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Abstract 

 

This study investigated the use of inertial sensing technology as an indicator of 

asymmetry in horse riders, evidenced by discrepancies in the angle of external rotation 

of the hip joint. 12 horse and rider combinations were assessed with the rider wearing 

the Xsens
TM

 MVN inertial motion capture suit. Asymmetry (left v right) was revealed in 

mean hip external rotation of all riders, with values ranging from 1° to 27° and 83% 

showed greater external rotation of the right hip. This study represents novel use of 

inertial sensing equipment in its application to the measurement of rider motion 

patterns. The technique is non-invasive, is capable of recording rider hip rotation 

asymmetry whilst performing a range of movements unhindered and was found to be 

efficient and practical, with potential to further advance the analysis of horse and rider 

interactions. 
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1. Introduction 

 

Low back pain is a common musculoskeletal complaint in the general 

population, with considerable variation in estimates of its prevalence between studies. 

Walker (2000) suggests values of up to 33% for point prevalence, 65% for one-year 

prevalence and 84% for lifetime prevalence. It is likely that around one-third of the UK 

adult population are affected by low back pain each year (National Institute for Clinical 

Excellence 2009). Studies have reported that some of the highest injury rates are found 

in equestrian sports (Quinn & Bird 1995; Pilato, Shifrin, & Bixby-Hammett 2007) and 

asymmetric stress has been identified as a contributory factor (Krivickas 1997). 

Asymmetry is amongst the many aetiological factors requiring consideration in 

the management of chronic back pain in athletes (Nadler, Malanga, DePrince, Stitik, & 

Feinberg 2000). Both human and equine bodies are designed with a symmetrical 

structure, for efficient load distribution during functional activity. Genetic inheritance, 

limb dominance and environmental stimuli all contribute to asymmetric musculo-

skeletal development (Turner 2011). The efficient execution of riding movement is 

reliant on maintenance of balance and posture of both rider and horse during dynamic 

interaction. The distribution and magnitude of mechanical stress on the body of the rider 

and horse is altered by anatomical asymmetry. Motor control is subject to lateral bias 

and conditioning that reinforces bias, increasing exposure to asymmetric stress and 

subsequent injury (Turner 2011). 

Imperfect torsions, created by asymmetry of motion segments and muscles, can 

manifest as scoliosis deformities (Asher & Burton 1999). Increased unilateral torque 

forces have been suggested as causal factors in the higher incidence of functional 

scoliosis found in athletes (Omey, Micheli & Gerbino 2000). A number of studies have 

concluded that combining high training volume with mal-alignment is indicated as an 

anatomic risk factor for overuse injury (Krivickas 1997; Ahonen 2008; Fousekis, 

Tsepsis & Vagenas 2010). Functional scoliosis also occurs as a compensation for leg 

length inequality (Friberg 1983). Turner (2011) refers to the problems of quantifying the 

contribution of asymmetric intrinsic and extrinsic factors and emphasises the need for 

reliable assessment of anatomic asymmetry and consideration of the implications of 

sport-specific functional asymmetries, in particular addressing leg length inequality, 

scoliosis, pelvic tilt, hip, knee and ankle joint asymmetries. 



Whilst riding, it is important that the movement of the rider’s hips, pelvis and 

torso allow them to maintain stable phase synchrony between their own body and that 

of the horse. This temporal co-ordination allows greater comfort and clearer 

communication for both horse and rider, thus enabling a balanced and harmonious 

partnership.  An asymmetrical posture can have a significant effect on balance and 

stability, impeding performance and increasing the risk of injury to both horse and rider 

(Nevison & Timmis 2013). 

Peham, Licka, Schobesberger and Meschan, (2004) determined that as a 

consequence of the three interacting systems of horse, saddle, and rider, riding is a very 

complex movement which is difficult to characterise. Movements of horse and rider 

influence each other, resulting in a so-called complex coupled system. The intrinsic 

non-linearity of this system makes it hard to deal with mathematically. Peham, Licka, 

Kapaun and Scheidl (2001) compared the effects of different rider skills upon motion 

pattern consistency, demonstrating that a skilled rider disturbs the pattern less. 

A limited number of studies have been carried out into horse and rider posture 

and asymmetry, with much of what has been done using video analysis (Byström, 

Rhodin, von Peinen, Weishaupt & Roepstorff 2009; Symes & Ellis 2009; Kang et al. 

