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Abstract Climate change and drought phenomena impacts have become a growing concern
for water resources engineers and policy makers, mainly in arid and semi-arid areas. This study
aims to contribute to the development of a decision support tool to prepare water resources
managers and planners for climate change adaptation. The Hydrologiska Byråns
Vattenbalansavdelning (The Water Balance Department of the Hydrological Bureau) hydro-
logic model was used to define the boundary conditions for the reservoir capacity yield model
comprising daily reservoir inflow from a representative example watershed with the size of
14,924 km2 into a reservoir with the capacity of 6.80 Gm3. The reservoir capacity yield model
was used to simulate variability in climate change-induced differences in reservoir capacity
needs and performance (operational probability of failure, resilience, and vulnerability). Owing
to the future precipitation reduction and potential evapotranspiration increase during the worst
case scenario (−40% precipitation and +30% potential evapotranspiration), substantial reduc-
tions in streamflow of between −56% and −58% are anticipated for the dry and wet seasons,
respectively. Furthermore, model simulations recommend that as a result of future climatic
conditions, the reservoir operational probability of failure would generally increase due to
declined reservoir inflow. The study developed preparedness plans to combat the conse-
quences of climate change and drought.
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1 Introduction

1.1 Background

It is expected that climate variability will intensify the water resources stress (IPCC, 2014)
such as the alteration in the river flow seasonality (Vicuna and Dracup, 2007; Minville
et al. 2009) as well as reservoir planning properties (capacity) and performance (reliability,
resilience and vulnerability). Such change is likely to lead to a negative effect on water
resources management.

A growing number of researchers have explored climate change impacts on reservoirs
(Fowler et al. 2003; Li et al. 2010; Park and Kim 2014). The majority of these scientists argued
that due to climate change, there will be an increase in the storage capacity requirements in
addition to the deterioration of its performance. Only a few researchers have focused on
reservoir management adaptation to climate variability (McMahon et al. 2006; Li et al. 2010;
Minville et al. 2009) and confirmed that the impact of such change on streamflow should be
considered through a re-examination of reservoir operating rules.

The vast majority of researchers have investigated climate change impacts based on the
results of large-scale general circulation models (GCM) that have been downscaled to the
basin-scale applying statistical or regional (i.e. dynamical) downscaling procedures. However,
Chen et al. (2011) claimed that there are many sources of uncertainty involved in climate
change studies and the major sources of uncertainty are linked to GCM and greenhouse gasses
emissions scenarios (GGES) in addition to the uncertainties that stem from a downscaling
method. Therefore, to avoid the GCM and downscaling uncertainties and challenges, many
studies (e.g., Tigkas et al. 2012; Vangelis et al. 2013; Reis et al. 2016) proposed delta
perturbation (change factor) concepts, in which plausible alterations in meteorological vari-
ables are assumed. Then, by using a suitable rainfall-runoff model, the impacts of these
changes on the streamflow can be predicted.

1.2 Aim, Objectives and Novelty

The aim of this research is to develop a methodology that can be used as part of a decision
support tool to enable engineers and policy makers to prepare effectively for climate change
adaptation, particularly in arid and semi-arid regions. The prime objectives are to (1) estimate
the anticipated climate change impacts on runoff; (2) calculate the probable relative alteration
in the annual streamflow availability of the downstream country under the collective impacts
of climate change; (3) predict standardised reconnaissance drought index (RDIst) and
streamflow drought index (SDI) values under the collective climate change impacts; (4) derive
the anticipated relationships that link RDIst and SDI with the potential future variations of
precipitation (P) and potential evapotranspiration (PET); (5) evaluate the reservoir operational
probability of failure (OPOF) under the collective climate change impacts; and (6) develop
relationships that integrate capacity-yield-reliability.

