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Biological invasions: definitions, implications, ecological and evolutionary 

consequences.  

Abstract 

 

The rabbitfishes Siganus luridus and S. rivulatus are two Lessepsian species that have 

invaded a large part of the Mediterranean Sea and offer a unique opportunity to examine 

ecological and morphological variation during the process of invasion and establishment. 

Using and integrated geometric morphometric and stable isotope approach we investigated 

ecological adaptation in these two species from native into novel Southern Mediterranean 

habitats. A total of 490 fish were collected over two years (2014 and 2015), which showed a 

greater overlap in morphological variation in the novel habitat (Mediterranean Sea) compared 

to the native Red Sea. On the other hand, stable isotopes indicated that the invading populations 

segregated trophic niches more starkly than in the native habitat. 

The introduction of genetic markers to infer population expansion uncovered a more 

marked decrease in genetic variation in S. luridus compared to S. rivulatus, during the process 

of invasion. Collectively, data contribute to reconstruct the jigsaw puzzle underpinning the 

success and ecological diversification of these coastal species, raising considerations for their 

management and that of the environment that changes around them. 
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Introduction 

1.1 Biological invasions 

1.1.1 Biological invasions: definitions 

Many definitions have been applied to explain what “invasive species” are; in a number of 

them, the term invasive is associated with established species which are agents of change and 

threaten biological diversity or abundance of native species and the ecological stability 

(environmental impact) of invaded ecosystems (IUCN, 2002; EPA, 2001; Blackburn et al., 

2014). To understand invasion biology, a few terms must be explained. “Invasive species” is a 

broad label (Pereyra et al., 2016) that can be used as a synonym for alien, non-native or exotic 

organisms. A species that has been transferred as a result of human activities over a 

geographical barrier of a native area to a new area is included in this definition (“introduced 

species”). Following Richardson et al. (2000), to analyse the introduction of a taxon, five 

definitions may be employed: 1) Established or naturalized, which is used to describe taxa that 

have the ability to reproduce and sustain a population in the new inhabited area; 2) Casual, 

which describes taxa that cannot reproduce and can be located sporadically; 3) Invasive, which 

is used for introductions that take place in great quantity and affect the native biodiversity 

negatively; 4) Pest, which refers to an introduction of a taxon not wanted by human beings in 

the area; 5) Transformer, which refers to an introduction where a taxon has the capability to 

make modifications in the functioning of the ecosystem. In this thesis, for consistence we will 

use the term invasive, following a combined definition, which consider spread, dominance and 

impact (Pereyra et al., 2016): “A species is invasive because it spreads and has high population 

growth/dominates the invaded assemblage and produces negative impact".  

To understand invasion ecology, it is also important to have adequate knowledge on the 

ecological processes in the systems being studied before the invasion. At the ecosystem level, 

species invasions have primarily negative effects on the native biodiversity (Streftaris and 

Zenetos, 2006; Galil, 2007; Lasram and Mouillot, 2009; Zenetos et al., 2009). However, the 

field of invasion biology is not free from controversy, with studies also showing that invasive 

species may not have necessarily negative impacts on the biodiversity or the performance of 

the ecosystem. In some cases, it has been shown that a non-indigenous species can lead to an 

expansion in ecosystem functions, by adding new ecological roles, increasing the ecological 

traits present and resulting in an increase in functional redundancy (Reise et al., 2006). 
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The invasion process can be separated into four/five phases, as described by Heger and 

Trepl (2003) and Blackburn et al. (2011). These phases are: the arrival phase where a taxon is 

introduced irrespective of the means used; this can be also separated in transport and 

introduction; the establishing phase where a taxon can reproduce in the different biotic and 

abiotic factors in the new habitat; the integration phase where the taxon is able to create new 

ecological connections in the new habitat; and finally the dispersal or spreading phase, where 

the taxon can expand its populations across the new habitat. A taxon that invades an area can 

at times reach a certain climax of density and then suddenly decrease, forming a path known 

as “boom and bust”. 

When an introduced species fails to establish itself in the new environment, it may be due 

to the lack of resources or to strong predatory pressures (Williamson and Fitter, 1996). Studies 

undertaken so far have mostly investigated the circumstances that facilitate these invasions and 

the biological consequences resulting from these intrusions. Most of the facilitators are usually 

physical such as an increase in temperatures of the sea water and a change in climate. Others 

are of a biological nature such as the characteristics of taxa and habitats that can be invaded. 

Biological consequences resulting from invasions determine economic (Streftaris and Zenetos, 

2006) and biodiversity concerns, for example competition with the local key taxa (Golani, 

1993, 1994; Azzurro et al., 2007) or habitat modification (Kalogirou et al., 2007) or the spread 

of new pathogens (Wallentinus and Nyberg, 2007; Bariche et al., 2009). Invasive species often 

owe their success in colonizing new ecosystems to certain characteristics that make them more 

difficult to control and these characteristics include the capacity to thrive in different 

environments and tolerate a wide range of environmental conditions, high growth and 

reproduction rates, a lack of natural predators and an ability to exploit a variety of food sources 

(Otero et al., 2013). 

 

1.1.2. Biological invasions: implications 

The spread and establishment of invasive species is a major concern for the conservation 

of ecosystems (Galil, 2007). In marine ecosystems, the introduction of invasive species can 

have major effects on the biodiversity, and thus effect of the structure and function of 

ecosystems. The understanding of potential effects following the introduction of invasive 

species requires a good knowledge of ecological processes in the ecosystems, such as diversity, 

structure, and function of natural communities. Invasive species are increasingly frequent, and 
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can have detrimental consequences, including the erosion of biodiversity and the disruption of 

invaded ecosystem function. 

Biological invasions in marine habitats represent a recognized worldwide threat to the 

integrity of native communities in new habitats, leading to population losses and extinctions 

on a local scale (Ricciardi, 2004). The extent of the impact has been so severe that invasive 

species are regarded as the second biggest cause of biodiversity loss after habitat destruction. 

However, the effect of most invasive species in new habitats remains unknown, and the 

predictability of their direct and indirect impact remains unclear. 

In general invasive species pose a threat to biodiversity by impacting native species and 

ecosystems (e.g., changing nutrient cycling; consuming or preying upon native species 

changing the whole ecosystem structure and functioning: competing or hybridizating with 

native species). Invasive species may induce habitat modification and alteration of ecological 

conditions and the unintentional introduction of toxic species, parasites and pathogens, may 

have an impact on both the ecosystem and human health (Byers et al., 2010; Streftaris and 

Zenetos, 2006). 

 

1.1.3. Ecological consequences of invasions 

Ecological impacts of invasions can range from the displacement of native species as a 

result of niche overlap and competition for space and food, to a more direct effect where some 

introduced species prey on local wildlife (Olenin et al., 2002). An example of invaders’ impact 

on community-level has been reported by Crooks (1992) and Crooks (2002): the exotic Asian 

mussel Musculista senhousia had a drastic effect on the abundance and diversity of native 

species in mudflat communities in Mission Bay, San Diego. Also, Leonard et al. (1999) 

mentioned that the invader European green crab Carcinus maenas in the eastern USA, can 

substantially alter surrounding habitats through predation on mussels in areas of lower water 

flow than the areas with higher water flow, where green crabs were unable to forage in areas 

of higher flow, communities were dominated by mussels and their associated fauna. The 

Mediterranean Sea harbours around 986 introduced species representing 5.8 % of its known 

flora and fauna (Zenetos et al., 2010, 2012). It can be considered as one of the regions most 

severely affected by marine species invasions. One example is the highly invasive alga 

Caulerpa taxifolia, which can occupy many shallow water habitats and alter their physical and 

chemical environmental conditions, seriously affecting coastal ecosystems, and also causing 
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severe economic impacts on fisheries (Boudouresque et al., 1996). More than 200 invasive 

marine molluscs have been recorded off the Mediterranean coast. Most of them are of Indo-

West Pacific origin and are believed to have entered the Mediterranean through the Suez Canal 

(Zenetos et al., 2012). They display a distinct migration pattern beginning along the 

Mediterranean coast of Israel, moving north to the south coast of Turkey and Cyprus before 

entering the Aegean Sea and pushing westwards towards Malta, Italy and elsewhere.  

Similarly, invasive alien crustaceans can have severe negative impacts on native 

ecosystems. They may completely change native communities through alteration of trophic 

interactions, interference, competition, disease transmission or habitat modification (Snyder 

and Evans, 2006). For example, the crab Percnon gibbesi, probably the most invasive decapod 

species found in the Mediterranean to date, has spread rapidly in the region, forming thriving 

populations in a very short space of time. Its feeding habits (it consumes primarily algae but 

also crabs and other crustaceans, polychaetes, gastropods and jellyfish) may affect the structure 

of benthic communities, particularly algal assemblages, and it may compete with native species 

for food and shelter (Katsanevakis et al., 2011). In addition, eight species of invasive penaeid 

prawns have been recorded in the Mediterranean (Galil, 2007). 

Studies have shown that these exotics compete intensively with native species over space 

and various resources, and this often lead to local displacement or elimination of the native 

species from the invaded area. The presence of the Lessepsian (from the Red Sea, see below) 

goldband goatfish Upeneus moluccensis resulted in the decline of the native Mullus barbatus 

in shallow waters. Similarly, the brushtooth lizardfish Saurida undosquamis invasion affected 

the native Merluccius merluccius and Synodus saurus presence in shallow waters. Today M. 

barbatus and S. saurus are found mainly in deeper waters along the Levantine coast (Golani 

and Ben Tuvia, 1995). Further studies indicated that the Lessepsian Siganus rivulatus, and 

probably Siganus luridus are replacing the native Sarpa salpa while the narrow-barred 

mackerel Scomberomorus commerson is replacing the native Argyrosomus regius off the 

Levant (Bariche et al., 2004; Galil, 2007). 

The native prawn Melicertus kerathurus has been outcompeted by various Lessepsian 

prawns in the Levant and off Turkish waters (Galil, 2007). The very common Lessepsian 

bivalves Pinctada radiata, Chama pacifica and Spondylus spinosus have replaced native 

Mediterranean bivalves. It is not clear whether Portunus segnis, which constitutes the only crab 

of substantial commercial interest along the Levantine coast, has outcompeted a native species 
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or not. The seasonal abundance of the Lessepsian jellyfish Rhopilema nomadica is certainly 

damaging fishery catches (feeding on larvae, clogging nets, damaging fishes in trawls and 

seines) and affecting the tourism sectors (venomous stings) in the eastern Mediterranean. The 

dramatic spread of other highly poisonous fishes such as the pufferfish Lagocephalus 

sceleratus along the Mediterranean coasts can also cause severe economic impacts on fisheries: 

their flesh is toxic when consumed and the fish damage both fishing gear (long lines, entangling 

nets) with its strong teeth. Other common Lessepsian species, with commercial importance or 

not, are probably engaged in intense competition with (or have already outcompeted) native 

species, and are thus causing an unknown damage to the Mediterranean fishery and 

environment. 

 

1.1.4. Evolutionary consequences of invasions 

Invasive species evolve in response to new environmental factors in new habitats and in 

response to their interactions with native species. Recent studies have shown that invaders 

can rapidly adapt to the new environments in which they find themselves (e.g., Huey et al., 

2000). The knowledge about consequences of individual genetic changes in invasive species 

is still poor. Ferrero et al. (2015) pointed out that the features of successful invasive species 

are the ability to invade a wide variety of habitats, without genetic variation between them. 

While it is not surprising that an invasive species would evolve in its new habitat in response 

to a new set of selective pressures, changes in its genetic structure might also happen if 

successful mating with closely related species occur. These genetic changes are related to 

hybridization (mating between two different species or two genetically distinct populations) 

and introgression (the incorporation of genes from one species or population to another 

through hybridization that results in fertile offspring that further hybridize with parental 

populations or species, “backcross”). Over several generations, introgression can result in a 

complex mixture of parental genes, while in simple hybridization 50% of genes will come 

from each of the two parental species.  

Studies of genetic diversity and the potential for rapid evolution of invasive species may 

provide useful insights into what allow species to become invasive. More information about 

the genetics and evolution of invasive species or native species in invaded communities, as 

well as their interactions, may lead to predictions of the relative susceptibility of ecosystems 
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to invasion, identification of potential future key alien species, and predictions of the 

subsequent effects of removal. 

The evolutionary genetics of invasive species could offer insights into mechanisms of 

invasions. Recent studies suggest that the invasion success of many species might depend 

more heavily on their ability to respond to natural selection than on broad physiological 

tolerance or plasticity (Bucciarelli et al., 2002; Karako et al., 2002; Bonhomme et al., 2003; 

Hassan et al., 2003; Azzurro et al., 2007; Terranova et al., 2006; Iannotta et al., 2007). Thus, 

these studies stress the importance of genetic architecture, selection upon which could result 

in evolutionary adaptations and possibly speciation.  

Invasive species faces various pressures when inhabiting new environment and according 

to the fundamental principles associated to population genetics, the genetic variability of 

these invasive species will determine how capable they are in adapting to the environment. In 

any biological invasion, many invaders will often go through variable time periods from the 

initial colonization to the successive population advance and expansion. Holt and colleagues 

(2005), claims that this variable time periods have diverse ecological and demographic 

effects, or it may be determined by the needed time for the evolutionary adaption to the new 

environment. 

Finally, there has been a wealth of studies in recent years examining genomics and 

adaptation of invaders. For example, Bock et al. (2014) suggested that the rapid adaptation is 

not linked by genetic variation in an invasive species, also as they pointed out that population 

bottlenecks and genetic drift typically have negative effects on invasion success. Also, 

Dlugosch et al. (2015) suggested to link the genetic structure and comparative demographic 

analyses to study genetic changes and evolution of invasive species. The scale of processes 

invasion has genetic consequences as the genetic variation can affect of successful 

establishment. Kinnison and Hairston (2007) and Gaston (2009) reported that the knowledge 

of the population-level consequences of individual genetic changes is still poor. Keller et al. 

(2014) reported that the assessing genetic consequences for the invasive species depends the 

occurrence of multiple invasive species and admixture. Dlugosch et al., (2015) explanied talso 

hat the ecology and demography of populations should be taken into account when interpreting 

patterns of genetic diversity in invasive species.  
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1.1.5. Mediterranean biodiversity 

The term biodiversity refers not only to the number of species living in an area, but more 

broadly includes genetic variability and species interactions. The Convention on Biological 

Diversity defines biodiversity as “the variability among living organisms from all sources and 

ecological complexes of which they are part; this includes diversity within species, between 

species and of ecosystems” (www.biodiv.org).  

Coll and Colleagues (2010) have recently estimated the number of species in the 

Mediterranean Sea in the order of 17,000. Their list includes13.2% crustaceans, 12.4% 

mollusks, 6.6% annelids, 5.9% platyhelminthes, 4.5% cnidarians, 4.1% vertebrates, 4.0% 

sponges, 2.3% bryozoans, 1.3% tunicates and 0.9% echinodems. The remaining species are 

composed by other invertebrate groups (14%), plants (5%) and prokaryotes (26%).The 

Mediterranean contributes to a substantial proportion of biodiversity, corresponding to 

somewhat around 25% of world marine species, which is a conspicuous value if one considers 

that the Mediterranean Sea corresponds only to the 0.82% in surface area (Bianchi and Morri, 

2000; Coll et al., 2010) and 0.32% in volume of the world oceans (Rilov and Galil, 2009). 

However, Bas et al. (1985) explain that the Mediterranean, despite its great diversity, has very 

few dominant species. Flora and fauna found in the Mediterranean have undergone millions 

years of evolution that have turned the Mediterranean Sea into a unique mixture of subtropical 

and temperate elements, and a large proportion of endemic species (Zenetos et al., 2009).  

The Mediterranean Sea biota is constituted primarily of Atlantic-Mediterranean species 

which make up 62.2% of the total number of species, obtained from adjacent biogeographic 

provinces in the Atlantic Ocean, beyond the strait of Gibraltar. It is also noteworthy that a large 

part of species in the Mediterranean are endemic (21.95%), while others are cosmopolitan, 

being either Indo-pacific (5%) or circumtropical (13%; Coll et al., 2010). There are differences 

in proportions among the main taxonomic groups, as well as among the different regions of the 

Mediterranean Sea. Currently, the Mediterranean biodiversity is undergoing fast change, 

caused of climate change and human activities. 

Since the opening of the Suez shipping Canal in 1869, the Mediterranean Sea is 

experiencing a significant influx of Red Sea species, a phenomenon known as ‘Lessepsian 

migration’ in recognition of Ferdinand de Lesseps, the French diplomat who developed the 

Suez Canal. During the last ten decades, at least 300 Indo-pacific marine animal species 

penetrated the Mediterranean Sea (Por, 1978; Boudouresque, 1999; Galil, 2000). These 
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introductions have produced important changes in species composition of Mediterranean 

communities and have resulted in mixed Red Sea-Mediterranean communities (Fishelson, 

2000; Galil, 2000). Lessepsian species now acclimated in the Mediterranean include algae, sea 

grasses, various invertebrates and fish (Golani, 1998). 

Rilov and Galil (2009) discuss the history, distribution and ecology of marine bioinvasions 

in the Mediterranean. The authors divided the Mediterranean into three regions: western, 

central and eastern and described a gradient of increasing species diversity toward the east from 

the west in the Mediterranean: among all major groups of plants and animals, the number of 

species tends to be lower toward western Mediterranean as compared to the eastern and central 

parts of sea (Fig. 1). 

 

Figure 1. Spatial patterns of invasive species in the Mediterranean. Numbers indicate the percentage of 

each taxa (F: Fish; C: Crustacea; M: Mollusca) in each region of the Mediterranean (please note that 

the sum of the percentages is more than 100% as some species occur in more than one region). Pie 

charts indicate the percentage (all taxa pooled) with either Pacific (black) or Atlantic (white) origin. 

From Rilov and Galil (2009). 

 

According to Ketchum (1983), the littoral and benthic populations reveal a similar change 

in the diversity of species as well as numbers, with a notable decrease towards the east from 

west, and toward south from the northern Adriatic. There are differences in proportions among 

the main taxonomic groups, as well as among the different regions of the Mediterranean Sea. 

Currently, Mediterranean biodiversity is undergoing fast change, caused of climate change and 

human activities. 
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1.1.6. Biological invasions in the Mediterranean Sea 

These introductions have produced important changes in species composition of 

Mediterranean communities and have resulted in mixed Red Sea-Mediterranean communities 

(Fishelson, 2000; Galil, 2000). The Suez Canal has become a link between biotas: it links the 

tropical Red Sea (rich in bio-diversity) with the semi-tropical Eastern Mediterranean (poor in 

bio-diversity). The Mediterranean Sea is presently believed to be the main hotspot on earth for 

bio-incursions (Rilov and Galil, 2009) and it is the main receiver of invasive species across a 

variety of taxa, from macrophytes to invertebrates and fish (Streftaris and Zenetos, 2006). 

Invasion in the Mediterranean Sea has been increasing in recent years and this has had serious 

economic, social, and ecological consequences (Streftaris and Zenetos, 2006). There is, 

however, no comprehensive documentation of the true scale of biological impacts caused by 

the invasive species that have been introduced via the Suez Canal, making it difficult to 

generalize and devise mitigating strategies (Rilov and Galil, 2009). However, it can be argued 

that some invasive taxa have had very strong biological impacts (Kalogirou et al., 2007; 

Bariche et al., 2009).  

According to Galil (2009), the opening of the Suez Canal resulted to a great influx of 

hundreds of organisms which gained passage from the Red Sea. Golani (2010) explains that 

the Lessepsian migration had profound effects on the Mediterranean biota due to the 

displacement of native fish species by competing invaders. However, due to the fact that no 

extinction has been recorded thus far at the basin level, this increase in new species has 

contributed to an increase in diversity of species dwelling at the regional level. In order to 

assess and manage the increasing impacts of Lessepsian invasions on Mediterranean biotas, 

further investigations are needed on the process of establishment of key invaders. According 

to updated checklists presented by Zenetos et al. (2010, 2012), a total of 986 invasive species 

were known in the Mediterranean as of December 2012. Based on the Mediterranean Action 

Plan for invasive species, the main known pathway/vector of species introduction into the 

Mediterranean Sea is indeed the Suez Canal followed by shipping and  aquaculture (both 

marine and brackish species) and trade in live marine species (UNEP-MAP-RAC/SPA, 2005). 

Marine invasive species are regarded as one of the main causes of biodiversity loss in the 

Mediterranean. There were 48 new entries since 2011 which can be interpreted as 

approximately one new entry every two weeks (Galil, 2007; Coll et al., 2010). More than 5% 

of the marine species in the Mediterranean are now considered non-native species (Zenetos et 
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al., 2012). According to the latest regional reviews, 13.5% of those species are classed as being 

invasive in nature, with macrophytes (macroalgae and seagrasses) the dominant group in the 

western Mediterranean and Adriatic Sea (Fig. 2), and polychaetes, crustaceans, ascidians and 

ctenophores (Fig. 3), molluscs (Fig. 4) and fishes (Fig. 5) in the eastern and central 

Mediterranean (Galil, 2009; Zenetos et al., 2010, 2012). 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

Figure 2. Selected invasive algae in the Mediterranean (from Otero et al., 2013). 
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Figure 3. Patterns of spread of invasive crustacean, ctenophoran and ascidian species in the 

Mediterranean (from Otero et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Patterns of spread of invasive molluscs species in the Mediterranean (from Otero et al., 2013). 

Marsupenaeus japonicus , Metapenaeus monoceros , Metapenaeus stebbingi , Percnon gibbesi , Herdmania momus , 

Mnemiopsis leidyi , Microcosmus squamiger .  

Aplysia dactylomela ,Arcuatula senhousia , Brachidontes pharaonic , Bursatella leachii , 

Chama pacifica , Crassostrea gigas , Crepidula fornicate , Limnoperna secures , 

Pinctada imbricate radiata , Rapana venosa , Spondylus spinosus , Venerupis philippinarum
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Figure 5. Patterns of spread of invasive fish species in the Mediterranean. Data include scientific name, 

first record and the distribution for each species in the Mediterranean Sea. 

 

The Suez Canal has supplied the largest number of successfully established aliens in the 

Mediterranean Sea in terms of magnitude, frequency and duration of transfer. For decades, the 

ongoing migration of marine species through the Suez Canal has helped to explain the richness 

of Red Sea invasive species in the eastern Mediterranean Sea, particularly in the Levant area 

(the south to Palestine, Lebanon and Syria in the east). 
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 1.1.7. Biology and behaviour of invasive fish species 

The oceans and seas are tremendously diverse and species-rich. They are home of 

countless organisms living in very different ecosystems. There are over 30,000 fish species in 

the world. Each of these fish types is part of a habitat, an ecosystem, and exists in complex 

interdependence with many other species in a food web. Fish are a vital component of marine 

habitats. 

The Mediterranean Sea is inhabited by about 716 species of fish (Froese and Pauly, 2011); 

80 are invasive and originate from the Indo-Pacific and the Red Sea (Cicek and Bilecenoglu, 

2009; Bariche, 2010; EastMed, 2010; Golani, 2010). According to Simberloff and Rejmánek 

(2011), some of these immigrants became more dominant in the new environment, both 

numerically and ecologically, with overwhelming ecological impacts and large economic costs. 

Others, on the other hand, were unable to thrive in the new environment. The prediction of the 

species that will fall in each of the categories is an urgent but daunting task for ecologists, so 

much so that some have considered it the final goal of invasion biology (Kolar and Lodge, 

2001). Numerous attempts have been made at seeking accurate prediction methods of the 

features of the invaders, as well as the invaded ecosystems (Catford et al., 2009). However, so 

far few studies have revealed traits linked to invasiveness, and the data requirement for those 

studies require the gathering of multiple data, such life history data, network structure and 

phylogeny (Olden and Rooney, 2006; Schaefer et al., 2011; Park and Potter, 2013). 

Basing emphasis on the limited similarity hypothesis (MacArthur and Levins, 1967), there 

is a prediction of lesser opportunity of becoming abundant, for species that share similarities 

to others, as a result of greater interspecific competition. Recent theories regarding invasions 

agree that these differences which are understood as taxonomic, functional, or ecological in 

nature, make it possible for invaders to utilize unexploited niche opportunities to keep away 

from direct competition with inhabitant species (Shea and Chesson, 2002). There are other 

hypotheses, such as the biotic resistance hypothesis and the empty niche hypothesis (Mack et 

al., 2000) which integrate the central relationships between niche parallels, and competition. 

Ergo, a central theme emerges within these theories, whereby a concept of commonality in the 

acceptance of niche space within the recipient communities, as a main factor influencing the 

likelihood of success for the newcomers (Olden et al., 2003). 

