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Abstract 38 

Here, we show that a 2:1 mixture of Brutieridin and Melitidin, termed “BMF”, has a 39 

statin-like properties, which blocks the action of the rate-limiting enzyme for 40 

mevalonate biosynthesis, namely HMGR (3-hydroxy-3-methylglutaryl-CoA-41 

reductase). Moreover, our results indicate that BMF functionally inhibits several key 42 

characteristics of CSCs. More specifically, BMF effectively i) reduced ALDH activity, 43 

ii) blocked mammosphere formation and iii) inhibited the activation of CSC-associated 44 

signalling pathways (STAT1/3, Notch and Wnt/beta-catenin) targeting Rho-GDI-45 

signaling. In addition, BMF metabolically inhibited mitochondrial respiration 46 

(OXPHOS) and fatty acid oxidation (FAO). Importantly, BMF did not show the same 47 

toxic side-effects in normal fibroblasts that were observed with statins. Lastly, we 48 

show that high expression of the mRNA species encoding HMGR is associated with 49 

poor clinical outcome in breast cancer patients, providing a potential companion 50 

diagnostic for BMF-directed personalized therapy. 51 

 52 

Keywords 53 
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 56 

1. Introduction 57 

Clinical data and epidemiological studies both support the idea that cholesterol-58 

lowering drugs are able to reduce cancer incidence and cancer related mortality [1-59 

3], by decreasing cholesterol (either locally synthesised or circulating levels) [4, 5]. 60 

Moreover, multiple studies have shown the anti-proliferative effects of statins against 61 

both cancer cells and cancer stem cells (CSCs) [6, 7]. CSCs represent a distinct sub-62 

population of cancer cells, with high tumorigenicity [8], that are able to regenerate the 63 

tumor by self-renewal and by the generation of new progenitor cells [9, 10]. CSCs are 64 

a small percentage of the total cancer cell population, but are responsible for patient 65 

relapse, metastasis and for their particular ability [11] to resist and survive 66 

conventional chemotherapy and radiation [12, 13]. Existing cancer treatments are 67 

usually unable to eradicate CSCs. Indeed new drugs are currently being developed 68 

that are focused on targeting CSC signalling pathways, self-renewal and metastasis. 69 
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These new therapies would be used in conjunction with more conventional cancer 70 

therapies [14, 15].  71 

Recently, statins have been proposed as new drugs to defeat CSCs, via mevalonate 72 

pathway inhibition [16]. Previous studies have shown that the modulation of this 73 

metabolic pathway is a key factor for breast CSC maintenance [17]. Statins are strong 74 

competitive inhibitors of 3-hydroxy-3-methylglutaryl-CoA-reductase enzyme 75 

(HMGR), an enzyme which catalyzes the rate-limiting step in mevalonate 76 

biosynthesis and regulates isoprene formation. Numerous small G-proteins depend 77 

on prenylation, which is regulated by isoprenes. Thus, G-protein signalling pathways 78 

are regulated by statins, through the reversible inhibition of the prenylation process 79 

[18, 19]. Despite the fact that statins are currently considered safe, many patients are 80 

statin-intolerant and show significant side-effects during their treatment, in 81 

combination with common anticancer drugs, highlighting the urgency of finding new 82 

drugs acting like statins [20, 21]. Some foods possess several statin-like therapeutic 83 

properties [22], possibly due to the presence of flavonoids, pectins and ascorbic acid, 84 

which have a high antioxidant potential [23], and may interfere with cholesterol and 85 

isoprene metabolism [24]. Their intake is associated with a reduced risk of numerous 86 

chronic diseases, such as cancerous processes [25]. Flavonoids also exhibit anti-87 

viral, anti-microbial, and anti-inflammatory activities [26-28], and support a strong 88 

immune response [29]. In relation to that, the Bergamot fruit (Citrus bergamia Risso) 89 

has attracted attention for its remarkable flavonoid composition [30-32]. Recently, we 90 

detected two flavonoids (extracted from the Bergamot fruit), containing a 3-hydroxy-91 

3-methylglutaric acid (HMG) moiety, called Brutieridin and Melitidin [33]. Their 92 

inhibitory potential against the HMGR enzyme was previously substantiated in vitro 93 

and their hypo-cholesterolemic effects were also verified in vivo [34]. In the present 94 

study, Brutieridin and Melitidin were purified from the fruit of the Bergamot tree 95 

(~99%) and mixed together in an enriched flavonoid fraction (termed “BMF”), 96 

corresponding to 70% Brutieridin and 30% Melitidin. By comparing the proteomic 97 

profiles of 3D-spheroids to cancer cells grown as monolayers, we identified the over-98 

expression of enzymes involved in the mevalonate pathway in CSCs. This finding 99 

prompted us to investigate the therapeutic potential of BMF to target CSCs 100 

propagation, via HMGR blockade. For this purpose, we compared BMF to the activity 101 

of common FDA-approved statins (Pravastatin and Simvastatin). Indeed, we found 102 
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that BMF inhibits several characteristics of CSC behaviour, including mammosphere 103 

formation [35], ALDH content [36], mitochondrial respiration and fatty acid oxidation 104 

[37], as well as several stemness-related signalling pathways [38], such as the 105 

STAT1/3, Notch and Wnt/beta-catenin pathways, in MCF7 breast cancer cells. On 106 

the contrary, BMF does not show that same cytotoxic side-effects on normal human 107 

fibroblasts, that we observed with Pravastatin and Simvastatin. Furthermore, the 108 

addition of mevalonate to the culture media of MCF7 cells was able to effectively 109 

restore their ability to grow in suspension, as well as rescue their ALDH content. Thus, 110 

BMF may be a more effective, non-toxic, all-natural, therapeutic for the eradication of 111 

CSCs, via mevalonate pathway inhibition. 112 

 113 

2. Material and Methods  114 

2.1. Experimental Model and Subject Details 115 

Human breast cancer cell lines (T47D and MCF7) were obtained commercially from 116 

the ATCC. hTERT-BJ1 cells are human foreskin fibroblasts, that were originally 117 

obtained from Clontech, Inc.  All cell lines were maintained in Dulbecco’s Modified 118 

Eagle Medium (DMEM; GIBCO) supplemented with 10% FBS, 1% Glutamax and 1% 119 

Penicillin-Streptomycin. All cell lines were maintained at 37°C in 5% CO2. MCF7 cells 120 

were used for lentiviral transfection. 121 

 122 

2.2. Preparation of Brutieridin and Melitidin (BMF) 123 

 Bergamot fruit was collected in December 2012 (in Calabria, Italy) and then stored 124 

at -20° C. Briefly, 7 kg of fruits were squeezed to obtain the juice (2000 mL) which 125 

was filtered and passed through a 10 g C18 cartridge (Supelco, USA) in 50 mL 126 

aliquots. The loaded stationary phase was initially washed with water (2 x 50 mL) to 127 

remove the sugars and water soluble fraction, and then eluted with 50 mL of methanol 128 

to collect the flavonoid fraction. Each aliquot passed through the resin provided ca. 129 

80 mg raw flavonoid fraction, for a total amount of 3.2 g. The polyphenolic fraction 130 

coming from the SPE step was loaded onto a glass column (46 x 2.6 cm) from Buchi 131 

(USA) packed with 100 g of C18 80-60 mesh (Sigma-Aldrich, USA) and connected to 132 

a Perkin Elmer 200 LC binary pump. H2O (solvent A) and CH3OH (solvent B) at the 133 

flow rate of 1.5 mL/min were used as elution solvents at the following gradient steps: 134 

isocratic at 100% A for 40 min.; linear gradient from 100% A to 70% A in 60 min.; 135 
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isocratic at 70% A for 60 min.; linear gradient from 70% A to 40% A in 60 min.; 136 

isocratic at 40% A for 60 min.; linear gradient from 40% A to 0% A in 10 min.; washing 137 

of the column at 0% A for 60 min. The initial water elution was discarded and the 138 

collected fractions starting from min 40 (20 mL each) were monitored by HPLC/UV-139 

MS using a Fractionlynx semi-preparative HPLC system (Waters Corp., Milford, MA, 140 

USA). The system was composed of an autosampler/collector Waters 2767 Sample 141 

Manager, a 600E pump working in analytical mode, a 486 nm UV detector and a ZMD 142 

mass spectrometer equipped with an ESI source working in negative ionization mode. 143 

The HPLC separation was achieved using a 250 × 4.6 mm, 5 µm reversed phase C18 144 

Luna-Phenomenex column at a flow rate of 1 mL/min. The run time was 70 min and 145 

the mobile phase was composed by 0.1% formic acid in water (solvent A) and 146 

methanol (solvent B). The chromatographic run (70 min) consisted of the following 147 

steps: isocratic at 80% A for 7 min; linear gradient from 80% A to 40% A in 33 min; 148 

isocratic at 40% A for 5 min; linear gradient from 40% A to 20% A in 5 min; isocratic 149 

at 20% A for 7 min; linear gradient from 20% A to 80% A in 5 min; equilibration of the 150 

column for 8 min. The UV detector was set at 280 nm. The MS conditions were the 151 

following: capillary voltage -3.15 kV, cone voltage -3 V, extractor -2 V, RF lens -0.34 152 