This research characterises the climate change impact uncertainties linked to the planning of
reservoirs utilising a methodology similar to that described by Soundharajan et al. (2016). The
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main variations between the two studies are that a rainfall-runoff model is used to simulate the
streamflow series rather than stochastic modeling that as used by Soundharajan et al. (2016). In
addition, Soundharajan et al. 2016 did not take into consideration the reservoir capacity-yield-
reliability relationships, which have been considered here. Consequently, the key purpose of
this study is to assess the potential impacts of climate change on basin hydrology by
considering the impacts of the reservoir operational probability of failure and storage in the
water resources system on a typical example reservoir, which is the Dokan multi-purpose dam
located in northern Iraq. The study attempts to answer the following question: How well would
the adaptation measures, whether they are structural or non-structural, work across the range of
climate change uncertainty? Successful adaptation measures may subsequently be used as
supporting tools in mitigating climate change impacts on water resources. This is a first
attempt to derive the capacity-yield-reliability relationships that can be used as part of an
adaptation strategy for climate change by characterising the variability of reservoir storage and
performance indices.

1.3 Case Study Description

The Lower Zab River (also known as Little and Lesser Zab) is one of the main streams of the
Tigris River in the Erbil governorate located in the north-east of Iraq. The river and its
tributaries are situated between latitudes 36°50′ N and 35°20′ N, and longitudes 43°25′ E
and 45°50′ E (Mohammed and Scholz 2016); Fig. 1. The River originates from the Zagros
Mountains in Iran and flows about 370 km southeast and southwest through north-western Iran
and northern Iraq before joining the Tigris near Fatha city, which is located about 220 km north

Fig. 1 Location of the studied basin
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of Baghdad (Mohammed and Scholz 2016), with a total length of approximately 302 km. The
catchment area of the River is approximately 19,254 km2 with nearly 76% located in Iraq. The
mean annual storage of the river at Dokan and Altun Kupri-Goma is about 6 billion cubic
meters (BCM) and 7.8 BCM in this order (Mohammed et al. 2017); Fig. 1. Dokan is the main
dam that has been constructed within the upstream portion of the basin. The main function of
the dam is to control the discharge of the Lower Zab, store water for irrigation purposes and to
provide hydroelectric power.

2 Material and Methods

2.1 Identification of Drought

Drought is considered one of the leading water-related hazards (Mohammed and Scholz 2017).
For drought identifying and quantifying there are many recommended approaches. However,
indices are considered as one of the most popular methods (Vangelis et al. 2013; Mohammed
and Scholz 2017). A high number of meteorological drought indices with different intricacy
have been utilised in various climatic conditions (Mohammed and Scholz 2017). Latest
drought trend studies (Sheffield et al. 2012; Vicente-Serrano et al. 2014) and drought scenarios
under possible climate change predictions (e.g., Cook et al. 2014) depend on indices that take
into consideration evapotranspiration and precipitation such as the reconnaissance drought
index (RDI), which is considered in this study.

2.1.1 Reconnaissance Drought Index

The RDI is a newly developed meteorological drought index, which is mainly applied in arid
and semi-arid geographical regions. The RDI is based on P, which is observed, and the PET,
which is estimated. Tigkas et al. (2015) introduced a brief overview of the theoretical basis of
RDI together with some practical applications with a specialised software package called
drought indices calculator (DrinC).

This RDI can be formulated as the alpha (RDIαk), normalised (RDIn) and standardised (RDIst)
forms. The RDIst is frequently applied for drought severity evaluations, whereas RDIαk can be
applied as an aridity index, which is mainly founded on the aggregated P and PET theories
(Vangelis et al. 2013; Mohammed and Scholz 2017). The RDI is normally estimated using Eq. (1).

RDIαi
o
¼ ∑12

j¼1 Pij

∑12
j¼1 PETij

i ¼ 1 to N and j ¼ 1 to 12 ð1Þ

where Pij and PETij represent precipitation and potential evapotranspiration of the j
th month of

the ith water year, which in Iraq starts in October, and N is the climate data total year number.
The values of RDIαk match both the gamma and the lognormal distributions in various

positions for a variety of examined time scales. Through applying the former distribution,
RDIst can be calculated applying Eq. (2).

