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1 Introduction 

Many studies highlight the importance of maintenance within the production context. In 

an early paper, Geraerds (1978) argued that The Netherlands spent 14% of GDP on 

maintenance activities, 34% of which was associated with expenditure for industrial 

plant. More recently, Komonen (2002) reported that in Finland maintenance cost is 

typically 5.5% of the turnover of a company, but could be as much as 25%. Generally, 

organisations have become increasingly aware that proper maintenance of their 

production facilities is a vital part of their everyday business (Cholasuke et al., 2004). 

Alsyouf (2009) observes that the maintenance function contributes a potential 

improvement of 14% in return on investment, and in a later work Alsyouf et al. (2016) 

show that good maintenance planning can reduce maintenance costs significantly. There 

is, therefore, a great deal of financial interest to optimise maintenance operations and thus 

reduce the effect of plant downtime by identifying and removing defects (faults) before 

they cause plant to fail. 

However, studies show that little research is directed towards the realistic scenario of 

optimising maintenance for a system composed of several machines and the focus is 

instead on optimising a single machine without considering the production configuration 

(Van Horenbeek et al., 2013). This view is supported by considering the many review 

papers that address the optimisation of preventive maintenance (e.g. Wang, 2002; Nicolai 

and Dekker, 2008; Das and Sarmah, 2010; Ding and Kamaruddin, 2015; Olde Keizer et 

al., 2017). Here all models that have closed-form solutions relate to single-line 

production facilities. Furthermore, most, if not all these models, are based on assumptions 

that simplify real life situations and make them less practical. In practical situations, 

simplifying assumptions are undesirable but necessary to some extent for the 

convergence, as far as possible, of theory and practice. To relax or eliminate some 

assumptions from these models, one would require more detailed modelling, which may 
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not provide a closed-form solution. Note, by “closed-form” solution, we strictly mean 

that the optimisation criterion is expressed in closed-form. 

In this paper, we determine the cost-optimum inspection policy for a multi-line 

production system taking account of simultaneous downtime. In general, we suppose 

simultaneous downtime occurs when more than one line is down simultaneously, arising 

when lines are inspected concurrently or when failures of lines coincide with either 

inspections or failures of other lines. We study a two-out-of-three line system, so that 

simultaneous downtime occurs when at least two lines are down simultaneously, whence 

production ceases entirely. Our review of the literature above indicates that a closed-form 

solution to the optimisation problem we pose is not available. 

Simulation has the potential to address the increasingly difficult and dynamic nature 

of optimisation problems in manufacturing in general (Villarreal-Marroquín et al., 2013) 

and maintenance in particular. Alrabghi and Tiwari (2015) surveyed the literature and 

reported the state-of-the-art in simulation-based optimisation of preventive maintenance 

research, with 59 research articles since the year 2000. Discrete event simulation is the 

most reported technique for modelling maintenance systems. Specialised simulation 

software provides several advantages over general-purpose programs such as rapid 

modelling, animation, automatically collected performance measures and statistical 

analysis (Banks et al., 2010). Boschian et al. (2009) discuss the difficulty of obtaining 

closed-form solutions to maintenance optimisation problems for a ‘small size’ production 

system (two machines working in parallel) that is prone to random failures and undergoes 

preventive and/or corrective maintenance. ‘To get round this complexity’ they also chose 

an approach based on simulation. 

For single-line systems, a number of models that aim to optimise an inspection 

interval have been proposed and tested. Early models include those due to, for example, 

Abdel-Hameed (1995). More recently, authors have integrated production quality into the 

inspection problem (e.g. Lu et al., 2016) and considered preventive maintenance planning 

in job shop scheduling (e.g. Thörnblad  et al., 2015). In our paper we use the delay-time 

concept, first applied to the maintenance of industrial equipment by Christer and Waller 

(1984), and later developed further by many (e.g. Van Oosterom et al., 2014; Flage, 

2014; Chellappachetty and Raju, 2015; Jiang, 2017). Related case studies include those 

due to Jones et al. (2010) and Zhao et al. (2015). The delay-time concept has the 

advantage that it explicitly models the relationship between plant failures and the 

inspection interval. The latest review of the recent advances in delay-time-based 

maintenance modelling including industrial applications is Wang (2012). 