V, source block and desolvation temperature 120, 250 °C respectively, ion energy 153 

0.5 V, LM resolution 14.5, HM resolution 15.0 and multiplier 650 V. The nebuliser gas 154 

was set to 650 L/h. The fractions coming from the separation and containing 155 

respectively compound, brutieridin and melitidin, were evaporated under reduced 156 

pressure, lyophilized and submitted to the purification step, using the Fractionlynx 157 

system working in semi-preparative mode, at the same experimental condition 158 

reported above except for the use of a column that was a 250 × 10 mm C18 Luna from 159 

Phenomenex (Torrance, CA) and for a chromatographic run (30 min; isocratic at 55% 160 

A). The flow rate was set to 4.7 mL/min, and the fractions were collected every 30 161 

seconds, while the injected sample volume was 1 mL.  The purity of HMG flavonoid 162 

was verified by HPLC/UV. 163 

 164 

2.3. Lentiviral transduction 165 

Lentiviral plasmids, packaging cells and reagents were purchased from 166 

Genecopoeia. Forty-eight hours after seeding, 293Ta packaging cells were 167 

transfected with lentiviral vectors encoding HMGR or the empty vector alone (EX-168 

NEG-Lv105), using Lenti-PacTM HIV Expression Packaging Kit, according to the 169 
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manufacturer’s instructions. Two days post-transfection, lentivirus-containing culture 170 

medium was passed through a 0.45 µm filter and added to the target cells (MCF7 171 

cells), in the presence of 5µg/ml Polybrene. Infected cells were selected with a 172 

concentration of 1.5 µg/ml of puromycin. 173 

 174 

2.4. Sulfo-rhodamine B (SRB) assay 175 

SRB measures total biomass by staining cellular proteins [39]. After 48 h treatment, 176 

cells were fixed in 10% trichloroacetic acid (T9159, Sigma) for 1h at 4°C, stained with 177 

SRB (S9012, Sigma) for 15 minutes, and washed 3 times with 1% acetic acid (27225, 178 

Sigma). The incorporated dye was solubilized with 10 mM Tris-HCl, pH 8.8 (T1503, 179 

Sigma). Absorbance was spectrophotometrically measured at 540 nm in a FluoStar 180 

Omega plate reader (BMG Labtech). Background measurements were subtracted 181 

from all values. 182 

 183 

2.5. Cell cycle analysis 184 

Control and drug-treated MCF7 cells were subjected to cell-cycle analysis by FACS 185 

[40]. Briefly, MCF7 cells were treated with 100 μM and 1 mM BMF or Pravastatin. 186 

After 72 hours, the cells were harvested and their nuclei stained with DAPI. 1 × 106 187 

cells, for each condition, were fixed with cold ethanol (70%) for 1h on ice, centrifuged, 188 

and washed twice in cold PBS. The samples were then incubated with RNase A (20 189 

μg/ml) and stained with Propidium Iodide (PI; 100 μg/ml) (Sigma-Aldrich). Following 190 

a 30 min incubation at 37°C, the cells were analysed (50,000 events per condition) 191 

using FACS (BD Fortessa). Gated cells were manually categorised into cell-cycle 192 

stages. 193 

 194 

2.6. Seahorse XFe96 metabolic flux analysis.  195 

Real-time oxygen consumption rates (OCR), extracellular acidification rates (ECAR) 196 

and fatty acid oxidation (FAO) rates for MCF7 cells and normal fibroblasts (hTERT-197 

BJ1 cells) treated with BMF, pravastatin and simvastatin were determined using the 198 

Seahorse Extracellular Flux (XFe96) analyzer (Seahorse Bioscience, USA). Briefly, 199 

1 x 104 cells per well were seeded into XFe96 well cell culture plates, and incubated 200 

overnight to allow cell attachment. Then, cells were treated with BMF, pravastatin and 201 

simvastatin (100μM and 1mM) for 72 hours. Vehicle alone (DMSO) control cells were 202 

processed in parallel. After 72 hours of incubation, cells were washed in pre-warmed 203 
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XF assay media (or for OCR measurement, XF assay media supplemented with 204 

10mM glucose, 1mM Pyruvate, 2mM L-glutamine and adjusted at 7.4 pH). Cells were 205 

then maintained in 175 µL/well of XF assay media at 37°C, in a non-CO2 incubator 206 

for 1 hour. During the incubation time, we loaded 25 µL of 80mM glucose, 9µM 207 

oligomycin, and 1M 2-deoxyglucose (for ECAR measurement) [41] or 10µM 208 

oligomycin, 9µM FCCP, 10µM rotenone, 10µM antimycin A (for OCR measurement) 209 

[42, 43], in XF assay media into the injection ports in the XFe96 sensor cartridge. The 210 

fatty acid oxidation (FAO) was evaluated using an XF assay for oxidation of 211 

exogenous and endogenous FAs. Similarly, 1.5 x 103 cells were seeded in XF Cell 212 

Culture Microplates and allowed to grow overnight in typical growth medium. The 213 

growth medium was then replaced (after 24h) with substrate-limited medium 214 

contained BMF (1 mM), glucose (0.5 mM), GlutaMAX (1 mM), carnitine (0.5 mM) and 215 

1% FBS to deplete endogenous substrates within the cell (glycogen, triglycerides, 216 

amino acids), thus priming the cells to oxidize exogenous FAs. Carnitine was added 217 

fresh the day of the media change and serum to deplete endogenous substrates 218 

within the cell (glycogen, triglycerides, amino acids), thus priming the cells to oxidize 219 

exogenous FAs. Prior to the assay (45 minutes before) the cells were washed twice 220 

times with FAO Assay Medium contained NaCl (111 mM), KCl (4.7 mM), CaCl2 (1.25 221 

mM), MgSO4 (2 mM), NaH2PO4 (1.2 mM), supplemented with glucose (2.5 mM), 222 

carnitine (0.5 mM), and HEPES (5 mM) on the day of the assay, adjusted to pH 7.4 223 

at 37°C. The FAO assay medium was added to the plate (135 μL/well) and incubated 224 

in a non-CO2 incubator for 30 minutes at 37°C. The cartridge was loaded following 225 

the OCR protocol, as described before. After 30 minutes 10 mM stock solution of 226 

Etomoxir (Eto) was diluted to 400 μM in FAO Assay Medium and was added 15 μL 227 

to the appropriate wells. The final concentration of Eto in the wells was 40 μM. The 228 

plate was incubated for 15 minutes at 37°C in a non-CO2 incubator. Just prior to 229 

starting the assay, 30 μL of XF Palmitate-BSA FAO Substrate or BSA was added to 230 

the appropriate wells and immediately the XF Cell Culture Microplate was inserted 231 

into the XFe96 Analyzer and the XF Cell Mito Stress Test was run with the command 232 

protocol. Measurements were normalized by protein content (SRB and Bradford 233 

assay). Data sets were analyzed using XFe96 software and GraphPad Prism 234 

software, using one-way ANOVA and Student’s t-test calculations. All experiments 235 

were performed in quintuplicate, three times independently. 236 

 237 
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2.7. Quantitative assessment of CSC signalling pathways  238 

The Cignal Lenti reporter assay (luc) system (Qiagen) was chosen for monitoring the 239 

activity of several signal transduction pathways in MCF7 cells [44]. The responsive 240 

luciferase constructs encode the firefly luciferase reporter gene under the control of 241 

a minimal (m) CMV promoter and tandem repeats of response elements for each 242 

pathway. The following constructs were used: TCF/LEF(luc) for Wnt signal 243 

transduction (CLS-018L); STAT3(luc) for transcriptional activity of STAT3 (CLS-244 

6028L); RBP-Jk(luc) for Notch-induced signaling (CLS-014L); ARE(luc) for Nrf2- and 245 

Nrf1-mediated antioxidant responses (CLS-2020L); GAS(luc) for Interferon gamma-246 

induced Stat1-signal transduction (CLS-009L); and SMAD(luc) for TGFβ-induced 247 

signal transduction (CLS-017L). Briefly, 1 x 105 MCF7 cells were seeded in 12-well 248 

plates. Once cells were attached, the viral particles were diluted 1:10 in complete 249 

culture media containing polybrene (sc-134220, Santa Cruz), and added to the cells. 250 

Puromycin treatment (P9620, Sigma) was started 48 hours later, in order to select 251 

stably infected cells. 252 

 253 

2.8. Luciferase assays 254 

The Luciferase Assay System (E1501, Promega Kit) was used on all luciferase 255 

reporter MCF7 cells treated with BMF. Briefly, 6 × 103 MCF7 cells were seeded in 256 

black-walled 96-well plates and then were treated with BMF 1mM. As controls, 257 

vehicle-alone treated cells were run in parallel. Six replicates were used for each 258 

condition. After 72 hours of treatment, luciferase assays were performed according 259 

to the manufacturer’s instructions. Light signal was acquired for 2 minutes in 260 

photons/second in the Xenogen VivoVision IVIS Lumina (Caliper Life Sciences), and 261 

the results were analysed using Living Image 3.2 software (Caliper Life Sciences). 262 

