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  Abstract:  
In this paper, we present an analytical study of pressure-driven flow of micropolar non-Newtonian 

physiological fluids through a channel comprising two parallel oscillating walls. The cilia are arranged at 

equal intervals and protrude normally from both walls of the infinitely long channel. A metachronal wave is 

generated due to natural beating of cilia and the direction of wave propagation is parallel to the direction of 

fluid flow. Appropriate expressions are presented for deformation via longitudinal and transverse velocity 

components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. 

The conservation equations for mass, longitudinal and transverse (linear) momentum and angular 

momentum are reduced in accordance with the long wavelength and creeping Stokesian flow 

approximations and then normalized with appropriate transformations. The resulting non-linear moving 

boundary value problem is solved analytically for constant micro-inertia density, subject to physically 

realistic boundary conditions. Closed-form expressions are derived for axial velocity, angular velocity, 

volumetric flow rate and pressure rise. The transport phenomena are shown to be dictated by several non-

Newtonian parameters, including micropolar material parameter and Eringen coupling parameter, and 

also several geometric parameters, viz eccentricity parameter, wave number and cilia length. The influence 

of these parameters on streamline profiles (with a view to addressing trapping features via bolus formation 

and evolution), pressure gradient and other characteristics are evaluated graphically. Both axial and angular 

velocities are observed to be substantially modified with both micropolar rheological parameters and 

furthermore are significantly altered with increasing volumetric flow rate. Free pumping is also examined. 

An inverse relationship between pressure rise and flow rate is computed which is similar to that observed in 

Newtonian fluids. The study is relevant to hemodynamics in narrow capillaries and also bio-inspired micro-

fluidic devices. 
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1 INTRODUCTION 

Numerous working fluids within the human body are known to be non-Newtonian. 

Synovial fluids [1], vitreous humour [2], reproductive liquids [3], gastric liquids [4] and 

blood flow in narrow capillaries [5], cerebro-spinal fluid [6] and nasal mucus [7] are only 

a few examples of  non-Newtonian liquids which have received significant attention in 

biorheological studies. Building on clinical and laboratory studies [8], mathematical 

modelling of rheological flows in a biological context has been an active area of endeavor 

and has therefore emerged as a rich sub-area in its own right within modern fluid 

dynamics. The development of many constitutive models in initially polymer and 

chemical engineering since the 1940s has infiltrated into many intriguing and very 

diverse areas of modern biofluid mechanics. An excellent perspective of many robust 

formulations which have been produced and applied quite successfully, have been given 

periodically by leading exponents of biorheology including Thurston [9], Skalak and 

Goldsmith [10] and Skalak et al. [11]. Further expositions of recent developments in, for 

example, embryological transport are summarized in Fauci and Dillon [12]. Although 

there is still great popularity for deploying the more elementary rheological models e.g. 

power-law, Casson, Eyring-Powell and more intricate viscoelastic models e.g. Oldroyd-

B, Maxwell, Rivlin-Ericksen, these models unfortunately do not provide a mechanism for 

simulating micro-structural properties of biofluids. The presence of plasma, proteins, 

erythrocytes, leukocytes and fats within physiological suspensions is known to contribute 

unique hydrodynamic properties to the performance of these fluids. Micro-rheological 

characteristics are therefore intrinsic to such liquids. Eringen [13] first proposed the 

theory of micropolar fluids to describe fluent media such as colloidal solutions, liquid 

crystals, fluids with additives, low concentration suspensions, blood, slurries, lubricants 

etc. Physically, micropolar fluids belong to a larger family of much more complex non-

Newtonian fluids, namely micromorphic fluids which contain fluid elements with 

deformable microstructure, admitting intrinsic motion characteristics and possessing a 

non-symmetrical stress tensor. Extensive details of the constitutive equations for such 

fluids are documented in Lukaszewicz [14]. Micropolar fluids can sustain rotation with 

individual motions which support stress and body moments and are influenced by spin-

inertia [15]. A particular advantage of the micropolar model is that the classical Navier-
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Stokes model for Newtonian fluids can be retrieved as a special case by negating 

micropolar (vortex viscosity and spin effects). Micropolar fluids therefore provide a 

significantly more amenable model for computation than micromorphic fluids and can 

represent fluids consisting of rigid, randomly oriented (or spherical) particles suspended 

in a viscous medium, where the deformation of fluid particles is ignored (when 

deformation is important the more complex Eringen micro-stretch model is needed). In 

micropolar fluid dynamics, the classical continuum and thermodynamics laws are 

extended with additional equations, which account for the conservation of micro inertia 

moments and the balance of first stress moments which arise due to the consideration of 

micro-structure in a fluid. Hence new kinematic variables (gyration tensor, microinertia 

moment tensor), and concepts of body moments, stress moments and micro-stress are 

combined with classical continuum fluid dynamics theory. Micropolar theory has been 

utilized successfully in hemodynamics by Eringen and Kang [16], synovial lubrication by 

