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Phenotypic and functional heterogeneity is one of the most relevant features of cancer
cells within different tumor types and is responsible for treatment failure. Cancer stem
cells (CSCs) are a population of cells with stem cell-like properties that are considered to
be the root cause of tumor heterogeneity, because of their ability to generate the full rep-
ertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of
metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a
useful strategy to improve the effectiveness of classical anticancer therapies. Recently,
metabolism has been considered as a relevant player in CSC biology, and indeed, onco-
genic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly,
the action of metabolic pathways in CSC maintenance might not be merely a conse-
quence of genomic alterations. Indeed, certain metabotypic phenotypes may play a
causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here,
we review the current studies on the metabolic features of CSCs, focusing on the bio-
chemical energy pathways involved in CSC maintenance and propagation. We provide a
detailed overview of the plastic metabolic behavior of CSCs in response to microenviron-
ment changes, genetic aberrations, and pharmacological stressors. In addition, we
describe the potential of comprehensive metabolic approaches to identify and selectively
eradicate CSCs, together with the possibility to ‘force’ CSCs within certain metabolic
dependences, in order to effectively target such metabolic biochemical inflexibilities.
Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively
eradicate cancer.

Tumor heterogeneity and cell plasticity: a metabolic
matter
Phenotypic and functional heterogeneity in cancer cells within many tumor types has highlighted the
need to further dissect inter- and intratumor complexity, to more effectively eradicate neoplastic
disease. Indeed, differences in size, morphology, antigen expression, membrane composition, and bio-
chemical behavior may account for a large range of variability in crucial biological responses like cell
proliferation, metastatic dissemination, and sensitivity to chemotherapy [1]. Rather than acting as ran-
domly disorganized compartments, tumor cells employ a hierarchical structure that allows them to
integrate and simplify the complexity of isolated subpopulations, in order to guarantee cancer cell sur-
vival and the malignant evolution of the disease [1]. Looking at the root of such complex organization,
two main models have been postulated: the ‘clonal evolution model’ and the ‘cancer stem cell hypoth-
esis’ (Figure 1). According to the first model, proposed by Peter Nowell in 1976, cancer may be
regarded as an evolutionary process, initiated by multiple stepwise mutations occurring in somatic
cells, and accompanied by natural selection of those clones with the most favorable phenotype [1,2].
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The accumulation of additional mutations and the parallel evolutionary pressure exerted by dominant clones
support the idea of a clonal architecture model whose dynamic alterations favor the progression of tumor
toward aggressive phenotype. Adding to this Darwinian model, a better understanding of the cross-
communications between cancer cells and the surrounding ecosystem habitat has paved the way for further
considering these reciprocal interactions as remarkable therapeutic targets to halt cancer cell proliferation, inva-
sion, tumor angiogenesis, pharmacological resistance, and disease recurrence [2,3]. Based on this idea, signifi-
cant progress has now been made in understanding cancer biology, on dissecting multilevel cell dynamics and
disclosing adaptive microenvironmental responses, which can be translated into clinical practice with the result
of achieving the better overall management of cancer patients. However, effective control of malignant disease
still represents an unmet clinical need that highlights the limits of the clonal evolution model, suggesting that
other approaches are still needed to understand the complexity of cancer.
According to the cancer stem cell (CSC) hypothesis, the complete eradication of malignancy can only be

achieved by targeting the small cell population driving the origin of cancer, which is also responsible for pro-
gression and its resurgence after therapy [4–6]. CSCs or tumor-initiating cells (TICs) are a rare population of
cells with stem cell-like properties that exhibit self-renewal, tumorigenicity, and multilineage differentiation cap-
acity [4–6]. CSCs are thought to trigger tumor initiation and growth by generating the full repertoire of cancer
cell types; in addition, these cells have been invoked as the main drivers of metastatic dissemination and thera-
peutic resistance [4–6]. On the basis of these observations, integrating the clonal evolution model with the CSC
hypothesis may represent a promising strategy to fully eradicate cancer [7].

Figure 1. Metabolism drives stemness features and tumor heterogeneity.
Advanced genome sequencing techniques have clarified that cancer is heterogeneous within a single patient, with multiple
subclones arising from primitive mutations. To explain this genetic and functional heterogeneity, two models have been
proposed: the clonal evolution model and the cancer stem cell hypothesis. According to the first model, cancer is the result of
oncogenic mutations that promote cell dedifferentiation and phenotypic regression with loss of function, uncontrolled
proliferation, and inability to activate cell death pathways. The CSC hypothesis recognizes a rare subpopulation of
self-renewing and tumorigenic cells as responsible for the generation of all the cells within the tumor bulk and their hierarchical
organization. Mutations in the progenitor cells may account for the generation of CSCs. However, the origin of CSCs is still a
topic under debate. Interestingly, a combined analysis of biological, biochemical, pharmacological, and genetic studies has
recently revealed that CSCs may rise from metabolic events occurring in non-CSCs. Certain early and late metabolic hits are
thought to affect chromatin organization and activate epigenetic program involved in the metabolic-driven reprogramming of
CSCs. According to this new paradigm, the identification of key metabolic processed involved in CSC reprogramming might be
useful to identify and target CSCs.
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Evolving from the above concepts, the dynamic changes occurring in the bioenergetics machinery of cancer
cells strongly contribute to tumor heterogeneity and add a further level of complexity to the overall scenario
[8,9] (Figure 1). Indeed, the ability of a tumor mass to cope with the increased bioenergetic demand mainly
relies on the highly plastic features of both cancer cells and the surrounding tumor stroma, which can adjust
its metabolism in order to guarantee the elevated proliferation rate required for cancer outgrowth and
expansion [10].
There is now a general consensus on the variable metabolic behavior of cancer cells, which allows them to

adapt to transient bioenergetics crises caused by hypoxia or a lack of nutrients. Supporting these observations,
metabolic heterogeneity has been detected not only between different tumor types, but also within the same
tumor, thus confirming that local factors like oxygenation, pH, glucose, and metabolites levels can all contrib-
ute to create specialized metabolic compartments [10,11]. Bioenergetic dysregulation, metabolic flexibility, and
symbiotic relationships between cancer and stromal cells define oncometabolism as one of the emerging hall-
marks of cancer, to be regarded not an insuperable barrier, but as a challenging opportunity to selectively
target aberrant features of transformed cells, on our way to defeating cancer [12].
As cancer cells may obtain energy from different sources, including glucose, lactate, pyruvate, hydroxybuty-

rate, acetate, glutamine, and fatty acids, it is not surprising that the utilization of such a large range of fuels
may occur at the crossroads of different cellular sub-compartments and may involve different cell types [10].
Moreover, within the tumor bulk different metabolic activities may coexist within the same cell type, thus con-
tributing to metabolic heterogeneity [10]. A nice example of intratumor metabolic heterogeneity was recently
provided by Hensley et al. who demonstrated that non-small cell lung cancers (NSCLCs) get energy from dif-
ferent substrates depending on their proximity to blood vessels. In particular, the authors showed that poorly
perfused areas mainly get energy from glucose, while well-vascularized areas utilize other fuels such as fatty
acids, amino acids, ketones, and lactate to obtain ATP from oxidative phosphorylation [9]. Furthermore, the
peculiar oncometabolic features of NSCLCs may also rely on aberrant genetic background, corroborating that
diverse oncogenes can deeply affect tumor metabolism. For instance, Kerr et al. demonstrated that the acquisi-
tion of an additional mutant KRASG12D allele is associated with a glycolytic switch and a more aggressive
NSCLC phenotype in mice. The authors also highlight that the relative mutant allelic content may generate
unique metabolic features to be exploited in a therapeutic setting. These observations suggest that both tissue
oxygenation and genetic background favor more plasticity and heterogeneity [13].
A further player in the metabolic plasticity of tumor cells is the surrounding catabolic microenvironment.