Based on the literature review undertaken, we make the following contribution in this 

paper: we model for the first time the inspection of multi-line production facilities using 

the delay-time concept. In so doing, we attempt to bring the theory of delay-time 

modelling closer to practice by solving a realistic industrial problem for which a closed-

form solution is not available. This absence of a closed-form solution is a consequence of 

simultaneous downtime in the multi-line parallel system that we study. While we study a 

two-out-of-three line system, the solution methodology can be generalized to a k-out-of-n 

line system. The importance of our work lies in its implications for the design of 

preventive maintenance for multi-line production systems and the contribution that good 

maintenance can make to economic performance. 

Our paper is structured as follows. Section 2 describes the delay-time concept, our 

modelling methodology, and introduces models of multi-line production systems with 

focus upon how downtime affects production. In section 3, a case study is described and 
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the focus is solely on the development of our simulation models and analysing the results 

of several alternative policy scenarios, beginning with a single-line packing facility, and 

developing to several model extensions for multi-line production systems. In the final 

section, detailed conclusions are drawn and their implications are discussed. 

2 Modelling methodology 

2.1   Notation 

𝐶𝑑 Cost-rate of production downtime 

𝐶𝑠 Cost-rate of maintenance (inspection and repair) 

𝐶(𝑇)  The long-run cost per unit time 

𝐶𝑐𝑜𝑛(𝑇) 
The long-run cost per unit time (cost-rate) for consecutive inspection of 

parallel lines 

𝐶𝑚𝑜𝑑(𝑇) The cost-rate for a modified system of inspection of parallel lines 

𝐶𝑠𝑖𝑚(𝑇) The cost-rate for simultaneous inspection of parallel lines 

𝐷(𝑇)  The long-run downtime per unit time (downtime-rate) 

𝑑𝑓 Failure stoppage duration 

𝑑𝑠 Inspection duration  

𝑑𝑣 
The downtime for a concurrent occurrence of two failure stoppages on 

separate parallel lines 

𝑑𝑣′ 
The downtime for a concurrent occurrence of a failure stoppage and an 

inspection on separate parallel lines 

𝐸𝑁𝑓(𝑇) The expected number of failures over the interval (0, T) 

𝜆 Defect arrival intensity, per unit time 

𝑇 Inspection interval 

U 
Initial time from new (or as new) until a defect that could be identified by 

inspection arises (the time-to-defect), a random variable 

𝐹𝑈(𝑢) Cumulative distribution function (cdf) of U 

u Particular realisation of 𝑈 

𝐻 
Time between a defect arising and the subsequent failure if left unattended 

(the delay-time), a random variable 

𝐹𝐻(ℎ) Cumulative distribution function (cdf) of H 

ℎ Particular realisation of 𝐻 

 

2.2   Delay-time model development 

The delay-time model describes the evolution of defects in industrial equipment in two 

separate, but linked stages (Figure 1). The first stage is the time lapse from new (or as 

new) until a defect (fault) arises. This is the time-to-defect arrival, U. Equivalently, it is 

the sojourn in the good state. The second stage is the time lapse from defect arrival to the 

point at which this defect causes the equipment to fail. This is the delay-time, H. 

Equivalently, it is the sojourn in the defective state. This second stage is the window of 

opportunity for inspection to identify and repair defects before they can cause a failure of 
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operational function (Figure 2), and more frequent inspection implies fewer failures per 

unit time. Thus the delay-time concept (Christer, 1999) conceives of: (i) a defective state 

that precedes failure; and (ii) that the defective state is identifiable by inspection. The 

‘change point’ from the good state to the defective state occurs at a random time, failure 

occurs some random time later, and the time of transition from the good to defective state 

is unobservable. Nonetheless, using failure times and counting instances of defects found 

at inspection, the distributions of time of defect arrival and delay-time may be estimated 

(Baker and Wang, 1991). In our study, we assume: 

