
1 
 

EUROPEAN JOURNAL OF MECHANICS - B/FLUIDS 

[AN OFFICIAL MEDIUM OF PUBLICATION FOR EUROMECH EUROPEAN MECHANICS SOCIETY] 

Impact Factor: 2.098 

Publisher: Elsevier 

Accepted March 29th 2018  

THREE-LAYERED ELECTRO-OSMOSIS MODULATED  

BLOOD FLOW THROUGH A MICRO-CHANNEL  

#1Dharmendra Tripathi, 1Ravinder Jhorar, 1Abhilesh Borode and 2O. Anwar Bég 

1Department of Mechanical Engineering, Manipal University Jaipur, Rajasthan--303007, India. 
2Department of Mechanical and Aeronautical Engineering, Salford University, Salford, M54WT, UK. 

#Corresponding author- email: dharmtri@gmail.com 

ABSTRACT 

Electrokinetic peristaltic multi-layered transport is considered in a micro-channel under the action of an 

axial electrical field. Three different layers i.e. the core layer, intermediate layer and peripheral layer are 

simulated with three different viscosities for each fluid layer. The unsteady two-dimensional conservation 

equations for mass and momentum with electrokinetic body forces, are transformed from the wave frame 

to the laboratory frame and the electrical field terms are rendered into electrical potential terms via the 

Poisson-Boltzmann equation, Debye length approximation and ionic Nernst Planck equation. The 

dimensionless emerging linearized electrokinetic boundary value problem is solved using integral methods. 

Closed-form expressions are derived for stream functions in the core, intermediate and peripheral layers. 

Expressions are also derived for the core-intermediate interface shape and the intermediate-peripheral 

interface shape. Maximum pressures are also computed. To study bolus migration, the range of the trapping 

limit is also determined in the peripheral layer. It is found that in the core layer larger boluses are computed 

in the case of lower intermediate layer viscosity relative to peripheral layer viscosity although the number 

of boluses is greater when the intermediate layer viscosity exceeds the peripheral layer viscosity. 

Furthermore, in the intermediate layer, stronger concentration of streamlines is computed in the lower half 

space with positive Helmholtz-Smoluchowski velocity. Also, negative Helmholtz-Smoluchowski velocity 

reduces the core layer (H1) interface shape whereas it enhances the peripheral layer (H) and intermediate 

layer (H2) shapes. At lower values of volume flow rate ratio, hydromechanical efficiency is maximum for 

positive Helmholtz-Smoluchowski velocity whether intermediate layer viscosity is less or greater than 

peripheral layer viscosity. Finally, greater with greater peristaltic wave amplitude and also for positive 

Helmholtz-Smoluchowski velocity there is an increase in time-averaged flow rate, whether intermediate 

layer viscosity is less or greater than peripheral layer viscosity. The   analysis is relevant to electro-kinetic 

hemodynamics and bio-micro-fluidics.  

KEYWORDS: Electrokinetics; blood flow; multi-layered microchannel; thin electric double 

layer; fluid-fluid interfaces; trapping; bio-micro-fluidics.  
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I. INTRODUCTION 

Electro-osmotic blood flow arises frequently in capillaries and other narrow vessels. Blood 

contains many constituents including ions and the bio-electric field generates electrical Coulomb 

forces which act on these ions [1]. When subjected to an external electrical field, blood flow can 

be further controlled via electro-osmotic processes [2]. Electrokinetic motion of the particles 

embodies the migration of electrically charged or uncharged particles in an aqueous solution or 

suspension, in the presence of an applied electric field. Electrokinetic phenomena embody many 

different effects including electrophoresis, diffusiophoresis, electro-osmosis and capillary 

osmosis. This branch of fluid mechanics has attracted significant attention in recent years with 

developments in medical engineering at progressively smaller length scales i.e. micro- and nano-

scales. Both experimental and computational investigations have been reported. Examples of 

recent studies of electrokinetic flows include biomicrofluidic mixers which amalgamate 

alternating electrical excitation with pressure-driven base electro-osmotic flow in complex 

microchannel geometries. Xing et al. [4] investigated the use of electro-osmotics in plasmapheresis 

devices with thermal effects (Joule heating). Pikal [5] has considered electrokinetic flows in 

transdermal iontophoresis [5].  Analytical investigations have of electro-osmotic flows have also 

been reported. Levine et al. [6] provided one of the earliest theoretical studies of electrokinetic 

flow and showed that the electro-viscous retardation effect achieves a maximum impact both with 

regard to electrokinetic radius and also with respect to zeta-potential. Ghosal [7] investigated 

analytically the influence of axial cross-section on electrokinetic flow in micro-channels, noting 

that an induced pressure gradient arises with an associated secondary flow which enhances Taylor 

dispersion. Misra et al. [8] investigated theoretically the electroosmotic micropolar flow in a 

vibrating microchannel, solving the coupled linear and angular momentum and Gauss charge 

conservation equations under the Debye-Hückel approximation. Jubery [9] conducted numerical 

simulations of electrokinetic effects on blood flows using a distributed Lagrange multiplier multi-

domain method for electric potential. This study also addressed in detail the dielectrophoretic 

separation of particles [10]. Dutta et al. [11] used a spectral element method to simulate mixed 

electroosmotic/pressure driven flows in a T-junction under various external electric field strengths.  

