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Abstract  

Introduction: 

Football is one of the most popular sports played globally. Male	  players	  constitute	  82%	  of	  

football	  players	  around	  the	  world.	  As the number of football players increases, we expect 

more sports injuries to occur. Knee ligament injuries, such as Anterior Cruciate Ligament 

(ACL), are considered one of the most devastating injuries because of the consequences 

from the resulting damage. A large proportion of these injuries result from a non-contact 

mechanism. Some of the biomechanical risk factors in non-contact injuries are considered 

modifiable, therefore it is important to understand the mechanism of injury to modify it to be 

able to reduce or prevent the injuries. Also, recent studies have suggested that movement 

variability should be considered a potential source of information for analysis in monitoring 

athletes’ biomechanical performance. The aims of this thesis are to assess the performance 

and performance-variability of frontal plane projection angle (FPPA) and hip adduction 

angle difference between legs and over season, and its relationship with injury. 

Methodology: 

After assessing the validity and reliability of FPPA and hip adduction angle during single leg 

squat (SLS) and single leg landing (SLL) tasks, in a separate study with 15 healthy subjects, 

using the 2D technique, both tasks were found to be adequately valid and reliable in 

examining the lower limb kinematics. The main study then was done on 90 male 

professional footballers with the average age of 18.8±4 years, height 179.2±6 cm, and 

weight 73.3±6 kg, using SLS and SLL tasks to assess the performance and performance-

variability of FPPA and hip adduction angle. The difference of performance and 

performance-variability of individual lower-limb kinematics (FPPA and hip angle) between 

legs and throughout the sports season (one year) were examined. Non-contact knee ligament 

injuries were also recorded. Then, the relationship between lower-limb kinematics (FPPA 

and hip angle) and injuries were investigated prospectively.  

Results:  

The performance of the dominant leg was found to be significantly more valgus (greater 

FPPA) than the non-dominant leg for both tasks in all screening sessions (-1.69° to -5.02° vs. 

2.54° to -2.30°), but there was no difference in the hip adduction angle between legs (SLS, 

73.15° to 73.47° vs. 74.53° to 75.85°; SLL, 80.91° to 83.55° vs. 81.58° to 85.39°). The 

overall performance of SLL FPPA (p = 0.01–0.0005) and hip angle (p = 0.0005) changed 

significantly over the collection time points. The difference in performance-variability 
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between legs was not statistically significant for either FPPA or hip adduction angle in all of 

the screening sessions (p = 0.08–0.89), except for FPPA in the start-of-season screening. The 

performance-variability in FPPA and hip adducting angle were consistent over time 

(throughout the season) in both SLS and SLL (p = 0.13–0.61). Seven non-contact knee 

ligament injuries out of 75 total lower-limb injuries were reported. Therefore, a prediction 

analysis was not reported due to the limited obtained injuries. A descriptive analysis was 

carried out alternatively where injured legs performance and performance-variability showed 

similar actual scores in both tasks. However, after injury, a statistical test showed that the 

injured group’s performance of SLS and SLL did not change (p = 0.38–1), whereas the 

uninjured group’s performance of SLL did change significantly (p = 0.0005). The 

performance-variability of SLS and SLL did not change for both groups (p = 0.27–1), 

injured and uninjured. 

Conclusion: 

The difference of FPPA performance between legs in both tasks suggests that both legs need 

to be examined independently when assessing the lower-limb kinematics, rather than one leg 

alone or using bilateral tasks. Also, the change in FPPA and hip adduction angle over the 

sports season during SLL suggests that examining the lower-limb kinematics should be done 

regularly throughout the sport season due to the change of performance, rather than at one 

occasion. Also, it suggests that the SLL task is more sensitive than that of the SLS in 

detecting performance change. With regard to the performance-variability, it is unlikely to 

have a significant impact on overall performance. Finally, in light with predicting the non-

contact knee ligament injuries using the 2D technique, larger number of injuries is needed to 

study this point. 

 

  



	  
	  

11	  

 

 

 

 

Chapter (1) 

Introduction 
 
	    



	  
	  

12	  

Chapter 1: Introduction  

1.1 Knee Injuries in Sport  
 

Sporting activities are increasing every year, involving millions of participants, 

unfortunately this has meant an increase in the number of sporting injuries (Imamura et al., 

2012). Knee injuries are considered one of the most common athletic injuries (Louw, 

Manilall, & Grimmer, 2008). In the literature, there are two common types of definition of 

injury, based on the time loss and the need for medical attention (Waldén, 2007). The 

Council of Europe has defined injury as ‘any injury occurring as a result of sports activity 

and causing one or more of the following: the subject had to stop sports activity and/or could 

not fully participate in the next planned sports activity and/or could not go to work the next 

day and/or needed medical attention.’ Thus, it is essential to specify the injury definition 

clearly in every study and to use the most common definition to be as consistent as possible 

in the interest of improved research quality and benefits. Athletes’ injuries, which occur 

without physical contact, are referred to as non-contact injuries (Yu & Garrett, 2007). 
 

1.2 Prevalence & incidence of knee injuries  
	  

Regardless of the definition of injury, more than 8.6 million sports and recreation-

related injury episodes were reported every year in the United States (Sheu, Chen, & 

Hedegaard, 2016). In England and Wales, Nicholl, Coleman, and Williams (1995) reported 

that every year there are 9.8 million new exercise-related injuries that result in treatment or 

prevent a person from carrying out their usual activities.  

Lower limb injuries are found to be 50–75% of sports injuries among different sports 

and playing levels (Hootman, Dick, & Agel, 2007; Powell & Barber-Foss, 2000; Rauh, 

Macera, Ji, & Wiksten, 2007). Louw et al. (2008) found that knee injuries represent about 

10–25% of sports injuries in active adolescents. Specifically, injuries to knee ligaments are 

very common. 

Gianotti, Marshall, Hume, and Bunt (2009) reported that the incidence rate of knee 

ligaments per 100,000 person-years was 1,147.1 for non-surgical ligaments injuries, 36.9 for 

anterior cruciate ligaments surgeries and 9.1 for other surgeries in the general population in 

New Zealand. In particular, the most significant amount of time loss in sport occurs in 

anterior cruciate ligament (ACL) and patellofemoral joint (PFJ) injuries (Starkey, 2000). 
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 The incidence rate of ACL injuries is low, at 0.1–0.3 per 1,000 athlete exposures, 

according to many published studies that show some difference in rate between the level and 

type of sports played (Gianotti et al., 2009; Gwinn, Wilckens, McDevitt, Ross, & Kao, 2000; 

Quisquater et al., 2013). But the impact and burden of ACL injury is high with prolonged 

rehabilitation and often surgery being required. Patellofemoral pain syndrome (PFPS) 

incidence rate is about 1.09 injuries per 1,000 athlete exposures, which is greater than the 

incidence rate of ACL injuries (Myer et al., 2010).  
 

1.3 Method to identify high-risk athletes  
	  

The majority of studies use two-dimension (2D) and three-dimension (3D) motion 

analysis to examine the lower limb biomechanics and its relationship to injuries (Blackburn 

& Padua, 2008; Ford, Myer, & Hewett, 2003; Hewett et al., 2005; Willson, Binder-Macleod, 

& Davis, 2008). Each tool has advantages and disadvantages. The 3D system has become 

known as the gold standard for identifying athletes at higher risk of injury ((Munro, 

Herrington, & Carolan, 2012). 

 

Examining the lower limb biomechanics during athletic tasks is important as it could 

lead to strategies to modify the high-risk movement pattern identified. Most studies use 3D 

motion analysis to assess the lower limb biomechanics (Blackburn & Padua, 2008; Ford et 

al., 2003; Hewett et al., 2005). However, 2D video has also been used for identifying people 

at higher risk of knee injuries in a growing number of studies. The frontal plane projection 

angle (FPPA) has generally been used in these studies for this purpose (McLean, Walker, et 

al., 2005; Mizner, Chmielewski, Toepke, & Tofte, 2012; Willson & Davis, 2008).  

 

For the screening tasks, the drop jump landing (DJ) task has been used widely to assess 

athletes to identify those who are at higher risk of ACL and PFP injuries, those at greater risk 

would appear to have higher knee valgus motion and moments (Hewett et al., 2005; Myer et 

al., 2010). However, the nature of this task makes it difficult to distinguish between the two 

limbs as it is a bilateral task whereas most injuries happen during single limb activities 

(Faude, Junge, Kindermann, & Dvorak, 2005). Single leg landing (SLL) may be relevant for 

assessment as a unilateral task. Studies have shown that hip adduction and knee valgus is 

greater when the individual undertakes unilateral tasks than during bilateral tasks 

(Myklebust, Maehlum, Holm, & Bahr, 1998; Pappas, Hagins, Sheikhzadeh, Nordin, & Rose, 
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2007). According to Munro (2013), individuals demonstrating dynamic knee valgus might be 

more readily identified by the single leg landing (SLL) screening task than by the DJ task 

because the SLL creates a greater requirement for the braking of landing forces. However, 

this has not been studied. 

 

Willson & Davis (2008b)  reported the use of the single leg squat (SLS) task to examine 

the correlation between 2D FPPA and 3D lower extremity inclinations. According to 

(Whatman, Hing, & Hume, 2011), the SLS can predict the forms of motion expressed while 

running and can discriminate between individuals with PFPS and those without. Hence, this 

could be a useful technique for recognising individuals at risk of developing PFPS. 

Moreover, Munro (2013) asserts that individuals who display enhanced dynamic valgus 

when performing the SLS will probably display comparable dynamic valgus when 

performing complicated actions like cutting and landing. 

 

Therefore, using SLS and SLL would appear to be the most appropriate to predict those 

athletes who are at higher risk of lower limb injuries, because of the advantages and 

disadvantages of the available tasks.  

	  

1.4 2D motion analysis: reliability and validity  
	  
	  

The validity of 2D FPPA has been investigated and found to be moderate across some 

common athletic tasks such as SLS (Willson & Davis, 2008) and drop jump tasks (Hewett et 

al., 2005; Myer et al., 2010), SLL (Sorenson, Kernozek, Willson, Ragan, & Hove, 2015). 

But, the reliability of the 2D FPPA has not been studied adequately. Willson and Davis 

(2008) reported the interclass correlation coefficient (ICC) value of 0.88 for within-day 

reliability only, whereas Munro, Herrington, and Carolan (2012) reported the within-day and 

between-day in SLS, SLL and DJ but not the inter-rater and intra-rater reliability. Therefore, 

new studies should assess the 2D inter-rater, intra-rater reliability, standard error of 

measurement and small detectable difference.  

 

The main study will assess the individual kinematics measures through an entire sports 

season, and the relationship between lower limbs kinematics and knee ligaments injuries. It 

is critical first to investigate the validity and reliability of the method and tools. Study one 
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(A) examined the validity of the 2D technique compared with the 3D system; study one (B) 

investigated the reliability of the method within and between sessions. Also, intra- and inter-

reliabilities, standard error of measurement and small detectable difference have been 

established. 

1.5 Movements variability  
 

The variability in movements can be affected by many factors such as age, temperature, 

stage of season, muscle strength and flexibility, surface of play and athletic shoes. In this 

chapter, we will investigate each of these factors, and how it might affect the individual 

variability during the sports season. For simplification, we have divided these factors into 

three main categories: variability over time (age, temperature and stage of season), 

variability due to performance (muscle strength and flexibility; and warm up), and variability 

due to friction (play surface and athletic shoes). No previous studies have investigated the 

kinematic movement variability of athletes across an entire sports season, which is one of the 

objectives of this thesis. 

 

1.6 Predicting athletes at high risk of knee injuries  
	  

Examining the lower limb biomechanics during athletic tasks is important in order to 

direct interventions to modify high-risk movement patterns if they are present. Most studies 

have used 3D motion analysis to assess the lower limb biomechanics (Blackburn & Padua, 

2008; Ford et al., 2003; Hewett et al., 2005). 3D motion analysis helps the examiner to look 

at all three planes of joint motion and has been considered to be the gold standard. 

 

However, 2D is the other method that has been studied as a tool to identify people at 

higher risk of knee injuries. The frontal plane projection angle (FPPA) has been used for this 

purpose (McLean, Walker, et al., 2005; Mizner et al., 2012; Willson & Davis, 2008). The 

validity of the FPPA method used with 3D has been investigated during some athletic tasks 

(McLean, Walker, et al., 2005; Willson & Davis, 2008).  

The 3D system has some disadvantages such as the cost of the system, the cost of use, 

the length of time needed for data collection and analysis, the need for a trained individual to 

use the system and the inability to use it outdoors or transfer it to data collection sites. These 

disadvantages have created a gap between research and clinical practice because assessing 
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the players usually happens in the sports clubs and clinics where a simpler and easier tool 

such as the 2D system is required to predict players who are at higher risk of injury and to 

make the decision of player return to play. Therefore, studying the 2D tool is very important 

so it can be used in clinics and sports clubs regularly. However, no prospective studies have 

examined the relationship between the 2D and lower limb injuries, which is one of the 

objectives of this thesis. 

1.7 PhD Objectives 
	  
1. Review the literature of lower limb sport injuries mechanism and risk factors. 

2. Review the literature of lower limb screening tools, which can identify the risk factors of 

injuries.  

3. Assessing the reliability and validity of 2D video to assess SLS and SLL performance. 

4. Assessing the SLS and SLL performance between legs and across season. 

5. Assessing the performance-variability of individual lower limbs kinematics between legs 

and across season.  

6. Examining the relationship between kinematic measures of lower limb joints and knee 

injury prevalence in male footballers, prospectively.  
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Chapter 2: Literature review  

2.1 Introduction  
	  

All physical activities are associated with an inherent risk of injury (Waldén, 2007). 

Sports activities are increasing every year with thousands of participants. As the number of 

participants increases, we expect more sports injuries to occur in all different types of sports 

(Imamura et al., 2012). The study of these injuries is important because of the high impact 

on health and the economy (Waldén, 2007).  

 

Many studies have been conducted to investigate the prevalence and the incidence of 

sport-related injuries. Regardless of the definition of injury, more than 8.6 million sports and 

recreation-related injury episodes were reported every year in the United States (Sheu et al., 

2016). In England and Wales, Nicholl et al. (1995) reported that 9.8 million new exercise-

related injuries result in treatment or prevent someone from carrying out their usual activities 

occur every year. Marwan et al. (2012) found that 73.8% of 5 sport clubs players have 

sustained injuries during the last 12 months. It is consequently very important to study how 

these injuries occurred to find solutions to decrease or prevent the occurrence of injury.  

 

Knee injuries are considered one of the most common athletic injuries. Louw et al. 

(2008) conducted a systematic review, which reported that the prevalence of knee injuries 

was 10-25% of all sports injuries in active adolescents. Woo, Abramowitch, Kilger, and 

Liang (2006) reported that 90% of knee ligament injuries involve the anterior cruciate 

ligament (ACL) and the medial collateral ligament (MCL). ACL is considered to be one of 

the most devastating injuries because of its consequences. The complexity of knee structures 

and the multidirectional forces that affect the knee explain why knee injuries are more severe 

than injuries in other joints. This complexity makes knee injuries one of the greater time-loss 

injuries because of the need for surgery or extensive physical rehabilitation before returning 

to the previous level of activity (Louw et al., 2008).  

 

Therefore, understanding knee injuries risk factors is essential to decrease the high 

percentage of such injuries among sports players.  

	  
	    



	  
	  

19	  

2.2 Role of Movements in injuries 
	  

2.2.1 What is a sports injury?  
 

In the literature, there is a wide range of definitions of injury (Waldén, 2007). One 

study defined injury as any condition that caused a player to be removed from a game, miss 

a game, or to be sufficiently disabled to go to the medical tent (Kibler, 1993). Another study 

defined injury as an injury received during training or competition that prevented the player 

from participating in regular training or competition for more than 48 hours, excluding the 

day of the injury (Hawkins, Hulse, Wilkinson, Hodson, & Gibson, 2001). Some studies 

considered injuries during competition only; other studies considered both competition and 

training injuries (Wong & Hong, 2005). Some articles grouped injuries into subcategories 

with different classifications (Wong & Hong, 2005).  
 

The football consensus group recently recommended that a recordable health-related 

incident (injury) in athletics is defined as ‘Any physical or psychological complaint or 

manifestation experienced by an athlete, irrespective of the need for medical attention or 

time loss from athletics activities’ (Fuller et al., 2006; Fuller et al., 2007). Also, the term 

‘incident’ was adopted in this statement, rather than ‘injury’ or ‘medical condition’, to 

emphasise the desire also to collect syndromic (pre-diagnostic) data and overuse injuries 

(Timpka et al., 2014). In surveillance studies, the football consensus group recommends 

including incidents that result from athletics competition and training (Timpka et al., 2014). 

Furthermore, the Council of Europe has defined injury as ‘any injury occurring as a result of 

sports activity and causing one or more of the following: the subject had to stop sports 

activity and/or could not fully participate in the next planned sports activity and/or could not 

go to work the next day and/or needed medical attention’. Thus, it is essential to specify the 

injury definition clearly in every study and to use the most common definition to be as 

consistent as possible in the interests of better research quality and benefits.   

 
	  
2.2.1.1  Prevalence & Incidence 

	  
Regardless of the injury definition, 3.7 million sports injuries from people of all ages 

have been reported annually by emergency departments in US hospitals (Burt & Overpeck, 

2001). In England and Wales, Nicholl et al. (1995) reported that 9.8 million new exercise-
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related injuries result in treatment or prevent someone from carrying out their usual activities 

every year. Marwan et al. (2012) found that 73.8% of the participating club players had 

sustained injuries during the last 12 months. Also, 27.7% of all injury-related 

hospitalisations were as a result of sporting and recreational activities (Burt & Overpeck, 

2001). 
 

Conn, Annest, and Gilchrist (2003) found that sports-related injuries incidence rate was 

higher among the age group of 5- to 14-year-olds (59.3 per 1000) comparing to the age 

group of 15- to 24-year-olds (56.4 per 1000). It is difficult to compare the incidence rate 

among different types of sports because each sport has used a different rate calculation. 

Also, there are different types of incidence rates in the same type of sport based on a number 

of injuries per hours/activity or hours of athlete-exposures (Wong & Hong, 2005).  
 

The incidence rate is more important than prevalence for many reasons. The number of 

competition games and training sessions varies from one year to another, and from one team 

to another. Also, not every player participates in every competition or training session. In 

summary, using the prevalence of injury can sometimes be misleading. 

 
	  
2.2.1.2  Differences among sports types  

 
The prevalence and incidence of sports injuries among different sports types and 

levels have not been described clearly in the literature (Lubetzky-Vilnai, Carmeli, & Katz-

Leurer, 2009).  A few studies have reported the prevalence and incidence according to the 

type and level of sport, and location of injuries. Baarveld, Visser, Kollen, and Backx (2011) 

reported that 58% of sport-related injuries occurred during organised sports sessions, and the 

rest happened during non-organised or school activities. Moreover, they indicated that 41% 

of recorded injuries occurred among those who practised sports activities for 0–3 

hours/week, 32% in those who practised between 3 and 6 hours a week, and 6.5% for those 

who practised for more than 6 hours per week. In the same study, most injuries occurred in 

football, running/jogging, fitness, volleyball, speed skating, tennis, field hockey and 

walking. Most injuries (76%) were located in the lower limb extremities. Injuries in the knee 

joint represent 24.7% of all injuries in the upper and lower extremities; those in the ankle 

joint represent 18.8% of injuries. 



	  
	  

21	  

In another study, 12 months of injury data from 68 sports centres with a total of 457 

participants found the injury prevalence to be 41.6% (Lubetzky-Vilnai et al., 2009). The 

injury rate per 100 hours of exercise was 22.6 of all subjects. Football has a higher rate and 

percentage of sports injuries than sports such as hockey, volleyball, handball, basketball, 

rugby, cricket, cycling, boxing and swimming (Wong & Hong, 2005). 

 

2.2.2 Knee injuries 
	  
	  

Athletes’ injuries, which occur without physical contact, are referred to as non-contact 

injuries (Yu & Garrett, 2007). There are many different definitions of sports injury in the 

literature (Wong & Hong, 2005), but there is no ideal definition as each has advantages and 

disadvantages (Waldén, 2007). According to the literature, there are two common types of 

definition: one based on the time loss, and the other on the need for medical attention. 

Waldén (2007) reported that in most studies, the time loss has been used to define a football 

injury that encompasses missing at least one training session or match, the next training 

session or match, the next day or the next two days. Also, he found that the ‘medical 

attention’ definition has been used recently but not in elite football exclusively. To sum up, 

determining the injury type and definition is important before investigating the injury risks 

and possible solutions for prevention. 

	  
	  
2.2.2.1  Prevalence & Incidence 

	  
In both sexes, lower limb injuries account for 50-75% of sports injuries among 

different types of sports and playing levels (Hootman et al., 2007; Powell & Barber-Foss, 

2000; Rauh et al., 2007). Louw et al. (2008) found that knee injuries represent about 10-25% 

of sports injuries in active adolescents. Specifically, injuries to knee ligaments are very 

common. Gianotti et al. (2009) reported that the incidence rate of knee ligaments per 

100,000 person-years was 1,147.1 for non-surgical ligaments injuries, 36.9 for anterior 

cruciate ligaments surgeries, and 9.1 for other surgeries in the general population in New 

Zealand. In particular, the most significant amount of time loss in sport occurs in anterior 

cruciate ligament (ACL) and patellofemoral joint (PFJ) injuries (Starkey, 2000). 

Complications from knee injuries include developing osteoarthritis, being unable to return to 

the sport and thus ending the player’s career, or having to change employment (Myklebust, 
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Holm, Maehlum, Engebretsen, & Bahr, 2003; Utting, Davies, & Newman, 2005). Also, after 

injury, athletes have been found to suffer from psychological consequences like depression, 

anxiety, lack of confidence, and fear of sustaining a new injury (Ardern, Taylor, Feller, & 

Webster, 2013; Ardern, Taylor, Feller, Whitehead, & Webster, 2013). These physical and 

psychological complications give more reason to focus on ACL and PFJ risk factors when 

studying global knee injuries.   

 

ACL injury is catastrophic for an athlete, due to the extended period of time-loss 

away from participation. It might also result in the athlete being unable to return to the same 

level of performance as before the injury. For instance, 42% of Norwegian elite handball 

players either could not return to sport at all, or returned at a lower level of performance 

after ACL reconstruction (Myklebust et al., 2003). More than 50% of Swedish female 

football players did not return to sports activities after they had undergone ACL 

reconstruction. Only 15% of players claimed that they returned to their pre-injury level of 

performance (Lohmander, Ostenberg, Englund, & Roos, 2004). Shah, Andrews, Fleisig, 

McMichael, and Lemak (2010) found that 37% of players of American football who had 

ACL reconstruction surgery could not return to play at all. Moreover, PFPS has similar 

consciousness of physical and psychological factors that affect the level of performance after 

injury. A follow up study of PFPS injured athletes found that the symptoms could persist at 

an average of 5.7 year (Blond & Hansen, 1998). In addition to that, they may present with 

functional limitation and deficit in lower limb strength and running mechanics (Esculier et 

al., 2018).  

 

The incidence rate of ACL injuries is low at 0.1–0.3 per 1,000 athlete exposures, 

according to many published studies that show some dependence on the level and type of 

sports played (Gianotti et al., 2009; Gwinn et al., 2000; Quisquater et al., 2013). 

Additionally, the PFPS incidence rate is about 1.09 injuries per 1,000 athlete exposures, 

which is greater than the incidence rate of ACL injuries (Myer et al., 2010). This low rate 

might mistakenly suggest that this is a small problem compared with common sports 

injuries. However, a significant number of non-contact knee injuries, long time-loss spent 

away from the sport, increased risk of osteoarthritis, and high risk of losing a career make 

these among the most serious sports injuries.  	  
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2.2.2.2  ACL, Anatomy and Function 

 

The ACL is one of the important structures of the knee (see Figure 2:1). The ACL 

plays an important role in reducing the likelihood of meniscal pathology by preventing the 

anterior translation of the tibia on the femur while allowing a normal knee action (Domnick, 

Raschke, & Herbort, 2016). The ACL stretches medially from the anterior part of the tibia, 

reaching a curved area on the posteromedial aspect of the lateral femoral condyle (Markatos, 

Kaseta, Lallos, Korres, & Efstathopoulos, 2013). The ACL plays a significant role in knee 

biomechanics. It is essential to ensure that dynamic stability of the knee joint is maintained 

to prevent hyperextension movement, which might occur during hopping, landing, cutting 

and pivoting manoeuvres (Macauley, 2006). The role of the ACL is to prevent the anterior 

translation of the tibia (Markatos et al., 2013). It also works as a stabiliser against the 

internal rotation of the tibia and knee valgus (Buoncristiani, Tjoumakaris, Starman, Ferretti, 

& Fu, 2006; Markatos et al., 2013). The ACL absorbs about 75% of the anterior translation 

load during full knee extension, and about 85% of the load between 30° and 90° of flexion 

(Butler, Noyes, & Grood, 1980). The ACL has anteriomedial and posteriolateral bundles 

(Markatos et al., 2013). Regarding its function, the anteriomedial fibres become rigid during 

knee flexion while the posteriolateral fibres exhibit tension during knee extension. It has 

been reported that ACL anterior bundles can bear higher maximum strain and stress load 

than the posterior bundles (Butler et al., 1992). The maximum tensile strength of ACL is 

approximately 1,725 ± 270 N but differs with age and repetitive loads (Markatos et al., 2013; 

Miller, 2000). As the magnitude of the anterior shear force increases, the in situ force of the 

ACL increases (Dargel et al., 2007). The ACL average length is about 38 mm with an 

average width of 11 mm (Markatos et al., 2013). The main blood supply comes from the 

middle geniculate artery and the innervation is from the tibial nerve (Markatos et al., 2013). 

The ACL contains many mechanoreceptors that play an important role in joint 

proprioception function (Adachi et al., 2002; Markatos et al., 2013).  
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Figure 2:1 Knee structures: ACL, PCL, MCL and LCL (Petersen & Tillmann, 2002) 

	  

2.2.3 Role of movements in knee injuries  
	  
2.2.3.1  Mechanism of knee injury  

	  
The knee is one of the major weight-bearing joints, and it connects two of the longest 

bones in the human body. These two facts make the knee one of the joints most susceptible 

to injury due to the multidirectional forces, which cause shear, and torsion loads (Bartlett & 

Bussey, 2012). Messier et al. (2008) reported that behavioural and physiological risk factors 

are believed to interact with potential biomechanical mechanisms (knee joint forces and 

moments) to cause knee injury. Therefore, it is important to study the risk factors of knee 

injuries and the associated mechanism. Examining the risk factors of knee injury is very 

difficult because of the complexity of how these factors interact. This makes studying 

isolated risk factors practically impossible, and difficult to determine the relative 

contributions of each factor (Bartlett & Bussey, 2012).  

 

2.2.3.1.1 Mechanism of Anterior Cruciate ligament injury 
 

To reduce the occurrence of ACL injury, which is one of the most serious and 

problematic sports injuries, it is crucial to understand the injury mechanism. As most ACL 
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injuries are mostly non-contact injuries and therefore potentially avoidable, it is even more 

important to understand the injury mechanism.  

    At the start of investigating ACL injuries, researchers used a questionnaire to 

understand the ACL mechanism. The participants were asked to report the cause and 

mechanism of their injuries; most reported that their injuries happened during decelerating 

activities, such as cutting (changing direction), unilateral and bilateral landing (Boden, Dean, 

Feagin, & Garrett, 2000; Myklebust et al., 1998). This method has many limitations, so 

provides the lowest level of evidence. Each participant’s ability to remember the injury 

mechanism is one of the critical limitations. However, evidence from the videotape footage 

analysis method supported the idea that links the cutting and landing movements to most 

non-contact ACL injuries (Boden et al., 2000; Krosshaug et al., 2007; Olsen, Myklebust, 

Engebretsen, & Bahr, 2004). In addition, the ACL injuries examined in these studies 

occurred during the decelerating phase of these movements. The results showed that injured 

athletes land with the hip flexed slightly, adducted and internally rotated, the knee slightly 

flexed with tibial external rotation and evidence of a knee valgus collapse. 

More recently, Koga, Nakamae, et al. (2010) used a new technique to study the ACL 

injury mechanism, known as the model-based image-matching method. Even give its 

limitations, this method was the most accurate and detailed for the ACL mechanism at the 

time. More importantly, it confirmed previous findings that the knee flexion angle is 

minimal (< 25°) with knee external rotation and valgus. 

