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ABSTRACT: The field of bio-nanofluidics research has spanned over the past decade with a variety of 

promising applications. We investigate the ``laminar boundary layer flow’’ of a Newtonian nanofluid past a 

moving extendable/contractable horizontal plate with surface velocity and thermal slip effects. The passively 

controlled nanofluid model (PCM) is considered. Such models are physically more realistic as compared to the 

“actively controlled models” (ACM). Using Lie symmetry group method, the governing equations are reduced by 

a set of highly coupled nonlinear ODE’s with thermo-solutal coupled boundary conditions. The reduced equations 

are solved numerically by a generalized collocation method. The influences of the emerging parameters on the 

local skin friction factor and the local Nusselt number are depicted numerically. The skin friction is decreased as 

the thermo-phoresis and buoyancy ratio parameters are decreased. The heat transfer rates reduce with 

thermophoresis and buoyancy ratio parameters. Velocity slip also leads to a rise in wall temperature gradient. 

This study is relevant to near-wall flows in nanofluid fuel cells, nano-materials processing etc. 
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1. INTRODUCTION 

There has been immense progress in the improvement of energy-proficient heat transfer fluids 

over the last two decades. In this quest, nanofluids have attracted significant attention due to 

their ability to enhance thermal conductivity very substantially in many different scenarios. 

Choi (1995) discussed heat transfer nanofluids with more efficient thermal conductivity results 

as compared to the conventional heat transfer fluids. Nanofluids are a homogenous mixture of 

base fluid and nanoparticles. On the other hand some commonly used nanoparticles are 

particles of metals, nitrides and carbides etc. An inspection of the current scientific literature, 

nanofluids can be used in aircraft, automobiles, fuel cells and many engineering systems. Due 

to nanometer sized materials nanofluids have unique physical and chemical properties. 

Nanofluids are implemented in many industries e.g. in petroleum reservoir flooding (e.g. 

Suleimenov et al. (2014) who showed a reduction of surface tension on an oil boundary is 

attained with nanofluids), cooling of nuclear reactors, melt-spinning and manufacture of plastic 

and rubber sheets. They are further known to be employed in the extrusion of a polymer sheet 

from a die and crystal growth, refrigeration (e.g. Coumaressin and Palaniradja (2014), 

wherein evaporator heat transfer coefficient is shown to increase with the use of nanoparticles 

e.g. copper oxide), hybrid fuel cells, sterilization of materials (e.g. silver oxide nanofluids), 

enhanced cooling of metallic plates in a cooling bath, treatment of paper drying systems and in 

combustion fuel technologies (e.g. Sonewane et al. (2012) who consider doping of jet fuels). 

The important features of the nanofluids include higher thermal conductivity as compared to 

the base fluid and stable nature of the suspension. The volume fraction of nanoparticles is 

usually engineered to be 3% to 5% (Das et al. 2007), so that the nanofluid exhibits mechanical 

behavior similar to the base fluid. Different models have been proposed to address the large 

increase in thermal conductivity. The factors responsible for the increase in thermal 

conductivity in nanofluids include (a) dispersion of nanoparticles (Buongiorno 2006) (b) the 

turbulence due to the presence of nanoparticles (Pak and Cho 1988) and (c) the effect of the 

rotation of the nanoparticles (Xuan and Li 2003). A comprehensive theory is required for the 

estimation of the thermal conductivity of a nanofluid. Theoretical models such as (Maxwell-

Garnett 1904, Wang et al. 2003) give much lower values than those acquired at the laboratory 

level. It is now established (from experiments and theoretical results) that for forced convective 

nanofluid flow heat transfer characteristics enhances, whereas reverse observation is noticed 

in the case of natural convection. Convective heat and mass transfer of nanofluid flow have 

received attention of researchers owing to it wide range of applications such as bio-convection 

in microbial fuel cells, the delivery of nano-drug, electronics cooling, solar energy etc. Two 
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available models which are easily incorporated into the framework of  boundary layer flows of 

nanofluids are (i) the Buongiorno (2006) model in which Brownian motion and 

thermophoresis effects are included and (ii) the Tiwari and Das (2007) model which can be 

utilized to study the behavior of nanofluids considering the solid volume fraction. Many 

investigators deployed these two models to study various flow phenomena external to various 

geometries subject to various boundary conditions. As an example, Kuznetsov and Nield 