 A complex-system delay-time model (Wang, 2008), illustrated in Figure 3, with the 

associated notation given in section 2.1. Here, multiple concurrent defects are 

possible; 

 Failures are repaired immediately but not instantaneously; 

 Failure repair takes 𝑑𝑓 time units at a cost of 𝐶𝑠 per unit time; 

 Inspections are carried out every 𝑇 time units; 

 Each inspection takes 𝑑𝑠 time units again at a cost of  𝐶𝑠 per unit time, where 

𝑑𝑠 < 𝑑𝑓 < 𝑇; 

 All defects identified at inspection are repaired during the inspection, I; 

 During the failure stoppage F, the system is returned to the operational state, but any 

defects present are not removed; 

 During inspection and failure stoppage (repair), plant components are assumed to be 

in a state of suspension, so that the system is then not ageing and defects are not 

‘growing’, and thus defects and failures can only arise when plant is operating; 

 The system has operated sufficiently long to be in a steady state condition. 

 
Figure 1 Defect arrival (○) and consequent failure (●) in the delay-time concept. 

 
 

Figure 2 The effect of inspection on failure development: 

(a) no inspection; b) infrequent inspection; c) frequent inspection. 

 
 

Figure 3 Defect arrivals (○), failures (●), failure repair F, and inspection I 

in our complex-system delay-time model of multiple components. 

 
 

a)

b)

c)
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These assumptions represent an inspection problem in the class reported by Christer 

(1999), who, under these assumptions, gives the expected number of failure breakdowns 

over the interval (0, 𝑇), 𝐸𝑁𝑓(𝑇) , and the expected downtime per unit time, 𝐷(𝑇). 

Provided that 𝐹𝑈(𝑢) and 𝐹𝐻(ℎ) can be estimated, either through the consideration of data 

or subjective, expert opinion or both, 𝐷(𝑇) and 𝐶(𝑇) equivalently can be calculated, and 

then the 𝑇 that minimises 𝐷(𝑇) or 𝐶(𝑇)  can be determined. It is this optimisation step 

that links the inspection frequency to the defect arrival and failure rates, and the cost and 

downtime parameters. 

In many practical industrial situations, like ours with multiple lines, it is difficult to 

apply these models. For example, for a production system consisting of a two-out-of-

three set-up with an inventory buffer (storage) facility, the mathematical analysis is very 

difficult. Thus we consider a different approach. 

2.3    Modelling multi-line production systems 

The main objective of our research is to determine the optimum inspection policy for a 

multi-line production system. To do so, we further assume that: 

 if production stops then the downtime accrued costs 𝐶𝑑 per unit time, with  𝐶𝑑 >> 𝐶𝑠, 

where this downtime is defined as the duration of a stoppage to the downstream 

and/or the upstream  processes (Figure 4), occurring only when the individual 

stoppages coincide (period of length z in Figure 4). 

In this way, production downtime accrues when the lines are down simultaneously, and it 

is precisely this simultaneous downtime in a multi-line system that makes it hard to 

obtain closed-form expressions for decision criteria in the delay-time model. 

 
Figure 4 Plant downtime in a simple multi-line production system, indicating downtime for L1 of 

duration x, downtime of L2 that is concurrent with L1 of duration y, and complete system 

downtime of duration z. 

 
 

In other situations, upstream and downstream downtime may have different 

consequences and upstream and/or downstream inventory buffers may exist. For 

example, in a production system with a two-out-of-three line set up (see e.g. Smith and 

Dekker, 1997, or De Smidt-Destombes et al., 2007, for a general discussion of k-of-out-n 

systems) and one line used as standby (Figure 5), the definition of downtime should 

depend on the way the management operates the facility. 

There are two principal ways in which inspection can be performed for the system in 

Figure 5, namely, simultaneous (concurrent) inspection of all parallel lines, or 

consecutive inspection, inspecting each in sequence. If inspection is performed 

simultaneously, assuming that the required resources (spares, personnel) are available, 

then the inspection time itself is downtime (similar to a single-line scenario), and the long 

run cost per unit time (cost-rate) for the realisation shown in Figure 6(a) is: 

Upstream
Process

Downstream
Process

Downtime
X

Y

Z

L1

L2

L3
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Figure 5 A multi-line production system with a two-out-of-three line set-up and inventory buffer. 