Novel developments in pumping techniques in micro-systems have also embraced electrokinetic 

mechanisms. Interesting studies in this regard include Fu et al. [12] who have studied applications 
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in ctyometry. Wong et al. [13] have reviewed alternating current (AC) electrokinetics for 

manipulating bulk fluid mass and embedded in clinical diagnostics. Further studies include Jie et 

al. [14] on electrothermal micropumping of medicines and Park et al. [15] on dielectrophoretic 

bacterial separation technologies. Electrokinetic micro-pumping fabrication has been addressed by 

Kang et al. [16]. Other intriguing applications of electro-kinetics include AC electro-osmotic 

(ACEO) pumping [17], travelling-wave electroosmosis (TWEO) pulsed microfluidics [18] and 

mechanical actuation devices [19].  

Peristalsis is a complex and efficient biological propulsion mechanism arising in gastro-intestinal 

movement, blood flow, worm dynamics and plant trans-location. Peristalsis is a radially 

symmetrical contraction and relaxation of muscles which serves to effectively pump fluids in a 

wave-like motion along a conduit utilizing deformable walls. In the human digestive system it is 

induced by reflexes in the enteric nervous systems which are generated by physical movement of 

a bolus (foodstuff). Peristaltic fluid dynamics has been lucidly reviewed by Fung [19]. It has also 

received substantial interest in the engineering sciences community. Representative studies of 

peristaltic propulsion in biological vessels include Whirlow et al. [21] who considered pumping of 

Newtonian viscous fluids in thick-walled deformable tubes. Grabski et al. [22] conducted a 

computational analysis of peristaltic flow of Newtonian fluid in two-dimensional channel using a 

high-order iterative formulation and radial basis functions for both vanishing and finite Reynolds 

numbers. Khabazi et al. [23] investigated peristaltic transport of a Bingham viscoplastic fluid in a 

planar two-dimensional channel with the multiple-relaxation-time lattice Boltzmann method 

(MRT-LBM). They observed that a threshold wave number exists above which the yield stress of 

the fluid may accelerate flow whereas below this threshold a deceleration is induced. Javed et al. 

[24] derived closed-form solutions for peristaltic flow and heat transfer of a Walters-B viscoelastic 

fluid in a compliant wall channel. Tripathi and Bég [25] investigated magnetic field and wave 

amplitude effects on transient magnetohydrodynamic peristaltic heat transfer in finite length 

channel. Peristaltic electrokinetic blood flow in cylindrical finite length capillaries was studied 

very recently by Tripathi et al. [26] who observed that increasing axial electrical field enhances 

pressure whereas it reduces bolus size. They also computed that with greater electro-osmotic 

parameter (smaller Debye length) volumetric flow rate is increased whereas it is lowered with 

stronger Helmholtz–Smoluchowski velocity (greater external axial electric field). 
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In various physiological flows including chyme transport in the small intestines and small blood 

vessels, viscosity variation is known to occur. In capillaries, the viscosity of the peripheral layer 

is usually less than that of the core layer. The thinner peripheral layer results in an enhanced 

volumetric flow-rate. Furthermore in micro-peristaltic pumps, a peripheral layer can be 

instrumental in avoiding contact of toxic fluids with mechanical components which could result in 

corrosion and contamination. These applications require multi-layered viscous peristaltic transport 

models. Important works in this regard include Shukla et al. [26] who considered a  two-layered 

peristaltic model and identified that that the interface shape is influenced by the viscosity ratio of 

the fluids in the two (central and peripheral) layers rather than the geometric ratio of the radii of 

the outer (peripheral) and the central layers. Further investigations have been reported by 

Srivastava and Srivastava [28] who presented a two-fluid (peripheral and core fluid) model for a 

non-uniform tube and channel has been investigated under the lubrication approximation, noting 

that flow rate is elevated as the viscosity of the peripheral layer fluid is reduced. Srivastava and 

Saxena [29] examined peristaltic two-fluid blood flow comprising a core region of suspension of 

all the erythrocytes, assumed to be a Casson fluid, and a peripheral layer of plasma (Newtonian 

fluid). Elshehawey and Gharsseldien [30] studied peristaltic pumping of three-layered flow with 

variable viscosity for an incompressible Newtonian fluid through a channel. They showed that 

interfacial shapes, flow rates and hydromechanical efficiency are more significantly modified by 

viscosity variation in the peripheral layer compared with the intermediate layer. Pandey et al. [31] 

considered two-dimensional peristaltic flow of power-law fluids in three layers with different 

viscosities, noting that flow rate is elevated with the viscosities of the peripheral and the 

intermediate layers whereas a more impactful influence is computed with the viscosity of the 

outermost layer. Misra and Pandey [32] also analyzed peristaltic pumping of a power-law fluid in 

a cylindrical tube in the presence of a peripheral layer of another power-law fluid with different 

viscosity, observing that flow-rate is reduced with decreasing flow behaviour index or outer layer 

viscosity.  