The remarkable contribution of the stromal compartment to the anabolic requirements of malignant cells has
been extensively demonstrated and recapitulated in the Reverse Warburg effect [14–16]. According to this
model, cancer cells get energy to sustain their highly proliferation rate also from metabolic intermediates
released by surrounding catabolic cells. In particular, lactate, free fatty acids, and ketones generated from the
activation of glycolytic and autophagic programs in the stromal cells have been shown to fuel mitochondrial
metabolism and ATP production in anabolic cancer cells [14–17]. Parallel autophagic responses activated in
distal and poorly oxygenated tumor areas provide catabolic intermediate to sustain anabolic demands and
support cancer outgrowth [17]. Overall, this scenario indicates that in cancer cells, as well as in tumor micro-
environment, plastic bioenergetics dynamics fulfill different biochemical demands in synergistically operating
tissue compartments. Likewise, such metabolic heterogeneity and plasticity have been emerging as one of the
key feature allowing cancer cells to proliferate and hence, targeting cell metabolism may represent a useful tool
to halt cancer progression [12].
In an effort to gain therapeutic advantage from the metabolic complexity at the basis of cancer, one of the

possible strategies would be identifying the biochemical energetic reactions that occur within the CSCs, which,
as mentioned above, represent the basic cell units giving rise to the developmental hierarchical pyramid. In par-
ticular, metabolism has currently been shown to deeply influence the maintenance and dissemination of CSCs,
although the metabolic features of CSCs and their impact on CSC properties have not been comprehensively
explored yet [18,19]. If, on the one hand, glucose seems to be an essential nutrient for CSCs [20], on the other
hand it has been recently proposed that CSCs may use mitochondrial oxidative metabolism as favorite source
of energy [21,22]. Being a relatively unexplored and emergent field in the study of CSCs, metabolism has been
directly investigated in few studies, which possibly explains the existence of some of the discrepant outcomes in
these reports. Several authors proposed that CSCs possess unique metabolic features when compared with the
differentiated bulk of tumor cells, as well as with normal stem cells [11]. Hence, metabolism might be regarded
as a useful tool and an innovative strategy to identify CSCs, together with the classic CSC markers. In addition,
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hitting the biochemical reactions that allow CSC maintenance and dissemination might represent an effective
approach to ablate the cells at the origin of cancer [23]. The possibility that the metabolic features of CSCs
might be exploited in a therapeutic setting paves the way for further investigating the biochemical status of
these peculiar tumor components, unveiling unexpected opportunities of selective clinical intervention.

CSCs at the origin of cancer: what, when, where, and why?
What?
What are CSCs
CSCs are a Q2

¶
rare population of tumor cells with stem cell properties, which are thought to generate the tumor

bulk [6]. They are considered the main drivers of malignant growth, treatment resistance, minimal residual
disease, and metastases [6,24–28]. CSCs, also known as TICs, exhibit self-renewal properties, tumorigenicity,
and multilineage differentiation capacity [24–28]. A lot of progress in understanding CSC biology has been
made from the nineteenth century, when, for the first time, Virchow and Conheim hypothesized that cancer
arises from the activation, in adult tissues, of dormant cells that recalls embryonic cells but are present in adult
tissues. Later evidence, dating back at ∼30 years ago, corroborated the hypothesis of the existence of specific
types of cancer cells responsible for tumor progression and pharmacological resistance [29–34]. Indeed, in
1997, Bonnet and Dick [34] identified a subpopulation of CD34+/CD38− cells from acute myeloid leukemia
(AML) patients that exhibited the ability to form hematopoietic malignancy in NOD/SCID mice, together with
the ability of self-renew, differentiate, and proliferate.
Lying at the apex of a figurative hierarchical pyramid, undifferentiated CSCs typically represent the minority

of the tumor cell population, but undoubtedly one the most important for their unique capability to generate
all the differentiated progeny of tumor cells [31–33]. CSCs have been detected in both solid and non-solid
tumors, including leukemia, lung, brain, head and neck, breast, and colon and pancreatic cancers [35–41].
CSCs are resistant to chemotherapies or radiations, indeed, while conventional anticancer drugs might success-
fully destroy differentiated cancer cells, they will not be effective against CSCs. Likewise, although a transitory
control of neoplastic disease may be achieved with current therapies, a large number of patients may not
respond to the treatment, experiencing pharmacological resistance from the onset of the disease and/or follow-
ing therapies. Furthermore, tumor relapse after an apparent disease-free period might occur, together with the
metastatic dissemination to secondary tumor sites. As all these biological behaviors have been attributed to the
action of CSCs, which resist to conventional therapies, it appears evident that identifying and eradicating CSCs
represent a challenging but promising target to fully ablate cancer [42].
But how recognize CSCs from the heterogeneous tumor tissue as well as from noncancer stem cells? The

identification of CSCs is classically based on the evaluation of cell surface antigens like CD34, CD44, and
CD133 by flow cytometry. Indeed, leukemia stem cells show a CD34+/CD38− surface marker phenotype [24],
while an ESA+CD44+CD24−/low lineage has been identified to characterize breast cancer stem cells [35]. An
enzyme-based assay for the detection of the aldehyde dehydrogenase activity (ALDH) is also frequently used to
identify CSCs [43,44].
Furthermore, a transition between two phenotypic status in breast CSCs has been revealed, indicating that in

response to different environmental conditions, CSCs may switch from a more proliferative epithelial-like state
characterized by increased ALDH activity and a mesenchymal-like state characterized by expression of CD44+/
CD24− and a more quiescent and invasive behavior [45]. Hence, the expression of surface and cytoplasmic
markers is not a static property of CSCs and may deeply vary as a consequence of different environmental
milieu. In addition, not all CSCs express the markers, which can also be expressed in cancer cells not classifi-
able as CSCs. The surface antigen expression is not only selective and may largely vary during tumor progres-
sion and after long-term culture, but also for the high degree of heterogeneity existing between patients and
also within the same tumor [46]. Because of the unspecificity and fluctuating trend in the expression of current
markers, call for more research is required to selectively identify CSCs.

When?
The metabolic transition from quiescent to proliferative CSCs
The most accredited hypothesis for the origin of CSCs sets its rise in mutational events occurring in normal
stem/progenitor cells [4,6,7]. Such genetic deregulations appear to be involved in the transformation of normal
quiescent stem cells, with a strict regulated metabolism, to a constitutively activated phenotype characterized by
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elevated metabolic activity and plasticity. Classically, CSCs have been considered quiescent, with a slow capabil-
ity to enter the cell cycle [47,48]. One of the evidence supporting this idea might dwell in the evidence that
conventional anticancer therapies, which preferentially target fast cell cycle entering cells, are ineffective in
killing CSCs. Indeed, such therapeutic strategies eradicate only the tumor bulk, which can be regenerated by
the activation of CSCs, whose re-enter in the cell cycle after a period of latency might be responsible for
disease relapse and metastasis. Dormant CSCs share many biological features and stemness-associated factors
with their normal counterpart, which has been shown to maintain a low metabolic activity that favors cell dor-
mancy [47,48]. For instance, dormant hematopoietic stem cells (HSCs) preferentially utilize the glycolytic
pathway to get energy from the hypoxic niches [49,50], producing very low levels of reactive oxygen species
(ROS), which reflects the low metabolic activity [50–52]. Despite this quiescent phenotype characterized by
limited energy metabolism, a single HSC might be wake up from the dormant state in response to damage, in
order to reconstitute the entire bulk of blood cells. In this context, it should be noted that an active prolifer-
ation does not necessarily inhibits stem cell properties, as demonstrated by the evidence that HSCs are charac-
terized by an elevated proliferation rate [53]. The transition from a quiescent to a proliferative state defines the
intrinsic HSCs potential to rapidly divide and regenerate the hematopoietic tissue. Such phenotypic transition
is suggestive of the highly plastic metabolic profile of HSCs, which allow them to respond to environmental
stress by activating a biochemical program that supports cell proliferation. Extending these findings, Chen et al.
[54] have demonstrated that the repression of mitochondrial biogenesis and activity is required for maintaining
HSCs in a quiescent state. In particular, a disruption in quiescence and long-term functions of the HSCs was
generated by targeted mutation in TSC1 (tuberous sclerosis complex 1), a negative regulator of the mTOR
complex. In such conditions, the authors observed a massive increase in HSC proliferation, RNA synthesis,
mitochondrial biogenesis, ROS production and up-regulation of genes involved in oxidative function in the
HSCs [54]. These data suggest that in HSCs, the plastic transition from a dormant to a proliferative state relies
on the metabolic shift from a glycolytic to an oxidative phenotype. Supporting these findings, low mitochon-
drial respiration and poor ROS production seem to be crucial events for maintaining stem cell quiescence [55].
Although HSCs may represent a useful model to study the resembling metabolic state of CSCs, recent investiga-
tions have highlighted that CSCs may display a broader repertoire of biochemical behavior in response to dif-
ferent environmental conditions; indeed, it is more difficult to univocally identify the changes in energy supply
that support CSC transition from a quiescent to a proliferative state. Overturning the existing paradigm on
CSC metabolic properties, which were mainly suggested to rely on glucose rather than mitochondrial oxidative
metabolism [56–60], accumulating evidence has suggested that together with an increased glycolytic pathway
activation, CSCs also utilize OXPHOS, fatty acid oxidation, and glutaminolysis [18,19]. In this regard, it has
been recently demonstrated that in lung and ovarian cancer models, CSCs with high telomerase activity
(hTERT-high) show the most energetically activated phenotype, characterized not only by enhanced glycolysis
but also by increased OXPHOS [61]. In particular, by performing cell fractionation, the authors demonstrated
that in hTERT-high cells, the increase in mitochondrial function is paralleled by enhanced mitochondrial mass,
together with increased capacity for stem cell activity, cell proliferation, and migration [60]. Likewise, all these
enhanced biological responses were effectively inhibited by classical modulators of energy metabolism like gly-
colysis and OXPHOS inhibitors, and interestingly by drugs that interfere with mitochondrial biogenesis [61].
Of note, the authors identified two different cellular subpopulations of hTERT-high cells, one proliferative and
the other non-proliferative, suggesting that non-proliferative hTERT-high cells might be involved in tumor dor-
mancy [61].
As the biochemical and energy machinery deeply influence the properties of CSCs, as well as their transition