Luminescence was normalized using SRB (to determine total cellular protein), as a 263 

measure of MCF7 cell viability. 264 

 265 

2.9. GM-CSF and IL-8 ELISA assays 266 

 To evaluate the potential anti-inflammatory effects of BMF, we utilized the IL-8 267 

Human SimpleStep (Ab 174442, Abcam) and the GM-CSF Human SimpleStep (Ab 268 

174448, Abcam) ELISA kits. The experiments were performed on pre- collect cellular 269 

media, after 72h of treatment with BMF and pravastatin, in MCF7 cells. The ELISA 270 

plates was pre-warmed a 25° for 30 minutes before use. Afterwards, 50 l of media 271 
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and 50l of cocktail antibody were added in each well and left at 25 °C for 1h mixing 272 

at 400 rpm. After 1 hour, each well was washed three times with 350 l of wash buffer 273 

and 100 l of TMB substrate were added in each well. The plates were incubated in 274 

a dark room for 10 minutes mixing at 400 rpm. After 10 minutes, we added 100 l of 275 

stop solution and the plate was incubated for 1 minute. Lastly, the plate was read 276 

using a FLUOstar Omega Microplate Reader at 600 nm. 277 

 278 

2.10. MCF7 3D-mammosphere formation 279 

A single cell suspension was prepared using enzymatic (1x Trypsin-EDTA, Sigma 280 

Aldrich, #T3924), and manual disaggregation (25 gauge needle), to create a single 281 

cell suspension. Cells were plated at a density of 500 cells/cm2 in mammosphere 282 

medium (DMEM-F12 + B27 + 20 ng/ml EGF + PenStrep) under non-adherent 283 

conditions, in culture dishes pre-coated with (2-hydroxyethylmethacrylate) (poly-284 

HEMA, Sigma, #P3932), called “mammosphere plates” [45]. Then, the cells were pre-285 

treated for 72 hours with BMF (100 μM and 1 mM) and Pravastatin (100 μM and 1 286 

mM). Afterwards, they were trypsined and seeded in mammosphere plates or treated 287 

directly in mammosphere plates with BMF (100 μM and 1 mM) and Pravastatin (100 288 

μM and 1 mM); this was carried out in presence or absence of mevalonate 1 mM and 289 

cholesterol 10 μM. Vehicle alone (DMSO) control cells were processed in parallel. 290 

Cells were grown for 5 days and maintained in a humidified incubator at 37°C. After 291 

5 days of culture, 3D-spheres >50 μm were counted using an eye piece (“graticule”), 292 

and the percentage of cells plated which formed spheres was calculated and is 293 

referred to as percent mammosphere formation, and was normalized to one (1 = 294 

100% MSF). 295 

 296 

2.11. ALDEFLUOR assay  297 

ALDH activity was assessed in MCF7cells. The ALDEFLUOR kit (StemCell 298 

technologies, Durham, NC, USA) was used to isolate the population with high ALDH 299 

enzymatic activity by FACS (Fortessa, BD Bioscence).  Briefly, 1 × 105 were 300 

incubated in 1ml ALDEFLUOR assay buffer containing ALDH substrate (5 μl/ml) for 301 

40 minutes at 37°C. In each experiment a sample of cells was stained under identical 302 

conditions with 30 mM of diethylaminobenzaldehyde (DEAB), a specific ALDH 303 

inhibitor, as a negative control The ALDH-positive population was established, 304 
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according to the manufacturer’s instructions and was evaluated using 20.000 cells. 305 

An ALDEFLUOR-positive signal was detected in cell lines treated with BMF (100 μM 306 

and 1 mM) and/or Pravastatin (100 μM and 1 mM), as compared with controls.  307 

 308 

2.12. Label-free unbiased semi-quantitative proteomics analysis 309 

Cell lysates were prepared for trypsin digestion by sequential reduction of disulphide 310 

bonds with TCEP and alkylation with MMTS. Then, the peptides were extracted and 311 

prepared for LC-MS/MS. All LC-MS/MS analyses were performed on an LTQ Orbitrap 312 

XL mass spectrometer (Thermo Scientific, San Jose, CA) coupled to an Ultimate 313 

3000 RSLCnano system (Thermo Scientific, formerly Dionex, The Netherlands). 314 

Xcalibur raw data files acquired on the LTQ-Orbitrap XL were directly imported into 315 

Progenesis LCMS software (Waters Corp., Milford, MA, formerly Non-linear 316 

dynamics, Newcastle upon Tyne, UK) for peak detection and alignment [46]. Data 317 

were analyzed using the Mascot search. Five technical replicates were analyzed for 318 

each sample type.  319 

 320 

2.13. Ingenuity pathway analysis (IPA) 321 

Unbiased interrogation and analysis of our proteomic data sets was carried out by 322 

employing a bioinformatics platform, known as Ingenuity Pathway Analysis (IPA) 323 

(Ingenuity systems, http://www.ingenuity.com). IPA assists with data interpretation, 324 

via the grouping of differentially expressed genes or proteins into known functions 325 

and pathways. Functional protein networks and upstream regulator analysis with 326 

differently expressed proteins were presented, along with a Z-score. Pathways with 327 

a z score of > +2 were considered as significantly activated, while pathways with a z 328 

score of < -2 were considered as significantly inhibited. For a more detailed 329 

explanation regarding Z-scores, please see: Ingenuity systems, 330 

http://www.ingenuity.com. 331 

 332 

2.14. Western blotting 333 

Cells were lysed in buffer (1% (v/v) Triton X-100, 50mM HEPES, pH 7, 1 mM EDTA, 334 

1 mM EGTA, 150 mM NaCl, 100 mM sodium fluoride, 1 mM Na3VO4, and one tablet 335 

of Complete TM inhibitor mix (Roche Applied Science, Indianapolis) per 25 mL of 336 

buffer and loaded on to SDS-polyacrylamide gels. Blots were incubated with the re-337 

spective primary antibodies diluted in tris-buffered saline and tween 20 (TBST) 338 

http://www.ingenuity.com/
http://www.ingenuity.com/
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(containing 0.1% Tween20 and 5% milk powder) and incubated overnight at 4°C. 339 

Then, blots were washed and incu-bated with appropriate secondary antibodies (GE 340 

Healthcare) and detected using SuperSignal West Pico Chemiluminescent Substrate 341 

(Pierce, Rockford, IL). Antibodies and their dilutions used for Western blot analysis 342 

were as follows: rabbit anti-HMGCR (Santa-Cruz; 1:500), mouse anti-ERα (6F11, 343 

Novocastra; 1:1,000), rabbit anti-p27Kip1 (Dako; 1:500), rabbit anti-cyclinD (Cell 344 

signalling; 1:1,000), rabbit anti-cyclinE (Cell signalling, 1:1,000), mouse anti-p53 345 

(Sigma-Aldrich; 1:500), mouse anti-Rb (Santa-Cruz; 1:500), mouse total OXPHOS 346 

anti-human cocktail (Abcam; 1:1,000), anti-β-tubulin (Sigma-Aldrich; 1:5,000), anti-β-347 

actin (Sigma-Aldrich; 1:10,000). 348 

2.15. Kaplan-Meier 349 

All graphs (see Figure 7) were plotted using microarray data from human breast 350 

cancer patients, determined using an online survival analysis tool. Kaplan-Meier 351 

correlations are plotted for high (above median, in Red) and low (below median, in 352 

Black) gene expression. Biased array data were excluded from the analysis. Hazard-353 

ratios were calculated, at the best auto-selected cut-off, and p-values were calculated 354 

using the logrank test and plotted in R. K-M curves were also generated online using 355 

the K-M-plotter (as high-resolution TIFF files), using univariate analysis: 356 

http://kmplot.com/analysis/index.php?p = service&cancer = breast. This allowed us 357 

to directly perform in silico validation of HMGR as a potential biomarker. The most 358 

updated version of the database (2017) was utilized, for all these analyses. 359 

 360 

2.16. Quantification and Statistical Analysis 361 

All analyses were performed with GraphPad Prism 6. Data were presented as mean 362 

± SEM (± SD where indicated). All experiments were conducted at least three times, 363 

with ≥ 3 technical replicates per experiment, unless otherwise stated with 364 

representative data shown. Statistically significant differences were determined using 365 

the Student’s t test or the analysis of variance (ANOVA) test. For the comparison 366 

among multiple groups, one-way ANOVA were used to determine statistical 367 

significance. P ≤ 0.05 was considered significant and all statistical tests were two-368 

sided. 369 

 370 

2.17. Contact for Reagent and Resource 371 

http://kmplot.com/analysis/index.php?p%20=%20service&cancer%20=%20breast
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Further information and requests for resources and reagents should be directed to 372 

and will be fulfilled by the Lead Contact, Michael P. Lisanti 373 

(michaelp.lisanti@gmail.com) 374 

 375 

Supplemental Information 376 

Supplemental Information includes two figures and two tables. 377 

 378 

3. Results 379 

3.1. MCF7 and T47D mammospheres show the over-expression of key enzymes 380 

involved in mevalonate metabolism, including HMGR, as revealed by 381 

proteomics analysis 382 

MCF7 cells, grown either as i) a monolayer or ii) as 3D-mammospheres in 383 

suspension, were subjected to unbiased label-free proteomics analysis. This strategic 384 

approach would allow us to identify which proteins are specifically up-regulated or 385 

down-regulated, during mammosphere suspension cultures. For comparison 386 

purposes, we also performed the same type of analysis (monolayer vs. suspension 387 

culture) on a second independent ER (+) breast cancer cell line, namely T47D cells.  388 