An inspection of the literature reveals that there is an absence of studies of electrokinetic peristaltic 

flows in multi-layered viscous fluids. This is the objective of the present study. Although 

interfacial electrokinetic flows have been investigated by Berry et al. [33], their study did not 

consider peristalsis. Multi-layered viscous peristaltic flows may find important applications in 

further elucidating electro-osmotic blood flows in more realistic hemodynamic scenarios [34]. 
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They may also have relevance to more elaborate micro-peristaltic pump devices. Combined study 

of electroosmotic flow via peristaltic pumping was firstly reported by Chakraborty [35] who 

discussed the alteration of peristaltic flow through electroosmotic mechanism. This model is 

further extended by Misra et al. [36] for micropolar fluids, Bandopadhyay et al. [37] for electric 

double layer phenomenon, Tripathi et al. [38] for electromagnetohydrodynamics (EMHD), 

Tripathi et al. [39] for viscoelastic physiological fluids and Tripathi et al. [40] for capillary 

hemodynamics through electroosmosis mechanisms. All extended works reported only single 

layer electroosmotic flow via peristaltic pumping. Considering the multilayered flow which is 

more applicable in blood flow, Goswami et al. [41] have presented a mathematical model to study 

the electrokinetically modulated two layered flow of power law fluids. A thin electric double layer 

(EDL) approximation is adopted where only electroosmotic velocity is taken as slip velocity at the 

surface of peripheral layer. Still there is a gap to investigate electroosmosis modulated three 

layered flow via peristaltic pumping. In the present study we consider a three-layered model for 

electro-osmotic peristaltic pumping. Closed-form solutions are presented for the transformed 

boundary value problem. The effects of intermediate and peripheral layer viscosities and 

Helmholtz-Smoluchowski (maximum electro-osmotic) velocity on interface shapes, pressure rise, 

mechanical efficiency and maximum time averaged flow rate are computed. The influence of wave 

amplitude and Helmholtz-Smoluchowski velocity on streamline distributions in the intermediate 

layer and peripheral layer are also visualized and bolus dynamics examinecd carefully. 

 

2. MATHEMATICAL MODEL 

We analyze three layered flow in (core layer, intermediate layer, and peripheral layer) of viscous 

fluids (blood) of different viscosity ( 0 , 1 , 2 ) respectively through  micro-channel. The 

schematic of the problem under consideration is depicted in Fig. 1, under axial electric field. We 

consider a sinusoidal wall surface propagating with wave velocity (c) and wavelength ( ). The 

peripheral wall surface is taken negatively charged and the physiological fluid (blood) is 

considered as an aqueous ionic solution to study the thin electric double layer (EDL) effects. The 

mathematical equation for wall surface is expressed as: 

2
( , ) sin ( )H x t a x ct





    ,                                                                                                  (1) 
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where a , , , x , c , t  are the radius of tube, amplitude of the wave, wavelength, axial coordinate, 

wave velocity, and time. The governing equation for unsteady momentum conservation in the axial 

direction for axisymmetric incompressible peristaltic flow with an axially applied electrokinetic 

body force term taken into account, takes the form [30, 41]: 

2     e x

u u u P u u v
u v E

t x y x x x y y x
   

            
 


                      
,                                          (2) 

 

 

Figure 1: A geometrical description of three-layered blood flow through a microchannel 

augmented by external electric field with thin EDL formation. 

where , , ,u p and 
xE  denote the fluid density, axial velocity, pressure, and external electric field, 

respectively and  is the variable viscosity considered as:  

0 1
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, .
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H y H



 



 


  
  

,                                              (3) 

We have considered a negatively charged surface (microchannel wall) and aqueous (polar) solvent 

in this model. For a symmetric binary electrolyte solution (Na+ Cl-), the electric potential 

distribution is developed due to the presence of electrical double layer (EDL) in the microchannel, 

described by the Poisson equation: 
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2 e


    ,                                                                                                                                 (4) 

in which, 2  is Laplacian operator,  is electrical potential function, e  is the density of the total 

ionic charge,   is the permittivity. For a symmetric electrolyte, the density of the total ionic energy, 

e is given by, )(   nneze , in which z is charge balance, e  is the electronic charge, n and 

n  are the number densities of cations and anions respectively. For this, the ionic number 

distributions of the individual species are given by the Nernst-Planck equation for each species as:  

2 2

2 2

B

n n n n n Dze
u v D n n

t x y x y k T x x y y

    
 

             
         

           


  
.                              (5)             

Implicit in this analysis, is the assumption of equal ionic diffusion coefficients for both the species, 

and that the mobility of the species is given by the Einstein formula where D  represents the 

diffusivity of the chemical species and Bk  is Boltzmann constant. The following non-dimensional 

parameters are defined to simplify the model: 

, , , , ,
x y ct u v

x y t u v
a c c  

    
0





 ,

1 2
1 2

, ,
, ,

H H H
H H H

a
 ,

2

0

pa
p

c 
 ,

0

, ,
n

n
a n







    .            (6)  

Furthermore, the nonlinear terms  2O Pe , where Pe Re Sc  represents the ionic Peclet number, 

Re is Reynolds number and 0Sc D   denotes the Schmidt number which may be dropped in 

the limit that Re, Pe,  <<1. Using the above limitations, thin electric double layer limit (a<<1) 

approximations and also dropping the bar, the Poisson equation, Nernst Planck equations, and 

momentum equations reduce to: 

2
2

2 2

n n

y
     

   
  

,                                                                               (7) 

2

2
0

n
n

y y y




   
  
   

 ,                                                            (8) 

p u

x y y

   

  
   

,                                                            (9) 
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where 02

