
Received October 21, 2017, accepted December 2, 2017. Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.2782763

A New Processing Approach for Reducing
Computational Complexity in
Cloud-RAN Mobile Networks
ALI M. MAHMOOD 1,2, ADIL AL-YASIRI1, AND OMAR Y. K. ALANI1
1University of Salford, Manchester M5 4WT, U.K.
2University of Technology, Iraq, Baghdad 10066, Iraq

Corresponding author: Ali M. Mahmood (a.mahmood7@edu.salford.ac.uk)

This work was supported by the Ministry of Higher Education and the Scientific Research of Iraq–University of Technology.

ABSTRACT Cloud computing is considered as one of the key drivers for the next generation of mobile
networks (e.g. 5G). This is combined with the dramatic expansion in mobile networks, involving mil-
lions (or even billions) of subscribers with a greater number of current and future mobile applications
(e.g. IoT). Cloud Radio Access Network (C-RAN) architecture has been proposed as a novel concept to
gain the benefits of cloud computing as an efficient computing resource, to meet the requirements of future
cellular networks. However, the computational complexity of obtaining the channel state information in
the full-centralized C-RAN increases as the size of the network is scaled up, as a result of enlargement in
channel information matrices. To tackle this problem of complexity and latency, MapReduce framework
and fast matrix algorithms are proposed. This paper presents two levels of complexity reduction in the
process of estimating the channel information in cellular networks. The results illustrate that complexity
can be minimized from O(N3) to O((N/k)3), where N is the total number of RRHs and k is the number of
RRHs per group, by dividing the processing of RRHs into parallel groups and harnessing the MapReduce
parallel algorithm in order to process them. The second approach reduces the computation complexity
from O((N/k)3) to O((N/k)2.807) using the algorithms of fast matrix inversion. The reduction in complexity
and latency leads to a significant improvement in both the estimation time and in the scalability of
C-RAN networks.

INDEX TERMS C-RAN, Channel State Information, Computation Complexity, MapReduce, Fast Matrix
Algorithms, Strassen’s Algorithm, Block LU Decomposition.

I. INTRODUCTION
Mobile networks have witnessed an unprecedented growth
in terms of the number of users and the amount of data
traffic. The 5G network is supposed to support 1 million
user equipment (UE) per square kilometer with 1ms end-
to-end latency [1]. Hence, the data rate of future 5G has
been expected to be 10 times faster than the speed
of 4G networks [2]. The expansion requires novel technolo-
gies to be developed to meet future increased demand for
mobile users. Recently, C-RAN technology has been gaining
enlarged recognition from researchers and mobile network
operators and has been nominated as the architecture
of 5G [3]. Unlike the current mobile networks, which have
the baseband unit co-located within the cell site, baseband
processing in C-RAN has been moved to cloud comput-
ing for central processing and management. C-RAN has

three components (Fig. 1) viz (a) a remote radio head
(RRH) [4] which acts as a remote antenna and is situated
remotely, (b) low latency and high capacity optical commu-
nication networks known as fronthaul communicating links,
which connect RHHs to the baseband unit (BBU) pool, and
(c) a VBS (virtual base station) pool or BBU,which is situated
in the cloud for centralized signal processing. Whilst C-RAN
has many positive attributes, it also has some challenges. One
of these challenges refers to an increase in computational
complexity involved in acquiring the large size of channel
information matrix H, with expansion of the network, due
to centralized coordination and processing [5]. This matrix
includes the channel state information (CSI) between the
user equipment (UE) and the VBS. This means the delay in
estimating this information will delay the process of link-
ing between the UEs and the VBS, in terms of adaptation.

VOLUME 5, 2017 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 1

https://orcid.org/0000-0001-7925-2865

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

FIGURE 1. C-RAN architecture versus distributed 4G network architecture.

FIGURE 2. Theoretical latency requirement in 4G versus the expected 1ms
in 5G.

Consequently, the acquisition of CSI will affect the entire
performance of cellular networks, particularly the sys-
tem throughput, which ultimately limits C-RAN scalability.
In this paper, two novel approaches are proposed for the
C-RAN architecture to decrease the overhead of acquiring
the CSI: MapReduce framework [6] and fast matrix inver-
sion with multiplication algorithms. Deploying these two
approaches in C-RAN will support network scalability and
maintain the next generation of ultra-low latency require-
ments.

The motivation and the contribution of this paper can be
summarised as follows.

The most important challenges in C-RAN is the challenge
of dimensionality [7]. This is due to centralized coordination
of all network elements in cloud computing. In other words,
the magnitude of channel matrix H in full centralized C-RAN
increases dramatically at the increase in the number of RRHs
and the UEs in the network. The burden of estimating this
information leads to high processing time, which increases
the network latency and reduces the throughput accord-
ingly. However, as shown in Fig.2, in the next generation
5G networks, the target latency is 1ms, which is consid-
ered a challenge and the key driver to implement the future
5G technologies (e.g. autonomous cars and tactile internet).
To overcome this challenge, two novel approaches are
proposed.

• The first is to deploy MapReduce as a processing frame-
work in C-RAN networks to maintain low computa-
tional complexity in the centralized pool of VBS, tomeet
the future low latency and coherence time requirements,
and then to support network scalability (for large num-
bers of RRHs). To the best of our knowledge, there is
no prior work that has used MapReduce in the channel
estimation of communication systems.

• The second is to propose fast matrix inversion algo-
rithms, to reduce the processing time of channel esti-
mation in C-RAN architecture. This algorithm takes the
advantage of both Strassen’s and Block LU decomposi-
tion to reduce the execution time of the matrix inversion
of the MMSE estimator.The list of notations used in
the paper is specified in Table 1, which aids in under-
standing the concepts discussed in the paper. The rest of
the paper is structured as follows: section II discusses
some related work on the research problem outlined
above. Section III demonstrates the background on the
main components of the research. Section IV defines the
research problem. Section V presents MapReduce as a
proposed solution along with the complexity analysis
and simulation results. Section VI includes a mathe-
matical modeling for the MapReduce framework using
queuing theory. Section VII deals with the proposed
fast matrix operations algorithms (Strassen and Block
LU decomposition). Section VIII illustrates simula-
tion results and discussion. Section IX finally presents
the conclusions and the possible future avenues of
exploration.

TABLE 1. List of notations.

II. RELATED WORK
The problem of increased computational complexity in
obtaining the CSI has a negative effect on the scalability
of the C-RAN networks. A large number of research stud-
ies have focused on sparsification technique studies [7]–[9],
to make the matrix of channel information sparser by exclud-
ing some entries, and then to reduce computational com-
plexity of acquiring the channel information. However, these
approaches may limit the network performance or decrease
the network capacity, since the number of users is reduced
according to - e.g. their distances from RRHs without consid-
ering the inter-site distance for different types of base stations
(macro, micro and pico).

2 VOLUME 5, 2017

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

Another research strategy focuses on the antenna selection
approaches [10]–[12], either selecting subsets or coordinating
the number of active antennas. These approaches may reduce
the overhead of CSI acquisition. However, the consequences
might minimize the overall network capacity, because of the
reduction in the number of antennas. These studiesmight con-
sider the best case having lowUE density, which requires less
antennas. However, these approaches may fall short behind
the provision of any improvement in worst-case scenarios,
such as when having high density UEs, in busy urban areas
when all antennas are required.

The authors in [13] and [14] have tried to minimize the
complexity in the channel estimation algorithm itself. This
involves either suggesting new estimators or modifying the
current estimators. However, it has been observed that there is
a trade-off between the performance (accuracy) and the com-
plexity of the estimator. Many studies have tried to minimize
the overhead of the most common estimator, which is the
minimum mean square estimator (MMSE) by approximating
the cubic complexity of matrix inversion by L-degree matrix
polynomial, such as those presented in [14]–[18].

One of the trends in the research studies is to use time
division duplex (TDD) systems, which utilize the channel
reciprocity to reduce the overhead of the CSI acquisition.
However, a TDD system has the following problems: first
i) the ‘‘pilot contamination’’ is the biggest problem in TDD
systems, which happens when the channel estimation at the
base station in one cell becomes contaminated by users
from other cells [19], [20]; ii) The same uplink/downlink
timeslot arrangement must be used at all cell sites in adja-
cent service areas; iii) If the TDD spectrum is divided
amongst multiple operators in the same area then all oper-
ators must be strictly time synchronized and have the same
uplink/downlink timeslot arrangements; iv) According to the
study in [21], the authors state that in the TDD systems there
is still an essential need for a downlink reference signal (RS)
and the uplink CSI feedback, since the measurement at the
transmitter may not capture the downlink interference of the
neighboring cells. Therefore, the downlink RS is still essen-
tial to find the CQI for the TDD mode [21]; v) Currently the
LTE licenses worldwide are less than or equal to 40 for TDD
systems, while for the frequency division duplexing (FDD)
systems, LTE has almost 300 more than TDD [19]; vi) a TDD
system requires a large guard period for the base station to
switch from downlink transmission to uplink transmission
and vice versa, which leads to decline both the efficiency
and the cell throughput in comparison with the FDD system,
that has two separated frequencies for the uplink and down-
link [22]. Hence, it is worth investigating the problem of CSI
acquisition complexity in the C-RAN for the FDD systems.

In [5], [23], and [24], to decrease the overhead of CSI
acquisition the authors have suggested the clusteringmethods
in large networks, because in populated networks, the aim
of obtaining CSI can be achieved by controlling the cluster
size rather than the whole network. Clustering approaches
can be considered as promising techniques to reduce

computational complexity. However, choosing the size and
the radius of the cluster is considered as one of the main
challenges. Several studies demonstrate that it is possible to
implement a clustering technique for a large group of RRHs
in C-RAN architecture. In the literature, clustering has been
deployed for different purposes, such as for power minimiza-
tion [25]–[28], and for interference mitigation by using
cooperative multi point (CoMP) among neighboring clus-
ters [29]–[31]. Another purpose of using clustering in
C-RAN is for cost reduction [32], [33] by shortening the
overall fiber cable length required in the fronthaul connec-
tion via deploying ring topology. Clustering is also used for
complexity reduction, as in [5], [34]–[36]. This is owing
to the cooperative property of C-RAN architecture, which
enables full sharing of channel information by exchanging
the CSI among the VBSs in the cloud. However, the focus
of these studies was more on the implementation of the
clustering technique, overlooking the method of processing
a large number of clusters (which is formulated from a great
number of RRHs). Particularly with the deployment of next
generation 5G networks, there is a need for a large number
of access points. For instance, the distance between two
access points is expected to be less than 150 meters. Hence,
an efficient and powerful processing framework is required
as a processing paradigm for providing scalable distribution
of hundreds or thousands of RRH groups to cope with the
requirements of the next generation of mobile networks.