Allen and Kline [17] and Prakash and Sinha [18]. Further diverse applications include the 

work of Chaturani and Palanisamy [19] which examines micropolar pulsatile 

hemodynamics, Bhargava et al. [20] and Bég et al. [21] in biomagnetic tissue 

hydrodynamics. Further interesting studies in this realm include Chaube et al. [22] (who 

also considered wall slip effects) and Pandey and Tripathi [23]. Pandey and Tripathi [24] 

also addressed transient effects in micropolar transport in finite channels. Other studies 

include Tripathi et al. [25], Ellahi et al. [26] who considered thermal and mass diffusion 

in tapered stenosed arteries with wall suction, Akbar and Nadeem [27] who examined 

nanoscale effects (nano-particle Brownian diffusion and thermophoresis), and Ellahi et 

al.[28] who studied the micropolar arterial blood flow through a composite stenosis. 

  

In numerous biological systems e.g. oesophagus, vas deferens etc, hair-like structures 

known as cilia (typically 10 microns in length), attached to the surfaces of vessels (and 

micro-organisms) aid in the propulsion of fluids at small length scales. Cilia are known to 

beat with a whip-like asymmetric mechanism which comprises both an effective stroke 

and a recovery stroke. Moreover, when many cilia function collectively, fluid dynamic 

interactions may induce beating out-of-phase, and this manifests in the generation of 

metachronal waves and exacerbated hydrodynamics. The specific metachrony is termed 
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symplectic (or antiplectic) when the metachronal wave is in the same (or opposite) 

direction as the effective stroke. Sleigh [29] studied the biology of cilia and flagella and 

discussed the propulsion of cilia as a metachronic wave, highlighting their significance in 

physiological propulsion. Miller [30] investigated the movement of Newtonian fluids 

initiated and sustained by mechanical cilia. Blake [31] extended the Sleigh model [29]  

from a mathematical perspective and employed a spherical envelope approach for ciliary 

propulsion. Khaderi et al. [32] reported that metachronal motion of symmetrically 

beating cilia establishes a net pressure gradient in the direction of the metachronal wave, 

which creates a unidirectional flow field. In another article, Khaderi and Onck [33] 

further developed a numerical model to analyze the interaction of magnetic artificial cilia 

with surrounding fluids in three dimensional flow. They considered cilia flow sensors and 

discussed their application in polycystic kidney disease treatment, summarizing the 

current literature on cilia and flow sensing with respect to polycystic kidney diseases and 

discussed how these findings correlate with various aspects of cyst formation. In this 

direction, many recent investigations [34; 35; 36; 37; 38; 39; 40] have been reported 

which consider the cilia-induced flow of various rheological fluids including Casson 

(viscoplastic i.e. yield stress) fluids, Jeffrey (viscoelastic) fluids, Cu-H2O nanofluids, 

fractional generalized Burgers’ fluids and Ostwald-de Waele power law fluids. 

 

In many of the above investigations, a wide spectrum of scenarios has been investigated 

in peristaltic transport with micropolar fluids and separately other rheological flows with 

cilia effects – however no study has thusfar focused on combined micropolar peristaltic 

propulsion with cilia beating effects. A theoretical analysis of the collective micropolar 

peristaltic pumping with metachronal wave propagation generated by cilia beating, is 

therefore the objective of the present study. We consider two-dimensional incompressible 

micropolar fluid dynamic propulsion in an oscillating channel with the distensible walls 

lined with homogenous cilia structures. Lubrication theory is employed to simplify the 

coupled governing non-linear equations. The influence of micropolar parameters on cilia 

movement is evaluated carefully and furthermore geometric effects on peristaltic 

pumping are also elaborated. In light of this, the present work is an important 

contribution since it will expose readers to a more comprehensive approach for non-
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Newtonian biological propulsion, specifically, the framework of Eringen micromorphic 

mechanics which has not been explored in biological ciliated propulsion thusfar. 