(2010) obtained similarity solution for natural convection flow of a nanofluid along a vertical 

plate. Nield and Kuznetsov (2009) further studied the Cheng–Minkowycz problem of natural 

convection past a vertical plate in a porous medium for nanofluids. Nield and Kuznetsov 

(2011) further extended the same problem for binary nanofluids, including the effects of cross 

diffusion. Very recently, Kuznetsov and Nield (2014) revised their earlier model by 

incorporating a passively controlled boundary condition. Reviews have been conducted of the 

latest developments in nanofluid technology and are available in the papers of Wang and 

Mujumdar (2007), Das and Choi (2009), Kakac and Pramuanjaroenkij (2009), Adnan et 

al. (2014), Mahdi et al. (2015), Mauro et al. (2015), Ali et al. 2015, Sheikholeslami et al. 

(2015) etc. and in the monographs of Tiwari and Das (2007), Sattler (2010), Murshed et al. 

(2011) and Minkowycz et al. (2012). These efforts identify, not least, numerous further 

problems which require mathematical (and experimental) simulation whether in terms of 

nanofluid type, geometry, boundary condition or indeed combinations of these aspects. 

 

The vast majority of investigations have generally focused analysis on natural convective flow 

of nanofluids from vertical surfaces. However, the natural convective flow of nanofluids from 

a horizontal surface is also of great interest in engineering devices and processes. To achieve 

more physically realistic and practically applicable results, in the present article we address the 

composite effects of velocity slip, thermal slip and zero mass flux boundary conditions on the 

boundary layer flow of nanofluid over an upward facing horizontal sheet (plate). In addition to 

the imposition of modified slip and solutal boundary conditions, sheet stretching/shrinking is 

also an important characteristic in manufacture of nanomaterials (Ferdows et al. 2014), and 

indeed in compliant surfaces in next-generation “green” fuel cells (Tominaka et al. 2009). An 

experimental investigation in materials extrusion carried by Vleggaar (1977) revealed that the 

surrounding fluid motion can be idealized by a tangentially moving boundary with a velocity 

proportional to linear/nonlinear function of the distance from the slit. Hence to improve the 

accuracy of wall conditions, we have incorporated the simultaneous effects of velocity slip, 

Newtonian heating and zero mass flux boundary conditions on the boundary layer flow of 
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nanofluid over an upward facing nonlinearly radiating horizontal stretching sheet. Lie group 

analysis is used to determine the similarity form of the governing boundary layer equations. 

Key parameters which influence the heat, mass and momentum transfer processes are shown 

to be buoyancy ratio parameter (which is a measure of the ratio of the buoyancy force arising 

due to the density difference between the nanoparticle and the base fluid and the buoyancy 

force due to the thermal expansion of the base fluid), the Brownian motion parameter (which 

gives information about the energy transport by Brownian diffusion) and the thermophoretic 

parameter (that gives a measure of the energy transport due to thermophoresis) and their effect 

on the fluid velocity and heat transfer rate are discussed. Furthermore the effect of the Lewis 

number and of course multiple slip conditions on flow characteristics is also elucidated in 

detail. Verification of the present collocation numerical solutions is achieved where possible 

with earlier published results.  