In this research, two novel approaches are proposed to
reduce processing complexity and latency. The first approach
is in managing CSI acquisition in a well distributed man-
ner using MapReduce framework. The algorithm lies in the
clustering category, in which a group of RRHs is chosen to
be assigned to a single VBS. All other VBSs cooperate and
work in a parallel manner to minimize the latency whilst
maintaining the network performance. It is worth stating
that MapReduce has been employed as a scalable processing
paradigm to accelerate the processing of big datasets in the
cloud for a large number of applications, such as scalable
streaming systems, real-time prediction for explosive traffic
flow data, and also, MapReduce has been used in indexing
web content with the database system in the Google search
engine.

Secondly, the concept of fast matrix inversion using
Strassen’s algorithm and Block LU decomposition, is pro-
posed to minimize the complexity in the computation of
MMSE estimator.

III. RESEARCH ENABLERS
This section discusses the important components of this
research: MapReduce, CSI, and common channel estimation
algorithms.

A. BACKGROUND TO MapReduce
This is a programming framework, which enables the imple-
mentation of jobs in a distributed and parallel manner,
as shown in Fig.3.

VOLUME 5, 2017 3

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

FIGURE 3. The general diagram of MapReduce framework.

MapReduce was introduced byGoogle [37] in order to pro-
cess big data sets. Tasks are submitted initially to a division
phase. Throughout this phase, the jobs include the number
of tasks, mapped to a group of available mappers, for the
purpose of processing. The mapper receives and produces
an input and intermediate key/value pairs, respectively. The
reducer takes an intermediate key and values set for that key,
combining them together to form a smaller set of values. The
main features of MapReduce are easy programming, auto-
matic parallelism, and fault tolerance. In general, MapReduce
exploits the ‘‘Divide and Conquer’’ principle. Hence, in this
research instead of acquiring the channel information of all
network elements (RRHs with their UEs) in one big chan-
nel matrix, the estimation algorithms are applied for a pre-
specified group of RRHs for each VBS using the MapReduce
framework.

B. CHANNEL STATE INFORMATION IN
CELLULAR NETWORKS
Themobile UE has to send its channel situation, which should
be represented by the channel state information, to the base
station for link adaptation between the VBS and the UE.
The CSI mainly includes three reports; the precoding matrix
indicator (PMI), rank indicator (RI), and channel quality indi-
cator (CQI) [38]. Since adapting the modulation and coding
scheme (MCS) depends on the CSI for instance, when the
value channel quality indicator (CQI) (which is one of the CSI
reports that are used to indicate the quality of communication
link) is high, the value of MCS is also high. The RI is the
number of useful transmitter antennas that can be used in
the spatial multiplexing mode. The PMI is a measure that
provides a preferred precoding matrix to be used in a VBS
for a given radio link in spatial multiplexing mode. Hence,
the former functions of the CSI reports reveal that the inac-
curacy in this information leads to performance degradation
in the entire mobile network.

C. SYSTEM MODEL AND CHANNEL ESTIMATION
ALGORITHMS
The channel model of the received signal is presented
in Equation (1). In full centralized C-RAN, the received
signal in the equation for uplink transmission [5], [11],

where N represents the number of RRHs with single-
antenna while K represents the number of antenna in UEs as
follows:

YN =
K∑
i=1

HiXi + Zi (1)

where, Y is the vector of the received signal; H is the
channel state information matrix; X is the transmitted signal
vector from K users; and Zi is the received noise vector.
In wireless communication systems, there are two common
estimation algorithms, which are the MMSE and the least
square (LS) estimator. The function of the estimator is to
estimate the channel information (Matrix H), which includes
the channel state information (CSI). The following two sub-
sections present a brief description for both, the LS and
MMSE estimators.

1) LEAST SQUARE ESTIMATOR
The objective of the channel LS estimator is to minimize
the square value between the received signal Y and the pilot
signal X. The least square estimate of the channel can be
obtained by dividing the received signal by its expected value,
as shown in Equation (2). The LS estimator has low com-
putational complexity, since it is designed to work without
any knowledge of the statistics of the channels. However,
this estimator suffers from performance degradation due to
the high mean square error (MSE) [14] in comparison with
the MMSE, as shown in Fig.4.

ĤLS =
[
Y
X

]T
= X−1Y (2)

Where, ĤLS denotes the estimate of channel H

FIGURE 4. Comparison between MMSE and LS estimators in terms
of MSE.

2) MMSE ESTIMATOR
The MMSE estimator performs second-order statistics to
minimize the mean square error (MSE). The MMSE estimate
of the channel responses as given in Equation (1) can be
obtained as follows [14], [39].

4 VOLUME 5, 2017

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

The statistics of MMSE estimator is represented by three
auto-covariance matrices, Rgg, RYY and RHH and the cross-
covariance matrix RgY . These matrices can be calculated as
follows.

RYY = E
{
YYH

}
= xFRggFHxH + δ2nIn (3)

RHH = E
{
HHH

}
= FRggFH (4)

RgY = E
{
gYH

}
= RggFHxH (5)

Then, the estimation of the channel matrix in the MMSE
estimator can be determined as follows:

gmmse = RgYR
−1
YY Y (6)

Ĥmmse = Fgmmse = F
[(
FHXH

)−1
R−1gg δ

2
n + XF

]−1
Y

= FRgg

[(
FHXHXF

)−1
δ2n + Rgg

]−1
F−1ĤLS

Ĥmmse = RHH
[
RHH + δ2n(XX

H)
−1
]−1

X−1Y (7)

where,

g: is the channel energy.
Y: is the received signal.
F : is the discrete-time Fourier transform (DFT)

matrix.
RgY : is the cross-covariance matrix of g and y.
Rgg: is the auto-covariance matrix of g.
RYY : is the auto-covariance matrix of Y.
RHH : is the auto-covariance matrix of H.

It is worth noticing that the MMSE estimator has the best
performance in comparison with the LS and with other esti-
mators, in terms of MSE [14], [39]. The simulation test is
conducted as shown in Fig. 4 to quantify the performance
of both estimators with the following key settings, 1UE and
1VBS, 4×4 antennas at UE and VBS and 1.4 BW. The result
in Fig.4 shows superior performance for MMSE in compar-
ison with LS. However, the main drawback of the MMSE is
the high computational complexity as matrix inversion is
required every time data changes [14]–[18]. Therefore, in
C-RAN unlike the current mobile networks e.g. LTE-A, this
computational complexity of acquiring channel information
is extremely expensive and will be increased several times
due to full centralized coordination on cloud computing for
hundreds of RRHs which leads to huge channel information
matrices. Hence, the focus of this study is to minimize the
complexity of acquiring the CSI using MMSE estimator in
future C-RAN architecture.

IV. PROBLEM DEFINITION
In C-RAN, the extremely large channel matrices can be con-
sidered one of the main causes of the imperfection in the CSI.
The detailed explanation for this problem is as follows.

After the introduction of MIMO technology, the impor-
tance of accurate CSI acquisition increased, since this affects
how efficiently the MIMO system works [40]. Practically,

however, when there is an increase in the number of antennas,
the size of the matrix H increases and this leads to increased
overheads of acquiring the CSI [34]. In the mathematical
equation, the size of matrix H can be expressed by the fol-
lowing equation [38], [41], [42]:

Hsize = Sc× Ns × Ar × At (8)

Where,

Sc: number of subcarriers;
Ns: number of OFDM symbols;
Ar : number of receive antennas;
At : number of transmit antennas

The number of OFDM subcarriers in the 3gpp standard is
represented in Table 2 and the number of OFDM symbols
is either (14 or 12) per subframe based on whether the nor-
mal or extended cyclic prefix is used [38].

TABLE 2. OFDM subcarriers for uplink in each bandwidth
of LTE systems [38].

To quantify the amount of increase in the estimation time,
a model test was performed with one base station (BS) and
five user equipment (UE) using Minimum Mean Square
Error (MMSE) estimation algorithm. Table 3 and Fig. 5 show
how the dimension of channel matrix H increases, along
with the estimated time increasing in proportion. Contrary
to the LTE-A network that operates in one-to-one mapping
between the base station and RRH, in the centralized RAN
architecture, the dimensions of the channel matrix rise equiv-
alently with the number of RRHs and UEs; because the
signal processing is aggregated in the cloud [6]. In addition,
C-RAN operates (albeit ineffectively) in one to many map-
ping. This means that each one of the VBS in the cloud man-
ages hundreds of RRHs to enlarge the network capacity [8].
As a result of this, the computational complexity increases
at the centralized BBU pool, thus decreasing effectiveness.
Table 3 and Fig. 6 also illustrate that there is a significant
increase in the percentage of latency with an increase in the
number of antennas at the VBS. For instance, with 128 × 4
antennas system, the latency is increased almost 700 times
compared to the latency of 1x1 antenna system. It is worth
stating that the first value of estimation time for 1x1 system is
considered as a base for calculating the percentage of increase
in the latency for larger numbers of antennas. As per the above
Equation (1), the reason for the overhead in C-RAN is due to
the increase in the size of the matrix H. This also corresponds
to the growth in the number of RRHs and UEs. Hence, for
the extremely large channel matrix H, the estimation and
processing delays the CSI acquisition in C-RAN architecture.

VOLUME 5, 2017 5

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

TABLE 3. The dimension of the channel matrix H against the estimation
time overhead increase.

FIGURE 5. The rise of estimation time in relation to the no. of antennas.

FIGURE 6. Percentage of latency increase versus number of antennas
at VBS.

That is, with the expansion of the network size, the burden
of computational complexity per user expands as well [5].
As a result, the delay of CSI leads to inaccurate decisions
at the VBS. This is because the recently obtained CSI is not
updated and consequently VBS does not represent the current
(true) state at the mobile user. Figure 7 clarifies the problem
of overheads by presenting how the increase in the dimension
of H is proportional to the number of RRHs and the antennas
of UEs with different channel bandwidths.

The Figures and Table above show that the magni-
tude of the channel matrix increases significantly with the
increase in RRHs, which eventually causes the problem of

FIGURE 7. The increase in the dimension of H with the growth in RRH for
different bandwidths.

increased computation overheads and increased time taken
to acquire CSI. As a result, this limits the scalability of the
network.