	  

2.2.3.1.2 Mechanism of Patellofemoral joint injury 
	  
	  

PF joint injury is dissimilar to ACL injury because it is an insidious and gradually 

worsening onset of non-specific pain as defined by Fulkerson (2002), where the ACL injury 

has a specific mechanism and a traumatic onset. Maltracking of knee patella during 

movement is considered to be the common cause of PFPS (Powers, 2003). The increase in 

abnormal contact pressure of the PF joint (PFJ) over time due to maltracking could lead to 

pathology causing PFPS (Barton, Levinger, Crossley, Webster, & Menz, 2012). Recently, 

more research about the PFJ contact pressure showed that increases in hip adduction, hip 

internal rotation and external tibial rotation will reduce the PFJ contact area, and increase the 

contact pressure at the same time (Lee, Anzel, Bennett, Pang, & Kim, 1994; Salsich & 
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Perman, 2007). During walking and squatting tasks, patients with PFPS show higher PFJ 

pressure, which is due to the reduction of the PFJ contact area (Brechter & Powers, 2002; 

Keyak et al., 2011). This abnormal change in PFJ contact area might result in articular 

cartilage damage over time (Salsich & Perman, 2007). However, that cannot be the cause of 

pain because it is not innervated tissue (Biedert, Stauffer, & Friederich, 1992). In fact, the 

subchondral bone is believed to be the source of the PFJ pain (Biedert & Sanchis-Alfonso, 

2002), a belief supported by the advanced degeneration in patella cartilage among PFPS 

patients (Farrokhi, Colletti, & Powers, 2011). 
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2.2.4 Non-contact knee injuries risk factors  
	  
	  
2.2.4.1 Anatomical risk factors  

	  
• Femoral intercondylar notch, and ACL sizes: 

The notch size is important because it contains the ACL. Many studies have investigated 

the relationship between femoral intercondylar notch size and ACL injury. There are 

conflicting results in the literature regarding this relationship (Harner,	  Paulos,	  Greenwald,	  

Rosenberg,	  &	  Cooley,	  1994;	  LaPrade	  &	  Burnett,	  1994;	  Shelbourne,	  Davis,	  &	  Klootwyk,	  

1998;	  Uhorchak	  et	  al.,	  2003).  

Munro (2012) suggested that this difference is probably because of the use of two 

different notch size calculation measures: femoral intercondylar notch width and femoral 

intercondylar notch width index. Shelbourne	  et	  al.	  (1998)	  recommended the use of femoral 

intercondylar notch width rather than the femoral intercondylar notch width index, because 

the notch width index depends on an individual’s height. A small intercondylar notch width 

was found to be related to ACL injury (Uhorchak	  et	  al.,	  2003),	  although	  the reason for this 

relationship is not well understood. Uhorchak	  et	  al.	  (2003)	  suggested that the reason could 

be the impingement of the ACL to the intercondylar notch wall or the small size of the ACL 

itself, which will have less material strength than a larger ACL.  

2.2.4.2  Hormonal risk factors 

	  
There is no significant difference in ACL injury rate, knee valgus angle and lower 

limb muscle strength between boys and girls before puberty (Barber-Westin, Noyes, & 

Galloway, 2006; S. D. Barber-Westin, Galloway, Noyes, Corbett, & Walsh, 2005; Ford, 

Shapiro, Myer, Van Den Bogert, & Hewett, 2010; Hewett, Myer, & Ford, 2004). However, 

post-puberty, the neuromuscular characteristics and the ACL injury rate differ between men 

and women. Women have demonstrated a significantly greater knee valgus motion and lower 

muscle power and strength after maturation (Barber-Westin et al., 2006; Ford et al., 2010; 

Hewett et al., 2004; Wikholm & Bohannon, 1991). In contrast, men demonstrate increased 

muscle strength but no changes in knee valgus motion (Barber-Westin et al., 2006; Ford et 

al., 2010; Hewett et al., 2004; Wikholm & Bohannon, 1991). The increase in muscle strength 

of men helps to counteract the biomechanics and neuromuscular control (NMC) changes. 

The difference in NMC between men and women may contribute in part to the different 
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injury rates between sexes (Hewett et al., 2004). Therefore, as there is no change in male 

knee valgus motion post-puberty, the hormonal factor appears to have a minimal effect on 

the injury rate. However, this assumption has not yet been investigated. 

 

2.2.4.3  Psychological risk factor  

 

There is only limited scientific research on the effect of psychological factors on 

sports injuries (Junge, 2000). Those research articles are usually out of date, and have 

heterogeneous designs, different criteria and different evaluation strategies (Junge, 2000). 

According to Coddington and Troxell (1980), the chance of being injured might be affected 

by the athletes’ mental and emotional state. Andersen and Williams (1988) have developed a 

model based on stress theory and injury to explain the effect of psychological factors on 

sports injuries. They described the effect of personality, history of stressors and coping 

resources on injury and how these factors interact with each other. They also described some 

intervention strategies such as cognitive restructuring, thought stoppage, confidence training 

and relaxation skills that might help to reduce the chance of getting injured.  

 

Hardy (1992) reported that athletes have described contributory factors to stress such 

as being unprepared to play and losing internal control, fear of failure, and worrying about 

the views of the coach and fans. Other studies have mentioned that stress has a great impact 

on athletes’ performance. It has been found that emotional stress increases the blood flow 

(Wilkins & Eichna, 1941), which is believed to be due to adrenaline, which has large impact 

on muscle contraction (Cooper, Edholm, & Mottram, 1955). The increase in adrenaline 

during physical activity changes the muscle contraction and decreases the duration of slow 

twitch phase in calf muscle (Marsden and Meadows (1970). This effect is caused specifically 

and directly by adrenaline and not by other factors (Marsden & Meadows, 1970). Therefore, 

the psychological factor is one of the secondary factors that relate to sports injury. However, 

newer research is needed to understand the importance of psychology on the prevalence of 

sports injuries.    

 

2.2.4.4  Performance and training risk factors 

There is no evidence that there is any training regime or specific exercise could be a 

direct risk factor for non-contact ACL and PFPS injuries. However, there are growing 

evidence suggesting that overtraining could cause fatigue and therefore causing altered 
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movement pattern, which will result in to non-contact ACL or PFPS injuries (Tamura et al., 

2016). In ACL, it has been found in vivo study that sub-maximal repetitive loading could 

cause the ACL ligament fatigue rupture (Wojtys, Beaulieu, & Ashton-Miller, 2016). Also, 

the PFPS has been identified as an overuse injury which support the idea of the over playing 

and training as a contributing factors in injuries (Hreljac, Marshall, & Hume, 2000). 

Therefore, to prevent these injuries, the goal would be to maintain the homeostasis of the 

ligament by limiting the rate of ligament micro-damage accumulation to be less than or 

equal to its rate of remodelling (Wojtys et al., 2016). 

 

2.2.4.5 Biomechanical risk factors  

	  
Knee joint movements occur in all three anatomical planes; sagittal, frontal and 

transverse. These movements occur between the femoral condyles and tibial plateau with six 

degrees of freedom (three rotations and three translations allowing for 12 directional 

motions) (Munro, 2013). The abduction and adduction movements occur in the frontal plane; 

flexion and extension in the sagittal plane; and internal and external in the transverse plane. 

Knee joint translation occurs in the sagittal plane anteriorly and posteriorly; in the frontal 

plane medially and laterally; and in the transverse plane via compression and distraction 

(Munro, 2013).  

 

2.2.4.5.1 Frontal plane movements  
	  
 Knee valgus and hip adduction angles have been studied as the primary motions in the 

frontal plane, which contribute to non-contact knee injuries. Other motions such as trunk 

lateral shifting have been found to have some relationship to non-contact knee injuries. 

These motions are observed to have a relationship with the prediction of ACL, PFPS. Here, 

we will try to understand the relationship between these motions and those injuries. 

 

• Knee valgus 

 

 Knee valgus motion, which happens in the frontal plane, is also known as knee 

abduction motion. The relationship between knee valgus and knee injuries has been studied 

extensively. Increased knee valgus angles and moments are found to be related to and to 

predict anterior cruciate ligament and patellofemoral joint (PFJ) injuries (Hewett et al., 2005; 
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Holden, Boreham, Doherty, & Delahunt, 2017; Myer et al., 2010; Myer et al., 2015; 

Shimokochi & Shultz, 2008). Knee valgus loading rarely occurs in isolation, which means 

that when combined with transverse plane knee loading, it will affect the ACL loading 

pattern (Shimokochi & Shultz, 2008). It is therefore difficult to study such motion in 

isolation of other motions in different planes. High knee valgus angles does not have 

sufficient load to injure the ACL without first causing injury to the medial collateral 

ligament (Bendjaballah, Shirazi-Adl, & Zukor, 1997; Mazzocca, Nissen, Geary, & Adams, 

2003). During ACL injury episodes, the valgus collapse pattern has been reported 

(Krosshaug et al., 2007; Olsen et al., 2004). In a prospective study using the 3D system of 

Hewett et al. (2005) on 205 women’s soccer, basketball and volleyball players, nine subjects 

suffered non-contact ACL injuries. Those injured players had significantly greater knee 

valgus angle and moments during a bilateral drop vertical jump task. The ACL-injured 

players were found to have significantly greater knee valgus of 8.4° at initial contact and 

greater 7.6° peak valgus than the uninjured players. Also, ACL-injured players had 

significantly greater knee moments by 26.9 Nm. In a study of cadaveric knees, a 10 Nm 

force caused a significant increase in ACL load (Fukuda et al., 2003). Fukuda et al. (2003) 

found that an addition of 10 Nm of valgus torque at 15°–45° knee flexion angle increased the 

ACL load to 35–40 N compared with the load when only 5 Nm was added. Therefore, it is 

possible that the 26.9 Nm moment that was reported in the study by Hewett et al. (2005) 

could increase the load by almost 100 N (Ghulam, 2016), and is very likely to be a 

contributing risk factor to injury. 

 

 Myer et al. (2010) in a prospective study found that high knee valgus load during 

running and landing tasks can predict PFPS. In another prospective study, Stefanyshyn, 

Stergiou, Lun, Meeuwisse, and Worobets (2006) found that PFPS injured runners have 

greater knee valgus impulse than those without injury. Knee valgus impulse was calculated 

as the amount of knee valgus moment demonstrated over time. Myer et al. (2015) suggested 

that knee abduction load during landing is associated with a greater risk of developing PFPS. 

This relationship between knee valgus motion and PFPS might be due to increased lateral 

patellar displacement that is observed during knee valgus motion (Noehren, Barrance, Pohl, 

& Davis, 2012). The findings from retrospective studies were not consistent with those from 

prospective studies. The retrospective studies found no difference in knee valgus between 

PFPS sufferers and asymptomatic players (Bolgla, Malone, Umberger, & Uhl, 2008; Dierks, 

Manal, Hamill, & Davis, 2008). However, Munro (2013) argued that this could be due to 
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pain position avoidance in PFPS sufferers. Therefore, most previous studies showed a 

potential relationship between knee valgus motion and non-contact ACL or PFPS injuries. 

However, there has been no retrospective or prospective study to investigate the male 

population, so it not clear that there will also be a relationship between knee valgus motion 

and non-contact ACL or PFPS injuries in male players. More studies are needed to cover this 

population.  

 
 

• Hip adduction 

 

 Even if it is not always distinct, PFPS patients usually have greater hip adduction 

angle than healthy people during some athletic tasks (Bolgla et al., 2008; Dierks et al., 2008; 

McKenzie, Galea, Wessel, & Pierrynowski, 2010; Nakagawa, Moriya, Maciel, & Serrao, 

2012; Willson et al., 2008; Willson & Davis, 2008, 2009). Hip adduction motion is assumed 

to contribute to knee valgus angle and moment, which might result in PFPS, ACL and MCL 

injury as explained in previous section of ‘Knee valgus’. This relationship has not been 

investigated (Munro, 2013), although hip adduction has been found to be correlated with 

knee valgus via 2D FPPA (Hollman et al., 2009; Willson & Davis, 2008). Increased hip 

adduction also leads to high Q angle, which usually results in patellar displacement, which 

has been defined as one of the PFPS risk factors (Powers, 2003). Hewett et al. (2005) noted 

that increases in hip adduction moment showed a strong correlation with knee valgus 

moment in ACL-injured women compared with uninjured women. In some studies, high hip 

adduction angle was detected during ACL injury episodes (Boden et al., 2000; Krosshaug et 

al., 2007). The hip adduction angle in PFPS subjects was significantly greater than in 

asymptomatic subjects by 2.4°–5.5° (McKenzie et al., 2010; Willson & Davis, 2009). Even 

in studies where no significant difference was reported, the PFPS sufferers exhibited greater 

hip adduction values (Munro, 2013). However, so far, no relationship between hip adduction 

motion and ACL or PFPS has been found prospectively (Boling et al., 2009). Future 

prospective studies are needed to examine the relationship between hip adduction motion 

and knee injury.  

 
 

• Trunk lateral shifting  

 

 Ipsilateral trunk shifting has been found to increase knee valgus moment by 
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changing the ground reaction force vector to pass laterally to the knee joint centre (Hewett, 

Torg, & Boden, 2009). Powers (2003) concluded that a higher valgus moment at the knee 

might increase the dynamic quadriceps angle, which will increase the lateral force acting on 

the patella, which may result in greater stress on the lateral compartment of the 

patellofemoral joint. Nakagawa, Maciel, and Serrao (2015) confirmed that individuals with 

PFPS had higher peak ipsilateral trunk lean than the control group. Also, ipsilateral trunk 

shifting due to weak hip abductors was found in patients with PFPS, which might be 

interpreted as the body compensating for the weak hip abductors (Boling, Padua, & 

Alexander Creighton, 2009). Zazulak, Hewett, Reeves, Goldberg, and Cholewicki (2007) 

found that factors associated with core stability could predict the risk of knee, ligament and 

ACL injuries with high sensitivity and moderate specificity in female but not in male 

athletes. Therefore, this might not be a good factor for investigating the risk factors for knee 

injury in male athletes. Hewett et al. (2009) have supported this idea by emphasising the 

importance of lateral trunk and valgus knee motions on ACL injury mechanism in female 

athletes specifically.  

2.2.4.5.2 Sagittal plane movements  
 

• Anterior tibial shear 

 

 The quadriceps contraction causes large anterior shear forces at angles close to full 

extension (Pandy & Shelburne, 1997). This position was observed during ACL injury 

episodes (Koga, Krosshaug, et al., 2010). Moreover, quadriceps effects to cause anterior 

tibial shear decrease as knee flexion angle increases, due to the change in force line 

(Hashemi et al., 2011). In contrast, contraction of the hamstring muscle may help to decrease 

the anterior shear force, which may prevent ACL injury (Li et al., 1999). Moreover, the 

distribution of landing forces on the ankle and hip will help to reduce the load on ACL. 

Therefore, the anterior tibial shear alone is unlikely to cause ACL injury (Chandrashekar, 

Mansouri, Slauterbeck, & Hashemi, 2006).  

 

• Knee flexion angle  

	  

 As explained previously, ACL injury risk is greatest at angles closer to full extension 

(Li et al., 1999; Pandy & Shelburne, 1997). Also, the knee flexion angle during landing from 
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different tasks was found to be 5–10° less in women than in men (Huston, Vibert, Ashton-

Miller, & Wojtys, 2001; Malinzak, Colby, Kirkendall, Yu, & Garrett, 2001). However, 

Hewett et al. (2009) found no significant differences in knee flexion angle between female 

and male ACL-injured subjects or between female ACL-injured subjects and female 

controls. Therefore, it is less likely for knee flexion angle to be the reason for higher rate of 

female knee injuries.  

 

• Vastus Medialis Obliquus muscles  

	  

 A weakness of the quadriceps muscles is believed to affect the alignment of the patella, 

especially the vastus medialis (VM) and the vastus medialis obliquus (VMO). Neptune, 

Wright, and van den Bogert (2000) reported that decreases in strength of VMO muscle 

increase lateral patella shift and PFJ load. Moreover, they found that delay in VMO 

contraction by 5 ms could increase the peak of lateral PFJ load significantly. A prospective 

study found that subjects who developed PFPS had a significant delay in VMO by 1.67 ms 

compared with those who did not (Van Tiggelen, Cowan, Coorevits, Duvigneaud, & 

Witvrouw, 2009). However, there are also contradictory findings in the literature. 

Retrospective and prospective studies found no significant difference in timing between 

VMO and VL contraction in the PFPS group and the asymptomatic group (Cavazzuti, Merlo, 

Orlandi, & Campanini, 2010; Witvrouw, Lysens, Bellemans, Cambier, & Vanderstraeten, 

2000). However, the functional value of the tasks (a static toe raise exercise and knee jerk 

reflex activated via a patella tendon tap) used by Van Tiggelen et al. (2009) and Witvrouw et 

al. (2000) have been questioned by Munro (2013). Munro also raised some concerns about 

whether the VMO delay can be clinically significant and measurable using the surface EMG. 

Therefore, more studies are needed with more common functional tasks. However, it can be 

argued that the VMO factor alone will have a minimal effect on predicting ACL and PFPS 

injuries.  

 

• Iliotibial Band (ITB) 

The iliotibial band (ITB) is a continuation of the tensor fascia lata viewed as a band of 

dense fibrous connective tissue that passes over the lateral femoral epicondyle and attaches 

to the lateral side of the patella (via the retinaculum) and Gerdy’s tubercle on the 

anterolateral aspect of the tibia (Fairclough et al., 2006; Terry, Hughston, & Norwood, 
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1986). The ITB is a lateral stabiliser of the patella (Hudson & Darthuy, 2009). In cadaveric 

knees, (Kwak et al., 2000) found that change in ITB kinematics alters patellar kinematics 

and contact. This study showed that loading of the ITB causes lateral patella translation, 

which has previously been linked to PFJ load and increased probability of PFJ pathology 

(Hudson & Darthuy, 2009). Ober’s test is commonly used to assess the flexibility of the ITB 

(Park, Kang, Choung, Jeon, & Kwon, 2016). It has also been used as an indirect measure of 

ITB length (Herrington, Rivett, & Munroa, 2006; Hudson & Darthuy, 2009; Kang, Choung, 

Park, Jeon, & Kwon, 2014). Herrington et al. (2006) found a moderate correlation between 

patellar position and ITB length using the modified Ober’s test where the tested leg was bent 

to 90° of knee flexion. Hudson and Darthuy (2009) and Puniello (1993) reported that PFPS 

sufferers had a significantly shorter ITB length using the modified Ober’s test. These results 

suggest that the ITB length might be one of the factors that contribute to PFPS development. 

However, prospective studies are needed to determine whether ITB shortness is a cause or 

effect of PFPS, as all studies are retrospective. Moreover, it is not confirmed that ITB 

shortness alone is the reason for patellar lateral transition (Kang et al., 2014). Therefore, ITB 

might play a minimal role in predicting the PFPS injury.   

• Foot pronation  

During pronation, the calcaneous everts and the head of the talus slides medially and 

inferiorly resulting in medial rotation of the talus. As a result, the tibia rotates internally 

(Powers, Chen, Reischl, & Perry, 2002). It has been hypothesised that in order for the knee 

to extend while the tibia is internally rotated, the femur must also internally rotate, leading to 

more hip adduction (Tiberio, 1987) and more lateral PFJ contact pressure (Lee et al., 1994). 

A recent study found that the increase in foot pronation might result in lower limb 

musculoskeletal injury due to the resulting biomechanical changes (Resende, Deluzio, 

Kirkwood, Hassan, & Fonseca, 2015).  

 In individuals with PFJ syndrome, greater rearfoot eversion has found to be correlated 

with greater hip adduction during gait (Barton et al., 2012). The authors suggested that this 

relationship between foot and hip kinematics might lead to increased pronation being a risk 

factor for PFPS. However, the few studies that investigated the association between foot 

pronation and PFPS have reported conflicting results (Boling et al., 2009; Dierks et al., 

2008; Duffey, Martin, Cannon, Craven, & Messier, 2000; Powers et al., 2002). In 
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retrospective studies, Powers et al. (2002) and Dierks et al. (2008) found no difference in 

foot pronation between asymptomatic and PFPS groups whereas Duffey et al. (2000) 

reported a significant difference between the two groups. Moreover, in the only prospective 

study, Boling et al. (2009) reported that the participants who suffered PFPS were found to 

have a significant increase in navicular drop as a static measure for pronation.  

 

 The two studies that found a link between the foot pronation and PFPS (Boling et al., 

2009; Duffey et al., 2000) used a static measures (navicular drop and arch height), which 

might not provide sufficient information about the dynamic pronation and its relation to 

PFPS injury. Prospective studies are needed to examine the relationship between the 

dynamic foot pronation and PFPS injury.  

 

2.2.4.5.3 Transverse plane movements  
	  
	  

• Hip internal rotation  

 

The hip internal rotation has been mentioned as one of the contributing factors to 

dynamic knee valgus (Graci & Salsich, 2015; Ireland, 1999; Powers, 2003, 2010), which has 

been linked to ACL and PFPS injuries (Hewett et al., 2005; Holden et al., 2017; Myer et al., 

2010; Myer et al., 2015; Shimokochi & Shultz, 2008). When the femur rotates internally, the 

tibia will rotate externally, which can cause ACL impingement, increasing the strain and risk 

of injury (Fung, Hendrix, Koh, & Zhang, 2007). In contrast, in an in vivo study, a restriction 

in hip internal rotation due to femoroacetabular impingement (FAI) was found to be 

significantly associated with increased risk of ACL injury in ipsilateral or contralateral knee 

(Bedi et al., 2016).  

Regarding the PFPS, the increased hip internal rotation can also alter patella alignment 

(Powers, 2010), and increase PFJ forces by increasing the pressure on lateral patellar facet 

(Lee, Morris, & Csintalan, 2003). During a single leg squat (SLS), sufferers of PFPS were 

shown to have greater hip internal rotation with greater lateral patellar displacement (Souza, 

Draper, Fredericson, & Powers, 2010). Moreover, some studies found a greater peak hip 

internal rotation during single leg squat, running, drop-jump and step-down tasks than in the 

healthy group (McKenzie et al., 2010; Nakagawa et al., 2012; Souza et al., 2010; Souza & 
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Powers, 2009a, 2009b). In contrast, other studies found no difference between PFPS patients 

and the asymptomatic group in hip internal rotation (Bolgla et al., 2008; Willson & Davis, 

2009). A prospective study found that those who developed PFPS found had a similar hip 

internal rotation angle to uninjured subjects (Boling et al., 2009). Also, the hip internal 

rotation could only predict the development of PFPS within a regression model combined 

with knee flexion, navicular drop and vertical ground reaction force (Boling et al., 2009). 

These conflicting results suggest the need for more prospective studies to understand the 

relationship between hip internal rotation and non-contact knee ligaments injury. Also, it is 

important to know whether this relationship exists only among women or can be generalised 

to include men as well. 

 

• Tibial rotation  

 

 External rotation of the tibia was found to increase the ACL strain significantly 

(Markolf et al., 1995), and might cause ACL impingement (Fung et al., 2007). Also, it 

resulted in more lateral patellar displacement (Noehren et al., 2012), as a decreased PFJ 

contact area caused more PFJ pressure (Lee et al., 1994; Lee et al., 2003; Shultz, Dudley, & 

Kong, 2012). Moreover, the external tibial rotation theoretically can increase the Q angle 

(Powers, 2003), resulting in more PFJ contact pressure. However, more recent studies found 

that the Q angle does not differ between those who suffer PFPS and those who do not 

(Almeida et al., 2016; Silva et al., 2015). However, internal rotation of the tibia causes 

thinning of the medial side of the PFJ compartment (Salsich & Perman, 2007). Both external 

and internal tibial rotation have been observed during ACL injury episodes (Olsen et al., 

2004). However, despite the evidence in some studies that tibial rotation increases the 

loading on ACL and PFJ, no research has examined the impact of tibial rotation on injury 

risk (Munro, 2013).  

	  

2.2.5 Summary 
 

In summary, knee injuries are one of the most serious common sports injuries. The 

literature on injury risk factors suggests that forces caused by sagittal plane mechanisms may 

have been overestimated with regards to their potential to cause ACL injury (Munro, 2013). 

There is therefore a need for more prospective research on the frontal plane to investigate 
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knee injuries and the related movement. McLean, Huang, Su, and van den Bogert (2004) 

reported that biomechanical modelling has suggested that frontal plane loading is more 

important in knee injuries. The frontal plane is therefore the best plane to investigate risk 

factors for knee injuries. 

	  
	  
	  
	  
	  
	  
	    



	  
	  

38	  

2.3 Role of movements variability  

2.3.1 Introduction  
 

Variability in movement is seen in all movement tasks and occurs both between and 

within individuals (Bartlett, Wheat, & Robins, 2007; Preatoni et al., 2013; Smith, 

Christensen, Marcus, & LaStayo, 2014). Certain amount of movement changes can be 

detected when the same action has been repeated (Bartlett et al., 2007). Movement 

variability is thought to be inherited in motor performance and could be due to the 

complexity of the neuromusculoskeletal system (Bartlett et al., 2007; Preatoni et al., 2013). 

In the last ten years, the movement variability has gained a great deal of interest specifically 

in the sports and clinical biomechanics communities (Arshi, Mehdizadeh, & Davids, 2015; 

R. Bartlett, Bussey, & Flyger, 2006; Nordin & Dufek, 2017; Pollard, Stearns, Hayes, & 

Heiderscheit, 2015; Preatoni, Ferrario, Dona, Hamill, & Rodano, 2010).  

 

Usually, the movement is described by the average of repeated actions with no one 

looking at the movement variability (the variability between repetitions) and what it suggests 

about the actual performance. The aims of sports biomechanics are to improve the 

capabilities of athlete performance, technique proficiency and consistency (Preatoni et al., 

2013), particularly for individuals. It is critical that sports biomechanics pursue injury 

prevention programmes based on the athletes’ biomechanical demands (Preatoni et al., 

2013). The movement variability in sports should not be investigated for reliability only, but 

should be considered as a potential source of information for the analysis of monitoring of 

athletes’ biomechanical performance (Preatoni et al., 2013). Until the last decade, movement 

variability within individuals has been recognised as ‘noise’ due to errors in sensory 

information and motor output commands, changes in environmental condition, or errors in 

measuring and analysing procedures (Bartlett et al., 2007; Konig, Taylor, Baumann, 

Wenderoth, & Singh, 2016; Preatoni et al., 2013). There are two types of movement 

variability: performance variability, which is the variability in how the movement was 

obtained; and outcome variability, which is the variability in what has been achieved 

(Preatoni et al., 2013).  

 

Studies have investigated the variability of athletic tasks variables (Arshi et al., 2015; 

Bradshaw, Maulder, & Keogh, 2007; Diss, 2001; Fleisig, Chu, Weber, & Andrews, 2009; 

James, Dufek, & Bates, 2000; Lees & Bouracier, 1994; Nordin & Dufek, 2017; Preatoni et 
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al., 2010; Queen, Gross, & Liu, 2006; Rodano & Squadrone, 2002), and the difference in 

variability variables between pathological and asymptomatic subjects (Brown, Bowser, & 

Simpson, 2012; Konig et al., 2016; Muniz & Nadal, 2009; Pollard et al., 2015; Smith et al., 

2014). However, no studies have investigated the variability differences in kinematics and 

kinetics variables between legs and/or over sports season (over time), and its relation to sport 

injuries.   

 

Movement variability can be affected by many factors such as age, temperature, 

stage of season, muscle strength and flexibility, surface of play and athletic shoes. In this 

chapter, we will try to investigate each of these factors, and how it might affect the 

individual variability through the sports season. The factors have been divided into three 

main categories: variability over time (age, temperature and stage of season), variability due 

to performance (muscle strength, flexibility and warm up), and variability due to friction 

(play surface and athletic shoes).  

 

2.3.2 Variability over time  
	  
2.3.2.1  Age  

	  
It is well known that older adults have more variability in motor function than young 

adults at low force levels, during isometric and anisometric contractions (Christou, 2011). 

The literature shows that there is a positional deference between the two limbs, which 

suggest that motor functions of the upper and lower limbs decline at different rates with age. 

Kwon, Baweja, and Christou (2011) reported that there are age-associated differences, which 

are more significant in the lower limbs than the upper limbs, especially during dorsiflexion 

movement. Tracy, Dinenno, Jorgensen, and Welsh (2007) found that the force variability in 

knee extensors is greater than the elbow flexors in older people. Moreover, the motor output 

variability was greater in the lower limbs among young participants who performed goal-

directed contractions (Christou & Rodriguez, 2008). All these studies reported constant 

findings regarding variability in motor output according to age. However, this change in 

motor variability takes several years, so has no direct effect on players’ movement variability 

during the course of one or two years. More specifically on the age effect, Stevenson, 

Hamer, Finch, Elliot, and Kresnow (2000) found that among all participants the injury 

incidence rate was the largest in the 26–30 age group (IR= 20.2/1000 hours), then in the 18–
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25 age group, and finally in the under-18 age group. This could means older players are 

more susceptible to injury. However, this study included different types of sports (hockey, 

football, basketball and netball), and all contact and non-contact injuries.  

	   	  
2.3.2.2  Temperature ranges  

	  
In Europe, football teams in northern areas, which tend to be cooler, have a higher 

rate of injuries than teams in southern, warmer areas (Orchard et al., 2013). The only 

exception is the ACL injury rate, which is higher in southern Europe. In contrast, football 

teams in warmer areas (‘northern Australia’) have higher rates of injuries than cooler areas 

(‘southern Australia’) (Orchard et al., 2013). However, Orchard et al. (2013) concluded that 

Australian football and European football studies have common findings. These findings 

report that ankle sprain and ACL injuries rate are higher in warmer areas, whereas the 

Achilles tendinopathy injury rate is higher in cooler areas. Moreover, they added that there 

are large confounders when using the epidemiology to compare the injury rates of different 

climate zones. This could be due to the variation of football codes, length of season and 

levels of play between different countries in different climate zones. However, Orchard et al. 

(2013) suggest that the difference in injury rate between different climate zones  might be 

due to the use of different type of grasses which are considered to have different injury rates. 

Also, no one has looked at the relationship between movement variability and weather.     

	  
2.3.2.3  Stage of season 

	  
Very few studies have examined the injury according to the stage of the season. Most 

studies reported the injury prevalence, not the incidence, so it might be misleading to 

compare this to the stage of the season or other studies.  