Only two Lessepsian species, Fistularia commersonii and Siganus luridus have so far been 

recorded along the French coast in the north-western Mediterranean, the farthest point from the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287335/#b46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287335/#b46
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Suez Canal. These two species display different patterns of colonization:  F. commersonii (see 

Fig.5 orange circle), widely distributed in the Indo-Pacific and eastern-central Pacific, was first 

recorded in the Mediterranean in January 2000 along the coast of Israel. Since then, the species 

has quickly spread throughout, reaching France in just 6 years. Siganus luridus instead (see 

Fig. 8 below, violet circle), usually found in the western Indian Ocean and Red Sea was first 

recorded in the Mediterranean in 1956 and progressively continued its geographical expansion 

through the eastern basin. It reached north-eastern Tunisia around 1970, but crossed the Strait 

of Sicily only in 2004; it reached the French coast in 2008 (Daniel et al., 2009). 

 

1.2. Siganidae 

Kingdom: Animalia 

Phylum: Chordata 

Class: Actinopterygii 

Order: Perciformes 

Family: Siganidae 

Genus: Siganus 

Species: S. luridus and S. rivulatus 

(http://www.fishbase.org ) 

 

The Siganus fishes, or ‘rabbitfishes’, are small-sized and short-lived (4-6 years) and belong 

to the family Siganidae (Shakman et al., 2008). The members of this family have a wide 

geographical distribution in the tropical and subtropical areas. Four Siganus species live in the 

Red Sea: S. luridus, S. rivulatus, S. stellatus and S. argenteus and two of them, S. rivulatus and 

S. luridus, invaded the Mediterranean Sea through the Suez Canal and have established 

themselves in the eastern Mediterranean Sea (Ben-Tuvia, 1966). They are now spread on the 

Egyptian, Palestinian, Turkish, Greek, Cypriot, Italian, Tunisian, and Libyan coasts. It is clear 

from the geographical distribution of the Siganidae that they have succeeded in migrating from 

the Red sea environment with high salinity and specific food availability to the east and west 

of the Mediterranean which has different salinity and food availability. 

Rabbitfish are herbivorous and feed by nibbling the marine vegetation, usually grazing in 

schools with head directed downwards, so they live mainly around reefs and weedy areas. Their 

bodies are compressed, oval in outline and covered with minute scales that are smooth in touch. 

http://www.fishbase.org/
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The small mouth is equipped with a row of close-set teeth in each jaw. They have poisonous 

dorsal and anal spines for armour. The mucus covering the spines is toxic and although not 

fatal to man (Woodland, 1983) can produce unpleasant swelling and pain. For this reason they 

should be handled with care. Siganus fishes have important commercial value; most species 

are appreciated for consumption and fetch medium to high prices in the markets (Shakman and 

Kinzelbach, 2007). 

 

1.2.1. Siganus luridus (Dusky spinefoot) 

The body is deep, ellipsoid, and compressed (Fig. 6); the scales are small and embedded 

in the skin. Total length is commonly 5–20 cm. The dorsal fin (13–14 spines and 10 soft rays) 

begins above the pectoral fin base. The pelvic fin begins behind the pectoral fin base; the anal 

fin has 7 spines and 9 soft rays. The mouth is small with distinct lips. The maxilla does not 

reach the vertical plane through the eye and the incisor teeth are in a single row. The colour is 

dark brown to olive green with a touch of yellow on the fins, but varies regionally. At night, 

the colour is very mottled. It feeds on a wide range of benthic algae, mainly coarse brown algae, 

but seagrasses are also reported in its diet. Siganus luridus feeds at more or less the same rate 

in all seasons.  

 

 

 

 

 

 

 

 

 

Figure 6. Siganus luridus (FAO; 1983) 

 

The dusky spinefoot is a species usually found in the western Indian Ocean and Red Sea. 

It was first recorded in the Mediterranean in 1956 along the Palestine coast and progressively 

continued its geographical expansion through the eastern Mediterranean. It is widely 

distributed nowadays in the central and western parts of the Mediterranean and was first 
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recorded in Tobruq, Libya in 1970 (Stirn, 1970; Shakman et al., 2008) and in Tunisia in 1971 

(Ktari and Bouhalal 1971; Ktari and Ktari, 1974). Recently a newly settled population has been 

recorded on the Italian island of Linosa (Azzurro and Andaloro 2004). In 2008, two specimens 

were caught along the French Mediterranean coast at a depth of about 5-10 m in a site mostly 

characterized by rocky bottoms mixed with Posidonia oceanica beds. In 2010, it was also 

recorded in two different localities in the Adriatic Sea (Gulf of Trieste and southern Adriatic 

Sea, island of Mljet). Several specimens were also observed and photographed in France close 

to the Italian border between November 2011 and July 2012. 

 

1.2.2. Siganus rivulatus (Marbled spinefoot) 

This medium-sized fish has an ellipsoidal, compressed body (Fig. 7) covered with small 

scales embedded within the skin. It grows to a length of 5–25 cm. The dorsal fin has 13–14 

spines and 10 soft rays. Key taxonomical features for this species’ identification are pelvic fins 

with two stout spines connected by a membrane to the abdomen, and the forked tail fin. The 

mouth is small with distinct lips. Body colour is brown to grey green, and light-brown to yellow 

on the belly. There are fine, often faint, yellow-gold stripes on the lower half of body.  

 

  

Figure 7. Siganus rivulatus (FAO; 1983) 

 

The marbled spinefoot lives in shallow waters, preferring hard bottoms of compacted sand 

with rock, usually covered with vegetation. Adults live in small groups of 50 to several hundred 

individuals, feeding mainly green and red algae, such as Ulva spp. and Hypnea spp., and 

seagrasses (P. oceanica). The marbled spinefoot is a species usually found in the western 

Indian Ocean and Red Sea. It was first recorded in the Mediterranean in 1927 (Shakman et al., 

2008) along the Palestinian coast and spread progressively through the eastern Mediterranean: 
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Syria, Cyprus, the Aegean Sea, Libya, Tunisia, the Ionian Sea and the southern Adriatic 

(Croatia). Siganus rivulatus has not yet been reported from the western Mediterranean; 

however, its presence has been suspected in Corsica since 2010. Although erroneausly reported 

in the literature, S. rivulatus does not appear to have established in Maltese waters (Schembri 

et al., 2012). 

 

1.2.3. Implication of Siganus species invasions 

 After the initial spread in the eastern Mediterranean, both Siganus species have been 

recorded by many authors all around the Mediterranean basin (George et al., 1964; Kavallakis, 

1968; Demetropoulos and Neocleous, 1969; Sala et al., 2011; Fig. 8). 

They strongly interact and compete with native herbivorous fish species with whom they 

share a common habitat and diet, including Sarpa salpa (Sparidae) and Sparisoma cretense 

(Scaridae) (Shakman and Kinzelbach, 2007) through competition for food resources (their diets 

overlap considerably) and habitat. The grazing pressure by both fish populations has severely 

reduced the composition and biomass of algal assemblages (Sala et al., 2011), creating and 

maintaining underwater barren grounds composed solely of bare rock and patches of crustose 

coralline algae.  

The spawning season lasts from May to September. Barich et al., (2002) reported that 

spawning occurred in June in S. rivulatus and from May to July in S. luridus, but various studies 

have reported a spawning season ranging from 2 to 7 months for the two siganids in the Red 

and Mediterranean Sea (Popper and Gundermann, 1975; Popper et al., 1979; Amin, 1985; 

Hussein, 1986; Saad and Sabour, 2001). A second spawning in September (George, 1972) or 

an extension of the first spawning to November (Mouneimné, 1978) was suggested for S. 

rivulatus in the Mediterranean Sea as young-of-the-year were found in the autumn. Water 

temperature plays a role in the determination of the timing and duration of spawning season 

(Lam and Soh, 1975; Popper et al., 1976; Amin, 1985). 



22 

 

 

Figure 8. Location map of the records of Siganus luridus (orange dot) and S. rivulatus (violet dot) along 

the Mediterranean coast. 

 

In the eastern Mediterranean Sea, seawater temperature is higher in summer and lower in 

winter than in the Red Sea. High temperature in summer appeared to be a limiting factor in the 

gonadal development of both siganid species, which have reduced their breeding seasons on 

the Lebanese coast compared to their native Red Sea: Popper and Gundermann (1975) noted 

that both invaders shortened their spawning season in the new environment.  

There have been attempts to breed S. rivulatus in different areas (Ben-Tuvia et al., 1973, 

Popper et al., 1973, 1979). In the Jeddah region (Saudi Arabia), the marbled spinefoot reaches 

200 to 300 g body weight after nine months feeding in cages (Thebaity et al., 1984). Its 

reproduction  was intensively studied in the Red Sea (Popper et al.,1979; Hashem, 1983; Amin 

1985) and also in the eastern Mediterranean (George, 1972; Hussein, 1986; Saad and Sabour, 

2001; Bariche , 2010). There are a few studies on the reproduction of S. luridus in the Red Sea 

(Popper and Gundermann, 1975, Golani, 1998) and a few studies also in the eastern 

Mediterranean (Mouneimné, 1978; Golani, 1993; Bariche , 2010). 

Both species are distributed and established along the Libyan coast and they have become 

of commercial value, especially in the western part of the Libya and the Gulf of Sirte (Golani, 
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2002; Bilecenoglu and Taskavak, 2002; Torcu and Mater, 2000; Shakman and Kinzelbach, 

2007). Despite their commercial exploitation, information on the biology and population 

structure of these species is scarce. Therefore, the present work aims to compare some 

biological aspects and the genetic composition of the rabbit fishes S. luridus and S. rivulatus 

harvested from the natural fisheries of the Cyrenaican coast in Libya and Red Sea in Egypt. 

 

1.3. Aims of the study 

The main goal of this study is to conduct an interdisciplinary investigation on the ecology 

of two, now common, conspicuous components of coastal biodiversity in Cyrenaica, North-

eastern Libya: the ‘rabbitfishes’ (Siganidae) Siganus luridus and S. rivulatus. The investigated 

area covers nearly 700 km of Libyan coastlines and two locations in Egypt, and compares traits 

between and within the two Siganus species, from invaded and native areas. The study is 

expected to advance knowledge of the process of Lessepsian fish migrations and will contribute 

to the global understanding of successful coastal fish invasions. 

The aim of the study can be split into the following three specific objectives (with their 

related testable hypotheses). 

 

1.3.1. Shape variation in sympatric S. luridus and S. rivulatus, in relation to their novel 

and native habitats 

a) S. luridus and S. rivulatus will exhibit interspecific shape differences and intra-specific 

variance between native and novel habitats. 

b) Using complementary data from other components of the thesis, it will be possible to 

test: 

a. Relationships between morphological and trophic variation. 

b. Relationships between morphological and genetic variation. 

 

1.3.2. Trophic level and niche overlap of S. luridus and S. rivulatus in native and novel 

habitats 

a) S. luridus and S. rivulatus will exhibit differences in relative trophic status between 

native and invaded areas, as a result of changed resource use. 

b) Niche overlap/segregation between the two species will be different in native and novel 

habitats, due to changes in overall ecological interactions. 
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c) Combining trophic and morphometric data will allow exploration of the potential role 

of trophic adaptation in affecting body shape. 

 

1.3.3. Comparative phylogeography of the Lessepsian invaders: S. luridus and S. rivulatus 

a) Genetic depletion and founder effect is expected to be stronger in the species that has 

colonized the Mediterranean for the shorter time. 

b) Differences in the degree of spatial substructure can reflect differences in dispersal and 

connectivity between the two species. 

c) Increased genetic diversity can underlie continued influx of Lessepsian migration from 

areas of origin. 

 

1.4. Study areas and sampling design 

1.4.1. Native area of distribution of Siganus 

Two native populations of S. luridus and S. rivulatus were studied in the Red Sea. The 

Red Sea extends between 20.2802° N, 38.5126° E and has a number of unique features. It is 

the warmest of the world’s seas. The climate is equatorial (35-41°C). The average water 

temperature is 18-21°C in winter and 21-26°C in summer. Surface water temperatures remain 

relatively constant at 21-25°C. The Red Sea has relatively little water exchange with the 

Mediterranean Sea and the Indian Ocean, and is regarded as an enclosed Sea. No rivers flow 

into the Red Sea; this, in addition to high temperatures, results in very high levels of salinity 

and other dissolved salts. The Red Sea is the most saline sea with salinity of 41 ppm at the Gulf 

of Suez and 39 ppm of salt at the southern end (the salinity is higher than in the open ocean; 

Ben Abdallah et al., 2005; Shakman and Kinzelbach, 2007). 

 

1.4.2. Invaded area of Siganus along the Libyan coast 

The Mediterranean Sea extends between latitudes 30° and 46° N and longitudes 5°50′ 

W and 36° E. Its west-east extent - from the Strait of Gibraltar between Spain and Morocco to 

the shores of the Gulf of Iskenderun on the south western coast of Turkey - is approximately 

4,000 km, and its average north-south extent, between Croatia’s southernmost shores and 

Libya, is about 800 km. The Mediterranean Sea, including the Sea of Marmara, occupies an 

area of approximately 2,510,000 km2. 
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The highest temperature of the Mediterranean is in the Gulf of Sidra, off the coast of 

Libya, where the mean temperature in August is about 31°C. This is followed by the Gulf of 

Iskenderun, with a mean temperature of about 30°C. The lowest surface temperatures are found 

in the extreme north of the Adriatic, where the mean temperature in February falls to 5°C in 

the Gulf of Trieste. Ice occasionally forms there in the depth of winter. In the deep zone the 

temperature range is small, approximately 12.9 °C at 900 metres and 13.1°C at 2,500 metres 

and temperatures remain constant throughout the year (Ben Abdallah et al., 2005). 

The salinity of the Mediterranean is uniformly high throughout the basin. Surface waters 

average about 38 ppm except in the extreme western parts, and the salinity can approach 40 

ppm in the eastern Mediterranean during the summer. Deepwater salinity is 38.4 ppm or 

slightly less. 

Libya presents a coastline of about 2,000 km on the Mediterranean Sea. Its continental 

shelf covers almost 57,000 km2, stretching up to 2,000 m deep and most of the area is located 

in the western part of the country, between Boirat Al-Husnon and the Tunisian border. The 

Libyan coast has been divided into three main areas of fishing, a western region stretching from 

Ras Agadir (at the farthest west) to the eastern city of Misurata, then the middle or central 

region, which ends at the east of Zueitina then Cyrenaica, which ends at the papyrus area, 

within the region of our study. Libyan shores have abundant natural resources for fisheries that 

are still untapped in full and have the ability to absorb more investment to increase production 

after doing a number of environmental and biological studies, which aim to improve the 

exploitation and management of marine fisheries production (FAO, 1999). Several studies on 

local ichthyofauna have been conducted on Libyan waters, including a study by Vinciguerra 

(1881), who recorded 17 species of fish. More detailed studies were conducted during the 

second half of the twentieth century. For instance, Aldebert and Pichot (1973) studied a variety 

of flat fishes while Duclerc (1973) concentrated in Scorpaenidae. Additional surveys saw the 

generation of more detailed checklists, such as one from 1971 which listed 62 species in the 

western part of the country (Gorgy et al., 1972). In 1977, a total of 131 fish species were 

registered (Sogreah, 1977). On the same year, 39 cartilaginous fish species were listed, 

alongside 185 osteichthyes (Contransimex, 1977). Studies by Zupanovic and El-Buni (1982) 

which made use of demersal fishing gear concluded that Libyan waters had a potentially 

moderate productivity of fish. The authors further noted that fish fauna in Libya was mainly 

linked to that found in the eastern part of the Mediterranean Sea, which contains the Levant 
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Basin. Towards the Benghazi region to the eastern part of Libya, a total of 201 species of bony 

fishes were listed, which belonged to 71 families and 15 orders (Al-Hassan and El-Silini, 1999). 

More recent surves (Lamboeuf and Reynolds, 1994; Lamboeuf, 2000). According to 

Whitehead et al. (1984; 1986), the assumption that the entire Mediterranean is composed of 

similar fish species is unrealistic, based on the observable regional specification in this sea. 

 

1.4.3 Cyrenaica coast 

The Cyrenaica province is located in the north-east of Libya, stretching on the 

Mediterranean coast in the north, to the Green Mountain in the south, and bounded from the 

east by the Egyptian border and from the west by the Sirte area. Its coastline extends over 1000 

km with important portions that are still in very good natural condition. The longest stretch of 

the Cyrenaicaan coast, with simple coastal structures, dominated by sandy shores, of different 

sizes and topography, such as the eastern and middle parts represented by flat sandy coasts, 

with few medium-elevated parts around halophytic vegetations, have freshwater input, giving 

a brackish-rich habitat. The Cyrenaican coast is mainly rocky and the continental shelf is steep 

and narrow. The coastal and marine area of Cyrenaica in Libya has been described as one of 

the "last ten paradises” of the Mediterranean Sea (Bazairi et al., 2013). The coastal area 

contains sea grass meadows making it an important fish nursery area. Sea turtles Caretta 

caretta nest on the adjacent beaches (Pergent et al., 2012). Two important Mediterranean 

marine biodiversity hotspots have been identified and protected (Ain algazaland and El-Kouf 

National Park). Still little information is available from recent year about the biodiversity in 

the Cyrenaican coast. 

The Tobruk coast lies about 130 km from the Egyptian borders. It has a small gulf 

(about 8 km2) with commercial, fishing and big petroleum ports. Ain Ghazala is located in a 

very small gulf (about 60 km). This area has the highest number of small islands in Cyrenaica. 

Miocene limestone formations cover most of this sector, making coastal slopes of over 40 m 

east of Tobruk. The remaining coasts vary from low to medium elevated rocky shores to gravel 

coasts, with limited small sandy beaches, in some areas less than 1000 m long, as in the northern 

Aïn Ghazala beaches.This area includes alternation of short sandy and sandy/pebble beaches, 

generally about 1 km long each, intersected by a rocky low to medium elevated coast (Fig. 9). 

The area is well preserved thanks to limited human access. Together with the nearby Ain 

Ghazala, it is an important site for sea turtle nesting. The marine waters are shallow with 
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important seagrass meadows and diverse fish communities. It is an important passage for 

migratory birds from Europe to Africa. 

 

 

 

 

 

 

 

Figure 9. The sandy beach in the Cyrenaica coast. 

The geomorphology of Green Mountain coast (Susah and Al-Haniya) is marked by the 

presence of coastal slopes and caves, caused by either karstic or marine erosion of the medium 

elevated limestone coastline. The remaining part is less elevated and specifically rich in coastal 

lagoons and sebkhas that connect with the sea. The steepest and most elevated Cyrenaican 

coasts are to be found in this section, as some limestone coastal formations reach >100 m 

(Susah and Al-Hanyia), with the Green mountain running down to the sea, directly or with a 

very narrow coastal plain. This area is also relatively richer in coastal headlands (e.g. Ras 

Buazza, Ras Karsa, Ras Hilal and Ras Amer). The high elevated slopes are intersected with 

deep narrow wadis, emptying into narrow bays. 

The limestone formations of the Green Mountain meet up with a succession of small 

bays (from 600 m to 4 km wide) including short sandy beaches. The beaches are important 

marine turtle nesting sites and monk seal have been sighted in the area. Inland, the Green 

Mountain hills and woodland offers high biodiversity with typical Mediterranean fauna and 

flora, in near-natural condition. 

 These areas are characterised by high marine and coastal biodiversity and are in need 

of immediate action to protect such important hotspots. Three locations in the Cyrenaica coast 

(Fig. 10), are reported as a well-preserved environment with a variety of diversified 

assemblages and natural monuments which are unique in the Mediterranean Sea and associated 
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with an exceptional biological wealth (Pergent et al., 2012). These sites presentsalt marshes, 

with Salicornia arabica and common reed (Phragmites communis) and sharp-pointed rush 

(Juncus acutus) fringes and meadoews of seagrasses Cymodocea nodosa (which cover 77% of 

the lagoon) and Posidonia oceanica.  

The large seagrass meadows at Ain El Ghazala are reported as an indicator of absence 

of pollution (Reynolds et al., 1995). Pergent et al., (2006) report a list of 26 water birds and 10 

terrestrial birds in the area of Ain El Ghazala (Fig. 11). In  surveys carried out in 2005 and 

2006 (Azafzaf et al., 2006) over 500 birds, including cormorants, waders and gulls, were 

observed at Temimi salt marsh in both years, while at Ain El Ghazala there were over 300 in 

2005 and 600 in 2006, mainly grebes and cormorants, plus some waders, gulls and terns. Ain 

El Ghazala has been recognized as an Important Bird Area by BirdLife International and has 

been suggested as a wetland of international importance under the Ramsar Convention and as 

a Specially Protected Area of Mediterranean Importance (SPAMI) under the Barcelona 

Convention (Robertson and Essghaier 2001). 

Figure 10. High Mediterranean marine biodiversity hotspots, including three locations in Libya (source: 

WWF Gap Analysis, 1998). 
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Figure 11. Vermeted trottoir near Aïn Ghazala. © MF / RAC-SPA1. 

 

1.4.4. Sampling design 

Samples of S. luridus and S. rivulatus for this study have been gathered from four 

collection sites in Libya (Fig. 12) starting from the west in Al-Haniya (1), Susah (2), Ain Al-

Gazalah (3) and finally Tobrock (4). In the Cyrenaican coast, the marine environment differs 

from west to east.  

The western locations part, Al-Haniy and Soush are more rugged with few sandy 

beaches and a dominance of cliffs and rocky substrata. The eastern locations part, Ain Al-

Gazalah and Tobrock is formed of open and long sandy beaches with sandy bottoms. 

In the native area, in the Red Sea, samples have been collected from two areas: El-Tor 

in the east and Hurghada in the west (Fig.13). Despite the two sampling locations being on 

opposite coasts, their abiotic parameters are very similar and both have sandy substrate. 

Optimal sampling design entails the collection of samples that are representative of the 

whole or a significant part geographic range. These samples also need to be representative of 

different seasons in order to allow for an effective investigation of variation patterns. 
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Figure 12. Map of Cyrenaica with sampling locations: 1) Al-Haniya, 2) Susah, 3) Ain Al-Gazalah, 4) 

Tobrock 

 

Figure 13. Map of the Red sea with sampling locations: El-Tor and Hurghada 

 

The samples were gathered in October and November 2014 and August and September 

2015 directly from local anglers on the coast, as well as fishing boats that fish in the study 

areas, up to 20 m deep according to the study area and fishing licenses. About 25 samples have 

Sampling 
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been collected for every species in each area, for a total of 521 specimens (375 specimens from 

Libya and 146 specimens from the Red Sea; Table 1). According to other studies, a sample size 

of 25–50 individuals is reasonable to compare populations at the genetic level (Hassan et al., 

2003). 

Both Siganus species show no sexual dimorphism and it is difficult to sex individuals, 

unless during the reproductive season, when gonads can be analysed (both sampling trips were 

performed at the end of the reproductive season and only few individuals could be sexed 

looking at their gonads). In fish in general age is related to size; given the fishing gear all the 

specimens collected were of similar size (given also legislation for fisheries), so the age of the 

fish should not vary much in the samples collected. 

 

 

Table 1. Total specimens collected in the two sampling seasons (October and November 2014; August 

and September 2015) across six locations in Libya and Egypt. 

 

Location Country S. rivulatus S. luridus 

  2014 2015 2014 2015 

Al-Haniya Libya 25 25 25 16 

Susah Libya 25 22 25 25 

Ain Al-Gazalah Libya 25 25 20 22 

Tobrock Libya 25 25 22 18 

Hurghada Egypt 22 17 13 15 

El-Tor Egypt 25 19 25 17 

  147 133 130 113 
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Comparison of shape variation in sympatric Siganus luridus and S. rivulatus, in the 

Egyptian and Cyrenaican coast using geometric morphometrics 

Abstract 

Knowledge about body shape is crucial for the understanding of the ecology, life history 

and evolution of a species, as well as the comparison of populations in different areas. 

Moreover, patterns of morphometric variations in fishes can reveal observable differences in 

the growth rates and developmental constraints.The variation in colour is another example of 

morphological variability within species. 

A total of 490 fish were photographed of S. luridus and S. rivulatus have been gathered 

from four collection sites in Libya and two collection sites in Egypt  in two sampling trips 

(October and November 2014; August and September 2015).  