from a quiescent to a proliferative state, it is very likely that targeting the metabolic events at the basis of this
phenotypic transition may represent a potential strategy to halt metastatic dissemination, tumor recurrence,
and refractoriness to treatment.
Translating these findings in a therapeutic scenario, two approaches have been proposed to halt tumor

relapse by inhibiting CSCs quiescence: (i) induce CSCs to enter the cell cycle and then target them with con-
ventional anticancer therapies and (ii) keep cells in a dormant state. These two approaches may be triggered
using metabolic strategies; however, the actual therapeutic benefit of waken-up or hibernation strategies is still
controversial and potentially limited to specific patients. Indeed, hibernation strategies might be more appropri-
ate for elderly patients, as the treatment might be administered for the rest of the patient’s life, with the risk to
select resistant clones. On the other hand, wake-up strategies might be more beneficial to younger patients, as
these therapies aim to eradicate CSCs, hence avoiding such long-term risk [48]. Although further studies are
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necessary to validate the use of wake-up or hibernation therapies, it appears clear that targeting CSC metabol-
ism and the biochemical-driven transition between proliferation and quiescence might be a useful approach to
hamper tumor relapse.

Where?
Metabolism in the CSC niche
In an effort to investigate the mechanisms that favor CSC maintenance and propagation, great research interest
has been addressed toward the identification of the peculiar microenvironment which serves as niche for CSCs.
Similar to normal stem cells, CSCs reside in a peculiar niche where multilevel interactions control biochemical
reactions and biological responses essential for maintaining CSC population [62]. Tumor-specific factors con-
tribute to create a cancer stem cell niche, characterized by an intricate network of biochemical and paracrine
cross-communications involving activated fibroblasts, endothelial cells, macrophages, immune cells, and adipo-
cytes. Furthermore, environmental local factors like hypoxia, as well as growth factors, cytokines, and extracel-
lular matrix have been shown to strongly contribute to the activation of self-renewal pathways, such as the
Wnt/β-catenin, Notch, and Hedgehog pathways. The cross-communications between CSCs and the surround-
ing niche have also been shown to affect the plasticity of cancer cells, which might reversibly acquire a stem-like
state, mainly by activating dedifferentiation programs like the epithelial–mesenchymal transition (EMT) [63].
For their relevant role in regulating the paracrine and biochemical interactions with cancer cells, and for the
ability to support the perivascular niche that provides energy fuels and oxygen, we will detail the biochemical
features of stromal and endothelial cells, which both contribute to maintain a proper niche for CSCs.
Furthermore, we will recapitulate the most emerging findings on the metabolic responses to low oxygen avail-
ability in the CSC niche.

Cancer-associated fibroblasts
Within the CSC niche, cancer-associated fibroblasts (CAFs), which are regarded as key components of the
tumor microenvironment, have been shown to undergo a metabolic reprogramming, with a more stricter reli-
ance on aerobic glycolysis than oxidative phosphorylation [64]. To sustain their enhanced proliferative and
migratory capability, as well as their active secretion of cytokines and growth factors, CAFs gain energy from
the activation of autophagic programs [65–67]. Indeed, autophagy-derived substrates from catabolic CAFs have
been shown to support the energy needs of pancreatic ductal adenocarcinoma, taking over on glucose and
TCA-cycle metabolite requirements [68]. Furthermore, CAFs actively use glutamine to fuel the CSC niche and
support tumor development and progression. Likewise, the simultaneous depletion of glutamine pathways in
both tumor and stromal compartment has been shown to ablate tumorigenicity in a mouse model of ovarian
cancer [69]. The strict dependence from glutamine utilization has been indicated by the evidence that CAFs
recruit additional carbon sources for glutamine synthesis when this fuel is scarcely abundant [69]. Indeed, in
ovarian cancer, CAFs have been shown to use both branched-chain amino acids and aspartate to provide the
nitrogen supply for glutamine synthesis [69]. Importantly, CAFs may adjust their metabolic strategies in order
to support inflammation-driven tumorigenesis. In this regard, Valencia et al. [70] demonstrated using both in
vitro and in vivo approaches that metabolic reprogramming triggered by p62 deficiency in the tumor stroma
triggers prostate tumorigenesis leaded by IL-6. In particular, loss of p62 in the stromal compartment was asso-
ciated with decreased glucose uptake, GLUT1 expression, lactate secretion, and decreased flux through the oxi-
dative PPP. Furthermore, p62 KO cells displayed lower glutamine metabolism, as evidenced the reduction of
the glutamine transporters SLC7A5 and SLC1A5, as well as glutaminase-1. Likewise, such perturbations in glu-
tamine metabolism also led to reduced GSH levels and to the subsequent accumulation of ROS, which in turn
mediated by IL-6 production [70]. On the other hand, p62 was found to induce mTOR Q3

¶
C activation and c-Myc

induction leading to survival and expansion of ROS-containing HCC (hepatocellular carcinoma)-initiating cells
[71]. These in vitro findings were corroborated by the evidence that p62 is up-regulated during prenoplasia and
required for HCC induction in mice [71]. Taken together, these data suggest that the same mediator might
drive different biological outcomes by regulating compartment-specific biochemical events involving the oxida-
tive stress response in the tumor microenvironment [70,71]. In this scenario, CAFs have been shown to induce
a pro-oxidant environment from which cancer cells efficiently escape by activating survival pathways and
mechanisms of anoikis resistance [72,73]. Adding to this, cancer cells themselves worsen the oxidant status
because of their increased metabolic activity caused by aberrant growth factors and cytokines signaling and
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excessive functionality of ROS-producing enzymes, such as nitric oxide synthases, cyclooxygenases, and lipoxy-
genases [74]. To effectively cope with oxidative stress, CSCs have developed an extremely efficient antioxidant
system, mainly relying on the redox buffer glutathione, whose maintenance is dependent on glucose metabol-
ism through the PPP cycle [75]. Indeed, targeting the aberrant antioxidant response may inhibit clonogenicity
and radioresistance, as demonstrated by using pharmacological depletion of ROS scavengers in CSCs [76].

Endothelial cells
Relatively few investigations have attempted to clarify the metabolic features of CSCs residing in specialized
perivascular niche, and their cross-talk with endothelial cells (ECs) for survival and cell renewal. In head and
neck squamous cell carcinomas, IL-6 secreted by tumor-associated endothelial cells activates STAT3 transduc-
tion pathway and promotes tumorigenicity [77], as evidenced by transplanting primary human head and neck
cancer stem-like cells into IL-6 knockout mice. In addition, tumor formation is inhibited when ALDHhigh/
CD44high cells are co-injected with endothelial cells stably transduced with shRNA IL-6 or using tocilizumab,
which targets IL-6 receptor [77], thus suggesting that IL-6 might play a pivotal role in the cross-talk between
ECs and CSCs within the niche. The ability of IL-6 signaling to activate aerobic glycolysis might, at least in
part, explain the molecular mechanisms involved in maintaining the substantial glycolytic and quiescent
phenotype of ECs [78,79]. Indeed, the pharmacological blockade of glucose utilization by 2-deoxy-D-glucose
(2-DG) is toxic to ECs [80,81]. Interestingly, CSCs expressing vessel markers display the ability to form tumor-
associated blood vessels [82]. Further investigating the interdependence of endothelial cells and CSCs,
co-culture strategies have disclosed the essential role of endothelial cells in providing factors involved in CSC
renewal and survival [83]. Moreover, the antiangiogenic drug bevacizumab has been shown to reduce a subpo-
pulation of brain cancer cells with stem-like features [83]. Of note, glioblastoma stem-like cells (GSCQ4

¶
s) were

able to activate an angiogenic response characterized by the secretion of the angiogenic mediator vascular endo-
thelial growth factor (VEGF) and the induction of endothelial tube formation. The ability of CSCs to support
tumor-associated angiogenesis was further strengthened by the observation that GSCs are able to differentiate
to both endothelial and tumor cells via a CD133+/CD144+ progenitor [84,85].
Considering that ECs are not only crucially involved in the formation of new blood vessels, but also in pro-

viding a specific niche essential for CSC biology, it is not surprising that ECs energy requirements may be ful-
filled using different sources [86]. As mentioned above, glucose represents the favorite metabolic source to ECs,
probably for its ability to produce ATP faster than OXPHOS. Not surprisingly, angiogenic stimuli like VEGF
have been shown to support the angiogenic switch and vessel sprouting mainly by stimulating glycolytic
enzymes like phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3), which catalyzes one of the rate-
limiting steps of glycolysis, the conversion of fructose-6-phosphate (F6P) to fructose-1,6-bisphosphate (F1,6P2)
by 6-phosphofructo-1-kinase (PFK-1) (6 di 26). Corroborating these findings, in vitro and in vivo studies have
shown that the efficiency of angiogenesis is reduced when the glycolytic pathway is inhibited by PFKFB3
knockdown in ECs [78].
The pentose phosphate pathway (PPP), important for nucleotide synthesis and redox homeostasis, has been

shown to support energy metabolism in ECs. For instance, the PPP has been shown to provide NADPH, which
serves as a cofactor for endothelial NO synthase, a pivotal actor in maintaining CSC phenotype in perivascular
niche through the activation of Notch signaling [85].
In addition, glucose-6-phosphate dehydrogenase (G6PD) gene, which has been shown to mediate the

VEGF-dependent activation of ECs [87], has also been involved in the transformation of NIH 3T3 cells and
tumor induction in nude mice [88].
Although ECs scarcely utilize the OXPHOS pathway to get ATP [86], their mitochondria have been impli-

cated in triggering signaling pathways relevant to the maintenance of the perivascular niche. In this regard,
many studies have demonstrated that in ECs, VEGF increases mitochondria biogenesis and stimulates mito-
chondrial metabolism [89,90], which are recently emerging as relevant biochemical responses implicated in
CSC propagation [18]. As VEGF signaling deeply affect the vascular niche in controlling stemness features in
diverse types of cancer [91,92], it would not be surprising that at least part of these effects could be mediated
by metabolic-driven and mitochondria-dependent cell responses.