B d

n a
aez

K T


 
  , is known as the electro-osmotic parameter (reciprocal of Debye 

length). In this thin Debye layer and weak electric field limit, the description in the inner region 

follows the conventional analysis of electroosmotic flow problems and results in a “bulk” velocity 

of ( x
HS

E z
U

c




  ), which may be used as a boundary condition i.e. HSu U  at the wall of 

peripheral layer ( y H ). The transformations between wave frame and laboratory frame are given 

by: wx x t   , y y , 1, ,wu u v v q Q h     . Imposing the stream function in the wave frame, 

defined as: u
y





 and 
w

v
x


 


, Eqn. (9) can be expressed as: 

2

2

w

p

x y y



   

  
   

.                                                        (10) 

The volumetric flow rate in terms of time-averaged volumetric flow rate is defined as: 

1 2 31q Q q q q     ,                                           (11a) 

1

1 1 1 1

0

wq Q H dx q    ,               (11b)         

1

2 2 2 1 2

0

wq Q H dx q q     ,                   (11c) 

where 1 2 3, ,q q q  are the volumetric flow rates, in the core, intermediate, and peripheral regions, 

respectively, in the wave frame and 
1

0

Q Qdt   is the total volume flow rate averaged over a period, 

henceforth known as the time-averaged flow rate. The following boundary conditions are imposed: 

0  , 0yy   at 0y  ,                                                                                                             (12a) 

1y HSU     at y H ,                                                                                                             (12b) 

q   at  y H ,                                                                                                                      (12c) 

*

1q   at 1y H ,                                                                                                                         (12d) 

*

2q   at  
2y H  .                                                                                                                        (12e) 
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The solution of Eq. (10) subject to the boundary conditions in Eqs.12 (a-e) in terms of stream 

function is obtained as: 

  0

0

( )

( 1) ( 1)

( )

y

HS HS H

F y dy

U y U H q

F y dy

     




 ,                                                                              (13) 

where , ( )

H

y

s
F y ds


  . 

Solving the above integrations, the stream functions in the core, intermediate and peripheral layers 

are obtained as: 

Core region ( 10 y H  ),      

 

2
2 2 2

1 2

1 1 2 2

3
3 3

1 2

1 1 2 2

1 1 1 3
3 1 3

1
( 1) ( 1)

2 1 1 1
1

HS HS

H
H H y

U y U H q y
H

H H

   


   

    
        

        
   
      

   

,            (14a) 

Intermediate region ( 1 2H y H  ),                                                                                                                                        

 

2 2
3 2

1 2

1 1 2 2 1

3
3 3

1 2

1 1 2 2

1 1 1 1 3
1 3

2
( 1) ( 1)

1 1 1
1

HS HS

H y
H y H

U y U H q
H

H H

    


   

    
        

        
   
      

   

,               (14b) 

Peripheral region ( 2H y H  ),                                                                                                                                            

 

2 2
3 3

1 2

1 1 2 2 2

3
3 3

1 2

1 1 2 2

1 1 1 1 3
1

2
( 1) ( 1)

1 1 1
1

HS HS

H y
H H y

U y U H q
H

H H

    


   

     
         

         
   
      

   

.             (14c)                                                                                                                                             

3. FLUID–FLUID INTERFACE ANALYSIS 

In the three-layered flow, there are two interfaces. The first exists between the core region and 

intermediate region. The second interface exists between the intermediate region and peripheral 

region. The advantage of the present model is that the viscosity of fluids at the interfaces is equal. 

Using the boundary conditions (12a-e), the algebraic system of equations for the interfaces 

emerges as: 



10 
 

4 3

1 1 1 1 1 2 1 1 2

4 3

2 2 2 2 2 1 2 2 1

( ) ( ) 0

( ) ( ) 0

A H B H C H H D H

A H B H C H H D H

    


    

,                  (15) 

where, 

1

1

1
( 1) 1HSA U



 
   

 
,                            (16a) 

1 1

1 1 1 1 1

( 1)1 1 1
1 ( 1) 1 1

2 2

HS
HS

U H q
B q U H q

    

     
              

     
,                       (16b) 

3
3 2

1 2 2 2

1 2 2 1 2

3 2
2

2

2 2 1 2

( 1) 3( 1)1 1 1 1
( ) ( 1)

2

3( 1) 3 3 1 1

2 2 2

HS HS
HS

HS

U H U
C H U H H H

U H qH
q H

    

   

    
         

   

 
   

 

,                    (16c)                                                         

3
3 1

1 2 1 2

1 2 2

1 1
( )

q H
D H q H

  

 
    

 
,                                                (16d) 

2

1 2

1 1
( 1)HSA U

 

 
   

 
,                                (16e) 

2 2

1 2 1 2 2 1 2 2

( 1)1 1 1 1 1 1
( 1)

2 2

HS
HS

U H q
B q U H q

       

     
              

     
,                   (16f)                                                                                                                              

3 2
3

2 1 1

1 2 2

( 1)1 3
( ) ( 1) 1

2 2

HS
HS

U H qH
C H U H

  

  
     

 
,                                                 (16g) 

3
3 3 32

2 1 2 1 1 1

1 2 1 1

1 1 1
( ) 1 ( 1) 1 1HS

q H
D H q H U HH q H

   

     
             

     
.                  (16h)                                           

In order to compute the interfaces for different sets of values of viscosity of the fluids in different 

regions, 
*

1q  and 
*

2q   can be evaluated by considering the particular value for 1H  and 2H  at 0x   

and they are expressed as: 
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3 2

1 1 2 2

1

3 3

1 1 2 2

3 1 1 1
2 3 3

( 1)
( 1)

2 1 1 1 1
1

HS
HS

q U
q U

  
   



 
   



   
      

               
      

   

,                              (17a) 

3 3

1 1 2 2

2

3 3

1 1 2 2

1 2 3 1
2 1 3

( 1)
( 1)

2 1 1 1 1
1

HS
HS

q U
q U

  
   



 
   



   
      

               
      

   

,                 (17b) 

where, 1(0)H   and 2 (0)H  . 