 
 

𝐶𝑠𝑖𝑚(𝑇) = (3(𝑑𝑠 +  𝑑𝑓 )𝐶𝑠 + (𝑑𝑠 + 𝑑𝑣)𝐶𝑑)/𝑇.         (1) 

With consecutive inspection the cost-rate for the realisation shown in Figure 6(b) for 

example is: 

𝐶𝑐𝑜𝑛(𝑇) = (3(𝑑𝑠 +  𝑑𝑓 )𝐶𝑠 + (𝑑𝑣′ + 𝑑𝑣)𝐶𝑑)/𝑇 < 𝐶𝑠𝑖𝑚(𝑇),                 (2) 

since 𝑑𝑣′ < 𝑑𝑠. In practice, it may be possible to reduce the cost of downtime further by 

modifying the policy so that if a failure occurs while another line is being inspected, the 

inspection is suspended until the failed line becomes operational. Then for the realisation 

shown in Figure 6(c) for example the cost-rate is: 

𝐶𝑚𝑜𝑑(𝑇) = (3( 𝑑𝑠 +  𝑑𝑓 )𝐶𝑠 + 𝑑𝑣  𝐶𝑑)/𝑇 < 𝐶𝑐𝑜𝑛(𝑇).                     (3) 

Figure 6 Policy schematic for two-out-of-three line system: (a) simultaneous inspection; (b) 

consecutive inspection; (c) consecutive inspection prioritising failure repair. 
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3 Case study 

3.1   Problem description 

Akbarov et al. (2008) studied a chocolate cake manufacturing plant with production 

downtime issues on its packing lines. They determined a closed-form expression for the 

cost-rate to optimise the inspection interval for a single-line packing system. In practice, 

the ‘existence’ of a defect may be identifiable by some operational “signal”, such as, 

excess heat or vibration, and in this particular case study, a defect was observable as the 

presence of significant chocolate contamination on the production line. This was the 

direct cause of several major failure modes on the packing lines, so that regular 

inspection (and removal of chocolate contamination if required) was considered to be of 

value. Figure 5 is a schematic representation of the real production process at this plant, 

in which the upstream process bakes cakes and the two-out-of-three system packs them. 

A stoppage of the upstream baking process is considered as downtime (as it leads to lost 

revenue) whilst a stoppage of one of the packing lines is seen as lost time (as the packing 

process can still continue). Under normal production conditions, baked cakes are packed 

on lines 1 and 3, the inventory buffer is empty, and line 2 is on cold-standby. If there is a 

stoppage to either line 1 or 3, line 2 (the standby) is started and the cakes are routed 

through the inventory buffer to this line. The inventory buffer storage area is designed to 

provide sufficient capacity to start line 2 without having to stop upstream production. 

When normal production is resumed after a stoppage, there is sufficient capacity in lines 

1 and 3 to empty the inventory buffer storage. Production downtime accrues from the 

instant the inventory buffer is full and two lines are down. 

Although the real system has three parallel lines, to obtain a closed-form solution to 

the delay-time model, Akbarov et al. (2008) consider this system as a single-line packing 

facility. We are interested to know what are the implications (both for maintenance 

management of the plant and for modelling of the system) of this limiting assumption. 

We began by simulating the single-line proposed by Akbarov et al. (2008) (section 3.3) 

as a complex-system delay-time model of multiple components. In doing so, we ensured 

that our base model was validated against known results, as did Boschian et al. (2009) for 

their case study, and not simply based on an arbitrary situation. With this impetus we 

simulated the real practical situation for which a closed-form solution is not available 

(section 3.4). This scenario, which is precisely the system operated by the company’s 

management, we call a modified two-out-of-three parallel line system. Thirdly, a further 

simulation model was developed for a standard two-out-of-three packing parallel system, 

in which any two lines are operational at any one time. Although the company did not 

operate the packing facility in this way, the development of such a model was useful for 

comparison purposes (section 3.5). Finally, the scenario in which all three parallel 

packing lines are operated concurrently was also simulated (section 3.6). 