Image analyses were performed assigning landmarks, using the software MorphoJ 

v.1.05. Relative Warps Analysis (RWA) was used to analysis of within-population 

morphometric variation based on landmark data, also Principal Component Analysis (PCA) 

was used to examine the variation of multiple variables within a single sample, to quantify the 

colour, and we measured the pixel density for both species using the software ImageJ  

 The data showed more expanded in S. rivulatus; it has more spread out variance 

between data points, which means there is more variance in body shape. Siganus luridus has 

smaller distribution of the data than S. rivulatus, which means the S. luridus has less shape 

variation. The PCA showed slight overlap in morphology between the two species. The colour 

variations (pixel density) illustrated significant differences in the specimens collected in native 

habitats, compared to those collected in novel habitats (S. luridus:  p = 0.032 , df = 5, F = 645); 

S. rivulatus:  p = 2e-16 , df = 5, F = 728). 

The knowledge regarding the biology and ecology of Siganus species in the Cyrenaica 

coast is poor. Certainly, I think it is important not only improving the measurement of 

traditional morphological variables such as body shape, weight, and length but also providing 

additional biologically meaningful relationships between these variables and the colour 

variation. 
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2.1. Introduction 

About 18 Lessepsian fish species have been recorded in Cyrenaica (Sghaier et al., 2013), 

one of the most important marine environments of the Libyan coast, as it is a favouarble 

spawning ground for several fish species (Elbaraasi, 2014). Two Siganus species, S. luridus 

and S. rivulatus have adapted rapidly to the Cyrenaica environment establishing large 

populations. These fish have become an economically important source for the local 

community in Cyrenaica. 

Fishes differ widely in regards to their body shape and their shape often corresponds to 

adaptations to various habitats. Sometimes, the causes of morphological differences between 

fish species are difficult to clarify. It has been proposed that the morphological characteristics 

of fish are determined by genetic structure, environmental factors and the interaction between 

them (Muto et al., 2001). Knowledge about body shape is crucial for the understanding of the 

ecology, life history and evolution of a species, as well as the comparison of populations in 

different areas (Kitano et al., 2007). Moreover, patterns of morphometric variations in fishes 

can reveal observable differences in the growth rates and developmental constraints, due to the 

fact that body form is a result of ontogeny (Azzurro et al., 2014). 

Traditional analyses based on dimentions measure the weight of a fish expressed as a 

function of length (Suresh et al., 2006). Length–weight relationships are a practical index that 

have been used extensively in fisheries to provide information on the conditions of fish stocks. 

These parameters are also required to calculate growth rates, age structures and other biological 

characteristics of fish population dynamics. They are affected by a variety of factors, including 

diet, in additions to seasons and habitats. Growth is defined as the change in size with time. 

Furthermore, length-weight relationships are useful for comparing life history and 

morphological aspects of populations inhabiting different regions. As such, length-weight 

relationships of invasive species can be valuable for the purpose of comparison between native 

and novel habitats, providing us with general informations of variation in invasive species 

growth and specific insights into the ecology of Siganus species.  

Data obtained from morphometric measurements can also help to identify differences 

between fish populations. In addition, environmental explanation of morphometric differences 

could contribute to our understanding of life models followed by different local populations, 

thus helping to develop a conservation strategy. The word morphometrics simply means 

measuring form. Many biological disciplines have a need to treat morphological variation in a 
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rigorous way and geometric morphometrics is considered one of the most powerful methods in 

the analyses of body shape (Bookstein, 1991; Rohlf and Marcus, 1993). Geometric 

morphometric methods are being used in a rapidly growing number of studies to examine a 

wide variety of biological structures ranging from sperm cells to dinosaur skulls (Brusatte et 

al., 2012). Parallel to numerous other phenotypic approaches, this approach allows for the 

measurement of a potentially infinite number of morphometric dimensions, in order to facilitate 

a study of variation patterns. This allows for a study of general morphometry, which entails the 

shape of the whole organism, or the shape of the various individual features of the organisms. 

Due to the manifold possibilities of visualisation geometric morphometric tools are very 

effective in the presentation of explorative studies. Complex traits such as body shape are hard 

to study, but with a large set of landmarks it is possible to cover the overall body shape and not 

only single measurements as in traditional morphometrics. Geometric morphometric thus 

provides detailed information on often subtle differences in specific body segments or traits. 

Moreover, the recent development of image processing techniques has improved traditional 

methods of morphometric identification by facilitating better data collection, more effective 

descriptions of shape, and new analytical tools (Cadrin and Friedland, 1999). Geometric 

morphometric methods are also used to quantitatively describe fixed phenotypic differences 

between closely related sympatric species that segregate in ecological niches (Russo et al., 

2008) and may also be employed as ‘early detection’ methods to investigate hybridization.  

Finding the features of shape that can help distinguishing between different groups is an 

important task of morphometrics in many biological contexts. Distinguishing between groups 

is not just a matter of looking at the differences between the means of different groups. The 

variation within groups is also important because it has an influence on the extent of overlap 

or separation between groups. But in addition to distinguishing between invasive species, we 

may want to obtain an overview of the structure of intraspecific variation among individuals in 

native and novel areas.  

Morphometric parameters are considered as a key factor in invasion biology because they 

can explain the effects of the environment on the body shape of invasive species. Traditional 

length-weight relationship of S. luridus and S. rivulatus are well studied in large parts of their 

invaded distribution area, for example in the Mediterranean coast of Egypt, Syria, Turkey, 

Greece, Italy and Libya (Mouneimné, 1978; Bilecenoglu and Kaya, 2002; Bariche et al., 2009, 
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2010; Shakman et al., 2008; Shakman and Kinzelbach, 2007). More detailed geometric 

morphometric studies are missing.  

It has been hypothesized that the degree of variation in body shape between Siganus 

species in the Mediterranean Sea and the Red Sea derives from the degree of geographic 

isolation resulting from immigration (Azzurro et al., 2014). The degree of geographic isolation 

among various fish species populations has been addressed through a number of population 

genetic and phylogeographic studies (Spanakis et al., 1989; Bembo et al., 1996; Magoulas et 

al., 1996, 2006; Kristofferson and Magoulas, 2008). However, information on genetic and 

phylogeographic population differentiation of Siganus species in the Mediterranean Sea is still 

rather limited (Azzurro et al., 2005; Shakman et al., 2008; Bonhomme et al., 2003 and Hassan 

et al., 2003). 

Variation in colour is another example of morphological variability within species, in 

addition to the main advantage in the differentiation between the Siganus species it's the tail. 

By extracting colour patterns from picture we can extract quantitative measures of variety in 

colour that can be used for species comparisons. Siganus species possess uniform 

morphological characters which do not help with identification, thus they are mainly identified 

based on colour characters. This makes differentiating species difficult, as colour changes 

throughout their life. 

In the present study, S. luridus and S. rivulatus were sampled in their native area (Egypt) 

and along the invaded Cyrenaican coast (Libya) to explore length-weight relationships, the 

variation of their shape using geometric morphometrics and colour change between the native 

an invaded areas. 

 

2.2. Aims  

In this study, basic aspects of image analysis are outlined for Siganus species, to 

account for the difference of colouration within populations in native and novel habitats. Also, 

the geometric merphometrics analysis was used to compare the shape variation in sympatric S. 

luridus and S. rivulatus, in relation to their novel and native habitats, I was interested in 

understanding whether invasive species changes the colours and body shape in invaded the 

Cyrenaica coast. Using the software ImageJ and geometric morphometrics it will be possible 

to test if there is interspecific colours and shape differences and intra-specific variance between 

native and novel habitats. 
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2.3. Materials and methods 

2.3.1. Fieldwork 

Samples of S. luridus and S. rivulatus have been gathered from four collection sites in 

Libya (Fig.12) and two collection sites in Egypt (Fig. 13) in two sampling trips (October and 

November 2014; August and September 2015). About 25 samples have been collected for 

every species in each area, for a total of 521 specimens (375 specimens from Libya and 146 

specimens from the Red Sea; Table.1). 

All fish specimens were transported in plastic boxes containing ice to the College of 

Natural Resources and Environmental Sciences laboratories in Libya and the Faculty of Marine 

Sciences at the University of the Suez Canal in Egypt.  

 

2.3.2. Length-weight relationships 

Each fish was weighted (total weight in g) and weighted again after removing the viscera 

(eviscerated weight in g). Total length (cm) and standard length (cm) were recorded as well. 

The data obtained was analysed by fitting length-weight relationships, which can be expressed 

as  

 

W = aLb                                                     (Hile, 1936; Beckman, 1948) 

 

where W = weight (g), L = length (cm), a = rate of change of weight with length (intercept), b 

= weight at unit length (slope). Data were log transformed to estimate the parameters a and b. 

When b is equal to 3, isometric pattern of growth occurs but when b is not equal to 3, allometric 

pattern of growth occurs, which may be positive if > 3 or negative if < 3. 

Length-weight relationship was performed in R (version 3.4.0), by population, location 

and year. An analysis of covariance (ANCOVA) was performed using weight (log-transformed 

data) as the response (dependent) variable and “location” as the predictor (independent) 

variable, using “length” as covariate in PAST for each species. 

 

2.3.3 Geometric morphometrics 

A total of 490 fish were photographed from the left lateral side on a white background 

with a ruler, using a digital camera on a tripod set at the same height, with the same degree of 
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zoom for geometric morphometric analysis. Samples were labelled according to the study area 

and the species (Al Haniya (Hn); Susah (Su); Ayn Al-Gazalah (Ain); Tobrock (Tb); El-Tor 

(Sb); Hurghada (Hu); S. luridus (l) and S. rivulatus (r) (Fig. 14).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.  Example of labelling for each individual specimens, including location, species and 

number 

 

Image analyses were performed assigning landmarks, chosen to define the overall external 

shape of the fish: 19 landmarks marking homologous points (Fig. 15) were digitised and scaled 

using the software tpsDIG 2.17 (Rohlf, 2009). tpsSMALL (Rohlf, 2009) was used to ensure 

the variation in shape among the specimens was not too large for the use of statistical methods 

utilizing the tangent space approximation (e.g. thin-plate spline methods).  

The landmarks were converted to shape coordinates by Procrustes superimposition (Rohlf 

and Slice, 1990), using the software MorphoJ v.1.05 (Klingenberg, 2011) thus removing 

information about positioning and orientation from the raw co-ordinates, and standardising 

each specimen to unit centroid size. Relative Warps Analysis (RWA) was used to analyse 

within-population morphometric variation based on landmark data. Principal Component 

Analysis (PCA) was used to examine the variation of multiple variables within a single sample. 

PCA is often also used for a first exploratory analysis of a larger data set composed of several 

samples, where it can provide a visual impression of the overall variation. The principal 

Species Location Number 
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components are uncorrelated with each other and account for the maximum possible amount 

of variation.a) 

 

 

 

a) 

 

 

 

 

b) 

 

 

 

 

 

 

Figure 15. Identification of 19 landmarks used in the geometric morphological analysis for S. luridus 

(a) and S. rivulatus (b) 

   

 

 

Significance of shape differences was assessed by a Discriminant Function Analysis 

(DFA) computed on the matrix of partial warps, using MorphoJ. DFA uses a pre-defined 

grouping of objects and determines to what extent the matrix can efficiently explain this 

grouping. Canonical variate analysis (CVA) in MorphoJ allows the identification of the shape 

features that best distinguish between specified groups, and includes a leave-one-out cross 

validation procedure (1000 permutations) to assess the reliability of classifications. Canonical 

Variate Analysis functions to differentiate a priori defined groups by maximizing the between-

group variance relative to the within-group variance. 
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2.3.4 Colouration measurements 

Image analysis methods are quantitative tools for analyzing differences in colours between 

species, which have been developed to provide quantitative assessment data. In this study, basic 

aspects of image analysis are outlined for Siganus species, to account for the difference of 

colouration within populations in native and novel habitats.  

A basic visual analysis of the Siganus specimens revealed variation in colours within 

species in the different areas. To quatify the colour, we measured the pixel density for both 

species using the free software ImageJ (https://imagej.nih.gov/ij/plugins/rgb-profiler.html) 

which is well-suited for analysis of variation in coulors between and within species in native 

and novel habitats. 

Image analyses were performed assigning 26 homologous landmarks using the multi-point 

tool in ImageJ, to cover the overall external body of the fish (Fig. 16) to quantify the average 

fish pixel density (the higher the density, the darker the colour).  

 

 

 

 

 

 

 

 

 

 

Figure 16. Identification of 25 landmarks used in the ImageJ analysis for Siganus rivulatus. The 

same landmarks were used for S. luridus. 

 

To test if colouration of both Siganus species differ significantly from different habitats 

ANOVAs were used. Statistical analysis was carried out using R (version 3.4.0). 

 

https://imagej.nih.gov/ij/plugins/rgb-profiler.html
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2.4. Results 

2.4.1. Length-weight relationships 

For this study, 490 individuals belonging to two Siganus species were sampled. Fish 

total length ranged between 13.8 cm and 25.6 cm for S. luridus (with an average length of 19.75 

cm) in the Cyrenaica locations, while, the total length ranged between 12.4 cm and 23.6 cm for 

S. luridus in the Red sea locations (with an average length of 17.8 cm; Fig. 17). The total length 

ranged between 14 cm and 23.8 cm for S. rivulatus (with an average length of 18.9 cm) in the 

Cyrenaica locations, while, the total length ranged between 15.6 cm and 21.5 cm for S. rivulatus 

in the Red sea locations (with an average length of 18.5 cm; Fig. 18). 

 

 

 

 

 

 

  

 

Figure 17. Total length (cm) for S. luridus in Cyrenaica (dark blue 2014 and light blue 2015) and Egypt 

(brown 2014 and red 2015). Individual populations are labelled by location and year (see materials and 

methods). 

 

 

 

 

 

 

 

 

 

Figure 18. Total length (cm) for S. rivulatus in Cyrenaica (blue dark 2014 and blue light 2015) and 

Egypt (brown 2014 and red 2015).  

Individual populations are labelled with location and year (see materials and methods). From 

the length-weight relationships, values of exponent b provide information on fish growth 
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indicating the type of growth: isometric (b = 3.0), positive allometric (b > 3.0) or negative 

allometric (b < 3.0). In the present study, the b values ranged between 2.61 to 3.41 for S. luridus 

in the Cyrenaica coast and the Red Sea for the two seasons 2014 and 2015. Our results showed 

that the type of growth for S. luridus in the native habitats and novel habitats were isometric, 

except in Susah, Cyrenaica, where it was positive allometric (b = 3.34; P = 0.0318; Table. 2). 

On the other hand, when we compared the two sampling seasons (2014 and 2015) for S. luridus 

the results show that in Susah (p < 0.001) and Tubruq (p = 0.028) there were significant 

differences between the two sampling seasons. Also in Hurgadah, in the native area, there were 

significant differences between the two seasons (p = 0.028). The estimated parameters and 

length characteristics of the length-weight relationship are given in Table 2. For S. rivulatus, 

the b values ranged between 1.80 to 3.19 in the Cyrenaica coast, while the b values ranged 

between 1.07 to 3.21 in the Red Sea, for the two seasons 2014 and 2015.  In the present study 

we found that the type of growth for S. rivulatus in the Cyrenaican coast was isometric in 

season 2014, except the Al-Haniya was negative allometric in 2014 (b = 1.82; P < 0.001). 

Whole, the type of growth for S. rivulatus was negative allometric in season 2015, except the 

Al-Haniya was isometric in 2015 (b = 3.1; P < 0.511). All regression values were found to be 

highly significant (P < 0.05). 

Data from all samples were pooled together to describe the relationship between weight -length 

in the two species in the six regions (Fig. 21 and Fig. 22) respectively. The length-weight 

relationships for each species in the native and invaded areas are shown in Fig.19 and Fig.20 

respectively. When using the length as a covariate factor to compare differences in weight 

between S. luridus and S. rivulatus in Cyrenaica coast, it was found that the growth patterns 

were similar in all the Cyreniaca locations for S. rivulatus, also for S. luridus the growth 

patterns was similar in all locations in Cyerniaca except Susah, where was less than all locations 

in growth patterns. On the other hands, when using the length as a covariate factor to compare 

differences in weight between S. luridus and S. rivulatus in the Mediterranean Sea with native 

areas in the Red sea, it was found that the growth patterns were different among locations in 

both species. Siganus luridus growth was higher in the Red Sea compare to the Mediterranean 

Sea (Fig. 21; f = 17.57, df = 1, p < 0.0001). On the other hand, the growth of S. rivulatus was 

higher in the Cyrenaican coast compare to the Red Sea (Fig. 22; f = 139.3, df = 1, P < 0.0001). 
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Table 2.  Total length and for Siganus rivulatus and S. luridus in the Cyrenaica coast (Libya) 

and the Red sea (Min: minimum, Max: maximum) and coefficient a and b from the length-

weight relationships W = aLb of sampled individuals; R2 is coefficient of correlation. 

 

Species Country Location Year n Min TL Max TL a b R2 P-value Growth Difference among year

2014 22 14.7 21.7 0.0097 3.18 0.859 0.5096 I

2015 21 14.4 21.9 0.011324 3.12 0.939 0.505 I

2014 25 14.1 19.2 0.038898 2.69 0.876 0.144 I

2015 16 14.8 22.3 0.026732 2.83 0.876 0.553 I

2014 23 13.8 22.4 0.005897 3.34 0.953 0.0318 A+

2015 21 17.6 25.6 0.004866 3.34 0.908 0.127 I

2014 22 14.5 21.4 0.028359 2.78 0.919 0.244 I

2015 17 14.6 21.8 0.016865 3 0.927 0.98 I

2014 25 12.4 18.7 0.023624 2.88 0.941 0.461 I

2015 16 19.4 23.6 0.004212 3.43 0.868 0.224 I

2014 12 18.4 22.1 0.005017 3.41 0.783 0.451 I

2015 15 18.3 23.2 0.019205 2.94 0.797 0.891 I

2014 25 16.5 23.3 0.008616 3.19 0.916 0.327 I

2015 22 14.7 20.5 0.056614 2.51 0.929 0.002 A-

2014 23 15.6 23.6 0.429772 1.83 0.832 3.92E-07 A-

2015 25 14 21.3 0.010581 3.1 0.939 0.511 I

2014 22 14.4 23.6 0.012504 3.06 0.795 0.842 I

2015 22 15.7 23.8 0.075283 2.43 0.906 0.003 A-

2014 21 16.6 22.4 0.043963 2.62 0.827 0.1354 I

2015 20 15.5 18.4 0.117631 2.25 0.706 0.018 A-

2014 22 15.6 19.2 0.006743 3.21 0.864 0.419 I

2015 15 17.7 21.5 3.404507 1.07 0.164 0.004 A-

2014 24 17.3 20.4 0.036396 2.64 0.917 0.05 I

2015 14 17.7 20.2 0.06953 2.38 0.244 0.55 I
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Figure 19. Relationship between length-weight (Log transformed) of S. luridus (left) and S. rivulatus (right) in Egyptian locations (Al-Ture, Lighr red symbol 

and Hurgadah dark red symbol). 

 

 

 

  

 

 

 

 

 

Figure 20. Relationship between length-weight (Log transformed) of S. luridus (left) and S. rivulatus (right) in Cyrenaica coast (Ain Al-Gazal, Blue symbol 

Al-Haniya Green symbol, Susah Red symbol and Tubruq Yellow symbol).
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Figure 21. Relationship between length and weight (Log transformed) of S. luridus in Egypt (black 

symbol) and Libya (white symbol). 

 

 

 

Figure 22. Relationship between length and weight (Log transformed) of S. rivulatus in Egypt (black 

symbol) and Libya (white symbol). 
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2.4.2. Geometric morphometrics 

Using discriminant analysis, we compared body shapes between the two Siganus species. The 

values of the discriminant function have been computed for the 257 S. luridus and the 237 S. 

rivulatus. The discriminant function can separate the two groups without any overlap (using 

10000 permutations; Fig. 23). The discriminant scores were computed so that threshold for 

classification to one group or the other is set at a value of zero (Timm 2002). The Canonical 

Variate Analysis showed differences between native populations in the Egyptain locations than 

invasive populations in the Cyrenaica coast (Fig. 24). Canonical Variate Analysis of S. luridus 

and S. rivulatus in the six study areas shows that the third location in Cyrenaica, Ain Al-gazal 

(red dots) is mostly separated quite well from the other locations in Cyrenaica and the Red Sea, 

with the exception of Al-haniya (blue dots). 

 

 

Figure 23. Linear discriminant analysis of the difference in Siganus species shape between 

S. luridus (Red) and S. rivulatus (Blue) combining the study areas. 
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Figure 24. Scatter plot of the first two canonical variates for S. luridus and S. rivulatus. The groups are 

defined by species and locations (Al-haniy: blue dots; Susah: Pink dots; Ain Al-gazala: red dots; 

Tobruq: yellow dots; Hurgadah: Black dots; Al-Tor: green dots. 

 

2.4.2.1. Relative Warp Analysis (RWA) 

We looked at some possibilities of visualizing shape changes, mostly using the thin-plate 

spline. To make shape changes more visible, thin-plate splines were used to draw 

transformation grids, which show the shape difference from the mean shape in the specimens 

(Fig. 25). Data provided shown variation in shape between two Siganus species in the study 

areas. This can be observed by the dispersion of the points related to the specimens in the PCA 

(Fig. 28). The 19 landmarks generated 6 relative warps, one for each location. The grids of 

hypothetical warps indicate that the specimens obtained from located on a given position in the 

axes may present warps similar to those of the nearest hypothetical grid. Six groups of Siganus 

species were determined. The groups were obtained from Al-Haniya, Susah, Tubrok and Ain 

Al-Gazala from Cyrenaica coast and other group aggregated specimens obtained from 

Hurghadah and Al-Tur from the Red sea (Fig. 26 and 27). That data presented more dilated 

relative warp grids at the posterior extension of the body shape indicating that the specimens 

S. luridus  S. rivulatus 

Native population  
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of S. luridus of this groups have body shape relatively wider with grids, indicating that the 

specimens of S. rivulatus present narrower body shape in each study locations (Fig. 25).  

In general, the data shown for relative warp grids of S. rivulatus indicate that all specimens 

were the same shape except the samples collected from Susah where, the tail shape is 

completely different and similar to S. luridus (Fig.26). On the other hand, all the samples of 

the locations have same shape of S. luridus but, the samples from Al-Haniya and Ain Al-Gzala 

were different (Fig. 27), when compared to the samples from the original areas. 
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Figure 25. Deformation grids S. luridus and S. rivulatus obtained with Morphoj and the outline drawings showing the mean shapes for Siganus 

species, visualized by the thin-plate spline

S.rivulatus 
S. luridus 
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HurgadaAl-Tur Ain Al-Gazala 

Tobruq Susah Al-Haniya 

Figure 26. Grids of relative warps with the average shape of S. rivulatus specimens obtained from 19 landmarks from study locations 

Figure 27. 
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2.4.1.2. Principal component analysis (PCA) 

Principal component analysis (PCA) is a technique used to emphasize variation between 

groups and bring out strong patterns in a dataset. It's often used to make data easy to explore 

and visualize. PCA is generally considered a variable reduction procedure.  

The data show (Fig. 28), expressed as a percentage of the total variance, the 30 non-zero 

eigenvalues decrease from 38% to 0.01%. Among the first two PCs, there is a rapid drop in the 

variances, but then the values taper off gradually. Accordingly, we can concentrate mostly on 

the first two. Note that the bulk of the total variance is taken up by about two PCs (Fig. 28). 

Therefore, the first few PCs are a reasonably good summary of the variation in the whole data 

set. The variance explained by the first axis is 38.7%, by the second axis is 15.9% and by the 

third axis is 11.6%, with a cumulative percentage of 66.2% for the three first components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. The percentages of total variance for which the PCs account. 
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The distribution of the data is more expanded in S. rivulatus; it has more spread out 

variance between data points, which means there is more variance in body shape. Siganus 

luridus has a smaller distribution of the data than S. rivulatus, which means the S. luridus has 

less shape variation (Fig. 31). The PCA showed slight overlap in morphology between the two 

species (Fig. 29 and 30). Since many fish species exhibit morphological differences between 

habitats, the PCA was also used to examine the morphological differences among locations for 

the two species. This study shows that two species pair follows a different strategy between 

novel and native habitats. In particular, S. luridus and S. rivulatus overlap in all study areas 

coast of Cyrenaica (Fig. 32), while they differ considerably with respect to the body shape in 

native areas (Red sea) (Fig. 33). 
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Figure 29. Principal component analyses of morphometric landmarks of S. luridus and S. rivulatus by (a) species, (b) collection seasons. The PCA showed 

slight overlap in morphology between the two species regardless of year, geographic area and locations. 

 

 

 

(a). Principal component analyses of morphometric landmarks of 

S. luridus (red dots)and S. rivulatus (blue dots) 

(b). Principal component analyses of morphometric landmarks of sample 

collection seasons year 2015 (black dots) year 2014 (green dots) 
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Figure 30. Principal component analyses of morphometric landmarks of S. luridus and S. rivulatus by (a) country and (b) locations samples.  