Hypoxia in the CSC niche
Mounting evidence indicates that hypoxia represents one of the most important features of the CSC niche [93].
In solid malignancies, the rapidly growing mass often outpaces the local blood supply, thus generating hypoxic
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microenvironments. In addition, the dysfunctional biology of tumor vasculature delivers an aberrant blood
flux, which contributes to lower the oxygen availability in the tumor mass. It should be mentioned that
although oxygen has a higher diffusion rate compared with glucose, the solubility of oxygen is lower than that
of glucose, which explains why glucose-based metabolism takes over in cancer contexts.
Hence, to overcome the lack of oxygen, the metabolic needs of CSCs are mainly fulfilled by glucose, which

acts as an alternative energy substrate in the hypoxic niche [93]. Such adaptive responses undertaken by cells in
low oxygen conditions are mainly mediated by the transcription factor hypoxia inducible factor, which med-
iates the expression of a large number of genes involved in relevant biological functions, including the regula-
tion of cell metabolism [94]. HIF-1 is a highly conserved heterodimeric factor, consisting of an
oxygen-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit; the transcriptional complex
HIF-1 binds to the consensus sequence 50-RCGTG-30, located in the promoter of HIF-1–regulated genes, thus
activating changes in the cell transcriptional machinery [94]. Many glycolytic enzymes are included among the
HIF-1 target genes, in normal and CSC cells, thus corroborating that hypoxic conditions favors a glycolytic
phenotype [94]. In particular, in hypoxic mouse embryonic stem cells, HIF-1a was shown to mediate the tran-
scription of glucose transporters and all the glycolytic enzymes [95]. HIF-1α action in tumors has been asso-
ciated with stem cell features, as evidenced in breast, hematological, prostate, bladder, and central nervous
system malignancies [96–99]. Furthermore, HIF-1α has emerged as a relevant activator of the EMT program,
which drives the acquisition of CSC markers, together with a higher migratory and therapy-resistant phenotype
[100]. Likewise, chemoresistant pancreatic cancer cells showed CSC and EMT phenotypes, together with a
strict reliance on glycolysis and low ROS levels, as demonstrated using the glycolysis inhibitor 2-DG, which
acts as a glycolysis inhibitor [101]. Extending these findings, the chemoresistant behavior of lung cancer has
been associated with increased HIF-1-mediated expression of the glucose transporter GLUT1 and the trans-
membrane protein CAIX, which neutralizes intracellular acidosis [102], thus suggesting that targeting the glyco-
lytic phenotype and normalizing the intracellular pH levels might be an effective strategy in counteracting the
resistance to chemotherapeutic regimen.
In this context, carbonic anhydrases have been shown to play a pivotal role in the expansion of the cancer

stem-like population, as targeting CAIX activity effectively inhibits the expansion of breast CSCs during
hypoxia [103]. Interestingly, CAIX up-regulation activates the EMT process and drives the acquisition of stem-
ness features through the Notch1 and Jagged1 pathway [104]. Furthermore, a CAIX signature characterizes the
differential response of breast cancer cell to hypoxia, identifying a subpopulation of cells with CSC markers
and elevated self-renewal capacity, thus suggesting that CAIX expression may be used to enrich for CSCs in the
hypoxic niche [103].
Within the CSC niche, catabolic reactions are mainly characterized by glycolysis and ketogenesis, which sup-

ports the anabolic requirements of CSCs and favors the acquisition of stemness properties [104–109]. In add-
ition, non-glycolytic stem-like cells may use fuels coming from more differentiated glycolytic cells in breast
cancer, indicating that a reverse Warburg metabolism may support CSC energetic requirements [17].
Additional evidence indicates that alternate catabolites including ketones and lactate might serve as metabolic

fuels and a driver of stemness, recurrence, metastasis, and poor clinical outcome in breast cancer [110,111].

Why?
Oncogenic mediator pathways involved in the metabolic reprogramming of CSCs
Many hypotheses have been proposed to clarify why metabolic reprogramming occurs in cancer cells toward
dedifferentiation and acquisition of stem traits. In this regard, specific genetic background, epigenetic modifica-
tions, and developmental and oncogenic pathways seem to be mechanistically involved in promoting metabolic
phenotypes involved in CSC maintenance and dissemination. Therefore, the characterization of such genetic
aberrations and their link with metabolic alterations would provide a causative connection explaining the
involvement of the energy machinery in CSC biology.
For instance, it has been recently demonstrated that elevated telomerase expression, which is generally

observed in normal and cancer stem cells, is a signature of stemness associated with elevated glucose and
mitochondrial-dependent metabolic activity, in both ovarian and lung cancer stem cells [61].
Moreover, mutations in mitochondrial DNA (mtDNA) have been associated with the onset of diverse types

of cancer, including colorectal, prostate, bladder, renal cancer, and hematological diseases [112], suggesting that
maintaining an intact mitochondrial function is essential for tumor development. In line with these
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observations, new haplotypes in the mitochondrial ATP synthase subunit 6 correlate with acute lymphoblastic
leukemia, further corroborating that metabolic dysfunctions and alterations of genes involved in the energy
metabolism might play a pivotal role in tumorigenesis [113].
An oxidant environment, which often results from elevated OXPHOS activity in highly proliferative cells,

has been indicated as the main driver of mitochondrial genome aberrations involved in tumorigenesis. CSCs
respond to changes in the redox status by regulating their differentiation as well as their propagation. Indeed,
the formation of 3D tumor spheres from breast cancer cells exposed to hypoxia is inhibited by scavenging
mitochondrial ROS [114]. Accordingly, administration of antioxidants like N-acetyl-cysteine (NAC) has been
shown to counteract glioma stem cell (GSC) activation and orthotopic tumor formation [115]. A useful
approach to characterize the factors wakening up cancer cells toward a metabolic-dependent stemness program
could be that of combining genomic analyses with functional CSC assays. For instance, it has been recently
demonstrated that some pluripotency genes like NANOG trigger CSC maintenance and promote tumorigen-
icity in vivo by inducing a functional reprogramming of mitochondrial metabolism in HCC [116]. Lee et al.
[117] recently shaped the oncometabolites and transcriptomic profile of breast cancer stem-like cells, and
found that the Wnt pathway regulates nicotinic acid adenine dinucleotide phosphate (NAADP) levels, which in
turn promote CSC survival. In addition, non-codifying genomic sequences may be implicated in CSC action, as
demonstrated by the evidence that an miR-122-mediated regulation of the glycolytic enzyme PK4 inhibits stem
phenotypes in CD133 (+) HCC cells [118]. Recently, the transcriptomic profiling of miRNA in breast tumor
spheroid-enriched CSCs has indicated that many miRNAs controlling several metabolic processes are differen-
tially regulated in CSC-like cells compared with adherent MCF7 cells, as evidenced by NGS combined and
gene ontology analysis [119].
Collectively, these data indicate that the primitive mutations and subsequent genomic alterations, together

with additional factors like microRNA and developmental pathways, are accountable for the metabolic activa-
tion of CSCs toward tumor development and progression. Based on the above observations, investigating the
genomic heterogeneity of cancer cells and the subsequent variety of metabolic pathways might be useful to
characterize the biology of CSCs to identify their Achille’s heels. Genome-wide analysis of single-cell RNA
sequencing might represent a useful strategy to combine information from diverse metabolically integrated cell
subpopulations, in order to disclose their stem capacity and tumorigenic potential.