 

2.  METHODOLOGY 

2.1 Materials   

A moving horizontal stretching/shrinking sheet in the quiescent free stream is considered. A 

Cartesian coordinate system ( ), yx  is used in which the x axis is measured along the plate 

and the y axis is directed normal to the plate. It is assumed that sheet velocity is 

 
1/5

/w r

x
u x L U

L


 
  

 
, 0   for stretching sheet whilst 0   shrinking sheet, L  is the 

characteristics length of the sheet, rU  is  an arbitrary reference velocity. The flow model and 

coordinates system is shown in Fig.1. The temperature wT  is assumed at the surface, whereas,

T , C  and n  are assumed as their ambient values. Neglecting viscous dissipation in the 

energy equation, we consider passively controlled (PC) boundary conditions proposed by 

Kuznetsov and Nield (2014). In addition we have also considered the case when the sheet is 

subjected to actively controlled boundary conditions (AC) (to compare our results with the 

literature). The variables are V
r

: the velocity vector, T : the temperature, C : the nanoparticle 

volume fraction 

0,V 
r

 (1) 

       2 ,1 1p f
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     

 
  
   


         



r
r r r r

 (2) 
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   2 ,T
pp Bpf

DT
c V T k T c D C T T T

t T
 



   
          


         



r
 (3) 

2 2 .T

B

DC
V C D C T

t T

 
 
 
 


     


 (4) 

        2 1p f fp
V

V V V C C C T T g
t

      

 
   
   


         



r
r r r r

 (5) 

The boundary layer approximation yields: 

0,
u v

x y

 
 

 
 (6) 

2

2
,

f

pu u u
u v

x y x y
 

 
  

 

   
  

   
 (7) 

        0,1 f p f

p
C g T T g C C

y
     

   
 


    


 (8) 

2
2

2
,T

B

DT T T C T T
u v D

x y y y T yy
 



 
  

   
   

    

     
   

    
 (9) 

2 2

2 2
,T

B

DC C C T
u v D

x y y T y

    
    

    
 (10) 

where 
 p f

k

c



 is the thermal diffusivity of the fluid and 

 

 
p p

p f

c

c





  is  a parameter. 

The appropriate boundary conditions are, following Kuznetsov and Nield (2014): 

     slip slip
/ / /, 0, , 0 at 0,

0, , , as .

T

w Bwx L x L x L
DC T

u u u v T T T D y
y T y

u T T C C p p y




  

 
 

     
 

    

 (11) 

Here  ,u v : the velocity components along the x  and y - axes,  
1/5

/w r

x
u x L U

L


 
  

 
: velocity 

of the plate, L : characteristic length of the plate, 2/5

rU Ra
L


  :the characteristic velocity, 
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 1slip
/

u
u N x L

y









: linear slip velocity,  

2/5

1 1 0

x x
N N

L L

   
   

   
: velocity slip factor with  1 0

N

constant velocity slip factor, 
1slip

x x
T

L L

T
D

y
   
   
   





: thermal slip,  

2/5

1 1 0

x x
D D

L L

   
   

   
: thermal 

slip factor,  1 0
D constant thermal slip factor, 0   corresponds to a stretching (extending) sheet, 

0   represents a shrinking (contracting) sheet and  0   is associated with the stationary sheet 

case. We implement the following non-dimensional variables to render Eqns. (6)-(11) into 

dimensionless form: 

 

1/5 2/5 1/5

2

4/5

2
, ,

, , , , ,
w

f

L p p
p

y T Tx L L
x y Ra u Ra u v Ra u

L L T T

C C
Ra

C  


 



  



 







    




  

(12) 

where     31 /w fT TRa g C L      is the Rayleigh number. A non-dimensional stream 

function,  , is also introduced, defined by: 

u
y





 and ,v
x


 


           (13) 

Introducing this into Eqns. (6)-(11)., Eqn. (6) is satisfied identically and the following 

dimensionless partial differential equations for the flow problem are arrived at: 

3 2 2

3 2
Pr ,0

p

x x y y xy y

    
 
    

 
     

  (14) 

1
,

Pr
0Nr

p

y
 


 


 (15) 

2
2

2
0,Nb Nt

y x x y y y yy

       
  