RDIist ¼
Yi

σ̂y

ð2Þ

where yi is the ln(αki), �y is its arithmetic mean and σy is the corresponding standard deviation.
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Equation (3) can be applied to compute RDIst in the gamma distribution application.

g xð Þ ¼ 1

βγ � Γ γð Þ x
γ‐1e

x
β for x > 0 ð3Þ

where γ and β are the shape and scale parameters, respectively, and Γ(γ) is the gamma
function. The spatiotemporal extent of the gamma probability distribution parameters γ and β
can be predicted for 3, 6, 9 and 12 months. The γ and β are estimated by the maximum
likelihood method as shown in Eqs. (4) to (6).

γ ¼ 1

4A
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

r !
ð4Þ

β ¼ x

γ
ð5Þ

A ¼ ln x
� �

−
∑ln xð Þ

N
ð6Þ

When the cumulative precipitation data sets for the selected reference period contains zeros,
the gamma function cannot be defined for x = 0. Therefore, a composite cumulative probability
function (Eq. (7)) might be utilised.

H xð Þ ¼ qþ 1−qð Þ � G xð Þ ð7Þ
where q is the likelihood of zero precipitation and G(x) is the gamma distribution cumulative
probability. The probability of zero precipitation (q) can be computed by m/N if m is zero in
the αk time series. The gamma distribution cumulative probability G(x) is replaced by the
cumulative probability H(x).

A positive value of RDIst relates to a wet period. On the other hand, a negative value is
indicative of a dry period in comparison to the natural conditions of the region. Drought
severity phenomena increase when RDIst values are minimal. The severity of drought can be
classified into (extremely, severely, moderately) dry, near normal, normal, (moderately, very
and extremely) wet classes based on the corresponding boundary RDIst value ranges ≤ −2.00,
−1.5 to −1.99, −1 to −1.49, 0.00 to −0.99, 0.99 to 0.00, 1.49 to 1.00, 1.99 to 1.5, and ≥2.00,
respectively (Tigkas et al. 2012; Vangelis et al. 2013; Mohammed and Scholz 2017).

2.1.2 Hydrological Drought Index

Given a monthly time series streamflow storage Vij for a specific water year, the correspond-
ing cumulative value can be obtained according to Eq. (8), which was developed by
Nalbantis (2008).

Si;k ¼ ∑
3k

j¼1
Vi; j for i ¼ 1; 2;…::; n; j ¼ 1; 2;…::; 12; k ¼ 1; 2; 3; 4 ð8Þ
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where Sij is the aggregate streamflow storage for the ith water year and the kth reference period,
k = 1 for the period October–December, k = 2 for October–March, k = 3 for October–June, and
k = 4 for October–September.

The SDI founded on the discharge aggregated capacities Si , k for each period k of the ith

water year can be defined according to Eq. (9).

SDIi;k ¼ Si;k−Mk

SDk
for i ¼ 1; 2;……:; n; and k ¼ 1; 2; 3; 4 ð9Þ

where �Mk and SDk are the cumulative streamflow storage means and the standard deviation of
the period k, respectively, since they are calculated over a long time. Although many values
founded on logical criteria could be used, the truncation level is set to �Mk in this definition.

For most small basins, the streamflow follows a skewed probability distribution. This can be
estimated by gamma distribution functions. The distribution is then converted into normal.
Appling the two-parameter lognormal distribution, the SDI index is defined as shown in Eq. (10).

SDIi;k ¼ Yi;k−Yi;k

Sy;k
for i ¼ 1; 2;…:; and k ¼ 1; 2; 3; 4 ð10Þ

where the natural logarithms of cumulative streamflow with mean �yk and standard deviation
Sik can be estimated according to Eq. (11).

yi;k ¼ ln Si;k
� �

for i ¼ 1; 2;…::; and k ¼ 1; 2; 3; 4 ð11Þ

Avalue of SDI greater than zero relates to a non-drought period. In comparison, a negative
value is indicative of a drought period in comparison to the natural conditions of the study
region. The hydrological drought severity phenomena increase when SDI values are minimal,
and it follows that the same classification for drought severity can be used as the one for the
RDI index. Usually, an integer number from 0 (non-drought) to 4 (extreme drought) is
considered.