2010) or saddle pressure testing (Peham et al. 2010). All these authors suggest the need 

for further studies. 

A key disadvantage of optical motion cameras is the limited field of view (Greve 

& Dyson 2012), restricting analysis to straight-line capture or very short view in the 

sagittal plane whilst passing the camera on a circular path. A wider field of view is 

possible using multiple camera systems but these are expensive and lack portability, 

making them difficult to utilise within a riding arena. Parallax errors are also present 

and need to be corrected for. Equine treadmills have been successful in observing 

asymmetry in the horse caused by subclinical lameness (Orito et al. 2007); however, 

only a limited number of studies (Byström et al. 2009; Byström, Rhodin, von Peinen, 

Weishaupt & Roepstorff 2010) have been carried out with ridden horses on an equine 

treadmill. This technique is limited by the restricted availability of such equipment, the 

necessity for the horse to be experienced in working on a treadmill and the high 

experience level required of the rider.  The natural gait, speed, tempo and symmetry of 

movement may also be compromised (Peham et al. 2004). 

Accuracy of optical motion analysis relies on correct placement of 

biomechanical markers (McGinley, Baker, Wolfe & Morris 2009). It is also critical that 

they remain reliably in position; however, keeping them attached to horse and rider 

during motion is difficult due to the effects of dust and sweat on adhesive attachments. 

Automated motion tracking via reflective markers can be problematic in environments 

with inconsistent light levels and cluttered backgrounds (Zhou & Hu 2008), common 

features of riding arenas. Another limitation is that parts of both horse and rider’s bodies 

may be hidden from view, restricting the analysis that can be accurately performed 

(Greve & Dyson 2012). 

Bergmann, Mayagoitia, and Smith (2009) reported that body-worn, inertial 

motion sensors are a practical, non-constraining alternative to optical motion analysis 

for the measurement of lower-extremity joint angles. Ease of setup and portability 

makes them suitable for use by clinicians and researchers outside the laboratory 

environment. Ha, Saber-Sheikh, Moore and Jones (2013) performed a protocol 

validation study, comparing inertial motion sensors with an electromagnetic tracking 

system for the measurement of spinal range of movement. Examples of use in motion 

tracking and clinical research include analysis of hip joint flexion and extension during 

human walking gait (Saber-Sheikh, Bryant, Glazzard, Hamel & Lee 2010); 



measurement of joint angle of catch during fast passive muscle stretch of medial 

hamstrings, soleus and gastrocnemius, in the spasticity assessment of children with 

Cerebral Palsy (Van den Noort, Scholtes & Harlaar 2009); and measurement of lumber, 

hip, knee and ankle joint angles of skiers (Kondo, Doki & Hirose 2012). 

The aim of this study was to investigate whether inertial sensing technology is a 

practical tool for the identification and measurement of asymmetries in the rider’s 

position, using hip rotation as the marker. A common flaw in the riding posture is 

external rotation of the hip joint, which results in reduced mobility of the pelvis and 

thus inability to coordinate the rider’s movements with the horse’s stride.  Comparison 

of hip rotation angles was used to identify postural asymmetry in the frontal plane. 

 

 

2. Experimental 

 

2.1 Participants 

 

Twelve horse and rider combinations were used for this study. Participants 

comprised 2 advanced-level combinations (one eventer and one show jumper) and 10 

amateur-level combinations (one rider rode 6 horses and 5 riders rode the same horse). 

The riders comprised 6 female and 1 male aged 19 to 47 years (mean 29, standard 

deviation = 11 years), with mean weight 62, standard deviation = 6.7kg and mean 

height 161.8, standard deviation = 6.75 cm. 

To avoid the risk of unpredictable behaviour, horses were a minimum age of 5 

years and accustomed to working in different situations. In order to maximize accuracy 

and quality of manoeuvres, both riders and horses were of an experience level 

equivalent to a minimum standard of affiliated novice level dressage and familiar with 

the activities that they were expected to perform. 

 

2.2 Equipment 

 

All horses were ridden in their own tack, which was English-style, with the 

show jumper using a jumping saddle and the remainder using general purpose or 

dressage saddles. 