The data for our base model were taken from Akbarov et al. (2008). Defect arrivals 

were described by the exponential distribution 𝐹𝑈(u) = 1 − exp(− 𝜆𝑢) with rate 𝜆 = 3 

per day; delay-times were described by the Weibull distribution 𝐹𝐻(h) = 1 −
exp(−( ℎ/𝛼)𝛽) with 𝛽 = 6.27 and 𝛼 = 0.193 days, implying a mean delay-time of 4.3 

hours and a standard deviation of 0.8 hours. Many previous studies have proposed, in 

detail, ways to select and estimate these parameters in practice (see, for example, Wang, 

2008). The duration of a stoppage of a line due to failure was 𝑑𝑓 = 10  minutes; and due 

to inspection was 𝑑𝑠 = 2 minutes. Both defect removal and failure repair in practice 

corresponded to removal of chocolate contamination, the former being carried out 
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preventively, the latter correctively. The cost-rates of “inspection” and “repair” were thus 

assumed equal, and assigned as 𝐶𝑠 = £30 per hour. The production downtime cost-rate 

was 𝐶𝑑 = £1,000 per hour, based on the value of product output per unit time. The cost 

of a single failure event is then 𝑑𝑓𝐶𝑠 plus the cost of production downtime (if any) 

resulting from the failure. 

3.2. Simulation modelling 

ProModel (ProModel, 2016), a process-based discrete-event simulation language (see e.g. 

Harrell et al., 2011), was used for developing the base model and the various model 

extensions. The models were developed in three stages. 

Stage 1: Overall model-framework construction with minimum system requirements 

The development of any model using this programming environment requires, at least, 

the use of the paradigm ‘LEAP’; Locations, Entities, Arrivals, and Processing. 

‘Locations’, which may be single or multiple capacity, are generally fixed positions in the 

system, where Entities wait to be processed, such as, machines, queues, or storage areas 

(buffers). ‘Entities’ are the objects that enter into, flow through and depart from the 

system as complete objects, such as parts, or even defects and failures. ‘Arrivals’ describe 

the precise pattern: timing; quantity; frequency; and location of Entities (defects, failures) 

entering into the system. And finally, ‘Processing’ defines the exact route that an Entity 

follows, from entering into, to leaving the system. This includes any activity that happens 

at a Location such as the required operations that need to be performed, the amount of 

time an Entity spends at a Location, and the Resources it needs to complete Processing. 

Although, the most simple model in this environment needs to have ‘LEAP’ described, 

any further sophistication needed almost certainly will require the use of other ‘modules’ 

and/or development of special programming routines. 

Stage 2: Detailed programming of the maintenance strategy 

The arrival time of defects (faults) and their evolution into failures over the delay-time 

period are generated and scheduled based on their respective distribution functions. The 

maintenance strategies are programmed by scheduling inspection intervals or failures 

occurrences, whichever occurs first, at which time the production of line L𝑛 is interrupted 

by the downtime process and is terminated after 𝑑𝑠 or 𝑑𝑓 periods respectively. All the 

relevant costs, system variables and attributes are constantly updated to determine the 

expected cost per unit time. 

Stage 3: Development of model scenarios, input data, output analysis, and optimisation 

The developed simulation models are non-terminating and the unit of time is days. 

Macros were set up to be able to instantly change input data, such as, 𝐶𝑑, 𝐶𝑠, 𝑑𝑓, 𝑑𝑠, 