The metabostemness theory: metabolism as an emerging
character in the CSC tale
Growing evidence indicates that genome alterations might, at least in part, account for the acquisition of stem
features that drives tumor initiation and progression. Adult stem cells (ASCs), which are characterized by
innate self-renewal and multi-potency capacity, can accumulate many oncogenic mutations for a period of time
long enough to support transformation and the development of malignant disease. Supporting this hypothesis,
somatically acquired genetic lesions occurring in rare multipotent stem cells and progenitors have been shown
to drive the evolution of myelodysplastic syndromes toward the leukemic transformation [120]. ASCs and com-
mitted progenitors have therefore been suggested to represent the cells of origin in most tumors, for their
ability to self-renew and accumulate oncogenic mutations. CSCs that come from mutations in ASCs are placed
at the top of a hierarchical organization, while the disorganized repertoire of cells constituting the tumor bulk
could be regarded as the anomalous outcome of an aberrant developmental process. Nevertheless, breast, lung,
pancreatic, prostrate, and liver cancer do not derive from the direct transformation of normal tissue stem or
progenitor cells, although in all these tumor types, cells with stem-like features have been detected. In this
context, differentiated cancer cells may be reprogrammed to acquire CSC properties, because of the high plasti-
city that characterizes the components of the tumor microenvironment. Of note, the transition to a malignant
and aggressive cancer phenotype seems to be correlated to the capability of generate CSCs from non-CSC
populations, in response to transcriptional, epigenetic, or external stimuli [121]. For instance, hypoxia, lack of
nutrients, inflammation, and therapy-induced stress may increase the plastic potential of differentiated cancer
cells toward a stem-like status. For the above observations, targeting cancer cells reprogramming might be a
useful tool to normalize the aberrant differentiating program characterizing the oncogenic lesions. In this
complex scenario, it has been recently proposed that the altered differentiation that supports malignant trans-
formation may be controlled and orchestrated by specific cellular ‘metabotypes’, which drive the acquisition of
stemness features [122]. The term ‘metabostemness’, recently coined by Menendez and Alarcón, actually
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delineates the stem properties to be dependent on cell metabolism, which in turn may switch on and off the
stem potential of tumor cells (Figure 1) [122]. By regulating epigenetic and transcriptional networks involved
in self-renewal, the metabotypes can drive normal and cancer cells toward a CSC-like status. While certain
metabolic events may act as early drivers of transcriptional and epigenetic reprogramming, additional second
metabolic hits may long-term arrange and dictate the stemness properties within the tumor tissue. Hence, spe-
cific metabolic dynamics may govern the genetic reprogramming that forces the acquisition of stem traits from
noncancer or differentiated cancer cells. Supporting these hypothesis, cellular metabolism in tumor tissues has
been recently included among the well-acknowledged hallmarks of cancer [12]. Cancer-associated metabolic
changes, rather than being considered as secondary biochemical events triggered by the increased anabolic
requirements of tumor cells, might be then considered as crucial operators involved in regulating the kinetics
of stemness reprogramming and the balance between non-CSC and CSC-like states during tumor initiation and
evolution [12,122]. Remarkably, the hierarchical metabolic frame that functionally integrates modifications in
the transcriptional genetic machinery to regulate CSC function is a hot topic under investigation. First of all,
metabolic-triggered reorganization in chromatin structure and epigenetic changes may systemically drive the
transition from a non-CSC to a CSC-like state in response to specific biochemical settings [123]. Indeed, many
metabolic signals have been shown to affect chromatin organization, adding to the classical notion that hor-
mones and growth factors are the main activators of transcriptional responses [123]. In support of this model,
several transcription factors involved in stemness like c-Myc have been shown to globally act on chromatin
rearrangement and to indirectly exert a regulatory role on metabolic fluxes [124,125]. Moreover, the epigenetic
regulation of crucial enzymes has been implicated in the activation of key metabolic pathways involved in
reprogramming toward stemness. For instance, the methylation in the promoter of fructose-1,6-biphosphatase
(FBP1), one of the key enzymes in the gluconeogenesis, maintains the glycolysis pathway active to increase
CSC-like properties and tumorigenicity potential in basal-like breast cancer [126]. On the other hand, post-
transcriptional modifications in stem-related genes have been shown to affect cell metabolism, thus evidencing
a bi-directional interaction between epigenetics and metabolic responses [122]. It should be mentioned that
most of the cofactors necessary for epigenetic DNA modifications derive from metabolic pathways such as gly-
colysis, TCA cycle, OXPHOS, and fatty acid oxidation; this is the case for S-adenosyl-L-methionine (SAM),
flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD), and acetyl Coenzyme A
(reviewed in ref. [123]). Furthermore, mutations in genes codifying for metabolic enzymes have been shown to
trigger the production of aberrant metabolites with oncogenic functions. Likewise, diverse oncometabolites play
a causal role in epigenetic reprogramming involved in tumor development and progression. In this context,
mutations in TCA cycle enzymes and overproduction of oncometabolites like R(−)-2-hydroxyglutarate, fumar-
ate, and succinate have been associated with epigenetic DNA rearrangements, transcriptional dysfunctions, and
benign or malignant neoplasms [127–129]. Moreover, it has been proposed that Isocitrate dehydrogenase
(IDH) mutations, by promoting hypermethylation of genes involved in differentiation, may shift the balance
between undifferentiation and differentiation toward a pluripotency status, ultimately leading to the increase in
the number of cells with stem-like features [123]. Parallel, a flexible epigenetic scenario requires an intact meta-
bolic function of IDH, which would affect the DNA methylation status to effectively permit a metabotype-
driven reprogramming process [122]. Looking at cancer as a disease of differentiation and reprogramming
initiated and supported by aberrant metabotypes would allow to characterize the biochemical orchestrators
involved in intratumor biological plasticity and complexity, providing a new framework for identifying novel
cancer hallmarks and eradicating CSCs.

Metabolic features of CSCs
Because of the complex spectrum of different microenvironmental conditions they survive in, CSCs are most
likely supposed to get energy from different sources, according to substrate availability. Indeed, evidence for a
glucose- and oxidative-based metabolism has been widely provided. In addition, amino acids like glutamine
and lysine may serve as an alternate fuel for CSCs. Normal cells mainly generate ATP using mitochondria and
the TCA cycle coupled with OXPHOS to catabolize acetyl-CoA produced from glycolysis and fatty acid oxida-
tion [18]. Different from normal cells, cancer cells increase the glycolytic flux also in aerobic conditions,
through the well-described Warburg effect. In these conditions, although the generation of ATP is less efficient,
its production rate is higher, rendering ATP immediately available for the huge anabolic requirement of cancer
cells [18]. Furthermore, the catabolism of glucose via glycolysis provides intermediates for nucleotides and
amino acid biosynthesis. Hence, the switch from oxidative to glycolytic metabolism efficiently provides cancer
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cells with the ability to survive in harsh environmental conditions characterized by poor oxygen and enable
cancer cells to proliferate, migrate to distant sites, and invade secondary tissues [18]. The metabolism of CSCs
has been shown to differ from non-CSCs, whose phenotype has been, at least in part, paralleled to that of
normal stem cells [22], which primarily use glucose. Indeed, in induced pluripotent stem cells, metabolic repro-
gramming toward glycolysis and evidence of mitochondrial involution parallel the acquisition of pluripotent
markers [130]. Nevertheless, several studies have reported that OXPHOS and mitochondria may play a pivotal
role in CSC metabolism, together with secondary pathways like fatty acid oxidations, PPP pathway, and gluta-
minolysis [22].

Evidence that CSCs get energy from glucose
Many studies have well established the importance of glucose for CSC maintenance and propagation in diverse
cancer cells including brain, breast, lung, liver, nasopharyngeal cancer, osteosarcoma, and glioblastoma
[20,59,131]. By using a panel of cancer cell lines, Liu et al. [20] recently demonstrated that a subpopulation of
cells with stem-like properties mainly rely on glucose as a primary fuel. Indeed, glucose was able to increase the
number of cancer stem-like cells, in which many glycolytic enzymes were up-regulated and lactate production
was elevated. Likewise, the inhibition of glycolysis was shown to reduce the number of CSCs and interfere with
their tumor-forming ability in vivo [20]. An exacerbation of glycolysis and acquisition of stem features were
observed when the activity of the mitochondrial complex I was inhibited for loss of FBP1 [126]. In addition,
the overexpression of FBP1, which stimulates the gluconeogenic pathway and inhibits glycolysis, has been
shown to reduce the number of cancer cells with stem properties in basal-like breast cancer cells and reduce
tumor spheroid formation in vivo [132]. Further extending these findings, Shen et al.Q5