The differential expression patterns of proteins in these four data sets was then 389 

subjected to Ingenuity Pathway Analysis (IPA), to determine possible alterations in 390 

canonical signaling pathways (Figure S1A) and toxicity functions (Figure S1B). 391 

Importantly, this comparative analysis showed that these two independent cell lines 392 

behaved similarly, in a conserved fashion. For simplicity, we focused on the proteins 393 

involved in cholesterol biosynthesis (the mevalonate pathway); note that this pathway 394 

is significantly up-regulated in mammospheres, as compared to monolayer cell 395 

cultures (Figure S1B) (p < 0.05). These results are summarized in Figure S2A and 396 

S2B.  Remarkably, 25 proteins involved in the mevalonate pathway and cholesterol 397 

biosynthesis, were found to be up-regulated in MCF7 mammospheres, as compared 398 

to MCF7 monolayer cells.  Moreover, 22 proteins were found to be up-regulated in 399 

T47D mammospheres, as compared to T47D monolayer cells. This represents an 400 

overlap of 88% (22 out of 25), as shown in the Venn diagram presented in Figure 401 

2SA. Therefore, we conclude that cholesterol biosynthesis appears to be highly-402 

activated or enhanced in cancer cells grown in suspension cultures. As these 3D-403 

cultures are thought to be enriched in CSCs and progenitor cells, cholesterol 404 

mailto:michaelp.lisanti@gmail.com
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biosynthesis may be a key biosynthetic pathway that is necessary or required for 405 

maintaining “stemness” in cancer cells (Figure 2SB). As a consequence of these 406 

findings, we hypothesised that an inhibitor of 3-hydroxy-3-methylglutaryl-CoA 407 

reductase (HMGR), a key enzyme in mevalonate metabolism, would effectively inhibit 408 

the survival and propagation of breast CSCs.  This prompted us to test the effects of 409 

BMF on cancer cell proliferation and CSC propagation.  410 

 411 

3.2. BMF inhibits the enzymatic activity of HMGR 412 

In the present study, two novel molecules we previously isolated and identified (ref. 413 

Didonna et al. 2009), were purified as HMG conjugates of Neohesperidin and 414 

Naringin, namely: i) Brutieridin [hesperetin 7-(2′′-R-rhamnosyl-6′′-(3′′′′-hydroxy-3′′′′-415 

methylglutaryl)-glucoside] and ii) Melitidin [naringenin 7-(2′′-R-rhamnosyl-6′′-(3′′′′-416 

hydroxy-3′′′′-methylglutaryl)-glucoside] (Figure 1B). Several analytical experiments 417 

were performed to confirm and validate their structures (Figure 1B); in particular, we 418 

used UV, IR spectra and HPLC-MS/UV (Figure 1C). We find that Brutieridin and 419 

Melitidin are present in the Bergamot fruit in a concentration range of ~300-500 ppm 420 

and 150-300 ppm, respectively, as a function of the ripening stage; these compounds 421 

may be found either in the juice or in the albedo and flavedo of the Bergamot fruit 422 

skin. The “signature moiety” of Brutieridin and Melitidin is the presence of a 3-hydroxy-423 

3-methyl glutaryl (HMG) moiety, esterified on the nehoesperidose (sugar) moiety 424 

(Figure 1B). Therefore, we predicted that they would exhibit an inhibitory effect 425 

against HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), thereby reducing its 426 

enzymatic activity. This hypothesis was confirmed using a well-established HMGR 427 

activity assay (Figure 1D). The assay is based on the spectrophotometric 428 

measurement of a decrease in absorbance at 340 nm, which represents the oxidation 429 

of NADPH by the catalytic subunit of HMGR, in the presence of the substrate HMG-430 

CoA. Different concentrations of Brutieridin, Melitidin and BMF were evaluated to 431 

determine the optimal inhibitory concentrations for blocking HMGR activity (not 432 

shown). Brutieridin and Melitidin decreased HMGR activity by 55% and 65%, 433 

respectively, at 100 M. This result confirms that Brutieridin and Melitidin have a 434 

statin-like inhibitory effect on HMGR activity. However, greater inhibition capacity, of 435 

~85%, was detected when the BMF fraction, containing both molecules, was 436 

analyzed (Figure 1D), as compared to when both molecules were analyzed 437 

individually. This is indicative of an additive effect. Thus, in the present work, we chose 438 
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to investigate the effects of BMF, as an HMG-flavanone fraction (defined as a purified 439 

~2:1 mixture, composed of 70% Brutieridin and 30% Melitidin).  440 

 441 

3.3. BMF reduces MCF7 and MCF7-HMGR cell growth 442 

The effects of BMF on cell proliferation were first examined using MCF7 cells and 443 

compared with two commercial inhibitors of mevalonate biosynthesis: Pravastatin 444 

and Simvastatin. Importantly, MCF7 breast cancer cells endogenously express 445 

HMGR. However, in parallel, we also generated an MCF7 cell line over-expressing 446 

recombinant HMGR, via lenti-viral transduction. Over-expression of HMGR in MCF7-447 

HMGR cells was indeed confirmed by Western blot analysis, as compared with MCF7 448 

cells transduced with the empty vector alone (Lv-105) (Figure 2A). The cells were 449 

treated, for 72 or 120 hours, with either BMF (100 μM and 1 mM; Figure 2B upper 450 

panel), Pravastatin (100 μM and 1 mM; Figure 2B middle panel), or Simvastatin (10, 451 

50, 100 μM and 1 mM; Figure 2B lower panel). Note that Figure 2B shows a 452 

significant dose-dependent reduction in cell proliferation in MCF7-HMGR cells, as 453 

compared with MCF7 cells. The observed IC50 value was between 100 µM and 1 mM 454 

for BMF and Pravastatin and was  approximately 10 µM for Simvastatin, in both cell 455 

lines. Likewise, the toxicity of BMF, Pravastatin and Simvastatin was also examined 456 

in a normal fibroblast cell line (hTERT-BJ1).  Figure 2B shows that Pravastatin and 457 

Simvastatin are toxic for hTERT-BJ1 cells (IC50 values ranging between 10 µM and 458 

50 µM).  Surprisingly, BMF did not exhibit any toxic effects with hTERT-BJ1 cells, after 459 

72 h and 120 h of treatment. 460 

 461 

3.4. BMF arrests MCF7 cells in G0/G1 phase of the cell cycle 462 

To evaluate the underlying mechanism(s) of growth inhibition by BMF, cell cycle 463 

profiles were analysed, using MCF7 cells, after 72 h of treatment with BMF and 464 

Pravastatin (100 μM and 1 mM each) (Figure 2C). All treatments resulted in G0/G1 465 

cell cycle arrest and reduced S phase, in a dose-dependent manner, as compared to 466 

vehicle-alone controls. 467 

 468 

3.5. BMF decreases mitochondrial respiration, by reducing OXPHOS and 469 

exogenous fatty acid oxidation (FAO) in MCF7 cells 470 

The metabolic phenotype of MCF7-HMGR cells was assessed using the Seahorse 471 
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XFe96 metabolic flux analyser; MCF7-EV (empty vector control) cells were also 472 

analyzed in parallel, as a negative control. Both isogenic cell lines were subjected to 473 

glycolytic and mitochondrial stress tests (Figure 3A and 3B). Notably, no differences 474 

were observed in extracellular acidification rates (ECAR) (Figure 3A), while the 475 

oxygen consumption rate (OCR) showed a significant increase, but only in MCF7-476 

HMGR cells, as compared to MCF7-EV cells. Therefore, over-expression of HMGR 477 

“boosts” mitochondrial metabolism, through the production of mevalonate. Next, to 478 

evaluate if BMF inhibits mitochondrial function in cancer cells, OCR was assessed in 479 

parental MCF7 cell monolayers, treated for 72 hours with BMF, Pravastatin or 480 

Simvastatin (each at 100 μM and 1 mM) (Figure 3C). As predicted, our results show 481 

that BMF treatment effectively decreases mitochondrial respiration in MCF7 cells. 482 

Significant reductions in OCR were observed in MCF7 cells treated with BMF (1 mM). 483 

Similarly, after 72 hour, Pravastatin (100 μM and 1 mM) and Simvastatin (100 μM and 484 