4. PERISTALTIC PUMPING CHARACTERISTICS 

Using Eqns. 14 (a-c) and Eqn. (10), the pressure gradient is obtained as: 

 
3

3 3

1 2

1 1 2 2

3 ( 1)

1 1 1
1

HS

w

U H qp

x H
H H

   

 


    
      

   

.                                                                                (18) 

Integrating the Eqn. (18) across one wavelength, the pressure rise is obtained as: 

1 1

1 2 1 2

2 3

0 0

( , ) ( , )
(1) (0) 3 ( 1) ( 1)HS w w

G H H G H H
p p p U dx Q dx

H H

 
       

 
  ,                      (19) 

where, 

1
33

1 2
1 2 3

1 1 2 2

1 1 1 1
( , ) 1

H H
G H H

H H   



      
         

      

. 

The maximum time-averaged flow rate can be computed at zero pressure rise and is expressed as: 

1

1 2

2

0
0 1

1 2

3

0

( , )
( 1)

1
( , )

w
HS

w

G H H dx
U

H
Q

G H H dx

H



 




.                                                                                    (20) 

The maximum pressure rise is also computed at zero time-averaged flow rate as follows: 

1 1

1 2 1 2
0 2 3

0 0

( , ) ( , )
3 ( 1) w w

HS

G H H dx G H H dx
p U

H H

 
    

 
  .                                                                   (21) 
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The hydromechanical efficiency, following Shapiro et al. [42], of peristaltic pumping is the ratio 

of the average flow rate per wavelength at which work is done by the moving fluid against a 

pressure head and the average rate at which the walls do work on the fluid. It is computed as: 

1( )

Q p
E

I p




 
,                                                                                    (22) 

where, 
1

1

0

sin(2 )w w

w

p
I x dx

x






. 

 

5. TRAPPING ANALYSIS 

Trapping is a phenomenon of peristaltic pumping where the streamlines recirculate (i.e. fluid 

particles start to move in circulation and axial flow vanishes) under specific combinations of the 

value of occlusion (obstruction in the channel caused by deforming walls) of the peristaltic wave 

and time-averaged volume flow rate. Here we determine the range of the trapping limit (

Q Q Q   ) in the peripheral layer ( 2H y H  ) at 0   and 0y  . At 0  , Eqn. (20) 

reduces to: 

     
2

2 2

1 11 1 2 11 2 11

1 1 2 22

1 1 1
1 2( 1) 2( 1) 2( 1)

( 1)

HS HS HS

HS

H
H A U H H A U H A U H

y
U H q

   

   
            

   


 
, (23) 

where, 11 3(( 1) )HSA U H q   .         

It is clear that the denominator of Eqn. (23) attains a maximum value at 1/ 4wx  and minimum 

value at 3 / 4wx  . The range of time-averaged volume flow rate where trapping may occur is 

computed as: 

2 2 3 2 3

1max 1max 2max 2max

2 2 2

1max 2max

( 2 ( 1) )( 1) 3 ( (1 ) ) 2 ( 1) 3 ( (1 ) ) 2 ( 1)
,

3( (1 ) )

HS HS HS HS HSC U A U H A U H B U H B U H
Q

C AH BH

      



                


  

     

                                                                                                                                        (24a) 

2 2 3 2

1min 1min 2min 2min

2 2 2

1min 2min

(1 ) (2 ( 1) ) 3 ( ( 1) ) 2 ( 1) (3( ( 1) 2( 1) )
,

3( (1 ) )

HS HS HS HS HS HS HS HSC U U A U U H A U H BH U U U H
Q

C AH BH

   



              


  

.                                                                                                                                       (24b) 
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where,
2

1
1A



 
  
 

, 
1 2

1 1
B

 

 
  
 

, 
2

1
C



 
  
 

, and Q Q Q    and 1max 2max 1min, , ,H H H and 

2minH  are the values of interfaces at 1/ 4wx   and 3 / 4wx   respectively. 

6. NUMERICAL RESULTS AND DISCUSSION 

Extensive numerical evaluations of the closed-form solutions have been conducted in MATLAB 

symbolic software to examine the influence of key parameters on the electrokinetic multi-layered 

peristaltic transport. The solutions are visualized in figs. 2-17. Specifically we explore the 

influence of intermediate layer (1) and peripheral layer viscosities (2) and also Helmholtz-

Smoluchowski velocity (UHS) on interface shapes, pressure rise, mechanical efficiency and 

maximum time averaged flow rate. Also the effects of wave amplitude () and Helmholtz-

Smoluchowski velocity on streamline distributions in the intermediate layer and peripheral layer 

are studied.  