An Australian study found that the incidence rate was greater during the first four 

weeks of the season (Stevenson et al., 2000). Over the season, this high rate declined except 

for the last follow-up for all sports types. Men had a greater risk (IR = 19.0/1,000 hours) 

than women (IR = 13.6/1,000 hours). Among all participants the incidence rate was the 

largest in the 26–30 age group (IR= 20.2/1,000 hours), then the 18–25 age group, and finally 

the under-18 age group. This study included all contact and non-contact injuries for different 

types of sports.  
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 Only a few studies have reported the incidence rate of sports injuries across the season. 

These studies reported different incidence rates for injuries across the sports season, and 

across match and training time. In a four-year study of the incidence of ACL injuries, 

Dodson, Secrist, Bhat, Woods, and Deluca (2016) reported the highest rate of injuries during 

the pre-season practice and games. In another four-year study, Bradley, Klimkiewicz, Rytel, 

and Powell (2002) reported the same pattern of highest ACL injuries during the pre-season 

practice and games. Even though these studies counted both contact and non-contact ACL 

injuries together, it remains important to study the performance change over time and its 

relation to injuries and how could that contribute to injury prevention programmes. 

However, no one has looked at the individual kinematics variability along season, and its 

relation to injury.  

	  

2.3.3 Variability due to performance  
	  
	  
2.3.3.1  Muscle strength and flexibility  

	  
Muscle strength and flexibility play a role in the movement of the lower limb 

extremities. Krutsch et al. (2015) reported that trunk muscles coordinate all repetitive 

movements in football initially. These movements include jumping, passing, running and 

shooting. They also found that professional players generally had greater trunk muscle 

strength than amateur players. However, the impact of these factors is not well understood 

(Krutsch et al., 2015), and might be of even lower impact when comparing players at the 

same level. 

	  
2.3.3.2  Warm up 

	  
Muscle stretching as part of the conventional warm up before exercise was thought to 

have a strong effect in preventing injuries (Shehab, Mirabelli, Gorenflo, & Fetters, 2006). 

However, current studies showed that stretching alone is insufficient to prevent injury (Pope, 

Herbert, Kirwan, & Graham, 2000; Thacker, Gilchrist, Stroup, & Kimsey, 2004; Witvrouw, 

Mahieu, Danneels, & McNair, 2004). More studies need to be conducted to find a clear 

answer for these conflicting results.    

More recently, researchers have developed neuromuscular training strategies for 
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preventing sports injuries. Herman, Barton, Malliaras, and Morrissey (2012) found that these 

new neuromuscular warm-up strategies such as ‘FIFA 11+ (Soligard et al., 2008) and KIPP 

(LaBella et al., 2011)’ are helpful in reducing the overall number of lower limb injuries. 

However, these findings are difficult to apply because they require the use of special training 

equipment. Also, additional training is needed to achieve the benefits. Moreover, none of the 

current neuromuscular warm-up strategies have been found to reduce lower leg and ankle 

injuries significantly.  

Another essential point is that the football comprehensive injury-prevention 

programme (the F-MARC 11þ), which requires minimal equipment, has been found to 

reduce injuries among female players but not among males (Grooms, Palmer, Onate, Myer, 

& Grindstaff, 2013). However, these programmes are not commonly used across sports 

teams, or at least in those teams who will participate in the main study of this thesis.   

	  

2.3.4 Variability due to friction  
	  
2.3.4.1  Play surface  

	  
The play surface has been studied as one of the expected risk factors for sports 

injuries. The play surface has progressed from the first generation to the fourth generation of 

sports surfaces. First-generation turf, which consist of short fibres attached to base material, 

is considered to have the higher association with injuries in adults (Taylor, Fabricant, Khair, 

Haleem, & Drakos, 2012). Second-generation artificial turf consists of longer fibres than the 

first generation, with sand fill; a composite fill using rubber particles was used to develop 

the third-generation surfaces.  

Most updated studies on professional sports level found that there is no difference in 

injury risk between third-generation surfaces and natural grass, with the one exception that 

there are more ankle sprains on artificial turf (Ekstrand, Hagglund, & Fuller, 2011; Ekstrand, 

Timpka, & Hagglund, 2006; Williams, Hume, & Kara, 2011). In a three-year prospective 

study, Bjorneboe, Bahr, and Andersen (2010) found no difference in injury risk between 

third-generation surfaces and natural grass. Kristenson et al. (2013) found that there is no 

difference in the injury rates from games. Therefore, this factor might not have much impact 

on lower limb injuries with the new types of artificial turf except for ankle sprain injuries.  
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2.3.4.2  Athletic shoes  

	  
Studies have linked non-contact injuries to the lower extremities to the footwear 

traction (Wannop & Stefanyshyn, 2016). However, these studies could not explain how the 

individual components’ traction affects the joint loading.  

O'Kane et al. (2016) evaluated the shoe type and field surface as episodic-specific 

risk factors, and found that cleats worn on grass were associated with more injuries. 

Renstrom (1979) found that cleated shoes are related to increased injury risk in football on 

first-generation turf. However, these studies did not include the most recent third- and 

fourth-generation turf types, which are the only surfaces used now by clubs.  

	  

2.3.5 Summary  
	  
	  

To sum up, the factors considered in this section might not have much impact on our 

study. Variability over time means that many years are needed before changes are shown, 

and our study will last for less than one year. Also, variability due to performance is not well 

understood except the neuromuscular warm-up training programmes, which are not used by 

any of our participating teams. Furthermore, variability due to friction cannot affect the 

reliability of this study because it will be consistent among the participating teams. 

Therefore, the variability effect has limited impact on this study. It will be discussed in detail 

in the discussion chapter. However, separate study will assess the variability of kinematics. 
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2.4 Screening of knee biomechanics 
	  

2.4.1 Screening tools  
	  
	  

After discussing the factors that affect the movement causing lower limb injuries, it 

is important to know how to assess these factors. Most studies use 2D and 3D motion 

analysis to examine the lower limb biomechanics and its relationship with injuries. Each tool 

has advantages and disadvantages. The 3D system has been known as the gold standard to 

identify athletes at higher risk of injury (Munro, Herrington, & Carolan, 2012). The 

between-sessions reliability of the 3D system in prospective studies is still questioned due to 

the error sensitivity in marker placement and skin movement (Cappozzo, Catani, Leardini, 

Benedetti, & DellaCroce, 1996; Ford, Myer, & Hewett, 2007). 

Examining the lower limb biomechanics during athletic tasks is important in order to 

modify their high-risk movement patterns. Most studies use 3D motion analysis to assess the 

lower limb biomechanics (Blackburn & Padua, 2008; Ford et al., 2003; Hewett et al., 2005). 

3D motion analysis is helpful in examining all three planes of joint motion and has been 

considered to be the gold standard. However, there are some concerns regarding the 

reliability of the 3D system especially in the transverse plane. Kadaba et al. (1989) found 

that between-sessions reliability is not good as within-sessions reliability. This finding was 

confirmed later during different athletic tasks such as running, pivoting and jumping (Ferber, 

McClay Davis, Williams, & Laughton, 2002; Ford et al., 2007; Queen et al., 2006; Webster, 

McClelland, Wittwer, Tecklenburg, & Feller, 2010). Some studies have suggested that the 

reason for this problem is the influence of the marker placement between one session and 

another (Ferber, et al., 2002; Ford et al., 2007a; Queen et al., 2006). Cappozzo, Catani, 

Leardini, Benedetti, and DellaCroce (1996) suggested that this problem could be due to skin 

movement during the examination tasks.  

In addition to the lack of reliability between sessions, some studies showed different 

degrees of reliability among different planes of movements. The sagittal plane was found to 

have more accurate results (Ferber et al., 2002; (Kadaba et al., 1989), whereas the frontal 

and transverse planes were more sensitive to errors in marker placement (Kadaba et al., 

1989). McGinley, Baker, Wolfe, and Morris (2009) found that the greatest errors were in hip 

and knee rotation.  
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 The other tool that has been studied to identify people at higher risk of knee injuries is 

2D. The frontal plane projection angle (FPPA) has been used for this purpose (Gwynne & 

Curran, 2014; McLean, Walker, et al., 2005; Mizner et al., 2012; Willson & Davis, 2008). 

The validity of the FPPA method in relation to 3D has been investigated during some 

athletic tasks (Gwynne & Curran, 2014; McLean, Walker, et al., 2005; Sorenson et al., 2015; 

Willson & Davis, 2008). FPPA was found to be significantly correlated with knee valgus 

angle in 3D during single leg drop jump landing at initial contact, which might represent the 

SLL (Sorenson et al., 2015). Moreover, McLean, Walker, et al. (2005) found that FPPA was 

significantly correlated with peak 3D knee valgus angles. Also, Willson and Davis (2008) 

found that 2D FPPA was significantly correlated with 3D hip adduction and knee external 

rotation angles. Additionally, the reliability of the 2D method was investigated within 

sessions and between sessions and found to have a good to excellent reliability (Munro, 

Herrington, & Carolan, 2012; Willson, Ireland, & Davis, 2006).  

 

2.4.2 Measurement and Functional Performance Tests 
	  
	  

When studying the injury risk factors, many studies have used the knee separation 

distance method to identify athletes who are at higher risk (Barber-Westin et al., 2006; S. D. 

Barber-Westin et al., 2005; Noyes, Barber-Westin, Fleckenstein, Walsh, & West, 2005). To 

assess the medial knee motion, Noyes et al. (2005) placed the markers on the centre of the 

patella whereas recent studies have placed the marker on the lateral femoral condyle (Noyes 

& Barber-Westin, 2006; Sigward, Havens, & Powers, 2011). Despite the differences in way 

for measuring the knee separation distance, the use of this method is limited to bilateral 

tasks, which does not allow for comparison between limbs. Knowing that lower limb injuries 

occur during single leg landings makes this a significant limitation to identify athletes who 

are at higher risk of injury. 

In recent studies, 2D frontal plane projection angle (FPPA) was used to quantify the 

dynamic knee valgus during common athletic tasks (Herrington & Munro, 2010; McLean, 

Walker, et al., 2005; Willson & Davis, 2008; Willson et al., 2006). Females	  were	  found	  to	  

have	   increased	   FPPA	   compared	  with	  males	   during	   single	   leg	   landing	   and	   drop	   jump	  

tasks (Herrington & Munro, 2010; Willson et al., 2006), which is the same finding reported 

using the 3D system. Willson and Davis (2008) found that PFPS patients exhibit greater 
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FPPA than healthy control subjects during SLS. Moreover, female basketball players showed 

improvement in FPPA after completing a four-week jump-training programme (Herrington, 

2011). 

It is essential to ensure that the screening tool is valid and reliable in the research 

field. FPPA was found to be significantly correlated (r = 0.72) with knee valgus angle in 3D 

during single leg drop jump landing at initial contact, which might represent the SLL 

(Sorenson et al., 2015). Moreover, McLean, Walker, et al. (2005) found that FPPA was 

correlated significantly with peak 3D knee valgus angles (r = 0.58–0.64) during side step and 

side jump. Willson and Davis (2008) found that 2D FPPA was significantly correlated with 

3D hip adduction (r = 0.32) and knee external rotation angles (r = 0.48) during SLS.  

This moderate correlation between 2D FPPA and 3D variables in these studies 

suggests that single joint motion alone will not be sufficient to examine the lower limb 

biomechanics and its relationship with injuries. A combination of examining hip and knee 

motions will be more useful in studying this relationship (Herrington & Munro, 2010; 

McLean et al., 2005; Willson & Davis, 2008).  

The validity of 2D FPPA has been investigated and found to be moderate across some 

common athletic tasks such as SLS (Willson & Davis, 2008), side-step and side-jump 

(McLean, Walker, et al., 2005), drop jump tasks (Mizner et al., 2012), and SLL (Sorenson et 

al., 2015). However, the reliability of the 2D FPPA has not been studied adequately. Willson 

and Davis (2008) reported the interclass correlation coefficient (ICC) value of 0.88 for 

within-day reliability for SLS only; Munro, Herrington, and Carolan (2012) reported the 

within-day and between-day in SLS, SLL and drop-jump but not the inter- and intra-rater 

reliability. New studies are needed to assess the 2D inter and intra-rater reliability. 

Regarding the screening tasks, the drop jump task has been used widely to assess 

athletes who are at higher risk of ACL and PFP injuries, which found them with higher knee 

valgus motion and moments (Hewett et al., 2005; Myer et al., 2010). However, this task 

cannot distinguish between the two limbs as it is a bilateral task whereas most injuries 

happen to a single limb (Faude et al., 2005). However, single leg landing (SLL) may be 

relevant for assessment as a unilateral task. Pappas et al. (2007) and Myklebust et al. (1998) 

reported that, during unilateral tasks, individuals demonstrate more hip adduction and knee 

valgus than during bilateral tasks. Munro (2013) suggested that the demand to decelerate 
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landing forces during the SLL ‘unilateral task’ compared with the DJ ‘bilateral task’ might 

suggest that the SLL task is more sensitive in identifying athletes who have dynamic knee 

valgus. However, this claim has not been investigated.  

The SLS task has been used to assess the relationship between 2D FPPA and 3D 

lower limb kinematics (Willson & Davis, 2008). The SLS was found to detect the lower limb 

kinematics demonstrated during running (Whatman et al., 2011), and to differentiate 

between subjects with and without PFPS (Willson et al., 2008). Thus, the SLS may have a 

potential role in identifying athletes who are at higher risk of PFPS. In addition, those with 

increased dynamic knee valgus during SLS are more susceptible to have similar dynamic 

knee valgus during more complex tasks such as landing and cutting (Munro, 2013).  
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2.5 Gap in the Literature 
	  
 The major gap in the literature is the limited number of prospective studies on the risk 

factors for knee injuries. No study has investigated the variability in the lower limb 

kinematics over the sports season, which is one of the objectives of this PhD. Football has 

been selected as the sport to study because it is considered to be one of the dominant type of 

sports globally (Walden, Hagglund, Magnusson, & Ekstrand, 2011). This means it is more 

important to investigate knee injuries in football for the greatest benefit to the greatest 

number of players. Moreover, male players are considered to constitute 82% of football 

players around the world (Gaulrapp, Becker, Walther, & Hess, 2010). However, most studies 

have been conducted on the female populations because of their higher rate of susceptibility 

to injury (Louw et al., 2008). Thus there is a need to investigate male players specifically. 

Another reason for choosing male players is the availability of professional players in sports 

clubs who are participating in the full sports season within easy reach of the University of 

Salford. The age of participants was determined according to the average age of injured 

football professional players in previous studies, (Walden et al., 2011); this study can 

therefore be generalised to the entire population of football players.  

 Using the 3D screening tool has some disadvantages such as the cost of the system, the 

cost of use, the length of time needed for data collection and analysis, the need for a trained 

individual to use the system, and the inability to use it outdoor or transfer it to data collection 

sites. These disadvantages have created a gap between research and clinical practice because 

assessing the players usually happens in the sports clubs and clinics where a simpler and 

easier tool such as the 2D system is required. Therefore, studying the 2D tool is very 

important due to its practicality and usefulness in clinics and sports clubs.  

 The SLS and SLL tasks were found to be more appropriate for assessing players who 

are at higher risk of knee injuries, as explained previously. Both tasks are unilateral tasks, 

which will help to identify the risk for each leg alone as most injuries happen to one leg only. 

Moreover, previous studies have examined the FPPA alone. Examining both FPPA and hip 

adduction angle might have more significant results, knowing that they are both key 

contributors to knee dynamic valgus. All previous studies have examined the lower limb 

biomechanics on one occasion only (at the pre season), which might not be sufficient to 

assess the risk of injury. This is because the injury rate is different throughout the sports 

season and the players’ performance also varies during the season due to the factors that 
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have been discussed previously.  

 

2.6 PhD Aims  
	  
	  
1. Review the literature of lower limb sport injuries mechanism and risk factors. 

2. Review the literature of lower limb screening tools, which can identify the risk factors of 

injuries.  

3. Assessing the reliability and validity of 2D video to assess SLS and SLL performance. 

4. Assessing the SLS and SLL performance between legs and across season. 

5. Assessing the performance-variability of individual lower limbs kinematics between legs 

and across season.  

6. Examining the relationship between kinematic measures of lower limb joints and knee 

injury prevalence in male footballers, prospectively.  

	    



	  
	  

50	  

	  

 

 

 

 

Chapter (3) 

Methodology	  

	  

	  

	  

 

 
	    



	  
	  

51	  

Chapter 3: Methodology 

	  
 2D and 3D are the standard tools that have been used to identify people at higher risk 

of knee injuries (Hewett et al., 2005; Myer et al., 2010; Willson et al., 2008). Each tool has 

advantages and disadvantages, which have been discussed previously (section 2.4.2). The 3D 

system has been used as the gold standard to identify athletes at higher risk of injury (Munro, 

Herrington, & Carolan, 2012). The 3D system has some disadvantages, which made it 

inappropriate for use in this study. The between-sessions reliability of the 3D system in 

prospective studies is still questioned due to the error sensitivity in marker placement and 

skin movement (Cappozzo, Catani, Leardini, Benedetti, & DellaCroce, 1996; Ford et al., 

2007). In addition to the lack of reliability between sessions, some studies showed different 

degrees of reliability between different planes of movements. The sagittal plane was found 

to have more accurate results (Farber & Buckwalter, 2002; Kadaba et al., 1989; Queen et al., 

2006), whereas the frontal and transverse plane movements were found to be more sensitive 

to errors in marker placement (Kadaba et al., 1989). McGinley et al. (2009) found the 

greatest errors in hip and knee rotations.  

 The dynamic knee valgus is the key high-risk movement associated with lower limb 

injuries (Hewett et al., 2005; Myer et al., 2010). Therefore, the measurement errors of the 3D 

system might have significant impact on its ability to identify athletes who are at higher risk 

of lower limb injury. Another reason for not using the 3D system is the time needed for data 

collection and analysis for this large screening study. Moreover, bringing subjects to the 3D 

facility lab is impractical due to the large number of participants and the number of test 

sessions.  

 The other tool for identifying people at higher risk of knee injuries is 2D. The frontal 

plane projection angle (FPPA) has been used for this purpose (McLean, Walker, et al., 2005; 

Mizner et al., 2012; Willson & Davis, 2008). The validity of the FPPA method in relation to 

3D has been investigated during certain atheletic tasks (Gwynne & Curran, 2014; McLean, 

Walker, et al., 2005; Willson & Davis, 2008). FPPA was found to be significantly correlated 

(r = 0.72) with knee valgus angle in 3D during single leg drop jump landing at initial 

contact, which might represent the SLL (Sorenson et al., 2015). McLean, Walker, et al. 

(2005) found that FPPA was correlated significantly with peak 3D knee valgus angles (r = 

0.58–0.64) during side step and side jump tasks. Gwynne and Curran (2014) found a good 
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correlation between 2D FPPA and the 3D knee valgus (r = 0.78) during SLS. Willson and 

Davis (2008) found that 2D FPPA was significantly correlated with 3D hip adduction (r = 

0.32) and knee external rotation angles (r = 0.48) during SLS.  

 Using the 3D system has some disadvantages such as the cost of the system, the cost of 

use, the length of time needed for data collection and analysis, the need for a trained 

individual to use the system, and the inability to use it outdoors or transfer it to data 

collection sites such as sports clubs in different cities. More important that investigating the 

capability of the 2D technique to identify athletes who are at higher risk of injury, will make 

this simpler tool more usable at sports clubs and clinics. Using and validating the 2D system 

will therefore be one of these thesis objectives. However, a test that is not valid is not 

representative of what it is trying to measure. This makes the validity study critical before 

any clinical or research use. Also, the test, which is not reliable, will not provide consistent 

measurements, and consistency is essential for reliability. Therefore, reliability and validity 

studies should be conducted prior to the main study.  

For the screening tasks, the drop jump task has been used widely to assess athletes 

who are at higher risk of ACL and PFP injuries, which found them with higher knee valgus 

motion (Hewett et al., 2005; Myer et al., 2010). However, this task cannot distinguish 

between the two limbs as it is a bilateral task whereas most injuries happen to a single limb 

(Faude et al., 2005). Single leg landing (SLL) may be relevant for assessment as a unilateral 

task. Pappas et al. (2007) and Myklebust et al. (1998) reported that, during unilateral tasks, 

individuals demonstrate more hip adduction and knee valgus than during bilateral tasks. 

Munro (2013) suggested that the demand to decelerate landing forces during the SLL 

‘unilateral task’ compared with the DJ ‘bilateral task’ might suggest that the SLL task is 

more sensitive for identifying athletes who have dynamic knee valgus. However, this claim 

has not been investigated.  

The SLS task has been used to assess the relationship between 2D FPPA and 3D 

lower limb kinematics (Willson & Davis, 2008). The SLS was found to detect the lower limb 

kinematics demonstrated during running (Whatman et al., 2011), and to differentiate 

between subjects with and without PFPS (Willson et al., 2008). Thus, the SLS may have a 

potential role to play in identifying athletes who are at higher risk of getting PFPS. 

Additionally, those with increased dynamic knee valgus during SLS are more susceptible to 

similar dynamic knee valgus during more complex tasks such as landing and cutting (Munro, 
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2013).  

Therefore, using SLS and SLL will be most appropriate to predict which athletes are 

at higher risk of lower limb injuries, because of the advantages and disadvantages of the 

available tasks.  
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3.1 2D Validity and Reliability  

3.1.1 Introduction 
	  

Before embarking on the main study, which will assess the relationship between 

lower limb kinematics and knee injuries, and individual kinematics measured through an 

entire sports season, it is crucial to investigate the validity and reliability of the method and 

tools. Study one (A) examined the validity of the two-dimensional (2D) technique compared 

with the three-dimensional (3D) system; study one (B) investigated the reliability of the 

method within and between sessions. Intra- and inter-reliabilities were also established. 

Moreover, small detectable difference (SDD) values have been calculated.  

 

3.1.2 Two-dimensional (2D) Video Validity 
	  
	  
3.1.2.1  Background 

	  
The 3D system has been used extensively to study knee injury risk factors, and is 

used as a gold standard to measure lower limbs kinetics and kinematics. There are some 

disadvantages in using the 3D system such as the cost of the system, the cost of use, the 

length of time needed for data collection and analysis, the need for a trained individual to use 

the system, and the inability to use it outdoors or transfer it to the data collection site where 

it is difficult to bring some subjects to system location. These disadvantages make the 

system inappropriate, especially with large screening projects.  

Some previous studies have investigated the validity of the 2D system in some 

specific tasks, as explained previously (section 2.4.2) 

	  
3.1.2.2  Purpose  

	  
The goal of this study was to determine the validity of the two-dimensional 

procedure to measure the kinematics of the frontal plane during single leg squat (SLS) and 

single leg landing (SLL) when compared to 3D measurements of the same movements. 

3.1.2.3  Method   

3.1.2.3.1 Participants  
	  

The characteristics of the 15 recreational participants are summarised in (Table	  3:1). 
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All subjects who are university students have participated voluntarily. All previous 

reliability studies have no sample size calculation. However, Wimmer and Dominick (2003)  

recommended that the sample size of the reliability studies should be between 10% and 25% 

of the main study sample size. The main study sample size would be between 100 and 150 

subjects. Therefore, the reliability study sample size will be 15 subjects, which is 10% of the 

main study sample size. All participants were healthy with no previous lower limb injuries or 

musculoskeletal complaints for the six months immediately before the study. All participants 

read and signed the informed consent form, which was approved by the Ethical Approval 

Panel at the University of Salford. Participants were tested twice on their first visit (two 

sessions) with a one-hour gap between sessions to assess the within-session reliability. 

Participants were then tested again after seven days (one session) at the same time as the first 

session, to assess the between-session reliability during SLS and SLL tasks. Before each 

session, participants were asked to warm up on a stationary bicycle to ensure that all 

participants are doing the test while having same physiological status. Frontal plane 

projection angle (FPPA) and hip add angle (HADD) were assessed using 2D digital video 

camera (2D analysis); three-dimensional motion analysis was used to evaluate all lower limb 

kinematics and kinetics simultaneously while performing SLS and SLL. The correlation 

between 2D and 3D measures was calculated using Pearson’s correlation coefficients.  

Characteristics Gender 

Male (N=7) Female (N=8) 

Age (years) 25.0 (±6.4) 26.6 (±3.5) 

Height (cm) 171.0 (±6.7) 163.0 (±5.4) 

Weight (kg) 69.7 (±10.7) 63.0 (±8.0) 

Table 3:1 Participants’ demographics 

	  
3.1.2.4  Procedure  

3.1.2.4.1 Instrumentation  
	  

3.1.2.4.1.1 Two-dimensional technique (2D) 
	  
	  
 For each subject, hip adduction angle (HADD) and knee frontal plane projection angle 
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(FPPA) data were recorded for the right leg during the execution of SLS and SLL. Subjects 

were asked to perform three successful trials for each task, and a successful trial required the 

movement to occur in the field of the 2D camera. The number of 3 trails was used to prevent 

the learning effect when more trails are added. The videotaping recorded the subject trunk 

and lower limbs only. A commercially available digital video camera (Sony Handycam 

DCR- HC37, Sony Corp, Tokyo, Japan) sampling at 30 fps was used. The camera was 

placed 60 cm above the floor, 2 m anterior to the subjects’ landing target, and was aligned 

perpendicular to the frontal plane (Herrington & Munro, 2010). Markers were placed at the 

midpoint of the ankle malleoli for the centre of the ankle joint, the midpoint of the femoral 

condyles to approximate the centre of the knee joint, and on both anterior superior iliac 

spines (ASIS) (Willson et al., 2006). FPPA of the knee and hip angle were measured using 

Quintic Biomechanics software (v26, Quintic, Sutton Coldfield, UK). FPPA was defined as 

the angle subtended between the line from the markers on the ASIS to the knee joint and the 

line from the knee joint to the ankle. The hip angle was defined as the angle between the line 

from the marker on the ASIS to the knee joint and line connecting both ASISs. Both FPPA 

and hip angle were measured at the frame, which represents the point of maximum knee 

flexion. This was determined as the lowest point of the squat and landing tasks. Same tester 

who is a physiotherapist with 9 years experience “the author of this thesis” did the full 

procedure except the inter-rater testing which was done by a second physiotherapist with a 

15 years of experience.  

 

3.1.2.4.1.1.1 FPPA & HADD Data Analysis  

 

The FPPA and HADD were measured during the maximum knee flexion angle in 

both SLS and SLL using Biomechanics Software (v26, Quintic, Sutton Coldfield, UK). The 

maximum knee flexion angle was defined as the lowest point reached by the subject pelvic 

during squatting and landing. The analysis process started with uploading a calibration 

video, which was taken before the start of the subject’s video recording. The calibration 

video is about three seconds of video recording for the calibration frame (1m * 1m), then 

designation was pressed to set both horizontal and vertical lines with a distance of 1m for 

each line. The video calibration process was repeated if the camera had moved or if the 

subject changed his distance from the camera. Next, to be able to play the videos in slow 
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motion, the video analysis speed was set at 30 fps. After that, the software was ready to 

upload and to start analysing the recorded successful trials for that participant. The video 

was played until the maximum knee flexion frame was achieved for both tasks. While 

holding the video in the maximum knee flexion frame (as defined previously), the analysis 

began by drawing the lines between the markers. Starting from the ASIS to the midpoint of 

the knee joint (the midpoint of the medial and lateral femoral epicondyles), and then ending 

by the middle of the ankle mortise anatomical landmark to calculate the FPPA. Then, 

starting from the midpoint of the knee joint (midpoint of the medial and lateral femoral 

epicondyles) to the ipsilateral ASIS, then to the contralateral ASIS to calculate the HADD. 

The convention used for measuring the FPPA was that 180° equals straight, angles greater 

than 180° were considered valgus, and angles of less than 180° were considered varus. The 

resulting number was then recorded, and a calculator was used to calculate the final results 

using the following mathematical equation [180 – (the resulting number) = final result]. 

However, for the HADD it was straightforward with no mathematical equation needed.  

	  

3.1.2.4.1.2 Three-dimensional system (3D) 

 
To collect biomechanical data about lower limbs a motion-analysis system comprised 

of ten infrared (IR) cameras (Pro-Reflex, Qualisys) with a sample frequency of 240 Hz, 

passive retro-reflective markers and three force platforms (AMTI, USA) sampling at 1200 

Hz. Qualisys Track Manager (QTM) software was used to connect the cameras. Using the 

Qyalisys Pro-reflex system, calibration, data collection and 3D reconstruction of retro-

reflective markers form the three stages needed to collect coordinate data.  

The accuracy of the positional data that can be collected is determined by the system 

resolution; this is turn is dictated by the capture volume size. Therefore, it is important to 

identify the camera position is that ensures the blind space around the selected capture 

volume in the camera’s field of view is minimal (Pantano, White, Gilchrist, & Leddy, 2005; 

Richards, Thewlis, Selfe, Cunningham, & Hayes, 2008). In this study, the ten cameras were 

placed surrounding the three force platforms to ensure they could capture the variables of 

interest during the stance phase of SLS and SLL (Figure 3:1). 
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Figure 3:1 Data collection set-up 

	  

3.1.2.4.1.2.1 System calibration 
	  

The 2D image generated by each IR camera has to be converted in a 3D workplace 

before the coordinated data can be analysed. By using a direct-linear transformation 

technique, this facilitates global reference points and guarantees the generation of 3D marker 

position coordinates (Richards et al., 2008). The system’s calibration determines the 

accuracy by which the position of a marker can be located in 3D space (Payton & Bartlett, 

2008). Consequently, the accuracy of 3D marker coordinates and calibration based on 

measurements, increases with a reduction in residuals. 