2.1.3 Reservoir Capacity-Yield Simulation and Performance Indices

As a first step for reservoir capacity-yield (RCY) performance evaluation, the Hydrologiska
Byråns Vattenbalansavdelning (HBV) rainfall-runoff models were calibrated depending on the
recorded dataset of the baseline period. The HBV is an example of a semi-distributed conceptual
model simulating daily discharge depending on daily rainfall, temperature, and potential evap-
oration as input. Air temperature data are used for calculating snow accumulation. Subsequently,
the RCY simulation was performed applying Eq. (12) (McMahon and Adeloye 2005)

Stþ1 ¼ StþQt−Dt−ΔEt−Lt

Subject to 0≤Stþ1≤Cð Þ ð12Þ

where St+1 and St are reservoir storage volumes at the end and beginning of a time period t,
respectively; Qt is the inflow over period t; Dt is the actual water yield over the period t;ΔEt is
the reservoir net evaporation loss within the period t; Lt represents other losses; and C is the
reservoir active capacity.

During the simulation procedures, the reservoir So is typically assumed to be full (McMahon
and Adeloye 2005), and the downstream demand is usually considered as a specific fraction of
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the mean inflow. The usual period is one month, but any other period can be used. The
calculation of the reservoir OPOF can be summarised as follows: (a) assume the reservoir is
initially full (So = C); (b) apply Eq. (12) month by month on the historical flows; (c) plot (St+1)
against time on a monthly time scale; and (d) compute the OPOF by using Eq. (14).

The storage size estimated through RCY analysis varies little with the starting month. By
the RCY analysis, the vulnerability of the reservoir is estimated by ignoring the constraint on
Eq. (12) and then choosing the maximum negative value of (St+1) during the analysis period,
whereas the resilience is estimated by computing the maximum consecutive number of empty
months during the analysis (Moy et al. 1986).

Following simulation, three appropriate performance measures were assessed (McMahon
and Adeloye 2005; McMahon et al. 2006): (1) The time-based reliability (Re) can be defined
as the percentage of the entire period under investigation during which a reservoir is capable of
providing the full demand without any deficiencies, as indicated in Eq. (13).

Re ¼ 1−OPOF ð13Þ

where Re is the reservoir reliability (%) and OPOF is the operational probability of failure (%),
which is defined as the ratio of time units during which the reservoir is effectively empty to the
total number of time units applied in the analysis (Eq. (14)).

OPOF ¼ Ne

N
ð14Þ

where Ne is the time unit number during which the reservoir is empty, and N is the total
number of time units in the streamflow time series. There is no limitation on the OPOF but
many studies considered 5% to be an acceptable limitation (McMahon and Adeloye 2005).

(2) The resilience ρ describes the reservoir’s ability to recover from failure and can be
expressed based on Eq. (14) as discussed previously (Fowler et al. 2003; Park and Kim 2014).
Moy et al. (1986) defined it as the maximum number of consecutive periods of shortage that
occur prior to recovery.

ρ ¼ ∑
N

t¼1
Yt ð15Þ

where Yt is the number representing the continuous shortage indicator, Yt = 1, if there is a
shortage during period t, Yt = 0, and t = 1, 2,…, N, which is the total number of time units in
the stream flow time series sequence of failure periods.

(3) The vulnerability ν is a criterion to determine the significance of failure. Mathemati-
cally, it is expressed by Eq. (16) as shown in the past (Fowler et al. 2003; Park and Kim 2014).

v ¼ max Df tð Þ ð16Þ
where v is the system vulnerability, and Dft is the deficit at time t (McMahon and Adeloye
2005; McMahon et al. 2006).

2.1.4 Data Availability and Methodology Application

Figure 2 reveals the considered methodology and visualises how the research objectives can be
integrated, which can be summarised in the following seven steps:
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(1) Thirty-five hydrological years (1979–2013) were utilised to estimate the RDIst values,
specify the normal climatic conditions and then evaluate the regression coefficients a1,
b1, a2, and b2 of Eqs. (17) and (18).

RDIst¼ a1 � ln RDIα12ð Þþb1 ð17Þ

SDI ¼ a2 � ln runoffð Þþb2 ð18Þ
where RDIst, RDIα12, and SDI are the RDI standardised form, the RDI alpha representation,
and the streamflow drought index, respectively.