 

      
    

      
 (16) 

2 2

2 2
.0

Nt
Le

y x x y Nby y

      
 
 

     
   

     
                                                                 (17)

 

The boundary conditions in Eqn. (11) become  

2
1/5 2/5

2
,0, 1 , (0) '(0) 0 at  0 ,

0, 0, 0, 0 as .

x xa b Nb Nt y
x y yy

p y
y

   
   


 

   
       

  


    


  (18)

 

The parameters in Eqns. (14)-(16) are Pr, Nt , Nb , Nr  , Le , a and b and these designate, 

respectively, the thermophoresis parameter, the Brownian motion parameter, the buoyancy 
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ratio parameter and the Lewis number respectively, which are defined by (see Nield and 

Kuznetsov 2014):  

   
  

   2/5 2/5

1 10 0
,

,

,

Pr , , ,
1

p fT w B

f w

B f

CT T C

T T

Ra Ra

L L

D D
Nt Nb Nr

T C

N D
Le a b

D







  

   




 

  






   



  

 (19) 

 

2.2. Methods of solution 

By applying the Lie group method to (14)-(16), the infinitesimal generator for the problem can 

be written as (Cantwell 2003): 

1 2 1 2 3 4 ,X
x y p

     
  

     
      

     
                                                    (20) 

where the transformations are ( , , , , , ) to( , , , , , )x y p x y p          
. The infinitesimals 

1 2 1 2 3, , , ,      and 4  satisfies the following first order differential equations: 

1 2

1 2

3 4

( , , , , , ) , ( , , , , , ),

( , , , , , ) , ( , , , , , ),

( , , , , , ), ( , , , , , ),

dx dy
x y p x y p

d d

d d
x y p x y p

d d

d dp
x y p x y p

d d

       
 

 
       

 


       

 

 
           

 
           

 
           

 

 

 

                                (21) 

 

After algebraic manipulation, it is found that the forms of the infinitesimals are: 

 

1 1 2 2 1 3

1 1 4 2 5 3 6 4 5 6 1

2
, ,

5

3 2
, , , .

5 5

c x c c y c

c c c c c c y c p

 

    

   

      

                                            (22) 

where ( 1,2, ,6)ic i  L  are arbitrary constants. Hence, the equations admit six finite parameter 

Lie group transformations. It is observed that the parameter 2 3,c c  correspond to the translation 

in the variables ,x y , while the parameter 4c  corresponds to the translation in the variable  . 

It is also noted that the parameter 1c  corresponds to the scaling in the variables ,x y ,  and p  

respectively. The characteristic equation is: 

 1 2 5 6
1 3 1 4 2 5 6 1

  .
2 3 2

5 5 5

c x c c c
c y c c c c c y c p

d y d pd dd x d



 


   

    


 (23) 

The similarity transformations corresponding to the characteristic Eqn. (23) are as follows 
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3 2

5 5
2

5

, ( ), ( ), ( ), ( )
y

x f p x h

x

                                        (24) 

For simplicity we assumed that 0,( 3 6)ic i   . 

 

2.2.1 Similarity equations 

 

On substituting the transformations of Eqn. (24) into the governing Eqns. (14)- (17), we 

obtain the following similarity equations:  

2 2 2
'' ' ,

5 5 5 5

3 1
Pr ' 0ff ff h h      (25) 

' ,
Pr

1
=0h Nr      (26) 

2 0,
5

3
f Nb Nt             (27) 

.
3

0
5

Nt
Le f

Nb
        (28) 

The relevant boundary conditions are: 

 

  (0) 1 '(0) 0(0) 0, (0) (0), (0), (0) ,

'( ) ( ) ( ) ( ) 0,

Nbb Ntf f a f

f h

   

 

        

       
                               (29) 

 

where primes denote differentiation with respect to .  