1 mM) both showed greatly reduced OCRs in MCF7 cells (Figure 3C). OCR 485 

reductions followed the same trend in MCF7-HMGR cells treated with 1 mM BMF 486 

(Figure 3E and 3F). To establish if BMF functions as a specific mitochondrial inhibitor 487 

only in cancer cells, we also performed a mitochondrial stress test on hTERT-BJ1 488 

fibroblasts (Figure 3D), treated with BMF, Pravastatin or Simvastatin. Significant 489 

reductions in mitochondrial respiration were observed in hTERT-BJ1 fibroblasts 490 

treated with Pravastatin or Simvastatin (at 100 μM and 1 mM), suggesting a toxic 491 

effect. However, no effects on mitochondrial respiration were observed in hTERT-BJ1 492 

cells treated with BMF after 72 hours, indicating that the effect of BMF on 493 

mitochondrial respiration reduction is cell-type specific. Moreover, fatty acid oxidation 494 

(FAO) was also evaluated in MCF7 cells, under the same treatment conditions. This 495 

analysis revealed significant reductions in basal respiration, maximal respiration, and 496 

ATP levels, after palmitate addition, as compared to control cells (Figure 3G and 3H), 497 

indicative of a decrease in exogenous FAO.  498 

 499 

3.6. BMF inhibits key signalling pathways involved in inflammation, 500 

proliferation and “stemness” 501 

To better understand its mechanism of action, we next examined the effects of BMF 502 

on several well-established signalling pathways, which have been shown to promote 503 

proliferation, inflammation and “stemness”. For this purpose, we employed a panel of 504 
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eight MCF7 reporter cell lines, engineered to carry validated luciferase constructs for 505 

monitoring the activation state of several distinct signalling networks, including: Sonic 506 

hedgehog, TGFβ-SMAD, STAT3, Wnt, Interferon (IFN)-α/β-STAT1/2, NRF2-507 

dependent antioxidant responses, IFN-γ-STAT1 and Notch pathways. Briefly, the 508 

MCF7 reporter cells were treated for 72 hours with 100 μM and 1 mM BMF. Note that 509 

BMF inhibited multiple CSC signaling pathways, including Wnt, IFN-α/β-STAT1/2, 510 

STAT3, and Notch (Figure 4A, lower panel) and it activated IFN-γ-STAT1 and NRF2-511 

dependent antioxidant responses (Figure 4A, upper panel). However, no effects were 512 

observed for the Sonic hedgehog and TGFβ-SMAD signaling pathways, after 513 

treatment with BMF (Fig 4A, upper panel). 514 

 515 

3.7. BMF reduces the secretion of inflammatory cytokines (IL-8 and GM-CSF)  516 

It is well-established that Interleukin 8 (IL-8) [47] and Granulocyte-macrophage 517 

colony-stimulating factor (GM-CSF) [48] both stimulate malignant tumor cell growth 518 

and migration in vitro, as well as promote cancer progression in vivo [49, 50]. Thus, 519 

we next asked if BMF affects the release of these key inflammatory factors from 520 

MCF7 cancer cells. We detected GM-CSF (Figure 4B upper panel) and IL-8 levels 521 

(Figure 4B lower panel) in the cell culture media after 72h of BMF and Pravastatin 522 

treatment, using GM-CSF and IL-8 ELISA kits.  However, the levels of both secreted 523 

factors were significantly reduced in BMF-treated MCF7 cells, as compared to 524 

vehicle-alone control cells.  525 

 526 

3.8. BMF targets breast CSCs, by inhibiting HMGR and blocking mevalonate 527 

metabolism 528 

We provide several independent lines of evidence to directly support the idea that 529 

HMGR facilitates CSC propagation and mammosphere formation, via mevalonate 530 

metabolism. Firstly, MCF7 over-expressing HMGR show a greater efficiency towards 531 

mammosphere formation, as compared to vector-alone control cells generated in 532 

parallel (Figure 4C). Secondly, treatment with HMGR inhibitors (BMF or Pravastatin; 533 

at concentrations of 100 μM and 1 mM) efficiently suppresses mammosphere 534 

formation, in both parental MCF7 cells, as well as in MCF7 cells over-expressing 535 

HMGR (Figure 4D and 4E).  Thirdly, treatment with HMGR inhibitors (BMF or 536 

Pravastatin) was also sufficient to significantly decrease the ALDH-positive cell 537 
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population by 2.5-fold (Figure 4F). Importantly, ALDH-activity is an independent 538 

marker for “stemness” in cancer cells.  539 

Finally, the addition of mevalonate to the tissue culture media was indeed sufficient 540 

to overcome the inhibitory effects of BMF and Pravastatin on i) mammosphere 541 

formation (Figure 4G) and ii) ALDH-activity (Figure 4H). However, the addition of 542 

exogenous cholesterol did not have the same rescue effect as mevalonate, indicating 543 

that mevalonate metabolism itself is critical for driving mammosphere formation and 544 

for maintaining CSC-activity, not the cholesterol end-product itself (Figure  4G and 545 

4H). 546 

 547 

3.9. Rho-GDI-signalling is up-regulated in mammospheres treated with BMF, 548 

driving a reduction in CSC propagation 549 

To further mechanistically elucidate the down-stream effects of BMF on “stemness”, 550 

we next used a “chemical” proteomics approach. Briefly, MCF7 cell mammospheres, 551 

formed after 72 hours pre-treatment with 1 mM BMF, were harvested and subjected 552 

to proteomics analysis. These BMF-mammospheres were then directly compared 553 

with control monolayers, processed in parallel. Finally, all these proteomics data sets 554 

were used to generate a list of differentially expressed proteins, which was subjected 555 

to Ingenuity Pathway Analysis (IPA), to determine possible alterations in canonical 556 

pathways (Figure 5A) and toxicity functions (Figure 5B). Most notably, the Heat-Map 557 

shows that BMF-mammospheres behave in an opposite fashion, as compared with 558 

control MCF7 and T47D mammospheres, highlighting a complete change in terms of 559 

the regulation of numerous cancer-related, cell signaling pathways (Figure 5C).  560 

Importantly, canonical pathway analysis and the Heat-Map data clearly show that the 561 

Rho-GDI-signalling pathway is the only pathway activated in BMF-mammospheres, 562 

as compared with MCF7 and T47D mammosphere controls (Figure 5C and 5D). 563 

These results support and confirm the hypothesis that up-regulation of Rho-GDI-564 

signalling clearly inhibits CSC propagation and mammosphere formation.  565 

 566 

3.10. BMF reduces mevalonate formation, targeting breast CSCs through Rho-567 

GDI and RHOA/p27kip1 signalling 568 

A defect in geranyl-geranylated proteins (GG) impairs small GTP-binding proteins, 569 

especially the RHO family of proteins. Geranyl-geranylated-pyrophosphate (GGPP) 570 

synthesis is necessary as an intermediate for the proper localization of RHO proteins 571 
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to the cytoplasmic face of the cell membrane and their subsequent function. RHOA 572 

regulates p27kip1 by mediating its phosphorylation on Thr-187 via CDK2 [51], 573 

resulting in the subsequent translocation of p27 from the nucleus to the cytosol, and 574 

thereby enhancing its degradation in the cytoplasm. In the absence of GGPP, through 575 

mevalonate inhibition by BMF, RHOA should be unable to carry out these functions 576 

and p27kip1 would therefore accumulate in the nucleus. Because p27kip1 is known 577 

to regulate stem cell self-renewal [52], we explored the role of RHOA/p27kip1 578 

signalling in mediating the effects of BMF treatment on the CSC population. We 579 

assessed the impact of BMF treatment on RHOA inactivation by proteomics analysis. 580 

As expected, we observed that BMF treatment decreased the amount of RHOA and 581 

increased the amount of p27kip1 (Figure 6A). One mechanism by which BMF could 582 

suppress CSC self-renewal is through inhibition of RHOA and increased p27kip1 583 

accumulation, which in turn would result in inhibition of CDK phosphorylation of RB, 584 

reducing both Cyclin D and Cyclin E expression. Therefore, we assessed the impact 585 

of BMF treatment on RHOA inactivation by measuring the levels of Cyclin D and 586 

Cyclin E, as well as RB protein phosphorylation by Western blotting (Figure 6B). 587 

Cellular lysates from both BMF-treated MCF7 cells and vehicle-alone control MCF7 588 

cells were partitioned into cytosolic fractions and immuno-blotted with antibodies 589 

involved in RHOA pathway regulation. As predicted, we observed that BMF treatment 590 

increased the amount of cytosolic p27kip1, and decreased cytosolic Cyclin-D and 591 

Cyclin-E, consistent with RHOA inhibition. These results are consistent with our 592 

observation that BMF results in arrest in the G0/G1 phase of the cell cycle. Moreover, 593 

these results confirm that BMF treatment perturbs cell cycle progression, through its 594 

ability to dys-regulate CCND1/p27/RB1/CCNE signalling. This pathway is highlighted 595 

schematically in Figure 6C. 596 

 597 

3.11. BMF down-regulates STAT1/3, as well as β-catenin protein expression 598 

By proteomic analysis, we also validated that BMF regulates gene expression by 599 

reducing STAT1/3 and β-catenin protein levels. Our proteomic data shows a 600 

decreased amount of E-cadherin and CTK-receptors, as well as clear reductions in 601 