𝐹𝐻(ℎ), 𝐹𝑈(𝑢), 𝜆, 𝑇, simulation time, warm-up period and number of replications. The 

continuous onscreen data for each model replication includes updating inspection 

duration, failure duration, downtime duration, total expected cost per unit time, number 

of defects present, number of defects removed, number of failure occurrences, and 

number of inspections taken place. The simulation output report includes various data 

and graphs, including the total expected cost per unit time and the total expected 

downtime per unit time. The models were ‘warmed-up’ to a steady-state before 

experimentations could begin, with a suitable warm-up period determined using Welch’s 

graphical procedure (e.g. see Banks et al., 2010). To achieve steady-state in the output 

results, each of the experiments were continued with a run length of 1,000 days and 
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results from the first 10 days (warm-up period) were excluded to eliminate the transient 

components of the results, thus achieving steady-state. Experimentations were conducted 

for 30 replications to achieve sufficient narrow 95% confidence intervals in the output 

data. The models were run through various simulation scenarios with different values of 

the inspection interval 𝑇. Finally, the optimum value of 𝑇 was determined. 

Figure 7 shows the flow chart of the base model, developed for the first simulation 

representing a single-line packing facility. The graphical representation refers to eight 

different processing routings (modelling routines) which were developed for different 

aspects of the model conceptualisation. Table 1 displays a sample ProModel code written 

for the failure occurrence routine (see the flowchart), the time between a defect arising 

and the subsequent failure. Further details regarding the precise structure and 

programming content of our simulation models can be made available, upon request, 

from the corresponding author. 

 
Figure 7 The base model for the single-line packing facility showing eight programming 

algorithms. 
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3.3   Base model (validation) 

Figure 8(a) compares the results obtained from our simulation model with that of the 

closed-form solution in the Akbarov et al. (2008) study. It shows downtime per day, in 

minutes, against inspection interval, in hours. The results are clearly very close. Akbarov 

et al. (2008) recommended the same optimal inspection interval of 4 hours, with an 
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expected production downtime of 12.3 minutes per day against a simulated downtime of 

13.2 minutes per day. Two factors may have contributed towards the difference of 6.7% 

between the results of the two approaches: i) the suspension of aging of plant components 

during inspection and failure; ii) the possible overlap time of inspection and failure 

processes, both of which were included in the development of our simulation model and 

ignored in the previous study. With the defect arrival rate of 3 per day and the duration of 

a stoppage of a line due to failure of 10 minutes, there will be an expected downtime of 

30 minutes/day when no inspection is carried out. The results suggest that regular 

inspection can reduce production downtime by 57%, with the number of failures per day 

reduced from 3 to almost zero (Figure 8(b)). The fact that the optimum inspection 

interval corresponds closely with the mean delay-time is not surprising given the 

relatively small delay-time standard deviation (since 𝛽 = 6.27). 

 
Table 1   Sample ProModel Code for the failure occurrence routine. 

 
 
ORDER 1 PreDefect_E TO Leg1DefectArrival_L 

REAL FailureRandom, FailureTimelapse 

INC Leg1FailureGenerated_V 

FailureRandom=RAND(1) 

FailureTimelapse=277.43*(-LN(1-FailureRandom))**(1/6.27) 

StartTime_A=CLOCK(MIN) 

WAIT FailureTimelapse 

ProlongingLeg1_Sub 

IF Leg1DowntimeOnFailure_V=1 THEN 

 WAIT Leg1DowntimeDur_V 

IF Leg1InspectionOnFailure_V=1 THEN 

 WAIT 

(Leg1InspectionDur_V)+(CONTENTS(Leg1FailureOccurence_L)*Leg1RepairDur_V) 

INC Leg1FailureArrived_V 

DOWN Leg1ToGoDown,999 

 
 

 

Figure 8 Comparison of results for the single-line packing system: (a) downtime-rate vs preventive 

inspection interval: ▬▬ simulation; ---- Akbarov et al. (2008); (b) number of events vs 

preventive inspection interval: ▬▬ inspection; ▬  ▬ defects removed; ---- failures. 

(a)     (b)  
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3.4   Modified two-out-of-three parallel system 

If a policy of simultaneous inspection were to be followed for maintaining the modified 

two-out-of-three parallel line facility, then the simulation results shown in Figure 9(a) 

suggest that there is no optimal inspection interval; run-to-failure is then optimal. Here 

essentially the cost of lost production due to the stoppage of the upstream process during 

simultaneous inspection outweighs the cost of stoppages due to failure. In contrast, under 

a consecutive-inspection policy, there is no planned downtime. There are, however, 

occasions when downtime may occur: i) at least one failure and one inspection process 

occurring concurrently; ii) two or more simultaneous failures. Furthermore, under a 

consecutive-inspection policy prioritising failure-repair, if a failure occurs while the 

inspection of another line is taking place, the inspection operation is stopped and then re-

started once the failed line becomes operational. 