 

 2. MATHEMATICAL FORMULATION 

We analyse the flow in an infinitely long channel of height, h, with the parallel 

distensible walls lined with an array of equi-spaced, two dimensional cilia of length, ɛ, 

arranged perpendicular to the walls of the channel which has width, a, as illustrated 

below in Fig.1. The geometry of the metachronal wave propagation in the transverse 

direction can be mathematically expressed as: 

2
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Sleigh [35] observed that cilia tips move in elliptical paths and in accordance with this, 

the axial deformation of the cilia can be mathematically expressed as:            
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Due to cilia beating, the deformations in the translational velocity components [35], in 

the wave frame, are obtained as follows: 
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The governing equations for the flow of an incompressible micropolar fluid in the 

absence of body force and body couple, in a wave frame of reference, following Eringen 

[45] are: 

 0 V ,                                                                                                   (3) 

     VWpVV 2  ,                                                (4) 
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where ( ,0, )V v u  and (0, ,0)W   are the velocity vector and the micro-rotation 

vector respectively, p  is the fluid pressure,   is the micropolar fluid density j  is the 

micro-gyration (Eringen’s micro-inertia density parameter). The constants , , ,     and 

  are material constants which satisfy the following inequalities: ,02    ,0    

3 0,        .    Since the micro-rotation vector W  is solenoidal, ,    do not 

appear in the governing equations. It is pertinent to introduce non-dimensional 

parameters, which are defined as follows: 
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Eqns. (3-5) transform as follows: 
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where,  
)( k

k
N
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  is the Eringen coupling number  10 N ,  

))(/()2(22 kkkam     is the Eringen micropolar material parameter and   is the 

wave number. In the limit 0  i.e., ,0N the governing equations reduce to the 

classical Navier-Stokes equations. Applying lubrication theory approximations i.e. long 

wavelength ( 1  ) and low Reynolds number ( 0Re ) (i.e. Stokes flow) 

assumptions, Eqns. (8-10) therefore readily reduce to: 
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The prescribed boundary conditions are imposed as:  
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3. ANALYTICAL SOLUTION OF THE BOUNDARY VALUE PROBLEM 

Eqns. (12), (13), together under the given boundary conditions (14 a), (14 b) admit 

closed-form solutions. The axial velocity is obtained as:  
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The microrotation (angular velocity of micro-elements) vector emerges as: 
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The volumetric flow rate is computed in the wave frame courtesy of the following Eqn.  

as: 

0

H

Q udy  .                                                                                                                       (17) 

The pressure rise ( p ) across one wavelength can be computed by using the following 

expression: 
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The stream function in the wave frame (obeying the Cauchy-Riemann equations, 

u
y





and v
x


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
) may be computed by using Eq.(17). Visualization of streamlines 

is achieved with Mathematica symbolic software. 

 

 

4. GRAPHICAL RESULTS AND DISCUSSION      

Inspection of the analytical solutions (15), (16) reveals that the key control parameters for 

the problem examined are micropolar material parameter (m), Eringen coupling 

parameter (N), eccentricity parameter (), wave number () and cilia length (). Figs. 2-7 

depict the effects of these parameters on axial velocity (u), micro-rotation component (w), 

pressure gradient (dp/dx), pressure rise-flow relationship and streamline profiles.  
Figs.2a-c illustrate the evolution of axial velocity (u) with transverse coordinate (y) for 

variation in micropolar material parameter (m), Eringen coupling parameter (N) and 

volumetric flow rate (Q).  The lower and upper walls correspond to y=0 and y = 1.7. 

Evidently very different responses are computed in the lower channel half space as 

compared with the upper channel half space. With greater micropolar material parameter, 

initially in the zone near the lower wall, the axial velocity (Fig. 2a) is damped somewhat. 

In this section of the channel, there is also a distinct decay in axial velocity from the 

maximum value at the lower wall. In this lower zone of the channel, therefore, greater 

micropolar effect decelerates the axial flow. Towards the channel central zone (y ~0.9), 

however a dramatic modification in axial velocity arises. Increasing micropolar material 

parameter thereafter is observed to accelerate the axial flow. Despite the alteration in 
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axial velocity response with micropolar effect, the descending nature of axial velocity 

with greater progressive distance from the lower wall is sustained. Axial velocity attains a 

minimal value therefore at the upper wall. The parameter m arises solely as an inverse 

quadratic function in the micro-rotation acceleration term, 
2

2

2
)

2
(

y

w

m

N




  in eqn. (13). It 

is absent in the normalized axial momentum equation (12). There is no doubt a complex 

relationship between this parameter and the other micropolar rheological parameters (k,  

etc). This may be related also to the physical space available to micro-elements for 

rotation and also the interaction with cilia structures at the lower wall. We hypothesize 

that rotary motions are adjusted in such a fashion in the lower channel space that they 

retard the axial (translational) flow there whereas the contrary effect is generated in the 

upper channel half space. Nevertheless, flow reversal (backflow) is not induced anywhere 

in the channel since velocities are always positive. Fig.2b reveals that axial velocity is 

boosted strongly in the lower channel half space with increasing coupling parameter (N) 

whereas the reverse behaviour is apparent in the upper channel half space where 

significant deceleration accompanies greater values of N. The coupling parameter clearly 

arises in both the axial momentum (12) and micro-rotation (13) conservation equations. 