It is worth stating that the system bandwidth is one of the
important factors that also causes the growth in the dimension
of matrix H as shown in equation 1, although this aspect is not
within the scope of this paper. To compound this problem,
the bandwidth in future networks is anticipated to increase
significantly by using the white space and millimeter wave
bands. Therefore, when using central processing C-RAN,
a considerable amount of RRHs with their own large band-
width will create a very large matrix H and the entire RRHs
will yield multiple bandwidth increases. However, using the
proposed MapReduce, the bandwidth will not increase in
the same manner. The aggregated bandwidth is a multiple
increase of the RRHs group only, not the complete number
of antenna. This will definitely off-load the computational
complexity in C-RAN architecture.

V. MapReduce DESIGN AS A SOLUTION
In this work, the idea of distributed and parallel processing
will be implemented in the C-RAN architecture. To attain
this objective, MapReduce is used. As highlighted earlier in
section IV, MapReduce is a powerful framework for perform-
ing varied jobs in a distributed manner [6]. The advantage of
adopting this framework is to split the task of obtaining CSI
into several parts. This is to gain the advantage of parallel
processing to minimize the delay of CSI acquisition. Another
benefit is its support of scalability, which is a key feature
of next generation cellular networks, such as 5G. Further-
more, the objective of using MapReduce is to utilize the
processing capabilities of cloud computing by formulating
C-RAN in ‘‘group-to-one’’ mapping between the VBSs and
the RRHs, as illustrated in Fig. 8. In this division, the relation
between the scalability of network and the channel estimation
overhead is broken by using MapReduce. This is because
the size of matrix H is limited to fewer numbers of RRHs
and users. The operations of MapReduce require two phases;
at the beginning, it splits the input data and then the par-
allel processing is performed on the partitioned data. The
Mappers or workers will contain the algorithm of channel

6 VOLUME 5, 2017

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

FIGURE 8. The proposed MapRedcue framework.

Algorithm 1 RRHs_Splitting
Input:
- Total number of RRHs (N)
- Size of the group of RRHs (n)
Output:
- Group of RRHs per VBS (rrh)
- No. of required VBSs (V) and no. of mappers (M)
1: function RRHs splitting (N, n, RRHs)
2: Set V =M = [N/n]
3: for i = 1 to N do
4: for j = 1 to V do
5: rrh(i, j)←RRH(i, j)
6: end for
7: end for
8: return (V, M, rrh)
9: end function

estimation (e.g. MMSE or LS) to acquire the CSI of the
pre-specified group of RRHs. MapReduce can be deployed
without the reducing phase [43]. Hence, this research amends
theMapReduce framework in order to enhance its capabilities
to gain the advantage of parallel processing.

Themost important amendment is the use of the framework
with the omission of the reducing functions, as reduction
is not a prerequisite in this design. Therefore, in this work
the name ‘reducing’ phase can be changed into ‘scheduling’
phase, since its main function is to schedule the estimated
CSI directly to the scheduler of the VBS. The detailed
description for the proposed MapReduce design is explained
in Algorithms 1 and 2.

VI. ANALYTICAL DESCRIPTION TO THE OPERATION OF
MapReduce USING QUEUEING THEORY
This section presents an analytical model to analyze the
performance of C-RAN architecture with MapReduce using
queuing theory. Two main benefits can be achieved from
grouping RRHs in C-RAN using MapReduce. Firstly, it can
reduce the time of acquiring the CSI, since the size of channel
matrix is minimized based on the size of the group. Secondly,
the network with this formulation can be scaled up without

Algorithm 2 CSI Acquisition Using MapReduce in C-RAN
Input:
- Y : the received signal for groups of RRHs
- X : the transmitted signal vector
- Z : noise vector
Output:
- The estimated H (CSI) for VBSs
1: Initialization
2: RRHs; N: no. of RRHs; K; no. of UEs per RRHs;

n: group size of RRHs (n < N)
3: (V, M, rrh) = RRHs_splitting (N, n)
4: - Select Master node / Controller;

- Perform copies of user program (e.g. MMSE
estimator) for (M) Mappers;

5: for id = 1 to V // V: no. of VBSs
6: (data) = Read (Y, X, Z) // call for read function
7: for i = 1 to n
8: for j = 1 to K
9: Y(i, j) = H(i, j) ∗ X(i, j) + Z(i, j)
10: Data (id) = Y(i, j)
11: end for
12: end for
13: //Call MapReduce function

result = mapreduce (read, @CSIAcquisitionMapper,
@ Scheduling_CSI);

14: readall (result)
15: end for
16: // Call function of Mapper (1) to Mapper (M) [from

line 17, parallel processing at a time]
17: // function of Mappers 1 //apply channel estimation for

VBS(1)
18: function CSIAcquisitionMapper1 (data, VBS_id)
19: { (Y, X, Z) = data
20: { find H_ estimate // using MMSE or LS
21: Add (intermKVStore,’ VBS_id ’, H_ estimate)
22: }
23: {Repeat the previous function on M mappers
24: // Call scheduling_CSI function
25: Function Scheduling_CSI (intermKey, outKVStore)
27: // intermKey: intermediate KeyValueStore object

// outKVStore: final KeyValueStore object
28: i =1 do
29: Add (outKVStore, ’VBS_id’, H_ estimate (i))
30: While (i 6=M)
31 End function

increasing or sharing the burden of computational complexity
of the CSI acquisition among all elements of the network.
Therefore, MapReduce relies on increasing the number of
mappers (workers or servers or processors) in a parallel
manner to complete the processing of input data. Hence,
queuing theory is the most appropriate tool to describe the
internal operation of the MapReduce framework. Generally,
the objective of queuing analysis is to predict the performance

VOLUME 5, 2017 7

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

of the system for the purpose of minimizing the total costs of
waiting time and then providing superior services. Likewise,
using MapReduce reduces the time of CSI acquisition and
this increases the system utilization via increasing the data
throughput. Hence, this section will try to answer two ques-
tions: i) why does the data throughput increase after using
MapReduce? ii) why does the estimation time decrease after
deploying the MapReduce framework?

From a queuing theory point of view, MapReduce can be
represented as a multiple server queuing system (M/M/S).

For the purpose of accurate description for the pro-
posed MapReduce framework in C-RAN, the following two
assumptions have been considered in the calculations of the
throughput and thewaiting time. Firstly, both the arrival rate λ
and the service rate µ are the same for all servers. This is
for the purpose of fair comparison and to be compatible with
the real simulation environment. Secondly, all servers are
identical and have equal capabilities.

A. THROUGHPUT OF THE SYSTEM
In general, based on the principles of queueing theory, the
throughput (TP) of the M/M/S can be calculated by summing
the throughput or the service rate µ of all servers as shown in
the following formula [44]:

TPtotal_MMS =
∑m

i=1
TPper−node(i) = µ1 + µ2 + . . .+ µm

(9)

The throughput of the pool of VBSs can be calculated by
aggregating the throughput of all connected UEs in each
VBS and then the total TP of all VBSs represents the total
throughput of the pool of VBSs. The calculation of TP can be
expressed in the following three equations:

TPUE(i) = B ∗ log
(
1+ SINR(i)

)
(10)

The aggregated throughput of all UEs represents the through-
put per cell or VBS as follows:

TPVBS(j) =
∑z

i=1
TPUE (i) (11)

From equation 11, the total throughput for the pool of VBSs
can be calculated as follows:

TPpool of VBSs =
∑m

j=1
TPVBS(j) (12)

Where,

TPUE : Throughput of the user equipment
TPVBS : Throughput of the virtual base station
TPpool of VBSs: Throughput of the pool of virtual base

stations
B: Bandwidth
SINR: Signal-to-noise-plus-interference ratio
z: Number of UEs

Before adoptingMapReduce, there was a problem in the scal-
ability of the VBSs because of the extremely large channel
matrices, which make the acquisition of the CSI a formidable

task in C-RAN. Then, after considering the grouping tech-
nique of the RRHs and parallel processing of MapReduce
framework, the VBSs can be scaled-up. It is worth noting that
calculating the throughput in C-RAN after adding MapRe-
duce can follow similar characteristics of the multiple servers
queuing system in increasing the system throughput when
scaling-up the number of servers.

B. WAITING TIME
In queuing theory, the total waiting time (Ttotal) or com-
monly known as the response time [45] includes two parts
as expressed in equation 13. The average waiting time in the
queue (Tq) and the job service time (Ts) which is the time
required for the job to be served in the server.

Ttotal = Tq + Ts (13)

In the present design,MapReduce can be presented as a queu-
ing system with multi-phase service. Therefore, the service
time is divided into three phases; the classifier (Tc) or the
splitter of the incoming data, the mapping phase (TM) and
the reducing phase (TR). Hence, the total service time for
MapReduce framework can be expressed as follows:

Ts = Tc + TM + TR (14)

There is no need for the function of the reducing phase in
the current design. The original reducing phase takes a set
of an intermediate key-value pairs produced by the mapper
as the input and runs a reducer function such as shuffling,
sorting, filtering, aggregating, and combining. However, for
link adaptation purposes, the VBS scheduler must directly
receive the acquired CSI information at each mapper without
the extra reducer stage. Therefore, the reducing phase is
excluded from the current design by applying MapReduce
with zero number of reducers. This can be considered as
an advantageous point since the reducing phase takes addi-
tional processing time and can represent a bottleneck stage
in MapReduce without careful design planning [46]. Hence,
the total waiting time can be represented by:

Ttotal = Tq + Tc + TM (15)

It is worth stating that the total waiting time can be affected
by the number of servers, the service rate per server and
the length of the queue. The rest of this section involves
the mathematical representation for the component of the
response time.

1) SERVICE TIME IN CLASSIFIER
The classifier is used to split the input data and send it to
the servers, with a service rate β ≥ mµ to avoid the case of
bottleneck at the classifier, where, m is number of servers.
Therefore the service time of classifier can be expressed
as Tc = 1

β
.

2) SERVICE TIME IN MAPPING PHASE
The service time (TM) for each mapper is assumed to be
independent and exponentially distributed [47]. Therefore,

8 VOLUME 5, 2017

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

FIGURE 9. M/M/1 queuing system.

two possible assumptions for determining the service time
at the mapping phase, which either consider all servers as
identical and have the same capabilities (therefore the service
time will be α where α = 1

µ
or if the servers have different

capabilities then the service time of mapping phase can be

expressed as α = max
[

1
µ1
, 1
µ2
, . . . , 1

µm

]
by taking the time

of the slowest server.