 

It is worth mentioning that in the case of stationary sheet (plate) with no-slip boundary 

conditions at wall ( 0a b    ), the problem under consideration reduces to that which has 

been recently investigated by Pradhan et al. (2014). 

 

2.3 Physical Quantities (Local Skin Friction &  Nusselt number) 

These quantities can be calculated from the following relations: 

2
0 0

2
, .f x x

wy yr

u x T
C Nu

y T T yU



  

     
    

            
(30) 

 

By substituting from Eqns. (12) and (31) into Eqn. (37), we get : 

 



9 

 

   7/5 1/5Pr 0 , 0 .x f x x xRa C f Ra Nu      (31) 

 

Here    31 /xRa g C T x    is the local Rayleigh number. Here 

   21 /r wU T Tg C L    is the characteristic velocity. Due to zero mass flux boundary 

conditions, there will be no mass flux at the boundary. 

 

 

 

2.4. Numerical Solution  

The inspiration behind this scheme is that one can now solve the normalized boundary value 

problem, although nonlinear, quite easily, both using analytic and numerical schemes. The 

most widely employed numerical method for the boundary value problems is the collocation 

method. The advantage of this method is that, it reduces the nth order differential equation(s) 

into n first order differential equations, thus reducing the computational cost on a large domain 

with small step size and a range of parameters. We have simplified the system of equations 

(25)-(28) using the Generalized Collocation Method (GCM). Collocation methods are basically 

implicit Runge-Kutta quadrature techniques. They are well documented in numerous 

monographs including Ascher et al. (1998) and Isaacson and Keller (1966). The reader is 

referred to these sources for further details. As with all numerical procedures employed for 

solving boundary value problems with infinity boundary conditions, a sufficiently large value 

of the coordinate at infinity is required to ensure asymptotically smooth profiles and 

convergence to the correct solution. In the present computations this has been carefully 

addressed as testified to by all the figures plotted.  Generally it is found that the order of a 

collocation method is related to the order of the quadrature rule which is developed by utilizing 

the collocation points as weighting coefficients in the stepping algorithm. Collocation methods 

in nonlinear multi-physical boundary layer flows including magnetohydrodynamics are also 

described in detail in Bég (2012). For the validation of our numerical solution, we have solved 

the system of Eqns. (25)-(28) subject to the boundary condition (30). We have presented the 

comparison in Table 1 and Table 2 to show that for λ=0, our results are in agreement with the 

results of Pradhan et al. (2014). After the validation, we have conducted general numerical 

simulations subject to a set of parametric values.  

 

3. RESULTS  
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Comprehensive computations have been presented in Figs. 2-11 for the influence of the 

evolving thermophysical parameters on the dimensionless velocity, temperature, nanoparticle 

concentration, heat transfer rates and the skin friction. We confine our attention to the influence 

of the velocity slip (a), thermal slip (b), stretch/shrink parameter (), thermophoresis (Nt) and 

Lewis number (Le). In all cases Pr =6.8, Nt =Nb =0.2 i.e., this corresponds to water-based 

nanofluid with weak thermophoresis and intermediate nano-particle sizes. 

 

4. DISCUSSION 

Figures 2-4 depict the effect of sheet stretching/shrinking parameter () and velocity slip 

parameter (a) on the dimensionless velocity and temperature. Evidently near the sheet, 

increasing velocity slip accelerates the flow velocity inside the boundary layer for a shrinking 

sheet ( 0.1   ) and static sheet ( 0 ) as well as a stretching sheet ( 0.1  ). It is further 

found that velocity increases for both slip flow and non-slip flow, as the Lewis number 

parameter increases. For the conventional no-slip case with sheet-shrinking (a=0, =-0.1), 

negative velocities are in fact produced at the sheet and in close proximity to it. The sheet-

shrinking is therefore, in this case, responsible for inducing a significant backflow in the 

vicinity of the sheet surface. It is also observed that higher temperatures are achieved for the 

no-slip scenario (a=0); and the lowest temperatures correspond to the strong slip case (a=0.2) 

for a shrinking sheet ( 0.1   ) and static sheet ( 0 ) as well as a stretching sheet ( 0.1 

). Thermal boundary layer thickness will therefore be reduced with greater slip effects. Lewis 

number is found to decrease the temperature for a shrinking sheet ( 0.1   ) and static sheet (

0 ) as well as a stretching sheet ( 0.1  ). 