 

The static calibration of the motion-capture system and laboratory reference-frame 

relationship were determined using a rigid L-frame (Figure 3.2). To calibrate the volume to 

be used during dynamic trials handheld wands with reflective markers were positioned at 

each end, the distance between the wands was fixed at 750.43 mm (Figure 3:2). To 

standardise the calibration volume successfully, a capture time of 45 s was used. This meant 

that camera coverage was comprehensive, extending the field-of-view from the lower-floor 

level and to height and ensuring that the wand was visible to no less than two cameras. 

(Richards et al., 2008).  
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Figure 3:2 Calibration L-frame (left) and handheld wand (right). 

	  

3.1.2.4.1.2.2 Marker placement 
	  

In all data collection trials, reflective markers with a diameter of 14.5 mm were 

attached to the skin prior to each testing session. Hypoallergenic adhesive tape was used to 

attach the markers to a flat-based marker (Figure 3:3). Three non-co-linear markers were 

used as this enabled the orientation and position of a segment to be defined in three-

dimensional space (Cappozzo, Catani, Leardini, Benedetti, & Croce, 1996). At any one time 

during capture, each marker was visible to no less than two cameras (Payton & Bartlett, 

2008). 

	  

Figure 3:3 Cluster plates, reflective markers and adhesive tape 
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To characterise the centres of joints rotation and anatomical reference frame, a total 

of 20 anatomical markers were applied to each participant. These markers were located on 

anatomical landmarks, including the lateral and medial aspects of joints, as well as at the 

proximal and distal ends of the segment. Markers were placed on the foot on the heads of the 

1st, 2nd and 5th metatarsal and the calcaneal tubercle; ankle markers were attached on 

medial and lateral malleolus; knee markers were placed on lateral and medial femoral 

condyle; thigh markers were fixed to the greater trochanter; pelvic markers were stuck to the 

left and right anterior superior iliac spine (ASIS), the left and right posterior superior iliac 

spine (PSIS) and the left and right iliac crest. 

  

 Having satisfactorily captured all the static markers, some of the anatomical markers 

were removed, leaving 28 markers in place for tracking (4 on ASISs and PSISs, 8 fixed to 

standard shoes and 16 over four cluster plates). Clusters were fastened securely to both legs 

at the antero-lateral aspect of the thigh and shank. According to Manal, McClay, Stanhope, 

Richards, and Galinat (2000), rather than using individual skin markers, using rigid clusters 

produces the optimal configuration. Figure 3:4 depicts both static and tracking markers.  

 

 

	  

Figure 3:4 Static (left) and tracking (right) marker sets 
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3.1.2.4.1.2.3 Conducting the tests  
 

To control the interface of the shoe with the surface, prior to testing all participants 

wore compression shorts and standard shoes (New Balance, UK). To start, participants 

undertook a 3-min warm up of low-intensity exercise on a cycle ergometer. They then 

practised each of the two tasks required of them until they were comfortable and familiar 

with what was required by the testing procedure; on average, this took each participant 2 or 3 

goes. Then the principle researcher applied 40 markers to the lower limb of the participant, 

as described above. Participants were asked to stand stationary on the force plate for the 

purpose of conducting a static standing trial. To prevent the markers from being detected, the 

participants were asked to hold their arms clear of the markers by crossing them over chest. 

Then the anatomical markers were removed and the participant undertook the required SLS 

then SLL tasks.  

•  Single-Leg Squat  

 Following the procedure of Herrington (2014), participants were requested to face the 

video camera, stand on their right leg, and squat as far down as they could manage (between 

60° and 80°) for five seconds. In order to limit the influence of knee velocity and standardise 

the trial for each participant, a count was provided during this period: movement was 

initiated on the first count, the lowest squat point achieved on the third count, and the full 

movement completed on the fifth count. Five trials of were performed by each participant. 

Each trial was considered valid only if the participant achieved the minimum required angle 

of knee flexion and remained balanced for the duration. During all trials, including practice 

runs, the same auditor measured the angle of knee-flexion using a standard goniometer.  

 

• Single-Leg Landing   

 Following the procedure of Munro, Herrington, and Carolan (2012), participants were 

requested to adopt a unilateral posture on the contralateral leg and step forward over a 28cm 

step, leaning forward and descending vertically to the maximum possible distance, 

permitting only the landing leg to contact the floor; the contralateral leg was not to make 

contact with any surface. Five such trials were conducted for each participant. 
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3.1.2.4.1.2.4 3D Data processing 
 

To calculate the joint kinematic and kinetic data, visual 3D motion (Version 4.21, C-

Motion Inc. USA) was used. A Butterworth 4th-order bi-directional, low-pass filter with cut-

off frequencies at 12Hz and 25Hz, were used to filter Motion and force-plate data, 

respectively; the cut-off frequencies were determined according to a residual analysis (Yu, 

Gabriel, Noble, & An, 1999). inertial parameters were estimated based upon anthropometric 

data and all lower-extremity segments were then modelled as conical frusta (Dempster, 

Gabel, & Felts, 1959). An X-Y-Z Euler rotation sequence was used to calculate the angles of 

the joints, in which X was equal to flexion-extension, Y equal to abduction-adduction/varus-

valgus and Z was equal to the internal-external rotation. 3D inverse dynamics were 

employed to calculate the joint kinetic data. Joint-moment data were normalised to body 

mass and presented as external moments, which were referenced to the proximal segment. 

This study describes external moments, e.g. an external knee-valgus load results in a knee 

abduction (valgus position) and an external knee-flexion load typically flexes the knee 

(Malfait et al., 2014). 

To define the six degrees of freedom movement for each segment, the calibration 

anatomical systems technique (CAST) was used during the dynamic tasks (Cappozzo, 

Catani, Leardini, Benedetti, & Croce, 1996). Prior to extracting the data for post-processing 

using the Qualisys software, a static trial in which the participant was instructed to stand on 

the force plates with all anatomical and tracking markers visible to the cameras. Bone 

movement was identified by the reference points offered by the positions of the anatomical 

markers, through only the tracking markers set during the movement trials. 

As Figure 3:5 indicates, there were seven rigid segments attached to the joint that the 

model used. For each segment, six variables are attributed, which describe the segment’s 

position in 3D space (three of these describe the rotation and the other three variables 

describe the position of the origin). In particular, three variables describe the rotation about 

each axis of the segment (sagittal, frontal and transverse) whilst the other three describe the 

segment translation along three perpendicular axes (vertical, medial-lateral and anterior-

posterior). To perform kinetic calculations, the participant’s height (in metres) and body 

mass (in kilograms) were recorded in the software program. To determine the proximal and 

distal joint/radius, each segment of the pelvis, thigh, shank and foot was modelled. 
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Furthermore, the hip-joint centre was automatically calculated using ASIS and PSIS markers 

in the regression equation as defined by Bell, Brand, and Pedersen (1989). 

During the SLL task, the event began at IC until the right knee flexion reached 

15°ascend; this was chosen to ensure that maximum knee flexion was included in the SLL 

cycle. During SLS, the point at which the right knee exceeded 15° of flexion was determined 

to be the commencement of the start phase of the SLS task, which ended when the knee 

returned to this point while ascending after the task. 

	  

Figure 3:5 QTMTM static models (left), and Visual 3DTM bone model (right) 

	  

3.1.2.5 Statistical testing 

The validity were assessed using the Pearson’s correlation coefficient (r) with the 

scale as shown in Table	  3:2 (Evans, 1996).  

Correlation coefficient score Level of association 

0.00-.19 Very weak 

0.20-.39 Weak 

0.40-.59 Moderate 

0.60-.79 Strong 

0.80-1.0 Very strong 

Table 3:2 Correlation coefficient scores and levels of association (Evans, 1996)  
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3.1.2.6  Results   

	  
	  

 

Table 3:3 Descriptive data for 2D and 3D variables 

 
	  

2D FPPA measurements were found to have strong correlation with knee abduction 

angle in 3D (r = 0.66, p < 0.008) during SLS, but not in SLL (r = 0.075, p < 0.79). Also, 2D 

FPPA found to be correlated with knee abduction moment (r = 0.65, p < 0.009) during SLS. 

2D FPPA and 2D HADD were found to have strong correlation during SLS (r = 0.61, p < 

0.015), and SLL (r = 0.53, p < 0.044).  2D HADD showed very strong correlation with 3D 

HADD during SLS (r = 0.81, p < 0.001), and strong correlation during SLL (r = 0.62, p < 

0.013). More interestingly, 2D HADD and 3D hip flexion reported strong correlation during 

SLS (r = 0.60, p < 0.018).  

 

3.1.2.7  Conclusion 

	  
 2D measurements during single leg squat and single leg landing have strong 

criterion validity in some measurements of lower limb kinematics compared with the 3D 

method.  

Variable Mean Std. Deviation 

2D SLS  FPPA -9.0273 10.45248 

2D SLS Hip Add 70.5760 8.67076 

2D SLL FPPA -10.8887 6.35538 

2D SLL Hip Add 79.0467 5.21654 

3D SLS Hip Abd Angle 15.1411 6.32281 

3D SLL Hip Abd Angle 8.0530 5.66402 

3D SLS Knee Abd Angle -5.6177 5.23224 

3D SLL Knee Abd Angle -7.5190 5.14450 

* Negative value means valgus angle. 
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3.1.3 Two-dimensional (2D) Video Reliability  
	  
3.1.3.1  Background  

The three-dimensional (3D) system has been used extensively to study knee injury 

risk factors; it is used as a gold standard to measure the lower limbs kinetics and kinematics. 

There are some disadvantages in using 3D system such as the cost of the system, the cost of 

use, the length time needed for data collection and analysis, the need for a trained individual 

to use the system, and the inability to use it outdoors or to transfer it to a data collection site 

where it is difficult to bring some subjects to the system location. These disadvantages make 

the system inappropriate, especially with large screening projects.  

Some previous studies have investigated the reliability of 2D screening in some 

specific tasks as explained previously (section 2.4.2) 

	  
3.1.3.2  Purpose  

The goal of this study was to determine the reliability of the two-dimensional (2D) 

procedure to measure the frontal plane kinematics during a single leg squat (SLS) and single 

leg landing (SLL). Moreover, the intra- and inter-rater reliability, standard error of 

measurement (SEM), and small detectable difference (SDD) were established.  

3.1.3.3  Method  

The same method and procedure as for the validity study were used. Intraclass 

correlation coefficients (ICCs) were calculated to determine the reliability of 2D within 

sessions and between sessions, and the standard error of measurement (SEM) was used to 

establish measurement error. Intra-rater and inter-rater reliability were calculated for both 

tasks among all participants. The small detectable difference (SDD) was established. The 

levels of ICC were interpreted according to the criteria shown in Table	   3:4 (Coppieters, 

Stappaerts, Janssens, & Jull, 2002).  

 

Table 3:4 ICC values and corresponding levels  

	  

ICC Value Interpretation 

ICC < 0.40 Poor 

0.40 ≤ ICC < 0.70 Fair 

0.70 ≤ ICC < 0.90 Good 

ICC ≥ 0.90 Excellent 
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3.1.3.4  Results 

 Each subject was tested for each task (SLS and SLL) over three different sessions. The 

first and second sessions were on the same day (within-session); the third session was one 

week later (between-session). Intraclass correlation coefficients (ICCs) were calculated to 

determine within-session and between-sessions reliability.  

• 2D reliability within-session 
	  

In SLS, 2D FPPA measurements demonstrated good within-session reliability (ICC = 

0.72, 95% CI = 0.086–0.915). 2D HADD also demonstrated good within-session reliability 

(ICC = 0.911, 95% CI = 0.710–0.973). For SLL, within-session reliabilities were (ICC = 

0.871, 95% CI = 0.576–0.961) and (ICC = 0.893, 95% CI = 0.649–0.967) for FPPA and 

HADD respectively. 

• 2D reliability between-session 
	  

In SLS, 2D FPPA measurements showed good between-session reliability (ICC = 0.869, 

95% CI = 0.569–0.960).  2D HADD also demonstrated good between-session reliability 

(ICC = 0.792, 95% CI = 0.319 - 0.937). For SLL, between-session reliabilities were (ICC = 

0.872, 95% CI = 0.581–0.961) and (ICC = 0.859, 95% CI = 0.538–0.957) for FPPA and 

HADD respectively.  

SLS SLL 

Within-session 
reliability 

Between-session 
reliability 

Within-session 
reliability 

Between-session 
reliability 

FPPA HADD FPPA HADD FPPA HADD FPPA HADD 

ICC = 
0.72 

ICC = 
0.911 

ICC = 
0.869 

ICC = 
0.792 

ICC = 
0.871 

ICC = 
0.893 

ICC = 
0.872 

ICC = 
0.859 

95% CI = 
0.086 to 
0.915 

95% CI = 
0.710 to 
0.973 

95% CI = 
0.569 to 
0.960 

95% CI = 
0.319 to 
0.937 

95% CI = 
0.576 to 
0.961 

95% CI = 
0.649 to 
0.967 

95% CI = 
0.581 to 
0.961 

95% CI = 
0.538 to 
0.957 

Table 3:5 2D reliability results; within-session and between session 

	  

• Intra-reliability 
	  

Intra-reliability for the first tester was calculated in SLS and SLL. This tester had to 

analyse the 2D videos of all subjects for a second time to measure FPPA and HADD. The 
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correlation was found to be very large between the two measurements for both variables in 

both tasks. In SLS, FPPA and HADD reported correlations were (ICC = 0.991) and (ICC = 

0.987) respectively. In SLL, FPPA and HADD correlations were (ICC = 0.990) and (ICC = 

0.967) respectively.   

• Inter-reliability 
	  

Inter-reliability between two testers was assessed in both tasks. The second tester was 

asked to analyse 2D videos of all subjects to measure FPPA and HADD. In SLS, the 

correlation was found to be very large for both variables. FPPA and HADD reported 

correlations were (ICC = 0.974) and (ICC = 0.962) respectively. In SLL, FPPA and HADD 

were found to be very correlated, with (ICC = 0.988) and (ICC = 0.985) respectively. 

SLS SLL 

Intra-reliability Inter-reliability Intra-reliability Inter-reliability 

FPPA HADD FPPA HADD FPPA HADD FPPA HADD 

0.991 0.987 0.974 0.962 0.990 0.967 0.988 0.985 

Table 3:6 2D Inter- and intra-reliability “ICC” results 

• Standard Error of Measurement (SEM): 
	  
The standard error of measurement was calculated for all variables using the formula SEM = 

SD (pooled) x (√1-ICC) (Thomas, Nelson, & Silverman, 2005). The SEM for this study was 

very low, which gives more confidence to the findings of the results using the 2D tool. 

SLS SLL 

Within-session Between-sessions Within-session Between-sessions 

FPPA HADD FPPA HADD FPPA HADD FPPA HADD 

1.41º 0.37º 0.69º 0.93º 0.43º 0.32º 0.40º 0.43º 
Table 3:7 2D Standard Error of Measurement 

	  

• Small Detectable Difference (SDD): 
 

According to Denegar and Ball (1993), genuine changes can be distinguished from 

erroneous measurements by using the standard	   error	   of	   measurement. Nevertheless, 
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Atkinson and Nevill (1998) and Thomas et al. (2005) noted that as little as 68% of all test 

scores come within one SEM of the correct score, in contrast to the frequently employed 

benchmark of 95%.Therefore, the SDD statistic has been used to determine the amount of 

change needed to signify statistical significance (Atkinson & Nevill, 1998; Eliasziw, Young, 

Woodbury, & Fryday-Field, 1994). It has been known as the minimum value that should be 

exceeded to distinguish between random errors in measurement and a real change in 

performance score (Atkinson & Nevill, 1998; Eliasziw et al., 1994). Hence, in the present 

work, the SDD was calculated according to the formula cited by Kropmans, Dijkstra, 

Stegenga, Stewart, and de Bont (1999): SDD = 1.96 * (√2) * SEM.  

Eliasziw et al. (1994) argue that, as the product of the standard normal distribution and 

the SEM, the SDD provides improved accuracy over the 95% confidence benchmark of the 

SEM, with a difference between two measurements that is larger than the SDD being 

regarded as statistically significant. This provides clinicians with enhanced understanding in 

the assessment of changes observed during intervention, rehabilitation or training. 

SLS SLL 

Within-session Between-sessions Within-session Between-sessions 

FPPA HADD FPPA HADD FPPA HADD FPPA HADD 

3.91° 1.03° 1.91° 2.58° 1.19° 0.89° 1.11° 1.19° 
Table 3:8 Small Detectable Differences 

	  

3.1.3.5  Conclusion 

2D is found to be a reliable method of testing the lower limb kinematics within and 

between sessions. Also, it has good intra- and inter-reliability with low standard error of 

measurements and small detectable difference values.   
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3.2 The 2D Validity and Reliability Discussion  
 

The present study showed that SLS and SLL tasks are reliable within days and 

between days. This supports the work of Munro, Herrington, and Carolan (2012) for both 

tasks and Gwynne and Curran (2014) for SLS. The within-day reliability in the present study 

for FPPA in SLS was 0.72, whereas it was 0.59–0.86 in the study by Munro, Herrington, and 

Carolan (2012) and 0.86 for Gwynne and Curran (2014). The between-day reliability in the 

present study for FPPA in SLS was 0.87, whereas it was 0.72–0.82 for Munro, Herrington, 

and Carolan (2012) and 0.74 for Gwynne and Curran (2014). However, the within-reliability 

in the present study of FPPA in SLL was 0.87 compared with 0.75–0.79 in Munro, 

Herrington, and Carolan (2012) and the between-day reliability was 0.87 compared with 

0.8–0.82 for Munro, Herrington, and Carolan (2012). The present study showed that 

between-days reliability was slightly higher than the within-days reliability. The reason for 

this was not clear. However, it can be partially explained by the larger confidence intervals 

for within day, although there was no significant difference in mean scores. Generally, the 

SEM in the current study (see Table	   3:7) was less than those reported by Munro, 

Herrington, and Carolan (2012), which ranged between 2.72° and 3°, and by Gwynne and 

Curran (2014), whose SEM ranged between 2° and 3.8° in both tasks.  

 

No studies have investigated the SLS and SLL intra and inter-reliability, and no work 

has been done to examine the hip adduction angle reliability. Therefore, reporting these 

results was one of the main contributions of this study. However, a recent study by Tate, 

True, Dale, and Baker (2015) was published after the present study was finished, showing 

the inter- and intra-reliability of FPPA during SLS ranging between 0.91 and 0.96, which 

was a similar range to that of the present study (0.97–0.99). Another recent study by Ugalde, 

Brockman, Bailowitz, and Pollard (2015) reported a smaller inter-reliability ranging between 

0.45 and 0.72. The smaller inter-reliability might be due to the inclusion of certified athletic 

trainers rather than a physiotherapist, so the level of training and experience might have 

influenced the result. The findings of the present paper along with those of Gwynne and 

Curran (2014) and Munro, Herrington, and Carolan (2012) indicate that the methods used 

are sufficiently robust to provide reliable results across multiple testers and time points, 

which opens up the possibility of using these tests in multi-centre trials.  
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Regarding the validity, only a few studies have investigated the association between 

2D and 3D knee and hip motion during functional tasks (Gwynne & Curran, 2014; McLean, 

Huang, & van den Bogert, 2005; Sorenson et al., 2015; Willson & Davis, 2008). When 

assessing similar tasks, Willson and Davis (2008) found a moderate relationship during SLS 

of FPPA to knee abduction angle assessed with the 3D system (r = 0.48), which was smaller 

than the present study finding (r = 0.66, p < 0.008). Also, Gwynne and Curran (2014) found 

a strong relationship between FPPA and 3D knee abduction angle (r = 0.78) during SLS 

which is stronger than the present study finding. However, the present study found no 

correlation between SLL FPPA and 3D knee valgus whereas a study by Sorenson et al. 

(2015) found that FPPA had a strong relationship to 3D knee abduction angle (r = 0.72) 

during single leg drop jump at initial contact, which is the opposite of the present study 

finding (r = 0.075, p < 0.79). 

 

When the findings from the literature are considered with ours, it would appear that 

both FPPA and HADD measured using 2D video have a strong relationship with comparable 

measurements using 3D motion capture, especially for less complex and dynamic tasks such 

as SLS. The difference in validity between the two tasks (SLS and SLL) might be due to the 

difference between the tasks and their impact on matching the exact moment of maximum 

knee flexion angle. FPPA was captured at the point of maximum flexion; however, because 

of the different capture speeds of the two systems, during the high-speed task of SLL, the 

poor correlation could relate to an inability to measure at exactly the same knee flexion 

point. During the slower task of SLS, it is more likely that the two systems coalesce.  

The present study has some limitations as with other 3D motion capture studies using 

external marker sets, as the skin-movement artefact has the potential to influence the data. 

Different markers were used for measurement for the two systems, which again could have 

led to systematic error. Future research should perhaps consider using the same markers and 

taking care to measure at the same points. Further research is needed to identify whether 

these findings extend to analyses performed using clinical techniques, as well as during other 

activities such as bilateral leg landings, cutting activities, and other dynamic tasks. 

Moreover, the inter-rater reliability in this study assessed only the agreement between the 

two assessors in extracting the relevant angles from the 2D videos. The potential sources of 

inter-rater error could be: (1) placement of the markers; (2) digitisation of the markers; (3) 

measurement of the angles. The inter-tester reliability in this study tested only the last two 
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sources; it did not assess the first source.  

The present study adds to the growing body of evidence suggesting that 2D video 

analysis of a variety of single leg tasks has a reasonable association to what is being 

measured using 3D motion capture. The findings of this study also show that the approach 

has good reliability, within and between sessions and also between examiners.  
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Chapter 4: Performance of Biomechanical Tasks Across a Season 

4.1 Introduction 
 
 Assessment of functional athletic tasks has become increasingly used in recent years to 

predict knee injuries and to provide an outcome measure for evaluating athletes who are 

returning from injury (Delextrat & Cohen, 2008; Hewett et al., 2005; Munro, Herrington, & 

Carolan, 2012). These functional tasks have been studied and found to be valid and reliable 

in measuring the lower limb kinematics as discussed in the method chapter (Willson & 

Davis, 2008). Although many studies have examined the relationship of the performance of 

these tasks to lower limb injuries, there have been no studies to investigate the performance 

change across time and its relation to injury, and the factors related to performance change. 

Also, the performance difference between dominant and non-dominant legs has not been 

studied. That being the case, it is very important to investigate the task performance over 

time to see where this could be linked to the different rate of lower limb injuries that occur at 

different times during the sports season, assuming that there is a link between performance 

and injury. A few studies have reported the incidence rate of sports injuries across the 

season, and have reported different incidence rate for injuries across the season, and across 

match and training time. In a four-year study of ACL injury incidence, Dodson et al. (2016) 

reported the highest rate of injuries during the pre-season practice and games. In another 

four-year study, Bradley et al. (2002) reported the same pattern of highest ACL injuries 

during the pre-season practice and games. Even though these studies included both contact 

and non-contact ACL injuries, it remains important to study the performance change over 

time and its relation to injuries and how that could contribute to injury prevention 

programmes, and to determine whether the relative risk of injury depends on changes in 

performance over time. 

 

4.2 Methods 

4.2.1 Participants 
	  
 All participants in the study are male football players aged 16-30 years old. Data were 

collected during some of the typical athletic tasks described in section 4.2.5. The inclusion 

criteria outlined in the next part refer to the form in Appendix 1.    
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4.2.2 Sample size 
	  
 Louw et al. (2008) conducted a systematic review that reported that prevalence of 

knee injuries was 10–25% of sports injuries in active adolescents. It is impossible to use the 

formal sample size calculation due to the lack of information in the prospective studies of 

knee injuries risk factors. None of the studies used in the systematic review were prospective 

studies. Moreover, a limited number of prospective studies of knee injuries incidence have 

been conducted using sample sizes varying from 268 to 890 subjects per season (Gomez, 

DeLee, & Farney, 1996; Junge, Cheung, Edwards, & Dvorak, 2004; Junge, Chomiak, & 

Dvorak, 2000; Messina, Farney, & DeLee, 1999; Pasque & Hewett, 2000). Therefore, 200 

subjects might report at least 20–50 knee injuries during one sports season, which might 

fulfil these study objectives. However, it proved impossible to recruit such a large number of 

subjects, for reasons that will be mentioned in the discussion (section 4.4).  

 

4.2.3 Inclusion/Exclusion Criteria:  
	  
1.    Male aged 16–30 years old.  

2.    Football player (participates in professional sports team). 

3.    Has not had a significant injury in the lower limbs in the previous six months. 

‘Significant injury’ is defined as an injury that prevented him from attending five 

consecutive training sessions. 

4.    Is able to do single leg squat and single leg landing tasks independently without aids. 

5.    The form in Appendix 4 is to assess the general health of participants. If any participant 

answers yes to any of the questions, they were asked to provide a letter from their GP before 

being allowed to participate in this study.  

The form in Appendix 1 is to assess the participant’s history of injuries. If any participant 

answers yes to the question ‘Has this injury prevented you from attending five consecutive 

training sessions?’, he was excluded. 

 

4.2.4 Screening tools  
	  
 2D and 3D are the standard tools that have been used to identify people at higher risk 
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of knee injuries in the literature. Each tool has advantages and disadvantages. The 3D system 

has been used as the gold standard in identifying athletes at higher risk of injury (Munro, 

Herrington, & Carolan, 2012).  

 The 3D system has some disadvantages that made it inappropriate for use in this study.  

The between-sessions reliability of the 3D system in prospective studies is still questioned 

due to the error sensitivity in marker placement and skin movement (Cappozzo, Catani, 

Leardini, Benedetti, & DellaCroce, 1996; Ford et al., 2007). Another important reason for 

not using the 3D system is the time needed for data collection and analysis for this large 

screening study. These disadvantages have created a gap between research and clinical 

practice because assessing the players usually happens in the sports clubs and clinics where a 

simpler and easier tool such as the 2D system is required. Therefore, investigating the 

capability of the 2D technique to identify athletes who are at higher rate of injury will make 

this simpler tool more usable at sports clubs and clinics. Moreover, specifically for this large 

screening study, bringing subjects to the 3D facility lab is impractical due to the large 

number of participants and the number of test sessions.  

 2D is the other tool that has been used to identify people at higher risk of knee injuries. 

The frontal plane projection angle (FPPA) has been used for this purpose (McLean, Walker, 

et al., 2005; Mizner et al., 2012; Willson & Davis, 2008). The validity of the FPPA method 

in relation to 3D has been investigated during some sports functional tasks (McLean, 

Walker, et al., 2005; Willson & Davis, 2008). FPPA was found to be significantly correlated 

(r = 0.72) with the knee valgus angle in 3D during single leg drop jump landing at initial 

contact, which might represent the SLL (Sorenson et al., 2015). Moreover, McLean, Walker, 

et al. (2005) found that FPPA was significantly correlated with peak 3D knee valgus angles 

(r = 0.58–0.64) during side step and side jump. Willson and Davis (2008) found that 2D 

FPPA was significantly correlated with 3D hip adduction (r = 0.32) and knee external 

rotation angles (r = 0.48) during SLS. Additionally, Herrington, Alenezi, Alzhrani, Alrayani, 

and Jones (2017) found that 2D FPPA has a large correlation with knee abduction angle in 

3D (r = 0.66) during single leg squatting. In conclusion, 2D FPPA may be useful to identify 

athletes at high risk of knee injuries (See chapter 3 for the validity and reliability study).  

 The reliability of the 2D method was investigated within and between sessions. 

Herrington et al. (2017) found a strong reliability within and between sessions during single 

leg squatting (SLS) and single leg landing (SLL). They also reported large intra-rater and 
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inter-rater reliability; and very low SEM. Moreover, Willson et al. (2006) reported good 

within-session reliability of 2D FPPA. 

 All data was collected using two digital cameras (2D analysis), which were provided 

by the School of Health and Sciences at the University of Salford. Other tools used in the 

study include a 28-cm step and collaboration triangle.   

 

4.2.5 Athletic tasks  
	  

• Single-Leg Squat  

 Subjects were asked to stand on one leg, facing the video camera. They were asked to 

squat down as far as possible, to at least 60° but no greater than 80°, for five seconds, for 

five trials. The knee flexion angle was checked during practice trials using a standard 

goniometer, and then observed by the same examiner throughout the trials. There was also a 

counter for each participant over this five-second period, in which the first count initiates the 

movement, the third indicates the lowest point of the squat, and the fifth indicates the end. 

This standardised the test for all participants, thereby reducing the effect of velocity on knee 

angles. Trials were only accepted if the subject squatted to the minimum desired degree of 

knee flexion and maintained balance throughout (Herrington, 2014). Both legs performed 

same task.  

• Single-Leg Landing 

 Subjects dropped from a 28-cm step, again leaning forward and dropping as far 

vertically as possible. They were asked to take a unilateral stance on the contralateral limb 

and to step forward to drop onto the floor corresponding to the landing leg, ensuring that the 

contralateral leg makes no contact with any other surface, for five trials (Munro, Herrington, 

& Carolan, 2012). Both legs were tested. 

 

4.2.6 Study Procedure  
	  
 For each subject, hip angle and knee frontal plane projection angle (FPPA) data was 

recorded for the right and left leg during the execution of SLS and SLL. Subjects were asked 



	  
	  

77	  

to perform five successful trials for each task and for each leg, and a successful trial required 

the movement to occur in the field of the 2D camera. The 

videotaping recorded the subject trunk and lower limbs only. A 

commercially available digital video camera (Sony Handycam 

DCR- HC37, Sony Corp, Tokyo, Japan) sampling at 30 fps was 

used. The camera was placed at the height of 60 cm from the floor, 

2 m anterior to the subject’s landing target, and was aligned 

perpendicular to the frontal plane (Herrington & Munro, 2010). 