3) WAITING TIME IN QUEUE
For the purpose of analyzing the average waiting time in the
queue (Tq), a Poisson arrival λ is considered. Three different
cases have been studied: (a) a queuing systemwith one server,
(b) a queuing system with a number of servers equal to the
number of chunks of input data, and (c) the queuing system
with a number of servers less than the number of chunks of
incoming data.

a: QUEUING SYSTEM WITH A SINGLE SERVER
In C-RAN the VBS that manage hundreds of RRHs can be
considered a M/M/1 queue system. In the M/M/1 system the
incoming data will suffer more waiting times in comparison
to multi-server systems. In the case of M/M/1, the first chunk
of data (N) will enter the server without waiting while the
others will suffer fromwaiting in the queue as shown in Fig.9.
Hence, the total waiting time (TWq) in the queue can be
described as follows:

TWq = (N− 1) ∗ α + (N− 2) ∗ α ++ 1 ∗ α

(16)

From equation 16, the sum of positive numbers can be repre-
sented by the following:

TW q = α ∗

N−1∑
i=1

i

TW q = α ∗
(N − 1) (N − 1+ 1)

2
= α ∗

N (N − 1)
2

(17)

The average waiting time of Tq can be calculated by dividing
the total waiting time TW q by the total number of chunks of

FIGURE 10. M/M/S queue with (N = m).

input data, which is the received service.

Tq =
α ∗

N (N−1)
2

N
= α ∗

(N − 1)
2

(18)

Where, α is the service time = 1
µ
, hence the response time

can be determined as follows:

Ttotal = Tq + TM = α ∗
(N − 1)

2
+ α (19)

b: QUEUING SYSTEM WITH NUMBER OF CHUNKS OF
ARRIVAL DATA IS EQUAL TO NUMBER OF SERVERS
In this case, the number of chunks of data (N) which represent
the data from the groups of RRHs in the queuing system is
equal to the number of servers (m) in the multiple server
system, as shown in Fig.10. Due to the assumption above
(N = m), then all the incoming N chunks of data will
enter the m servers at the same time. Hence, there is no
waiting time in the queue (Tq = 0). Therefore, the ser-
vice time of the mapping phase requires the system to
finish the processing of all data in the system, which
will equal the total service time Ts. This is due to the
fact that all the data will be processed and finished con-
currently. Therefore, the total time can be expressed as
follows:

Ttotal = Ts = Tc + TM (20)

c: QUEUING SYSTEM WITH NUMBER OF SERVERS LESS
THAN THE NUMBER OF CHUNKS OF ARRIVAL DATA (N)
The system, as shown in Fig.11, is more realistic, since in the
normal condition the incoming data is more than the available
servers. Therefore, the average waiting time in the queue can
be calculated as follows:

According to the Figure above, the number of chunks
(the number of input data N) can be expressed as
follows:

N = aK + b (21)

VOLUME 5, 2017 9

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

FIGURE 11. M/M/S queue with (N ≥ K).

where,

N: number of input data in form of chunks/jobs (group
of tasks) of the arrival data.

K: number of servers.
b: the reminder of N/K.
a: number of times the input data has matched with the

number of servers.

From the Figure above, it is noticeable that the first K chunks
of data will enter the service directly without waiting in the
queue: (0)δ, while the secondK chunkswill wait (1)δ the third
K chunks will wait (2)δ and this continues for (a-1) times,
where δ is the summation of service time of classifier and
mapping phase (δ = Tc + TM) Hence, the total waiting time
in the queue can be expressed as follows:

a−1∑
i=1

Kδi+ abδ

But: a = N−b
K therefore, after replace (a) by N−b

K

TW q =

(
N − b
K

)
δ

(
K
((N−b

K

)
− 1

)
+ 2b

2

)

TW q =

(
N − b
K

)
δ

(
N − b− K + 2b

2

)
TW q =

(
N − b
K

)(
N − K + b

2

)
δ (22)

For the average waiting time divide equation 24 by N

Tq =

(N−b
K

) (N−K+b
2

)
δ

N
(23)

Therefore the overall response time can be expressed as
follows:

Ttotal = Tq + Tc + TM =

(N−b
K

) (N−K+b
2

)
δ

N
+ δ (24)

The former part of this work investigated the potential
of reducing the overall network computational complexity.

This has been achieved by processing data of a group of
RRHs instead of the entire number of RRHs in the network.
In order to complement this, the next part of this paper
analyzes the computational complexity - per VBS – using a
modifiedMMSE estimator, minimizing the execution time of
the matrix inversion using fast matrix inversion by Strassen’s
algorithm and Block LU decomposition.

VII. REDUCING PROCESSING TIME OF MATRIX
INVERSION USING FAST MATRIX INVERSION
ALGORITHMS
In the MMSE estimator, the matrix inversion was considered
the main reason of its complexity [14], [18]. This section
includes a novel idea of combining two algorithms, which
are Block LU decomposition and Strassen’s algorithm. Both
of these algorithms share the principle of dividing the matrix
into sub-blocks of small matrices to find the inversion or the
multiplication of matrices. Strassen’s algorithm breaks down
the complexity of matrix inversion and multiplication from
O(n3) to O(n2.807) [48]. Block LU also improves computing
efficiency by speeding up the execution time and utilizing
memory hierarchies efficiently [49]. The details of both algo-
rithms are illustrated in the next sections. It is worth noting
that although the reduction in complexity of matrix inversion
might be small with Strassen, the reduction will be per matrix
inverse. In other words, the aggregated total saving in the
estimation time (ET) of the MMSE estimator will be large,
since the MMSE includes more than one matrix inversion
operation as shown in Equation (7).

A. STRASSEN’s ALGORITHM
In this algorithm, the matrix inversion or multiplica-
tion is calculated by partitioning the matrix into smaller
square matrices. Hence, in Strassen’s algorithm these oper-
ations are applied on small sub matrices instead of apply-
ing the matrix operations directly on one large matrix.
In this algorithm, the matrix inversion will convert into
matrix inversion and multiplication. Strassen’s algorithms
for the matrix multiplication and inversion are explained as
follows:

1) MATRIX MULTIPLICATION IN STRASSEN’s ALGORITHM
The matrix multiplication in Strassen’s algorithm is faster
than the traditional multiplication algorithms. In the equa-
tion expression, Z is the result of multiplying two square
matrices X and Y, (Z = XY). According to the conventional
matrix multiplication algorithms, the complexity of this mul-
tiplication is O(N3) [50] while using Strassen’s method the
complexity of Z will be of order O(N2.807). In the method,
since the matrices are partitioned into half sized blocks,
the matrices of (Z = XY) can be written in the following
form:[

Z11 Z12
Z21 Z22

]
=

[
X11 X12
X21 X22

] [
Y11 Y12
Y21 Y22

]
(25)

10 VOLUME 5, 2017

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

Algorithm 3 Strassen’s Algorithm for Matrix Multiplication
Input:
Matrix X, Matrix Y, Block_size (B_S)
Output:
Matrix Z, multiplication of X and Y
1: function Z = Strassen_mul (X, Y, B_S)
2: Read the dimension (n) of X
3: if dimension of n is not equal to power of 2 then
4: Error (’Enter matrix with power of 2 dimension ’)
5: End if
6: if n is less or equal to B_S
7: Z = X∗Y
8: else
9: Divide the current dimension of n,(z = n / 2)
10: Define two indexes i = 1:z; j = z+1:n;
11: R1 = Strassen_mul(X(i, i)+X(j, j), Y(i, i)+Y(j, j),

B_S)
12: R2 = Strassen_mul(X(j, i)+X(j, j), Y(i, i), B_S)
13: R3 = Strassen_mul(X(i, i), B(i, j)-Y(j, j), B_S)
14: R4 = Strassen_mul(X(j, j), B(j, i)-Y(i, i), B_S)
15: R5 = Strassen_mul(X(i, i)+X(i, j), Y(j, j), B_S)
16: R6 = Strassen_mul(X(j, i)−X(i, i), Y(i, i)+Y(i, j),

B_S)
17: R7 = Strassen_mul(X(i, j)−X(j, j), YB(j, i)+Y(j, j),

B_S)
18: Z = [R1+R4−R5+R7 R3+R5; R2+R4

R1+R3−R2+R6];
19: End if
20: Return (Z)
21: End function

Then the matrix multiplication can be calculated as follows:

R1 = (X11 + X22) (Y11 + Y22)

R2 = (X21 + X22)Y11
R3 = X11 (Y11 + Y22)

R4 = X22 (Y21 + Y11)

R5 = (X11 + X12)Y22
R6 = (X21 + X11) (Y11 + Y12)

R7 = (X12 + X22) (Y21 + Y22) (26)

The overall results of matrix multiplication are:

Z11 = R1 + R4 − R5 + R6
Z12 = R3 + R5
Z21 = R+ R4
Z22 = R1 + R3 − R2 + R6 (27)

It is worth noting that, Strassen’s algorithm requires 7 multi-
plications, while in the traditional multiplication algorithms
requires 8 multiplications. Several researchers have stud-
ied Strassen’s algorithm such as [51], [52]. The details of
Strassen’s matrix multiplication algorithm is illustrated in
Algorithm 3.

2) MATRIX INVERSION IN STRASSEN’s ALGORITHM
As mentioned earlier, the calculation of matrix inversion
should be achieved by breaking down the matrix inversion
into multiplications of several matrices. To find the inverse
of Z = X−1 for a square matrix X, the matrix (X) should
be divided into half sub matrices. The size of matrix X is
N = m2k , where m and k are positive integer numbers and
2k is the size of the sub-matrices. Strassen’s algorithm of
matrix inversion has been studied broadly [53], [54]. The
steps of Strassen’s matrix inversion can be expressed as
follows: [

Z11 Z12
Z21 Z22

]
=

[
X11 X12
X21 X22

]
(28)

Then the matrix inversion can be calculated as follows:

R1 = X−111

R2 = X21xR1
R3 = R1xX12

R4 = X21xR3
R5 = R4 − X22
R6 = R−15 (29)

The final results of matrix inversion are:

Z12 = R3xR6
Z21 = R6xR2
Z11 = R1 − R3xZ21
Z22 = −R6 (30)

The algorithm for the previous equations (28, 29, 30) can be
illustrated as in Algorithm 4 below. Algorithm 4 is reformu-
lated from [54].