The simulation results for these consecutive policies are also shown in Figure 9(a), 

but are shown again in Figure 9(b) to resolve the cost-rates for the policies of interest. 

Figure 9(b) suggests the optimal inspection interval is every 4 hours for consecutive 

inspection and 5 hours if failure repair is prioritised. The advantage of following the latter 

policy is less frequent inspections and a cost-rate reduction of 8.3%. In Figure 9(a), we 

can see that as T increases the cost-rates converge fairly quickly (as expected since the 

delay-time variance is small). Finally, the cost-rate reduction for the best policy relative 

to a run-to-failure policy is of the order of 60%. 

 
Figure 9 Cost-rate as a function of inspection interval: (a) all policies; (b) consecutive policies 

only. ---- simultaneous inspection; ▬▬ consecutive inspection; ▬  ▬ consecutive 

inspection prioritising failure repair; ▬▬ ● ▬▬ run-to-failure. 

(a)     (b)  

3.5   Standard two-out-of-three parallel system 

A standard two-out-of-three parallel line configuration was also investigated in order to 

compare results with the modified two-out-of-three parallel line system discussed above. 

For such a system, any two parallel lines would be operational at any one time, so that all 

packing lines would be equally utilised in the long run. A failed line would be repaired 

and ready to use at the next line failure. For the consecutive-inspection policy, the cost-

rate appears to be either equal or higher than that for the modified parallel system (Figure 

10(a)). Similarly, for the consecutive-inspection-prioritising-failure-repair policy, the 

cost-rate appears to be equal or slightly higher than that for the modified parallel system. 

This is due to all three lines having been utilised more uniformly and hence causing more 

simultaneous failures. For this system, the optimal interval remains the same, at 4 and 5 

hours, for the consecutive-inspection policy and the consecutive-inspection-prioritising 

failure-repair policy, respectively. However, there will be 1.6% and 0.6% increases in the 
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cost-rate for these policies when compared to the modified two-out-of-three mode of 

operation. 

3.6   Three-parallel lines system 

The final modelling scenario considered the system with three parallel lines. Although 

there cannot be any direct comparison between this and the previous two systems, 

looking at the related results alongside the two-out-of-three parallel systems is useful in 

case production needs to be increased. For the three-line system, downtime will 

necessarily be greater than under both two-out-of-three systems (Figure 10(b)) because 

there is more chance of at least two failures occurring simultaneously. However, 

production output will also be higher. As discussed before, the most sensible policy 

applicable in practice will be consecutive inspection prioritising failure repair. Figure 

10(c) compares the costs for this policy under all three systems. The downtime-rate is 

higher if all three lines are operated at the same time. 

 
Figure 10  Cost-rate as a function of inspection interval (a) standard two-out-of-three parallel 

system: ▬▬ consecutive; ▬  ▬ consecutive prioritising failure repair; (b) three-line 

system: ▬▬ consecutive; ▬  ▬ consecutive prioritising failure repair; (c) consecutive 

inspection prioritising failure repair for each system: ▬▬ modified two-out-of-three;     

▬  ▬ standard two-out-of-three; ----three-line. 

(a)   (b)   (c)  

3.7   Sensitivity analysis 

We investigated the sensitivity of the consecutive-inspection-prioritising-failure-repair 

policy for the principal mode of operation of interest (modified two-out-of-three system) 

to parameter values. Figure 11(a) shows the sensitivity to inspection duration, 𝑑𝑠. The 

behaviour is as expected here, with the cost-rate of the optimum policy for 0.5𝑑𝑠 and 2𝑑𝑠 

at respectively 54% and 173% of the baseline. 
 