Markers were placed at the midpoint of the ankle malleoli for the 

centre of the ankle joint, the midpoint of the femoral condyles to 

approximate the centre of the knee joint, and on the both anterior 

superior iliac spines (ASIS) (Willson et al., 2006). FPPA of the 

knee and hip angle were measured using Quintic Biomechanics software (version 26). FPPA 

was defined as the angle subtended between the line from the markers on the ASIS to the 

knee joint and the line from the knee joint to the ankle. The hip angle was defined as the 

angle between the line from the marker on the ASIS to the knee joint and the line connecting 

both ASISs. Both FPPA and hip angle were measured at the frame, which represents the 

point of maximum knee flexion. This was determined as the lowest point of the squat and 

landing tasks. 

 The data was collected as explained previously (pre-season, start-season, and end-

season) during the football season of 2015–16. All data collected in all three sessions was 

compared and studied among all participants. Data of players who suffered injuries during 

the season was collected and are presented in chapter 6. All the testing and data collection 

have been done in the location of the participating teams. The full procedure including data 

collection and angle calculation from the videos have been done by a physiotherapist “author 

of this thesis” who has a 9 years of experience in sport physiotherapy. The injuries data was 

collected from the team’s records for the full season. 

 

 

Table 4:1 Data collection timing   

	    

Pre-season collection July, 2015 
Start-season collection  August ‘week 1-4’; 2015 
End-season collection  April ‘week 36-40’; 2016 

Figure 4:1 A Frontal view of the 

procedure set up as in (adapted 

from Gwynne and Curran, 2014 
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4.2.7 Participants table  
	  
      Four professional football clubs were involved in this study from the northwest of 

England. A total of 124 footballers consented to take part but only 90 met the inclusion 

criteria. The players’ average age was 18.8±4 years, height 179.2±6 cm and weight 73.3±6 

kg. 14 players are left leg dominant; the others are right leg dominant. 

	  
	   Team1	   Team2	   Team3	   Team4	   Total	  
Consent	  to	  participate	   29	   28	   29	   38	   124	  
Met	  the	  Criteria	   19	   17	   20	   34	   90	  
Pre-‐season	   19	   17	   20	   34	   90	  
Start-‐season	   18	   16	   17	   27	   78	  
End-‐season	   19	   17	   16	   18	   70	  

           Table 4:2 Table of participants  

4.2.8 Statistical analysis 
	  
 All statistical tests were conducted using IBM SPSS Statistics software version 23. 

Two-way repeated measures ANOVA were run to examine the task performance interaction 

between time and limb using the FPPA and hip angles as outcome measures for each task 

(SLS, SLL). For both outcome variables, analysis of the studentised residuals showed that all 

variables met the normality assumption, as assessed by the Shapiro–Wilk test and no 

outliers, as assessed by no studentised residuals greater than ± 3 standard deviations. The 

sphericity for the interaction term was assessed by Mauchly's test of sphericity. If p > 0.05, it 

meets the assumption of sphericity. If p < 0.05, it violates the assumption of sphericity and 

an epsilon (ε) correction method (Greenhouse–Geisser or Huynh–Feldt) was used to report 

the test result; the value closer to 1 was used because it means less violation. 

If the two-way repeated measures ANOVA were statistically significant in 

(time*limb) interaction, one-way repeated measure ANOVA was used to compare the 

difference over time, and t-tests were used to compare differences between limbs (dominant, 

non-dominant); and between any two screening sessions (pre-season, start-season, end-

season). In contrast, if the two-way repeated measures ANOVA showed no statistical 

significance in (time*limb) interaction, the main simple effect for each factor alone (limb, 

time) can be used to examine the difference significance overall for each factor. Then, t-tests 

were used to compare differences between limbs (dominant, non-dominant); and between 

any two screening sessions (pre-season, start-season, end-season) if the factor of overall 

differences was statistically significant.  
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4.3 Results  
	  

4.3.1 Performance descriptive statistics  

The descriptive statistics show the means and standard deviations for FPPA and hip 

angles for both legs in both tasks, for each screening session. It is important to mention that 

the negative mean indicates the valgus angle and the positive mean indicates the varus angle. 

Also, a lower hip angle means greater hip adduction. The players with missing data (due to 

error or absence) at each screening session were excluded and the new number of 

participants was reported.  

 

4.3.2 Pre-season performance  

SLS 

Dominant FPPA (n = 88) averaged -4.35°±9.48 whereas non-dominant FPPA 

averaged -0.64°±8.28. Also, the dominant hip angle (n = 88) averaged 73.15°±8.95, whereas 

the non-dominant hip angle averaged 74.53°±8.13. 

SLL 

Dominant FPPA (n = 88) averaged -5.02°±7.89, whereas the non-dominant FPPA 

averaged -2.30°±7.82. Also, the dominant hip angle (n = 88) averaged 80.91°±6.20, whereas 

the non-dominant hip angle averaged 81.58°±5.99. Figure	   4:2 shows the pre-season 

performance for both tasks in both legs. 

	  
Figure 4:2 Pre-season performances for FPPA & Hip angle 
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4.3.3 Start-season performance  

	  
	  

SLS 

Dominant FPPA (n = 77) averaged -4.30°±9.47, whereas the non-dominant FPPA 

averaged -0.78°±7.77. Also, the dominant hip angle (n = 77) averaged 73.33°±8.06, whereas 

the non-dominant hip angle averaged 75.85°±7.10. 

 

SLL 

Dominant FPPA (n = 75) averaged -2.82°±8.69, whereas the non-dominant FPPA 

averaged 0.04°±7.65. Also, the dominant hip angle (n = 75) averaged 82.19°±6.30, whereas 

the non-dominant hip angle averaged 83.72°±5.11. Figure	   4:3 shows the start-season 

performance for both tasks in both legs. 

 

	  
Figure 4:3 Start-season performances for FPPA & Hip angle 

	  
	  

4.3.4 End-season performance  

	  
SLS 

Dominant FPPA (n = 67) averaged -2.84°±7.71, whereas the non-dominant FPPA 

averaged -1.25°±8.40. Also, the dominant hip angle (n = 67) averaged 73.47°±7.93, whereas 

the non-dominant hip angle averaged 74.94°±6.98. 
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SLL 

Dominant FPPA (n = 65) averaged -1.69°±8.52, whereas the non-dominant FPPA 

averaged 2.54°±8.15. Also, the dominant hip angle (n = 65) averaged 83.55°±5.03, whereas 

the non-dominant hip angle averaged 85.39°±5.55. Figure	   4:4 shows the end-season 

performance for both tasks in both legs. 

 

	  
Figure 4:4 End-season performances for FPPA & Hip angle 

 

Statistical testing: 

The two-way repeated measures ANOVA revealed no statistically significant 

interaction between limb and time in both SLS-FPPA and SLS-hip angle performance: F (2, 

124) = 1.86, p < 0.16 and F (2, 124) = 0.17, p < 0.85, respectively. However, the main 

simple effect in SLS-FPPA was statistically significant in limb, F (1, 62) = 8.07, p < 0.006 

but not in time F (2, 124) = 0.91, p < 0.40, whereas the main simple effect for limb and time 

in SLS-hip angle performance was statistically significant, F (1, 62) = 5.11, p < 0.027 and F 

(2, 124) = 3.43, p < 0.035 respectively.  

Also, the two-way repeated measures ANOVA revealed no statistically significant 

interaction between limb and time in both SLL-FPPA and SLL-hip angle performance: F (2, 

118) = 2.59, p < 0.079 and F (2, 118) = 1.37, p < .257, respectively. However, the main 

simple effect in SLL-FPPA was statistically significant in time, F (2, 118) = 16.30, p < 

0.0005 but not in limb F (1, 59) = 3.76, p < 0.057. Also, the main simple effect in SLL-hip 

was statistically significant in time, F (2, 118) = 17.93, p < 0.0005 but not in limb F (1, 59) = 

1.51, p < 0.224. 
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4.3.5 Effect of Limb  

	  
The two-way repeated measures ANOVA found no statistically significant 

interaction between time and limb in SLS-FPPA, SLL-FPPA, SLS-hip and SLL-hip angles 

performance, but the simple main effect for leg was statistically significant in SLS-FPPA 

and SLS-hip angles. Therefore, multiple paired t-tests were run to investigate the 

performance differences between limbs (dominant, non-dominant) for SLS-FPPA and SLS-

hip in each screening session. The alpha level of (α = 0.05) was adjusted to (α = 0.05/3 = 

0.017) for multiple comparisons. Also, multiple paired t-tests were run to investigate the 

performance differences between limbs for SLL-FPPA and SLL-hip even where no 

statistical significant difference was found in the repeated measure test results. This is 

because the repeated measure test did not include 33% of the players as it includes only the 

players who have attended all three screening sessions, while we are studying each screening 

session alone.  

 

Table	  4:3 and Table	  4:4 show the statistical tests result of	  difference	  between legs 

for FPPA & hip angle for SLS and SLL tasks, respectively, for each screening session. 

 

Screening 

session 
In SLS 

Dominant 

leg 

M±SD 

Non-

dominant 

leg 

M±SD 

Stat. test 

Mean 

Difference 

±SD 

P value 
Confidence 

interval 

Pre-season 

 

FPPA -4.35°±9.48° -0.64°±9.12° t(87)= -3.84 -3.71°±9.07 0.0005* -5.64° to -1.79° 

Hip angle 73.15°±8.28° 74.53°±8.13 t(87)= -1.94 -1.37°±6.64 0.055 -2.78° to 0.03° 

Start-season 

 

FPPA -4.30°±9.47° -0.78°±7.77 t(76)= -3.10 -3.52°±9.95 0.003* -5.78° to -1.26° 

Hip angle 73.33°±8.06° 75.85°±7.10° t(76)= -3.07 -2.52°±7.20 0.003* -4.15° to -0.89° 

End-season 

 

FPPA -2.84°±7.71° -1.25°±8.40 t(66)= -1.29 -1.58°±9.99 0.199 -4.01° to 0.85° 

Hip angle 73.47°±7.93° 74.94°±6.98° t(66)= -1.88 -1.47°±6.40 0.064 -3.03° to 0.09° 

Table 4:3 Results of statistical tests of difference between legs for SLS-FPPA & SLS-hip angle 
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Screening 

session 
In SLL 

Dominant 

leg 

M±SD 

Non-

dominant 

leg 

M±SD 

Stat. test 

Mean 

Difference 

±SD 

P value 
Confidence 

interval 

Pre-season 

 

FPPA -5.02°±7.89 -2.30°±7.82 t(87)= -2.64 -2.72°±9.65 0.010* -4.76 to -0.67 

Hip angle 80.91°±6.20 81.58°±5.99 t(87)= -0.98 -0.67°±6.46 0.33 -2.04 to 0.70 

Start-season 

 

FPPA -2.82°±8.69 0.04°±7.65 t(74)= -2.72 -2.86°±9.13 0.008* -4.96 to -0.76 

Hip angle 82.19°±6.30 83.72°±5.12 t(74)= -2.29 -1.53°±5.80 0.025 -2.86 to -0.20 

End-season 

 

FPPA -1.69°±8.52 2.54°±8.16 t(64)= -3.02 -4.23°±11.28 0.004* -7.02 to -1.43 

Hip angle 83.55°±5.03 85.39°±5.55 t(64)= -2.14 -1.83°±6.93 0.03 -3.55 to -0.11 

Table 4:4 Results of statistical tests of difference between legs for SLL-FPPA & SLL-hip angle 

	  
In summary, the results show a statistical significant difference between dominant 

and non-dominant leg FPPA in all the screening sessions for both tasks except at end-season 

screening for SLS. The dominant leg FPPA was more valgus than the non-dominant leg in 

all screening sessions for both tasks. However, the results revealed no statistical significant 

difference between the dominant and non-dominant leg hip adduction angle in all the 

screening sessions for both tasks except in start-season screening for SLS. The dominant hip 

was more adducted (had a smaller hip angle) than the non-dominant hip in all the screening 

sessions for both tasks. 

 

4.3.6 Effect of Time 

	  
Prior to reporting the statistical analysis results, Figure	  4:5 visualize the descriptive 

results of dominant leg performance over time (between sessions) for FPPA and hip angle 

for both tasks (SLS & SLL). Figure	  4:6 visualize the descriptive results for non-dominant 

leg performance. 
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Figure 4:5 Dominant leg performances over time (between sessions) FPPA & hip angle 

	  

	  
Figure 4:6 Non-dominant leg performances over time (between sessions) FPPA & hip angle 

The two-way repeated measures ANOVA found no statistically significant 

interaction between time and limb in SLS-FPPA, SLL-FPPA, SLS-hip and SLL-hip angles 

performance, but the simple main effect for time was statistically significant in SLS-hip, 

SLL-FPPA and SLL-hip angles. Therefore, multiple one-way repeated measure ANOVA 

was used to investigate the differences over time for each variable alone. A multiple paired t-

test was run to investigate the performance differences between every two screening sessions 

for both legs of SLS-hip, SLL-FPPA and SLL-hip. The alpha level of (α = 0.05) was 

adjusted to (α = 0.05/3 = 0.017) for multiple comparisons.   
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Table	  4:5 shows the results of one-way repeated measure ANOVA of every variable 

alone to see which variable has a significant difference over time excluding the SLS-FPPA 

as the two-way repeated measure showed no significant interaction between time and limb. 
 

Screening Variable Leg 
Pre-season 

mean 

Start-season 

mean 

End-season 

mean 
Stat. Test P value 

SLS Hip angle 
Dom. 72.14°±9.03 73.78°±8.11 73.52°±8.15 F(2,124)= 2.25 0.19 

Non-Dom. 73.63°±9.03 75.67°±7.20 74.93°±7.15 F(2,124)= 2.81 0.06 

SLL 

FPPA 
Dom. -3.91°±8.11 -1.76°±8.65 -1.49°±8.67 F(2,120)= 4.76 0.010* 

Non-Dom. -2.43°±8.72 -0.45°±7.58 2.31°±8.35 F(2,118)= 14.63 0.0005* 

Hip angle 
Dom. 81.65°±6.14 82.63°±6.10 83.66°±5.08 F(2,120)= 6.03 0.003* 

Non-Dom. 82.03°±6.16 83.52°±5.23 85.37°±5.67 F(2,118)= 14.82 0.0005* 

Table 4:5 Results of performance change over time for FPPA & hip angle in both tasks. 

 

The following tables show the performance differences between each two screening 

sessions (pre-season to start-season, start-season to end-season, and pre-season to end-

season). 

Pre-season to start-season differences  

 Table	  4:6 shows the results	  of	  statistical	  tests	  of	  change	  of	  performance	  between	  
pre-‐season	  and	  start-‐season. 

Screening Leg  
Pre 

M ±SD 

Start 

M ±SD 
Stat. test 

Mean 

difference ±SD 
P 

value 

Confidence 

interval 

Pre 

To 

Start 

change 

S

L

S 

Dom. 
Hip 

angle 
72.98°±8.60 73.33°±8.06 t(76)= -0.40 -0.35°±7.56 0.68 -2.07 to 1.36 

Non-

Dom. 

Hip 

angle 
74.38°±8.55 75.85°±7.10 t(76)= -1.78 -1.47°±7.26 0.07 -3.12 to 0.17 

S

L

L 

Dom. 

FPPA -4.78°±8.15 -2.77°±8.65 t(75)= -2.99 -2°±5.86 0.004* -3.35 to -0.67 

Hip 

angle 
80.99°±6.46 82.10°±6.30 t(75)= -2.13 -1.11°±4.55 0.037 -2.15 to -0.71 

Non-

Dom. 

FPPA -2.46°±8.23 0.04°±7.65 t(74)= -2.93 -2.50°±7.37 0.004* -4.19 to -0.80 

Hip 

angle 
81.60°±6.38 83.72°±5.12 t(74)= -3.50 -2.11°±5.24 0.001* -3.32 to -0.91 

Table 4:6 Results of differences between pre-season & start-season performance for FPPA & hip angle 
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Start-season to end-season differences 

 Table	  4:7 shows the results	  of	  statistical	  tests	  of	  change	  in	  performance	  between	  
start-‐season	  and	  end-‐season.	  

Screening Leg  
Start 

M ±SD 

End 

M ±SD 
Stat. test 

Mean 

difference ±SD 
P 

value 

Confidence 

interval 

Start 

To 

End 

Change 

S

L

S 

Dom. 
Hip 

angle 
73.78°±8.11 73.52°±8.15 t(62)= 0.37 0.26°±5.57 0.73 -1.14 to 1.66 

Non-

Dom. 

Hip 

angle 
75.67°±7.20 74.93°±7.15 t(62)= 0.90 0.74°±6.49 0.37 -0.89 to 2.37 

S

L

L 

Dom. 

FPPA -1.76°±8.65 -1.49°±8.67 t(60)= -0.28 -0.27°±7.54 0.78 -2.20 to 1.66 

Hip 

angle 
82.63°±6.10 83.66°±5.08 t(60)= -1.68 -1.03°±4.79 0.09 -2.26 to 0.20 

Non-

Dom. 

FPPA -0.45°±7.58 2.31°±8.35 t(59)= -3.13 -2.76°±6.84 0.003* -4.53 to -0.99 

Hip 

angle 
83.52°±5.67 85.37°±5.67 t(59)= -3.11 -1.85°±4.62 0.003* -3.05 to -0.66 

Table 4:7 Results of difference between start-season & end-season performance for FPPA & hip angle 

	  
Pre-season to end-season differences 

 Table	  4:8 shows the results	  of	  statistical	  tests	  of	  change	  in	  performance	  between	  

pre-‐season	  and	  end-‐season.	  

Screening Leg  
Pre 

M ±SD 

End 

M ±SD 
Stat. test 

Mean 

difference 

±SD 

P value 
Confidence 

interval 

Pre 

To 

End 

Change 

S

L

S 

Dom. 
Hip 

angle 
72.07°±8.89 73.47°±7.93 t(66)= -1.66 -1.40°±6.91 0.10 -3.09 to 0.29 

Non-

Dom. 

Hip 

angle 
73.49°±8.81 74.94°±6.98 t(66)= -1.79 -1.46°± 0.07 -3.08 to 0.17 

S

L

L 

Dom. 

FPPA -3.86°±7.93 -1.69°±8.52 t(64)= -2.73 -2.16°±6.38 0.008* -3.75 to -0.58 

Hip 

angle 
81.72°±5.97 83.55°±5.03 t(64)= -3.75 -1.83°±3.93 0.0005* -2.80 to -0.86 

Non-

Dom. 

FPPA -2.21°±8.48 2.54°±8.16 t(64)= -6.05 -4.74°±6.32 0.0005* -6.31 to -3.17 

Hip 

angle 
82.11°±5.97 85.39°±5.55 t(64)= -5.94 -3.27°±4.45 0.0005* -4.38 to -2.17 

Table 4:8 Results of difference between pre-season & end-season performance for FPPA & hip angle 
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 In summary, the overall FPPA and hip angle performance change over time was 

statistically significant for both legs, dominant and non-dominant, in SLL but not in SLS. As 

to possible differences between any two screening sessions, there were no statistically 

significant performance differences of either FPPA or hip angle in both legs (dominant and 

non-dominant) in SLS.  

 In SLL, the non-dominant leg showed statistically significant difference between every 

two screening sessions (pre-season to start-season, start-season to end-season, and pre-

season to end-season), whereas the dominant leg showed statistical significant difference 

both FPPA and hip angle between pre-season to end-season, and for FPPA in pre-season to 

start-season only.  

 

4.4 Discussion 
	  

The aim of this study was to investigate the performance difference between legs 

(dominant and non-dominant) and the performance consistency over time (pre-, start- and 

end-season) in professional footballers using the functional tasks of SLS and SLL. In 

general, the results revealed statistically significant difference between legs (dominant and 

non-dominant) of knee FPPA in both SLS and SLL. There were also significant differences 

between screening sessions (over time) in knee FPPA and hip angle performance in SLL but 

not in SLS. However, no previous studies have investigated the lower limb performance 

differences over time although some studies have reported the differences between legs on a 

single screening occasion (Herrington, 2011; Herrington & Munro, 2010; Munro, 

Herrington, & Comfort, 2012; van der Harst, Gokeler, & Hof, 2007). These studies 

investigated the differences between right and left legs, and not between dominant and non-

dominant legs (Herrington, 2011; Herrington & Munro, 2010; Munro, Herrington, & 

Comfort, 2012). 

 

In the present study, the performance difference between legs (dominant and non-

dominant) was clearly observed in all screening sessions in FPPA of SLL but not in hip 

angle. Also, the performance difference between legs was observed in SLS FPPA at pre-

season and start-season screening whereas the difference between hip angles was observed at 

start-season only. The dominant leg FPPA was more valgus than the non-dominant leg in all 
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screening sessions for both tasks. Moreover, the dominant hip was more adducted (had a 

smaller hip angle) than the non-dominant hip in all the screening sessions for both tasks. The 

difference between legs was always greater than the standard error of measurements, 

reported in the reliability study results in Table	  3:7 when significant differences were found 

(see Table	   4:3 and Table	   4:4). In this study, we defined the leg dominance based on the 

player’s answer to the question about which was their preferred kicking leg. However, the 

definition of leg dominance differs from one to another study in the literature (Svensson, 

Eckerman, Alricsson, Magounakis, & Werner, 2016). As mentioned previously, no previous 

studies have investigated the kinematic differences between legs according to leg 

dominance. In contrast, few studies have reported the knee and hip kinematic differences 

between legs according to localisation but found no significant differences between right and 

left legs in either sex (Herrington, 2011; Herrington & Munro, 2010; Munro, Herrington, & 

Comfort, 2012; van der Harst et al., 2007). Therefore, these results of performance 

difference between legs based on leg dominance constitute new information.  

It is important to understand the reason behind the observed differences in 

performance between legs to understand its possible use in screening players who are at high 

risk of knee injuries. It can be hypothesized that the reason behind this difference in FPPA 

performance can be related to the muscle strength difference because it is one of the 

important internal factors that could affect performance (Claiborne, Armstrong, Gandhi, & 

Pincivero, 2006; Lawrence, Kernozek, Miller, Torry, & Reuteman, 2008). However, current 

study did not collect the muscles strength, which leave this as a hypothesis only. Also, many 

previous studies have studied the muscle strength difference based on leg dominance (Burnie 

& Brodie, 1986; Masuda, Kikuhara, Takahashi, & Yamanaka, 2003; McCurdy & Langford, 

2005). These studies examined the muscle strength differences between legs in both open 

and closed kinetic chain tasks but found no difference in muscle strength between legs in 

both hip and knee. Therefore, this hypothesis might explain our finding regarding the hip 

angle where no differences in performance between legs were observed in both tasks except 

in SLS at start-season screening (Burnie & Brodie, 1986; Masuda et al., 2003; McCurdy & 

Langford, 2005). However, the assumption that the muscle strength is the reason behind the 

performance difference in hip angle does not fit with the FPPA performance in both tasks 

because we observed significant differences in FPPA performance.  

 

Previous studies found a negative correlation between muscle strength and knee valgus 

angle, which was correlated with the FPPA. Decreased hip abductors and external rotators 
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muscle strength were correlated with increased hip adduction angle, knee valgus and FPPA 

(Claiborne et al., 2006; Lawrence et al., 2008; Willson et al., 2006). Claiborne et al. (2006) 

found a significant but only weak correlation (r = -0.37) between knee valgus angle and 

concentric hip abduction muscles strength but not eccentric during SLS. In contrast, Willson 

et al. (2006) found a significant weak-to-moderate correlation (r = 0.4) between FPPA and 

isometric hip external rotation strength but not with hip abduction strength. However, the 

contrasting results of previous studies, the difference in subject sex (female) from the current 

study (male) and the level of activity was not reported, making it difficult to support or 

neglect this hypothesis about the findings of the present study. Future studies are needed to 

examine the relationship between FPPA and hip angle performance, and lower limb muscles 

strength during common athletic tasks for both legs and compare them. 

 

As to the performance differences over time (between sessions), SLS performance was 

consistent for both knee FPPA and hip adduction angle, which raises a question about SLS 

sensitivity when detecting changes and whether there is a performance ceiling effect or 

whether pre-season training has no impact on SLS performance. In contrast, SLL 

performance was significantly different over time for knee FPPA and hip angle. These 

different findings could be due to the nature of the tasks. The SLS task is a very simple test 

of knee alignment; SLL is more complex as the subject needs more muscle strength, 

activation and coordination to counter the ground reaction force during landing without 

losing balance or sustaining an injury (Blackburn & Padua, 2009; Cortes et al., 2007; 

Willson et al., 2006). However, knee FPPA of SLL decreased significantly from pre-

screening (dom. -3.91°; non-dom. -2.43°) to end-season screening (dom. 1.49°; non-dom. 

2.31°), meaning less knee valgus. Also, the hip angle of SLL increased significantly from 

pre-screening (dom. 81.65°; non-dom. 82.03°) to end-season screening (dom. 83.66°; non-

dom. 85.37°), meaning less hip adduction. Therefore, both knee FPPA and hip angle are 

moving away from the high risk of injury at the end of the season based on the findings of 

previous studies that have linked greater dynamic knee valgus to knee injuries (Hewett et al., 

2005).   

 

It is important to understand the reasons behind this pattern of performance change 

over the pre-season period, especially as there is no previous research into the performance 

change over time. However, previous studies have investigated the relationship between 

muscle strength, knee FPPA and hip angle. This was discussed above in terms of the 
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performance difference between legs. Another study found a significant reduction in knee 

FPPA for SLS after a four-week neuromuscular training programme, which might have 

mimicked the regular training of participating players in their teams as preparation for the 

season in the present study knowing that we did not collect any data about the training 

regimes (Olson, Chebny, Willson, Kernozek, & Straker, 2011). However, this assumption 

was made according to the regular training regimes for professional footballers but it is 

possible that some teams had done a plyometric training which might have secondary benefit 

on the score. In contrast, muscle fatigue could be another factor that affects the lower limb 

kinematics over time. Benjaminse et al. (2008) found a reduction in maximal knee valgus in 

single-leg stop-jump task after exercise-to-fatigue, which might be a reason for the present 

study finding of knee FPPA reduction from pre-season to end-season. Based on these studies 

it can be argued that the reason for the change in the present study findings over time could 

be due to the change in muscular strength either way during the sports season, though the 

previously presented argument above may refute this.  

While this is the case, the study findings of knee kinematics differences between legs 

and over time confirm the study hypothesis (mentioned in the introduction) but it is difficult 

to confirm the reasons for these findings due to the variety of factors that can affect the 

lower limb kinematics. As for the study limitations, we can argue that participants whom we 

were unable to follow due to injury or absence at screening time were one of the limitations. 

This factor might affect the total mean value and the number of participants included in the 

statistical test knowing that the statistical tests exclude the participants who missed any 

sessions, as we did the screening on three different occasions over one sports season. Not 

taking the muscle strength measurement for each leg in each screening session with 

kinematics measurements might have contributed to the difficulty in giving a clear 

explanation of the study finding and the role of muscle strength. Moreover, the wide range of 

players’ age (16–30) in the present study may have some effects on the results due to the 

increase in muscle strength and power assumed post-puberty (Barber-Westin et al., 2006; 

Wikholm & Bohannon, 1991), although some studies have reported no difference in knee 

valgus from pre- to post-puberty. Also, the expected percentage of immature players in this 

study is very low, which makes the age factor effects very minimal. 

 

The importance of this study is the finding that examining the performance of knee 

FPPA and hip angle in one leg or on one occasion is not sufficient to determine which 

athletes are at high risk of lower limb injuries due to the difference in performance between 
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legs and over time. A study of the relationship between injuries, and knee FPPA and hip 

angle performance difference between legs and over time, is necessary to confirm this 

hypothesis. Also, using the average value (mean) of performance difference between legs 

and over time to study the relationship with injuries could be misleading due to the 

variability in performance that was observed in this study even with equal average (mean) 

performance. This performance variability (within-subject and between-subjects) between 

legs and over time could be linked to the higher risk of injury. Future studies need to address 

the performance variability using the coefficient of variation to account for both the mean 

and standard deviation. Future studies also need to investigate the relationship between 

performance and performance variability with lower limb injuries. The issues of 

performance variability is addressed in the next chapter. 
 

4.5 Conclusion  
	  

The study findings show the performance difference in SLS and SLL between 

dominant and non-dominant legs, and how it changes over time. The performance of knee 

FPPA was significantly different between the dominant and non-dominant leg in both tasks. 

The knee was more valgus and the hip more adducted in the dominant leg than in the non-

dominant. The SLS performance was consistent over time whereas SLL was significantly 

different over time. These findings could suggest an important role for functional tasks 

performance variability in lower limb injuries and could open a new window in injury-

prevention efforts. Also, the importance of this study is the finding that examining the 

performance of knee FPPA and hip angle in one leg or on one occasion might not be 

sufficient to determine which athletes are at high risk of lower limb injuries.  
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Chapter (5) 

Variability In Biomechanical Tasks’ 

Performance Across a Season 
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Chapter 5: Variability In Biomechanical Tasks’ Performance 

Across a Season 

	  

5.1 Introduction  
	  

The athletic biomechanical tasks were used in both sports field and clinical settings. 

These tasks were used to predict athletes who are at higher risk of injury, and to assess the 

performance of those who are returning from injury (Delextrat & Cohen, 2008; Hewett et al., 

2005; Munro, Herrington, & Carolan, 2012). The reliability and validity of using these tasks 

with different screening methods have been discussed in both the literature and the 

methodology sections. Although many studies have investigated the performance of these 

tasks and their possible relationship to lower limb injuries (Hewett et al., 2005; Myer et al., 

2010; Willson et al., 2008), no studies have investigated the variability in kinematics 

performance, and the variability in performance and its possible relation to injuries. 