With very high N values (3, 3.2) a velocity overshoot arises near the lower wall; however, 

this vanishes with lower magnitudes of N. In the upper channel half space, greater N 

values effectively retard the axial flow. It transpires that the coupling parameter, N, has 

the opposite influence on axial flow development compared with the micropolar material 

parameter i.e. whereas the former leads to acceleration, the latter results in deceleration 

and vice versa. It is also evident that the curve for N=0 represents the axial velocity 

profile for Newtonian fluid (see Ref.[37]) which is a particular case of the present model. 

Fig.2b shows that with increasing volumetric flow rate (Q), there is a massive 

enhancement in axial velocity from the lower channel wall well into the upper channel 

half space. However, as we approach the upper channel wall the converse behaviour is 

witnessed. Backflow is observed at low flow rate (Q =0.5, 1.5) in the lower channel half 

space. Maximum axial velocity however is associated with greater flow rate (Q =5) and 

occurs near the lower wall.   
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Figs.3a-c present the influence of m, N and Q on micro-rotation component with distance 

across the channel. A significant deviation is computed in all plots as compared with the 

axial velocity distributions in Figs.2a-c. Micro-rotation (Fig.3a) i.e. angular velocity of 

the micro-elements in the biofluid is distinctly accelerated with greater micropolar 

material parameter (m) in the lower channel half space whereas it is decelerated in the 

upper channel half space. This is the opposite behaviour to the axial flow (Fig.2a). 

Stronger micropolar effect therefore encourages spin of the micro-elements but reduces 

axial flow. Weaker micropolar effect induces the contrary effect. Fig.3b shows that 

increasing coupling parameter, N, results in a strong retardation in micro-rotation in the 

lower channel half space, whereas it leads to substantial acceleration in the upper channel 

half space (i.e. faster gyratory motion of micro-elements). The effect is so strong in the 

lower channel space that it manifests in reverse gyratory spin (negative w values). The 

trend in Fig.3b is again in sharp contrast to the axial flow response (Fig. 2b), once again 

demonstrating the opposite influence of micropolar material and coupling parameters on 

flow characteristics. In Fig. 3c, an increase in volumetric flow rate is found to reduce 

micro-rotation both at and also in close proximity to the lower wall; however still within 

the lower channel wall space and for the entire upper channel half space, the opposite 

behaviour is induced. Strong back flow arises near the lower channel wall for all flow 

rates except the lowest (Q = 0.5); the peak axial velocity is computed close to the upper 

wall for highest flow rate (Q=5). The symmetry present in Fig.2c is lost in Fig3c; profiles 

are more distorted in the latter plots and the influence of flow rate on micro-rotation is 

less ordered than it is on axial velocity. All profiles converge to zero micro-rotation at the 

upper channel wall corresponding to the imposed vanishing angular velocity boundary 

condition there. We note that a vanishing angular velocity gradient is prescribed at the 

lower wall and this boundary condition, in addition to the upper wall condition, are in 

concurrence with standard mathematical models for micropolar fluid dynamics (see for 

example [17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28]).    

Figs.4a-b depict the pressure gradient distributions across the channel length with 

different values of micropolar material (m) and Eringen coupling (N) parameters. The 

periodic nature of the peristaltic flow is clearly captured in both figures. Significant 

peaks and troughs are observed at regular intervals. Generally, an increase in micropolar 
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parameter elevates pressure gradient magnitudes (Fig.4a). Conversely an increase in 

coupling parameter (Fig.4b) only initially enhances pressure gradient whereas subsequent 

elevation in N leads to a strong depression (the trough is amplified). The relationship 

between N and the pressure gradient is therefore more sensitive and sophisticated than 

that of m. The sensitivity is also probably strongly influenced by the cilia length although 

the exact interaction cannot be deduced from these figures and requires further and more 

detailed hydrodynamic analysis.  