 

Figures 5-7 depict the effect of the thermal slip and sheet stretching/shrinking parameter () 

on the dimensionless velocity and temperature. It emerges that increasing thermal slip 

decelerates the flow inside the boundary layer for a shrinking sheet ( 0.1   ) and static sheet 

( 0 ) as well as a stretching sheet ( 0.1  ). Velocity apparently also increases both in the 

presence and absence of thermal slip as the Lewis number rises. Lewis number is directly 

proportional to the nanofluid thermal diffusivity and inversely proportional to the nanoparticle 

diffusivity. In all the computations presented, Le  0. Both heat and nanoparticle species diffuse 

at the same rate for Le = 1 whereas for Le > 1 the heat diffusion rate exceeds the species 

diffusion rate. Increasing Lewis number therefore accelerates the nanofluid boundary layer 
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flow. There is an intimate connection between the diffusion rate of vorticity (viscosity effect) 

and heat and species diffusion. Boundary layer structures (thicknesses) are modified by these 

rates. Further, from Figs. 4-6, it is observed that higher temperatures are achieved for the no-

slip scenario (b=0); and the lowest temperature corresponds to the strong thermal slip case 

(b=0.2) for a shrinking sheet ( 0.1   ) and static sheet ( 0 ) as well as a stretching sheet (

0.1  ). Thermal boundary layer thickness will therefore be increased with greater thermal 

slip effects. This has important implications in materials processing since heat control rates at 

the wall can be manipulated with wall slip (thermal jump).  

 

Figure 8 depicts the effects of the thermal slip and sheet stretching/shrinking parameter () on 

the dimensionless nanoparticle volume fraction. An elevation in thermal slip increases the 

nanoparticle concentration for the static sheet ( 0 ) as well as a stretching sheet ( 0.1  ). 

However nanoparticle volume fraction decreases for both in the presence of thermal slip and 

absence of thermal slip as the Lewis number parameter rises.  

 

Figures 9-11 depict the effect of the various parameters on the dimensionless friction and the 

heat transfer rates. It is observed that the friction is decreased as the thermophoresis parameter 

and buoyancy ratio parameter are decreased for both slip flow and conventional no-slip flow. 

Friction is decreased as the velocity slip parameter increased. It is further seen from these 

figures that heat transfer rate reduces with the thermophoresis and buoyancy ratio parameters 

for stretching sheet, stationary sheet and indeed also for a shrinking sheet for both the slip and 

no-slip cases. Velocity slip leads to a rise in wall temperature gradient. 

 

5. CONCLUSIONS 

Steady-state nanofluid flow from a horizontal plate has been investigated by a combined Lie 

group and numerical analysis techniques. Velocity and thermal slip effects, which are of 

interest in materials processing operations, have also been incorporated. Passively controlled 

boundary condition have been used to attain more robust results. With the aid of a Lie algebraic 

group method, the boundary layer equations for momentum, energy and species diffusion 

(nanoparticle concentration) have been reduced to a nonlinear, coupled system of ordinary 

differential equations. The resulting two-point boundary value problem has been solved 

numerically using generalized collocation method. Solutions have been verified with 

established published results and very good correlation obtained. The heat, mass and 
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momentum characteristics have been shown to be controlled by a number of thermophysical 

parameters including Brownian motion, thermophoresis, Lewis number, Prandtl number, 

velocity slip, thermal slip, buoyancy ratio and sheet stretch/shrink parameter. The present 

computations have shown that: 

(i) Increasing velocity slip is found to depress temperature and friction whereas it 

enhances velocity and heat transfer rates. 