The riders were fitted with the Xsens
TM

 MVN (MoCap) system shown in Figure 

1, comprising a full body, camera-less lycra suit with 17 embedded inertial 

measurement unit (IMU) sensors (http://www.xsens.com). The sensors incorporate 

accelerometers, gyroscopes and magnetometers, providing 3-dimensional orientation 

with accuracy found to be within 1º (Van den Noort, Scholtes & Harlaar 2009). The 

system estimates body segment orientation and position changes via the integration of 

the gyroscope and accelerometer signals, continuously updating a 23 segment 

biomechanical model of the human body with 22 joints, automatically correcting for 

drift and other errors.  The system runs in real-time with an update rate of 120 Hz. Data 

is captured wirelessly (via Bluetooth
TM

) by the MVN Studio
TM

 software package, which 

provides functionality to observe, record and export in 3-dimensions.  A full description 

of the hardware, software and mathematical calculations involved is provided by 

Roetenberg, Luinge and Slycke (2009). 

To facilitate placement of the IMUs on the riders’ legs, short boots were worn, 

with chaps and/or spurs added if preferred. 

 



2.3 Arena Layout 

 

A straight runway was marked out in the centre of the riding arena to ensure that 

the horse and rider combination was unaffected by the proximity of any fence or 

boundary wall. The runway was marked out as in Figure 2, with poles 1 m apart, placed 

end-to-end to provide a straight distance of approximately 30 m. Additional poles and 

jumping blocks or wings were used to guide the horse and rider accurately into the 

runway. A 15 m circle was also marked out, passing through gaps in the runway poles. 

The laptop and receiver used to communicate with the Xsens
TM

 system was 

positioned adjacent to the runway, to ensure the best possible range of capture. 

 

2.4 Data Collection 

 

Before commencement of data collection, the system was calibrated for each 

rider, using two standard calibration routines as recommended by Xsens
TM

: The N-pose 

requires the participant to stand in an adapted anatomical neutral position with arms 

straight downwards, thumbs to the front and feet a foot-width apart. The participant was 

required to hold this position for 20 seconds, during which time the calibration took 

place. To accurately record hand motion a second calibration (the Hand-pose) is 

required, where the participant places both hands in front of their body, palms together 

and elbows in to their side. During the 20 second calibration the participant rotates and 

tilts the hands, keeping palms together and arms still. 

Once mounted, each combination performed a brief self-selected warm-up to 

accustom both rider and horse to the suit and the arena layout. This warm-up included 

riding down the runway a number of times until the rider was satisfied that both they 

and the horse could execute this manoeuvre accurately at a rhythmical, balanced trot. 

A 5 second data capture was taken for each combination at halt in the centre of 

the runway. Rising trot was then established (with the rider rising to the outside 

diagonal) and the combination performed a traversal of the runway, followed by a 

circle, on each rein before walking, resting and repeating. 

Recording of straight lines was started as the turn was made onto the runway 

and stopped as the combination turned out at the end, remaining on the same rein. For 

circles, recording started as they passed through the first pair of markers and stopped as 

they completed the movement by passing through the same pair of markers. 

 

2.5 Data Processing 

 

Datasets were cropped in the MVN Studio
TM

 software, using visual inspection, 

to isolate the frames for 2 complete stride cycles for straight line captures and 10 

complete stride cycles for trot circles. Data was then exported to XML format and 

Microsoft Excel
TM

 used to filter the required joint angle data values. This was saved in 

CSV format and used as input to a series of scripts written using the R Statistical 

Package (Ihaka & Gentleman 1996). 

 

2.6 Ethical, Health and Safety Considerations 

 

The research was carried out in compliance with relevant laws and institutional 

guidelines. It did not raise any significant ethical issues beyond the minimum standards 

set by the University of Sunderland Research Ethics Committee and was able to be self-

certified by the researchers, who had completed the institution’s approved course in 



Research Ethics. The participants have been protected by anonymity, were fully 

informed of the nature of the research and gave full, informed consent to the use of data 

collected. 

Appropriate methods of health and safety management were adopted. The horses 

were wearing their usual equipment, were not purposefully harmed and were considered 

to be carrying out their normal activities. Riders wore British Standard (BS kite marked) 

riding hats at all times when mounted. Appropriate footwear and gloves were worn both 

when riding and when handling the horse. The Xsens
TM

 suit had previously been used 

within sporting contexts so was not considered a health and safety risk. Each participant 

signed a standard disclaimer before commencing the testing.  