 

1 2   1 2    

  

Fig.2 The variation of the shape of the interfaces 

1 2,H H  with the value of viscosity 
1 210, 0.1    at 

0.1, 0.65,Q   0.85, 0.5    for different 

values of Helmholtz-Smoluchowski velocity.  

Fig.3 The variation of the shape of the interfaces 
1 2,H H

with the value of viscosity 
1 20.1, 10    at 

0.1, 0.65,Q   0.85, 0.5    for different 

values of Helmholtz-Smoluchowski velocity.  
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1 2   1 2    

  

 

  

 

Fig.4 The pressure rise P versus the volume flow rate 

Q with the values of viscosity 
1 210, 0.1    at 

0.65, 0.85, 0.7     for different values of

HSU  

Fig.5 The pressure rise P versus the volume floe 

rate Q with the values of viscosity 
1 20.1, 10    at 

0.65, 0.85, 0.7     for different values of

HSU  

 

                                    1 2   1 2    

  

 

  

 

Fig.6 The mechanical efficiency E  versus the ratio of 

the volume rate 0/Q Q with the values of viscosity 

1 210, 0.1    at 0.65, 0.85, 0.7     for 

different values of HSU . 

Fig.7 The mechanical efficiency E  versus the ratio 

of the volume rate 0/Q Q with the values of 

viscosity 
1 20.1, 10    at 0.65, 0.85,    

0.7  for different values of HSU . 
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1 2   1 2    

   

 

   

 

Fig.8 The variation of 0Q  with   when 
1 210, 0.1   , 

0.65, 0.85    at different values of HSU . 

Fig.9 The variation of 
0Q  with   when 

1 20.1, 10   , 

0.65, 0.85   at different values of HSU . 

 

 

1 2   1 2    

    

 

   

 

Fig.10 The variation of 
0P  with   when 

1 210, 0.1   , 0.65, 0.85    at different 

values of 
HSU . 

 

Fig.11 The variation of 
0P  with   when  

1 20.1, 10   , 0.65, 0.85    at different 

values of 
HSU . 
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1 2  ( 10 y H  ) 1 2   ( 10 y H  ) 

 

 

 

 

 

 

 

 

 
 

 

  
 

 

(a) (a) 

(b) (b) 
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Fig.12 Stream lines in core layer at 
1 20.5, 0.2   ,

0.7  , 0.8Q  , 0.65  , 0.85  (a) 1HSU  (b)

0HSU  (c) 1HSU    

Fig.13 Stream lines in core layer at 
1 20.2, 0.5   ,

0.7  , 0.8Q  , 0.65  , 0.85  (a) 1HSU  (b)

0HSU  (c) 1HSU    

 

 

1 2   ( 1 2H y H  ) 1 2   ( 1 2H y H  ) 

  

  

 

 
 

 

(c) (c) 

(a) (a) 
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Fig.14 Stream lines in Intermediate layer at 

1 20.5, 0.2   , 0.7  , 0.8Q  , 0.65  ,

0.85   (a) 1HSU   (b) 0HSU   (c) 1HSU    

Fig.15 Stream lines in Intermediate layer at 

1 20.2, 0.5   , 0.7  , 0.8Q  , 0.65  , 

0.85   (a) 1HSU   (b) 0HSU   (c) 1HSU    

 

 

 

 

 

 

  

  

  

  

(b) 

(c) (c) 

(b) 
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1 2  ( 2H y H  ) 1 2   ( 2H y H  ) 

  

  

 
 

 
 

  

 

(b) 

(a) 

(b) 

(a) 
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Fig.16 Stream lines in Peripheral layer at 

1 20.5, 0.2   , 0.7  , 0.8Q  , 0.65  ,

0.85   (a) 1HSU   (b) 0HSU   (c) 1HSU    

Fig.17 Stream lines in Peripheral layer at 

1 20.2, 0.5   , 0.7  , 0.8Q  , 0.65  ,

0.85   (a) 1HSU   (b) 0HSU   (c) 1HSU    

 

Figs 2-3 illustrate the effects of the  Helmholtz-Smoluchowski velocity on interface shapes H1 and 

H2 for two different viscosity ratio scenarios  i.e. 1 (intermediate ) > 2 (peripheral)  in fig 2 and 

1 (intermediate ) < 2 (peripheral) in fig.3. The interface shapes are based on fig.1 i.e. H 

corresponds to the peripheral layer, H2 to the intermediate layer and H1 to the core layer. For fig. 

2 the interface shape magnitude is greatest for the peripheral layer, slightly lower for the 

intermediate layer and significantly lower still for the core layer. With negative Helmholtz-

Smoluchowski velocity, there is generally a reduction in H1 interface shape and an increase in H 

and H2 shapes. With positive Helmholtz-Smoluchowski velocity H2 shape is elevated whereas H1 

is reduced. In the absence of electro-osmotic effect (UHS=0), H2 is enhanced whereas H1 is 

significantly reduced, the latter especially at higher xw values. For fig 3 wherein the peripheral 

viscosity exceeds the intermediate viscosity, a similar trend is observed for negative Helmholtz-

Smoluchowski velocity although there is less disparity between the H1 and H2 plots. For positive 

negative Helmholtz-Smoluchowski velocity, the H1 interface profile is maximized. It is also 

increased for the zero Helmholtz-Smoluchowski velocity case but remains below the positive 

Helmholtz-Smoluchowski velocity case at lower xw values, whereas this trend is reversed at higher 

xw values. Axial electrical field (Ex) therefore exerts a non-trivial influence on the shape interfaces 

  
  

(c) (c) 
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for both viscosity scenarios (fig. 2 and fig. 3) since the Helmholtz-Smoluchowski velocity, 

x
HS

E z
U

c




  , is proportional to Ex. 

