependence between components than the non-opportunistic policy

V1. However, the joint replacement (policy V2) leads to a higher cost-rate which

means that the joint replacement is not effective for this case.

7.5.3 Impacts of State Dependence on the Cost

To study the impact of state dependence between components on the optimum

maintenance policy, we assume now that the degradation process of each compo-

nent evolves independently. In this way, we could reduce the degradation model

to two independent gamma process for which the shape and scale parameters can

be estimated using maximum likelihood estimation, or by using the particle filter.

The results in the estimates are presented in Table 7.2.

The proposed maintenance policy is then applied. We obtained the opti-

mal decision variables ∆T ∗ = 120, m1∗
p = 0.60, m1∗

o = 0.45, m2∗
p = 0.55 and

m2∗
o = 0.40. When compared with the results obtained in Section 7.5.1, these

optimal values are significantly different. In addition, if we apply these optimal

decision variables for the case considering the state dependence between compo-
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Component αi βi

C1 0.1165 0.0100

C2 0.0919 0.0090

Table 7.2: Estimated parameter values without considering stochastic
dependence

nents, the cost-rate is then C∞(∆T ∗,m1∗
p ,m

1∗
o ,m

2∗
p ,m

2∗
o ) = 3.75 acu which is

significantly higher than the one obtained when the state dependence is consid-

ered in degradation modelling ((3.75-2.90)/2.90)x100=29.3% higher). This means

that not considering the state dependence between two components can lead to a

sub-optimal maintenance policy. Of course, the difference is itself dependent on

the economic “dependence degree” between the components.

7.6 Discussion

In this chapter, a condition-based maintenance policy for a two-dependent com-

ponent system was studied. Two kinds of dependency were investigated and

integrated in the maintenance modelling: state dependence whereby the degra-

dation rate of each component depends not only on its state but on the state

of the other component; and economic dependence whereby set-up cost and du-

ration are shared when components are replaced simultaneously. To select the

components to be preventively maintained at each regular time interval, adaptive

preventive replacement and opportunistic replacement rules were proposed. A

cost model taking into account the economic dependence between components

was developed to find the optimal values of the decision variables. The policies

were studied in the context of a gearbox system consisting of gears presented in

Chapter 4. The results indicated that (i) accounting for the state dependence be-

tween components is important, and to ignore it has a significant impact ( 29.3%)

on the cost; (ii) introducing an opportunistic threshold for replacement makes

the maintenance policy more flexible and less sensitive to a sub-optimally large

inspection interval; and (iii) when there exists positive stochastic dependence

between components so that components tend to degrade together, introducing

an opportunistic threshold for replacement in order to share set-up costs achieves

less when there is positive stochastic dependence between components than when

there is not. This is because replacements will tend to be synchronised and this
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tendency to synchronise arises precisely because of degradation dependence. Thus

one might claim a general insight: opportunistic maintenance is less opportune

when components tend to degrade together than when they do not.



Chapter 8

Conclusion

8.1 Contributions

This thesis considered multi-component dependencies within prognostics health

management (PHM). The emphasis was on accurately modelling the stochastic

dependency between components, and predicting their future health state. This

is important since all maintenance decision making that follows bases itself on

the assessment and predictions of the equipment’s health.

This thesis starts with Chapter 2 by providing a literature review and back-

ground relevant to the understanding of the works presented later. We presented

the different maintenance strategies and gave an overview of the PHM framework.

We then discussed the dependencies that can take place between components

within a multi-component system. These play an essential role for motivating

the work presented in this thesis.

In Chapter 3 we provided an overview on the available experimental plat-

forms and data, highlighting the unavailability of data sets that are suited for

studying stochastic dependence between components. This was followed by the

development of our gearbox experimental platform which is capable of provid-

ing such data. This allows us to conduct a more realistic study on stochastic

dependency between components which would lead to more realistic degradation

modelling. The first results of the platform clearly showed inter-dependencies

between the degrading components. This demonstrates the development of a

novel experimental platform capable of studying stochastic dependence between

multiple components.

Chapter 4 was dedicated to accurate health indicator extraction from multi-

136
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component systems. We presented our methodology for doing so, whereby we

made use of different pre-processing steps preparing the vibration signals for the

actual processing. We then performed a time-frequency domain analysis via a

short time Fourier transform. This resulted in time series data representing the

evolution of degradation of the different system components. This was applied

after running another experimental configuration of the gearbox experimental

platform that was presented in Chapter 3. This experimentation consisted of

three runs to failure and was specifically designed so that we could accurately

monitor and understand the effect of the degradation interactions that were dis-

covered in Chapter 3. The results demonstrated that a degradation dependence

can in fact take place between new and old worn out components, this depen-

dence causes accelerated wear in components which was shown to reduce their

lifetime down to 29 %.

In Chapter 5 we presented our development of a novel generic degradation

model, which is capable of accounting for the interactions shown in the results of

Chapter 4, additionally accounting for the operating condition and intrinsic wear

that a component might endure throughout its lifetime. The capability of the

model was first shown thorough a numerical simulation which demonstrated simi-

lar results to those of the gearbox experimental platform. The model parameters

were then estimated using the degradation data of the experimental platform,

this was done by via Bayesian inference and sequential Monte Carlo, specifically

using the particle filter method. The particle filter was later used to project the

degrading state of the components therefore allowing us to perform prognostics

using the model, and the observed states of the components.