 

(b). Principal component analyses of morphometric landmarks of S. luridusand S. rivulatus by locations 

Ain algazal (red dots), Hurdadah (yellow dots), Al-Tor (green dots), Al-Haniya (light Blue dots), Susah 

(blue dots) and Tubroq (pink dots) 

 

 

(a). Principal component analyses of morphometric landmarks of S. luridus 

and S. rivulatus by the  country data Egypt (blue dots) and Libya (red dots) 
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Figure 31. Principal component analyses of morphometric landmarks of (a) S. luridus and (b) S. rivulatus by country: Egypt (red dots) and Libya (blue dots). 

 

S. rivulatus S. luridus  

(a). Principal component analyses of morphometric landmarks of S. luridus 

by country:Egypt (red dots) and Libya (blue dots ) 

 

(b). Principal component analyses of morphometric landmarks of S. rivulatus by country: Egypt (red 

dots) and Libya (blue dots) 
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Figure 32. Principal component analyses of morphometric landmarks of S. luridus (red dots) and S. rivulatus (blue dots) from Mediterranean Sea.Data from 

two sampling years.
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Figure 33. Principal Component analyses of morphometric landmarks of S. luridus (red dots) and S. rivulatus (blue dots) from Red Sea. 

Data from two sampling years. 
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2.4.3. Colouration 

Photos of both species from the two areas showed, even just visually that S. luridus was 

almost entirely black (Fig. 34) and S. rivulatus white (Fig. 34) in the Red Sea. The same species 

presented much more variation in the novel habitats (Fig. 35 and Fig. 36). This initial finding 

was very intriguing, as it could indicate that colours might change in novel habitats in response 

of different pressures (diverse habitats, food, and even possibly hybridization).  

The graph of the measured colour variations (pixel density) illustrated significant 

differences in the specimens collected in native habitats, compared to those collected in novel 

habitats (S. luridus:  p = 0.032 , df = 5, F = 645; Fig. 38); S. rivulatus:  p = 2e-16 , df = 5, F = 

728, Fig. 39) and graph from ImageJ revealed that S. luridus had darker for colours in Red sea 

locations than Cyrenaica locations, while, the graph for S. luridus revealed that the density 

values for colours was similar in the Red Sea and Susha in the Cyrenaica coast, though there 

were differences with the other locations. 
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Figure 34. Siganus luridus in the Red Sea was almost entirely black, while S. rivulatus was white.
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Figure 35. Siganus luridus in Cyrenaica coast has a grey to black colour gradually, with a light-brown to yellow for dorsal fin. 

Sampling 
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Figure 36.  Siganus rivulatus has two colouration white and splotchy colours. 

 

Sampling 
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Figure 37. Colours variation analyses (a) S. luridus, and (b) S. rivulatus. The colours variation analyses 

showed differences in colouration between the two species in the two areas (native and invaded). 

 

 

   

Figure 38. Colours variation analyses of S. luridus. The colour variation analyses showed differences in 

colouration between the two species regardless of geographic area and locations. 

 

(a) S. luridus 
(a) S. rivulatus 
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Figure 39. Colours variation analyses of S. rivulatus. The colours variation analyses showed different in 

colouration between the two species regardless of geographic area and locations. 

 

2.5. Discussion 

2.5.1. Length-weight relationships 

This study presents the estimate of the length-weight relationships for two Siganus species of 

the Cyrenaican coast and compares them with native location in the Egyptian coast. Data showed a 

slightly isometric growth in all populations. Also, Siganus luridus growth was higher in the Red 

Sea compare to the Mediterranean Sea. On the other hand, the growth of S. rivulatus was higher in 

the Cyrenaican coast compare to the Red Sea. 

Similar results were found for the Red Sea population (El-Gammal 1988) and in the south-

eastern Mediterranean (Egyptian coast; Abdallah 2002). This difference rates growth is certainly 

due to different physiological and environmental conditions, which vary with geographical 

locations (Bariche, 2005). For thetwoSiganus species, data were not representative for all months 

within a year. Thus, these data should be considered as representing only particular seasons or time 

of year. According to Bagenal and Tesch (1978) and Gonçalves et al. (1997), the b parameters 

generally does not vary significantly throughout the year, unlike parameter which may vary 

seasonally, daily and between habitats. Use of the weight–length relationship should be limited to 
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the sizes in the estimation of the parameters (Petrakis and Stergiou, 1995; Taskavak and 

Bilecenoglu, 2001). However, a number of factors are known to influence weight–length 

relationships in fishes, including growth phase, season effect, size range, general fish condition and 

size selectivity of the sampling gear (Tesch, 1971). 

The reason for different growth rates may be the different environmental factors and the 

variability of food of these species where the samples were collected (Shakman et al., 2007). Popper 

and Gundermann (1975) report that the main reason for different growth of populations of the same 

species in different areas seems to be food habitats, difference of available algae and length of 

breeding period, which might be different due to temperature differences between the 

Mediterranean and Red Sea. 

 

2.5.2. Geometric morphometrics 

Geometric morphometrics is the study of size and shape of living organisms, where data can 

be collected in the form of spatial arrangements of landmarks along a biological structure. This 

powerful technique can capture differences in structures that are not easily observed through 

traditional types of measurements or by the naked eye. This study applied landmark-based 

geometric morphometrics to investigate the differences of body shapes in two Siganus species. 

Evolutionary changes in body shape can occur for a variety of reasons, especially for invasive 

species. The purpose of this study was to investigate the relationship between body shape variation, 

ecology, and evolution. In many fishes, body shape is closely associated with habitat type. I wanted 

to answer the following questions: How do S. luridus and S. rivulatus differ in body shape between 

the novel and native habitats? How these differences can be quantified? What are some reasonable 

explanations for these differences? Is the body shape of each Siganus species an adaptation to its 

novel habitat? 

I focused on body shape differences using geometric morphometrics. Both the discriminant 

and canonical variate analyses showed that it was possible for the program to correctly defined the 

two species (both DFA and CVA) with some differences in locations (CVA detected differences in 

the Libyan location of Ain Al-gazal).    

The relative warps detected the differences between Siganus species for each one of the 

different locations. Overall, the shape decomposition of the external morphology showed that the 

main differences are not spread all over the body but are mainly located in the posterior part of the 

tail. Also, Susah presented larger tails for S. rivulatus compared to all other locations. The PCA 

showed two separate groups (the two species), regardless of year, geographic area and locations 
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with some overlap between the two species. The specimens in the overlapping areas will be 

analysed with genetic tools, to better define to which species they belong. 

Results obtained in the present research are not conclusive. However, information from 

literature indicates that these alterations can occur due to genetic or environmental factors possibly 

related to trophic ecology.  

Fishes present a huge diversity of body shape and the understanding of the importance of their 

morphology can lend insight into their life history strategies, trace lineages back to speculate on 

evolutionary processes, and make predictions about how morphological changes coincide with the 

constant change of their environment. Furthermore, inference about the pace of phenotypic change 

can be gained from studies involving populations that experienced environmental change at 

different time periods. Thus, morphological variation is a priceless source of information enriching 

the knowledge of dynamic processes of ecological systems (Gerber et al., 2008). 

In the invasive population of most species, phenotypic variation is determined by genotypic 

differences between the individuals in native and novel habitats. Moreover, the difference in 

geographical locations, food availability and environmental conditions affects body shape of 

organisms. Costa and Cataudella (2007) found that shape differences were related to trophic 

ecology for several species of the family Sparidae, thus indicating local adaptation (Schluter and 

McPhail 1992; Langerhans et al., 2003). In order to speculate on the cause of patterns in 

morphology, experiments should be performed to assess the degree of difference of the trophic 

ecology within Siganus species in Cyrenaica coast and the Red sea locations useing a stable isotope 

analysis in order to enable the exploration of any connection between trophic ecology patterns and 

the patterns in morphology (see section on stable isotopes below). 

The morphological divergence in shape within invasive species between native and novel 

locations may be caused by an evolutionary response such as hybridisation (Langerhans et al., 

2003). To understand morphological divergence between Siganus species in native and novel 

habitats and explaining morphological divergence, combination of laboratory studies and genetic 

tests using population markers (e.g., the D-loop and cytochrome b) could be used. 

The results and knowledge about S. luridus and S. rivulatus can be used to better understand 

broader aspects of the biology of body shape evolution in other invasive species in the 

Mediterranean Sea, to determine if the pattern found in S. luridus and S. rivulatus can be generalized 

to other invasive species. The body shape differences are often indicative of adaptation to specific 

ecological variables. Body shape reflects the processes for immigration and knowledge the change 

body shape of Siganus species provides valuable insight into the macro-evolutionary diversification 

of major invasive fish groups. 
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2.5.3. Colouration 

In the native area, the colourations of the two species are well defined (darker for S. luridus 

and lighter for S. rivulatus) while in the invaded area each species presents variations, which might 

be linked to changes in the habitat. S. luridus has been recorded occurring in mainly over rocky 

habitats in some of the invaded habiatas (Shakman et al. 2007), possibly reflecting the original 

preferred environment, which would result in a darker appearance. On the contrary S. rivulatus 

seems to prefere sandy habitats (Shakman et al., 2007).  

Often researchers have underestimated the colour variation at intra-specific level, expecially in 

invasive species. This study shows associations between the colour variation of S. luridus and S. 

rivulatus and various locations in the novel habitat, possibly indicating an expanded use of habitats, 

a different diet (see chapter 3). One of the patterns of interest we found was the variation in colour 

range amplitude between S. luridus and S. rivulatus between native and novel habitats. This result 

was found for the four locations in novel habitats. 

Several hypotheses have been proposed to explain both intra‐ and interspecific variation of 

colour. For instance, hybridization and sexual selection also, effect by trophic ecology. Specifically, 

we focus our predictions on the hypotheses proposed for the change in colours of S. luridus and S. 

rivulatus in Cyrenaica habitats: Attack deflection and intimidation of predators. Kelley et al.,(2013) 

famously proposed that the advertisement or ‘poster coloration’ of tropical fishes might be used to 

signal aggression in intraspecific territorial disputes, However, the majority of proposed functions 

relate to predator defence and include camouflage (Kelley et al., 2013).  Despite the diversity of 

colour patterns exhibited by Siganus species in the Cyrenaica habitats, the link between, behaviour 

and colour pattern evolution still remains unresolved. Specifically, there is an absence of studies 

about the natural enemies for Siganus species in the Mediterranean Sea.  

It is becoming increasingly clear that the evolutionary histories of various invasive species 

lineages are affected extensively by hybridisation and its consequences on phenotype evolution. Xu 

et al. (2015) suggest that the development of colour in transparent crucian carp is associated with 

genetic mechanisms, while Coyne and Orr (2004) suggested that in general in mechanisms of 

speciation there are two mechanisms of coloration: an initial differentiation involving natural 

selection for feeding efficiency, followed by more recent differentiation involving sexual selection. 

However, despite much interest, the underlying genetic mechnisms contributing to their rich variety 

of colours remain largely unknown. 
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The other hypotheses: trophic ecology. Zhang et al. (2014) pointed out that, striped body 

patterns in butterflyfishes showed correlation with a number of ecological factors including habitat 

type, sociality and dietary complexity. On the other hand, Zhang et al. (2014) suggested that the 

spots and eyespots in butterflyfishes are unlikely to have played an important part in the 

evolutionary history of the butterflyfish. Seehausen et al. (1999) pointed out that the stripes have 

different functions; in cichlid fishes where, the horizontal stripes are associated with social 

behaviour and foraging mode while vertical stripes are linked with habitat type. 

The “trophic ecology” hypothesis proposes that evolution of interspecific variation in body 

colour is driven by variation in trophic ecology environments across habitats. If ambient nutrition 

has the potential to drive interspecific variation in the body shape, as colour signals are an adaptive 

response to the change in ambient nutrition levels in different habitats.  

A major challenge for future work is to establish how genetic analyses and trophic ecology are 

related to colour change of Siganus species in the Mediterranean Sea. Answering these questions 

will be important for evaluating the relative importance of extrinsic ecological conditions and 

geographic distribution of Siganus species’ colour variation. The research of Siganus species 

colours variation will become more integrative. The genomics revolution allows both deeper and 

broader understanding of the mechanisms underlying colour variation, and these insights will be 

particularly informative when accompanied by ecological and behavioural studies. In this way, we 

can take full advantage of the Siganus species model system as a tool for understanding the 

evolution of biological diversity for the in vasive species in the Mediterranean Sea. 

Regrettably, as mentioned above, the knowledge regarding the biology and ecology of Siganus 

species in the Cyrenaica coast is poor. Certainly, I think it is important not only to improve the 

measurement of traditional morphological variables such as body shape, weight, and length but also 

providing additional biologically meaningful relationships between these variables and colour 

variation. The knowledge and understanding of colour variation in invasive species will allow 

researchers to identify the environmental influences on colour variation and to evaluate the 

observed differences in an appropriate frame of interpretation. 
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Chapter III 
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Trophic level and niche overlap of S. luridus and S. rivulatus in native and novel habitats 

 

Abstract 

 

The Mediterranean Sea is the most invaded marine region of the world, providing us with a 

unique unplanned experiment to understand how biological invasions are affecting food web 

properties in the Mediterranean ecosystems. Invasive species can modify trophic ecology structure 

and change ecosystem-level functioning, as invasions create new links altering interspecific 

relationships at the different trophic levels in the new habitats. 

In this study, stable isotope ratios δ15N and δ13C were used to quantify trophic relationships 

for S. luridus and S. rivulatus in the Cyrenaica coast can allow comparisons between trophic 

patterns between the Mediterranean and the Red Seas, as well as comparing to its native habitats in 

Red sea. A total of 394 specimens belonging to two Siganus species and 9 specimens for algae and 

sea grasses. 

Stable isotope values of S. luridus and S. rivulatus varied considerably among Locations in 

the Cyrenaica coast, when compared to the locations in the Red sea. The two species seem to occupy 

a border “space” in the new habitats (Cyrenaica coast), both species increases the trophic level when 

moved into the Cyrenaica coast, while in the Red Sea they appear more tightly clustered and well-

segregated. Despite the large variation in Siganus species for δ 13C and δ 15N values between S. 

luridus and S. rivulatus, but show no relationship with either total length.  

Information about trophic and feeding habits of S. luridus and S. rivulatus in the Cyrenaica 

coast can allow comparisons between trophic patterns between the Mediterranean and the Red Seas, 

and to speculate about the fate of these species in their new environments. It can be hypothesized 

that both species have changed their diet in the Cyrenaica coast compared to the populations in the 

original habitats. Even though the data available for the Cyrenaica coast is not extensive and lacks 

information on seasonality, the current findings provide a first insight into the invasive species in 

Cyrenaica coast and food web, following the invasion by use the stable isotope analysis. 
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3.1. Introduction 

The deliberate or inadvertent introduction of invasive species represents an essential stressor 

for ecosystems marine biological communities (Grosholz, 2002; Bax et al., 2003). Invasive species 

can have significant natural effects, such as the escalation of changes in patterns of distribution, 

abundance and diversity of local species (Claudet and Fraschetti, 2001). The understanding of the 

ecosystems marine effects of invasive species requires detailed data about trophic ecology.. 

Assessing the connection between species invasion and food availability add to seeing how and 

why colonization by invasive species succeeds. Invasive species are one of the main stressors of 

marine biological communities. Several studies document food web effects of invasive fish, which 

are likely to result in changes in trophic structure (D’Antonio and Hobbie, 2005; Carvalheiro et al., 

2010). A few invasive species may be able to change the trophic web by being highly dominant or 

competing with native species. 

Platt and Denman (1978) argue that 'the structure of community in marine ecosystems 

varieties came about because of trophic interactions’. Learning the trophic interactions of fish is 

critical for a comprehension of the species interrelationships occurring in a marine biological 

system (Odum, 1953). Invasive species can modify trophic ecology structure and change 

ecosystem-level functioning, but it is often unclear how these invasive species may affect the life 

history of local species, as invasions create new links altering interspecific relationships at the 

different trophic levels in the new habitats. 

Despite the fact that the biological impacts of trophic disruption can be detected shortly after 

the invading species has settled, more progressive impacts may take a very long time to show and 

would thus require long haul information for evaluation for impact of invasive species in the 

environment. There is a pressing requirement for long term studies that explore natural changes in 

the trophic structure of a habitat affected by invasions. One underappreciated source of variation 

regarding invasive species concerns dietary flexibility and shifts in trophic position between native 

and invasive populations and this form of ecological plasticity may enhance invasion success in a 

number of ways. Incomplete dietary information greatly hinders an understanding of the 

community-wide effects of invasions. 

The Mediterranean Sea is the most invaded marine region of the world, providing us with a 

unique unplanned experiment to understand how biological invasions are affecting food web 

properties in the Mediterranean ecosystems. The opening of the Suez Canal in 1869 has enabled 

the passage of hundreds of taxa from the Red Sea (Galil 2009 and Zenetos et al., 2012). These 

organisms, known as Lessepsian migrants (Por, 1978), comprise 90 fish species recorded so far in 
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the Mediterranean Sea (Golani et al., 2010). The Lessepsian migration has visibly accelerated in 

recent decades (Ben Rais Lasram and Mouillot 2009; Golani 2010). It is very likely that this large 

scale invasion, has been reshuffling the overall Mediterranean food web. As invasive species create 

new links altering interspecific relationships at the different trophic levels. As an example, the 

native herbivorous fish Sarpa salpa is considered to be outcompeted by the rabbitfish Siganus 

rivulatus along the easternmost sectors of the Mediterranean Sea (Bariche et al., 2009). 

Siganidae constitute a family of herbivorous fish throughout the Indo-West and Pacific 

Oceans (Woodland, 1983), feeding on seagrass and the majority of available algae. The Siganus 

species need a big quantity of algal food to assure their biological activities. In addition to algal 

food, they can feed accidentally on some non-digestible substances such as mollusc shells and other 

invertebrates attached to algae. The diet and nature of food habits of Siganids have been the subject 

of many investigations in several studies and feeding geographical areas such as the studies on the 

diet of S. rivulatus and S. luridusin the Red Sea (their original habitat; Lundberg and Lipkin, 1979; 

Lundberg, 1981) and in the eastern Mediterranean (Lundberg, 1980; Stergiou, 1988; Lundberg and 

Golani,1995; Lundberg et al., 1999). 

 

3.2. Stable Isotope Analysis (SIA) 

Stable isotope Analysis (SIA) represent a relatively novel tool for the investigation of 

trophic connections in marine biological communities (Pinnegar and Polunin, 2000), and an intense 

approach to delineate the trophic ecology of an organism, upon which ecological niche research 

relies (Newsome et. al. 2007). This procedure offers long haul evaluations of the type of prey that 

have been incorporated into predator tissue. It has been utilized to reconstruct animal diets (Hobson 

et al., 1994), to determine patterns of resource allocation to reproduction; to track animal migration 

and to assess the flux of materials from the sea into terrestrial food webs also to assign trophic levels 

and to determine the structure of food webs (O’Brien te al., 2002 ; Ben-David et al., 1998 ; Hobson, 

1999 ; Post, 2002; France, 1995). Further, increased interest in the utilisation of stable isotopes has 

been used to research the architecture of the marine food webs (Deegan and Garritt, 1997).  

The stable isotope technique depends on the fact that the atoms that make up living beings are 

derived from the atoms of their food (Hessler et al., 1993). Stable isotopes, in this way, reflect an 

integrative record of the nourishment that has truly been absorbed by the organism over an extended 

period prior to sampling. Numerous substance components can have more than one isotopic type 

of contrasting atomic mass. Examination of the stable isotopic proportions of the different types of 

elements, such as oxygen, hydrogen, sulfur, etc. can provide insights into the ecology of the 
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individual/species (Crawford et al., 2008), however the two most ordinarily utilized are the isotopes 

of carbon (C) and nitrogen (N). The ratio between 13C to 12C (annotated as δ13C) informs on the 

sources of food types (Wada, 2009); while the nitrogen ratio (δ15N) can be utilized to gauge trophic 

level, in light of the fact that the d15N of a consumers is commonly enhanced by 3– 4‰ in respect 

to its eating regimen (DeNiro and Epstein, 1981; Minagawa and Wada 1984; Peterson and Fry, 

1987). Thus 15N has been utilized as a part of many examinations as a marker of the trophic level 

of a creature through its life cycle (Beaudoin et al., 1999; Vander Zanden and Rassmussen, 1999), 

while 13C is considered to give data on the materials at the base of the nourishment web (Harrigan 

et al., 1989). Isotopic proportions of carbon and nitrogen have been successfully utilized to depict 

trophic connections in Mediterranean marine biological communities (Deudero et al., 2004; 

Pinnegar and Polunin, 2000). 

This technique depends on the preface that carbon and nitrogen isotope proportions of a 

living being mirror the isotopic estimations of the food consumed, hence allowing definition of 

trophic positions and flow in natural communities (Post et al., 2000). In any case, the isotopic mark 

of a consumer alone isn't for the most part adequate to deduce trophic position or carbon source 

without a suitable isotopic benchmark. Only by signature of a consumer alone is not generally 

sufficient to infer trophic position or carbon source without an appropriate isotopic baseline it is 

possible to illuminate trophic connections that would otherwise be hard to measure. 

 

3.2.1. Isotopic Dietary Models  

 Carbon and nitrogen exist in nature in two stable forms. The lighter forms, 12C and 14N, 

are more common than the heavier isotopes 13C and 15N and it is convenient to refer to the 

concentrations of the heavier isotopes as a ratio in  ᵟ notation as parts per thousand (‰) as follows:    

                           ᵟX = [( Rsample / Rstandard ) - 1] x 1,000 

where (X) is 13C or 15N and R is the corresponding ratio 13C/12C or 15N/14N. These values are 

measured using a mass spectrometer to precisions typically of the order of 0.1 to 0.3‰. 

 

3.2.2. Carbon 

The relative abundance of the steady isotopes of carbon, 13C and 12C, fluctuates typically 

between various biomes and biological communities e.g. amongst plants and distinctive 

photosynthetic pathways (DeNiro and Epstein, 1978; Smith and Epstein, 1971) or between 

terrestrial and marine situations. 
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The carbon isotope piece of both bioapatites (the mineral part of skeletal tissues) and 

collagen (the bone protein) are straightforwardly identified with the dietary isotopic sources of info. 

Accordingly, the examination of these tissues can give data around a creature's eating routine and 

along these lines about the bolstering nature of animal types, locally accessible plant species and 

the nearby condition (Balasse and Ambrose 2005; Balasse et al., 2005; Hedges et al., 2004; Hoppe 

et al., 2006; Richards and Hedges, 2003). Dietary carbon isotope contributions from all food 

sources are recorded in the body tissues of feeders, with the normal carbon isotopic organization of 

a creature's tissues mirroring the normal carbon isotopic piece of its diet. 

 

3.2.3. Nitrogen 

The study of two of the naturally occurring isotopes of nitrogen (15N and 14N) is also a 

useful tool in physiological and biochemical investigations. Stable nitrogen isotope ratios, (15N to 

14N, expressed as δ15N) can also vary spatially, but are much more useful as a means for 

determining the trophic level at which an animal is feeding. 

 

3.2.4. Stable isotope analysis for invasive species 

Stable isotopes analysis (SIA) represents to a normally utilized device for the investigation 

of trophic connections in marine ecosystems (Pinnegar et al., 2003), and a solid approach to 

delineate the trophic properties of organisms (Newsome et al., 2007). Stable isotopes have been 

utilized as an effective complement/replacement for gut-content analysis  (Pinnegar and Polunin, 

2000). This technique can help clarifying the trophic role of an invasive species, and its likely 

impact on the trophic web of the newly-invaded habitat. 

Stable isotope analysis (SIA) can significantly reduce field work effort, as it is able, after a 

solitary catch occasion, to provide data on trophic ecoloyg that span a wide time interval. Layman 

et al., (2005) mention that the stable isotope ratios are most informative when used in conjunction 

with stomach content analyses. The results of stable isotope analysis may provide minimal insight 

into food web structure and the functional role of invasive species fish in the new ecosystems. 

Stable isotope analysis is increasingly being used to improve interpretation of feeding studies and 

marine food webs, particularly for invasive species.  

A major advantage of stable isotope analysis approaches is that they provide temporally 

integrated information may indicate 6 months on dietary habits for the invasive species, reflecting 

foods that are actually assimilated by the consumer. Often it is difficult to identify all of the items 

within stomach contents, and there are associated uncertainties regarding to their classification due 
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to the variable feeding habits of invasive species in new ecosystem where basal food sources may 

change markedly (Rudnick and Resh,2005). Many gut content analysis studies sampled line-caught 

fish, which are likely to leave the gut empty. Prey may also be digested quickly and thus be under-

representation in gut content analyses, while stable isotope analysis likely results in a more 

comprehensive estimate of predator diets  than gut content analysis (Madigan et al., 2012). Since 

various tissue sorts are supplanted at various rates, the proteins inside them will be integrated at 

various rates. For instance, stable isotope marks from liver cells mirror the creature's eating routine 

over earlier days, those of muscle mirror the eating regimen over going before weeks to months, 

and those of hard parts for even longer (Kurle, 2009).  