(2) Using daily P, T, and PET, the HBV model was calibrated and validated for the normal
water years.

(3) For assessing themodel performance, the following criteria have been used (Eqs. (19) to (22)):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 Robsð Þi− Rsimð Þi
� �2

r
ð19Þ

IoA ¼ 1−
∑n

i¼1 Robsð Þi− Rsimð Þi
� �2

∑n
i¼1 Robsð Þi−Robs þj j Rsimð Þi−Robs

			
			

h i2 ð20Þ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Robsð Þi−Robs

h i
Robsð Þi−Rsim

h i

∑n
i¼1 Robsð Þi−Robs

h in o0:5
∑n

i¼1 Rsimð Þi−Rsim

h in o0:5

vuuuut ð21Þ

Fig. 2 Research methodology flow chart
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MAE ¼ 1

n
∑n

i¼1 Robsð Þi− Rsimð Þi
		 		 ð22Þ

where RMSE is the root mean square error (dimensionless), IoA is the index of agreement
(dimensionless), r is the correlation coefficient (dimensionless), MAE is the mean absolute
error, Robs(i) is the recorded streamflow (mm/month) at time step i, Rsim(i) is the predicted
streamflow (mm/month) at time step i, �Robs is the average amount of the recorded values (mm/
month), and n is the data point number.

(4) The delta perturbations in P (dP) of 0–40% (2% step) and PET perturbations (dPET) of
0–30% (2% step) were used for the streamflow alteration analysis. Twelve years (1988–
2000), which are characterised by an average value of RDIst close to zero, were applied
for running the climate change scenarios. Although the delta perturbations method does
not accommodate future alterations in the probability distribution of climatic character-
istics and seasonality (and therefore the streamflow), it is, however, an effective tech-
nique in detecting tipping points at which a water storage structure such as a reservoir is
expected to fail disastrously in providing water demand.

(5) The expected relative alteration in the annual streamflow (%) depends on each
climate change scenario, which was estimated relative to the reference average
annual streamflow.

(6) The predicted streamflow series input to the RCY model. The corresponding outputs of
the model are evaluated using the indicators of reliability, resilience, and vulnerability,
with reference to the imposed demands.

(7) The RCY model has been utilised to develop the capacity-yield-reliability relation-
ship for the selected time period (the 2020s). The first relation linked yield (%) with
OPOF (%), and the second linked capacity(106 × m3) with yield(%). These relations
can be applied to test various adaptation strategies, whether they are structural or
non-structural, against the range of different future scenarios to select the most
effective adaptation measures.

3 Results and Discussion

3.1 Rainfall–Runoff Simulation

In this section, the obtained results will be identified and discussed. Descriptions of the
hydrological simulation results, drought and climate change impacts, and basin water supply
future performances will be provided.

The HBV model has been calibrated and validated for the periods of 1988–1999 and 1979–
1986, respectively. The statistical performance indicators RMSE, IoA, r and MAE during
calibration were 0.73, 0.99, 0.93 and 0.65 in this order. The corresponding values were 0.68,
0.99, 0.84 and 0.60 during the validation period. Simulation results show promising outcomes
emphasising that the simulation can be confidentially applied for more studies such as
simulating the artificial climatic scenarios and estimating the relative alteration (%) in the
average annual streamflow relative to the normal climatic conditions. The simulated runoff for
the studied period against the observed one is visualised in Fig. 3a. The coefficients associated
with Eqs. (17) and (18) are shown in Fig. 3b and c in that order.
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3.2 Drought and Climate Change Impacts