3) COMPLEXITY ANALYSIS OF STRASSEN’s ALGORITHM
The traditional matrix multiplication, such as two matrices of
size (2× 2) requires 8 multiplications. Hence, its complexity
can be calculated as follows:

T (n) = 8T
(n
2

)
+ O

(
n2
)

(31)

where, n ≥ 2, solving Equation (31) using master theorem,

T (n) = O
(
nlog2 8

)
= O

(
n3
)

(32)

Equation 34 illustrates that the complexity of traditional mul-
tiplication for the smaller 2 × 2 matrix is O

(
n3
)
, while, in

Strassen’s algorithm the multiplication of two matrices of
size 2 × 2 requires 7 multiplications, and the complexity
is O

(
n2.807

)
.

T (n) = 7T
(n
2

)
+ O

(
n2
)

(33)

T (n) = O
(
nlog2 7

)
= O

(
n2.807

)
(34)

Likewise, thematrix inversion requires about 6/5(nlog2 7) mul-
tiplications. Hence, in Strassen’s algorithm the complexity of

VOLUME 5, 2017 11

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

Algorithm 4 Strassen’s Algorithm for Matrix Inversion
Input:
Matrix X, Block_size (B_S)
Output:
Matrix Z, Inverse of Matrix X
1: function Z = Strassen_inv (X, B_S)
2: Read the dimension (n) of X
3: if dimension of n is not equal to power of 2 then
4: Error (’Enter matrix with power of 2 dimension ’)
5: End if
6: if n is less or equal to B_S
7: Z = inv(X)
8: else
9: Divide the current dimension of n, (z = n / 2)
10: Define two indexes i = 1:z; j = z+1:n
11: R1 = Strassen_inv(X(i, i), B_S);
12: R2 = Strassen_mul(X(j, i), R1, B_S)
13: R3 = Strassen_mul(R1,X(i, j), B_S)
14: R4 = Strassen_mul(X(j, i), R3, B_S)
15: R5 = R4-X(j, j)
16: R6 = Strassen_inv(R5, B_S);
17: Z(i, j) = Strassen_mul(R3, R6, B_S);
18: Z(j, i) = Strassen_mul(R6, R2, B_S)
19: Z(i, i) = R1-Strassen_mul(R3, Z(j, i), B_S)
20: Z(j, j) = -R6
21: End if
22: Return (Z)
23: End function

matrix inversion is considered the same as the matrix mul-
tiplication O(n2.807). Details of the derivation of Strassen’s
inversion complexity is explained in [55]. In conclusion,
Strassen’s algorithm is faster than the traditional methods.

4) CHALLENGE OF STRASSEN’s ALGORITHM
The main challenge in Strassen’s algorithm is that the dimen-
sion of thematrix Xmust be of order of 2k , where, k is an inte-
ger [17]. Therefore, this might be the main reason that makes
this algorithm uncommon for the mathematical operations of
matrices. On the other hand, the dimension of the channel
information matrices, where we need to reduce complexity is
not always of power 2. Hence, in this research, two methods
have been studied to generalize Strassen’s algorithm. These
methods are illustrated as follows:

a: INCREASING THE DIMENSION OF MATRIX TO THE NEXT
HIGHER POWER OF 2
As mentioned earlier, to use Strassen’s algorithm, the dimen-
sion of matrix must be a power of 2. Hence, to solve this
limitation, it can scale up the size of matrix to the next power
of 2 by adding rows and columns of zeros with ones on the
main diagonal at the end of the input matrix. This can be
achieved using the Matlab function ‘‘nextpow2(n)’’ which
returns the next power of 2. The following algorithm and
numerical example clarify the operation of this technique.

Algorithm 5 Generalization of Strassen’ Algorithm Using
Next Power of 2
Input:
Matrix M, Block_size
Output:
Inverse of M, (M−1)
1: Read matrix M
2: Check the dimension (n) of M
3: if dimension (n) of M is not a power of 2
4: //Check if M is a square matrix
5: if size(M,1) ∼ = size(M,2)
6: error(’The matrix must be square.’)
7: end if
8: Scaling up the size of M to the next power of 2
9: Set 1 for the main diagonal
10: Set 0 for the additional rows and columns
11: M−1 = Strassen_inv (B, Block_size);
12: Return the original size of M
13: Return (M−1)
14: End if

b: NUMERICAL EXAMPLE
M is a matrix of dimension 5x5 as shown below. Then to find
the inverse of M by using Strassen’s algorithm, the steps in
Algorithm 5 above are applied as follows.

M =


1 2 5 7 8
3 2 7 2 1
5 1 2 6 9
2 2 4 5 6
9 7 1 5 2



M =



1 2 5 7 8 0 0 0
3 2 7 2 1 0 0 0
5 2 7 2 1 0 0 0
2 2 4 5 6 0 0 0
9 7 1 5 2 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


Then the next power of 2 after 5 is 8, hence, the size

will be M−11 and M−1, as shown at the bottom of the next
page.
It is worth stating that the aforementioned method can
work with Strassen’s algorithm. However, this contradicts
the aim of this research, which is to reduce the complexity
of acquiring the channel information of large channel matri-
ces. In large channels matrices, the computation complexity
will be increased with scaling up the size of matrix M to
the next power of 2, until when the additional rows and
columns are zeros. Hence, it is an inefficient approach in
this research. To verify the system performance with this
technique, a simulation test is conducted with the following
settings, 5UEs, 1VBS, 64 antennas at the VBS, 4 anten-
nas at UEs, 1.4 BW. The results in Fig. 12 below clar-
ify the performance of the network before and after using

12 VOLUME 5, 2017

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

FIGURE 12. Network performance using Strassen with next power of 2.

Strassen’s algorithm with the technique of next power of 2.
The degradation in the performance comes from enlarging
the original size of the matrix into a larger size of power
of 2. In the next section, the block LU decomposition is
proposed as a novel idea to tackle the problem of dimensions
in Strassen’s algorithm. It is worth stating that in 5G networks
the target end-to-end latency is 1ms as mentioned earlier.
Hence, any reduction in the estimation time will contribute
to the overall latency minimization.

B. GENERALIZATION OF STRASSEN’s ALGORITHM USING
BLOCK LU DECOMPOSITION
Block LU decomposition is an approach used to speed up the
operation of matrices [56]. The idea is to break down the high
computation overhead of the big matrix into a set of smaller
blocks of sub-matrices. The Block LU is used in this research
for the purpose of generalization of Strassen’s algorithm,
which requires the dimension of power 2. It is possible to
make the size of the block of sub-matrices equal to power
of 2 (n = 2k) through Block LU, to fit with the requirement
of Strassen’s algorithm. The Block LUmethod is an improve-
ment to the standard LU factorization approach. In Block LU
decomposition, the operations of matrix inversion or multi-
plication start after dividing the upper and lower triangular
into sub-blocks of small matrices. As a result of this division,

the length of the operations vectors will reduce from the
original size of matrix N into n, which is the size of the sub-
blocks. This approach has been studied extensively, such as
in [57] and [58]. In general, the procedure of this approach
can be classified into three main parts: partitioning of the
original matrix into L and U triangular; dividing the lower
and upper triangular into sub-blocks with a size of n; and then
finding the inverse of each block and augmenting the results
of submatrices to determine the inverse of the original matrix.
The details of Block LU decomposition and the combination
of both Block LU- Strassen’s algorithms will be explained in
the following sections.

1) PART 1 (MATRIX DECOMPOSITION INTO L AND U
MATRICES)
Y is a square matrix with order N, the decomposition of Y
into a product of two upper and lower matrices (Y = LU) is
illustrated in equation (35) below:
y11 y12 ... y1N
y21 y22 ... y2N
y31 y32 ... y3N
...
yN1 yN2 ... yNN



=


l11
l21 l22
l31 l32 l33
...

lN1 lN2 ... lNN



u11 u12 ... u1N

u22 ... u2N
u33 ...

...

uNN


(35)

where: the values of the main diagonal of the lower triangular
lii are set to one and also the unwritten values at both L and
U set to zeros. The rest of values can be calculated using
equations 38 and 39.

uij = yij −
j−1∑
z=1

ljzuzj (36)

lij =
1
ujj

(y
ij
−

j−1∑
z=1

lizuzj) (37)

M−11 =



0.0805 0.1421 0.2151 −0.4667 0.0390 0 0 0
−0.9069 −0.3044 −0.4075 1.8667 0.0138 0 0 0
−0.0742 0.1346 −0.0264 1.8667 −0.0516 0 0 0
1.5145 0.2365 0.2340 0.1333 0.1711 0 0 0
−0.9371 −0.2327 −0.1132 1.667 −0.1258 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



M−1 =


0.0805 0.1421 0.2151 −0.4667 0.0390
−0.9069 −0.3044 −0.4075 1.8667 0.0138
−0.0742 0.1346 −0.0264 0.1333 −0.0516
1.5145 0.2365 0.2340 −2.4667 0.1711
−0.9371 −0.2327 −0.1132 1.6667 −0.1258


VOLUME 5, 2017 13

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

The pivoting matrix P is also calculated by decomposition
PY instead of Y, (PY = LU) to maintain high numerical
stability and accuracy; where P is a permutation matrix of
the rows, which includes 1s and 0s provided that the rest of
the row and the column of each 1s are zeros. P matrix has no
effect on the final result of matrix inverse.

2) PART 2 (PARTITIONING L AND U INTO SUB-BLOCKS)
In this stage, the equation of the original LU factorization can
be written in the form of sub matrices as follows:[
p1 0
0 p2

] [
Y1 Y2
Y3 Y4

]
=

[
L1 0
L2 L3

] [
U1 U2
0 U3

]
(38)

Hence, from equation 40 we can get the following
matrices:

P1Y1 = L1U1 (39)

P1Y2 = L1U2 (40)

P2Y3 = L2U1 (41)

P2Y4 = L2U2 + L3U3 (42)

Then the following steps will be followed to find the sub
matrices:

1. If the size of the sub matrix Y1 reaches the desired
dimension (n), then decompose Y1 to find L1, U1, P1
and find the L−11 ,U−11 elsewhere, continue partitioning
into smaller matrices.

2. Then, calculate L̂2, U2 from L1, U1, Y2 and Y3.
3. Then, determine Ŷ = Y4− L̂2U2 , where, L̂2 = Y3U

−1
1

if the dimension of Ŷ equal to n then decopmse Ŷ to find
L3, U3, elsewhere, continue partitioning into smaller
matrices.

4. Obtain L2 from P2 and L̂2.(
L̂2
)
ij
=

1
(U1)ii

((Y3)ij −
∑i−1

z=1

(
L̂2
)
iz
(U1)zj) (43)

(U2)ij =
1

(L1)ii
((Y2)ij −

∑i−1

z=1
(L1)iz (U2)zj) (44)

After obtaining L̂2 and U2 now it can find Ŷ = Y 4 − L̂2U2,
then if the dimension of Ŷ is equal to the block size n it can
be decomposed to find L3, U3. It is worth mentioning that at
the stage of calculating Y1 and Ŷ if they are not small enough
(size larger than n), the processes of partitioning and calcu-
lating the intermediate sub matrices continue recursively.