Invasive species regularly demonstrate high versatility of trophic width (Hayes and Barry 

2007). SIA can likewise help with detailing a reaction to intrusions. By understanding the 

nourishment utilized and areas from which it has been acquired. The immigration of Red Sea 

organisms through the Suez Canal has caused dramatic alteration of Mediterranean Sea marine 

communities; however changes at the level of food and feeding habits interactions remain poorly 

understood (Fanelli et al., 2010). Currently, invasive species provide ‘natural’ experiments for 

understanding food web interactions and functional responses in biological communities (Turner et 

al., 2010). Lesssepsian invasion are paramount to changes to biodiversity in Mediterranean Sea, as 

reflecting a shifts in diet. Although nutrition studies for lessepsain migration are limited by poor 

empirical descriptions and depends on traditional methods. 

Information about trophic and feeding habits of S. luridus and S. rivulatus in the Cyrenaica coast 

can allow comparisons between trophic patterns between the Mediterranean and the Red Seas, and 

to speculate about the fate of these species in their new environments. It can be hypothesized that 

both species have changed their diet in the Cyrenaica coast compared to the populations in the 

original habitats. Even though the data available for the Cyrenaica coast is not extensive and lacks 

information on seasonality, the current findings provide a first insight into the invasive species in 

Cyrenaica coast and food web, following the invasion by use the stable isotope analysis. In this 

study, stable isotope ratios δ15N and δ13C were used to quantify trophic relationships for two 

lessepsian species in Cyrenaica coast, as well as comparing to its native habitats in Red sea. A total 

of 394 specimens belonging to two Siganus species and 9 specimens for algae and sea grasses were 

processed and send to University of New Brunswick, Canada for analysis.  
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Table 3. Most reported macrophytes in the stomach content of Siganus luridus and rivulatus in the 

Mediterranean Sea (√: occurrence). 

Macrophytes Species 

 S. luridus S. rivulatus 

Chlorophyta   

Anadyomene spp √ 1 X  

Bryopsis spp  X √ 2,3,4 

Caulerpa racemosa √ 1 X  

Chaetomorpha spp √ 5 X 

Cladophora spp √ 1,5 √ 2,3,4 

Codium spp X  √ 1,4 

Enteromorpha spp X  √ 2,3 

Ulva spp √ 3,4,7 √ 1,2,3,4,6,7 

Rhodophyta   

Corallina spp X  √ 6 

Gelidiella spp √ 3,4 √ 3,4 

Gelidium spp √ 5 √ 1,4 

Hypnea spp X  √ 4,7 

Jania spp X  √ 1,2,3,4 

Kallymenia spp √ 5 X  

Laurencia spp √ 4 √ 4 

Peyssonnelia spp √ 3,4 √ 7 

Polysiphonia spp √ 1,3,4,5 √ 1,2,3,4 

Rytiphlaea spp √ 5 √ 1 

Sphaerococcus spp √ 1 X  

“Filamentous red algae” √ 1 √ 1 

Phaeophyta   

Colpomenia spp √ 4 X  

Cystoseira spp √ 4,5 √ 1,6,8 

Dictyopteris polypodioides  √ 4,5 X  

Dictyota spp √ 5 √ 8 

Dilophus spp √ 4,5 √ 1 

Ectocarpus spp √ 1 √ 2,3,4 

Halopteris spp √ 1,3,4,5 √ 1,2,3,4 

Padina spp √ 1,3,4,5 √ 1,4 

Sargassum spp √ 1,3,4 √ 1,4,6 

Spatoglossum asperum  √ 4 √ 2,3,4 

Sphacelaria spp √ 1,3,4,5 √ 2,3,4,8 

Taonia atomaria √ 4 √ 2,3,4   
 

Magnioliophyta   

Posidonia oceanica √6 √6 
 

  

 

1Lundberg et al., 1999; 2Lundberg, 1981; 3Lundberg and Lipkin, 1993; 4Lundberg and Golani, 1995; 

5Stergiou, 1988; 6Dowidar et al, 1992; 7Lundberg and Golani, 1993; 8Karagitson et al., 1986
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Information about feeding habits of S. luridus and S. rivulatus in the Mediterranean 

allows to investigate changes in the diet compared to the original habitats and to speculate about 

the fate of these species in their new environments (Table 3, fig.38). In the Red Sea S. luridus 

consumes mainly large tough brown algae (Lundberg and Golani, 1995), such as Lobophora 

variegata (Dictyotales), Cystoseira myrica and Sargassum spp (Lundberg and Lipkin, 1979). 

The red algae contribute more than half to the diet of S. rivulatus (Lundberg and Lipkin 1979, 

Lundberg and Golani 1995), with fleshy and soft taxa such as Laurencia spp, Hypnea spp, 

Champia irregularis and Digeneasimplex are selected most frequently. Phaeophyceae and 

Chlorophyta are also an important part of the diet (Lundberg and Golani 1995). El-Mor et al., 

(2002) observed that Siganus species feed mainly on species of green algae increased 50.2%, 

then the diatoms by 7.7% and then to sediment. The severity of trophism the Siganus species 

up to the highest rates of 100% the winter and spring, where the availability of food. 

The diet of S. rivulatus was found to be more diverse compared to S. luridus, 39 algal 

and seagrass taxa were found in stomach contents from the gulf of Elat (Lundberg and Golani 

1995). Siganus luridus shows a stronger preference for brown algae while S. rivulatus feeds on 

a broader range of species and green and red algae play a more pronounced role in the diet. This 

might be due to the specialised morphology of the alimentary tract which may provide S. luridus 

with a greater ability to utilize coarse brown algae (Lundberg and Golani, 1995). 

Most studies show that even though certain food sources are clearly prioritized, 

members of all three major macroalgae groups are consumed at different times. Both species 

are able to utilise a broad range of food sources and can switch between preferred groups 

according to availability, e.g. between seasons (Table 4). Most genera of macroalgae that 

Siganus species feed on occur in both the Red Sea and the Mediterranean, so the main difference 

they face in their new environments with regards to their diet is different algal community 

structures and abundances, as well as different seasonality.  

The differences in food preferences between the two species has also not changed 

considerably in the new environment: S. luridus shows a stronger preference for brown algae 

while S. rivulatus displays a broader range of targeted food items and red and green algae play 

a more pronounced role in the diet (Shakman et al., 2007). 

Shakman et al. (2007) reported that macroalgae and Posidonia oceanica are the 

dominant constituents of the diet of both species, where they explained that, the differences in 

Gastro-Somatic Index (Gastro Somatic Index is a useful mothed and an efficient way for 

comparing food consumption during period and for determining the environmental factors and 

physiological effects on trophic ecology for organisms ) values between the two species were 
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significant in the Libyan coast, where were highest values in the summer and autumn, the 

ammplitude was increased for S. rivulatus than S. luridus. The mean Gastro-Somatic Index 

values ranged between 6.1% and 14.5% for S. luridus, while, ranged between from 9.1% to 

21.3% for S. rivulatus. The Gastro-Somatic Index started to increase in early spring with highest 

values in summer and autumn before dropping again in winter. The amplitude was lower for S. 

luridus than S. rivulatus. A small drop was observed in July for S. rivulatus, and in September 

for S. luridus. According to the same study, as preferred food categories of S. luridus are 

Phaeophyceae and Chlorophyta 60.1% and 55.3%, respectively, followed by Posidonia 

oceanica 43.7% and Rhodophyta 39.9%. While it were, the food preferences of S. rivulatus 

were quite similar, with Chlorophyta being the preferred food category 50.6%, followed by 

Phaeophyceae 38.6%, Rhodophyta 36.7% and Posidonia oceanica 33.5%.  Overall, both 

species show very similar preferences, with the only differences that S. rivulatus feeds less on 

Phaeophyceae and Posidonia oceanica than S. luridus.  

More detailed of this previous study, the Occurrence Frequency illustrates that S. luridus 

feeds mainly on Phaeophyceae in spring and summer 85.1% and 63.5%, respectively, on 

Chlorophyta in autumn 84.7%, and mainly on Rhodophyta 97.0% and Phaeophyceae 68.3% in 

winter. Siganus rivulatus feeds mostly on Chlorophyta in spring and summer 58.3% and 58.3%, 

respectively and on Phaeophyceae in autumn and spring 55.6% and 50.0%, respectively, and 

on Rhodophyta 65.3% in winter. In general that, the Rhodophyta is only an important part of 

the diet in winter, while seagrass consumption is important in all seasons and does not change 

much over the year for both Siganus species (Table 5). 
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Figure 40. Trophic ecology (algae-seagrass) for S. luridus and S. rivulatus in the Mediterranean Sea.
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Table 4. Seasotnal variation in the most common macrophytes grazed by Siganus luridus and S. 

rivulatus in the Mediterranean Sea. 

 

S
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ri

d
u
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Season Macrophytes  

Stergiou, 1988 Lundberg et al., 1999 

Winter Chlorophyta 

Rhodophyta 

Phaeophyceae 

 

 

Dictyota spp 

Cystoseira spp 

Dictyopteris polypodioides 

 

Spring Chlorophyta 

Rhodophyta 

Phaeophyceae 

 

 

 

Dictyota spp 

Sphacelaria spp 

Ulva spp 

 

Sargassum spp 

Padina spp 

Summer 

 

Chlorophyta 

Rhodophyta 

Phaeophyceae 

 

 

Dictyota spp 

Sphacelaria spp 

Cystoseira spp 

 

Autumn 

 

 

 

Chlorophyta 

Rhodophyta 

Phaeophyceae 

 

Gelidium spp 

Cystoseira spp 

Padina spp 

Dictyota spp 

 

 

 

Sargassum spp 

Padina spp 

Sphacelaria spp 

S
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a
n
u
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ri
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  Lundberg and Lipkin,  1993 Lundberg et al., 1999 

Winter Chlorophyta 

Rhodophyta 

 

Phaeophyceae 

 

Jania spp 

Polysiphonia spp 

Sphacelaria spp 

 

Spring Chlorophyta 

 

 

 

Rhodophyta 

Phaeophyceae 

 

Ulva spp 

 

Ulva spp 

Enteromorpha spp. 

Cladophora spp. 

Cladophoropsis 

membranacea 

 

Summer 

 

Chlorophyta 

Rhodophyta 

Phaeophyceae 

 

Jania spp 

 

 

Autumn 

 

 

 

Chlorophyta 

Rhodophyta 

Phaeophyceae 

 

Polysiphonia spp 

Sphacelaria spp 

 

 

 

Sphacelaria spp 

Sargassum spp 

Padina spp 
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Table 5. Algal trophic items for S. luridus and S. rivulatus in the Libyan coast (from Shakman 

et al, 2007). Posidonia oceanica was found in both species                                                                                    

 

Siganus species  Chlorophyta Rhodophyta 

 

Phaeophyceae 

 

Siganus luridus Caulerpa racemosa                         

Codium spp.                                    

Cladophora spec.                            

Dasycladus 

vermicularis                

Ulva spp.                                         

 

Asparagopsis 

armata                      

Hypoglossum 

hypoglossoides        

Polysiphonia spp.                           

Corallina officinalis                       

Contarinia 

squamariae                  

 

Sauvageaugloia griffithsiana        

Dictyota spp.                                  

Padina spp.                                   

Taoina/Spatoglossum                                                                                                                                                   

Cystoseira spp.                               

Sargassum spp.                             

Halopteris filicina.                         

Sphacelaria spp.                            

Stypocaulon scoparium                 

Siganus 

rivulatus 

 

Codium spp. 

Cladophora spp. 

Dasycladus 

vermicularis 

Ulva spp.  

 

Asparagopsis 

asparagoides 

Antithamnion spp. 

Griffithsia cf. 

opuntioides 

Heterosiphonia cf. 

crispella 

Polysiphonia spp. 

Corallina officinalis  

Jania rubens  

Contarinia 

squamariae  

Rhodophyllis spp.  

Botryocladia spp.  

Dictyota spp.  

Taoina/Spatoglossum  

Giffordia spp. 

Sauvageaugloia griffithsiana  

Sargassum spp.  

Halopteris filicina  

Sphacelaria spp.  

Stypocaulon scoparium  
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Over the most recent two decades, the trophic ecology habits of the Siganus species 

have been widely studied in the eastern Mediterranean Sea ( Golani, 1998;Azzurro and 

Andaloro, 2004;Azzurro et al., 2007 and Bariche, 2006) but no information is available from 

the Libyan coas except (Shakman et al.,2007), so that specific studies are highly required. In 

reality, one of the real constraints in addressing ecological questions is the absence of data. 

Several of invasive species can fundamentally change food web structure in nutrient 

dynamics. (Wilcove et al., 1998; Wetzel, 2001). In marine environments in the Mediterranean 

Sea, much attention has been dedicated to spread and distribution of invasive species , but 

considerably less is known about the  competition of invasive with native species  and effects 

of invasive fish for food web. The impacts of invasive species can extend to affect change food 

web structure of ecosystems, also likely to result in changes in trophic structure in ecosystems. 

The response of Siganus species to adapt in Mediterranean ecosystems may be its ability to 

exploiting various habitats. Thus, Iwould expect those two Siganus species to provide different 

levels, including invasive plants.  

 

3.3. Aims  

A number of studies have been conducted in Libyan waters on trophic ecology patterns 

of Libyan fish, concentrated on stomach content analysis only (Shakman et al., 2007, Ben 

Abdallah et al., 2005). In this study stable isotope analysis was used to compare the trophic 

ecology of the two Siganus species under investigation in different locations in the Cyrenaica 

coast and the Red sea. I was interested in understanding whether invasive species changes their 

feeding habits in the invaded Cyrenaica coast. I chose stable isotope analysis because it 

provides a rapid and relatively cost-effective assessment of trophic structure (Fry, 1991) and 

an integrated measure of changes in lower trophic levels (Layman et al., 2007). Due to isotope 

fractionation, 15N accumulates as trophic position increases, whereas carbon undergoes 

minimal fractionation and can be used to track basal resources (Fry, 1991).  

The aim study is to evaluate to what extent the stable isotope analytical methods can 

provide us with knowledge of the structure and functioning of invasive species in Cyrenaica 

coast and understanding the feeding of invasive species. 
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3.4. Material and methods 

3.4.1. Samples collections 

The samples were collected 2014 and 2015 by Fishermen from the Libya coast (Cyrenaica) 

and the Egypt coast (Red sea). Siganus rivulatus and S. luridus were collected from the 

Cyrenaica coast Six regions (Al-haniya, Susa, Ain Al-Gazala and Tubruq) and Egypt coast two 

regions (Hurgadae and Al-Ture). The tissues were taken from fish samples had been dried at a 

temperature of 60° C for 24 hours subsequently they had been crushed and placed in plastic 

bags for the purpose of sending it to Canada for the required analysis (Fig. 41). It is worth 

mentioning that samples of existing seaweed and algae have been gathered in the location of 

gathering the samples whether on the coast of Cyrenaica, and the coast of the Red Sea.  They 

were treated by draining them on temperature 60 ° C for 24 hours and then they were crushed 

and stored in plastic bags. Samples were analysed at the centre of Canadian Rivers Institute 

Department of Biology University of New Brunswick.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. Plant and algae samples and fish muscles were dried at 60 C for 24 hour for the stable isotope 

analysis 
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3.4.2. Carbon and Nitrogen Methodology 

Samples are weighed into tin capsules and loaded into either a PN150 or Costech Zeroblank 

autosampler. Samples are converted to gases by combustion in either a Carlo Erba NC2500 or 

Costech 4010 Elemental Analyzer (EA).  

For measurements of δ13C and δ15N, samples are analyzed using either a Delta Plus or a 

Delta XP continuous flow isotope-ratio mass spectrometer (CF-IRMS) (Thermo- Finnigan; 

Bremen, Germany), interfaced to the EA via the Conflo II or Conflo III, respectively. 

Combustion occurs in a quartz tube filled with chromium oxide and silvered cobaltous oxide 

at a temperature of 1050ºC (NC2500) or 1000ºC (Costech 4010). 

 A second quartz tube set at 650ºC is filled with fine copper wire and used for the reduction 

of nitrogen oxides (NxOx) to N2. CO2 and N2 peaks are separated while passing through a 4m 

GC column (NC2500) held at 50ºC or a 3m GC column (Costech 4010) held at 40ºC. A water 

trap of magnesium perchlorate & silica chips is located prior to the GC column to remove 

water. Stable isotope measurements are reported as isotope delta δ in parts per thousand (‰) 

relative to the international standard: Vienna Pee Dee Belemnite (VPDB) for carbon and 

atmospheric air (AIR) for nitrogen. Isotope values are normalized using secondary standards: 

NICOTINAMIDE, BLS, and SMBM for animal tissues; and CMS, AQM, SPL and EPS for 

sediments and plant material. All of these standards were calibrated against IAEA standards. 

See below for standard descriptions. 

 

3.4.3. Isotope analyses 

Isotopic analyses were performed on muscle tissue samples of Siganus luridus and S. 

rivulatus from six site and macrophytae (chosen on from the Cyrenaica coast and the Red sea). 

According to each fish species, I analysed six individuals of the same size (ANOVA P>0.05) 

Analysis of Variance (ANOVA) is a statistical method used to test differences between two or 

more means. For each species of macrophytae, I analysed two samples taken from a composite 

sample of specimens. Samples of both fish and macrophytae were dried to constant weight at 

60°C in a fan-assisted oven before being ground to a fine powder with a mortar and pestle. 

The permutational univariate ANOVA was executed based only on stable isotope for 

the  δ13C values of the same matrix. The bathymetric direction of each group was also explored 

by regression analysis for δ13C and δ15N separately (Anderson et al., 2008). Bathymetric trends 

of each group were also explored by regression analysis for δ15N and δ13C separately. In 

addition, a permutational multivariate ANOVA (PERMANOVA; Anderson 2008) was 



84 

 

employed on the same matrix to test the significance of differences between the diet of S. 

luridus and S. rivulatus belonging to the six sampling locations.Significance was set at p = 0.05 

and p-values were obtained using 9999 permutations under unrestricted permutation of the raw 

data. 

 

3.5. Results 

The estimates of stable isotope analysis in Siganus species (Table 6), where were the values 

range of δ13C were (-16.2 ‰ and -18.4 ‰) for S. luridus and S. rivulatus, while the values of 

δ15N were (5.9 ‰ and 9.7 ‰) for S. luridus and S. rivulatus respectively in the Cyrenaica coast. 

On the other hand, the values range of δ13C were (-13.1 ‰ and -10.1 ‰), while the values of 

δ15N were (5 ‰ and 4.1‰) for S. luridus and S. rivulatus respectively in the Red sea. The 

highest δ13C values were found in S. rivulatus in Tobruq (-6.7 ‰) and the lowest in Susah S. 

luridus (-21.9 ‰), while the highest δ15N values were found in S. rivulatus in Tobruq (10.8 

‰), and the lowest in the S. luridus in Al-Haniya in (2.7 ‰) in the Cyrenaica coast. On another 

hand, the highest δ13C values were found in S. luridus in Hurghada (-7.2 ‰) and the lowest in 

Hurghada S. rivulatus (-15.9 ‰) and the highest δ15N values were found in S. luridus in AlTor 

(9.6 ‰) and the lowest in AlTure S. luridus (-15.9 ‰).  

 

Table 6.  Isotopic composition (δ15N and δ13C; Minimum, Median and Maximmum) of the two Siganus 

species for the study areas. 

 

 

Stable isotope values of δ13C varied among locations in the Cyrenaica coast and the Red 

sea (-25.6‰ to -6.5 ‰) while, the values of δ15N varied between 1.7 ‰ to 8.7 ‰. On another 

hand, the values for δ15N in baselines were more extreme (Table 7) than previously reported 

values, where the values of δ15N were for baseline were 5.6 ‰, while the values for δ13C were 

-13.4 ‰. 

 

 

 

Isotope  Min 1st Qu. Median Mean 3rd Qu. Max 

δ13C -21.9 -17.4 -14.4 -14.3 -11.8 -6.6 

δ15N 3.65 3.5 5.75 5.56 6.4 8.35   
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Table 7.  Isotopic composition (δ15N and δ13C; Minimum, Median and Maximmum) of baseline (algae 

and seagrasses) for the study areas. 

The δ13C values were in Siganus species in the Red sea higher than δ13C values for in 

Cyrenaica coast, where were range between -7.2 to -15.9, the δ13C values of Siganus species 

tissue (fig.42).  

 

 

 

 

 

 

 

Figure 42. Box – Whisker plots of the fractional trophic level values of Carbon for Siganus luridus 

(Blue) and S. rivulatus (Red) by habitat locations. The central box covers 50% of the data, the whiskers 

extend out to the minimum and maximum values of the data, the vertical line within the box is the 

median and the black dot is the mean. Numbers in parentheses indicate number of datasets per habitat 

type. 

In the same context, when mentioning the when using length as a covariate to compare 

differences in weight, it was found that the Siganus luridus growth was higher in the Red sea 

compare to the Mediterranean sea (see Fig.21 in chapter II), as shows there differences are 

significant between S. luridus and S. rivulatus and all the locations in both habitats and years. 

Comparison between nitrogen isotope compositions in scale tissue from Siganus species in the 

Cyrenaica coast and the Red sea, S. rivulatus in the Cyrenaica coast clearly fed at higher trophic 

levels than the Siganus species in the Red sea, reflecting changes in trophic level for S. rivulatus 

in the native and novel habitats. On the other hand the S. luridus remained at the same trophic 

Isotope  Min 1st Qu. Median Mean 3rd Qu. Max 

δ13C -25.6 -17.03 -11.26 -13.41 -10.38 -6.58 

δ15N 2.79 3.19 5.08 5.67 7.22 10.81   
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level at all locations except Tobrouq (Fig. 43), on the other hand, the growth of S. rivulatus 

was higher in the Cyrenaica coast compare to the Red sea (see Fig. 22 chapter II). 

 

 

 

 

 

 

 

 

 

Figure 43. Box – Whisker plots of the fractional trophic level values of Nitrogen Siganus luridus (Blue) 

and  S. rivulatus (Red) by habitat locations. The central box covers 50% of the data, the whiskers extend 

out to the minimum and maximum values of the data, the vertical line within the box is the median and 

the black dot is the mean. Numbers in parentheses indicate number of datasets per habitat type. 

Despite the large variation in Siganus species for δ 13C and δ 15N values between S. luridus 

and S. rivulatus, but show no relationship with either total length (Fig.44), indicate that 

differences in the total length for Siganus species were not always correlated with δ 15N and 

δ13C. In spite of, there were significant differences between the study sites, also between the 

years; the differences were less significant between species (Table.8). 

 

 

 

 

 

 

Table 8. Summary of ANOVA results. 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Relationships between δ 13C and δ 15N values and total length for Siganus species and native 

and novel habitats. 

Df Sun Sq Mean Sq F  value Pr (>F )

Locations                5 251.4 50.27 12.871 1.36e-11 ***

Species          1 17.8 17.8 4.55 0.0334 *

Years            1 219.9 219.9 56.3 4.30e-13 ***

Residuals               387 1511.6 3.91

(a) Relationships between δ 13C and δ 15N values and total length for(circle 

symbols)  Siganus luridus (L) black and S. rivulatus (R) Red. 
(b) Relationships between δ 13C and δ 15N values and total length for  

(circle symbols)  Egypt, black and Libya, Red. 
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 Figure 45. δ15N versus δ13C scatter plot of Siganus species, collected in the Red Sea and along the Cyrenaica coast  illustrating the isotopic 

signature of S. luridus (circle, red) and S. rivulatus (triangle, blue) in the study sites 
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Df Sums of Sq Mean Sq F  Model R2 Pr (>F )

Years                1 344.1 344.1 62.91 0.049 0.001***

Sea        1 1253.3 1225.3 229.1 0.18 0.001***

Locations          5 433.9 108.4 19.83 0.062 0.001***

Species               1 433.4 443.4 81.06 0.064 0.001***

Years : Sea 1 144.5 144.5 26.42 0.02 0.001***

Years : Locations 5 205.7 51.42 9.04 0.02 0.001***

Years : Species 1 416.8 416.7 76.2 0.06 0.001***

Sea : Species 1 728.1 728.1 133.12 0.105 0.001***

Locations : Species 5 202.1 50.52 9.23 0.029 0.001***

Years : Sea : Species 1 206.3 206.29 37.71 0.029 0.001***

Years : Locations : Species 5 520.7 130.18 23.8 0.075 0.001***

Residuals               371 2029.1 5.47 0.292

Total 394 6927.9 1

   

Stable isotope values of S. luridus and S. rivulatus varied considerably among Locations in 

the Cyrenaica coast, when compared to the locations in the Red sea (Fig.45). The two species seem 

to occupy a border “space” in the new habitats (Cyrenaica coast). In the box plots (fig.45) where, 

both species increases the trophic level when moved into the Cyrenaica coast, while in the Red Sea 

they appear more tightly clustered and well-segregated. Lack of isotopic niche overlap between S. 

luridus and S. rivulatus in the majority of locations in the Cyrenaica coast indicated a predominantly 

indirect interaction. I suggest that Siganus species induced habitat alteration resulting in a reduction 

in the dietary niche. Therefore, I attribute any changes in the stable isotope values and population 

metrics of S. luridus and S. rivulatus to actual diet alteration in the Cyrenaica coast but, based on 

δ15N values, I conclude that Siganus species are feeding at a similar trophic level in the Red sea, 

this data supports the conclusion that Siganus species are generalist feeders. Once Siganus species 

had become established as the dominant fish species in Cerynaica coast, Siganus speciess exhibited 

change reflecting a shift in diet towards higher trophic levels. 