STAT1/3 and β-catenin protein expression (Figure 6A). The inhibition of these two 602 

pathways by BMF could suppress CSC self-renewal (Figure 6C). These findings are 603 

also consistent with our earlier results, using luciferase reporter constructs (Figure 604 

6A). 605 
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 606 

3.12. BMF down-regulates mitochondrial protein expression, mechanistically 607 

explaining the observed reductions in mitochondrial respiratory function 608 

To better understand the BMF-induced reductions in mitochondrial oxygen 609 

consumption, we further analysed our proteomic data sets. Our proteomic results 610 

suggest that BMF treatment may negatively impact mitochondrial respiration, by 611 

decreasing the amount of fatty-acyl-CoA and pyruvate inside the mitochondria, via 612 

reductions in CPT1 and the MPC transporter, consequently reducing acetyl-CoA 613 

formation. Moreover, the observed reduction of SLC25A1 transporter and the ACAT1 614 

enzyme, are symptomatic of the inhibition of acetyl-CoA formation (Figure 6E). We 615 

also determined the impact of BMF on OXPHOS by measuring the protein levels of 616 

complexes I-V of the respiratory chain, by Western blotting (Figure 6D). As predicted, 617 

we observed that BMF treatment decreased the levels of complex I, II, IV and V, 618 

further validating the observed reductions in OCR and ATP production, as seen by 619 

Seahorse XFe96 analysis. These results are summarized schematically in Figure 6F. 620 

 621 

3.13. Prognostic value of HMGR in human breast cancer subtypes: Recurrence, 622 

metastasis and overall survival 623 

To assess the clinical relevance of HMGR, we also determined if HMGR mRNA 624 

transcript levels show any prognostic value, in human breast cancer patient cohorts, 625 

with long-term follow-up data (nearly 20 years).  We analyzed both ER(+) and ER(-) 626 

patient populations. Corresponding Kaplan-Meier (K-M) analysis curves are included 627 

in Figure 7 (See also Table S1 and Table S2).  Note that high mRNA levels of HMGR 628 

show an association with reduced relapse-free survival (RFS), i.e., higher tumor 629 

recurrence. More specifically, HMGR had prognostic value in both: i) ER(+) patients, 630 

normally treated with endocrine therapy and ii) ER(-) patients, consistently treated 631 

with chemotherapy.  Interestingly, HMGR was especially predictive in the following 632 

more aggressive breast cancer groups: i) ER(+)/Luminal B and ii) ER(-)/Basal 633 

subtypes. High mRNA levels of HMGR were also associated with increased distant 634 

metastasis (DMFS) and poor overall survival (OS).  635 

 636 

4. Discussion 637 

Targeting CSCs is a new promising field for anti-cancer therapy [53]. Several studies 638 
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have recently highlighted a strong association between i) metabolism and ii) CSCs 639 

biology [15]. In order to target CSCs, it will be necessary to take into account several 640 

additional parameters, including tumor heterogeneity. For example, it is now well-641 

accepted that CSCs are somehow dependent on cancer-promoting mutations and 642 

this ultimately produces several different sub-populations of ‘progenitor’ cells, as well 643 

as ‘mature’ or ‘differentiated’ cancer cells [10, 13].  644 

One new promising class of anti-CSC drugs are the statins. They are competitive 645 

inhibitors of HMGR, a key enzyme required for cholesterol biosynthesis. Statins can 646 

inhibit human tumor growth, by decreasing the local synthesis of cholesterol. Indeed, 647 

rapidly growing tumor cells require high levels of cholesterol content, as an essential 648 

component of their cellular membranes. As a consequence, many cancer patients 649 

actually have reduced plasma levels of cholesterol. Interestingly, HMGR inhibition, by 650 

the statins, also depletes several other metabolic intermediates that may be involved 651 

in CSC propagation, such as mevalonate [54, 55].  652 

Although statins are very effective as anti-cholesterolemic drugs, they suffer from a 653 

number of common side-effects, including muscle wasting and damage (both skeletal 654 

and cardiac). As a consequence, many scientists are currently searching for new 655 

statin-like molecules, that show anti-cancer properties, but lack the side-effects of 656 

commercial statins [56]. Here, we evaluated the possibility that Brutieridin and 657 

Melitidin, two statin-like flavanone inhibitors of HMGR, extracted from Bergamot fruit, 658 

exert a similar behavior with respect to the commercial statins (Simvastatin and 659 

Pravastatin), to prevent cancer progression and CSC propagation.  660 

Using unbiased label-free proteomics analysis, we identified specific protein data sets 661 

related to CSC propagation. More specifically, we identified proteins that were 662 

specifically up-regulated in human breast cancer cells, when cultured under 663 

anchorage-independent growth conditions. These conditions greatly facilitate the 664 

formation of mammospheres or 3D-tumor-spheres, thereby substantially enriching 665 

the CSC population.  Bio-informatic analysis of these MCF7-mammosphere protein 666 

data sets revealed the up-regulation of enzymes that are characteristic of cholesterol 667 

biosynthesis and mevalonate metabolism, including HMGR itself. Virtually identical 668 

results were also obtained with T47D-mammospheres, highlighting the conserved 669 

role of mevalonate metabolism in CSC propagation. In accordance with these 670 

findings, we showed that BMF effectively reduces HMGR activity and blocks 671 

mammosphere formation. Treatment with BMF also reduced the growth of MCF7 672 
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cells, leading to arrest in the G0/G1 phase of the cell cycle.  In this context, BMF 673 

behaved similarly to the commercial statins; however, BMF did not show the same 674 

side-effect profile. Remarkably, while the commercial statins showed substantial 675 

toxicity, BMF was non-toxic when applied to normal human fibroblasts (hTERT-BJ1 676 

cells). Therefore, BMF may represent a non-toxic alternative to the commercial 677 

statins.  678 

To pinpoint which CSC pathways were targeted by BMF, we used a panel of isogenic 679 

MCF7 cell lines, harboring a series of luciferase reporter constructs; this panel of 680 

MCF7 cell lines was generated to quantitatively measure the activation state of 8 681 

different signalling cascades or networks.  Interestingly, BMF treatment inhibited 682 

several distinct CSC signaling pathways, including: STAT1/3, Notch and Wnt/Beta-683 

catenin. In addition, BMF also stimulated the anti-oxidant response, triggering the 684 

activation of both NRF2- and IFN-α/β-STAT1/2 signalling.  685 

We also measured the metabolic effects of BMF on cancer cells (MCF7) and normal 686 

fibroblasts (hTERT-BJ1), using the Seahorse XFe96 metabolic flux analyzer.  687 

Importantly, BMF significantly inhibited the oxygen consumption rate (OCR) and ATP 688 

production in MCF7 cells; virtually identical results were obtained with commercial 689 

statins. However, BMF did not show any effects on mitochondrial respiration in normal 690 

human fibroblasts, while commercial statins still showed strong inhibition of 691 

mitochondrial function.  Thus, the mitochondrial effects of BMF appear to be specific 692 

to cancer cells.  693 

Inflammatory cytokines play a major role in tumor progression and metastasis.  For 694 

example, these inflammatory cytokines (i.e., IL-8 and GM-CSF) promote tumor 695 

invasive properties [57] and activate CSC signalling pathways, including those 696 

regulated by Wnt, Notch and STAT1/3 [58, 59]. As a consequence we evaluated the 697 

effects of BMF on cytokine release from MCF7 cells into the culture media. 698 

Interestingly, our results directly show that BMF significantly inhibited the release of 699 

both GM-CSF and IL-8, in a dose-dependent manner.  700 

Using a specific CSC marker (ALDH-activity), we also showed that BMF treatment 701 

significantly decreased the ALDH-positive cell population in MCF7 cells. Moreover, 702 

the addition of mevalonate, the product of the HMGR enzyme, to the culture medium 703 

rescued the CSC population, with a complete restoration of the ALDEFLUOR-positive 704 

population.  However, cholesterol did not have the same rescue effect.  Therefore, 705 
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these results directly validate the idea that mevalonate is an essential metabolite for 706 

driving CSC propagation, but that this is unrelated to cholesterol biosynthesis itself.  707 

Further proteomics analysis also allowed us to dissect the mechanism by which BMF 708 

inhibits cell proliferation and induces arrest in the G0/G1 phase of the cell cycle.  In 709 

particular, BMF up-regulated Rho-GDI-signalling, leading to dys-regulation along the 710 

CCND1/p27/ RB1/CCNE pathway. 711 

 712 

5. Conclusion 713 

In summary, our current results directly show that BMF is a natural, non-toxic, inhibitor 714 

of HMGR, that can be effectively used to target mitochondrial metabolism (OXPHOS) 715 

and fatty acid oxidation (FAO) in breast cancer cells, preventing the CSCs formation 716 

and their propagation via Rho-GDI-signalling. 717 
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 913 

FIGURE LEGENDS 914 

Figure 1. Brutieridin (B) and Melitidin (M) are natural flavonoids (F): Extraction, 915 

purification and inhibition of HMGR activity.  916 

(A) Schematic work-flow diagram illustrating the extraction and purification of 917 