 

 

3. Results 

 

3.1 External rotation of the rider hips 

 

The external rotation of left and right hip for each rider was considered for five 

data capture scenarios: trot rising (left rein straight line), trot rising (right rein straight 

line), trot rising (left rein circle), trot rising (right rein circle) and halt. The mean and 

standard deviation of left and right hip external rotation angles for each combination, 

executing each of the movements are shown in Table I. 

External rotation of the hip was measured about the longitudinal axis of the 

femur, as illustrated in Figure 3. A larger angle indicates a greater external rotation and 

differences in angle between left and right hips identifies the presence of asymmetry. 

Standard deviations give an indication of the range of external rotation angle as the rider 

moves through the rise and sit phases of the stride cycle. 

Figure 4 shows the range of rotation of left and right hip for the most 

asymmetric rider in rising trot on each rein (travelling down the straight runway). 

 

3.2 Asymmetry in rider hip rotations 

 

The extent of asymmetry was determined by calculating the difference between 

left and right external hip rotations (Table II). The asymmetry was found to change as 

the rider moved through the sitting and rising phases of the trot stride cycle. The 

asymmetry values for all combinations, performing rising trot in a straight line on left 

and right reins, are shown in Figure 5 and for rising trot on left and right circles, Figure 

6. 

The MVN Studio
TM

 software supplied with the Xsens
TM

 suit provides a 3-

dimensional representation of the data using a human anatomical model. Figure 7 shows 

a series of screen captures from MVN Studio
TM

, comparing the rider with the least hip 

rotation asymmetry against the rider with the maximum hip rotation asymmetry, during 

the rise and sit phase of rising trot. The rider in the right-handed pair of images clearly 

shows significant postural flaws, with a greater external rotation of the right hip. 

 

3.3 Repeatability 

 

In order to determine the potential intra-rater repeatability of the methodology, 

two captures from each horse and rider combination travelling down the straight runway 

were compared, each for two full stride cycles.  



A Pearson product-moment correlation coefficient was computed to assess the 

relationship between the mean hip rotation asymmetry for each combination, across the 

two captures.  There was a strong correlation between the two means for both trot rising 

on the left rein, r(10) = .981, p < .01; and trot rising on the right rein,  r(10) = .961, p < 

.01. 

Using a paired T-Test, there was a small significant difference between the mean 

hip rotation asymmetry for trot rising on the left rein, t(11) = 3.722, p = .003; but no 

significant difference for trot rising on the right rein, t(11) = -0.745, p = .472. 

These high correlations indicate good intra-rater repeatability of the 

methodology, although a full validation study, including more extensive repeatability 

testing would be necessary to confirm this. 

 

 

4. Discussion 

 

In walk, as the horse’s hind foot contacts the ground, the horse’s hip lifts and 

pushes the rider’s hemi-pelvis forward and up. The full movement pattern of the rider’s 

hemi-pelvis segment is forward-up-back-down, often described as a backwards pedal 

motion.  

Gait asymmetry in the horse, which may be caused by a one-sided stiffness, can 

result in the horse shortening its stride on the stiff side. Most of the horse’s movement 

transmitted to the rider is absorbed by the rider’s hip joints, thus any loss of mobility at 

the hip will transfer the force to the riders lumbo-pelvic region, with the potential to 

cause injuries higher up the kinetic chain. 

The pelvis should be in a neutral rotation, with common flaws being a 

posteriorly rotated pelvis, resulting in loss of lumbar lordosis, or an anteriorly rotated 

pelvis, resulting in increased lumbar lordosis. The ability to maintain a more controlled 

upright trunk position is dependent on the rider’s level of experience (Douglas, Price & 

Peters 2012).  Both of these flawed postures result in instability, reduced control of the 

torso and reduced mobility of the hip joints, all of which have the potential to increase 

the risk of injury to the rider. 

This study has demonstrated that inertial sensing technology is a practical tool 

for the measurement of asymmetry in rider hip angle rotation, enabling data analysis to 

include movements carried out within normal riding activity, rather than just in 

artificially-imposed straight lines or circling past a fixed video camera. This provides 

the potential to capture and analyse data for specific movements, full dressage tests and 

show jumping courses, limited only by the wireless range of the Xsens
TM

 IMU 

technology. 