 

The Oxford English Dictionary defines variability as a lack of consistency or fixed 

pattern ("The Oxford English Dictionary online," 2017). Therefore, variability in movement 

can be defined as the amount of movement change recorded between subsequent repetitions 

within an individual (Preatoni et al., 2013). Recently, sports biomechanists have become 

interested in movement variability, and have started to investigate its importance in the 

analysis of sports movements (Bartlett et al., 2007; Preatoni et al., 2010; Preatoni et al., 

2013). Some studies have compared the performance-variability difference between 

symptomatic and asymptomatic individuals (Brown, Padua, Marshall, & Guskiewicz, 2009; 

Pollard et al., 2015). However, no studies have investigated the kinematics performance-

variability difference of athletic tasks between legs (dominant vs. non-dominant), and over 

time.  

 

The hypothesis of this study suggests that there is a performance-variability difference 

between legs and between sessions (over time). This hypothesis is derived from the 

importance of the performance consistency in athletic individuals where using the average 

performance is insufficient to show all the details of performance especially in high-level 

players (Preatoni et al., 2013). Also, reporting the performance average can sometimes be 
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misleading because of extreme scores on average value, and the possibility for two players to 

have same average score but with different variability [(2, 3, 4, 5, 6; avg. = 4) and (4, 4, 4, 4, 

4; avg. = 4)]. Moreover, according to our findings in chapter 4, which showed a performance 

difference between legs and over time, it is possible to find performance-variability 

differences between legs (dominant vs. non-dominant) and over time (pre-season, start-

season and end-season). Additionally, the performance variability might have a role in sports 

injury prediction (James et al., 2000) because of the performance-variability difference 

found between injured and uninjured players retrospectively (Brown et al., 2009; Pollard et 

al., 2015).  Therefore, it is important to examine the athletic tasks performance-variability 

difference within an individual “between legs and over time”, and the performance-

variability difference possible relationship to predict lower limb injuries prospectively.   

	  
	  

5.2 Methods  

5.2.1 Participants and Procedure 
	  

The same participants and procedure were used as described in chapter 4; please refer 

to chapter 4 sections 4.2.1 – 4.2.7.  

5.2.2 Statistical analysis  
	  
	  

The performance variability was calculated using the second-order coefficient of 

variation (V2) rather than the regular coefficient of variation (CV) due to its limitations 

(Kvålseth, 2016). These limitations have a significant impact on this study’s results. This is 

because the coefficient of variation becomes problematic when the data are both positive and 

negative; it generally lacks an upper bound so that interpretations of V values become 

difficult and meaningless (Kvålseth, 2016). Also, it is highly sensitive to outliers, and it is 

very much affected by the mean and errors or changes in the mean (Kvålseth, 2016). In 

contrast, the second-order coefficient of variation takes on values between 0 and 1, making 

interpretations intuitively simple and meaningful (Kvålseth, 2016). A value of 1 means 

highest variability; a value of 0 means no variability.  

	  
 All statistical tests were conducted using IBM SPSS Statistics software version 23. 

Two-way repeated measures ANOVA was used to examine performance variability 
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interaction between time and limb using the FPPA V2 and hip angle V2 as outcome 

measures for each task (SLS, SLL). For both outcome variables, analysis of the standardised 

residuals showed that all the variables were not normally distributed, as assessed by the 

Shapiro–Wilk test of normality except start-season non-dominant SLS-hip angle, pre-season 

dominant SLL-hip angle, pre-season non-dominant SLL-hip angle, and start-season non-

dominant SLL-hip angle. All statistical tests were carried out using non-parametric tests 

regardless of the four normally distributed variables, for better results reporting and 

interpretation knowing that this will not affect the results. As there is no non-parametric test 

alternative for two-way repeated measures ANOVA, a Friedman test was used which is the 

alternative for a one-way repeated measures ANOVA. This means that the interaction 

between time and limb cannot be calculated. Therefore, the Friedman test was used to assess 

the variability between sessions (over time). 

 Also, the Wilcoxon signed-rank test was used to compare differences between limbs 

(dominant and non-dominant), and between any two screening sessions (pre-season, start-

season, end-season) if the Friedman test was statistically significant. Otherwise, no further 

tests were used if the Friedman test showed no statistically significant difference. The sign 

test was used as an alternative to the Wilcoxon test when the assumption of distribution 

shape of the differences between the two related groups was not symmetrical. 

5.3 Results  

5.3.1 Performance variability descriptive statistics  

	  
As the data was not normally distributed, the descriptive statistics show the medians 

(Mdn) of the second-order coefficient of variation (V2) and interquartile range (IQR) for 

FPPA and hip angle for both legs (dominant and non-dominant) in both tasks, for each 

screening session. V2 represents the variability, so for example V2 = 0.5 signifies 50% 

variability.  

5.3.2 Pre-season performance variability 

SLS 

The dominant FPPA V2 (n = 88) has a median of 0.49 and IQR of 0.45, whereas the 

non-dominant FPPA V2 median is 0.58 and IQR of 0.50. Also, the dominant hip angle V2 (n 

= 88) has a median of 0.044 and IQR of 0.02, whereas the non-dominant hip angle V2 

median is 0.035 and IQR of 0.03. 
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SLL  

The dominant FPPA V2 (n = 88) has a median of 0.61 and IQR of 0.51, whereas the 

non-dominant FPPA V2 median is 0.70 and IQR of 0.47. Also, the dominant hip angle V2 (n 

= 88) has a median of 0.041 and IQR of 0.03, whereas the non-dominant hip angle V2 

median is 0.046 and IQR of 0.03. 

 Figure	  5:1 shows the median of pre-season performance variability	   (V2) for both 

tasks in both legs. 

 

	  
Figure 5:1 Pre-season performances variability (V2) for FPPA & hip angle 

	  
	  
5.3.3 Start-season performance variability 

	  
SLS 

The dominant FPPA V2 (n = 77) has a median of 0.49 and IQR of 0.48, whereas the 

non-dominant FPPA V2 median is 0.62 and IQR of 0.51. Also, the dominant hip angle V2 (n 

= 77) has a median of 0.040 and IQR of 0.03, whereas the non-dominant hip angle V2 

median is 0.036 and IQR of 0.03. 

 
SLL 

The dominant FPPA V2 (n = 75) has a median of 0.65 and IQR of 0.44, whereas the 

non-dominant FPPA V2 median is 0.76 and IQR of 0.46. Also, the dominant hip angle V2 (n 
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= 75) has a median of 0.045 and IQR of 0.02, whereas the non-dominant hip angle V2 

median is 0.043 and IQR of 0.03.  

Figure	  5:2 shows the median of start-season performance variability	  (V2) for both 

tasks in both legs. 

 

	  
Figure 5:2 Start-season performances variability (V2) for FPPA & hip angle 

 

5.3.4 End-season performance variability 

	  
SLS 

The dominant FPPA V2 (n = 67) has a median of 0.52 and IQR of 0.54, whereas the 

non-dominant FPPA V2 median is 0.49 and IQR of 0.64. Also, the dominant hip angle V2 (n 

= 67) has a median of 0.040 and IQR of 0.03, whereas the non-dominant hip angle V2 

median is 0.039 and IQR of 0.03. 

 
SLL 

The dominant FPPA V2 (n = 65) has a median of 0.68 and IQR of 0.30, whereas the 

non-dominant FPPA V2 median is 0.73 and IQR of 0.45. Also, the dominant hip angle V2 (n 

= 65) has a median of 0.038 and IQR of 0.02, whereas the non-dominant hip angle V2 

median is 0.040 and IQR of 0.03. Figure	  5:3 shows the median of end-season performance 

variability	  (V2) for both tasks in both legs. 
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Figure 5:3 End-season performances variability (V2) for FPPA & hip angle 

	  
	  

5.3.5 Within-session variability differences (Between limbs variability differences) 
	  

Wilcoxon signed-rank or sign tests were run to investigate the performance 

differences between limbs (dominant and non-dominant) for each screening time for each 

task as explained in the method part (section 5.2.2) previously. The alpha level of (α = 0.05) 

was adjusted to (α = 0.05/3 = 0.016) for multiple comparisons to avoid a type 1 error.  

 

Pre-season  

In SLS, a Wilcoxon signed-rank test showed no statistically significant difference for 

dominant SLS-FPPA V2 (Mdn = 0.49) compared with the non-dominant SLS-FPPA V2 

(Mdn = 0.58) at the pre-season screening, Z = 1.29, p = 0.196, a median difference of -0.09. 

Also, there was no statistically significant difference for dominant SLS-hip angle V2 (Mdn = 

0.044) compared with the non-dominant SLS-hip angle V2 (Mdn = 0.035) at the pre-season 

screening, Z = -0.031, p = 0.076, a median difference of -0.031.  

 

In SLL, a Wilcoxon signed-rank test showed no statistically significant difference for 

dominant SLL-FPPA V2 (Mdn = 0.61) compared with the non-dominant SLL-FPPA V2 

(Mdn = 0.70) at the pre-season screening, Z = 1.58, p = 0.114, a median difference of -0.09. 

Also, there was no statistically significant difference for dominant SLL-hip angle V2 (Mdn = 
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0.041) compared with the non-dominant SLL-hip angle V2 (Mdn = 0.046) at the pre-season 

screening, Z = 0.93, p = 0.351, a median difference of -0.005. 

 

Start-season  

In SLS, a Wilcoxon signed-rank test showed a statistically significant difference for 

dominant SLS-FPPA V2 (Mdn = 0.49) compared with the non-dominant SLS-FPPA V2 

(Mdn = 0.62) at the start-season screening, Z = 2.72, p = 0.006, a median difference of -0.13. 

In contrast, a sign test showed that there was no statistically significant difference for the 

dominant SLS-hip angle V2 (Mdn= 0.040) compared with the non-dominant SLS-hip angle 

V2 (Mdn = 0.036) at the start-season screening, Z = -0.0.68, p = 0.494, a median difference 

of 0.004.  

 

In SLL, a Wilcoxon signed-rank test showed no statistically significant difference for 

dominant SLL-FPPA V2 (Mdn = 0.65) compared with the non-dominant SLL-FPPA V2 

(Mdn = 0.76) at the start-season screening, Z = 1.18, p = 0.237, a median difference of -0.11. 

Also, there was no statistically significant difference for dominant SLL-hip angle V2 (Mdn = 

0.045) compared with the non-dominant SLL-hip angle V2 (Mdn = 0.043) at the start-season 

screening, Z = 0.14, p = 0.891, a median difference of 0.002. 

 

End-season  

In SLS, a Wilcoxon signed-rank test showed no statistically significant difference for 

dominant SLS-FPPA V2 (Mdn = 0.52) compared with the non-dominant SLS-FPPA V2 

(Mdn = 0.49) at the end-season screening, Z = 0.28, p = 0.779, a median difference of 0.03. 

Also, there was no statistically significant difference for dominant SLS-hip angle V2 (Mdn = 

0.040) compared with the non-dominant SLS-hip angle V2 (Mdn = 0.039) at the end-season 

screening, Z = 0.32, p = 0.750, a median difference of 0.001.  

 

In SLL, a Wilcoxon signed-rank test showed no statistically significant difference for 

dominant SLL-FPPA V2 (Mdn = 0.68) compared with the non-dominant SLL-FPPA V2 

(Mdn = 0.73) at the end-season screening, Z = 0.25, p = 0.806, a median difference of -0.05. 

Also, there was no statistically significant difference for dominant SLL-hip angle V2 (Mdn = 

0.038) compared with the non-dominant SLL-hip angle V2 (Mdn = 0.040) at the end-season 

screening, Z = 0.49, p = 0.348, a median difference of  -0.002. 
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Table	  5:1 shows all the results of statistical between legs for FPPA V2 and hip angle V2 for 

both tasks. 

 

Screening 

session 
 

Dom. leg 

Median 

Non-Dom. leg 

Median 
Stat. test 

Median 

differenc

e 

P value 

Pre-

season 

SLS 
FPPA V2 0.49 0.58 Z= 1.29 -0.09 p = 0.196 

Hip angle V2 0.044 0.035 Z= -1.78 -0.031 p = 0.076 

SLL 
FPPA V2 0.61 0.70 Z= 1.58 -0.09 p = 0.114 

Hip angle V2 0.041 0.046 Z= 0.93 -0.005 p = 0.351 

Start-

season 

SLS 
FPPA V2 0.49 0.62 Z= 2.72 -0.13 p = 0.006* 

Hip angle V2 0.040 0.036 Z= -0.68 0.004 p = 0.494 

SLL 
FPPA V2 0.65 0.76 Z= 1.18 -0.11 p = 0.237 

Hip angle V2 0.045 0.043 Z= 0.14 0.002 p = 0.891 

End-

season 

SLS 
FPPA V2 0.52 0.49 Z= 0.28 0.03 p = 0.779 

Hip angle V2 0.040 0.039 Z= 0.32 0.001 p = 0.750 

SLL 
FPPA V2 0.68 0.73 Z= 0.25 -0.05 p = 0.806 

Hip angle V2 0.038 0.040 Z=0.94 -0.002 p = 0.348 

Table 5:1 Results of statistical tests of difference between legs for FPPA V2 & hip angle V2 

 

As a summary, in both tasks (SLS and SLL) there were no statistical significant 

differences in performance-variability of both FPPA and hip angle between the dominant 

and non-dominant leg in all screening sessions (Pre, start and end-season). The only 

significant difference between legs found in SLS - FPPA at start season screening were 

performance variability is more in the non-dominant leg.  
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5.3.6 Between-session variability differences (Over time variability differences)   
 

Figure	   5:4 shows the change in dominant leg performance over time (between 

sessions) for FPPA V2 and hip angle V2 for both tasks (SLS and SLL). Figure	  5:5 shows 

the change in the non-dominant leg. 

	  
Figure 5:4 Dominant leg performances over time (between sessions) FPPA V2 & hip angle V2. 

 

	  
Figure 5:5 Non-dominant leg performances over time (between sessions) FPPA V2 & hip angle V2. 
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The Friedman test was run to investigate the performance variability change over 

time for each leg in both tasks (SLS and SLL) as explained in section 5.2.2. Table	  5:2 shows 

all the results for the variability differences over time.  

 

 
Screening Leg Variable Stat. tests P value 

Between 

sessions 

(Over time) 

SLS 

Dom. 
FPPA V2 χ2(2) = 4.03 p = 0.133 

Hip angle V2 χ2(2) = .984 p = 0.611 

Non-

dom. 

FPPA V2 χ2(2) = 2.89 p = 0.236 

Hip angle V2 χ2(2) = 1.18 p = 0.556 

SLL 

Dom. 
FPPA V2 χ2(2) = 1.60 p = 0.449 

Hip angle V2 χ2(2) = 1.20 p = 0.549 

Non-

dom. 

FPPA V2 χ2(2) = 2.43 p = 0.296 

Hip angle V2 χ2(2) = 2.63 p = 0.268 

Table 5:2 Results of Friedman tests of difference over time for FPPA V2 & hip angle V2. 

 

As the Friedman tests showed no statistical differences over time for all variables in 

both tasks, there is no need to assess the between-two-sessions variability changes, assuming 

that there is no statistically significant difference in variability between any two screening 

sessions.  

 

 In summary, the performance variability in FPPA and hip angle were consistent over 

time (along season) in both SLS and SLL (p = 0.13–0.61) meaning that there is no 

significant difference in variability through sport season. 

	  

5.4 Discussion 
	  

The objectives of this study were to examine the performance-variability difference 

between legs (dominant and non-dominant) and the performance-variability over time (pre-, 

start- and end-season) in footballers carrying out SLS and SLL athletic tasks. The study 

found no statistically significant difference of performance-variability between legs 

(dominant and non-dominant) of knee FPPA and hip angle in both tasks in all screening 

sessions except for knee FPPA at start-season in SLS. Also, there were no significant 
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differences between screening sessions (over time) in knee FPPA and hip angle of 

performance-variability in all screening sessions in both tasks.  

 

No previous studies have investigated the kinematic performance-variability difference 

between legs or over time (between sessions) using the common functional athletic tasks. 

However, a few studies have reported and discussed the movement variability in sport (Arshi 

et al., 2015; Bartlett et al., 2007; Bauer et al., 2017; Konig et al., 2016; Lockhart & Stergiou, 

2013; Nordin & Dufek, 2017; Pollard et al., 2015; Preatoni et al., 2013; Smith et al., 2014). 

Some of these have used athletic tasks such as SLL, running, side-step cutting and single leg 

jump-landing to examine the performance-variability difference between symptomatic and 

asymptomatic subjects (Arshi et al., 2015; Brown et al., 2012; Nordin & Dufek, 2017; 

Pollard et al., 2015). Other studies have examined the gait variability difference between 

normal and pathological cases (Konig et al., 2016; Smith et al., 2014). All previous studies 

have used variables such as foot placement, step width, step length, stance time, swing time 

and jump height to examine the performance variability. However, none of these studies has 

reported or used the joints kinematics as a variable of measurement. Also, none has 

compared the performance-variability difference between legs and/or over time.  

 

In the present study, there was no significant difference in performance-variability 

between legs (dominant and non-dominant) except the FPPA V2 of SLS at start-season 

screening (p < 0.006), which was not greater than the standard error of measurement. The 

difference between legs in SLS at start-season was 13% of 3.52° (FPPA avg. difference 

between legs), that is 0.45°, which is smaller than the standard error of measurement of SLS 

(1.41°) reported in the method chapter. Therefore, there is no significant difference in 

performance-variability in FPPA and hip angle between legs in both tasks. However, the 

FPPA was more variable in SLL than SLS, which could be due to the complexity of SLL 

over SLS (Blackburn & Padua, 2009; Cortes et al., 2007; Willson et al., 2006). Also, the 

performance-variability was consistent over time and there was no difference between 

sessions of FPPA and hip angle in both tasks. Therefore, these findings are new; no previous 

studies have reported these findings. However, the study findings of SLS and SLL 

performance variability reject the study hypothesis, which assumed a difference in 

performance-variability between legs and over time. This could mean that there is no clinical 

importance for the FPPA and hip angle variability since there was no statistical significant 

difference between legs of between screening sessions over season. 
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As for the study limitations, using the second-order coefficient of variation to assess 

the performance variability is not as sensitive as principal component analysis (PCA), which 

can be used only to assess the variability in the 3D system (Muniz & Nadal, 2009; Preatoni 

et al., 2013). However, the second-order coefficient of variation remains the best option for 

this study, compared with the regular coefficient of variation, for which the limitations and 

unsuitability for this study have been discussed in the method section (5.2.2). Also, one of 

the limitation of this study that we have used “5 trails” of testing while it is important to try 

to find the best number of trails that would give a precise picture about the variability. 

Unfortunately, trying to determine the right number of trails is a difficult process due to 

multiple causes (Preatoni et al., 2013). However, the sequential estimation procedure is used 

to calculate the right number of repetitions needed to obtain a sable mean when the 

successive mean deviations fall within a range around the overall average (Preatoni et al., 

2013).  

 

The importance of this study is the finding that performance variability is consistent 

over time and between legs. However, a further study is needed to examine the relationship 

between lower limb performance-variability and non-contact injuries because the present 

study’s findings cannot confirm or reject this relationship.  

 

	  

5.5 Conclusion 
 

The study findings show that there is no significant difference in performance-

variability in SLS and SLL between dominant and non-dominant legs. Also, the 

performance-variability in SLS and SLL across the sports season was consistent. Therefore, 

the hypothesis of performance variability differs between legs and over time has been shown 

to be false. However, a study of the relationship between performance-variability difference 

and lower limb injuries is still needed.    
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Chapter 6: Lower Limb Injuries; and their Relation to 

Biomechanical Tasks’ Performance and Variability  

	  

6.1 Introduction 
	  

Athletic biomechanical tasks have been used to predict athletes who were at higher 

risk of non-contact knee injuries, and to assess players who are returning from injury 

(Hewett et al., 2005; Munro, Herrington, & Carolan, 2012; Myer et al., 2010). These tasks 

have been found to be valid and reliable for this purpose as previously discussed in the 

literature review and method chapters. While there are few studies that have investigated 

lower limb kinematics during functional tasks, and its possible relations to lower-limb 

injuries (Hewett et al., 2005; Myer et al., 2010), there are no studies that have used the 2D 

technique to investigate the FPPA and hip adduction angle prospectively. Also, there are no 

studies that have examined the relationship of these tasks’ performance-variability and their 

possible relation to injuries. The importance of this study using the 2D technique is 

enormous. This is because that 2D technique is simpler and more practical than the 3D 

system, which is usually used for this purpose. Also, the 2D technique is less expensive, 

portable and does not need a large space in which to examine the subject. This means that it 

can be used commonly in football clubs and clinics.  
 

The hypotheses of this study suggest that SLS and SLL performance and performance-

variability can predict the non-contact knee ligament injuries. Also, it suggests that SLS and 

SLL performance and performance-variability would change after injury. These hypotheses 

are derived based on previous research studies. For instance, Hewett et al. (2005) found that 

knee valgus performance can predict the non-contact knee injury using the 3D system and 

drop-jump landing task. Since there is a correlation between 2D and 3D systems using some 

tasks, and a correlation between these tasks’ performance in a 2D system (Munro, 

Herrington, & Comfort, 2017), we expect that using theses task with 2D could predict non-

contact knee injuries. 
	  

6.2 Methods  
	  

Same participants and procedures of previous studies in chapter 4 have been used; 

please refer to chapter 4 sections 4.2.1 to 4.2.8. However, from the 90 footballers, 2 players 
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were excluded due to missing data. Therefore 88 footballers were included in this study, a 

total of 176 legs.  

 
	  

6.2.1 Tracking Injuries 
	  

 All injuries that prevented a player from performing physical activity for more than 

five consecutive days have been reported by each club’s licensed physiotherapist using the 

Tracking Injury Report Form “Appendix II”. The period between pre-season and start-

season screenings was called “Period one”, while the period between start-season and end-

season screenings was called “Period two”. Therefore, injuries reported in each period can 

be studied to answer a specific study question.   

 

6.2.2 Statistical testing  
	  

In answering the question of predicting non-contact knee ligament injuries, 

multivariate analysis could have been used. However, due to a limited number of recorded 

non-contact knee injuries (7 injuries), a descriptive analysis has been used alternatively.  

In answering the second question about the performance and performance-variability 

change after injury, a Wilcoxon signed-rank test was used instead of a paired t-test. This is 

because the performance data of both groups’ injured and uninjured players have some 

outliers, as assessed by boxplots. Moreover, the data of performance-variability of both 

groups was not normally distributed as assessed by Shapiro-Wilk's test (p < .05). A Sign test 

was used instead of the Wilcoxon signed-rank test in case of asymmetry distribution of the 

Wilcoxon result histogram. Finally, the alpha level was set to be .05 for all statistical tests 

that have been used to answer both questions. 

 

6.3 Results  
	  

6.3.1 Lower-limb injuries  
	  
During this study, a total of 75 lower-limbs injuries were reported. Fifty-three (70.7%) of 

them were non-contact vs. twenty-two (29.3%) contact injuries. From the lower limb non-

contact injuries, nineteen (35.8%) injuries were reported during period one, while thirty-four 

(64.2%) injuries during period two. The total number of non-contact knee ligaments’ injuries 
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was seven.  Six injuries were reported during period one, and one injury during period two. 

These injuries included one complete tear ACL rupture, four patellofemoral pain syndrome, 

one medial collateral ligament and one lateral collateral ligament tear. More details about the 

reported injuries are presented in (Figure 6:1) 

 

 

	  
 

Figure 6:1 Reported lower limbs’ injuries 

 

6.3.2 Tasks’ performance and performance-variability relation to injury 
 

The tasks’ performance and performance-variability relation to injury have been 

divided into two parts to answer two different questions. First, can we predict the non-

contact knee ligament injuries before they occur? Second, how will the tasks’ performance 

and performance-variability change after injury?  
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6.3.2.1  Predicting non-contact knee injuries:  

 
As reported previously, six non-contact knee ligament injuries occurred during 

period one while only one injury occurred during period two. However, since there was no 

sufficient number of injuries to do a multivariate analysis, a descriptive analysis was carried 

out alternatively. Also, each period injury will be studied alone. 

 

6.3.2.1.1 Period one injuries 
	  

Table	   6:1 shows the tasks’ performance median of injured and uninjured legs that 

occurred during period one. The table shows that the median of uninjured legs was more 

knee valgus and hip adducted than injured ones in both tasks. However, figures 6:2 and 6:3 

were presented to show the actual values of the performance of knee and hip for all injured 

and uninjured legs. The figures show clearly that the distribution of injured leg performance 

is not different than the uninjured legs. This could mean that there were no legs more prone 

to injury comparing to others according to its performance of knee and hip adduction.   

 

Screening 

session 
Performance 

Injured leg 

Median 

Uninjured leg 

Median 

Median 

Difference 

 

Pre-season 

Screening 

 

SLS-FPPA 2.74° -2.07° 4.81° 

SLS-Hip angle 76.19° 74.76° 1.43° 

SLL-FPPA -0.24° -3.94° 3.70° 

SLL-Hip angle 83.45° 81.02° 2.43° 

Table 6:1 Median scores of performance for injured and uninjured legs 
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Figure 6:2 SLS performance at pre-season screening for injured vs. uninjured legs - Period one 

	  

	  
Figure 6:3 SLL performance at pre-season screening for injured vs. uninjured legs - Period one 

	  
	  

Also, Table	   6:2 shows the tasks’ performance-variability median of injured and 

uninjured legs that occurred during period one. The table shows that the variability of injured 

legs was less in FPPA and hip angle except in FPPA during SLL.  However, figures 6:4 and 

6:5 were presented to show the actual values of the performance-variability of knee and hip 

for all injured and uninjured legs. The figures show clearly that the distribution of injured leg 

performance-variability is similar the uninjured legs. This could mean that there were no 
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legs more prone to injury comparing to others according to its performance-variability of 

knee and hip adduction.  

 

Screening 

session 

Performance-

variability 

Injured leg 

COV2 

Uninjured leg 

COV2 

COV2 

Difference 

 

Pre-season 

Screening 

 

SLS-FPPA 0.39 0.56 0.17 

SLS-Hip angle 0.033 0.042 0.009 

SLL-FPPA 0.94 0.65 0.29 

SLL-Hip angle 0.040 0.045 0.005 

Table 6:2 Median scores of performance-variability for injured and uninjured legs 

 

Figure 6:4 SLS performance-variability at pre-season screening for injured vs. uninjured legs - Period one 

	  
Figure 6:5 SLL performance-variability at pre-season screening for injured vs. uninjured legs - Period one 
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6.3.2.1.2 Period two injury 

 
Studying the only injury that occurred during period two was impossible using the 

statistical tests. However, dot plots were used to visually examine the performance and 

performance-variability differences between this injured leg and uninjured legs. This 

comparison will be at pre-season screening only because the injured subject was not 

examined during start-season screening due to absence. Also, it is important to mention that 

this reported injury during period two was a complete ACL tear.  

 

Figure	  6:6 and Figure	  6:7 show the performance of SLS and SLL respectively at pre-

season screening where each dot represents one leg. The uninjured legs are on the right side 

of the dot plot while the injured leg is on the left side. In SLS, the injured leg FPPA score 

was within the top 11.93% of all legs (toward knee varus) while the hip angle score was 

within the top 33.52% of all legs (toward hip abduction). Also, in SLL, the injured leg FPPA 

score was within the top 9.1% of all legs (toward knee varus) while the hip angle score was 

within the top 37.5% of all legs (toward hip abduction). 

 

Figure 6:6 SLS performance at pre-season screening for injured vs. uninjured legs - Period two 
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Figure 6:7 SLL performance at pre-season screening for injured vs. uninjured legs - Period two 

On the other hand, Figure	  6:8 and Figure	  6:9 show the performance-variability of SLS 

and SLL respectively at pre-season screening where each dot represents one leg. The 

uninjured legs are on the right side of the dot plot while the injured leg is on the left side. In 

SLS, the injured leg FPPA was within the lowest 26.14% variability among all legs while 

the hip angle was within the lowest 3.98% variability among all legs. Also, in SLL, the 

injured leg FPPA was within the lowest 42.05% variability among all legs while the hip 

angle was within the lowest 47.73% variability among all legs.  

Figure 6:8 SLS performance-variability at pre-season screening for injured vs. uninjured legs - Period two 
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Figure 6:9 SLL performance-variability at pre-season screening for injured vs. uninjured legs - Period two 

 

6.3.2.2  Performance and performance-variability change after injury: 

	  
As reported previously, six non-contact knee ligament injuries occurred during 

period one. Therefore, a pre-season screening was compared to a start-season screening for 

both injured and uninjured groups. This comparison was done to examine the performance 

and performance-variability change after injury, and how it differed in both groups.   

 

Table	   6:3 shows that the injured group’s performance of SLS and SLL did not 

change significantly after injury. However, the uninjured group’s performance of SLL did 

change from pre to start-season significantly, but not in SLS. Moreover, Table	  6:4, shows 

that the performance-variability of SLS and SLL did not change from pre to start-season 

screening for both groups injured and uninjured.  