Figure 3d shows the period of time that has been selected for the simulation. Based on the
simulation results, Fig. 3e reveals that there will be a substantial reduction in the streamflow
due to the potential impacts of climate change, which in turn would result in a dramatic
alteration on the LZRB water resources availability. For example, a change of almost −21% in
terms of streamflow is expected to result in an anticipated climate condition of −10% P and
+30% PET. The research outcomes indicated that there is a crucial requirement for pro-active
strategies and actions to mitigate climate change influences, anthropogenic interventions, and
drought events. Furthermore, Fig. 4a and b demonstrate that the anticipated RDIst and SDI
relationships are subject to the potential impact of future P reduction under the collective
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Fig. 3 a Observed against simulated streamflow time series using the Hydrologiska Byråns
Vattenbalansavdelning model (Note that there was an outlier (1570 m3/s), which has been removed.); b The
Lower Zab River Basin (LZRB) anticipated relationship of the standardised reconnaissance drought index
(RDIst) and RDI alpha form; c The LZRB anticipated relationship of streamflow drought index (SDI) and
runoff; d The selected simulation period for climate change scenarios; and e The LZRB anticipated (%)
streamflow change for selected climate change scenarios
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effects of PET. Fig. 4c demonstrates that both RDIst and SDI changes depend on drought
severity in the same way.

3.3 Future Performance of Water Supply

Figure 5 shows the reservoir inflow magnitude and timing, which prove how climate change
will strongly lead to the reduction in the reservoir inflow. In the worst case scenario, substantial
variations in inflow between −56% and −58% are anticipated for the dry and wet seasons,
respectively. The inflow peak will decline, and there will be a marked shift in their magnitude,
which can result in a dramatic effect on basin water resources availability.

One of the research objectives is an evaluation of water supply performance sensitivity on
water scarcity brought about by climate change. For all considered scenarios, the future
demand for water is assumed to continue without major change with respect to the baseline
period. The climate change influence on the Dokan dam operation and its water system were
assessed by entering modeled future inflows into the RCY model while maintaining the
existing operating procedures. In order to simulate the operations of the Dokan reservoir, the
HBV simulations of daily streamflow were applied to mimic water resources in the RCY
model. The delta perturbations of climate change scenarios were applied. Then, the RCY
model was run to assess the potential impacts of climate change on water resources availabil-
ity, indicators and water supply capacity. After that, indicators were used for both the climate
change scenarios and the baseline periods (Fig. 6a).
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Fig. 4 Anticipated: a Standardised reconnaissance drought index (RDIst); b streamflow drought index (SDI);
and c Relationship between RDIst and SDI, for the upper Lower Zab River Basin (LZRB) for each climate
change scenarios
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Table 1 presents a summary of the potential performance of the water resources system. It is
important to note that the reliability of the water supply system is generally high during the
baseline scenario. The reliability and resilience will decline, while the vulnerability will
increase as a result of P reduction. However, Fig. 6b and Table 2 show that the volume
required to meet the increase in water demand due to the decline of P and runoff. A 4% P
decrease can mean that the existing volume is too little (by as much as 29% for a water yield of
82%), as an example. Moreover, the uncertainty or variability of the reservoir performance is

Table 1 Summary of water resources system performance under the collective impacts of precipitation (P) and
potential evapotranspiration (PET) with for 82% yield

Considered time Hydro-meteorological parameters Values
Baseline P (mm) 844.08

Inflow (m3/s) 1009
Inflowwet (m

3/s) 2305
Inflowdry (m

3/s) 2249
Reliability % 99
Vurnlibility (106 m3) 426
Resilience (month) 3

% change of P Hydro-meteorological parameters % change of PET
0 10 20 30

0 P (mm) 844.08
PET (mm) 1009 1110 1211 1312
Inflow (m3/s) 1884 1832 1783 1737
Infowwet (m

3/s) 1596 1550 1509 1470
Inflowdry (m

3/s) 289 283 274 267
Reliability % 92 91 90 88
Vurnlibility (106 m3) 426 427 428 428
Resilience (month) 3 5 8 11

10 P (mm) 759.69
Inflow (m3/s) 1623 1576 1531 1490
Inflowwet (m

3/s) 1371 1331 1294 1260
Inflowdry (m

3/s) 252 244 237 230
Reliability % 79 77 74 72
Vurnlibility (106 m3) 426 427 428 429
Resilience (month) 22 22 27 23

20 P (mm) 675.26
Inflow (m3/s) 1369 1327 1287 1251
Inflowwet (m

3/s) 1155 1120 1087 1057
Inflowdry (m

3/s) 214 207 200 194
Reliability % 63 58 56 53
Vurnlibility (106 m3) 430 431 432 433
Resilience (month) 24 24 32 32