(ii) Increasing thermal slip reduces velocity whereas it elevates temperature and 

nanoparticle concentration. 

(iii) Wall friction is decreased as the thermophoresis parameter and buoyancy ratio 

parameter are decreased for both slip flow and conventional no slip flow.  

(iv) Heat transfer rates are reduced with the thermophoresis parameter and buoyancy 

ratio parameters for stretching, stationary and shrinking sheet cases, for both the 

slip and no-slip cases. Velocity slip also leads to a rise in wall temperature gradient. 

The present study has been confined to steady flat sheet flow; future studies will consider 

transient inclined sheet nanofluid flows, and will be communicated soon. 
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Figure 1: Flow model and coordinate system. 

 

 

 

 

Figure 2: Variation of the velocity distribution  'f   and temperature     of the nanofluid 

for three values of Le at Pr=6.8, Nr=0.5, Nt=Nb=0.2, b = 0.1 and λ= -0.1.  
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Figure 3: Variation of the velocity distribution  'f   and temperature     of the nanofluid 

for three values of Le at Pr = 6.8, Nr = 0.5; Nt = Nb = 0.2, b = 0.1 and λ=0. 

 

 

Figure 4: Variation of the velocity distribution  'f   and temperature     of the nanofluid 

for three values of Le at Pr = 6.8, Nr = 0.5; Nt = 0.2; Nb = 0.2, b = 0.1 and λ= 0.1. 
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Figure 5: Variation of the velocity distribution  'f   and temperature     of the nanofluid 

for three values of Le at Pr = 6.8, Nr = 0.5; Nt = Nb = 0.2, a = 0.1 and λ = -0.1. 

 

 

Figure 6: Variation of the temperature distribution     and velocity  'f   of the nanofluid 

for three values of Le at Pr = 6.8, Nr = 0.5; Nt =Nb = 0.2, a = 0.1 and λ= 0. 
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Figure 7: Variation of the velocity distribution  'f   and temperature     of the nanofluid 

for three values of Le at Pr = 6.8, Nr = 0.5; Nt =Nb =0.2, a = 0.1 and λ= 0.1. 

 

 

Figure 8: Variation of the nanoparticle volume fraction distribution    for three values of 

Le at Pr =6.8, Nr = 0.5; Nt =Nb =0.2, a = 0.1 and λ= 0.1. 
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Figure 9. The reduced local Nusselt number and the reduced local skin-friction coefficient 

relative to thermophoretic parameter for Pr =6.8, Le =5, Nb =0.2 and λ=-0.1. 

 

 
 

Figure 10: The reduced local Nusselt number and the reduced local skin-friction coefficient 

relative to thermophoretic parameter for Pr = 6.8, Le = 5, Nb = 0.2 and λ = 0.  
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Figure 11: The reduced local Nusselt number and the reduced local skin-friction coefficient 

relative to thermophoretic parameter for Pr = 6.8, Le = 5, Nb = 0.2 and λ = -0.1. 

 

Table 1: Values of the reduced skin friction coefficient ''(0)f  for Nr=Nt=Nb=0.5, Pr =6.8. 

 

 

Le 

Pradhan et al. (2014) Present work 

 

 ( 0.1)    ( 0)  ) ( 0.1)   

5 0.8435 0.8276  0.8435 0.7001  

10 0.8806 0.8612 0.8806 0.7506 

100 0.9217 0.9106 0.9218 0.7815 

Table 2: Values of the reduced Nusselt number '(0) for Nr=Nt=Nb =0.5, Pr = 6.8. 

 

 

 

Le 

Pradhan et al. (2014) Present work 

 ( 0.1)    ( 0)   ( 0.1)   

5 0.3268 0.3142 0.3265 0.3310 

10 0.3239 0.3095 0.3238 0.3295 

100 0.3135 0.3081 0.3134 0.3086 

 

 