Figs. 4 and 5 depict the variation in pressure difference as a function of time averaged volumetric 

flow rate for different values of Helmholtz-Smoluchowski velocity, UHS. In fig. 4 with 1 

(intermediate layer viscosity) > 2 (peripheral layer viscosity), a linear growth in pressure rise 

accompanies increasing flow rate. With negative Helmholtz-Smoluchowski velocity (maximum 

electro-osmotic velocity), pressure rise is maximized whereas it is minimized for positive 

Helmholtz-Smoluchowski velocity. The reverse trends are computed in fig. 5 for which 1 

(intermediate layer viscosity) < 2 (peripheral layer viscosity) i.e. there is a linear decay in pressure 

rise with increasing flow rate. Positive Helmholtz-Smoluchowski velocity generates the maximum 

pressure rise and negative Helmholtz-Smoluchowski velocity corresponds to the minimum 

pressure rise. In both figs. 4 and 5 the zero Helmholtz-Smoluchowski velocity case i.e. vanishing 

axial electrical field, falls between the other two plots. 

Figs. 6 and 7 depict the variation in hydromechanical efficiency (E) as a function of volumetric 

flow rate ratio, for different values of Helmholtz-Smoluchowski velocity, UHS. Fig. 6 corresponds 

to 1 (intermediate layer viscosity) > 2 (peripheral layer viscosity), and fig. 7 to 1 (intermediate 

layer viscosity) < 2 (peripheral layer viscosity). In both figures, generally right-skewed parabolic 

profiles are computed for all values of Helmholtz-Smoluchowski velocity. At lower values of 

volume flow rate ratio, hydromechanical efficiency is increased with positive Helmholtz-

Smoluchowski velocity (in both figures) and reduced with zero Helmholtz-Smoluchowski velocity 

and further reduced with negative Helmholtz-Smoluchowski velocity. However with increasing 

values of volume flow rate ratio, the opposite behavior is computed.  Higher magnitudes of 

hydromechanical efficiency are computed for fig. 7 for all values of flow rate ratio i.e. when 1 

(intermediate layer viscosity) < 2 (peripheral layer viscosity). Greater work is therefore required 

by the moving fluid relative to the work done by the distending walls when peripheral viscosity 

exceeds intermediate layer viscosity.  

Figs. 8 and 9 illustrate the variation in maximum time-averaged flow rate ( oQ ) as a function of 

volumetric flow rate ratio, for different values of Helmholtz-Smoluchowski velocity, UHS. Fig. 8 

corresponds to 1 (intermediate layer viscosity) > 2 (peripheral layer viscosity), and fig. 9 to 1 
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(intermediate layer viscosity) < 2 (peripheral layer viscosity). Both figures indicate that with 

increasing peristaltic wave amplitude the maximum time-averaged flow rate grows steadily. 

However whereas in fig. 8 the profiles tend to converge at high wave amplitude, irrespective of 

Helmholtz-Smoluchowski velocity, UHS., in fig. 9 there is a more gradual plateau-like effect where 

profiles become parallel at large wave amplitude. Generally in both figures, positive Helmholtz-

Smoluchowski velocity enhances maximum time-averaged flow rate whereas negative Helmholtz-

Smoluchowski velocity manifests in a decrease in maximum time-averaged flow rate. 

Figs. 10 and 11 present the distributions in maximum pressure rise is also computed at zero time-

averaged flow rate (po) as a function of wave amplitude (), for different values of Helmholtz-

Smoluchowski velocity, UHS. Fig. 10 relates to 1 (intermediate layer viscosity) > 2 (peripheral 

layer viscosity), and fig. 11 to 1 (intermediate layer viscosity) < 2 (peripheral layer viscosity). It 

is evident from both figures that maximum pressure rise generally increases with increasing 

peristaltic wave amplitude, in particular at higher amplitudes. Whereas in both figures, positive 

Helmholtz-Smoluchowski velocity elevates maximum pressure rise, and negative Helmholtz-

Smoluchowski velocity induces a reduction in maximum pressure rise, the effect is more 

prominent in fig. 10 i.e. where peripheral viscosity is lower than intermediate layer viscosity.  