¶
have recently demon-

strated that a subset of hepatic cancer cells CD133+ preferentially activate aerobic glycolysis and inhibit the glu-
coneogenic pathway, compared with CD133– cells [133]. The CSC-like subpopulation was shown to have an
increased glycolysis rate and glycolytic capacity, up-regulation of the glycolytic enzymes GLUT1, HK2, PDK
(pyruvate dehydrogenase kinase), and PGAM1, together with down-regulation of the gluconeogenic enzymes
G6PC and PEPCK [133]. These data suggest that CSCs from diverse tumors use glycolysis as the main catabolic
pathway and inhibit anabolic de novo synthesis. This has been reported also for colorectal cancer (CRC), where
a peculiar metabolic signature has been recently revealed in CSCs. In particular, the authors implemented a
transcriptomic study of five microarray datasets from the GEO database of CD133+ and CD133− cell subpopu-
lations isolated both from CRC cell lines and patients [134], together with high-resolution unbiased metabolo-
mics. This allowed portraying the metabolic behavior of CSCs, which was characterized by enhanced expression
of genes and metabolites from the glycolytic pathway and TCA cycle, with down-regulation of the fatty acid
biosynthesis [134]. High-throughput data from proteomic and targeted metabolomics analysis were recently
used to investigate the metabolic phenotype of breast cancer cells grown as spheroids or in adherent conditions.
A shift from mitochondrial oxidative phosphorylation toward fermentative glycolysis was revealed in cancer
stem-like cells, as evidenced by the increased activity of the pyruvate kinase M2 isoform, lactate dehydrogenase
and glucose 6-phosphate dehydrogenase [56]. In an attempt to identify genes and pathways relevant to glio-
blastoma CSC survival, Goidts et al. [135] utilized RNA interference (RNAi) to screen the complete human
kinome and phosphatome, identifying many genes involved in metabolism and in particular the glycolytic
enzymes PFKFB4, PDK1, and PKM2, which were found relevant for the maintenance of brain CSCs.
Altogether, these observations are supportive of the remarkable role of glucose as a main fuel in CSCs, and

indeed, oxidative pathways could be reasonably disadvantaged because of the poor oxygen availability in the
hypoxic CSC niche. In this context, TICs isolated from human glioblastoma xenografts have been shown to use
glycolysis for ATP generation and prefer low oxygen conditions to maintain their stemness properties and
tumor-forming capacity [136]. The contribute of hypoxia in CSC expansion has been extensively investigated
and associated with glucose dependence, particularly in the quiescent phenotype of CSCs. Recently, Mahase
and co-workers reviewed the possibility that multiple mechanisms including CSC propagation and metabolic
alterations may account for the resistance to antiangiogenic drugs in the clinical management of glioblastoma
patients. Indeed, the generation of intratumor hypoxia following administration of antiangiogenic agents has
been shown to increase the subpopulation of cells with stem properties in lung and breast cancer, as well as in
glioblastoma [137–139]. The increase in ALDH+ population has been attributed to HIF-1α [138,139], which, as
previously discussed, enables the transcription of genes involved in glucose control and ATP production.
Likewise, glioma cells residing in perinecrotic areas aberrantly express the first enzyme in the Embden–
Meyerhoff/glycolytic pathway named hexokinase-2, whose overexpression is involved in glioblastoma cell
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proliferation and aerobic glycolysis [140]. Furthermore, HIF-1a-mediated action includes the increase in PDK1,
thus inhibiting pyruvate dehydrogenase activity and TCA cycle entry [139,140].

Evidence that CSCs get energy from OXPHOS: focus on mitochondria
An overwhelming amount of studies indicates that CSCs preferentially use mitochondrial respiration and oxida-
tive metabolism, in contrast with the old paradigm of a main glycolytic phenotype for CSCs. Indeed, evidence
of a reduced glycolytic flux and increased mitochondrial-driven ATP production have been provided by diverse
independent authors. For instance, in CSCs isolated from ovarian cancer patients, an up-regulation of enzymes
involved in mitochondrial OXPHOS and fatty acid oxidation has been revealed [141]. Accordingly, the meta-
bolic features of spheroids generated from both ovarian and cervical carcinoma were recently analyzed and
compared with the same cells cultured in adherent conditions. Interestingly, the authors found a reprogrammed
metabolism through the TCA cycle in spheroid cancer stem cells, with respect to non-CSCs [142]. Using a
similar experimental approach, Gao Q6

¶
et al. recently FACS sorted CSCs from small cell lung cancer cell, in order

to analyze their metabolic status. CSCs were found to possess a higher dependence on OXPHOS and mito-
chondrial function when compared with their non-stem counterpart [143]. CSCs isolated from glioma have
been demonstrated to consume less glucose, produce less lactate, and maintain high ATP levels from oxidative
phosphorylation [144]. A similar trend for the use of mitochondria respiration over glycolysis has been
reported in CD133+ human glioblastoma cells, with a mechanism depending on the insulin-like growth factor
2 mRNA-binding protein (IMP2) [145]. In particular, the authors demonstrated that CD133+ glioblastoma
cells have enhanced expression of IMP2, which is involved in regulating OCR (oxygen consumption rate),
mitochondrial mass, and the expression of several stemness markers, including CD133, SOX2, OCT4, and
NANOG [145]. As IMP2 directly interacts with several mitochondrial complex genes to orchestrate the assem-
bly of mitochondrial complexes I and IV, it could be assumed that the enhanced IMP2 expression detected in
glioblastoma CSCs may serve for the increased OXPHOS requirements in these cells [145]. Additionally, Viale
et al. analyzed the population of dormant cells surviving the ablation of the oncogene RAS in a mouse model
of pancreatic cancer. These dormant cells were shown to exhibit stemness features and rely on oxidative phos-
phorylation and mitochondrial activity, rather than glycolysis and glutaminolysis [146].
Of note, the metastatic potential of cancer cells has been associated with the activity of the transcription

co-activator peroxisome proliferator-activated receptor gamma, co-activator 1 alpha (PPARGC1A, also known
as PGC-1α) [147]. Clinically, PGC-1α has been shown to couple oxygen consumption, OXPHOS, and mito-
chondrial biogenesis with enhanced migratory and invasive capability of cancer cells, as revealed by using
human invasive breast tumor samples [148,149]. Supporting the role of PGC1α in CSCs maintaining and
propagation via mitochondrial activity, its overexpression has been detected in circulating tumor cells, as well
as in breast cancer stem cells, where its inhibition reduces stemness properties [148,149]. On the basis of these
observations, an intact mitochondrial activity and function seems to be necessary for the CSC biology. In this
scenario, mitochondria biogenesis has recently emerged as a key feature of CSCs, who display increased mito-
chondrial mass and membrane potential, higher generation of mitochondria-derived ROS, and enhanced
oxygen consumption, when compared with the differentiated cells in the tumor bulk [141,149–154].
A recent report has supported the role of mitochondrial dynamics in brain tumor-initiating cells (BTICs),

which exhibit higher mitochondrial fission mediated by dynamin-related protein 1 (DRP1) [155]. Interestingly,
DRP1, which controls mitochondrial fission by pinching off the membrane stalk between two forming daughter
mitochondria, was correlated with poor prognosis in glioblastoma, hence suggesting that targeting mitochon-
dria in BTICs may represent a useful approach to halt disease progression [155]. Of note, an efficient mainten-
ance of the mitochondrial network and a proper fragmentation and segregation of mitochondrial population
have been correlated with the propagation of stem-like cells in breast epithelium [156]. It should be mentioned
that in order to contrast tissue aging and promote renewal, stem cells asymmetrically divide into one daughter
cell that retains stemness properties and another cell that is subjected to a differentiation program. By using
photo-activated marker proteins to analyze the fate of old and young organelles during stem cells asymmetrical
division in human breast epithelium, Katajisto et al. recently demonstrated that stem cells sort mitochondria by
age. In particular, stem cells apportion aged mitochondria asymmetrically between daughter cells, with cells
receiving younger mitochondria to be destined to maintain stem traits [156]. Hence, stem-like cells can exclude
older mitochondria, with a highly efficient mechanism including mitochondria spatial segregation. Of note, dis-
ruption of such tightly regulated processes during mitochondrial fission may cause loss of stem trait in the
progeny cells [156]. Extending these findings, it has been demonstrated that the activation of several oncogenic
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pathways like MAPK are involved in mitochondrial fragmentation, which may be regarded as an early step
involved in cell reprogramming toward pluripotency [157]. Likewise, in breast cancer cells, c-Myc has been
shown to promote mitochondrial fusion through the engagement of YAP/TAZ signaling to drive clonogenic
growth, which is a distinguishing feature of cells with stem properties [158]. Interestingly, in human mammary
epithelial cells, a mitochondrial retrograde signaling pathway has been shown to activate an EMT-like repro-
gramming, toward altered morphology and increased migratory and invasive capacity [159].
On the basis of these observations, mitochondrial functions and energetic dynamics may be involved in CSC

dissemination; as the maintenance of a healthy mitochondrial population is essential for keeping and propagat-
ing the stem traits, targeting these organelles in a therapeutic setting might represent a useful strategy to eradi-
cate CSCs.