Wireless range was found to be reliable within a 20 x 40 m area and the system 

was used successfully in indoor (n=10) and outdoor (n=2) arenas. Occasional problems 

were experienced due to loss of wireless signals between the suit and the laptop. This 

occurred at a consistent location in one outdoor arena, outside of the marked runway. 

The cause could not be identified but was believed to be due to interference, perhaps by 

close proximity of a radio mast. In another case, it occurred in a large indoor arena, 

when the combination moved beyond 40m from the receiver. To eliminate this, the 

laptop operator was relocated within the arena, at a safe location close to the runway. If 

wireless signals were lost, bringing the rider to a halt next to the receiver and waiting 

for the software to reconnect was sufficient to recommence recording. 

The Xsens
TM

 suit allows for quick changeover between participants and the 

MVN Studio
TM

 software provides batch export of multiple datasets to XML format. For 



example, a session comprising 10 horse and rider combinations (5 different riders) with 

export of the 105 data files, was completed in 4 hours. 

A time-consuming process is currently the manual extraction of CSV files from 

the XML data via Microsoft Excel
TM

 (approximately 90 seconds per dataset) but 

software could be written to automate this. Development of R scripts for analysis 

enables fast and efficient generation of plots and statistics across multiple datasets. An 

additional benefit is that they can be scaled upwards for larger sample sizes, by adding 

additional filenames to a configuration file. 

Comparisons between repeated captures showed good correlation for intra-rater 

repeatability. There is, however, need for a validation study in order to confirm the 

repeatability of the technique and its reliability when compared with other methods, e.g. 

optical motion analysis and saddle pressure testing. 

Results identified the presence of asymmetry in hip rotation angles. Of the 

datasets considered in this study, all horse and rider combinations showed asymmetry in 

external rotation of the hips. Combining the two captures for each combination, in trot 

down the straight runway, mean asymmetry values ranged from 1 degree to 27 degrees, 

with 10 of the 12 combinations (83%) showing greater external rotation of the right hip. 

Further investigation, using larger samples, is necessary to determine whether this is a 

pattern and if asymmetry is horse, rider or saddle related. In this study, the riders were 

not tested to determine whether they were left or right -handed or -footed but this would 

be a useful addition to future studies, in order to determine whether this is a factor in the 

bias towards greater external rotation of the right hip. Further studies are also necessary 

to investigate whether asymmetry is affected by skill level of horse, rider or both. 

IMUs have been used successfully in equine gait analysis (Pfau, Witte & Wilson 

2005; Thomsen, Jensen, Sørenson, Lindegaard & Andersen 2010; Starke, Witte, Maya 

& Pfau 2012). These have shown the presence of asymmetry in the horse, so it is 

necessary to consider whether the asymmetry shown in the rider is related to, and 

consistent with, asymmetry of the horse, or if they are independent. The presence of the 

saddle between horse and rider further complicates the interaction (Greve & Dyson 

2012). 

Future studies, synchronising IMUs on rider, horse and saddle, will provide a 

comprehensive picture of how the elements interact, enabling analysis to be carried out 

in more realistic riding environments. 

 

 

5. Conclusions 

 

Understanding functional asymmetry in interactions between horse, rider and 

saddle is important if horse and rider health, welfare and performance are to be 

improved. Results from this small sample of datasets provide evidence that all riders 

demonstrated a degree of hip rotation asymmetry. This technology can assist in meeting 

the needs of elite competitive riders and coaches, who require a tool for assessment 

within “normal” training and competitive environments. 

This study demonstrates that the Xsens
TM

 motion capture suit has potential to be 

a useful, non-invasive technique, capable of recording rider hip rotation asymmetry 

whilst performing a range of movements unhindered. The technique goes beyond 

conventional optical motion analysis by providing the means of assessing the rider with 

greater accuracy. The system was found to be efficient and practical, with potential to 

further advance the analysis of horse and rider interactions. 
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Text for Table of Contents 

This article proposes the use of an inertial motion capture suit as an alternative to video 

analysis for identifying motion patterns in horse riders, focusing on the practical 

application of the technology to measure asymmetry in rider hip rotation angles. 