In Chapter 6, we showed our methodology for performing diagnostics within

multi-component system. We performed clustering for uncovering degradation

patterns which uses unsupervised machine learning. We then motivated the par-

ticular choice of Gaussian mixture models (GMM) in the field of PHM. We used

the GMM to cluster the different health states of the gearbox platform and showed

that different degradation phases can also be extracted. These phases can indi-

cate accelerated degradation that take place between components that might not

be considered otherwise. Therefore the diagnostics methodology presented can

be used for detecting incipient faults, and for prior warning of pre-mature system

failure.

Finally in Chapter 7, and in light of the work and results that were presented

earlier in the thesis, health management for multi-component systems was consid-



CHAPTER 8. CONCLUSION 138

ered. Different maintenance policies were studied and compared which exposed

the importance of accounting for stochastic and economic dependencies within a

multi-component system. The maintenance optimisation strategy was validated

on the data from the experimental gearbox and using the degradation model

presented in Chapter 5. The results showed that ignoring the state dependence

between components has a significant impact of 29.3% on the cost. Introducing

an opportunistic threshold for replacement makes the maintenance policy more

flexible and less sensitive to a sub-optimally large inspection interval. And that

when components tend to degrade together introducing an opportunistic thresh-

old for replacement in order to share set-up costs achieves less improvements than

when such dependence does not exist.

8.2 Limitations

Although the work presented in this thesis contributes to the PHM community

by studying multi-component systems and their dependencies, nevertheless im-

provements to these works can be conducted.

1. Different configurations of the experimental platform, or a development

of more generic platform should be considered for exploring the effects of

stochastic dependencies other than the studied degradation dependencies.

This could be seen to incorporate different environmental effects into the

operation process with varying work loads.

2. Although we proposed the use of a generic data driven degradation model,

this can be further improved by integrating the capability of accounting for

non numerical data and event data. This could greatly benefit the accuracy

of the model when historical data can be provided.

3. Other multi-component system case studies should be considered for study-

ing stochastic dependence between components. This would improve the

generality of the findings presented in this thesis. Also, a comparative study

of different state of the art prognostics approaches could be conducted in

the case of multi-component systems.

4. In this thesis three runs to failure are conducted, where one test is per-

formed in each run. This allow us to determine the stochastic dependence
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coefficients which are presented in Chapter 5. However, more robust coeffi-

cient values can be identified if more tests are conducted. This would result

in a distribution where the average coefficient values can be extracted.

8.3 Future Work

1. Many legacy industrial systems do not have the correct sensor configura-

tion for extracting health indicators for the different components that are

present. Therefore works on signal separation can be considered in the

context of condition monitoring.

2. As suggested in Chapter 6, Gaussian mixture model clustering results should

be further studied since they showed promise for providing means of per-

forming prognostics.

3. Regarding maintenance policies and for a more generic approach, reinforce-

ment machine learning should be considered since degradation simulation

can be easily provided using the generic degradation model that we devel-

oped. An agent can then be given the objective yo explore different policies

under different constrains, ultimately leading to a best policy.

8.4 Main Finding

Throughout this thesis we have investigated prognostics and health management

for multi-component systems. The main emphasis was on stochastic dependence,

whereby the degradation state of a component can affect the degradation rate of

others. Through the provided case study of the gearbox accelerated life testing

platform, we have realised that old worn components can influence the degrada-

tion rate of new components. This effect is usually neglected when performing

PHM, which as shown throughout the thesis can lead to unexpected faults and

failures. We have therefore provided a PHM approach that accounts for such

issues.
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8.5 Closing remarks

Our work on prognostics health management for multi-component systems ul-

timately contributes to the PHM society by presenting a generic approach for

dealing with health indicator extractions; diagnostics and prognosis; and health

management of complex systems. This answers a need in PHM since machinery

and equipment keeps getting more complex, which is also seeing more integration

of sensors and abundance in condition monitoring data.

In addition to this work, we believe that there will be a need for integrating

such work within a big data framework, whereby condition monitoring data is

transmitted to cloud services and processed. The aggregation of all this condition

monitoring data along with event data can eventually lead to more generic and ac-

curate prognostics for different machinery and therefore allowing us to go beyond

the development of customised PHM approaches for some specific equipment.

We believe that in the future such a thing might only be accomplished by end

to end learning approaches in the likes of what is seen today in deep learning,

despite the challenges which were mentioned in Chapter 2. For example the

success of such learning techniques has soared in the computer vision field recently,

and this is mainly due to its capability of extracting increasingly abstract features

from the images (90). Although works on deep learning are being done in PHM,

to really reap the power of such techniques, transfer learning should be embraced.

This is because the data provided in condition monitoring is mainly unbalanced

and failures and fault data are very scarce for some equipment but abundant for

others.



Appendix A

A.1 Gamma Distribution

A random variable X which is gamma-distributed with shape αi and rate βi is

denoted

X ∼ Γ(αi, βi).

The corresponding probability density function (PDF) is

fαi,βi(x) =
1

Γ(αi)
(βi)α

i

xα
i−1e−β

ixI{x≥0},

where:

• Γ(αi) =

+∞∫
0

uα
i−1e−udu denotes a complete gamma function;

• I{x≥0} is an indicator function. I{x≥0} = 1 if x ≥ 0, I{x≥0} = 0 and

otherwise.
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[146] Chuan Li, René-Vinicio Sanchez, Grover Zurita, Mariela Cerrada, Diego

Cabrera, and Rafael E Vásquez. Gearbox fault diagnosis based on deep

random forest fusion of acoustic and vibratory signals. Mechanical Systems

and Signal Processing, 76:283–293, 2016.

[147] Heping Li, Estelle Deloux, and Laurence Dieulle. A condition-based main-

tenance policy for multi-component systems with lévy copulas dependence.
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