 

Screening 

session 
Group 

Performance 

(Angles) 

Pre-season 

Screening 

Median 

(Pre injury) 

Start-season 

Screening 

Median 

(Post injury) 

Stat. test 
Median 

Difference 

P 

value 

SLS 

Injured 
SLS-FPPA 2.74° 2.60° Z= 0.00 0.14° 1 

SLS-Hip angle 76.19° 78.19° Z= 0.00 2° 1 

Uninjured 
SLS-FPPA -2.08° -2.19° Z= - 0.32 0.11° 0.75 

SLS-Hip angle 74.76° 74.36° Z= 0.90 0.40° 0.37 
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SLL 

Injured 
SLL-FPPA -0.24° -3.03° Z= 0.00 2.79° 1 

SLL-Hip angle 83.45° 82.35° Z= -0.89 1.10° 0.38 

Uninjured 
SLL-FPPA -3.94° -1.92° Z= 4.29 2.02° 0.0005* 

SLL-Hip angle 81.02° 83.22° Z= 4.20 2.20° 0.0005* 

Table 6:3 Post injury performance change in SLS and SLL 

Screening 

session 
Group 

Performance-

variability  

(SOCV) 

Pre-season 

Screening 

Median 

(Pre injury) 

Start-season 

Screening 

Median 

(Post injury) 

Stat. test 
Median 

Difference 

P 

value 

SLS 

Injured 
SLS-FPPA 0.39 0.62 Z= 0.67 0.23 0.50 

SLS-Hip angle 0.033 0.042 Z= 0.00 0.009 1 

Uninjured 
SLS-FPPA 0.56 0.55 Z= -0.37 0.01 0.71 

SLS-Hip angle 0.042 0.037 Z= -0.52 0.005 0.60 

SLL 

Injured 
SLL-FPPA 0.94 0.70 Z= 0.00 0.24 1 

SLL-Hip angle 0.040 0.056 Z= 0.89 0.016 0.38 

Uninjured 
SLL-FPPA 0.65 0.73 Z= 1.64 0.08 0.10 

SLL-Hip angle 0.045 0.043 Z= -1.11 0.002 0.27 

Table 6:4 Post injury performance-variability change in SLS and SLL 
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6.4 Discussion 
	  
 

The main aim of this study was to examine the tasks’ (SLS and SLL) performance and 

performance-variability in relation to non-contact knee ligament injuries. Two questions 

were answered to fulfil the study’s main objectives. The first question was could the tasks’ 

performance and performance-variability predict non-contact knee ligament injury? While 

the second question was, do the tasks’ performance and performance-variability change after 

injury? 

  

In regard to prediction of injuries, the number of injuries recorded during this study is 

insufficient to answer this question. Therefore, a descriptive analysis was done to look at the 

differences between the two groups of injured and uninjured legs. The findings of the study 

for period one showed almost similar performance and performance-variability of both tasks 

for FPPA and hip adduction angle in injured and uninjured legs at pre-season. In period two 

were only one complete ACL tear injury were recorded, results show that the performance of 

FPPA for the injured player was a varus (adducted) one, which was in the top 11.93% and 

9.1% of all players for SLS and SLL respectively. Also, the performance of hip adduction 

angle for injured leg was toward abduction and in the top 33.52% and 37.5% of all legs in 

SLS and SLL respectively. Moreover, the performance-variability of FPPA for injured legs 

was in the lowest 26.14% and 42.05% of variability scores of all legs in SLS and SLL 

respectively. Also, the performance-variability of hip angle for injured leg was in the lowest 

3.98% and 47.73% of variability scores of all legs in SLS and SLL respectively. The 

positioning of this players performance though interesting in where his performance lies in 

relation to his peers, in no way provides strong evidence of a potential relationship to injury. 

It might be with greater numbers of injury a more clear relationship develops, but equally 

this might not be the case. 

 

Even though that the number of recorded non-contact knee injuries during this study 

make it impossible to answer the prediction ability of FPPA and hip angle, or even to study 

the statistical difference between the two groups, the descriptive analysis shows almost 

similar performance and performance-variability. Although that the first part of current study 

is from the lower levels of research hierarchy, it is still essential to compare it pervious 

studies. The current study findings are similar to the findings of Dingenen et al. (2015) who 
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found no statistical significant difference in female FPPA between injured and uninjured 

legs during drop-jump tasks using the 2D technique. Dingenen et al. (2015) found a 

significant difference between injured and uninjured only when knee valgus and lateral trunk 

motion were combined together. However, current study results, which were obtained 

prospectively, were opposite to the study findings of Hewett et al. (2005), where they found 

a significant difference in knee valgus measures between injured and uninjured legs. 

Moreover, the current study found that injured legs have more knee varus than uninjured 

legs (not statistically), while the Hewett et al. (2005) study reported that injured legs knee 

valgus angles was more statistically significant. There are many differences between the 

current study and the Hewett et al. (2005) study, where they had examined the ACL injuries 

in females only using the drop-vertical-jump task in a 3D system. In contrast, the current 

study has been done on males and has included global knee ligament injuries using the 2D 

technique with SLS and SLL tasks. These differences might explain the findings differences 

but the rationale behind the current study using the SLS and SLL has been described in the 

methodology chapter. However, Messier et al. (2008) reported that behavioural and 

physiological risk factors are believed to interact with potential biomechanical mechanisms 

(knee joint forces and moments) to cause knee injury. Also, examining the risk factors of 

knee injuries is very difficult due to the complexity of how these factors interact with each 

other. This makes studying isolated risk factors practically impossible and difficult to 

determine the relative contributions of each factor to injury (Bartlett & Bussey, 2012). The 

current study had some limitations that had affected the results. These limitations include the 

number of obtained knee ligament injures and especially ACL injuries due to the need of a 

very large study sample. Also, the current study used the 2D technique, which is might be 

less sensitive in comparison to the 3D system that is known as the gold standard in 

biomechanical measurement. The reason for using the 2D technique in the current study was 

also clearly explained in the methodology chapter.     

 

The second part of the current study was to examine the performance and 

performance-variability change after injury. The results showed that the performance of SLS 

and SLL in the injured group did not change significantly after injury, while the performance 

of SLL in the uninjured group did change from pre-season to start-season significantly, but 

did not change in SLS. Moreover, the performance-variability of SLS and SLL did not 

change from pre-season to start-season screening for both groups, injured and uninjured 

(before and after injury). Therefore, the important part of the result suggests that the 
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performance of SLL in the injured group did not change after injury, when it should change 

(improve; less knee valgus and less hip adduction) according to our previous study findings 

in chapter four. The previous study in chapter four found that performance FPPA and hip 

adduction angle in SLL changed (improved) over time, but not in SLS. This means that the 

SLL task is more sensitive than that of SLS in predicting performance changes over time. 

These different findings could be due to the nature of the tasks. The SLS task is a very 

simple test of knee alignment while SLL is more complex, where the subject needs more 

muscles strength, activation and coordination to counter the ground reaction force during 

landing without losing balance or sustaining an injury (Blackburn & Padua, 2009; Cortes et 

al., 2007; Stefanyshyn et al., 2006; Willson et al., 2006). Also, the findings of the current 

study might mean that uninjured group performance did improve because they kept 

attending their regular training, which usually increases their muscles strength and 

coordination while the injured group lost some training sessions due to their injuries. 

However, there are some studies that have investigated the performance difference between 

non-contact knee injuries and asymptomatic legs retrospectively (Herrington, 2014; 

Stefanyshyn et al., 2006; Willson et al., 2008; Willson & Davis, 2008). These studies found 

that injured legs have more FPPA, knee valgus and/or hip adduction angle than 

asymptomatic ones. Nevertheless, this was not the same finding in the current study. These 

contrasting findings could be due to the difference in screening time. In the current study, the 

injured players were not screened immediately after the injury as was done in the previously 

mentioned studies. In the current study, the injured players were treated by their team’s 

physiotherapist and continued their regular season training until the specific day of 

screening, which could have been weeks after the injury was sustained. The time of 

screening in the current study was fixed for all participating teams and could not be changed 

because of its negative effects on the main PhD project aims. 

 

The study findings of no change in performance-variability after injury might suggest 

that the performance-variability is not an appropriate tool to examine non-contact injuries 

since it failed to detect any difference between injured and uninjured legs prior or after 

injury. Also, this finding is supported by the findings of previous study in chapter five where 

no difference in performance-variability between legs or over time was detected. However, 

in answering the second question of the current study there were also some limitations. 

These limitations include the small number of obtained knee ligament injuries. Also, not 

examining the participants’ muscle strength made it difficult to know the exact reason 
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behind the consistency in SLL task performance among injured legs in opposite to uninjured 

legs where performance has improved.  

 

While this is the case, the study findings of lower-limb kinematics in relation to 

injuries failed to answer the study’s first hypothesis of the ability of FPPA and hip angle 

performance and performance-variability in SLS and SLL to predict non-contact knee 

injuries. However, the study’s second hypothesis of performance and performance-

variability change after injury was rejected and found that uninjured footballers have 

improved while injured footballers did not change. The importance of these study findings is 

increasing the understanding that predicting the non-contact knee injuries is more difficult 

than previously thought. This is because there are many risk factors that could contribute to 

an injury occurrence. These factors include intrinsic (anatomical and hormonal) and extrinsic 

(play surface, shoe type and weather conditions) ones. However, the relative contribution of 

each factor is unknown and cannot be determined easily due to the inability to study each 

factor alone. Also, the findings of this study would indicate that larger sample size is needed 

to study the relation of the FPPA and hip angle with injury in prospective studies. Also, 

studying only one factor to predict the non-contact knee injuries is unlikely to be 

successfully because of the multifactorial nature of causes and the relatively large numbers 

of ways they could interact. Therefore, future studies with very large sample sizes need to be 

undertaken to predict the non-contact knee injuries. These studies need to try to combine 

more variables than just FPPA and hip adduction angle such as trunk lateral motion from a 

kinematic perspective, which might help to predict the non-contact knee ligaments injuries 

as found by Dingenen et al. (2015) which was published after finishing the data collection of 

current study. Moreover, trying to use other kinematics variable than peak angles like knee 

valgus displacement could be useful in predicting the non-contact knee ligament injuries as 

found in the most recent study by Holden et al. (2017). However, both these studies were 

done on the female populations, which might suggest that using the dynamic knee valgus to 

predict injury is a sex-specific technique for females only, as previously thought by Quatman 

and Hewett (2009). Thus, using a 3D system to screen male subjects prospectively might 

confirm or reject this hypothesis.  

 

 



	  
	  

120	  

6.5 Conclusion  
 

The study findings show that actual scores of FPPA and hip adduction angle 

performance and performance-variability of injured and uninjured legs are almost similar 

during SLS and SLL. However, the descriptive analysis that was used to look at the 

difference between injured an uninjured legs, is not sufficient to make any sold conclusion 

specifically in clinical setting.  However, for the second part of the study, the FPPA and hip 

angle performance was found to be consistent in injured legs before and after injury while it 

had improved significantly in uninjured legs in SLL, but not in SLS. This means that the 

injury stopped performance improvement, which was occurring over the season in the 

injured legs. Therefore, it suggests that SLL is more sensitive than SLS to track footballers’ 

performance over time (before and after injury), and it might play a role in footballers’ 

decision to return to play after injury.  
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Chapter 7: Summary, Conclusions and Recommendations for 

Future Work 

	  

7.1 Summary 
 

Knee injuries are considered to be one of the most common athletic injuries. The two 

definitions used in the literature to define the injury, are based on time loss and the need for 

medical attention. In the United Kingdom, more than 388,000 new sports injuries were 

treated annually at A&E departments, as reported by the NHS (Digital, 2013). Also, more 

than 8.6 million sports and recreation-related injury episodes were reported every year in the 

United States (Sheu et al., 2016). Lower limb injuries were found to be 50-70% of all sports 

injuries reported (Hootman et al., 2007; Powell & Barber-Foss, 2000; Rauh et al., 2007), 

with knee injuries alone representing about 10-25% of sports injuries (Louw et al., 2008). 

Knee ligament injuries, though less frequent than some other injuries, are often more 

significant and considered sometimes catastrophic injuries because of the long recovery time 

and the inability sometimes to return to previous levels of performance post injury (Hewett, 

Di Stasi, & Myer, 2013; Louw et al., 2008). 

 

Two D and 3D motion capture and analysis have been used to attempt to identify players 

who are at higher risk of getting non-contact knee injuries and to assess players who are 

returning to play following injury (Hewett et al., 2005; Myer et al., 2010). The 3D system 

has been regarded as the gold standard in biomechanics research (Munro, Herrington, & 

Carolan, 2012). However, the 3D system is considered to be complicated, time consuming 

and needs a lot of training for users; also, it is a very expensive system and needs a large, 

fixed workspace. These disadvantages have created a gap between research and clinical 

practice because most of the players screening would be done in sports clubs or primary 

clinics. In contrast, using the 2D system is more favorable because it is portable, less 

expensive, does not need a lot of training and requires less time to conduct. This means that 

it can be easily used in sport clubs and clinics regularly to track performance and identify 

players at high risk of non-contact injuries. However, the literature has inadequate 

information about the 2D assessment tool. Most importantly, the majority of the previous 2D 
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studies are retrospective with no prospective study that investigates the ability of 2D 

technique to identify players who are at high risk of getting injured.    

 

The way athletes move could increase the risk of injury (Bartlett & Bussey, 2012; 

Hewett et al., 2013). Using the nature of the movement pattern to identify high-risk players 

allows for targeted exercises to be used to control these movement patterns (Hewett et al., 

2013) to decrease or prevent injury. The 2D FPPA has been used for this purpose during 

common athletic tasks (Herrington, 2014; Willson & Davis, 2008). The SLS and SLL tasks 

were found to be more appropriate for assessing players who are at higher risk of knee 

injuries. Both tasks are unilateral tasks, which helps to identify the risk for each leg alone as 

most injuries happen to one leg only. Moreover, previous studies have examined FPPA alone. 

Examining both FPPA and hip adduction angle might find more significant results, knowing 

that they are both key contributors to knee dynamic valgus. Also, more recent research found 

that SLS, SLL and drop-jump tasks using 2D technique are significantly correlated to each 

other, which confirms that SLS and SLL are most suitable tasks for this purpose (Munro et 

al., 2017). Another important point is that all previous studies that have investigated the 

lower limb biomechanics in relation to injury, have done so on one occasion only at the pre 

season. This might not be enough to understand the relationship between lower limb 

biomechanics and injury because the players’ performance might not be consistent over the 

season; also the injury rate differs over the season which might be due to a performance 

change.     

 

The Frontal Plane Projection Angle (FPPA) and hip adduction angle have been used in 

2D technique for this purpose. However, previous studies have not investigated the 

difference in performance between dominant and non-dominant legs or the performance 

change over time. Also, there is no study that has examined the performance-variability 

difference between legs or over time. Both performance and performance-variability could 

be the reason for the different rate of lower limb injuries that happen at different times of the 

sport season, assuming that there is a link between performance and injury. 

 
It is also critical to understand the within-session and between-sessions reliability of the 

2D tool to establish the consistency of the results and the degree of measurement error. 

These will help in using the 2D technique confidently in repeated testing. Also, the validity 

of the 2D tool is important to find if the tool is accurately measuring what it’s supposed to 
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measure. Additionally, reporting the intra-rater and inter-rater values are important to make 

sure that we are getting the same degree of agreement among repeated administrations of 

same and different rater respectively. The reporting of the standard error of measurements 

will be very important to accurately determine that changes or improvements not due to 

measurements error. Also, reporting the small detectable difference (SDD) is important to 

determine that changes are actually due to a change in performance. Therefore, it can be 

used to make clinical decisions with confidence. 

 

 
The aims of this thesis were to: 
 
1. Review the literature of lower limb sport injuries mechanism and risk factors. 

2. Review the literature of lower limb screening tools, which can identify the risk factors of 

injuries.  

3. Assessing the reliability and validity of 2D video to assess SLS and SLL performance. 

4. Assessing the SLS and SLL performance between legs and across season. 

5. Assessing the performance-variability of individual lower limbs kinematics between legs 

and across season.  

6. Examining the relationship between kinematic measures of lower limb joints and knee 

injury prevalence in male footballers, prospectively.  

 

 

7.2 Conclusion  
 

The first and second aims of this thesis were fulfilled by reviewing the literature for 

lower limb sport injury mechanisms and risk factors; also lower limb screening tools that 

have been used in identifying athletes who are at higher risk of getting injured in chapter 2 

are reviewed. These reviews show that prospective studies investigating the relationship 

between lower limb kinematics and injury are limited in number and scope. Also, they have 

predominantly used the 3D system, which is considered to be the most advanced motion 

analysis system, but it needs a lot of training and a lot of working time to generate results. 

Therefore, the gap of the literature demands more research to look for simpler tools like the 

2D technique that can be used easily in sport clubs and clinics to assess prospectively the 
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lower limb relation to injury. Thus, this thesis aims to fill that gap and take the injury 

screening and tracking using 2D lower limb kinematics forward. 

 

The criterion validity study in chapter 3, it was found that 2D FPPA has a large 

correlation with knee abduction angle in 3D (r = 0.66, p < 0.008) during SLS, but not in SLL 

(r = 0.075, p < 0.79). Also, the 2D hip adduction angle showed a very large correlation with 

the 3D hip adduction angle during SLS (r = 0.81, p < 0.001), and a large correlation during 

SLL (r = 0.62, p < 0.013). This means that compared to the 3D system, which is known as 

the gold standard in motion analysis, 2D technique has reasonable criterion validity as a tool 

for measuring SLS and SLL tasks. 

 

The within-session reliability of both FPPA and hip adduction angle demonstrate good 

reliability with ICC ranging between (0.72 – 0.91) in SLS and SLL. Also, the between-

session reliability of both FPPA and hip adduction angle demonstrated good reliability with 

ICC ranging between (ICC = 0.79 –0.86) in both tasks. Additionally, the intra-reliability 

found a very large correlation for FPPA and hip adduction angle in SLS (r = 0.991, p < 

0.001), (r = 0.987, p < 0.001), and SLL (r = 0.990, p < 0.001), (r = 0.967, p < 0.001) 

respectively. Similarly, the inter-reliability found a very large correlation for FPPA and hip 

adduction angle in SLS (r = 0.974, p < 0.001), (r = 0.962, p < 0.001), and SLL (r = 0.988, p 

< 0.001), (r = 0.985, p < 0.001) respectively. Furthermore, the SEM for FPPA and hip angle 

for both tasks were reported. The SEM of FPPA during within-session and between-session 

screening ranged between 0.40° and 1.41° in both tasks. Also, the SEM of hip adduction 

angle during within-session and between-session screening ranged between 0.37° and 0.93° 

in both tasks. Therefore, the SLS and SLL were shown to be reliable tools to examine the 

performance difference between legs and the low measurement error should give confidence 

to track performance over time. The validity result was similar to previous studies, which 

found a moderate-to-strong relationship between FPPA and 3D knee abduction during SLS 

(Gwynne & Curran, 2014; Willson & Davis, 2008). The within-session and between-session 

reliability was found to be similar to previous findings by Munro, Herrington, and Carolan 

(2012) and Gwynne and Curran (2014) while the current study SEM was found to be slightly 

smaller. However, the novel finding, which was reported by the current study, is the validity 

of SLL, and inter, intra-rater reliability and SDD of both SLS and SLL. 
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Since the FPPA and hip adduction angle were found to be adequately valid and 

reliable using the 2D technique, the performance, performance-variability and its relation to 

injury studies were carried out using this method. The performance study in chapter 4, which 

has fulfilled the fourth aim, shows that there was a significant performance difference 

between dominant and non-dominant legs in FPPA in all screening sessions for both tasks. 

In all of screening sessions, the dominant leg knee FPPA was more valgus than the non-

dominant leg. However, there was no difference in hip adduction angle between dominant 

and non-dominant legs in all screening sessions, except at the start-season screening for SLS.  

 

The performance study has found that the FPPA and hip adduction angle for both legs 

changed (improved) significantly over the season when undertaking the SLL task, but not 

the SLS task. Also, the dominant leg FPPA improved from the pre- to start-season screening, 

while the non-dominant leg FPPA and hip adduction angle improved after each screening 

session. The performance study finding of the difference between legs is novel, since there 

was no previous studies that have investigated the performance difference between legs 

using the 2D technique according to leg dominancy. The reason behind the difference in 

FPPA performance between legs could be related to muscle strength difference because it is 

one of the important internal factors that could affect performance (Claiborne et al., 2006; 

Lawrence et al., 2008). Some previous studies found a negative correlation between muscle 

strength and knee valgus angle (Claiborne et al., 2006; Lawrence et al., 2008; Willson et al., 

2006), which was correlated with the FPPA. This makes the dominant legs based on current 

study finding potentially more susceptible to injury. Therefore, this suggests that both legs 

should be screened individually when assessing the injury risk, and footballers possibly need 

to focus on increasing the dominant leg muscles strength to avoid injuries. 

 

Also, this study was the first of its kind in tracking the biomechanical tasks 

performance over the season. These findings suggest that when tracking the footballer’s 

lower-limb kinematics, it is important to examine both legs and to track them over the 

season. Also, only examining the footballer’s performance at the pre-season point will not be 

enough, due to the performance change from pre-season to beginning of the season (start-

season). The performance change (improvement, less knee FPPA) could be due to the 

improvement of the muscle power from the pre-season to the beginning of the season due to 

the effect of pre-season training. This observed improvement is in line with the injury rate 

changes during season in literature, which is usually at its highest at the pre-season (Bradley 
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et al., 2002; Dodson et al., 2016) suggesting that when FPPA improved the injury rate 

decreased. However, this needs to be investigated in future research to find the relation 

between performance and muscle power, and injury. 

Regarding the performance-variability study in chapter 5, which addressed the fifth 

aim, there were no previous studies that have investigated the kinematic performance-

variability difference between legs or over time (between sessions) using the common 

functional athletic tasks. The knee FPPA and hip adduction angle variability were found to 

be consistent within-session and between-session for both tasks. These findings reject the 

hypothesis of individual performance-variability within-session and over time. The 

contribution of this study to the literature is that the individual performance-variability of 

lower limb kinematics within-session and between-session was not a significant factor that 

contributes to the variability of movement performance. Therefore, the performance-

variability might not cause or contribute to injury. 

With regard to the sixth aim, two relationship questions between kinematic measures 

of lower limb joints and knee injury were addressed in chapter 6. The first question was 

about the ability of 2D technique to predict the non-contact knee injuries. Unfortunately, the 

prospective study could not answer this question due to the limited number of obtained non-

contact knee ligaments injures. The second question was about how the performance and 

performance-variability change after injury. The results revealed that the performance-

variability of SLS and SLL did not change from pre- to start-season screening for both 

groups injured and uninjured. This finding supports the previous results of variability study 

of the incapability of individual kinematic performance-variability to affect the overall 

footballer movement performance. The results also showed that the SLL performance of 

uninjured legs group improved significantly from pre- to start-season. This was not the case 

for injured legs group were no performance change had been observed in both tasks. This 

could mean that the 2D technique might be a good tool in the SLL task to track footballers’ 

performance over the season and to assess how regular training and injury affect their 

movement performance. This finding might open a new avenue of examining the change in 

lower limb kinematics over the season, and its relation to other factors like muscle strength 

and fatigue. 

In respect to the clinical practice, the SLS and SLL can be used to track performance 

change of the knee and hip during SLS and SLL. The SEM has been reported for clinician to 
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distinguish the clinical significant change from statistical change. Also, based on the 

findings of this thesis, it is important for the clinician to examine both legs independently 

and throughout the sport season due to the difference of performance between legs and 

between screening times. Moreover, the SLL found to be more sensitive in detecting changes 

comparing to the SLS task. Therefore, using SLL could be enough for this propose.  

 

 

7.3 Recommendations for future work  
 

Based on the results of this thesis and the subsequent discussion, several questions 

have been raised with regard to the future studies. The reliability study indicates that the 2D 

technique using the SLS and SLL tasks is a reliable method to assess the FPPA and hip 

angle. Also, the validity study indicates that 2D technique using the SLS and SLL tasks are a 

valid method to assess the FPPA and hip angle in SLS, as well as to assess the hip adduction 

angle in SLL compared with the 3D system. However, future research is needed to include 

other biomechanical tasks to be assessed for validity and reliability using the 2D technique 

like single drop-jump land. This would help to identify the most reliable task, and task that 

best correlates to the 3D system to identify players who are at higher risk of non-contact 

knee injuries. The lateral trunk motion should be added to the FPPA and hip angle 

performance, which might be more sensitive to predicting injury when combined together as 

shown by Dingenen et al. (2015) during the single-leg drop vertical jump. 

 

Regarding the study of footballers’ performance difference, the findings suggest the 

SLS task is not sensitive enough to track performance over the season. However, the SLL is 

sensitive and can be used for that purpose. This is because that SLL was able to detect the 

performance change over time while the SLS did not. The reason behind that could be due to 

the complexity of the SLL tasks where the subject needs more muscle strength, activation 

and coordination to counter the ground reaction force during landing without losing balance 

or sustaining an injury (Blackburn & Padua, 2009; Cortes et al., 2007; Willson et al., 2006). 

Future study is needed to examine simultaneously muscle power and lower limb kinematics 

to try to understand the link between each other and their relation to injury. Also, the study 

findings show that screening for lower limb kinematics in one leg or one occasion will not 
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be enough to assess the performance due to the significant difference found between legs 

over the season. Therefore, both dominant and non-dominant legs need to be examined. 

Also, both pre-season and start-season screening need to be undertaken at least to track the 

kinematic performance, since the performance was significantly different between both 

occasions. 

 

With regard to the variability study, the findings signify that individual kinematics 

performance-variability does not appear to exist between legs over time, or at least it cannot 

be measured using the 2D technique. Therefore, future study using the 3D system is needed 

to assess the variability, since it is more sensitive and recognised as the gold standard in 

motion analysis. Also, the future study needs to determine the right number of task 

repetitions needed to detect the variability before doing the actual study. 

 

The prospective study of the biomechanical tasks performance and performance-

variability relation to injury using the 2D technique could not answer this question due to the 

limited number of obtained non-contact knee ligaments injuries. Therefore, the study has 

recommended that a much greater number of participants is needed to allow future study to 

include more non-contact knee injuries. Moreover, very large number of subjects is needed 

to detect enough non-contact ACL injuries for more specific relationship study. Also, adding 

the trunk lateral motion to the FPPA and hip angle might be more sensitive in predicting the 

injuries as found by Dingenen et al. (2015) during the single-leg drop vertical jump task. 

Therefore, it is not definite that SLS and SLL using the 2D technique cannot predict the non-

contact knee injuries. 
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Appendix	  2	  

	  
Information	  sheet	  

	  
Information	  To	  Participate	  In	  A	  Research	  Project	  

You	   are	   invited	   to	   take	   part	   in	   this	   research	   study,	   which	   could	   provide	   important	  

information	  for	  prevention	  of	  knee	  injuries	  in	  sport.	  

What	  is	  the	  project	  all	  about?	  

The	  study	  is	  looking	  at	  the	  relationship	  between	  lower	  limb	  kinematic	  variables	  during	  

some	  typical	  athletic	  tasks,	  which	  may	  be	  linked	  to	  predicting	  knee	  injury	  risk	  factors	  

in	  athletes.	  	  
	  

Why	  have	  I	  been	  chosen?	  

You	  have	  been	  chosen	  as	  you	  are:	  

1. Athletic	  	  (participate	  in	  sport	  team	  as	  player).	  

2. Male	  aged	  from	  16-‐30	  years	  old.	  

3. Has	  not	  had	  a	  significant	  injury	  in	  the	  last	  6	  months	  to	  your	  lower	  limbs,	  which	  

prevent	  you	  from	  attending	  5	  consecutive	  training	  sessions.	  

4. You	   are	   able	   to	   do	   single	   leg	   squat	   and	   single	   leg	   landing	   tasks	   independently	  

without	  aids.	  	  	  

What	  will	  I	  have	  to	  do?	  

First:	   You	   will	   need	   to	   wear	   a	   loose	   pair	   of	   shorts	   or	   underwear	   to	  

expose	  your	  lower	  limb	  and	  trunk	  in	  order	  to	  allow	  the	  video	  cameras	  

to	  record	  you	  during	  the	  study.	  	  

Second:	   Your	   age,	   height	   and	   weight	   will	   be	   measures	   by	   the	  

researcher.	  

Third:	   The	   researcher	   will	   attach	   a	   set	   of	   Photo-‐reflective	   markers	  

directly	  to	  the	  skin	  on	  your	  lower	  limb	  joints	  as	  in	  Figure	  1.	  

Fourth:	   You	   will	   then	   be	   required	   to	   preform	   two	   tasks,	   which	   are	  

single	  leg	  squat	  and	  single	  leg	  landing	  for	  couple	  repetitions	  each	  task.	  

“This	  part	  will	  be	  video	  recorded	  of	  your	  lower	  limbs	  and	  trunk	  only.	  

All	   the	   study	  will	   take	  place	   inside	   the	   academy.	  The	   testing	  will	   not	  

involve	   any	   exertion	   that	   you	   are	  not	   accustomed	  with	   through	  your	  

current	   activity	   levels,	   and	  will	   be	   conducted	   over	   4	   sessions	   during	  

	  
Figure	  1	  

(Adapted from  

 Gwynne and Curran, 2014)	  
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one	  sport	  season,	  taking	  no	  longer	  than	  5	  minutes	  for	  each	  session.	  	  
	  

All	  your	  information	  and	  data	  will	  remain	  confidential.	  The	  videos	  and	  electronic	  data	  

will	  be	  protected	  by	  confidential	  password	  while	  other	  document	  will	  be	  stored	  safely	  

in	  locked	  cabinet	  in	  the	  University	  of	  Salford.	  Also,	  your	  identity	  will	  be	  anonymous	  by	  

codding	   your	   name	   and	   information.	   Finally,	   on	   completion	   of	   the	   study,	   your	  

information	  and	  the	  video-‐recordings	  will	  be	  deleted	  and	  destroyed.	  
	  