30 P (mm) 590.88
Inflow (m3/s) 1123 1087 1053 1021
Inflowwet (m

3/s) 946 916 888 862
Inflowdry (m

3/s) 177 171 165 160
Reliability % 44 40 37 36
Vurnlibility (106 m3) 435 436 436 436
Resilience (month) 33 43 42 45

40 P (mm) 506.44
Inflow (m3/s) 889 858 830 804
Inflowwet (m

3/s) 748 722 699 677
Inflowdry (m

3/s) 141 136 131 126
Reliability % 28 26 24 24
Vurnlibility (106 m3) 439 440 440 441
Resilience (month) 61 82 94 73
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characterised by Cv; i.e. the standard deviation divided by the mean. The uncertainty (Cv) of
the OPOF, resilience, vulnerability and the required capacity varied between 0.78–0.07, 0.55–
0.40, 0.87–0.47 and 0.46–0.10, respectively, which indicate that their uncertainty/variability
increase as the basin become drier.

The so-called ‘operational failure’ rates have been determined for each model run and
climate change scenario, which led to an amount of OPOF/reliability for each unit time per
scenario. The successive range of OPOF involves the possible range of climate change impacts
upon the water resources system over the chosen period. As the simulation results indicate that
through combining adaptation measures, whether they are structural or non-structural, into
water resources simulation (supply side), their effectiveness will be determined across a range
of climate change and climate change variability by evaluating how each of the simulations
react to a given adaptation strategy in terms of decrease (or otherwise) of OPOF, and how
much of the distribution is moved away from a pre-determined and undesirable level of hazard.
The developed approaches can be used to evaluate how well an adaptation measure would
work within the uncertainty of a climate change range, and can, therefore, be used as a support
tool for managing water resources.

Based on the results of this representative case study, an adaptation operational ap-
proach can be inferred, where the policy makers, in particular, in the semi-arid and arid
regions, adjust the reservoir operating rules based on inflow estimations and the current
state of reservoir capacity at each specified period, which can result in a more effective and
viable management of reservoirs. In order to achieve this, the RCY model has been utilised

Table 2 Statistical relationships between yield (Y, %) and operational probability of failure (OPOF, %) and
reservoir capacity (C, 106 m3) and yield for different reduction (%) in precipitation (P) and increase (%) in
potential evapotranspiration (PET) using incremental climate change scenarios

% Y (%)a R2 C (106 m3)b R2

P PET a3 b3 c3 a4 b4 c4

0 0 −0.018 1.51 71.36 0.99 6.41 – 873.3 33,302 0.99
10 −0.007 1.17 71.21 0.99 6.74 – 571.3 10,968 0.99
20 −0.008 1.15 69.68 0.99 5.63 – 350.8 1302.6 0.99
30 −0.005 1.02 68.93 0.99 2.25 226.54 −21,846 0.99

10 0 −0.004 0.93 65.25 0.99 −6.83 1727.5 −77,136 0.99
10 −0.001 0.75 65.11 0.99 −7.03 1782.2 −81,386 0.99
20 0.001 0.68 64.08 0.99 −7.06 1906.8 −88,811 0.99
30 0.001 0.65 62.67 0.99 −4.82 1429.3 −69,695 0.99

20 0 0.004 0.37 61.92 0.99 −4.48 1224.8 −46,423 1.00
10 0.006 0.24 62.95 0.99 −4.56 1251.1 −48,849 0.99
20 0.007 0.08 64.32 0.99 −4.99 1339.9 −53,963 0.99
30 0.001 −0.18 68.46 0.99 −5.52 1443.9 −59,918 0.99

30 0 0.017 −0.99 84.38 0.99 −2.99 905.8 −26,026 1.00
10 0.019 −1.29 91.87 0.99 −3.57 1007.9 −31,067 0.99
20 0.012 −1.59 98.98 0.99 −3.36 982 −30,995 1.00
30 0.002 −1.98 109.48 0.99 −3.88 1081 −36,239 0.99