Brutieridin and Melitidin flavonoids (BMF). SPE = solid-phase extraction, MPLC = 918 

medium-pressure liquid-chromatography, HPLC = high-pressure liquid-919 

chromatography.   920 

(B) The detailed chemical structures of Brutieridin and Melitidin are shown.  921 

(C) HPLC/UV Chromatogram of BMF. The molecules shown are Brutieridin (1, r.t. 922 

41.64) and Melitidin (2, r.t. 40.06).  923 

(D) BMF inhibits HMGR activity. The effects of BMF on HMGR activity was tested 924 

using a well-established assay kit (Sigma-Aldrich). Simvastatin and Pravastatin were 925 

used as positive controls (not shown). 926 

 927 

Figure 2. BMF differentially affects the viability of human breast cancer cells 928 

(MCF7) and normal fibroblasts (hTERT-BJ1). 929 

(A) Generating MCF7-HMGR cells. Parental MCF7 cells were stably-transduced 930 

with a lentiviral vector encoding HMGR or an empty vector control (EV). Recombinant 931 

over-expression of HMGR in MCF7 cells was confirmed by immune-blot analysis, 932 

with specific antibody probes. The expression of β-actin was assessed to ensure 933 

equal protein loading.  934 
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(B) Effects of statin-like molecules on cell viability. The effects of BMF, 935 

Pravastatin and Simvastatin were evaluated using cultures of human breast cancer 936 

cells (MCF7 or MCF7-HMGR) or normal human fibroblasts (hTERT-BJ1). Cells were 937 

treated for 72 or 120 hours with 100 μM and 1 mM BMF (upper panel), 100 μM and 938 

1 mM Pravastatin (middle panel), 10, 50, 100 μM and 1 mM Simvastatin (lower panel). 939 

Cell viability was assessed using the SRB assay to measure protein content and was 940 

expressed as a percentage of control cells (vehicle-alone treated cells).   941 

(C) BMF induces cell cycle arrest in MCF7 cells. Results are expressed as the 942 

percentage of cells found in different phases of the cell cycle. Note that BMF and 943 

Pravastatin both impair the G1/S transition of MCF7 breast cancer cells.  944 

The values shown represent the means ± S.E.M. of three biological replicates from 945 

three independent experiments. Statistical differences compared to control are given 946 

as: ** p ≤ 0.001 or *** p ≤ 0.0001, using the one-way ANOVA t-test. 947 

 948 

Figure 3. BMF differentially effects mitochondrial respiration in human breast 949 

cancer cells (MCF7 and MCF7-HMGR) and normal human fibroblasts (hTERT-950 

BJ1). 951 

(A and B)  Analyzing the metabolic phenotype of MCF7-HMGR cells. MCF7-952 

HMGR cells and corresponding vector alone control cells (MCF7-EV), were subjected 953 

to metabolic flux analysis, with the Seahorse XFe96. The extracellular acidification 954 

rate (A) (ECAR; a measure of glycolytic flux) and (B) oxygen consumption rate (OCR; 955 

a measure of mitochondrial respiration) were assessed. Note that recombinant over-956 

expression of HMGR in MCF7 cells had no effect on ECAR, but significantly 957 

increased OCR, which is indicative of increased mitochondrial respiration.  958 

(C) Note that BMF treatment decreases mitochondrial respiration in MCF7 breast 959 

cancer cells. Significant reductions in mitochondrial respiration were observed, 960 

experimentally, in MCF7 cell monolayers treated for 72 hours with BMF or 961 

Pravastatin/Simvastatin (100 μM and 1 mM each).  962 

(D) Note that BMF treatment does not effect mitochondrial respiration in normal 963 

human fibroblasts (hTERT-BJ1 cells). However, Pravastatin and Simvastatin (100 μM 964 

and 1 mM each) both significantly inhibited mitochondrial respiration in hTERT-BJ1 965 

cells. Tracings from 3 independent experiments are shown for each experimental 966 

condition.  967 
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(E) Significant reductions in maximal respiration, ATP production, and spare 968 

respiratory capacity were observed experimentally in MCF7 cells treated with 1mM 969 

BMF, compared to the vehicle-alone treated control.  970 

(F) BMF treatment also significantly reduces ATP production, basal respiration, 971 

maximal respiration and spare respiratory capacity, in MCF7-HMGR cells.  972 

(G) BMF treatment reduces the fatty acid oxidation (FAO) profile in MCF7 breast 973 

cancer cells. Significant reductions in basal respiration, maximal respiration, and ATP 974 

levels were observed experimentally, in treated MCF7 cells, after palmitate addition, 975 

compared to untreated cells.  976 

In panels A-G, merged tracings of 3 independent experiments are shown for each 977 

experimental condition. *p < 0.01; **p < 0.001; ***p < 0.0001, one-way ANOVA t-test. 978 

 979 

Figure 4: BMF treatment effectively inhibits CSC signalling and propagation: 980 

Rescue with the simple metabolite Mevalonate.  981 

(A) BMF treatment inhibits signalling pathways related to “stemness” and 982 

inflammation, while inducing the anti-oxidant response. Note that BMF treatment 983 

inhibits the following four pathways related to CSC signalling: Wnt/beta-catenin, IFN-984 

α/β-STAT1/2, STAT3, as well as, Notch (lower panel). In contrast, BMF treatment 985 

activates IFN-γ-STAT1 signalling and the NRF2-dependent anti-oxidant response 986 

(upper panel). However, BMF had no effects on TGFβ-SMAD and Sonic hedgehog 987 

signalling (upper panel).  *p < 0.01; **p < 0.001; ***p < 0.0001, using the Student’s t 988 

test.  989 

(B) BMF reduces the secretion of inflammatory cytokines.  MCF7 cells were treated 990 

with 100 μM and 1 mM of BMF or Pravastatin after 72 hours. Afterwards, the cell 991 

culture media was collected and the levels of secreted GM-CSF and IL-8 were 992 

determined using an ELISA test.  *p < 0.01; **p < 0.001, evaluated with one-way 993 

ANOVA.  994 

(C) HMGR over-expression elevates 3D-spheroid formation. Note that MCF7-HMGR 995 

cells showed the highest mammosphere formation efficiency (MFE). **p < 0.001, 996 

evaluated with the Student’s t-test. 997 

(D and E) Note that BMF-treatment dose-dependently inhibited 3D-mammosphere 998 

formation, in both MCF7-HMGR and MCF7-EV cells.  Virtually identical results were 999 

also obtained when BMF or Pravastatin was added directly to the mammosphere 1000 

culture media, without any monolayer pre-treatment. *p< 0.01; **/♦♦ p < 0.001; ***/♦♦♦ 1001 
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p < 0.0001, evaluated with one-way ANOVA. MFE (mammosphere formation 1002 

efficiency) is shown and was normalized to 100%.  1003 

(F) BMF treatment inhibits ALDH-activity.  MCF7 cells were pre-treated with BMF or 1004 

Pravastatin (100 μM and 1 mM each) as monolayers for 48 hours and then assessed 1005 

for ALDEFLUOR-activity, as an independent marker of CSCs. Note that treatment 1006 

with BMF or Pravastatin decreases the ALDH-positive cell population. *p < 0.01; **p 1007 

< 0.001; ***p < 0.0001, evaluated with one-way ANOVA.  1008 

(G) Mevalonate restores 3D-spheroid formation, after inhibition with BMF or 1009 

Pravastatin. First, MCF-7 cells were seeded into low-attachment plates for assessing 1010 

3D-mammosphere formation, in the presence of BMF or  pravastatin (100 μM and 1 1011 

mM each). Then, specific metabolites [either: i) Mevalonate (1 mM) or ii) Cholesterol 1012 

(10 μM)] were added, to determine if they could reverse the inhibitory effects of BMF 1013 

and Pravastatin. Note that Mevalonate treatment was indeed sufficient to revert the 1014 

inhibitory effect and restore 3D-mammosphere formation, while cholesterol was 1015 

ineffective. MFE (mammosphere formation efficiency) is shown and was normalized 1016 

to 100%. *p < 0.01, **p < 0.001***, p < 0.0001, evaluated with one-way ANOVA. 1017 

(H) Mevalonate restores ALDH-activity, after inhibition with BMF or Pravastatin. Note 1018 

that Mevalonate treatment was indeed sufficient to revert the inhibitory effect and 1019 

restore ALDH-activity, while cholesterol was ineffective. ***p < 0.0001, evaluated with 1020 

one-way ANOVA. 1021 

(I) Schematic diagram illustrating the key steps involved in mevalonate metabolism 1022 

and cholesterol biosynthesis, which appear to be involved in CSC propagation.  1023 

 1024 

Figure 5: Ingenuity Pathway Analysis (IPA) of proteomics data sets obtained 1025 

from human breast cancer cells, grown as 3D-spheroids, but pre-treated with 1026 

BMF. 1027 

(A) Canonical pathways predicted to be altered by BMF in 3D-spheroids are shown.  1028 