Additional metabolic fuels for CSCs
CSCs from liver have been shown to use fatty acid oxidation, as demonstrated by the metabolic analysis of
CD133+/CD49f+ cells sorted from HCC [116]. An increase in lipid content and Wnt/b-catenin activity was
observed in CD133+ cells isolated from CRC patients [160]. Genes associated with fatty acid oxidation were
found up-regulated in CSCs isolated from ovarian cancer patients [141]. Likewise, the block of fatty acid oxida-
tion by etomoxir, a carnitine palmitoyltransferase-1 inhibitor, has been shown to inhibit spheroid formation in
breast cancer in vitro and decrease tumor growth in vivo [114].
Conversely, inhibition of fatty acid synthesis by Soraphen A, cerulenin, and resveratrol has been shown to

decrease the expression of CSC markers and sphere formation efficiency [161–163]. However, further studies
are required to clarify the role of lipid metabolism in CSC biology, particularly in response to specific changes
in the tumor niche.
Focusing on the role of pathways other than glycolysis and OXPHOS, CSCs have been shown to boost the

PPP, particularly during hypoxia and reoxygenation [164]. Indeed, the expression of crucial PPP enzymes is
increased by acute oxygenation and decreased upon hypoxia, which triggers the expression of glycolytic genes.
Such inverse correlation between the activation of glycolysis and the PPP pathway in a differential oxygenated
microenvironment may reflect a glycolysis-mediated cell migration upon hypoxia and PPP-mediated cell prolif-
eration during acute oxygenation [164].
Finally, glutamine metabolism also plays a remarkable role in CSCs from several tumors including

lung and pancreatic and ovarian cancer [142,165]. Glutamine metabolism appears to be essential in
c-Myc-overexpressing cells, suggesting that a pluripotency gene profile selects for glutamine dependence [166].
The inhibition of glutamine availability has been shown to reduce the stemness gene signature and sensitize
pancreatic CSCs to radiation therapy, both in vitro and in vivo [165]. Nicely fitting with these observations, a
parallel study performed in a mouse model of systemic metastasis has shown that the inhibition of glucose
metabolism via L-DON (a glutamine analog) is able to inhibit the liver, lung, and kidney metastatic dissemin-
ation [167].

Looking at metabolism to identify and target CSCs
As the study of CSC biology has indicated their metabolic features as relevantly involved in survival and func-
tionality, the idea of identifying a subpopulation of cancer cells with stem properties based on a distinguishing
metabolic profile has recently emerged. In addition, novel therapeutic approaches could be used to push cancer
out of race, simply by hitting the biochemical energy reactions allowing CSC maintenance and dissemination.
Classically, the phenotypic identification of stem cells relies on the use of flow cytometry coupled with a func-
tional stem cell assay. However, the sole use of surface and cytoplasmic markers does not seem to be an effect-
ive strategy, because of many limitations due to technical problems, inter- and intratumor heterogeneity, and
lack of high specificity, as discussed above [46]. In this context, the identification of metabolic markers could
integrate the information coming from the acknowledged bona fide CSC markers, thus allowing a more reliable
identification of the cancer cells with stem properties. In this context, evidence that increased mitochondrial
mass, a surrogate marker for elevated mitochondrial biogenesis, can be used to identify cells with increased
self-renewal capacity in diverse cancer types has been provided [61,114,143,153]. In particular, tracking mito-
chondrial mass via fluorescent probes has been described as a simple and efficient tool to identify CSCs,
independent of their glycolytic- or OXPHOS-dependent metabolic phenotype [143,149,153]. By performing a
metabolic fractionation of MCF7 breast cancer cells via MitoTracker, a fluorescent probe selectively staining
mitochondria, it has been recently demonstrated that high mitochondrial mass enriches for anabolic CSCs.
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Functional validation of these findings has been provided by performing mammosphere assays, while an
unbiased proteomic approach has allowed to establish that mitochondrial proteins are among the most strongly
up-regulated in MCF7 cells overexpressing WNT1 and FGF3, which are main drivers of the propagation of
mammary cancer stem cells [143].
Enrichment in mitochondrial content has been associated with higher DNA repairing capacity in human

breast cancer stem cells, suggesting that an increased mitochondrial mass may enable CSCs to efficiently cope
with the action of certain anticancer drugs [153]. Recently, Moschoi et al. [168] have demonstrated that AML
cells increase their mitochondrial mass by transferring mitochondria from bone marrow stromal cells, a unidir-
ectional process exacerbated upon exposure to chemotherapeutic agents. Such transfer occurs also in the
leukemia-initiating cells and progenitors, where it has been shown to provide survival advantage and long-term
culture potential [168]. These findings add to previous studies showing asymmetrical apportioning of young
mitochondria into stem cells, suggesting that dynamic mitochondrial movement and mitophagy can account
for the stem features of cancer cells and provide a useful tool for their identification.
In addition, the identification of rare CSCs within the heterogeneous tumor mass could be achieved looking

at the mitochondrial membrane potential, a parameter to measure the mitochondrial functional status. Indeed,
the membrane potential of mitochondria has been associated with differentiation programs, as well as the
malignant progression of neoplastic disease [169]. Recently, a broad molecular ‘tool-kit’ for the identification of
CSCs in breast cancer has been assembled [170]. Based on the assumption that breast CSCs are characterized
by (i) increased mitochondrial biogenesis mediated by PGC-1a; (ii) increased generation of ROS; and (iii)
increased NADH levels, it has been assessed that a subpopulation of MCF7 cells with increased PCG1a activity,
ROS production, and NADH autofluorescence shows higher stemness features, determined by mammosphere-
forming efficiency [170]. Furthermore, the hypothesis that CSC propagation is promoted by ROS-driven mito-
chondria biogenesis, oxidative metabolism, and a functional glycolytic pathway was proved by using specific
inhibitors to target these metabolic processes [170].
mtDNA is often genetically altered in cancer, and hence, selectively targeting certain mitochondrial

responses may be useful to disrupt CSC function, without off-side effects on healthy tissues. Indeed, several
pharmacological drugs are currently being tested in vitro and in vivo, as well as in preclinical and clinical
studies for cancer treatment.
The ability of salinomycin to target one of the most important stemness pathway like Wnt/b-catenin has

been correlated with its inhibitory action on diverse cancer cell lines; furthermore, salinomycin has been shown
to induce mitophagy and mitoptosis together with depletion of ATP levels [171]. The mitochondria inhibitor
VLX600, which acts by reducing mitochondrial respiration, has been shown to target quiescent cancer cell
populations, inducing tumor growth inhibition in vivo [172]. A specific inhibitor of the ERRα-PGC1 signaling
pathway, which triggers mitochondrial biogenesis, impairs breast CSC survival and propagation, and both
effects can be reversed using L-acetyl-carnitine as a mitochondrial fuel [149].
Encouraging preclinical data from a large number of studies have revealed that the repurposing of previously

FDA-approved drugs may efficiently target mitochondria and halt CSC dissemination. One of the most striking
ideas is that of inhibiting mitochondria by using antibiotics. This strategy is well constructed on the evidence
that mitochondria have evolved from endosymbiotic α-proteobacteria belonging to Rickettsia gender [173]. As
such, diverse antibiotics have been shown to halt CSC propagation by inhibiting mitochondrial processes. For
instance, salinomycin, bedaquiline, tetracyclines, glycylcyclines, and erythromycines have been shown to effect-
ively eradicate the CSC population by interfering with mitochondrial functionality (Figure 2) [174–176].
Additional inhibitors of mitochondrial respiration recently identified for inhibiting CSC dissemination

include the antielmintic drugs niclosamide, nitazoxanide, closantel, and pyrivinium pamoate, and the antimal-
arial drug atovaquone which has been shown to induce a Warburg-like effect in breast cancer cells, by inhibit-
ing OXPHOS and activating aerobic glycolysis [176–179].
In this context, the pharmacological manipulation of glycolysis to halt CSC propagation has been proved to

be an effective strategy in diverse tumor types, including pancreatic adenocarcinoma, glioblastoma, and ovarian
and breast cancer [173–175]. Accordingly, the metabolomic analysis of diverse cancer cell lines treated with
metformin, which is an anti-diabetic drug retrospectively linked to cancer prevention and CSC disruption,
revealed the inhibition of glycolysis, the co-ordinate decrease in the TCA cycle, and the inhibition of nucleotide
synthesis, associated with the inhibition of mammosphere-derived breast CSC formation and decreased in vivo
tumorigenic potential [180]. Additionally, in CD133+ pancreatic cancer cells, metformin induces an energy
crisis that drives cell death due to the inhibition of mitochondrial complex I and the impossibility to switch to
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glycolysis [151,180]. Indeed, CSC metabolism shows a highly plastic profile which allows to fulfill the energy
requirements, according to the most suitable environmental condition. Evidence for this metabolic flexibility
comes from studies performed in diverse tumor types like glioma, brain, and breast CSCs, which efficiently
gain energy from glycolysis when OXPHOS is blocked [126,144,181]. On the contrary, CSC survival is
impeded when this metabolic malleability is lacking. This is the case for pancreatic CSCs resistant to K-ras
oncogenic ablation, which is responsible for alterations of the metabolic program and subsequent inability to
switch to glycolysis when OXPHOS is inhibited [146].
On the basis of the observations above, targeting the metabolic flexibility in CSCs holds promise to be an

effective strategy for eradicating neoplastic disease. This is nicely supported by the evidence that leukemia cells
are more sensitive to the action of glycolysis inhibitors after treatment with tigecycline, which disrupts mito-
chondrial protein synthesis [182]. Furthermore, it has been recently demonstrated that breast cancer cells
chronically treated with doxycycline, which impairs mitochondrial function, energetically depend on glycolysis,
whose pharmacological disruption halts CSC survival (Figure 3) [183].