 

Table 9. Summary of PERMANOVA results. 

 

 

 

 

 

 

 

 

 

 

 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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In Ain Ghazala (Cyrenaica coast), there was a difference in δ15N isotope ratio between the 

two species, in 2014 the trophic level for Siganus rivulatus it was higher than trophic level for 

Siganus liridus (Fig.46). While in 2105 the trophic level for Siganus luridus it was higher than 

trophic level for Siganus rivulatus (Fig.46). The two species seem trophic level in the Tubruq 

(Cyrenaica coast) in 2014 (Fig.46), the other hand the Siganus luridus in Tubruq higher for trophic 

level than all locations in Cyrenaica coast.  In 2015 the trophic level for Siganus luridus in Susah it 

was low than all locations in Cyrenaica coast (Fig.46). The Trophic level was different in Siganus 

rivulatus in Egyptian locations (Al-Tur and Hurgadah) between 2014 and 2015, where was in 2015 

higher from 2014 (Fig. 46). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46. δ15N versus δ13C scatter plot of Siganus species, collected in the Red Sea and along the Cyrenaica 

coast illustrating the isotopic signature of S. luridus (circle) and S. rivulatus (triangle) in the 2014 and 2015. 

PERMANOVA pair-wise test showed significant differences in the isotopic ratios of Siganus 

luridus and S. rivulatus species, among trophic groups and for the interaction (Table 9). The pair-

wise comparisons performed on the interaction ‘‘Species versus Locations versus Years’’ showed 

significant differences in δ15N– δ13C. There was no overlap between two locations in Cyrenaica 

coast Ain Al-Gazalh and Al-Haniya, while were clear overlap in two sites Tubruok and Susah. On 
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the other hand, the Egyptian sites well-segregated a there were no overlap between species at 2014. 

In contrast, in 2015 there were radical changes of variations in the isotopic composition when 

comparing the data between locations and years, the trophic level for S. luridus was increased 

compared with 2014 , in contrast the trophic level for the S. rivulatus  was decreased in the Cyrenaica 

coast. When compared the isotopic composition of S. luridus and S. rivulatus in the study areas, both 

species in the Egyptian sites were very similar for Isotopic composition during 2014 - 2015, while 

there was fluctuated in the isotope composition  between the species in locations in the Cyrenaica 

coast (Fig. 46) 

 

Table 10. List of species/taxa, their isotopic composition, considered as potential primary food sources for 

littoral fishes off the coast of Cyrenaica 

 

 

 

 

 

 

Sea Locations Species δ13C δ15N C/N Group 
Libya Ain Posidonia -6.58 3.29 17.91 Algae 

Libya HANIYA Cystoseria -18.21 -1.09 46.84 Algae 

Libya TUBRUQ speciesA -7.38 2.81 21.87 Algae 

Libya SUSAH SpeciesB -25.66 7.09 32.18 Algae 

Egypt HURGADAH RedAlgae -17.03 1.76 42.17 Algae 

Egypt TUR Sargassum -10.38 8.98 11.19 Algae 

Egypt HURGADAH Sargassum -13.03 8.77 9.86 Algae 

Egypt TUR SpeciesC -11.18 8.45 11.33 Algae 

Egypt HURGADAH SpeciesD -11.26 8.16 11.06 Algae 
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Figure 47. δ15N versus δ13C scatter plot of baseline and Siganus species, collected of Red Sea and in Cyrenaica coast, illustrating the isotopic signature of fish 

and algae. 
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Although data on vegetation from Cyrenaica coast and the Red sea are required in order 

to assess selectivity In two Siganus species, some general conclusions can be drawn based on 

the previous studies of Shakman et al.,(2007) in the Libyan coast and another study at 

Mediterranean sea (Stergiou,1988; Lundberg et al.,1999), also other study by McMahon et 

al.,(2016) in the Red sea. Baselines in the Mediterranean sea and the Red sea are very variable, 

thus the diet of Siganus species are more diverse between different habitats, also both species 

are feed mainly on algae and seagrass.  

In this context, previous data obtained has been used, especially for the baseline in the 

Red sea and the Cyrenaica coast. The following was observed, the δ15N values of Siganus 

luridus and S. rivulatus were higher enriched than expected on the basis of consumed food 

items in the Red Sea, while the values of δ15N of the baseline at the Cyrenaica coast at the same 

level with δ15N in S. luridus.  

On the other hand, the values of δ15N in S. rivulatus was higher than baseline. Also, 

spatial differences were revealed, analysing all the Seas and Species together for both δ13C and 

δ15N values, each Seas can be separated in picture (Fig. 47). 

 In addition, the lower δ13C range found in Siganus species would suggest a narrower 

range of food sources in the Red Sea. In contrast, what happened on the coast of Cyrenaica 

coast was an expansion of the used resources. 

 

 

 

Table 11. List of secies/taxa, their isotopic composition, considered as potential primary food sources 

for littoral fishes off the Red sea by McMahon et al. (2016). 

 

 

 

 

 

 

 

 

 

 

Sea Species δ13C δ15N Groyup 
Red Sea Mangrove -27.7 1.4 Mangrove 

Red Sea Seagrass -7.9 -0.3 Seagrass 

Red Sea Seagrass -5.5 2.4 Seagrass 

Red Sea Seaweed -14.3 2.8 Seaweed 

Red Sea Seaweed -7.4 0.4 Seaweed 

Red Sea Seaweed -10.5 1.7 Seaweed 

Red Sea Macroalgae -8.2 1.9 Macroalgae 
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Table 12. List of species/taxa, their isotopic composition, considered as potential primary food sources 

for littoral fishes off the coast of Cyrenaica by (Fanelli et al., 2015 and Shakman et al., 2007). 
 

Sea Species δ13C δ15N Group 
Mediterranean Enteromorpha species -17.2 15.9 sea grass 

Mediterranean Halopila stipulacea -18.3 4 sea grass 

Mediterranean Hypnea species -17.8 4.8 red algae 

Mediterranean Posidonia oceanica -13.8 2.4 sea grass 

Mediterranean Asparagopsis taxiformis -31.9 2.5 red algae 

Mediterranean Caulerpa cylindracea -15.6 3.7 green algae 

Mediterranean Codium bursa -10.5 1.3 green algae 

Mediterranean Ulva sp. -20.3 4.1 green algae 

Mediterranean Colpomenia sinuosa -11.7 1.7 brown algae 

Mediterranean Cystoseira sp. -17.5 1.5 brown algae 

Mediterranean Dictyota sp. -14.7 1.5 brown algae 

Mediterranean Halopteris scoparia -22.7 2 brown algae 

Mediterranean Padina pavonica -12.3 2.8 brown algae 

Mediterranean Amphiroa rigida -16.8 3.8 red algae 

Mediterranean Ceramiales -16.4 3.6 red algae 
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Figure 48. δ15N versus δ13C scatter plot of  baseline data from previous studies (Fanelli et al., 2015 and Shakman et al., 2007) and isotopic signature of Siganus 

species, collected of Red Sea and  in Mediterranean sea.
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 3.6. Discussion 

Our findings showed a very different situation. In facts the higher δ15N values of 

baseline in the Red sea (see Table.10 and Fig.47). The δ15N of baseline it's higher levels in the 

food webs, especially two Locations in the Red sea. These points to a displacement Siganus 

species to lower trophic level for baseline in the Reds Sea, also higher δ15N values for Siganus 

species in the Red Sea could indicate a more oriented diet towards organisms of Algae and 

seagrass sources contains low values of nitrogen. While δ15N values were higher in Siganus 

species than the baseline in Cyrenaica coast that means, the Siganus species in the Cyrenaica 

coast use many baselines than Red sea, hence higher variations between both species in native 

and novel habitats (fig.47). 

The δ15N values for the baseline at these locations (see Table.10 and Fig.47) may be 

indicating higher exposure to sewage-derived organic matter. The rise of the δ15N value in 

seagrass and algae was consistent with the enrichment of the seagrass and algae with observed 

the presence of organic resources from human and animals waste (Salvatrice and Mazzola, 

2006). Where were collected the samples from sea fishing ports, which there were 

anthropogenic inputs. Therefore, it appears that unpredictable stable isotope analysis for the 

baseline, when taken from cited there are anthropogenic inputs 

Stable N isotopes provide another means of assessing ontogenetic changes in Siganus 

species diets and the trophic level at which Siganus species are feeding. The isotope values of 

muscle tissue integrate diet over a longer period of time than do stomach contents, and reflect 

the isotope values of all assimilated prey, rather than the identifiable remains of ingested prey. 

Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate 

scale for the study of population niches, but few isotope studies have retained the often 

insightful information revealed by variability among individuals in isotope values. Our 

population metrics incorporate such variation, are robust to the vagaries of sample size and are 

a useful additional tool to reveal subtle dietary interactions among species 

In the absence of historical data for Siganus species on the native and the Cyrenaica 

coast for food web, I took into account literature isotopic data of two Siganus species in the 

native and novel habitats. The data from native areas (Red sea) were took from McMahon et 

al. (2016) (Table 11), While the data were taken for the Mediterranean sea (novel habitats ),of 

the study conducted by Fanelli et al. (2015) in the Lebanon waters (Table 12). The data from 

the Mediterranea Sea of the baseline were used the items, its Recorded by (Shakman et al., 

2007) in the Libyan coast in order to compare.    
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The differences between the diets of S. luridus and S. rivulatus in these and native and 

novel habitats may be attributed to the differential quantitative composition of the 

phytobenthic, as well as regard to the distribution and abundance of benthic algae in the waters 

of the Cyrenaica coast. Seasonal variations in the abundance and availability of the important 

phytobenthic of S. luridus and S. rivulatus could be a major factor leading to variations in the 

diet of this species in the Cyrenaica coast.  Where, Shakman et al., (2007) found that in the 

Libyan coast the Posidonia oceanica it's the important part of the diet for the S. luridus and S. 

rivulatus in all seasons. The variations changes in the abundance of the phytobenthos agree to 

a great extent with the seasonal changes observed in the feeding spectrum of S. luridus and S. 

rivulatus. The relative abundance of red algae in the area of Cyrenaica Costa increases 

significantly in the autumn (Diannelidis 1977) and this may explain the increased consumption 

of red algae by S. luridus and S. rivulatus in the autumn. also, Shakman et al., (2007) noted 

that, the S. rivulatus targets a broader range of feed items than S. luridus in the Libya coast. 

Barich, (2006) found that the grazing of macrophytes varies in proportion in S, luridus and S. 

rivulatus, reflecting the seasonal variations of macrophyte populations. The proportioning also 

appears to change with fish size, probably in relation to energy needs as well as changing 

grazing capabilities with relation to age. 

While Siganus luridus and S. rivulatus showed a similar range of trophic level (fig.48), 

as this overlap seems to be particularly clear for Siganus species in the native and novel habitats 

and strong competitive interactions are expected to occur among them, this is consistent with 

the previous studies based on stomach contents (Shakman et al., 2007) highlighted a large 

overlap between the diets of Siganus species in the Libyan coast. 

As, the d15N of Siganus species appeared more enriched in the Cyrenaica coast, as if 

they were consuming higher trophic level prey compared with the Red Sea, this evidence 

reinforces the idea of a measurable niche shift of Siganus species, Lundberg and Golani,(1995) 

noted that, the S, rivulatus was more diverse than S. luridus in Gulf of Aqaba. in addition, 

Barich, (2006) pointed out to, in the Mediterranean sea, both siganidae have considerably  

modified their diet to adapt themselves to new algal resources, which differ significantly from 

those found in the Red sea. Differences in isotopic values resulted for Siganus species in native 

and novel led to change for trophic levels, as Since the process of invasive species by Red Sea 

Lessepsian species still continues without any sign of decline (Ben-Tuvia, 1985), it seems, as 

Por (1978) stressed, that the  Mediterranean ecosystem allows for additional links in the food 

web.  As mentioned by Stergi, (1988) fishes clearly alter their behavior in the presence of 

competitors in order to reduce the utilization of similar resource, 
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According to Pinnegar and Polunin (1999) when the animals consume their food, they 

become reinforced by heavier isotope (δ13C or δ15N). As known that the seasons and space its 

It has a great effect on both diet and feeding behavior of fishes (Deudero et al., 2004). In 

addition to that, Siganus species, showed significant differences also between 2014 and 2015, 

they as referred to that, the range of variation were clear. Such a discrepancy may suggest that 

different physiological and ecological factors are involved in fish isotopic composition. The 

variable temporal contribution of resources may be ascribed to its annual cycle as it reaches 

the maximum biomass and production in autumn. 

The trophic diversity of Siganus species in the Cyrenaica coast shows a positive 

relationship with baseline sources of prey types utilized in the food web in the six locations of 

Cyrenaica coast. Coupled with the present data, this suggests an increased used of baseline 

sources by the Siganus species, confirming results of previous studies.  

I conclude that presence of Siganus species was associated with changes in trophic 

diversity in the Cyrenaica coast but not trophic position, where the trophic position for both 

Siganus species in differents sites in native and novel habitats were similar. Unlike the trophic 

position, trophic diversity width was significantly different in six locations in the Cyrenaica 

coast. It is interesting that the expansion of trophic diversity of Siganus luridus and S. rivulatus 

in the Cyrenaica coast adds a new potential link to the use of local trophic resources and 

competitive interactions between this lessepsian migrant and its native ecological analogues. It 

is possible that Siganus species may experience selective pressure for increasing generality to 

counteract stress of habitat change in the novel habitats in The Cyrenaica coast. 
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Chapter IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

 

Comparative phylogeography of the Lessepsian invaders: S. luridus and S. rivulatus 

 

Abstract 

 

Invasive species are often exposed to new selective pressures, as they try to adapt to a new 

habitat. The Lessepsian invasion is relatively new and it is was long believed that only a small 

number of organisms originating from the Red Sea had made their way to settle in the 

Mediterranean Sea. 

Phylogenetic relationships of two rabbitfishes (S. luridus and S. rivulatus), the Lessepsian 

species that are important components as primary consumers in Cyrenaica coast, were studied 

using mitochondrial control region sequence analyses. Samples were collected at four sites in 

the Cyrenaica coast - Libya and two sites in the Red sea. The samples were gathered in October 

and November 2014 and August and September 2015. DNA was extracted using a Chelex 

protocol. The sequences of the control region for S. luridus and  S. rivulatus from the Cyrenaica 

coast in the Libyan Sea were generated in the lab at Salford University. 

Based on the haplotype networks using mtDNA of the S. luridus and S. rivulatus were well 

differentiated and did not separate into native population (Red sea) and Mediterranean 

populations. A genetic differentiation index based on the frequency of haplotypes confirms the 

absence of genetic differentiation in S. luridus and S. rivulatus. The Cyrenaica population, Red 

sea populations, and the Mediterranean population are closely related to each other, suggested 

by a very low and non-significant FST value. This is likely due to high levels of gene flow 

between the Red Sea and the Mediterranean sea, and is in agreement with several studies in 

different locations in the Mediterranean sea. 
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4.1.  Introduction 

The impact of invasive species on terrestrial and marine ecosystems is increasing (Kolar 

and Lodge, 2001).  However, these phenomena also provide a chance to observe the process 

of evolution of the invaders in new habitats (Lockwood et al., 2007). This is particularly 

important for the invaders that belong to marine environments (Lee, 2002; Wares et al., 2005). 

A lot of efforts have been made to understand how these invasive species affect the ecosystems, 

and resources have been allocated to prevent and control the invasive species.  

The field of phylogeography encompass the study of the processes responsible for the 

spatial distributions of individuals during evolutionary time. This is accomplished by linking 

genetic lineages and geographic distributions of individuals (Avise, 2000). Thus, 

phylogeography has been successfully used to identify invasive species and invasive potential 

of new colonists, in addition to the assessment of the succes of the invasion process (Peterson 

2003). The approaches used to observe and assess the invasive species now include several 

genetic tools, which have proven effective to address several questions, such as the source and 

the timing of invasion (Byers and Goldwasser, 2001), the invasive patterns (Tsutsui et al., 

2000), the historical biogeography (Magoulas et al., 1996), and the propensity of certain 

species to become successful invaders (Williamson and Fitter, 1996). 

Invasive species are observed to be exposed to selective pressures, as they try to adapt to 

a new habitat. Pressure is typically posed by native species that compete with the invaders for 

food resources and habitats. The genetic attributes of invasive species have to determine how 

well the invaders can adapt and settle in the new habitat. The genetic characteristics of invasive 

species that are to be considered include epistasis, and genetic variance and trade-offs (Lee, 

2002). Studying the genetic variance and observing the potential for evolution in these species 

can provide useful information about their invasive nature. Researching about their life 

histories may also prove to be helpful in deciding which of these species are likely to transform 

into harmful pests.  

 However, a first step to obtain information about the evolutionary processes of invasive 

species, especially as very little data is available for most invading species worldwide, is to 

describe the genetic structure of these taxa, in space and time. 

 

4.2. The genetic of lessepsian bioinvasion 

Bioinvasions can help provide an opportunity to research about the evolutionary processes 

in invasive species. These species can also help to identify various factors that support 
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invasions and the conditions needed for these organisms to adapt. Several intrinsic properties 

of invasive species, such as genetic variance, growth rate and tolerability to abiotic aspects, can 

influence the success rate of their invasion (Ehrlich, 1989; Byers and Goldwasser, 2001). The 

process of invasion is also said to be affected by several external factors such as competitors, 

predators and the presence of parasites (Mitchell and Power, 2003; Torchin et al., 2002, 2003; 

Colautti et al., 2004). For these organisms, new environments are usually quite different as 

compared to their native habitats in terms of ecological conditions. They may have varying 

levels of physiological stresses like salinity and temperature and may force the invading species 

to adapt. This adaptation takes place by the virtue of genetic variability (Golani, 1998; Tsutsui 

et al., 2000). Managing the survival of these species in new habitats has been a controversial 

topic. More research on these invasive species introduced to new environments is needed, 

however, it is not known whether this research will help in increasing knowledge about their 

control and prevention.  

Invasion of an environment by a new species takes time and often involves different stages, 

beginning from colonization and gradually proceeding to the expansion of population into the 

new habitats (Kowarik, 1995). It has been claimed by Holt et al., (2005) that this time period 

is variable and may have strong impacts on the ecology and demography of the environment. 

It can be estimated by determining the duration required for the species to adapt to a new 

habitat. Genetic research can be useful in tracking the mechanism of colonisation in these 

species and can help in relating their genetic structure with their capacity of reacting to the 

process of natural selection (Lee, 2002; Allendorf and Lundquist, 2003). Understanding the 

mechanism of invasion in a marine ecosystem is difficult, especially when recruitment process 

is variable, cryptic species are present and the environment is not directly observable (Hastings 

et al., 2005; Puth and Post, 2005; Wonham et al., 2000). 

The genetic features of native and invasive species have been contrasted using molecular 

techniques (Golani and Ritte, 1999; Bucciarelli et al., 2002; Karako et al., 2002; Bonhomme 

et al., 2003; Hassan et al., 2003; Azzurro et al., 2006). In case of invasion by Lessepsian 

species, the procedure has been used to monitor their genetic structuring (Karako et al., 2002; 

Azzurro et al., 2006; Terranova et al., 2006). The genetic study of lessepsian invasion have 

been also used to unveiled demographic aspects and population dynomics within the 

Mediterranean Sea (Azzurro et al., 2006; Iannotta et al., 2007). It has also clarified the 

classification of species (Golani and Ritte, 1999; Kasapidis et al., 2007) and has helped to 

uncover several cryptic species (Bucciarelli et al., 2002). 
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The Lessepsian invasion is relatively new and is was long believed that only a small 

number of organisms originating from the Red Sea had made their way to settle in the 

Mediterranean Sea. However, a lot of other species have just started their process of invading 

the Mediterranean Sea and many have already settled and passing through the process of 

expansion.  Based on the updated checklists by Zenetos et al. (2010, 2011, 2012), a total of 

986 invasive species are recorded in the Mediterranean Sea: 775 in the Eastern, 308 in the 

Western, 249 in the Central Mediterranean Sea and 190 in the Adriatic Sea. While, Shakman 

et al., (2016) reported that the 35 marine invasive species recorded in the Libyan waters 

represent the highest percentage  of invasive fish (71%) followed by molluscs (17.14%)and  

crustaceans (11.43 %).Molecular techniques still pose as an important procedure for studying 

biological invasions, concentrating on the stage of colonisation and taking samples of the 

species for studying their genetics. Golani et al. (2007) has suggested studying the small 

populations residing in the western edge whose invasions are still in the initial stages (Azzurro, 

2006; Terranova et al., 2006). Observing a population that has settled early is important for 

simplification of theoretical work and determination of basic variables in the process of 

colonisation (Lockwood et al., 2007).Receiving information about the genetic structures of 

these species can help to understand various aspects such as the dispersal capability, 

reproductive features, connectivity and the biogeography (Shulman 1998; Palumbi 2003). For 

this reason, studies involving the genetic features of invasive species are becoming popular. 

Azzurro et al., (2006) have contributed important knowledge on the Siganidae family, 

particularly the Lessepsian species such as S. rivulatus and S. luridus. These two species have 

been regarded as the most common and successful among the other 59 fish migrants belonging 

to Lessepsian category ever since 1869 when the Suez Canal was first opened. Azzurro et al. 

(2006) concluded that the Siganus species maintained the original mitochondrial diversity and 

there was no pattern of regional separation during the colonization of the island of Linosa, Italy. 

Such Information agrees with the thought that Lessepsian species includes a large number of 

individuals from the earliest stages of colonization. The size of propagule and the level of 

diversity in the founding individuals is key to the success of the invader, but multiple invasions 

can help dampen the genetic bottlenecks occurring at initial stages, with high levels of gene 

flow providing the invaders with added genetic diversity (Dlugosh and Parker, 2007). 

4.3. Aims 

The present genetic study aims at comparing the distribution of genetic diversity in S. 

luridus and S. rivulatus of newly sequenced data and in relation to previous data obtained by 
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other researchers in the previous decades. By pooling newly generated mitochondrial DNA 

sequences with previous data available from the literature, we attempt to relate genetic diversity 

in the two species with their known stage of colonisation on distributional spread. 

 

4.4. Materials and methods 

4.4.1. Collections samples 

Samples were collected at four sites in the Cyrenaica coast - Libya and two sites in the 

Red sea. The samples were gathered in October and November 2014 and August and 

September 2015 directly from local anglers on the coast, as well as fishing boats that fish in 

the study areas, up to 20 m deep according to the study area and fishing licenses. About 25 

samples have been collected for every species in each area, for a total of 521 specimens (375 

specimens from Libya and 146 specimens from the Red Sea; Table 1). After collection, tissue 

samples were immediately placed in 95% ethanol and stored at ambient temperature in the 

field, and then at 4 °C in the lab. 