3) PART 3 (AUGMENTING THE RESULTS OF SUB-MATRICES
AND FINDING THE FINAL INVERSE)
The inverse of the original lower triangular L, the upper
triangular U matrices can be calculated in parallel, since both
of them are independent, by augmenting all the sub-matrices
of L (L1, L2, L3) and U (U1, U2, U3), and obtaining the
permutation matrix P by augmenting P1 and P2 as follows.
Algorithm 6 is recalled from the Block LU algorithm in [57].

L−1 =
[

L−11 0
−L−13 L2L

−1
1 L−13

]
(45)

Algorithm 6 Block LU decomposition [57]
Input:
N × N square matrix Y, block size n
Output:
inverse of Y−1

1: function BlockLU (Y)
2: if the order of Y equal to the block size
3: (L, U, P) = lu (Y)
4: L−1 = inverse (L)
5: U−1 = inverse (U)
6: else
7: Divide Y into Y1, Y2, Y3, Y4
8: (L−11 , U−11 , P1) BlockLU (Y1)
9: Calculate U2 from L−11 , P1 and Y2

10: Calculate L̂2 from U−11 and Y3

11: Calculate Ŷ = Y4 − L̂2U2
12: (L−13 , U−13 , P2) BlockLU (Ŷ)
13: Calculate L2 from P2 and L̂2
14: Augmenting L−11 , L2, L

−1
3 to find L−1

15: Augmenting U−11 , L2, U
−1
3 to U−1

16: Augmenting P1 and P2 to find P
17: End if
18: Y−1 = U−1 L−1 P
19: Return (Y−1)
20: End function

U−1 =
[
U−11 −U−11 U2U

−1
3

0 U−13

]
(46)

P =
[
P1 0
0 P2

]
(47)

Finally, the inverse of matrix Y will be:

Y−1 = U−1L−1P (48)

C. BLOCK LU – STRASSEN’s INVERSION
The inversion of Strassen’s algorithm is faster than the tra-
ditional inverse algorithms used in traditional MMSE, since
the complexity has been reduced into O(N2.807). In this work,
and to generalize Strassen’s algorithm, the Block LU decom-
position is proposed with modification. The idea is to use
Strassen’s inversion as the core of the Block LU decomposi-
tion instead of traditional inversion, as shown in Algorithm 7.
The proposed algorithm will ensure lower complexity and
hence lower latency compared with Algorithm 6.

VIII. SIMULATION RESULTS AND DISCUSSION
This section is divided into two parts. The first part presents
the results for deploying the MapReduce framework in the
C-RAN network. The second part contains results for imple-
menting fast matrix algorithms in the MMSE. This paper
applies MATLAB R2016a to run the simulation tests. The
simulation parameters setting are illustrated in Table 4.
Part 1 (Simulation Results of C-RAN With MapReduce):

In this part, the results of deploying MapReduce in C-RAN

14 VOLUME 5, 2017

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

Algorithm 7 The proposed Block LU – Strassen
Input:
N × N square matrix Y, block size(B_S) = 2∧L, L: is
integer no.
Output:
inverse of Y−1

1: function BlockLU (Y)
2: if the order of Y equal to the block size
3: (L, U, P) = lu (Y)
4: L-1 = Strassen_inv (L, B_S)
5: U-1 = Strassen_inv (U, B_S)
6: else
7: Partition matrix (Y) into (Y1,Y2,Y3,Y4)
8: (L−11 , U−11 , P1) BlockLU (Y1)
9: Calculate U2 from L−11 , P1 and Y2

10: Calculate L̂2 from U−11 and Y3

11: Calculate Ŷ = Y4 − L̂2U2
12: (L−13 , U−13 , P2) BlockLU (Ŷ)
13: Calculate L2 from P2 and L̂2
14: Augmenting L−11 , L2, L−13 to find L−1

15: Augmenting U−11 , L2, U−13 to U−1

16: Augmenting P1 and P2 to find P
17: End if
18: Y−1 = U−1 L−1 P
19: Return (Y−1)
20: End function

TABLE 4. Simulation parameters.

are presented. At the start, to quantify the amount of high
computational complexity for large channel matrices on the
performance of the network, the first simulation test is con-
ducted with 64 and 128 antennas at one VBS using MMSE
estimator with 1.4MHz bandwidth. To establish a logical line
of reasoning, one should note that in this work, the RRH is
deployed with a single antenna, therefore the words antenna
and RRH are alternated to describe the same concept. For
the purpose of comparison, the test has been repeated using
perfect channel estimation. As shown in Fig.13, the results
reveal that the MMSE and the perfect channel estimation
differ significantly in terms of data throughput. The perfect
estimation or the theoretical estimation process means that no
previous acquisition processing is necessary because of the
perfect knowledge of CSI at the VBS. Consequently, unlike
the real estimator (MMSE), the perfect estimator eradicates

FIGURE 13. Test in above figure shows the effect of expansion on the cell
throughput with (64 and 128 antennas) per VBS. using MMSE and perfect
estimation algorithm.

FIGURE 14. Throughput per pool of VBSs (group of VBSs with 8 RRHs)
using MapRedcue.

the issue of high computation overhead in obtaining the CSI
with a large number of antennas in the VBS. The subsequent
test uses the distributed processing in the C-RAN architecture
to reduce the computation complexity faced with a large
number of antennas.

The aim of deploying MapReduce is to switch the tech-
nique of processing in C-RAN from centralized to a dis-
tributed one. This reduces the size of H and minimizes the
acquisition time of the CSI.

Figure 14 shows the possibility of expanding the num-
ber of antennas without raising the computation overhead,
while keeping the performance of the network the same
for data throughput. While Fig.15 illustrates the increase
in spectral efficiency, Fig.16 shows its percentage. In other
words, the scalability of C-RAN with MapReduce increases
the spectral efficiency of the network as the number of dis-
tributed RRHs rises. Simultaneously, the estimation time and
the overall response time (RT) remain constant within the
time of the applied group. This is due to processing small
manageable channel matrices instead of a large matrix with
high computational complexity.

The response time can increase dramatically in the central
processing approach, as shown in Fig.17. Such increases can
be controlled throughout the clustering with the MapReduce
approach. Here, the response time has beenmaintained for the
8th, 16th and 32th group order. The response is a crucial factor

VOLUME 5, 2017 15

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

FIGURE 15. Spectral efficiency with the rise the number of antennas.

FIGURE 16. Percenatge of increase in the spectral efficiency compared to
the lagacy 8 antennas system.

FIGURE 17. Total response time for three groups of 8, 16 and 32 antennas
at each VBS.

when considering next generation networks that require low
end-to-end latency.

Figure 18 also demonstrates the gain in the CSI acquisition
time for different groups of RRHs. The figures demonstrate

FIGURE 18. Average estimation time for different groups of antennas:
8,16,32 and 64 antennas.

that the total estimation time can be minimized when group-
ing is performed. In addition, the estimation time can be
limited by allocating a group of RRHs to each VBS, and this
reduces the computational overhead of big channel matrices.
The advantage is that it meets the low coherence time require-
ments for high carrier frequencies and UE speeds, and then to
improve the accuracy of the CSI, since it conveys the state of
the communication link between the UEs and the VBSs. The
proposed distribution approach is beneficial in the next gen-
eration of 5G networks since the latency will be minimized
to a significant level, as shown in Fig.2, to meet the future
critical time technologies. Simultaneously, a large number of
antennas can be used in a scalable manner without raising the
problem of the acquisition overhead in the whole network.
The advantage is that in the cloud, the data, and the CSI
can be completely distributed between VBSs [27]. Therefore,
instead of employing a large number of antennas /RRHs per
VBS (that causes a high overhead, with MapReduce) a set of
VBS with the pre-specified group of RRHs have been used to
obtain the CSI.

The results in Fig.19 demonstrate the possibility of reduc-
ing the estimation time for the CSI based on the chosen
group size. Certainly, when the group size starts to increase,
the size of the channel matrix also begins to increase as
well. Hence, with a smaller group of antennas (8 antennas),
the higher gain in the percentage of reduction RT is observed,
and this percentage starts to decrease when increasing the
size of the group. In Fig.20, both the simulation and the
theoretical results are drawn for the purpose of compar-
ison between the simulation and the analytical results in
terms of data throughput. The results show almost the same
trend between analytical and simulation results. The result
in Fig. 21 presents a comparison between the overall response
time of the simulation results and the theoretical calculations
with the number of deployed servers. The result indicates that
as the number of servers increases, the estimation time and

16 VOLUME 5, 2017

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

FIGURE 19. Reduction gain (%) in response time for different RRH groups.

FIGURE 20. Throughput of pool of VBSs (simulation vs. therotical).

the overall response time decreases proportionally. Therefore
more VBSs are recommended to be added in C-RAN-based
MapReduce to reduce the response time. There is a noticeable
difference between the analytical and the simulation results
in Fig.21.In the simulation results, there are several param-
eters under consideration, and the simulation tool facilitates
the calculations. While in the analytical method, for the sake
of simplicity, fewer parameters have been considered in the
calculations.
Part 2 (Simulation Results of C-RAN With Fast Matrix

Algorithms): Several tests are conducted to examine the
proposed fast matrix algorithms. At the start, to clarify the
speed of Strassen’s algorithm, a comparison in the processing
time is made between Strassen’s inverse algorithm and tradi-
tional inverse function. The two main points are illustrated
in Fig.22, which are that: Strassen’s algorithm requires less
processing time and it gives more gain in time when scaling

FIGURE 21. Reduction in response time versus no. of processors/
mappers.

FIGURE 22. Strassen_inv versus. traditional inv. with power of 2 matrices.

FIGURE 23. gain in estimation time (%) versus no. of antennas using
Blocklu-Strassen alogorithm.

up the size of the matrix. However, this test is limited to a
dimension of power 2 matrices.

Applying the combination of Strassen’s and Block LU
enables a considerable reduction in the estimation time of
acquiring CSI, due to decreasing the processing time of
matrix inversion. The result in Fig. 23 illustrates the percent-
age of gain in the estimation time of channel information
when using block LU – Strassen’s algorithms over the tra-
ditional inversion. As mentioned earlier, Strassen’s algorithm

VOLUME 5, 2017 17

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

FIGURE 24. Throughput per cell for 64 antennas at the VBS with fast
algorithms (Block LU + Strassen).