Figs 12-17 illustrate the influence of relative values of 1 (intermediate layer viscosity) and 2 

(peripheral layer viscosity), and also Helmholtz-Smoluchowski velocity on streamline 

distributions in the core layer (figs 12, 13), intermediate layer (figs 14, 15) and peripheral layer 

(figs. 16, 17). These plots enable the phenomenon of trapping to be examined i.e. the formation of 

an internally circulating bolus of fluid by closed stream lines. This trapped bolus is pushed along 

by peristaltic waves. In each set of plots, for example, for the core layer (figs, 12, 13) very different 

distributions are computed for 1 > 2 compared with 1 < 2. While symmetry is apparent in both 

sets of profiles, larger boluses are computed in the case of 1 < 2. Boluses are also more 

concentrated in the central zone in this case than they are in the 1 > 2 case where they are 

dispersed towards the outer periphery. Greater concentration of streamlines is computed for 

negative and positive Helmholtz-Smoluchowski velocity compared with the zero Helmholtz-

Smoluchowski velocity case with 1 > 2. A greater number of boluses is observed for the case of 

1 > 2 relative to the 1 < 2 case However in the 1 < 2 case the bolus magnitudes are 

substantially larger. There is a progressive intensification in streamline concentrations with a 
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change in Helmholtz-Smoluchowski velocity from negative, through zero to positive values when 

the peripheral layer viscosity exceeds the intermediate layer viscosity. For the intermediate layer 

(figs. 14, 15), a noticeable intensification in the lower half space is observed with increasing 

Helmholtz-Smoluchowski velocity from negative, through zero to positive values. For the 1 < 2 

case, in particular the lower bolus is greatly enlargened with negative Helmholtz-Smoluchowski 

velocity whereas the upper bolus shrinks.  In the peripheral layer (figs. 16, 17) there is development 

of a very large lower bolus for negative Helmholtz-Smoluchowski velocity when 1 > 2 whereas 

the opposite effect is observed for the 1 < 2 i.e. the upper bolus is substantially magnified with 

negative Helmholtz-Smoluchowski velocity. 

 

7. CONCLUSIONS 

Analytical solutions have been developed for electro-osmotic peristaltic flow in a multi-layered 

microchannel with axial electrical field effect. The transformed conservation equations have been 

solved to compute the stream functions in these three layers i.e. core, intermediate and peripheral 

layers. Interface equations have also been derived. The computations which are relevant to 

electrokinetic blood flow and micro-channel pumping systems have shown that: 

• Negative Helmholtz-Smoluchowski velocity manifests in a decrease in the core layer (H1) 

interface shape whereas it causes an increase in peripheral layer (H) and intermediate layer 

(H2) shapes.  

• When intermediate layer viscosity exceeds peripheral layer viscosity there is a linear 

growth in pressure rise with volumetric flow rate.  

• Negative Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), 

enhances pressure rise whereas positive Helmholtz-Smoluchowski velocity decreases it, 

when intermediate layer viscosity exceeds peripheral layer viscosity. The opposite 

behavior is observed when intermediate layer viscosity is less than peripheral layer 

viscosity. 

• At lower values of volume flow rate ratio, hydromechanical efficiency is maximum for 

positive Helmholtz-Smoluchowski velocity whether intermediate layer viscosity is less or 

greater than peripheral layer viscosity.  
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• With increasing peristaltic wave amplitude and also for positive Helmholtz-Smoluchowski 

velocity there is an increase in time-averaged flow rate, whether intermediate layer 

viscosity is less or greater than peripheral layer viscosity.  

• Maximum pressure rise is elevated with increasing peristaltic wave amplitude, in particular 

at higher amplitudes, although higher magnitudes are observed where peripheral viscosity 

is lower than intermediate layer viscosity.  

• In the core layer larger boluses are computed in the case of lower intermediate layer 

viscosity relative to peripheral layer viscosity although the number of boluses is greater 

when the intermediate layer viscosity exceeds the peripheral layer viscosity. 

• In the intermediate layer, stronger concentration of streamlines is computed in the lower 

half space with positive Helmholtz-Smoluchowski velocity. 

• When intermediate layer viscosity is less than peripheral layer viscosity, the lower bolus is 

greatly amplified with negative Helmholtz-Smoluchowski velocity whereas the upper 

bolus is reduced.   

• In the peripheral layer, a dominant lower bolus is generated for negative Helmholtz-

Smoluchowski velocity when intermediate layer viscosity exceeds the peripheral layer 

viscosity. The converse effect is computed when peripheral layer viscosity exceeds 

intermediate layer viscosity i.e. the upper bolus is much larger than the lower bolus for 

negative Helmholtz-Smoluchowski velocity. 

This study provides exact solutions of a specialized, normalized boundary-value problem of 

relevance to electro-kinetic hemodynamics and microfluidics. As such the present work is infact a 

basis for validating for more complex numerical simulations. Although we have inspected the 

literature this is the first study that considers all the effects reported herein. It is therefore not 

possible to perform a comparison with published literature since there is none so far with which to 

provide such a comparison. The trends are however consistent with standard peristaltic (albeit non-

electrical) studies and sensible behaviour of the impacting parameters is identified. In the future 

we hope to generalize the study to use computational fluid dynamics ourselves (e.g. ANSYS 

FLUENT) but this is not the premise of the current article. The authors of this work have focused 

on mathematical modelling and theoretical fluid dynamics applications in medicine, not clinical 

studies since access to such laboratories is not available. However, we envisage that in the future 

possible links with medical research teams at the Salford General Hospital could be established to 
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explore clinical implications of the modelling. Furthermore, in the present study we considered 

multi-layered variable viscosity flows in electrokinetic pumping in micro-channels. Blood is 

known to have micro-structural rheological characteristics in narrow vessels and furthermore is 

heat-conducting. These important aspects have been considered by other researchers [43, 44] and 

will also be explored in future simulations.  
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