4.4.2. DNA extraction, amplification and sequencing 

Although the use of nuclear DNA is more suited for fine scale analysis of population 

structure, mitochondrial DNA (mtDNA) is more commonly usedfor recovering broad 

phylogeographic patters and gaining an overall view of recent patterns of spatial population 

expansions. In addition, mtDNA can be obtained from more degraded sources. In this study 

DNA was extracted using a Chelex protocol. An approximately 350 base pair (bp) fragment of 

the mitochondrial control region was accomplished using the primers CR-A 

‘‘TTCCACCTCTAACTCCCAAAGCTAG’’ and CR-E ‘CCTGAAGTAGGAACCAGATG’’ 

(Lee et al., 1995). All amplifications (20 ul) contained 0.2 μl of Taq, 2 μl buffer, 0.2 μl dNTPs, 

0.6 μl MgCl2, 1 μl of each primer, and a fragment of approximately 350 bp of the gene 

cytochrome b was amplified by PCR using universal primers. PCR was carried out with an 

initial denaturation at 95°C for 5 min, followed by 35 cycles of amplification (denaturation at 

94°C for 30 sec, annealing at 52°C for 40 sec, and extension at 72°C for 1 min, with a final 

extension at 72°C for 7 min). Automated sequencing was performed in both directions with the 

primers used in the amplification using an ABI 310 automated sequencer (Applied Biosystems, 

Foster City, California) PCR products were purified and sequenced by Source BioScience Life 

Sciences (http://www.lifesciences.sourcebioscience.com/). 
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4.4.3. Alignments, datasets, genetic analyses 

Together with the control region sequences generated in this study for the Cyranaican 

populations in the Libyan Sea, The sequences of the control region for S. luridus and  S. 

rivulatus from the Cyrenaica coast in the Libyan Sea were generated in the lab at Salford 

University.In addition, ninety-six sequences for S. luridus and seventy sequences for S. 

rivulatus were obtained from GenBank for other areas in the Mediterranean Sea (Italy, Greece, 

Turkey, and Israel) and from the Red sea (Eilat gulf)  Shakman et al., 2008 and Azzurro et 

al.,2005 (Table 13, 16).The sequences were visually controlled and finally aligned using the 

BioEdit software (Hall, 1999). 

Population diversity indices such as numbers of segregating sites (S), haplotypes 

number (h), haplotype diversity (Hd) and nucleotide diversity (π) and the average number of 

pairwise nucleotide differences within the population (K), were calculated using DnaSP v 5.10 

(Librado and Rozas, 2009). The pairwise genetic difference between the population was 

estimated for all populations by calculating Wright’s F-statistics (FST) by population genetics 

package ARLEQUIN (Excoffier and Lischer, 2010) with the significance of pairwise 

differences at the level of 0.05 assessed with 10,000 permutations. Haplotype genealogies were 

constructed in the program HapView, following a method described by Salzburger et al. 

(2011). 

The relationship among all samples of Siganus species collections was visualized by multi-

dimensional scaling (MDS) of pairwise ΦST using the VEGAN package in R (Excoffier and 

Lischer, 2010). I estimated pair-wise genetic differentiation between populations obtained from 

ARLEQUIN, which includes information for haplotype frequencies. Pairwise ΦST were further 

linearized following as implemented in ARLEQUIN and the paired genetic distances between 

populations (matrix) were visualized using metric multidimensional scaling (MDS) performed 

with metaMDS in the vegan package in R. Differences and similarities in haplotype frequency 

between samples in both Siganus species were visualized using multidimensional analysis 

(MDS).   

 

4.5. Results 

4.5.1. Diversity indices of S. luridus population 

In the present study, 138 Mitochondrial DNA sequence data of S. luridus were examined 

from 11 locations from the Mediterranean Sea produced a 383 bp fragment. Among these, a 

total of 84 haplotypes were found: 10 in West of Libya (LIB_W), 4 in Turkey (TUR_KAS), 8 
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in Italy (ITA_LIN), 5 in Greece (GRC_PAR), 5 in Greece (GRC_SIF), 9 in Israel (ISR_HAI), 

16 in Israel (ISR_EIL) also, found in the 27 haplotypes in Cyrenaica population distributed as 

follows: 5 in Ain Al-gazal (CYR_AINL), 10 in Susah (CYR_SUL), 6 in Al-Haniya 

(CYR_HNL) and 6 in Tubruq(CYR_TBL) (Table 13). Haplotype diversity (Hd) for all the 138 

sequences was calculated to be 0.902 +/- 0.012 SD. The average number of nucleotide 

differences,(k) was found to be 2.71 and nucleotide diversity (π) was 0.006 +/- 0.0002 SD. 

Haplotype and nucleotide diversity indices were highest in West of Libya(LIB_W) population 

followed by Greece (GRC_PAR) population and lowest in in Greece (GRC_SIF) and in 

Cyrenaica population, Al-gazal (CYR_AINL). Haplotype diversity (Hd) of S. luridus was 

found to be higher in Libya population (LIB_W) and the Italy population (ITA_LIN; 

Hd=1.000) than in any Mediterranean populations. In the Cyrenaica coast, obvious trend was 

apparent, with the diversity of the Mediterranean Sea (Hd= 0.919) being similar to the diversity 

observed on the Red sea coast of Israel (Hd = 0.966), while, Haplotype diversity (Hd) for the 

Turkey population was low (Hd=0.75). 

Nucleotide diversity (π) followed the same trend as Haplotype diversity (Hd), with a higher 

diversity in the Libya population (LIB_W) and the Italy population (ITA_LIN) (π = 0.01) than 

in the Red sea populations (π=0.007), and similar diversity levels within the Mediterranean 

(Table 13).  

The average number of segregating sites (s) was lower in the all Mediterranean population 

novel habitats than in the Red sea population, native habitats (ISR_EIL) native populations 

(14) of S.luridus expect the Libyan population (LIB_W). The variance in the number of 

segregating sites of S. luridus population was higher in the Libya population (LIB_W) and the 

Israel population in the Red sea (ISR_EIL) ( s = 15 and s = 14) respectively. While the number 

of segregating sites (s) were lows in the Cyrenaica population (s = 6,10,4 and 7) in the 

CYR_AINL;CYR_SUL;CYR_HNL and CYR_TBL respectively, the average number of 

pairwise nucleotide differences (k) followed the same trend with the Haplotype diversity (Hd) 

were found (4.51 and 4) in the Libyan population (LIB_W) and the Greece population 

(GRC_PAR) 

Inter-population of S. luridus the average proportion of nucleotide differences between 

populations (Kxy) varied from 1.83 Turkey (TUR_KAS) and Italy (ITA_LIN) to 4.54 Libya 

(LIB_W) and Greece (GRC_PAR) respectively, and average number of nucleotide 

substitutions per site between all S. luridus populations (Dxy) varied from 0.004 Turkey 

(TUR_KAS) and Italy (ITA_LIN) also, Turkey (TUR_KAS) and Israel (ISR_HAI) to 0.01 

Libya (LIB_W) and Greece (GRC_SIF) respectively (Table 14). 
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Significant FST and corrected pairwise differences were found between all Cyrenaica 

population and The Red sea populations also all Mediterranean population. Significant 

differences were also found between the Cyrenaica populations and some other adjacent 

locations in the Mediterranean Sea for example, Italy, Greece, Turkey and Israel (Table.15). 

The result of the MDS plot analysis showed differences between populations of S. luridus 

according to mtDNA (Fig.50). As displayed in the MDS plot, there was a grouping into 

Cyrenaica populations.The MDS plots for S. rivulatus, visualising similarity between 

populations in Cyrenaica and the Mediterranean population on mtDNA,  although the S. luridus 

were separated into two clusters in the mtDNA data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49. Top: Geopraphic map showing the location of the Siganus luridus samples collected for this 

study and obtained from GenBank. Bottom: Haplotype network of S. luridus. Colours refer to the 

location as shown in the top panel, with the exception of LIB-W, which was removed from the analysis 

(please see appendix 7.1).  
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Table 13. Control region sequences for Siganus luridus. N: Number of sequences examined for each location (Code abbreaviated as in Fig. 49); S: Number of 

segregating sites; Hn: Number of haplotypes; Hd: Haplotype diversity; k: Average number of pairwise nucleotide differences; π: nucleotide diversity. 

 

Code Locations N S Hn Hd k π Date Reference 
          

LIB_W Libya-west 10 15 10 1 4.51 0.011 2007 Shakman et al., 2008 
          

TUR_KAS Turkey 9 5 4 0.75 1.77 0.009 2000 Azzurro et al.,2005 
          

ITA_LIN Italy  25 6 8 0.876 2 0.005 2000 Azzurro et al.,2005 
          

GRC_PAR Greece 5 9 5 1 4 0.01 2000 Azzurro et al.,2005 
          

GRC_SIF Greece 7 7 5 0.857 2.66 0.006 2000 Azzurro et al.,2005 
          

ISR_HAI Israel 19 11 9 0.871 2.2 0.005 2000 Azzurro et al.,2005 
          

ISR_EIL Israel 21 14 16 0.966 3.01 0.007 2000 Azzurro et al.,2005 
          

CYR_AINL Libya_Cyrenaica 8 6 5 0.857 2.39 0.006 2014 This study 
          

CYR_SUL Libya_Cyrenaica 18 10 10 0.901 2.71 0.007 2014 This study 
          

CYR_HNL Libya_Cyrenaica 8 4 6 0.928 1.64 0.004 2014 This study 
          

CYR_TBL Libya_Cyrenaica 8 7 6 0.928 2.92 0.006 2014 This study 
          

  
Total 

(138) 

Total 

(94) 

Total 

(84) 

Average 

(0.902) 

Average 

(2.71) 

Average 

(0.006)   
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Table 14. Population genetics indices between different populations of S. luridus calculated from 

sequence of mitochondrial DNA. 

Population 1 Population 2 Kxy Dxy Da GST 

LIB_W             TUR_KAS           3.410 0.008 0.001 0.066 

LIB_W             ITA_LIN           3.500 0.009 0.001 0.033 

LIB_W             GRC_PAR           4.540 0.011 0.001 0.008 

LIB_W             GRC_SIF        3.840 0.010 0.001 0.037 

LIB_W             ISR_HAI           3.680 0.009 0.001 0.034 

LIB_W             ISR_EIL            4.470 0.011 0.002 0.012 

LIB_W             CYR_AINL          3.770 0.009 0.001 0.037 

LIB_W             CYR_SUL           4.080 0.010 0.001 0.026 

LIB_W             CYR_HNL           3.550 0.009 0.001 0.019 

LIB_W             CYR_TBL         4.150 0.010 0.002 0.019 

TUR_KAS          ITA_LIN           1.830 0.004 0.000 0.028 

TUR_KAS          GRC_PAR            2.620 0.006 -0.001 0.025 

TUR_KAS          GRC_SIF        2.100 0.005 0.000 -0.036 

TUR_KAS          ISR_HAI            1.870 0.004 0.000 0.009 

TUR_KAS          ISR_EIL           2.700 0.007 0.001 0.032 

TUR_KAS          CYR_AINL        2.340 0.006 0.001 0.102 

TUR_KAS          CYR_SUL          2.740 0.007 0.001 0.084 

TUR_KAS          CYR_HNL          2.250 0.005 0.001 0.088 

TUR_KAS          CYR_TBL         2.610 0.006 0.001 0.067 

ITA_LIN         GRC_PAR           2.880 0.007 0.000 0.021 

ITA_LIN         GRC_SIF           2.360 0.006 0.000 0.017 

ITA_LIN         ISR_HAI          2.090 0.005 0.000 0.007 

ITA_LIN         ISR_EIL         2.890 0.007 0.001 0.016 

ITA_LIN         CYR_AINL        2.320 0.006 0.000 0.012 

ITA_LIN         CYR_SUL          2.670 0.006 0.001 0.014 

ITA_LIN         CYR_HNL          2.170 0.005 0.001 0.022 

ITA_LIN         CYR_TBL         2.570 0.006 0.001 0.018 

GRC_PAR        GRC_SIF        3.000 0.007 -0.001 0.010 

GRC_PAR        ISR_HAI         2.850 0.007 -0.001 0.014 

GRC_PAR        ISR_EIL         3.700 0.009 0.001 0.022 

GRC_PAR        CYR_AINL        3.520 0.009 0.001 0.028 

GRC_PAR        CYR_SUL          3.960 0.010 0.002 0.033 

GRC_PAR        CYR_HNL         3.550 0.009 0.002 0.022 

GRC_PAR        CYR_TBL         3.800 0.010 0.002 0.010 

GRC_SIF         ISR_HAI          2.410 0.006 0.000 0.017 

GRC_SIF         ISR_EIL         3.140 0.008 0.001 0.017 

GRC_SIF         CYR_AINL        2.940 0.008 0.001 0.059 

GRC_SIF         CYR_SUL          3.260 0.009 0.001 0.051 

GRC_SIF         CYR_HNL          2.640 0.007 0.001 0.038 

GRC_SIF         CYR_TBL         3.000 0.008 0.001 0.029 

ISR_HAI         ISR_EIL         2.950 0.008 0.001 0.020 

ISR_HAI         CYR_AINL        2.500 0.007 0.001 0.042 

ISR_HAI         CYR_SUL          2.900 0.008 0.001 0.039 

ISR_HAI         CYR_HNL          2.480 0.006 0.001 0.046 

ISR_HAI         CYR_TBL         2.840 0.007 0.001 0.029 

ISR_EIL        CYR_AINL        3.260 0.009 0.001 0.037 

ISR_EIL        CYR_SUL          3.600 0.009 0.002 0.029 

ISR_EIL        CYR_HNL          3.090 0.008 0.002 0.025 

ISR_EIL        CYR_TBL         3.450 0.009 0.002 0.023 

CYR_AINL        CYR_SUL          2.410 0.006 0.000 -0.019 

CYR_AINL        CYR_HNL          2.000 0.005 0.000 0.007 

CYR_AINL        CYR_TBL         2.710 0.007 0.001 0.024 

CYR_SUL         CYR_HNL          2.160 0.006 0.000 0.007 

CYR_SUL         CYR_TBL         2.690 0.007 0.000 0.007 

CYR_HNL         CYR_TBL         2.250 0.006 0.001 -0.004 
 

Kxy: Average proportion of nucleotide differences; Dxy: average number of nucleotide substitutions per site; 

Da: number of net nucleotide substitutions per site; GST: Genetic differentiation index based on the frequency 

of haplotype
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Table 15. Pairwise population genetic differentiation between populations of S. luridus, based on mtDNA. ΦST below diagonal, relative p-values above 

diagonal. Significant values in bold (p<0.05) or bold* (p<0.01). 

 

Population LIB_W TUR_KAS ITA_LIN GRC_PAR GRC_SIF ISR_HAI ISR_EIL CYR_AINL CYR_SUL CYR_HNL CYR_TBL 

LIB_W 
 0.054 0.009 0.216 0.09 0 0 0.099 0 0.018 0.009 

TUR_KAS 0.072  0.747 0.801 0.576 0.99 0.027 0.135 0 0 0 

ITA_LIN 0.116* -0.035  0.351 0.234 0.45 0 0.081 0.009 0.018 0.009 

GRC_PAR 0.055 -0.067 0.019  0.81 0.648 0.063 0.09 0.018 0 0 

GRC_SIF 0.053 -0.046 0.028 -0.10  0.423 0.045 0.063 0.009 0 0.018 

ISR_HAI 0.114* -0.065 -0.004 -0.046 -0.018  0 0.045 0 0.009 0 

ISR_EIL 0.176* 0.090 0.136* 0.079 0.087 0.115*  0 0 0 0 

CYR_AINL 0.076 0.114 0.065 0.116 0.142 0.084 0.158*  0.882 0.594 0.054 

CYR_SUL 0.134* 0.164* 0.124* 0.193 0.174* 0.153* 0.206* -0.059  0.549 0.153 

CYR_HNL 0.117 0.248* 0.147 0.248* 0.190* 0.209* 0.210* -0.008 -0.021  0.126 

CYR_TBL 0.153* 0.197* 0.151* 0.178* 0.150 0.190* 0.197* 0.113 0.041 0.095  
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Figure 50. Multidimensional Scaling Plot (MDS) of S. luridus mtDNA differentiation from 11 collections ΦST pairwise genetic distances across the 

Mediterranean Sea (Location codes see Table 13). 
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4.5.2. Diversity indices of S. rivulatus population 

Analyses of the Mitochondrial DNA produced a fragment of 383 bp of S. rivulatus. 

Thereby, the 107 sequences analysed resulted in 78 haplotypes, 22 of which are 

exclusive for the Cyrenaica populations and 52 exclusive for the Mediterranean Sea and 

4 for Rd Sea. 

Haplotype diversity (Hd) was found to be lower in Cyrenaica populations 

(CYR_TBR; CYR_SUR; CYR_AINR and CYR_HNR) Average (Hd = 0.759) than the 

Red Sea populations (Hd = 1.000), as well as in the combined west Libyan populations 

(LIB-W) the haplotype diversity (Hd = 1.000) was higher than Cyrenaica populations. 

Nucleotide diversity followed the same trend, with a lower diversity in the Cyrenaica 

populations (π= 0.006) than in the Red sea populations (π= 0.009), and similar diversity 

levels within the Mediterranean (Table 16). 

The average number of segregating sites (s) was higher in the all Libyan population 

(LIB_W) novel habitats (s = 38) than in the Red sea population, native habitats 

(ISR_EIL) native populations (s = 6) of S. rivulatus expect the Cyrenaica population 

(CYR_TBR and CYR_HNR) were (s = 14 and 11) respectively. The average number of 

pairwise nucleotide differences (k) followed the same trend with the average number of 

segregating sites (s) were found (5.59 and 3.82) in the Libyan population (LIB_W) and 

the Cyrenaica population (CYR_HNR) 

Inter-population of S. rivulatus the average proportion of nucleotide differences 

between populations (Kxy) varied from 1.00 Turkey (TUR_KAS) and Cyrenaica 

(CYR_SUR) to 5.17 Libya (LIB_W) and Israel (ISR_EIL) respectively, and average 

number of nucleotide substitutions per site between all S. rivulatus populations (Dxy) 

varied from 0.002 Turkey (TUR_KAS) and Cyrenaica (CYR_SUR) to 0.013 Libya ( 

LIB_W) and Israel (ISR_EIL)  (Table 17). 

Significant FST and corrected pairwise differences were found between all 

Cyrenaica population and The Red sea populations also all Mediterranean population. 

Significant differences were also found between the Cyrenaica populations and some 

other adjacent locations in the Mediterranean Sea for example, Italy, Greece, Turkey and 

Israel (Table.18). 

The FST values were not significantly different between Cyrenaica populations and 

the Red sea populations (Israel, ISR_EIL) of S. rivulatus except, the Cyrenaica 

population from Al-haniya (CYR_HNR). While, the FST values were significantly 
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different between Cyrenaica populations form the Susah (CYR-SUR) with the 

population of Israel (ISR_EIL), also between the population from the Cyrenaica 

(CYR_AINR) with the populations from Israel and Turkey in the Mediterranean Sea 

(TUR_KAS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. Top: Geopraphic map showing the location of the Siganus rivulatus samples 

collected for this study and obtained from GenBank. Bottom: Haplotype network of S. rivulatus. 

Colours refer to the location as shown in the top panel, with the exception of LIB-W, which was 

removed from the analysis (please see appendix 7.2). 
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Table 16. Control region sequences for Siganus rivulatus. N: Number of sequences examined for each location (Code abbreaviated as in Fig. 51); S: 

Number of segregating sites; Hn: Number of haplotypes; Hd: Haplotype diversity; k: Average number of pairwise nucleotide differences; π: nucleotide 

diversity 

 

Code Locations N S Hn Hd k π Date Reference 

LIB_W Libya -west 39 38 39 1 5.59 0.014 2007 Shakman et al., 2008 

TUR_ANT Turkey 18 6 7 0.869 2.04 0.005 2000 Azzurro et al.,2005 

TUR_KAS Turkey 2 0 1 0 0 0 2000 Azzurro et al.,2005 

ISR_JAF Israel 7 8 5 0.857 2.286 0.005 2000 Azzurro et al.,2005 

ISR_EIL 
Israel 

         

4 6 4 1 3.5 0.009 2000 Azzurro et al.,2005 

CYR_TBR Libya _ Cyrenaica 15 14 9 0.8 2.89 0.007 2014 This study 

CYR_SUR Libya_Cyrenaica 7 5 3 0.666 1.71 0.004 2014 This study 

CYR_AINR Libya_Cyrenaica 7 5 3 0.666 2.19 0.005 2014 This study 

  CYR_HNR Libya_Cyrenaica 8 11 7 0.904 3.82 0.009 2014 This study 

  
Total 

(107) 

Total 

(93) 

Total 

(78) 

Average 

(0.677) 

Average 

(2.66) 

Average  

( 0.006)  



116 

 

Table 17. Population genetics indices between different populations of S. rivulatus calculated from 

sequence of mitochondrial DNA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kxy: Average proportion of nucleotide differences; Dxy: average number of nucleotide substitutions per site; 

Da: number of net nucleotide substitutions per site; GST: Genetic differentiation index based on the frequency 

of haplotype

Population 

1 

Population 

2 
Kxy Dxy Da GST 

LIB_W              TUR_ANT             4.206 0.01 0.001 0.031 

LIB_W              TUR_KAS             4.205 0.01 0.003 0.13 

LIB_W              ISR_JAF             4.183 0.01 0.006 0.037 

 LIB_W              ISR_EIL             5.173 0.013 0.001 0.043 

 LIB_W              CYR_TBR             4.5 0.011 0.006 0.044 

LIB_W              CYR_SUR             4.219 0.011 0.001 0.061 

LIB_W              CYR_AINR            4.256 0.011 0.009 0.061 

LIB_W              CYR_HNR             6.31 0.016 0.004 0.021 

TUR_ANT            TUR_KAS             2.277 0.005 0.003 0.17 

TUR_ANT            ISR_JAF             2.23 0.005 0.001 0.006 

TUR_ANT            ISR_EIL             2.861 0.007 0.002 0.028 

TUR_ANT            CYR_TBR             2.492 0.006 0.006 0.014 

TUR_ANT            CYR_SUR             2.246 0.005 0.009 0.065 

TUR_ANT            CYR_AINR            2.23 0.005 0.002 0.043 

TUR_ANT            CYR_HNR             4.305 0.011 0.003 0.028 

TUR_KAS            ISR_JAF             1.857 0.004 0.001 0.213 

TUR_KAS            ISR_EIL             3.25 0.008 0.003 0.261 

TUR_KAS            CYR_TBR             2.466 0.006 0.002 0.193 

TUR_KAS            CYR_SUR             1 0.002 0.003 0.101 

TUR_KAS            CYR_AINR            2.285 0.005 0.003 0.33 

TUR_KAS            CYR_HNR             4.125 0.01 0.005 0.213 

ISR_JAF            ISR_EIL             3.107 0.008 0.056 -0.011 

 ISR_JAF            CYR_TBR             2.4 0.006 -0.005 -0.023 

ISR_JAF            CYR_SUR             1.95 0.005 -0.001 0.021 

ISR_JAF            CYR_AINR            2.102 0.00549 -0.003 -0.004 

ISR_JAF            CYR_HNR             4.16 0.01 0.002 0.019 

ISR_EIL            CYR_TBR             3.383 0.008 0.004 0.019 

ISR_EIL            CYR_SUR             3.107 0.008 0.001 0.059 

ISR_EIL            CYR_AINR            2.964 0.007 0.003 0.02 

ISR_EIL            CYR_HNR             5.125 0.013 0.003 0.004 

CYR_TBR            CYR_SUR             2.438 0.006 0.0003 0.057 

CYR_TBR            CYR_AINR            2.428 0.006 -0.003 0.006 

CYR_TBR            CYR_HNR             4.475 0.011 0.002 0.034 

CYR_SUR            CYR_AINR            2.102 0.005 0.003 0.088 

CYR_SUR            CYR_HNR             4.089 0.01 0.003 0.082 

CYR_AINR           CYR_HNR             4.08 0.01 0.002 
        

0.064 
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Table 18.  Pairwise population genetic differentiation between populations of S. rivulatus, based on mtDNA. ΦST below diagonal, relative p-values  

above diagonal. Significant values in bold (p<0.05) or bold* (p<0.01). 