FIGURE 25. Throughput per cell for 128 antennas at the VBS with fast
algorithms (Block LU + Strassen).

can support scalability. As the number of antennas (or equiv-
alently the size of the channel matrix) increases, the gain of
execution time decreases.

The results in Figures 24 and 25 show noticeable improve-
ment in the data throughput of the network when con-
sidering block LU–Strassen’s algorithms in calculating the
matrix inverse in the MMSE estimator for VBSs with
64 and 128 RRHs. The reason is due to the reduction in
the processing time of the matrix inversion, which leads to
a reduction in the estimation time of the CSI acquisition.
Therefore, the accuracy of the CSI is improved by adapting
the communication channel more quickly between the UE
and the VBS.

Figure 26 demonstrates a comparison of the network per-
formance in terms of data throughput between the two meth-
ods that have been used in this research for generalizing
Strassen’s algorithm. The results show that Stassen-Block LU
is more efficient, since it minimizes the initial system delay
and speeds up the system response time.

The advantage of reducing the estimation time with
Stassen-Block LU - particularly with the case of 64 antennas
at the VBS - is that it can increase the size of the group of
RRHs in MapReduce to 64 RRHs with acceptable system
performance. Hence, the C-RAN network with 128, 256,

FIGURE 26. System performance comparison between the proposed
methods for generalizing Strassen’s algorithm.

FIGURE 27. Throughput per pool of VBSs for scalable number of antennas
(group of 2VBSs with 64 antennas) using MapReduce.

TABLE 5. Summary of complexity reduction.

512, 1024 RRHs can be represented with groups of 2VBSs,
4VBSs, 8VBSs and 16VBSs respectively, with 64 RRHs
per VBS. For instance, Fig. 27, illustrates that 128 anten-
nas can be represented by two VBSs with a group size of
64 RRHs, this scenario is not possible to implement with
traditional matrix inversion due to the high execution time
of matrix inversion.

It is worth mentioning that both of the proposed tech-
niques (MapReduce and fast matrix algorithms) provide a
considerable improvement in the reduction of computational
complexity of acquiring CSI. The summary of the overall
reduction is illustrated in Table 5.

IX. CONCLUSION
The architecture of C-RAN provides central network man-
agement and reduces the expenses of network deployment.

18 VOLUME 5, 2017

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

However, it has challenging computational complexity, which
leads to limited network scalability. Two novel approaches
have been developed for C-RAN architecture to reduce the
computational complexity in acquiring channel state infor-
mation while maintaining network scalability to meet the
demand of future 5G networks. The proposed approaches are
supported by results that show improvement of the system
performance (particularly, the data throughput) due to a sig-
nificant reduction in the acquisition time. MapReduce, as a
distributed processing framework, can minimize per network
estimation time, based on the size of the group of antennas.
Additionally, fast matrix algorithms have reduced per VBS
estimation time, via decreasing the time of execution for the
matrix inversion in the MMSE estimator. Further work will
involve using dynamic grouping size, based on the optimal
available capacity, and furthermore, planning and optimiza-
tion for the optimal capacity of VBSs of C-RAN in cloud
computing requires more investigation.

REFERENCES
[1] G. Liu and D. Jiang, ‘‘5G: Vision and requirements for mobile commu-

nication system towards year 2020,’’ Chin. J. Eng., vol. 2016, Mar. 2016,
Art. no. 5974586.

[2] M. Shafi et al., ‘‘5G: A tutorial overview of standards, trials, challenges,
deployment, and practice,’’ IEEE J. Sel. Areas Commun., vol. 35, no. 6,
pp. 1201–1221, Jun. 2017.

[3] K. M. S. Huq, S. Mumtaz, J. Rodriguez, P. Marques, B. Okyere, and
V. Frascolla, ‘‘Enhanced C-RAN using D2D network,’’ IEEE Commun.
Mag., vol. 55, no. 3, pp. 100–107, Mar. 2017.

[4] ‘‘C-RAN: The road towards green RAN,’’ Mobile China, Hong Kong,
China, White Paper ver. 2, 2011.

[5] C. Fan, Y. J. Zhang, and X. Yuan, ‘‘Dynamic nested clustering for parallel
PHY-layer processing in cloud-RANs,’’ IEEE Trans. Wireless Commun.,
vol. 15, no. 3, pp. 1881–1894, Mar. 2016.

[6] A. M. Mahmood and A. Al-Yasiri, ‘‘Scalable processing in 5G cloud-RAN
networks using MapReduce framework,’’ in Proc. 8th IFIP Int. Conf. New
Technol., Mobility Secur. (NTMS), 2016, pp. 1–6.

[7] Y. Shi, J. Zhang, and K. Letaief. (2013). ‘‘Optimal stochastic coordinated
beamforming for wireless cooperative networks with CSI uncertainty.’’
[Online]. Available: https://arxiv.org/abs/1312.0363

[8] Y. Shi, J. Zhang, K. B. Letaief, B. Bai, and W. Chen, ‘‘Large-scale con-
vex optimization for ultra-dense Cloud-RAN,’’ IEEE Wireless Commun.,
vol. 22, no. 2, pp. 84–91, Jun. 2015.

[9] C. Fan, Y. J. Zhang, and X. Yuan, ‘‘Scalable uplink processing via
sparse message passing in C-RAN,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2015, pp. 1–6.

[10] A. Liu and V. K. N. Lau, ‘‘Joint power and antenna selection optimization
in large cloud radio access networks,’’ IEEETrans. Signal Process., vol. 62,
no. 5, pp. 1319–1328, Mar. 2014.

[11] K. Ntougias, D. Ntaikos, and C. B. Papadias. (2015). ‘‘Reducing com-
plexity in next-generation MU-MIMO systems.’’ [Online]. Available:
https://arxiv.org/abs/1507.04050

[12] J. Park and R.W. Heath, Jr., ‘‘Threshold-based antenna selection algorithm
for dense cloud radio access networks,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2015, pp. 1–6.

[13] S. Galih, T. Adiono, and A. Kurniawan, ‘‘Low complexity MMSE channel
estimation by weight matrix elements sampling for downlink OFDMA
mobile WiMAX system,’’ Int. J. Comput. Sci. Netw. Secur., vol. 10, no. 2,
pp. 280–285, Feb. 2010.

[14] A. Khlifi and R. Bouallegue. (2011). ‘‘Performance analysis of LS and
LMMSE channel estimation techniques for LTE downlink systems.’’
[Online]. Available: https://arxiv.org/abs/1111.1666

[15] Z. Mao, M. Peng, H. Wang, J. Zhou, and X. Xie, ‘‘Low-complexity
segment training channel estimation in cloud radio access networks,’’
in Proc. IEEE 82nd Veh. Technol. Conf. (VTC Fall), Sep. 2015,
pp. 1–5.

[16] O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and
P. O. Börjesson, ‘‘OFDM channel estimation by singular value decompo-
sition,’’ IEEE Trans. Commun., vol. 46, no. 7, pp. 931–939, Jul. 1998.

[17] N. Shariati, E. Björnson,M. Bengtsson, andM. Debbah, ‘‘Low-complexity
polynomial channel estimation in large-scale MIMO with arbitrary statis-
tics,’’ IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 815–830,
Oct. 2014.

[18] N. Shariati, E. Bjornson,M. Bengtsson, andM. Debbah, ‘‘Low-complexity
channel estimation in large-scale MIMO using polynomial expansion,’’ in
Proc. IEEE 24th Int. Symp. Pers. IndoorMobile Radio Commun. (PIMRC),
Sep. 2013, pp. 1157–1162.

[19] Y. Xu, G. Yue, and S. Mao, ‘‘User grouping for massive MIMO in
FDD systems: New design methods and analysis,’’ IEEE Access, vol. 2,
pp. 947–959, 2014.

[20] Y.Wang, C. Li, Y. Huang, D.Wang, T. Ban, and L. Yang, ‘‘Energy-efficient
optimization for downlink massive MIMO FDD systems with transmit-
side channel correlation,’’ IEEE Trans. Veh. Technol., vol. 65, no. 9,
pp. 7228–7243, Sep. 2016.

[21] H. Ji et al. (2015). ‘‘Overview of full-dimension MIMO in LTE-advanced
pro.’’ [Online]. Available: https://arxiv.org/abs/1601.00019

[22] T. V. Krishnamurthy and R. Shetty, 4G: Deployment Strategies and
Operational Implications Managing Critical Decisions in Deployment of
4G/LTE Networks and their Effects on Network Operations and Business.
New York, NY, USA: Apress, 2014.

[23] D. Liu, S. Han, C. Yang, and Q. Zhang, ‘‘Semi-dynamic user-specific
clustering for downlink cloud radio access network,’’ IEEE Trans. Veh.
Technol., vol. 65, no. 4, pp. 2063–2077, Apr. 2016.

[24] K.Wu and D. Li, ‘‘Channel estimation for large antenna systems,’’ in Proc.
IEEE 81st Veh. Technol. Conf. (VTC Spring), May 2015, pp. 1–5.

[25] A. Alameer and A. Sezgin, ‘‘Joint beamforming and network topology
optimization of green cloud radio access networks,’’ in Proc. 9th Int. Symp.
Turbo Codes Iterative Inf. Process. (ISTC), 2016, pp. 375–379.

[26] V. N. Ha, L. B. Le, and N.-D. Dao, ‘‘Energy-efficient coordinated trans-
mission for cloud-RANs: Algorithm design and trade-off,’’ in Proc. 48th
Annu. Conf. Inf. Sci. Syst. (CISS), 2014, pp. 1–6.

[27] X. Chen, N. Li, J. Wang, C. Xing, L. Sun, and M. Lei, ‘‘A dynamic clus-
tering algorithm design for C-RAN based on multi-objective optimization
theory,’’ in Proc. IEEE 79th Veh. Technol. Conf. (VTC Spring), May 2014,
pp. 1–5.

[28] K. Boulos, M. El Helou, and S. Lahoud, ‘‘RRH clustering in cloud radio
access networks,’’ in Proc. Int. Conf. Appl. Res. Comput. Sci. Eng. (ICAR),
2015, pp. 1–6.

[29] D. Pompili, A. Hajisami, and H. Viswanathan, ‘‘Dynamic provisioning
and allocation in cloud radio access networks (C-RANs),’’ Ad Hoc Netw.,
vol. 30, pp. 128–143, Jul. 2015.