40 0 0.025 −2.01 111.42 0.99 −2.30 736.5 −13,283 0.99
10 0.034 −3.48 156.36 0.99 −2.48 773 −15,447 0.99
20 0.025 −2.20 105.70 0.99 −2.95 859 −19,765 1.00
30 0.039 −4.31 181.91 0.99 −2.79 836.3 −19,458 1.00

a = a3 × OPOF2 (%) + b3 × OPOF (%) + c3;
b = a4 × Y

2 (%) + b4 × Y (%) + c4
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to derive the capacity-yield-reliability relations for the 2020s period. The first one con-
cerns the yield-OPOF relationships (Table 2), and the second considers the capacity-yield
(Table 2). These relationships can be used to test various options against the range of
different future scenarios to select the most effective adaptation measure or measures,
whether they are structural or non-structural. For example, if the decision-makers target is
to supply water for the downstream within 5% OPOF, then by using the first graph they
can obtain two values of the expected rate of yield within the range of climate change
scenarios. Then, using the second operational tool, they can investigate whether there will
be a need to adapt either a structural or non-structural measure.

4 Conclusions and Recommendations

Based on the representative case study for arid and semi-arid regions results, it can be inferred
that an adaptation operational method, where the policy makers adjust the reservoir operating
rules, based on the predicted inflow and the current state of reservoir capacity at each specified
period. This can result in a more effective and viable management of the reservoir. This study
tried to estimate the potential impacts of climate change on the Dokan reservoir operation,
which is located in a semi-arid region using the HBV and RCY models under delta perturba-
tions of climate change scenarios.

One of the most important impacts of the anticipated climate variation in the reservoir area
is the alteration of the hydrologic environment and the performance of the water resources
system if the present operation modes remain to be used. The HBV model outputs recommend
a critical decrease in the values of the Dokan reservoir inflow due to a decrease in P and
increase in the PET, which in turn decreases the current capacity. For instance, a reduction of
about 21% in streamflow is expected to result in 10% P reduction and 30% PET increase.
Additionally, for the worst case scenario, a substantial decline in inflow ranged between 56%
and 58%, are estimated for the dry and wet seasons in this order. The inflow maximum
magnitude will decrease, and there will be a noticeable shift in their values, which can cause a
dramatic effect on basin water resources availability. Moreover, a 4% P decrease can mean that
the existing capacity is too little (by as much as 29% for a water yield of 82%). Variations in
reservoir inflow will impact on water utilisation purposes such as water supply, hydropower,
irrigation, downstream water quality enhancement and recreational uses. Accordingly, to
moderate the negative hydrologic influences and to apply the positive effects, the potential
climate change impact should be examined by water resources organisations in the future.

Alterations in future monthly reservoir inflows require modifications of some of the
reservoir management processes to use water more efficiently. If existing operational rules
continue to be operated unchanged, projected climate change would further lead to a decline in
the ability to supply water to all stakeholders. In addition, the research results show potential
decreases in the water supply reliability and increases in the resilience to nearly 22% and 86%,
respectively, due to dam inflow decreases. However, with higher mean temperatures and
extended crop growing periods, it is expected that the demands for irrigation would also rise,
which will intensify the increasing demand, owing to an increase in population. Therefore, any
alteration that would improve the ability of the system to accomplish the water needs for one
sector would essentially require compromises from other stakeholders. Subsequently, it is
essential to assess the monthly water supply to get the most out of profit, which means that the
supply system organised by the multi-purpose reservoir should have operating policies that can
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be adjusted to potential hydrological and climatic alterations. The inflow increase will provide
the chance to reallocate preservation storage under a climate change scenario.

The estimation of the existing water demand in the RCY model is a study limitation.
Despite the fact that water demand prediction is vital to evaluate water resources systems in the
future, this project and its outcomes should be seen as an initial examination of the climate
change impacts on the dam water supply reliability. In order to facilitate adaptation to climate
change, basin managers ought to have a quantitative basis for establishing the adaptation
strategies. Accordingly, results provide a basis for enabling future water resources system
managers and planners of the Dokan reservoir and similar case studies, in particular, in arid
and semi-arid regions to adapt to climate change.
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