Briefly, MCF7 cells were pre-treated as a monolayer with BMF (1 mM) for 72h; then 1029 

the cells were harvested and allowed to undergo 3D-mammosphere formation. In 1030 

parallel, MCF7 cells were grown as a vehicle-alone treated monolayer. Then, 1031 

comparative proteomics analysis was performed, essentially as outlined in Figure 1032 

S1, where BMF-spheroids (S) were compared with control monolayer (M) cells. As 1033 

expected, certain canonical pathways were significantly altered by the differential 1034 
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protein expression in MCF7 3D-spheres pre-treated with BMF (p < 0.05). The p-value 1035 

for each pathway is indicated by the bar and is expressed as −1 times the log of the p-1036 

value. A positive z-score (Orange color; z-score > 1.9) represents the up-regulation 1037 

of a specific pathway, while a negative z-score (Blue color; z-score < -1.9) indicates 1038 

the down-regulation of a pathway.  1039 

(B) Toxicity effects of differentially expressed proteins in MCF7 3D-spheres (S) pre-1040 

treated with BMF, relative to control monolayer cells (M), are shown. Ingenuity 1041 

Pathway Analysis showed that certain toxicity functions are significantly enriched by 1042 

the proteins differentially expressed in this comparative analysis (p < 0.05). In the Bar 1043 

chart, the p-value for each pathway is indicated by the bar and is expressed as ‐1 1044 

times the log of the p-value (cutoff z-score ± 2).  1045 

(C) HeatMap of the canonical pathways predicted to be altered in 3D-spheres (S); 1046 

T47D, MCF7 and BMF-treated MCF7), all relative to monolayer cells (M). A positive 1047 

z-score (Orange) points towards the activation of a pathway, while a negative z-score 1048 

(Blue) indicates the inhibition of a pathway. Therefore, note that Rho-GDI-signaling 1049 

is normally “inhibited” in T47D and MCF7 3D-spheres, while the same pathway is 1050 

“activated” by BMF-pretreatment in MCF7 cells (Boxed in Red).  1051 

(D) HeatMap of the key regulators identified by proteomics analysis that are either 1052 

increased (Orange) or decreased (Blue), when 3D-spheres (S); from T47D, MCF7 1053 

and BMF-treated MCF7) are compared, all relative to monolayer cells (M). 1054 

 1055 

Figure 6: Pleiotropic effects of BMF on signalling, cell cycle progression and 1056 

mitochondrial protein expression:  Proteomic evidence and validation.  1057 

(A-C) Rho-GDI, RHOA/p27Kip1, STAT1/3 and β-catenin signalling. (A) 1058 

Proteomics analysis: A selection of MCF7 proteins related to Rho-GDI, 1059 

RHOA/p27Kip1, STAT1/3 and β-catenin signalling, that show altered expression in 1060 

response to BMF pre-treatment, are shown. (B) Proteomics validation: Immuno-1061 

blot analysis was used to validate and confirm our results from the proteomics 1062 

analysis of MCF7 3D-spheroids, prepared from cells pre-treated with BMF. For 1063 

example, note that BMF induces p27Kip1 and reduces Cyclin E expression. (C) 1064 

Summary diagram: This illustration highlights the effects of BMF on mevalonate 1065 

pathway synthesis, Rho-GDI signalling and a variety of nuclear events that control 1066 

cell proliferation.  1067 
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(D-F) Mitochondrial OXPHOS and fatty acid oxidation (FAO).  (D) Proteomics 1068 

validation: Immuno-blot analysis was used to validate and confirm our results from 1069 

the proteomics analysis of MCF7 3D-spheroids, prepared from cells pre-treated with 1070 

BMF. For example, note that various OXPHOS complex members were down-1071 

regulated upon BMF-treatment. (E) Proteomics analysis: A selection of MCF7 1072 

proteins related to mitochondrial respiration (OXPHOS) and function, that show 1073 

reduced expression in response to BMF pre-treatment, are shown. (F) Summary 1074 

diagram: This illustration mechanistically highlights the effects of BMF on 1075 

mitochondrial OXPHOS and fatty acid oxidation (FAO).   1076 

 1077 

Figure 7: Prognostic value of HMGR in human breast cancer sub-types. 1078 

To assess the clinical relevance of HMGR, we also determined if HMGR mRNA 1079 

transcript levels show any prognostic value, in human breast cancer patient cohorts, 1080 

with long-term follow-up data (nearly 20 years).  We analyzed both ER(+) and ER(-) 1081 

patient populations. Note that high mRNA levels of HMGR show an association with 1082 

reduced relapse-free survival (RFS), i.e., higher tumor recurrence. (A) All breast 1083 

cancers and ER(+) sub-types are shown; (B) ER(-) breast cancer sub-types are 1084 

shown. More specifically, HMGR had prognostic value in both: i) ER(+) patients, 1085 

normally treated with endocrine therapy and ii) ER(-) patients, consistently treated 1086 

with chemotherapy.  Interestingly, HMGR was especially predictive in the following 1087 

more aggressive breast cancer groups: i) ER(+)/Luminal B and ii) ER(-)/Basal 1088 

subtypes. High mRNA levels of HMGR were also associated with increased distant 1089 

metastasis (DMFS) and poor overall survival (OS) (See also Tables S1 and S2).   1090 
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Figure  S1: Ingenuity Pathway Analysis  (IPA)  of proteomics  data sets obtained  from 

human breast cancer cells, grown as either as 3D-spheroids (S) or cell monolayers (M). 

(A) Canonical pathways predicted to be altered in MCF7 and T47D 3D-spheroids (indicated 

with S), relative to control monolayer cells (indicated with an M). A positive z-score (orange 

color) represents the up-regulation of a specific pathway, while a negative z-score (blue color) 

indicates the down-regulation of a pathway. 

(B) Toxicity effects of differentially expressed proteins in MCF7 and T47D 3D-spheroids (S), 

relative to control monolayer cells (M), are shown. Ingenuity Pathway Analysis showed that 

certain toxicity functions are significantly enriched by the proteins differentially expressed in 

this comparative analysis (p < 0.05). In the Bar chart, the p-value for each pathway is indicated 

by the bar and is expressed as 1 times the log of the p-value (cutoff z-score ± 2). 
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Figure S2: Correlations of proteomics data sets in MCF7 and T47D 

(A-B) Twenty-five proteins involved in the mevalonate pathway and cholesterol 

biosynthesis, were found to be up-regulated (fold change) in MCF7 mammospheres, as 

compared to MCF7 monolayer cells. Moreover, 22 proteins were found to be up-regulated 

in T47D mammospheres, as compared to T47D monolayer cells (all the proteins are listed 

in panel B). This represents an overlap of 88% (22 out of 25), as shown in the Venn 

diagram. 



Table S1. Prognostic Value of HMGR in Human Breast Cancer Sub-types: 
Tumor Recurrences (RFS). 

 
 

Symbol Gene Probe HR (Hazard Ratio) P-value (Log Rank Test) 
 

All Breast Cancers; N=3,951 
HMGR/HMGCR 202539_s_at 1.60 <1e-16 
HMGR/HMGCR 202540_s_at 1.38 6.9e-07 

 

ER(+); N=3,082 
HMGR/HMGCR 202539_s_at 1.53 4.4e-11 
HMGR/HMGCR 202540_s_at 1.30 8.9e-05 

 

ER(+)/Luminal A; N=1,933 
HMGR/HMGCR 202539_s_at 1.37 0.00024 
HMGR/HMGCR 202540_s_at 1.26 0.0072 

 

ER(+)/Luminal B; N=1,149 
HMGR/HMGCR 202539_s_at 1.74 9.7e-09 
HMGR/HMGCR 202540_s_at 1.66 3.6e-05 

 

ER(-); N=869 
HMGR/HMGCR 202539_s_at 1.72 4.1e-07 
HMGR/HMGCR 202540_s_at 1.70 1.3e-05 

 

ER(-)/Basal; N=618 
HMGR/HMGCR 202539_s_at 1.89 5.6e-07 
HMGR/HMGCR 202540_s_at 1.71 9.1e-05 

 

ER(-)HER2(+); N=251 
HMGR/HMGCR 202539_s_at 1.73 0.006 
HMGR/HMGCR 202540_s_at 1.60 0.032 



Table S2. HMGR Predicts Recurrence, Metastasis and Overall Survival in Breast 
Cancer Patients. 

 
Symbol Gene Probe HR (Hazard Ratio) P-value (Log Rank Test) 

 

Tumor Recurrence (RFS); 
All Breast Cancers; N=3,951 
HMGR/HMGCR 202539_s_at 1.60 <1e-16 
HMGR/HMGCR 202540_s_at 1.38 6.9e-07 

 

Distant Metastasis (DMFS); 
All Breast Cancers; N=1,746 
HMGR/HMGCR 202539_s_at 1.71 4.3e-08 
HMGR/HMGCR 202540_s_at 1.42 0.0017 

 

Overall Survival (OS); 
All Breast Cancers; N=1,402 
HMGR/HMGCR 202539_s_at 1.71 7.5e-07 
HMGR/HMGCR 202540_s_at 1.35 0.0071 

 

 