[30] A. Davydov, G. Morozov, I. Bolotin, and A. Papathanassiou, ‘‘Evaluation
of joint transmission CoMP in C-RAN based LTE-A HetNets with large
coordination areas,’’ in Proc. IEEE Globecom Workshops (GC Wkshps),
Dec. 2013, pp. 801–806.

[31] Y. Du and G. De Veciana, ‘‘‘Wireless networks without edges’: Dynamic
radio resource clustering and user scheduling,’’ in Proc. IEEE INFOCOM,
Apr./May 2014, pp. 1321–1329.

[32] N. Agata, A. Agata, and K. Nishimura, ‘‘A design algorithm for ring
topology centralized-radio-access-network,’’ in Proc. 17th Int. Conf. Opt.
Netw. Design Modeling (ONDM), Apr. 2013, pp. 173–178.

[33] J. Tang, W. P. Tay, T. Q. S. Quek, and B. Liang, ‘‘Towards system cost
minimization in cloud radio access network,’’ in Proc. 49th Asilomar Conf.
Signals, Syst. Comput., 2015, pp. 1460–1464.

[34] M. Peng, C. Wang, V. Lau, and H. V. Poor, ‘‘Fronthaul-constrained cloud
radio access networks: Insights and challenges,’’ IEEE Wireless Commun.,
vol. 22, no. 2, pp. 152–160, Apr. 2015.

[35] C. Fan, Y. J. Zhang, and X. Yuan, ‘‘Advances and challenges toward a
scalable cloud radio access network,’’ IEEE Commun. Mag., vol. 54, no. 6,
pp. 29–35, Jun. 2016.

[36] J. Liu, S. Xu, S. Zhou, and Z. Niu, ‘‘Redesigning fronthaul for next-
generation networks: Beyond baseband samples and point-to-point links,’’
IEEE Wireless Commun., vol. 22, no. 5, pp. 90–97, Oct. 2015.

[37] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data process-
ing on large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[38] C. Cox, An Introduction to LTE: LTE, LTE-Advanced, SAE and 4GMobile
Communications. Hoboken, NJ, USA: Wiley, 2012.

VOLUME 5, 2017 19

A. M. Mahmood et al.: New Processing Approach for Reducing Computational Complexity in C-RAN Mobile Networks

[39] M. N. I. Khan and M. J. Alam, ‘‘Noise reduction algorithm for LS chan-
nel estimation in OFDM system,’’ in Proc. 15th Int. Conf. Comput. Inf.
Technol. (ICCIT), 2012, pp. 310–315.

[40] J.-C. Shen, J. Zhang, K.-C. Chen, and K. B. Letaief, ‘‘High-dimensional
CSI acquisition in massive MIMO: Sparsity-inspired approaches,’’ IEEE
Syst. J., vol. 11, no. 1, pp. 32–40, Mar. 2017.

[41] M. Rupp, S. Schwarz, and M. Taranetz, The Vienna LTE-Advanced Simu-
lators. Singapore: Springer, 2016.

[42] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile
Broadband. Orlando, FL, USA: Academic, 2013.

[43] A. Pal and S. Agrawal, ‘‘An experimental approach towards big data
for analyzing memory utilization on a hadoop cluster using HDFS and
MapReduce,’’ in Proc. 1st Int. Conf. Netw. Soft Comput. (ICNSC), 2014,
pp. 442–447.

[44] S. Pratschner, E. Zöchmann, and M. Rupp, ‘‘Low complexity estimation
of frequency selective channels for the LTE-A uplink,’’ IEEE Wireless
Commun. Lett., vol. 4, no. 6, pp. 673–676, Dec. 2015.

[45] K. Salah and J. M. A. Calero, ‘‘Achieving elasticity for cloud MapReduce
jobs,’’ in Proc. IEEE 2nd Int. Conf. Cloud Netw. (CloudNet), Nov. 2013,
pp. 195–199.

[46] D. Warneke and O. Kao, ‘‘Exploiting dynamic resource allocation for effi-
cient parallel data processing in the cloud,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 6, pp. 985–997, Jun. 2011.

[47] K. Salah, ‘‘A queueing model to achieve proper elasticity for cloud
cluster jobs,’’ in Proc. IEEE 6th Int. Conf. Cloud Comput., Jul. 2013,
pp. 755–761.

[48] V. Strassen, ‘‘Gaussian elimination is not optimal,’’ Numer. Math., vol. 13,
no. 4, pp. 354–356, 1969.

[49] J. Chen, K. Ji, Z. Shi, and W. Liu, ‘‘Implementation of block algorithm
for LU factorization,’’ in Proc. WRI World Congr. Comput. Sci. Inf. Eng.,
2009, pp. 569–573.

[50] R. Yuster and U. Zwick, ‘‘Fast sparse matrix multiplication,’’ ACM Trans.
Algorithms, vol. 1, no. 1, pp. 2–13, 2005.

[51] S. Yoshizawa, Y. Yamauchi, and Y. Miyanaga, ‘‘A complete pipelined
MMSE detection architecture in a 4×4 MIMO-OFDM receiver,’’ in Proc.
IEEE Int. Symp. Circuits Syst., May 2008, pp. 2486–2489.

[52] D. H. Bailey and H. R. P. Gerguson, ‘‘A Strassen–Newton algorithm for
high-speed parallelizable matrix inversion,’’ in Proc. ACM/IEEE Conf.
Supercomput., Nov. 1988, pp. 419–424.

[53] R. Steffen, ‘‘Exascale ready work-optimal matrix inversion,’’
Ph.D. dissertation, Dept. Inform., Karlsruhe Inst. Technol., Karlsruhe,
Germany, 2012.

[54] M. D. Petković and P. S. Stanimirović, ‘‘Generalized matrix inversion is
not harder than matrix multiplication,’’ J. Comput. Appl. Math., vol. 230,
no. 1, pp. 270–282, 2009.

[55] L. Kronsjö and D. Shumsheruddin, Advances in Parallel Algorithms.
Hoboken, NJ, USA: Wiley, 1992.

[56] M. K. Jaiswal and N. Chandrachoodan, ‘‘FPGA-based high-performance
and scalable block LU decomposition architecture,’’ IEEE Trans.
Comput., vol. 61, no. 1, pp. 60–72, Jan. 2012.

[57] J. Liu, Y. Liang, and N. Ansari, ‘‘Spark-based large-scale matrix inversion
for big data processing,’’ IEEE Access, vol. 4, pp. 2166–2176, 2016.

[58] J. Xiang, H. Meng, and A. Aboulnaga, ‘‘Scalable matrix inversion using
MapReduce,’’ in Proc. 23rd Int. Symp. High-Perform. Parallel Distrib.
Comput., 2014, pp. 177–190.

ALI M. MAHMOOD received the B.Sc. degree
in computer engineering from the University of
Technology-Baghdad in 2005, and the M.Sc.
degree in computer engineering from Al-Nahrain
University in 2010. He is currently pursuing the
Ph.D. degree in wireless telecommunications with
the School of Computing, Science and Engineer-
ing, University of Salford, U.K. His research inter-
ests include the scalability of mobile networks,
queuing theory, and minimizing the computational

complexity and end-to-end latency in the next generation 5G networks.

ADIL AL-YASIRI received the Ph.D. degree in
software engineering from Liverpool JM Univer-
sity, U.K., in 1997. He was a Lecturer of computer
systems with Liverpool JM University. He was an
Associate Professor in computer science at UAE
University until 2000, when he moved to Industry
to work as an Independent Software Engineer and
Consultant. During this time, he was involved in
a number of projects around the world, advising
clients (nationally and internationally) on various

aspects of the software development process. In late 2003, he joined the
School of Computing, Science and Engineering, University of Salford, U.K.,
as a Senior Lecturer in computer network systems, and led the development
of a number of graduate and undergraduate programs, where he is currently
the Post-Graduate Research Director. His research interests include Internet
of Things, cloud computing, software engineering, and wireless sensor net-
works.

OMAR Y. K. ALANI received the Ph.D. degree
in telecommunication engineering from De Mont-
fort University, U.K., in 2005. He was a Lecturer
of telecommunications systems with De Mont-
fort University until 2006, after which, he was a
Researcher at the Institute of Advanced Telecom-
munication, Swansea University. From 2007 to
2009, he was a Research Fellow with the School of
Electrical and Electronic Engineering, University
of Leeds. He is currently the Program Leader of

computer networks at the School of Computing, Science and Engineering,
University of Salford, U.K. He has published over 60 papers in high-quality
journals and conferences proceedings in the field of telecommunications and
networking. His research interests include 5G systems, wireless multimedia
communications, radio resource management and location/mobility man-
agement in next generation mobile communication systems, diversity, and
adaptive modulation techniques, and ad hoc and sensors networks.

20 VOLUME 5, 2017

	INTRODUCTION
	RELATED WORK
	RESEARCH ENABLERS
	BACKGROUND TO MapReduce
	CHANNEL STATE INFORMATION IN CELLULAR NETWORKS
	SYSTEM MODEL AND CHANNEL ESTIMATION ALGORITHMS
	LEAST SQUARE ESTIMATOR
	MMSE ESTIMATOR

	PROBLEM DEFINITION
	MapReduce DESIGN AS A SOLUTION
	ANALYTICAL DESCRIPTION TO THE OPERATION OF MapReduce USING QUEUEING THEORY
	THROUGHPUT OF THE SYSTEM
	WAITING TIME
	SERVICE TIME IN CLASSIFIER
	SERVICE TIME IN MAPPING PHASE
	WAITING TIME IN QUEUE

	REDUCING PROCESSING TIME OF MATRIX INVERSION USING FAST MATRIX INVERSION ALGORITHMS
	STRASSEN's ALGORITHM
	MATRIX MULTIPLICATION IN STRASSEN's ALGORITHM
	MATRIX INVERSION IN STRASSEN's ALGORITHM
	COMPLEXITY ANALYSIS OF STRASSEN's ALGORITHM
	CHALLENGE OF STRASSEN's ALGORITHM

	GENERALIZATION OF STRASSEN's ALGORITHM USING BLOCK LU DECOMPOSITION
	PART 1 (MATRIX DECOMPOSITION INTO L AND U MATRICES)
	PART 2 (PARTITIONING L AND U INTO SUB-BLOCKS)
	PART 3 (AUGMENTING THE RESULTS OF SUB-MATRICES AND FINDING THE FINAL INVERSE)

	BLOCK LU – STRASSEN's INVERSION

	SIMULATION RESULTS AND DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	ALI M. MAHMOOD
	ADIL AL-YASIRI
	OMAR Y. K. ALANI