 



 

Table I 

Mean left (L) and right (R) hip external rotation angles (in degrees), whilst carrying out 

a range of movements 

 

 Halt Trot Left Trot Right 
Trot Circle 

Left 

Trot Circle 

Right 

 L R L R L R L R L R 

B-R1H1 -3±1 9±0 -2±5 0±3 0±4 1±4 0±6 11±3 1±5 0±7 

S-R1H1 29±2 -1±1 24±6 9±4 22±7 4±6 29±8 5±5 29±7 2±6 

W-R1H1 11±0 19±0 10±5 19±4 6±4 20±5 7±5 24±4 7±4 24±6 

W-R1H2 9±0 21±0 14±4 21±5 13±4 20±4 12±4 24±3 12±3 23±6 

W-R1H3 8±0 19±0 11±4 21±4 8±4 19±4 7±5 24±4 8±4 21±6 

W-R1H4 9±0 19±0 14±3 22±4 14±4 20±3 11±5 27±4 13±4 20±4 

W-R1H5 10±0 22±0 9±3 22±3 9±3 23±3 4±3 27±2 13±3 21±5 

W-R1H6 5±0 18±0 11±3 21±4 11±3 21±3 9±3 28±3 10±3 23±5 

W-R2H6 13±0 13±0 17±4 22±4 14±3 25±5 15±4 28±6 14±4 28±8 

W-R3H6 13±0 13±0 18±5 20±6 18±5 19±7 16±5 25±5 14±4 20±9 

W-R4H6 -2±0 26±0 3±6 30±3 1±4 23±5 -2±5 25±3 -5±5 25±4 

W-R5H6 15±0 10±0 16±4 12±6 16±4 12±7 13±6 13±6 14±3 14±8 

 



 

Table II 

Mean asymmetry values (in degrees) for hip external rotation, calculated by taking the 

difference between left and right hip rotation angles (right hip – left hip) 

 

 Halt Trot Left Trot Right 
Trot Circle 

Left 
Trot Circle 

Right 

B-R1H1 11±2 2±5 1±6 11±7 0±9 

S-R1H1 -30±2 -15±7 -18±10 -24±9 -27±9 

W-R1H1 7±0 9±7 14±6 17±7 16±9 

W-R1H2 12±0 7±7 8±6 12±6 11±8 

W-R1H3 10±0 9±6 11±5 17±6 13±7 

W-R1H4 10±0 8±5 6±5 16±8 8±6 

W-R1H5 12±0 12±5 14±4 23±4 7±6 

W-R1H6 12±1 10±6 10±5 20±4 13±6 

W-R2H6 0±0 5±4 11±6 13±6 14±10 

W-R3H6 1±0 1±4 1±7 9±5 7±7 

W-R4H6 28±0 27±8 22±5 27±5 30±6 

W-R5H6 -5±0 -3±6 -4±8 0±8 0±9 

 



Figures 

Figure 1. 

Xsens
TM

 suit. Shows a rider wearing the Xsens
TM

 motion capture suit. 

 

 
 



Figure 2. 

Arena setup. Shows the layout of guide poles to provide a 30 m runway and 15 m circle, 

together with placement of the laptop used to receive the wireless signals from the 

Xsens
TM

 suit. 

 

 

 
 



Figure 3. 

Axis of hip rotation. Shows a line along the longitudinal axis of the femur, about which 

hip rotation is measured. 

 

 



Figure 4. 

Hip rotation asymmetry. Shows range of external rotation angles for the left and right 

hips of an asymmetric rider, comparing rising trot on left and right reins. 

 

 



Figure 5. 

Summary of hip rotation asymmetry (straight lines). Shows the variations in external 

hip rotation asymmetry across all riders in rising trot on a straight line, comparing left 

rein with right rein. 

 

 



Figure 6. 

Summary of hip rotation asymmetry (trot circles). Shows the variations in external hip 

rotation asymmetry across all riders in rising trot, comparing left rein circles with right 

rein circles. 

 

 



Figure 7. 

Rider posture during the rise and sit phases of rising trot. Sample screen captures from 

MVN Studio
TM

, comparing the rise and sit phases of rising trot for the rider with the 

least asymmetry in hip rotation against the rider with the greatest asymmetry in hip 

rotation. 
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