Figs. 5a-c illustrate the evolution of pressure rise (P) with flow rate (Q) when the 

coupling (N), micropolar material (m) and cilia length ( ) parameters are changed.  The 

classical inverse relationship between pressure rise and volumetric flow rate (known for 

Newtonian fluids) is also computed for micropolar fluids. In the pumping 

region  0P  , the pressure rise increases with greater coupling parameter (N), as 

observed in Fig.5a, whereas in the augmented pumping region ( 0P  ) the reverse 

behavior is manifested. Fig. 5b indicates that greater micropolar parameter (m) results in 

a decrease in pressure rise in the pumping region and an elevation in the augmented 

pumping region. The behaviour is therefore once again the opposite of that in Fig. 5a. An 

increase in cilia height is observed to enhance pressure rise (Fig 5c) in the pumping 

region but leads to a plummet in the augmented pumping region. The so-called free 

pumping region corresponds to 0P  . It is known that both cilia spacing and also cilia 

length influence the viscous resistance per cilium and thereby also impact on the axial 

flow. The latter is assisted with greater cilia length and this aids in pressure rise in the 

lower channel half space, as observed in Fig.5c. The introduction of extra energy to the 

flow at the lower wall however must be compensated for by an extraction at the upper 

wall, and these features are also related to synchronicity of beating cilia [30]. The 

pressure rise is therefore found to decrease with greater cilia length in the upper channel 

half space. The special case of  =0 implies vanishing cilia and absence of a metachronal 

wave. In this scenario the flow is a purely peristaltic mechanism due to flexibility of the 

walls which is studied in [23; 24]. 

Figs.6a-c and 7a-c present the streamline visualizations for the influence of coupling 

parameter, N, and micropolar material parameter, m, respectively. Significantly different 
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patterns are observed. With greater coupling parameter, streamlines become more 

separated indicating that bolus growth increases and number decreases. With greater 

micropolar parameter, a clear bolus appears in the vicinity of the channel centre-line (y 

=0); the number of boluses is also significantly greater with higher m values than higher 

N values. Trapping phenomena are therefore non-trivially influenced by micropolar 

rheology. 

 

5. CONCLUSIONS 

A theoretical investigation is presented for pressure driven peristaltic pumping of 

micropolar rheological biofluids in a channel comprising two parallel oscillating walls, 

lined with beating cilia. The metachronal wave is aligned to the axial pumping direction 

and is simulated via an elliptical expression. Closed-form solutions for the transformed, 

nonlinear boundary value problem are obtained. Interesting features are also discussed 

regarding bolus formation and evolution. Visualization of solutions is evaluated with 

symbolic software, Mathematica. The main findings of the present analysis may be 

summarized as: 

• Axial velocity and micro-rotation (angular velocity) are respectively decreased 

(increased) and increased (decreased) in the lower channel and upper channel half 

spaces with greater Eringen micropolar parameter.  

• Axial velocity and angular velocity (i.e. micro-rotation) component are 

respectively increased (decreased) and decreased (increased) in the lower channel 

and upper channel half spaces with greater values of Eringen coupling parameter.  

• An inverse relationship between pressure rise and flow rate is observed for 

variation in all pertinent parameters e.g. coupling, micropolar material and cilia 

length.  

• An increase in cilia height elevates pressure rise in the pumping region whereas it 

depresses it in the augmented pumping region.  

• Increasing micropolar parameter or decreasing coupling parameter suppresses 

pressure rise in the pumping region and enhances it the augmented pumping 

region.  

• The trapped bolus is a quite sensitive to changes in coupling and micropolar 
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parameters.  

The present study is of interest in for example simulations of oesophagul transport, 

embryological fluid mechanics (vas deferens) and other areas of physiology. Further 

investigations will address alternative microstructural rheological models and will be 

presented imminently. 
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FIGURES 

 

 

Fig 1. Geometric representation of micropolar fluid flow induced by metachronal wave 

propulsion. 
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Fig.2. Axial velocity response for different physical parameters (a) Micro rotation 

parameter (m) (b) Coupling parameter (N) (c) Flow rate (Q) 
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Fig.3. Microrotation component for for different physical parameters (a) Micro rotation 

parameter (m) (b) Coupling parameter (N) (c) Volumetric flow rate (Q). 
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Fig. 4. Pressure gradient versus axial coordinate for different physical parameters (a) 

Micro rotation parameter (m) (b) Coupling parameter (N)  
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Fig.5. Pressure rise versus volumetric flow rate for different physical parameters (a) 

Micro rotation parameter (m) (b) Coupling parameter (N) (c) cilia length (ε) 
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Fig.6. Streamlines for various coupling parameters with Q = 0.5, α = 0.1=β, m = 0.3, ɛ = 

0.3. 
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Fig.7. Streamlines for various micropolar material parameter (m) values with Q = 0.5, α 

= 0.1=β, N = 0.3, ɛ = 0.3. 