The future of targeting metabolism to hit CSCs and long-term cure cancer
Consistent data provide a solid platform to include metabolism among the hallmarks of cancer and to consider
the metabolic profile of CSCs as a relevant target in anticancer therapy. The unique metabolic features of CSCs
allow to design specific pharmacological approaches to selectively inhibit CSCs and preserve the function of
normal stem cells.
Clearly, a unifying concept on which energy reactions are used by CSCs in response to a plethora of environ-

mental stressful conditions including hypoxia, radiotherapy, and chemotherapy would provide a useful tool
toward the identification of the metabolic Achille’s heels to be considered as preferential therapeutic targets.

Figure 2. Targeting CSCs with mitochondria-interfering agents.
The endosymbiotic hypothesis for the origin of eukaryotic mitochondria suggests that mitochondria evolved from engulfed
aerobic bacteria. The symbiont bacterium was able to conduct cellular respiration, thus providing a remarkable evolutionary
advantage to the host cell, which mainly relied on glycolysis and fermentation. Supporting this endosymbiotic hypothesis,
mitochondria possess their own circular DNA and conserves efficient and independent transcriptional and translational
machinery. High similarity has been evidenced between mitochondrial ribosomes and bacterial ribosomes. Likewise, many
antibiotics have been shown to interfere with mitochondrial protein translation as an off-target effect. Based on these
observations, the repurposing of FDA-approved antibiotics could be an effective and safe strategy to halt the propagation of
CSC, which are severely damaged by mitochondrial dysfunction.
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One of the first difficulties in gaining such integral information comes from inter-tumor heterogeneity; never-
theless, contrasting outcomes have been achieved analyzing the metabolic profile of CSCs within the same cancer
type. Looking at the possible reasons for these differences, it is emerging that the technique used to isolate and
cultivate CSCs could be accountable for the diverse responses detected in analyzing their metabolic behavior. For
instance, the analysis of metabolic pathways in ovarian CSCs revealed a preferential use of glycolysis from in vivo
studies, whereas an OXPHOS-dependent phenotype was detected from in vitro studies [141,184]. However, it
should be mentioned that in the first case, the experimental system was represented by a murine model of
ovarian cancer, while in the second case CSCs from human primary cell cultures were used, suggesting that
species-dependent differences could also potentially play a role in the observed contrasting effects. A lack of suit-
able microenvironment is the main pitfall in studying CSCs from established cancer cell lines in vitro; indeed, the
importance of the tumor niche in driving the biological and biochemical behavior of CSCs has been largely dis-
cussed. In this context, an increased stemness gene signature and a switch to OXPHOS have been detected in
breast CSCs under the influence of fuels released by glycolytic stromal cells [109]. According to these observa-
tions, the investigation of the metabolic phenotype of CSCs should be performed trying to use an experimental
model that highly recapitulates the intratumor features and using fresh patient or animal samples.
It is worth mentioning that understanding the metabolic background of CSCs, its specific regulators and

effectors would be extremely helpful to design therapeutic approaches selectively targeting CSCs, without affect-
ing the functions of normal stem cells, essential for tissue homeostasis.
Novel metabolism-based approaches are currently being added to the classic strategies used to characterize

and target CSCs; on the basis of the identification and inhibition of crucial network of regulators involved in

Figure 3. Two ‘metabolic’ hit strategy for the eradication of CSCs.
Exploring the metabolic plasticity of CSCs may provide unique possibility for therapeutic intervention based on targeting key
energy processes. For instance, the prolonged treatment with a mitochondria-interfering agent like doxycycline drastically
impairs OCR and mitochondrial respiration in MCF7 breast cancer cells. Such impairment in mitochondrial activity represents a
first metabolic hit that constrains cellular metabolism toward glycolysis, as evidenced by the increased extracellular
acidification rate (ECAR). The use of a glycolysis inhibitor may therefore act a second metabolic hit that efficiently targets CSCs
by halting their biochemical machinery. This approach reverses CSC metabolic plasticity toward an inflexible biochemical
phenotype that can be efficiently targeted with specific metabolic-oriented pharmacological intervention.
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CSC survival and propagation, high-throughput data analysis and large-scale drug screening have been per-
formed in order to identify and eradicate CSCs using their metabolic singularities. In particular, -omic tech-
nologies and high-throughput screening have allowed to get relevant information regarding the metabolic
status of CSCs, providing a detailed picture of the biochemical profile of CSCs. The integration of metabolomic
data with gene expression and/or proteomic studies has provided a more comprehensive knowledge of CSC
biology in a metabolic perspective.
For instance, gene expression profiling using Affymetrix microarrays representing over 47 000 transcripts and

variants allowed us to determine the importance of mevalonate metabolism in regulating breast CSC pheno-
type; the subsequent pharmacological inhibition of the geranylgeranlyl transferase 1, which blocks the meta-
bolic mevalonate pathway, reduced the subpopulation of breast CSCs both in vitro and in vivo, as demonstrated
using primary breast cancer xenografts [185]. Although CSCs represent a very rare subpopulation of tumor
cells characterized by elevated instability in culture, high screening tools are still applicable to identify selective
CSC inhibitors, as demonstrated by Gupta et al. The authors screened a collection of 16 000 chemicals from
commercial libraries and collections of natural compounds in a genetic model of mesenchymally transdifferen-
tiated breast cancer cells. By inducing an EMT-like phenotype, the authors enriched for CSC population,
whose abundance was shown to be 10-fold higher compared with the wild-type cells. Next, the authors identi-
fied the chemical identities of three compounds (salinomycin, etoposide, and abamectin), which exhibited
strong selectivity for the stem population and ability to reduce the expression of stem markers [174]. By using
a platform of induced cancer stem-like cells as a functional assay system, a large-scale drug screening was per-
formed on 6000 compounds, allowing to identify the antimalarial artesunate as a selective inhibitor of CSC sur-
vival through the induction of mitochondrial dysfunction [186].
Considering that the inhibition of mitochondria, which evolutionary derive from the engulfment of aerobic

bacteria, impairs CSC biology, a novel mitochondria-targeted approach has been proposed to halt stemness.
Based on their binding to the 3D structure of the mammalian mitochondrial ribosome, 880 compounds have
been identified through high-throughput screening and computational chemistry. The first 10 compounds
selected for their efficacy in inducing mitochondrial dysfunction and ATP depletion [187].
Altogether, these studies provide evidence that high-throughput strategies combined with large-scale drug

screening may be used to identify selective inhibitors of CSCs toward cancer eradication.
Several drugs targeting metabolic pathways have been enrolled in human randomized controlled trials, after

the promising results obtained in cell and animal models, as well as in preclinical models [187,188].
Nevertheless, to date, none of these drugs have shown encouraging results, probably for their effects on the
tumor bulk. A biotechnology company, named MetaboStem from the Catalan Institute of Oncology, has cur-
rently aimed at specifically hitting the metabolic vulnerability of CSCs using the drug MS-001 in a preclinical
trial.

Conclusions
CSC have been regarded as the cells of origin of cancer and are crucially involved in metastatic dissemination,
radioresistance and chemoresistance, and disease recurrence. Mounting experimental evidence and clinical
studies indicate that metabolism is not a mere player in the tumor bioenergy machinery, but it actually orches-
trates stemness by enabling cell reprogramming in response to a large repertoire of environmental conditions
within the stem niche. Recently, targeting the peculiar metabolic features of CSCs has hold promise to prevent
disease progression and recurrence and efficiently eradicate cancer. High-throughput data combined with
large-scale drug screening represent the state of the art for the characterization of the metabolic peculiarity of
CSCs and the identification of selective pharmacological targets. In this scenario, the repurposing of
FDA-approved drugs represents a concrete and inexpensive opportunity to extend the pharmacological and
biological properties of existing compounds, and in the meanwhile gain a better understanding of CSC action
in cancer. Nevertheless, a deeper focus on the metabolic plasticity of CSCs and their ability to switch to differ-
ent metabolic pathways in response to certain environmental stressors like hypoxia or chemotherapics would
provide a better strategic platform to hit this biochemical malleability. Furthermore, the evaluation of the meta-
bolic fuels, intermediates, and pathways involved in maintaining the stemness traits and implicated in CSC sur-
vival in harsh conditions could unveil novel metabolic Achille’s heels to be used in a therapeutic setting. A
drug-controlled process aimed at forcing CSCs to adopt a certain metabolic profile could be an effective
approach to prevent the metabolic adaptability of CSCs. Indeed, targeting this drug-induced metabolic inflex-
ibility would definitely compromise CSC survival.
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