 

 

 Population LIB_w TUR_ANT TUR_KAS ISR_JAF ISR_EIL CYR_TBR CYR_SUR CYR_AINR CYR_HNR 

LIB_w  0 0.459 0.234 0.081 0.063 0.018 0.135 0 

TUR_ANT 0.068*  0.099 0.189 0.135 0.243 0.081 0.144 0 

TUR_KAS 0.007 0.286  0.252 0.243 0.135 0.684 0.054 0.036 

ISR_JAF 0.008 0.034 0.112  0.027 0.99 0.531 0.99 0.009 

ISR_EIL 0.065 0.094 0.26 0.096  0.135 0.054 0.333 0.018 

CYR_TBR 0.038 0.01 0.114 -0.086 0.075  0.207 0.819 0 

CYR_SUR 0.061 0.151 -0.163 -0.02 0.207 0.032  0.153 0 

CYR_AINR 0.029 0.053 0.283 -0.064 0.069 -0.056 0.071  0.009 

CYR_HNR 0.221* 0.359* 0.296 0.259* 0.279 0.263* 0.313* 0.25*  
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Figure 52. Multidimensional Scaling Plot (MDS) of S. rivulatus mtDNA differentiation from 9 

collections ΦST pairwise genetic distances across the Mediterranean Sea (Location codes: see Table 16). 
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4.6. Discussion 

In the present study, it was examined mtDNA of S. luridus in 11 samples and S. rivulatus in 

9 samples from the Red Sea and Mediterranean Sea. The results have shown based in the mtDNA 

data (383bp) higher haplotype diversity (Hd) (0.966) and higher nucleotide diversity (π), (0.07) in 

the Isreal populations in the Red sea (ISR_EIL) than the Cyrenaica population and any other 

population except the Greece population (GRC_PAR). While the results of S. rivulatus were quite 

similar, the Haplotype diversity (Hd) were lower in the Cyrenaica population than the Red sea 

population, as well as the Nucleotide diversity (π)  followed the same trend, with a lows diversity 

in the Cyrenaica populations than the Red sea population, this result is quite similar to the result 

that was obtained by Shakman et al., (2008) and Hassan et al., (2003).  

According to Grant and Bowen (1998) and Tzeng (2007) that the marine fishes which have 

high haplotype diversity (Hd) and low nucleotide diversity (π) probably underwent population 

expansion in new habitats after a period of invasion. The data showed quite similar to haplotype 

diversity (Hd) between Cyrenaica populations and the Red sea populations of S. luridus, with a 

lower nucleotide diversity in the Cyrenaica population than the Red sea population.  

Based on the  haplotype networks using mtDNA of the S. luridus and S. rivulatus were well 

differentiated, did not separate into native population (Red sea)  and Mediterranean population, 

may reason for the high levels of gene flow between the Red Sea and the Mediterranean sea, this 

result agrees with several studies in different locations in the Mediterranean sea (Hassan et 

al. 2003, Azzurro et al. 2006; Shakman et al., 2008). 

No significant difference of genetic differentiation was observed at mtDNA between the 

Cyrenaica population and the Red sea also with all population from the Mediterranean sea of 

Siganus luridus, this data agrees with many studies that have been done by Bonhomme et al., 

(2003) concluded that, the Siganus species has been preserved the mitochondrial diversity during 

the colonisation process in the Mediterranean sea. 

The analysis of Siganus luridus and S. rivulatus populations of Cyrenaica coast allowed to 

conclude that mitochondrial diversity is maintained during the colonisation process, as our data 

illustrate that the mitochondrial DNA diversity of both species have maintained intact their original 

mitochondrial diversity during colonisation of the Cyrenaica locations. Accordingly, to 

mitochondrial DNA diversity may reveal a wide ecophysiological plasticity in S. rivulatus and 
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S.luridus and may explain the success of these two Siganus species and adaptation in the novel 

habitats, according to Bariche (2002). 

The previous studies by Golani et al. (2007) and Frankham (2005) proved that High migration 

rates, for the invasive species in the new habitats reduce the genetic diversity for them.Golani et 

al., (2007) said that the invasion success and adaptation in the new habitats, it's difficult to attribute 

for the Genetic diversity. 

This data confirms the hypothesis proposed by Dagit et al.(2007) suggesting that S. luridus 

and S. rivulatus within the Mediterranean Sea represents a no segregated population from the Red 

Sea. This data with information accorded with the idea that the both Siganus species migration 

involves many individuals since its beginning, also are rather the product of a constant or repeated 

influx of individuals from the Red Sea to the Mediterranean. The absence genetic differentiation 

between Cyrenaica populations and Red sea populations in S. luridus and S. rivulatus showed that 

a great number of migrants participated in the invasion of the Cyrenaica coast. 

Haplotype frequencies were not significantly different between S. rivulatus in the Cyrenaica 

populations and the Red and Mediterranean population as shown by the FST analysis, the pattern 

observed of population form Al-haniya (CYR_HNR) for rare haplotypes being due to sampling 

variance These results indicate that S. rivulatus and have maintained intact their original 

mitochondrial diversity during colonisation of the Cyrenaica habitats. On the other hand, the FST 

values were statistically significant for Siganus luridus (p < 0.05), between the four populations 

from Cyrenaica and all population from the Red Sea and the Mediterranean sea, suggesting a recent 

rapid demographic expansion. Shakman et al (2008) refers that the abundance of Siganus species 

varied in the different regions, while the S. rivulatus was abundant in the Cyrenaica coast of Libya, 

the S. luridus was more abundant in the Gulf of Sidra and the western part of Libyan coast. As 

mentioned by Shakman et al., (2008) that the reason for differences abundants between the both 

Siganus species in the Libyan waters probably the S. rivulatus is euyecous and adapts well to most 

habitats, whilst the stenecous S. luridus was found on one specific habitat (rock with algae). 

Despite the wide distributional range of Siganus species in different locations in the 

Mediterranean sea and the Red sea, the estimation of inter-population comparison (Kxy): Average 

proportion of nucleotide differences between S. rivulatus populations, (Dxy): The average number 

of nucleotide substitutions per site between S. rivulatus populations, (Da) : The number of net 

nucleotide substitutions per site between populations, (Gst) : Genetic differentiation index based 
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on the frequency of haplotype,  confirms and  support the absence of genetic differentiation in S. 

luridus and S. rivulatus. 

The Cyrenaica population, Red sea populations, and the Mediterranean population are highly 

closely related to each other which were suggested by a very low and non-significant FST value.  

In general, the pattern of haplotype diversity (Hd) found for the Siganus species in the 

Cyrenaica habitats follows that reported for other Lessepsian migration, with higher indices in the 

red sea population and lower in the Cyrenaica population. The Cyrenaica populations clearly stood 

out, with lower of haplotypes diversity (Hd). Similar results were described for other Lessepsian 

migration fish species like Fistularia commersonii by Golani et al., (2007). Also this results of this 

study allowed to confirm the assumption continue of a gene flow in the Siganus luridus and 

Siganus rivulatus from the Red Sea to the Mediterranean, and suggest that continued influx of 

genetic variation from the native habitat can provide rabbitfishes with sufficient adaptive plasticity 

to become successful in the new habitat. 

Regarding the timing of the invasion process for both species, it is possible to refer to records 

from the literature: the first record of S. rivulatus in the eastern Mediterranean dates back to 1927 

(Steinttz, 1927) while the first record of S. luridus was in 1956 (Bentuvia, 1964). Both species 

were recorded in Libya in 1970 (Stirn, 1970). Even though S. rivulatus was recorded earlier than 

S. luridus, the two species do not apper to have different genetic variation compared to the original 

populations. Since mtDNA control region should be more sensitive to demographic events in novel 

habitats because of its reduced active size, the data indicate that the Cyrenaican populations of the 

S. luridus and S. rivulatus are the product of a constant influx of individuals from the Red Sea to 

the Mediterranean Sea. Similar results were also obtained by Bucciarelli et al., (2002) using 

mtDNA of another Lessepsian fish species, A. lacunosus. 

On the other hands, the data from the western Libyan coast (see Appendix 7.1 and 7.2) by 

Shakman et al. (2008) for both species appear suspicious, because all individuals have different 

sequences, which is highly unlikely, based on all other data set from different locations in the 

Mediterranean Sea and the use of such data can lead to erroneous interpretations and even illogical 

conclusions. According to Lal and Lal (2011), the sequence errors in GenBank can originate from 

two sources: either from the sequences deposited in the database or from errors in the annotations. 

Therefore valid sequence data will save time and effort for researchers and will in the future help 

in making bioinformatics study an even stronger field of genetic analysis. However, with the 
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increased flow of sequence data in the database, it is difficult to check and validate all data. , a 

concern which has been , where Shum et al., (2016) raised issues concerning the accuracy of the 

submitted sequence data and pointed out that they  might  not be free from errors. 
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Chapter V 
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5. Final Discussion 

The Mediterranean Sea is one of the world’s hot spots for biological invasions, and the 

documentation rates of invasive species in the Mediterranean have increased during the last two 

decades. Especially, there are two main entrances or ports of the invasive species of the 

Mediterranean, one of them is the Strait of Gibraltar and the other is the Suez Canal. Over the 

coming decades, there may be a greater flow of invasive species through the Suez Canal, especially 

after the creation of a new canal in 2015 in addition to the previous canal, allowing the increase of 

the flow rate of invasive species to the eastern part of the Mediterranean. 

A relatively large number of invasive marine species of various origins have been reported in 

the different areas in the Mediterranean Sea, but data available on these invasive species in whole 

the Mediterranean Sea remains incomplete. Increase the spread of lessepsian species from Red Sea 

to the eastern Mediterranean and their rapid spread westwards. Similarly, it will also assist the 

spread of species of tropical Atlantic origin into the eastern basin in the Mediterranean Sea. There 

is much data evidence that the species composition of the eastern and western Mediterranean fish 

fauna has changed. Ketchum,(1983) reported that the taxa of the Mediterranean sea consist of 

Atlantic origin (67%), migrants through the Suez canal represent 5% of the total.  

Moreover, recent studies for atlantic invasive species reported  that some species  continuous 

dispersal throughout the whole western basin, for instance the opah Lampris guttatus, the ringneck 

blenny Parablennius pilicornis and the bastard grunt Pomadasys incisus), also some atlantic 

invasive species patchy dispersal, for example Kyphosus sectatrix and the snake eel Pisodonophis 

semicinctus Otero et al.,(2013).  

Soto‐Navarro et al., (2012) pointed out that, the rising salinity in Atlantic waters, implying a 

higher salinity input into the Mediterranean. The sharp rise of Atlantic species in the western basin 

in the Mediterranean Sea since 2006 may be related to this trend.  

It is known that these invasive species recorded in the Mediterranean belong to different 

species and type, including Algae and seaweed in addition to invertebrates as well as fish. Some 

of these invasive species have spread widely in the Mediterranean and have been able to form large 

communities in different regions and environments, leading to a radical change in the biodiversity 

of these areas. This resulted in the establishment of mixed marine communities between the 

coming species of the Red Sea and the original species of the Mediterranean in some areas, 
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especially in the eastern Mediterranean, which saw the recording of large numbers of invasive 

species. 

The phenomenon of invasive species leads to the disruption of biodiversity patterns, by 

affecting native species through competition for food sources or through predation or transfer of 

some pests or diseases to the new environments. This can lead to the loss of some species and the 

alteration of community dynamics and ecosystem function and services Bax et al.,(2003). 

One of the most important objectives of this study was to further our understanding of the 

mechanisms underlying the invasion process of some of the most successful invasive species of 

the Mediterranean Sea.  

In the second chapter, I focused on the morpho-anatomical arsenal that is involved in the 

adaptation to the novel habitat of both Siganus invaders. In the third chapter, we examined the 

trophic ecology of Siganus, in order to determine how the invaders adapt to the resources provided 

by the novel habitats and how their trophic niche is reshaped during the transition between Red 

Sea and Mediterranean, within an intra- and inter-specific comparative framework. In the fourth 

chapter, genetic diversity was monitored in the invading populations from Cyrenaica, and 

compared with existing data corresponding to an earlier stage of the colonisation and from other 

areas in the Mediterranean. 

 

5.1. Morphometric variation 

Although S. luridus and S. rivulatus  are the most recorded, widespread, and successful 

invasive fish species in the Mediterranean Sea, and although they have become economically 

valuable especially in the Cyrenaica Libyan Coast, only little is known about the ecological and 

evolutionary dynamics that took place in these two species during their invasion of the Cyrenaica 

coast. 

It is worth mentioning that in this study, statistically significant differences were found in the 

coluration of both S. luridus and S, rivulatus between the native and the novel habitats. This may 

be attributed to the impact of the new environment through its difference in environmental factors, 

and food sources, that differ in their entirety from the native environment. Especially, if taking 

into consideration the difference in average temperature and salinity rates between the original 

environments in the Red Sea and the new environments in the Mediterranean, as well as the quality 

of vegetation in these novel habitats that may be the cause of different colouring between these 
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species. In particular, dark colouration might help S. luridus (normally darker; Shakman et al., 

2007) to blend over rocks (possibly to avoid predators), but this might change in novel areas, where 

more sandy patches might be more frequent. The opposite might occur in S. rivulatus.  

The use of the geometric morphometrics analysis approach, to study the body shape of these 

invasive species, revealed a difference between the native habitats as well as the novel habitats 

where the species were completely separated in the native habitats in terms of body shape, whereas 

in the novel habitats there was an overlap between all locations from which samples were collected. 

The distribution of the data points are more expanded in S. rivulatus; it has more spread out 

variance between data points, which means there is more variance in body shape. Siganus luridus 

has smaller distribution of the data than S. rivulatus, which means the S. luridus has less shape 

variation. The PCA showed slight overlap in morphology between the two species. The 

information of study shows that both Siganus species pair follows a different strategy between 

Cyrenaica habitats and the Red sea habitats. In particular, S. luridus and S. rivulatus overlap in all 

study areas coast of Cyrenaica habitats, while they differ considerably with respect to the body 

shape in the Red sea. Kocovsky et al.,(2013) found that the significant morphological differences 

among P. flavescens, he attributed this to genetic differences. While, Abaad et al., (2016) pointed 

out that the statistically significant differences were observed in body shape between wild-farmed 

fish and wild fish of Boops boops and Sarpa salpa as result of feeding used in fish feeds. 

The body shape differences between the native and novel habitats are often indicative of 

adaptation to specific ecological variables. In order to speculate on the cause of patterns in 

morphology, experiments should be performed to assess the degree of difference of the trophic 

ecology within Siganus species in Cyrenaica coast and the Red sea locations also, the 

morphological divergence in shape in both Siganus species may be caused by hybridization. The 

results and knowledge about S. luridus and S. rivulatus can be used to better understand broader 

aspects of the biology of body shape evolution in other invasive species in the Mediterranean Sea, 

to determine if the pattern found in S. luridus and S. rivulatus can be generalized to other invasive 

species. 

 

5.2. Trophic Ecology 

Carbon and nitrogen were used to assess the trophic sources and levels of the Siganus species 

in their novel habitats and compare them to the native environments. The values of carbon in fish 
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tissues used in Siganus species were higher in the Red Sea than in the Cyrenaica habitats, where it 

is possible to say that these species have used more food sources in the Red Sea than in the 

Mediterranean Sea. The results showed that the nitrogen values were higher in the Cyrenaica 

habitats than in the Red Sea, which gives an initial indication that the invasive fish has changed its 

food level in the Cyrenaica habitats, which may also indicate that these invasive species have wide 

flexibility in replacing and changing the system of food by sorts and quantity of available food 

sources. 

Despite the large variation in Siganus species for δ 13C and δ 15N values between S. luridus 

and S. rivulatus, but show no relationship with either total lengt, indicate that differences in the 

total length for Siganus species were not always correlated with δ 15N and δ 13C. In spite of, there 

were significant differences between the study sites, also between the years; the differences were 

less significant between species  

Stable isotope values of S. luridus and S. rivulatus varied considerably among Locations in 

the Cyrenaica coast, when compared to the locations in the Red sea. The two species seem to 

occupy a border “space” in the new habitats (Cyrenaica coast). From the box plots it seems that 

both species increase the trophic level when moved into the Cyrenaica coast, while in the Red Sea 

they appear more tightly clustered and well-segregated. 

 Lack of isotopic niche overlap between S. luridus and S. rivulatus in the majority of locations 

in the Cyrenaica coast indicated a predominantly indirect interaction. I suggest that Siganus species 

induced habitat alteration resulting in a reduction in the dietary niche. Therefore, I attribute any 

changes in the stable isotope values and population metrics of S. luridus and S. rivulatus to actual 

diet alteration in the Cyrenaica coast but, based on δ15N values, I conclude that Siganus species 

are feeding at a similar trophic level in the Red sea, this data supports the conclusion that Siganus 

species are generalist feeders. Once Siganus species had become established as the dominant fish 

species in Cerynaica coast, Siganus speciess exhibited change reflecting a shift in diet towards 

higher trophic levels. 

The geometric morphometric analysis proposed that there is considerable niche separation 

between the two siganids, especially in terms of body shape in native habitats. Stable isotope 

values of S. luridus and S. rivulatus varied considerably among locations in the Cyrenaica coast, 

when compared to the locations in the Red sea, where both species increased the trophic level 

when moved into the Cyrenaica coast, while in the Red Sea they appear more tightly clustered and 
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well-segregated. Therefore, I attribute any changes of body shape in the novel habitats for S. 

luridus and S. rivulatus to actual diet alteration in the Cyrenaica. 

The differences between the diets of S. luridus and S. rivulatus in these and native and novel 

habitats may be attributed to the differential quantitative composition of the phytobenthic, as well 

as regard to the distribution and abundance of benthic algae in the waters of the Cyrenaica coast. 

Seasonal variations in the abundance and availability of the important phytobenthic of S. luridus 

and S. rivulatus could be a major factor leading to variations in the diet of this species in the 

Cyrenaica coastIt can be concluded that the trophic flexibility of both species should be a key asset 

for the ability of these species to quickly adapt to novel habitats.  

 

5.3. Genetic analyses  

The genetic variation of S. luridus and S. rivulatus were, predictably, lower than compared to 

the Red Sea, but not by a large extent, with the haplotype diversity found in the Mediterranean 

(and especially Cyrenaica) being a good representation of the native diversity, ruling out severe 

bottlenecks during the colonisation event. A comparison of spatial genetic variation in S. luridus 

and S. rivulatus indicated that  

In the present study, it was examined mtDNA of S. luridus and S. rivulatus populations from 

the Red Sea and Mediterranean Sea. The results have shown based in the mtDNA data higher 

haplotype diversity (Hd) and higher nucleotide diversity (π), in the Isreal populations in the Red 

sea (ISR_EIL) than the Cyrenaica population and any other population. While the results of S. 

rivulatus were quite similar, the Haplotype diversity (Hd) were lower. In the Cyrenaica population 

than the Red sea population, as well as the Nucleotide diversity (π) followed the same trend, with 

a lows diversity in the Cyrenaica populations than the Red sea population. The data showed quite 

similar to haplotype diversity (Hd) between Cyrenaica populations and the Red sea populations of 

S. luridus, with a lower nucleotide diversity in the Cyrenaica population than the Red sea 

population.  

Based on the haplotype networks using mtDNA of the S. luridus and S. rivulatus were well 

differentiated, did not separate into native population (Red Sea) and Mediterranean population, 

may reason for the high levels of gene flow between the Red Sea and the Mediterranean Sea. No 

significant difference of genetic differentiation was observed at mtDNA between the Cyrenaica 



129 

 

population and the Red sea also with all population from the Mediterranean Sea of Siganus luridus 

and S. rivulatus.  

Inter-population of S. luridus the average proportion of nucleotide differences between 

populations (Kxy), and average number of nucleotide substitutions per site between all S. luridus 

populations (Dxy)  

Significant FST and corrected pairwise differences were found between all Cyrenaica 

population and The Red sea populations also all Mediterranean population. The result of the MDS 

plot analysis showed differences between populations of S. luridus according to mtDNA.  

Significant FST and corrected pairwise differences were found between all Cyrenaica population 

and the Red sea populations also all Mediterranean population. The FST values were not 

significantly different between Cyrenaica populations and the Red sea populations of S. rivulatus. 

This study gave a quick overview of the levels of genetic variation resulting from the adaptation 

process that happened to these species in the new environments. These results confirm that these 

species were not isolated from the source, and that the flow of these species is still continuous so 

that there has been no genetic asphyxia or geographical isolation of these species in their new 

environment. 

 

5.4. The Invasive Species and their impact on Biodiversity in the Cyrenaica coast  

As is well known, the monitoring and control of invasive species is difficult in terms of 

determining the time of invasion as well as the population size and distribution of the invaders, 

especially in marine environments because these environments are open, and the impact of these 

invasions is unpredictable. 

Large areas of the coast of Cyrenaica have been subjected to the invasion of species that will 

change the biodiversity of this region of the Mediterranean Sea, with predicted loss of biodiversity 

and the degradation of the ecosystem and its functions (Sghaier et al., 2013). The Cyrenaica coast 

is often referred to by the Global Environment Fund as one of the last ten gardens located in the 

Mediterranean Sea (Otero et al.,2013) where no more than 2 million people are located, with the 

absence of major local human impacts, the marine environment in this region is primarily 

threatened by biological invasions.  

This is particularly worrying, because there is no database on biodiversity or invasive and 

exotic species in this part of the Mediterranean, due to the lack of field studies and scientific 
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research in this field. In this context, every effort to increase our understanding of the mechanisms 

(i.e. behavioural, ecological, evolutionary…) of settlement will go some way to empower 

conservation agencies and policy makers with some evidence to support management strategies. 

With my study, we were able to detect a relaxed morphospace and a remarkable trophic flexibility 

in S. luridus and S. rivulatus, bith of which are features of a successful invader. The more blurred 

morphological boundaries, and the greater chromatic heterogeneity in Mediterranean rabbitfish 

populations may indicate some potential for hybridisation, which is a phenomenon known to occur 

in Siganus species (Kuriiwa et al., 2007) and compatible with a demographic scenario of invasion 

(Yamamichi and Tand ,2014); and this will be an interesting question to address. 

Finally, the genetic structure of S. rivulatus (and its presently more restricted distribution in 

the Medieterranean) appears consistent with a slightly lower dispersal propensity and perhaps a 

smaller effective population size, given this species’ longer time since invasion compared to S. 

luridus (in Libya the first record for S. rivulatus dates back to 1927, while for S. luridus it is more 

recent, 1956). However, more targeted studies will be required to explain the factors underlying 

differences in dispersal and connectivity between these species. 

 

5.5. Future Studies 

Despite the use of different approaches and methods in this study, many questions have 

emerged which should be examined and dealt with in future studies. 

The more heterogeneous colouring pattern in the novel habitat deserves further investigations, 

with either experimental/observational studies, or genetic inference. Several hypotheses can be 

formulated in this context, including the adaptation to blend into different substrates, and the 

possibility that recombination resulting from hybridisation may generate novel phenotypes 

(Seehausen, 2004).  

Among the studies that can be derived from the results of this study is a study on the 

competition between invasive species and native species on food sources in new environments. 

Especially since there are some studies indicating the existence of competition between Siganus 

species and Sarpa salpa on food resources. That can be inferred through the use of traditional 

methods, such as stomach content analysis, possibly aided by DNA metabarcoding to achieve 

greater resolution; or a tailored stable isotope approach, ideally including more species, at various 

trophic levels, in order to track changes in the trophic web structure as a whole.  
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Perhaps, with a clear vision of the whole food web, it may become possible to predict whether 

native species can eliminated/outcompeted by the invasive species and the ripple effect that this 

may have on the ecosystem, and the services provided, such as coastal fisheries. 

In terms of genetic investigations, it is paramount to test the hypothesis of hybridization 

between these invasive species, and in particular, i) whether it occurs at all; ii) if so, how frequent 

it is, iii) whether there is a preferential directionality (i.e. which species is more likely to be 

maternal); iv) whether any advantageous trait may result from the mixing of the genomes. 

In general, such future studies, which are essential for managing ecosystems in proactive and 

adaptive way, would give a more comprehensive idea of biodiversity trends and their direction, 

and the extent of the degradation caused by the introduction of exotic species. Thus, we have 

contributed to shedding light on the importance of biodiversity and the dangers of these invasive 

species in the coast of Cyrenaica habitats and alerting the decision makers with the importance of 

such research. 
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7. Appendix 

7.1. Haplotype network of S. luridus that collected from Cyrenaica coast and the GenBank 

with the Sequences from Shakman et al., (2008) 

 

 

 

 

 

 

 

 

7.2. Haplotype network of S. rivulatus that collected from Cyrenaica coast and the GenBank 

with the sequences from Shakman et al., (2008) 
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7.3. The last updating the list of marine invasive species in the Libyan waters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Galeocerdo cuvier , (Tobuni et al ., 2017) 

Sepioteuthis  lessoniana  (Shakman et al ., 2017) 

Seriola rivoliana (Shakman et al., 2017) Seriola fasciata (Shakman et al., 2017) 

Sphoeroides  pachygaster (Shakman et al ., 2017) Etrumeus golanii, (Shakman et al., 2017) 

Portunus segnis, (Shakman et al ., 2017) 

Caulerpa taxifolia, (Shakman et al ., 2017) 
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7.4. Algae, seaweed marine coastline background, Cyrenaica Sea. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



152 

 

7.5.  Course about the Survivor’s Guide Stable Isotope Ecology in Sicily. 
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7.6. The online course Analysis of Organismal Form at the University of Manchester 
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7.7. Training course on Excel: Formulas and Functions at University of Salford 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