Figure 11  Sensitivity analysis to parameters: (a) inspection duration, 𝑑𝑠: ---- 0.5𝑑𝑠;  ▬▬ 𝑑𝑠; ▬  ▬ 

2𝑑𝑠; (b) failure stoppage duration, 𝑑𝑓  : ---- 0.5𝑑𝑓; ▬▬ 𝑑𝑓; ▬  ▬ 2𝑑𝑓; (c) defect arrival 

rate, λ: ---- 0.5λ;  ▬▬ λ; ▬  ▬ 2λ. 

(a)   (b)   (c)  
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Sensitivity to variation in the failure stoppage duration (Figure 11(b)) shows a 

somewhat different pattern (optimum cost-rate is 84% and 110% of the original cost for 

0.5𝑑𝑓 and 2𝑑𝑓 , respectively). Varying 𝑑𝑓 has the greatest effect when inspection is 

infrequent; varying 𝑑𝑠 has the greatest effect when inspection is frequent, again as we 

would expect, since failure stoppage duration dominates when inspection is infrequent, 

and downtime due to inspection duration dominates when inspection is frequent. 

Sensitivity to the rate of arrival of defects, Figure 11(c), shows anticipated effects 

although the doubling of the failure rate is not sufficient to increase the optimum 

inspection frequency. 

4 Conclusions 

Almost all previous delay-time inspection models in the literature are concerned with 

single-line single-component systems or series systems with multiple components, with 

restrictions. This paper uses simulation to determine optimal inspection policy for a 

number of multi-line production facility scenarios using the delay-time concept. In the 

first scenario, a single-line facility is simulated to validate an earlier closed-form solution. 

In the second, a modified two-out-of-three parallel system is analysed to help address the 

issue of plant downtime under the actual operating conditions in the case study. Two 

further model extensions are developed and analysed to consider whether modifications 

to either the operation of the system or the design of the system in the case study would 

be worthwhile. The latter three models extend the study by Akbarov et al. (2008), in 

which the multi-line production facility is modelled as if it is a single line. Indeed, in their 

survey, Alrabghi and Tiwari (2015) found that studies that dominate the literature, such 

as cases of single machines producing single products, are oversimplified and do not 

reflect the interactions of real systems in practice. 

We find that: 1) our simulation of the single-line system reproduces earlier results 

(see e.g. Boylan, 2016, for a discussion of reproducibility); 2) consecutive inspection 

with prioritised failure repair lowers the cost-rate (by 8.3%) and reduces the frequency of 

inspections (by 20%) compared to consecutive inspection; 3) the standard two-out-of-

three design configuration lowers the cost-rate by 1.6% and 0.6% for the consecutive-

inspection and consecutive-inspection-prioritising-failure-repair policies, respectively, 

compared to the modified two-out-of-three configuration operated by the management; 

and 4) not surprisingly, the three parallel-line design configuration increases the 

frequency of inspections (by 25%) and increases the cost-rate (by 5.2%) for the 

consecutive-inspection-prioritising-failure-repair policy. This is clearly due to the third 

line being used permanently and not as a standby, which would naturally increase the 

number of inspections and the possibility of further failure occurrences. However, it 

should be noted that the production throughput would increase as well, increasing 

revenue. 

The solution proposed in this paper may seem rather ‘obvious’ as it recommends the 

consecutive inspection policy with priority given to failure repair for the maintenance 

management of multi-line production systems. However, the implications for this case 

study are substantial as the policy proposition suggests a cost reduction of 61.3% 

compared to the ‘run-to-failure’ policy. Furthermore, we contend that the scenarios and 

policies we study have economic and engineering implications for the management of 

production lines and maintenance planning and execution therein. There is also scope to 
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extend the simulation to analyse the wider implications of maintenance planning (Ding et 

al., 2014; Zahedi-Hosseini et al., 2017). 

The simulation model for this paper has been specifically developed to address the 

optimisation of the inspection interval for a very specific two-out-of-three parallel 

production system with an inventory buffer. It takes 10 minutes to simulate 30,000 

system-days on a standard desktop PC, and the model is easily scalable. 
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