Is	  there	  any	  risk	  involved?	  

There	  is	  an	  inherent	  risk	  with	  any	  type	  of	  physical	  testing,	  however	  the	  testing	  for	  this	  

study	  will	  be	  in	  a	  controlled	  environment	  and	  therefore	  any	  risks	  are	  minimal.	  The	  risk	  

will	  not	  exceed	  the	  risk	  you	  might	  have	  during	  your	  sport	  training	  and	  competition.	  	  
	  

Who	  will	  see	  my	  details	  and	  results?	  

All	   your	   information	   and	  data	  will	   remain	   confidential.	   The	   final	   results	   of	   the	   study	  

will	  be	  available	  to	  you,	  and	  may	  be	  published.	  
	  

Ø You	  are	  free	  to	  decide	  not	  to	  be	  in	  this	  trial	  or	  to	  drop	  out	  at	  any	  time.	  	  

Ø A	  minimum	  period	  of	  24	  hours	  will	  be	  set,	  between	  giving	  the	  information	  sheet	  

to	  you	  and	  signing	  the	  consent	  form.	  

Ø Please	  feel	  free	  to	  ask	  any	  further	  questions	  about	  the	  nature	  or	  demands	  of	  the	  

project	  at	  any	  time.	  	  
	  

In	  case	  of	  you	  need	  to	  make	  any	  complaints:	  	  Please,	  follow	  this	  procedure:	  

First	  step:	  Contact	  this	  study	  team	  supervisor:	  

Ø Lee Herrington PhD MCSP 

Tel +44 (0) 7966872035 

Email: L.C.Herrington@salford.ac.uk 

If	  you	  did	  not	  receive	  any	  response	  in	  10	  working	  days,	  or	  you	  were	  not	  satisfied	  with	  

action	  has	  been	  done.	  	  Please,	  consider	  the	  second	  step.	  

Second	  step:	  Contact	  the	  Research	  &	  Innovation	  Manager	  	  	  

Ø Anish Kurien MBA, PRINCE2, MSP 

+44 (0) 161 295 5276 

Email: a.kurien@salford.ac.uk 

Thank	  you	  for	  your	  consideration	  
Msaad	  Alzhrani	  
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	   	   12/03/2015	  –	  Version	  1	  
Inclusion	  Criteria	  B	  

1. Personal information 
 
Surname: ……………………………                           Forename(s): 
…………………………... 
	  

2. Please, answer these questions carefully: 
	  

What	  is	  your	  dominant	  leg?	   o Right                    o Left 
	    

Have	  you	  suffer	  a	  lower	  limb	  injury	  in	  the	  last	  6	  
months?	  	  

o Yes                      o No	  

What	  joint?	   o Hip         o Knee         o 
Ankle	  

What	  was	  the	  injury?	  	  
For	  example;	  ACL,	  Ankle	  sprain,	  lateral	  knee	  ligament,	  etc.	  	  

	  
………………………………………………….	  
………………………………………………….	  

What	  leg?	   o Right                    o Left	  
Had	  this	  injury	  prevent	  you	  from	  attending	  5	  
consecutive	  training	  sessions?	  

o Yes                      o No	  

	    

Have	  you	  undergo	  any	  lower	  limb	  surgery	  in	  the	  
last	  6	  months?	  	  	  	  	  	  	  	  	  	  	  

o Yes                      o No	  

What	  joint?	   o Hip         o Knee         o 
Ankle	  

What	  leg?	  	   o Right                    o Left 
What	  was	  the	  surgery	  for?	  	  
For	  example;	  ACL	  reconstruction,	  Ankle	  sprain,	  lateral	  knee	  
ligament,	  etc.	  

	  
………………………………………………….	  
………………………………………………….	  

	  

INFORMED CONSENT 
The full details of the test have been explained to me. I am clear about what will be involved and I 
am aware of the purpose of the test, the potential benefits and the potential risks. 
 
I know that I am not obliged to complete the test. I am free to stop the test at any point and for 
any reason. 
The test results are confidential and will only be communicated to others once the data is fully 
anonymized, with no identifiable individual data. 
 
I agree that the data being collected can be used within a research project (tick as 
appropriate):        Yes  ! No ! 
 
Name of Participant ………………...… Signature ………….………..    Date…………………... 
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Appendix I 

12/03/2015	  –	  Version	  1	  
	  

Tracking	  Injury	  report	  Form	  
This	   form	   should	   be	   filled	   and	   submitted	   only	   for	   injuries	   that	   prevent	   player	   from	  
attending	  five	  consecutive	  training	  sessions.	  
____________________________________________________________________________________________________	  
Player	   code:	   ____________	   	   	   	   Date	   of	   injury:	   ____________________	   Time:	   	   _______:________	  
am/pm	  
Injury	  occurred	  during?	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ☐	  During	  Match	  

☐1st	  half	  	  	  	  ☐2nd	  half	  
	  	  	  ☐	  During	  Training	  
	  	  	  ☐1st	  part	  	  	  	  ☐2nd	  part	  

☐	  Warm	  up	  for	  match	   	  	  	  ☐	  Warm	  up	  for	  training	  

Is	  it	  Contact	  or	  Non-‐contact	  injury?	   ☐	  Contact	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ☐	  Non-‐contact	  	  
Playground	  surface?	   ☐	  Natural	  grass	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ☐	  Artificial	  grass	  	  	  	  	  	  ☐	  indoor	  	  
Type	  of	  injury?	   ☐	  New	  Injury	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ☐	  Recurrent	  Injury	  
Joint	  injured?	   ☐	  Hip	  	  	  	  	  	  	  	  	  	  	  	  ☐	  Knee	  	  	  	  	  	  	  ☐	  Ankle	  
What	  leg?	   ☐	  Right	  	  	  	  	  	  	  	  	  ☐	  Left	  	  
What	  is	  the	  injury?	   ☐	  Partial	  ACL	  tear	  	  	  	  	  	  	  	  	  	  	  ☐	  Complete	  ACL	  tear	  

☐	  Lateral	  Collateral	  ligament	  	  
☐	  Medial	  Collateral	  ligament	  	  
☐	  Meniscus	  injury	  	  	  	  	  	  	  	  	  	  	  ☐Medial	  	  	  	  	  	  	  	  ☐Lateral	  	  
☐	  Patellar	  injury	  

☐	  Lateral	  Ankle	  Sprain	  
☐	  Medical	  Ankle	  Sprain	  	  
☐	  Muscle	  Strain,	  What	  muscle?	  …………….…….……………….	  	  
☐	  Muscle	  Sprain,	  What	  muscle?	  ………………….………………	  	  
☐	  Bone	  Fracture,	  What	  bone?	  ………………..………..…………..	  
	  

☐	  Other	  than	  listed	  above	  
Please	  specify,………………………………………………….....................	  

How	  many	  days	  did	  the	  player	  take	  
to	  return	  to	  previous	  activity	  level?	  

	  
…………………………………………………………………………………..……..…..	  

	  
	  
Name:………………………….……………………Signature	  :…………………………………………………….	  
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27/05/2015	  –	  Version	  1	  
Exposure	  Time	  Report	  Form	  

	  

Club	  Name:	  ............................	  	  Month/year:	  	  ....................................	  	  	  Contact	  person:	  .........................	  

Tel:	  ..................................	  Mobile:	  .......................................	  E-‐mail:	  ................................................................	  	  

____________________________________________________________________________________________________
____	  

Please, use these exposure codes to fill this 
form: 

NT = participation in national team (min)  

T = participation in training session (min) AT = absence from training because of injury  

M = participation in first team match (min)  AM=absence from match because of injury  

RM = participation in reserve team match (min) AN = absence due to other reason  

Player’s	  
Code	  

Date	   	   	   	   	   	   	   	   	   	  

01	  

	  

Exposure	  code	   	   	   	   	   	   	   	   	   	  

Exposure	  duration	  in	  min	   	   	   	   	   	   	   	   	   	  

02	  
Exposure	  code	   	   	   	   	   	   	   	   	   	  

Exposure	  duration	  in	  min	   	   	   	   	   	   	   	   	   	  

03	  
Exposure	  code	   	   	   	   	   	   	   	   	   	  

Exposure	  duration	  in	  min	   	   	   	   	   	   	   	   	   	  

04	  
Exposure	  code	   	   	   	   	   	   	   	   	   	  

Exposure	  duration	  in	  min	   	   	   	   	   	   	   	   	   	  

05	  
Exposure	  code	   	   	   	   	   	   	   	   	   	  

Exposure	  duration	  in	  min	   	   	   	   	   	   	   	   	   	  

06	  
Exposure	  code	   	   	   	   	   	   	   	   	   	  

Exposure	  duration	  in	  min	   	   	   	   	   	   	   	   	   	  

07	  
Exposure	  code	   	   	   	   	   	   	   	   	   	  

Exposure	  duration	  in	  min	   	   	   	   	   	   	   	   	   	  

	   	   	   	  

	   This	  form	  might	  be	  expended	  as	  needed	  for	  larger	  players	  number	  
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Subjects	  coding	  Form	  
	  

 
Club’s	  Name:	  ...................................................................................................	  Season	  year:	  …………………	  

 
Player’s 
code 

Player’s   
club No. 

First name Family 
name 

Player’s 
code 

Player’s 
club No. 

First name Family 
name 

A01    A31    
A02    A32    
A03    A33    
A04    A34    
A05    A35    
A06    A36    
A07    A37    
A08    A38    
A09    A39    
A10    A40    
A11    A41    
A12    A42    
A13    A43    
A14    A44    
A15    A45    
A16    A46    
A17    A47    
A18    A48    
A19    A49    
A20    A50    
A21    A51    
A22    A52    
A23    A53    
A24    A54    
A25    A55    
A26    A56    
A27    A57    
A28    A58    
A29    A59    
A30    A60    
 
 

This copy will be kept with the authorized person in the sport’s club only 

	  
Subjects	  Characteristics	  Form	  
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Club’s	  Name:	  .....................................	  	  Season	  year:	  	  .................................	  	  	  Contact	  person:	  .........................	  

Tel:	  ..................................	  Mobile:	  .......................................	  E-‐mail:	  ..........................................................................	  	  

Player’s 
code 

Height Wight Age Dom. 
leg  

Player’s 
code 

Height Wight Age Dom. 
leg  

A01     A31     
A02     A32     
A03     A33     
A04     A34     
A05     A35     
A06     A36     
A07     A37     
A08     A38     
A09     A39     
A10     A40     
A11     A41     
A12     A42     
A13     A43     
A14     A44     
A15     A45     
A16     A46     
A17     A47     
A18     A48     
A19     A49     
A20     A50     
A21     A51     
A22     A52     
A23     A53     
A24     A54     
A25     A55     
A26     A56     
A27     A57     
A28     A58     
A29     A59     
A30     A60     
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Tests of Normality of Performance Residual 
 

 

Kolmogorov-Smirnova Shapiro-Wilk 
Statist

ic df Sig. Statistic df Sig. 
Studentized Residual 
for PreSLS.DomFPPA 

.052 60 .200* .989 60 .885 

Studentized Residual 
for 
StartSLS.DomFPPA 

.078 60 .200* .988 60 .800 

Studentized Residual 
for EndSLS.DomFPPA 

.069 60 .200* .984 60 .605 

Studentized Residual 
for PreSLS.Non.FPPA 

.073 60 .200* .982 60 .500 

Studentized Residual 
for StartSLS.NonFPPA 

.094 60 .200* .980 60 .425 

Studentized Residual 
for EndSLS.NonFPPA 

.071 60 .200* .973 60 .214 

Studentized Residual 
for PreSLS.Dom.Hip 

.069 60 .200* .987 60 .784 

Studentized Residual 
for StartSLS.DomHip 

.047 60 .200* .992 60 .973 

Studentized Residual 
for EndSLS.DomHip 

.072 60 .200* .990 60 .903 

Studentized Residual 
for PreSLS.Non.Hip 

.056 60 .200* .992 60 .953 

Studentized Residual 
for StartSLS.NonHip 

.067 60 .200* .993 60 .977 

Studentized Residual 
for EndSLS.NonHip 

.076 60 .200* .975 60 .247 

Studentized Residual 
for PreSLL.DomFPPA 

.059 60 .200* .981 60 .454 

Studentized Residual 
for StartSLL.DomFPPA 

.078 60 .200* .989 60 .863 

Studentized Residual 
for EndSLL.DomFPPA 

.071 60 .200* .994 60 .988 

Studentized Residual 
for PreSLL.NonFPPA 

.072 60 .200* .976 60 .282 

Studentized Residual 
for StartSLL.NonFPPA 

.114 60 .052 .976 60 .276 

Studentized Residual 
for EndSLL.NonFPPA 

.065 60 .200* .990 60 .910 
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Studentized Residual 
for PreSLL.Dom.Hip 

.107 60 .084 .966 60 .095 

Studentized Residual 
for StartSLL.DomHip 

.072 60 .200* .981 60 .456 

Studentized Residual 
for EndSLL.DomHip 

.083 60 .200* .988 60 .822 

Studentized Residual 
for PreSLL.NonHip 

.092 60 .200* .983 60 .567 

Studentized Residual 
for StartSLL.NonHip 

.094 60 .200* .978 60 .359 

Studentized Residual 
for EndSLL.NonHip 

.051 60 .200* .986 60 .717 

 
 
 

Studentised residuals outliers  
with no scores greater than ± 3 standard deviations 

 N Minimum Maximum 
Studentized Residual for 
PreSLS.DomFPPA 

63 -2.36 2.23 

Studentized Residual for 
StartSLS.DomFPPA 

63 -2.41 2.65 

Studentized Residual for 
EndSLS.DomFPPA 

63 -2.92 2.11 

Studentized Residual for 
PreSLS.Non.FPPA 

63 -2.38 2.18 

Studentized Residual for 
StartSLS.NonFPPA 

63 -2.20 1.96 

Studentized Residual for 
EndSLS.NonFPPA 

63 -2.58 2.07 

Studentized Residual for 
PreSLS.Dom.Hip 

63 -2.02 2.76 

Studentized Residual for 
StartSLS.DomHip 

63 -2.36 2.45 

Studentized Residual for EndSLS.DomHip 63 -2.46 2.50 
Studentized Residual for PreSLS.Non.Hip 63 -2.17 2.74 
Studentized Residual for 
StartSLS.NonHip 

63 -2.28 2.43 

Studentized Residual for EndSLS.NonHip 63 -2.22 2.27 
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Studentized Residual for 
PreSLL.DomFPPA 

60 -2.17 2.24 

Studentized Residual for 
StartSLL.DomFPPA 

60 -2.78 2.38 

Studentized Residual for 
EndSLL.DomFPPA 

60 -2.52 2.73 

Studentized Residual for 
PreSLL.NonFPPA 

60 -2.10 2.18 

Studentized Residual for 
StartSLL.NonFPPA 

60 -2.37 2.34 

Studentized Residual for 
EndSLL.NonFPPA 

60 -2.40 2.16 

Studentized Residual for PreSLL.Dom.Hip 60 -1.69 2.31 
Studentized Residual for 
StartSLL.DomHip 

60 -2.03 2.30 

Studentized Residual for EndSLL.DomHip 60 -2.53 2.84 
Studentized Residual for PreSLL.NonHip 60 -2.26 2.54 
Studentized Residual for StartSLL.NonHip 60 -2.90 2.39 
Studentized Residual for EndSLL.NonHip 60 -2.06 2.23 
Valid N (listwise) 60   
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ANOVA repeated measure tests 
 

SLS, Dom. And Non-dominant FPPA 
 

Within-Subjects Factors 
Measure:   MEASURE_1 

Time Limb Dependent Variable 
1 1 PreSLS.DomFPPA 

2 PreSLS.Non.FPPA 
2 1 StartSLS.DomFPPA 

2 StartSLS.NonFPPA 
3 1 EndSLS.DomFPPA 

2 EndSLS.NonFPPA 

 

 
Mauchly's Test of Sphericitya 

Measure:   MEASURE_1 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. 
Chi-Square df Sig. 

Epsilonb 
Greenhou

se-
Geisser 

Huynh-
Feldt 

Time .815 12.466 2 .002 .844 .865 
Limb 1.000 .000 0 . 1.000 1.000 

Time * Limb .984 .992 2 .609 .984 1.000 
 

Mauchly's Test of Sphericitya 
Measure:   MEASURE_1 

Within Subjects Effect 
Epsilon 

Lower-bound 
Time .500 
Limb 1.000 

Time * Limb .500 
 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 
transformed dependent variables is proportional to an identity matrix.a 

a. Design: Intercept 
Within Subjects Design: Time + Limb + Time * Limb 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 
Corrected tests are displayed in the Tests of Within-Subjects Effects table. 
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Tests of Within-Subjects Effects 
Measure:   MEASURE_1 

Source 

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. 
Time Sphericity 

Assumed 
73.648 2 36.824 .912 .404 

Greenhouse-
Geisser 

73.648 1.688 43.630 .912 .390 

Huynh-Feldt 73.648 1.730 42.569 .912 .392 
Lower-bound 73.648 1.000 73.648 .912 .343 

Error(Time) Sphericity 
Assumed 

5005.798 124 40.369   

Greenhouse-
Geisser 

5005.798 104.656 47.831   

Huynh-Feldt 5005.798 107.265 46.668   
Lower-bound 5005.798 62.000 80.739   

Limb Sphericity 
Assumed 

793.817 1 793.817 8.072 .006 

Greenhouse-
Geisser 

793.817 1.000 793.817 8.072 .006 

Huynh-Feldt 793.817 1.000 793.817 8.072 .006 
Lower-bound 793.817 1.000 793.817 8.072 .006 

Error(Limb) Sphericity 
Assumed 

6097.394 62 98.345   

Greenhouse-
Geisser 

6097.394 62.000 98.345   

Huynh-Feldt 6097.394 62.000 98.345   
Lower-bound 6097.394 62.000 98.345   

Time * Limb Sphericity 
Assumed 

108.790 2 54.395 1.856 .161 

Greenhouse-
Geisser 

108.790 1.968 55.273 1.856 .161 

Huynh-Feldt 108.790 2.000 54.395 1.856 .161 
Lower-bound 108.790 1.000 108.790 1.856 .178 

Error(Time*Li
mb) 

Sphericity 
Assumed 

3635.038 124 29.315   

Greenhouse-
Geisser 

3635.038 122.031 29.788   

Huynh-Feldt 3635.038 124.000 29.315   
Lower-bound 3635.038 62.000 58.630   
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SLS, Dom. And Non-dominant Hip Angle 
 

Within-Subjects Factors 
Measure:   MEASURE_1 

Time Limb Dependent Variable 
1 1 PreSLS.Dom.Hip 

2 PreSLS.Non.Hip 
2 1 StartSLS.DomHip 

2 StartSLS.NonHip 
3 1 EndSLS.DomHip 

2 EndSLS.NonHip 

 

 
Mauchly's Test of Sphericitya 

Measure:   MEASURE_1 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. Chi-
Square df Sig. 

Epsilonb 
Greenhouse-

Geisser 
Huynh-
Feldt 

Time .884 7.541 2 .023 .896 .921 
Limb 1.000 .000 0 . 1.000 1.000 

Time * Limb .988 .715 2 .699 .988 1.000 
 

Mauchly's Test of Sphericitya 
Measure:   MEASURE_1 

Within Subjects Effect 
Epsilon 

Lower-bound 
Time .500 
Limb 1.000 

Time * Limb .500 
 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 
transformed dependent variables is proportional to an identity matrix.a 

a. Design: Intercept 
Within Subjects Design: Time + Limb + Time * Limb 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 
Corrected tests are displayed in the Tests of Within-Subjects Effects table. 
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Tests of Within-Subjects Effects 
Measure:   MEASURE_1 

Source 

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. 
Time Sphericity 

Assumed 
227.593 2 113.797 3.432 .035 

Greenhouse-
Geisser 

227.593 1.792 127.030 3.432 .041 

Huynh-Feldt 227.593 1.842 123.591 3.432 .039 
Lower-bound 227.593 1.000 227.593 3.432 .069 

Error(Time) Sphericity 
Assumed 

4111.385 124 33.156   

Greenhouse-
Geisser 

4111.385 111.082 37.012   

Huynh-Feldt 4111.385 114.173 36.010   
Lower-bound 4111.385 62.000 66.313   

Limb Sphericity 
Assumed 

240.686 1 240.686 5.111 .027 

Greenhouse-
Geisser 

240.686 1.000 240.686 5.111 .027 

Huynh-Feldt 240.686 1.000 240.686 5.111 .027 
Lower-bound 240.686 1.000 240.686 5.111 .027 

Error(Limb) Sphericity 
Assumed 

2919.956 62 47.096   

Greenhouse-
Geisser 

2919.956 62.000 47.096   

Huynh-Feldt 2919.956 62.000 47.096   
Lower-bound 2919.956 62.000 47.096   

Time * Limb Sphericity 
Assumed 

4.146 2 2.073 .168 .846 

Greenhouse-
Geisser 

4.146 1.977 2.097 .168 .843 

Huynh-Feldt 4.146 2.000 2.073 .168 .846 
Lower-bound 4.146 1.000 4.146 .168 .684 

Error(Time*
Limb) 

Sphericity 
Assumed 

1533.175 124 12.364   

Greenhouse-
Geisser 

1533.175 122.572 12.508   

Huynh-Feldt 1533.175 124.000 12.364   
Lower-bound 1533.175 62.000 24.729   
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SLL, Dom. And Non-dominant FPPA 

 
Within-Subjects Factors 

Measure:   MEASURE_1 
Time Limb Dependent Variable 

1 1 PreSLL.DomFPPA 
2 PreSLL.NonFPPA 

2 1 StartSLL.DomFPPA 
2 StartSLL.NonFPPA 

3 1 EndSLL.DomFPPA 
2 EndSLL.NonFPPA 

 

 
Mauchly's Test of Sphericitya 

Measure:   MEASURE_1 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. Chi-
Square df Sig. 

Epsilonb 
Greenhous
e-Geisser 

Huynh-
Feldt 

Time .949 3.008 2 .222 .952 .983 
Limb 1.000 .000 0 . 1.000 1.000 

Time * Limb .964 2.102 2 .350 .966 .998 
 

Mauchly's Test of Sphericitya 
Measure:   MEASURE_1 

Within Subjects Effect 
Epsilon 

Lower-bound 
Time .500 
Limb 1.000 

Time * Limb .500 
 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 
transformed dependent variables is proportional to an identity matrix.a 

a. Design: Intercept 
Within Subjects Design: Time + Limb + Time * Limb 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 
Corrected tests are displayed in the Tests of Within-Subjects Effects table. 
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Tests of Within-Subjects Effects 
Measure:   MEASURE_1 

Source 

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. 
Time Sphericity Assumed 755.947 2 377.974 16.303 .000 

Greenhouse-
Geisser 

755.947 1.904 397.078 16.303 .000 

Huynh-Feldt 755.947 1.966 384.594 16.303 .000 
Lower-bound 755.947 1.000 755.947 16.303 .000 

Error(Time) Sphericity Assumed 2735.693 118 23.184   
Greenhouse-

Geisser 
2735.693 112.323 24.356   

Huynh-Feldt 2735.693 115.969 23.590   
Lower-bound 2735.693 59.000 46.368   

Limb Sphericity Assumed 432.864 1 432.864 3.756 .057 
Greenhouse-

Geisser 
432.864 1.000 432.864 3.756 .057 

Huynh-Feldt 432.864 1.000 432.864 3.756 .057 
Lower-bound 432.864 1.000 432.864 3.756 .057 

Error(Limb) Sphericity Assumed 6798.618 59 115.231   
Greenhouse-

Geisser 
6798.618 59.000 115.231   

Huynh-Feldt 6798.618 59.000 115.231   
Lower-bound 6798.618 59.000 115.231   

Time * Limb Sphericity Assumed 117.784 2 58.892 2.591 .079 
Greenhouse-

Geisser 
117.784 1.931 60.988 2.591 .081 

Huynh-Feldt 117.784 1.995 59.027 2.591 .079 
Lower-bound 117.784 1.000 117.784 2.591 .113 

Error(Time*
Limb) 

Sphericity Assumed 2682.448 118 22.733   
Greenhouse-

Geisser 
2682.448 113.945 23.542   

Huynh-Feldt 2682.448 117.730 22.785   
Lower-bound 2682.448 59.000 45.465   
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SLL, Dom. And Non-dominant Hip Angle 
 

Within-Subjects Factors 
Measure:   MEASURE_1 

Time Limb Dependent Variable 
1 1 PreSLL.Dom.Hip 

2 PreSLL.NonHip 
2 1 StartSLL.DomHip 

2 StartSLL.NonHip 
3 1 EndSLL.DomHip 

2 EndSLL.NonHip 

 
Mauchly's Test of Sphericitya 

Measure:   MEASURE_1 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. Chi-
Square df Sig. 

Epsilonb 
Greenhouse-

Geisser 
Huynh-
Feldt 

Time .949 3.066 2 .216 .951 .982 
Limb 1.000 .000 0 . 1.000 1.000 

Time * Limb .950 2.956 2 .228 .953 .984 
 

Mauchly's Test of Sphericitya 
Measure:   MEASURE_1 

Within Subjects Effect 
Epsilon 

Lower-bound 
Time .500 
Limb 1.000 

Time * Limb .500 
 

Tests the null hypothesis that the error covariance matrix of the orthonormalized 
transformed dependent variables is proportional to an identity matrix.a 

a. Design: Intercept 
Within Subjects Design: Time + Limb + Time * Limb 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. 
Corrected tests are displayed in the Tests of Within-Subjects Effects table. 
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Tests of Within-Subjects Effects 
Measure:   MEASURE_1 

Source 

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. 
Time Sphericity 

Assumed 
436.326 2 218.163 17.927 .000 

Greenhouse-
Geisser 

436.326 1.902 229.395 17.927 .000 

Huynh-Feldt 436.326 1.964 222.193 17.927 .000 
Lower-bound 436.326 1.000 436.326 17.927 .000 

Error(Time) Sphericity 
Assumed 

1436.038 118 12.170   

Greenhouse-
Geisser 

1436.038 112.223 12.796   

Huynh-Feldt 1436.038 115.860 12.395   
Lower-bound 1436.038 59.000 24.340   

Limb Sphericity 
Assumed 

75.867 1 75.867 1.510 .224 

Greenhouse-
Geisser 

75.867 1.000 75.867 1.510 .224 

Huynh-Feldt 75.867 1.000 75.867 1.510 .224 
Lower-bound 75.867 1.000 75.867 1.510 .224 

Error(Limb) Sphericity 
Assumed 

2964.605 59 50.248   

Greenhouse-
Geisser 

2964.605 59.000 50.248   

Huynh-Feldt 2964.605 59.000 50.248   
Lower-bound 2964.605 59.000 50.248   

Time * Limb Sphericity 
Assumed 

25.745 2 12.872 1.373 .257 

Greenhouse-
Geisser 

25.745 1.905 13.512 1.373 .257 

Huynh-Feldt 25.745 1.967 13.087 1.373 .257 
Lower-bound 25.745 1.000 25.745 1.373 .246 

Error(Time*
Limb) 

Sphericity 
Assumed 

1106.035 118 9.373   

Greenhouse-
Geisser 

1106.035 112.414 9.839   

Huynh-Feldt 1106.035 116.068 9.529   
Lower-bound 1106.035 59.000 18.746   
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Tests of Normality for Performance-variability Residual 

 
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 
Studentized Residual for 
PreSLS.DomFPPASOCV 

.107 60 .085 .949 60 .014 

Studentized Residual for 
StartSLS.DomFPPASOCV 

.092 60 .200* .952 60 .020 

Studentized Residual for 
EndSLS.DomFPPASOCV 

.109 60 .073 .920 60 .001 

Studentized Residual for 
PreSLS.Non.FPPASOCV 

.116 60 .043 .946 60 .010 

Studentized Residual for 
StartSLS.NonFPPASOCV 

.136 60 .007 .913 60 .000 

Studentized Residual for 
EndSLS.NonFPPASOCV 

.142 60 .004 .903 60 .000 

Studentized Residual for 
PreSLS.Dom.HipSOCV 

.098 60 .200* .954 60 .023 

Studentized Residual for 
StartSLS.DomHipSOCV 

.143 60 .004 .911 60 .000 

Studentized Residual for 
EndSLS.DomHipSOCV 

.108 60 .081 .956 60 .029 

Studentized Residual for 
PreSLS.Non.HipSOCV 

.162 60 .000 .931 60 .002 

Studentized Residual for 
StartSLS.NonHipSOCV 

.088 60 .200* .980 60 .449 

Studentized Residual for 
EndSLS.NonHipSOCV 

.153 60 .001 .920 60 .001 

Studentized Residual for 
PreSLL.DomFPPASOCV 

.119 60 .035 .928 60 .002 

Studentized Residual for 
StartSLL.DomFPPASOCV 

.111 60 .065 .914 60 .000 

Studentized Residual for 
EndSLL.DomFPPASOCV 

.083 60 .200* .945 60 .009 

Studentized Residual for 
PreSLL.NonFPPASOCV 

.159 60 .001 .918 60 .001 

Studentized Residual for 
StartSLL.NonFPPASOCV 

.154 60 .001 .901 60 .000 

Studentized Residual for 
EndSLL.NonFPPASOCV 

.126 60 .019 .922 60 .001 
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Studentized Residual for 
PreSLL.Dom.HipSOCV 

.088 60 .200* .971 60 .159 

Studentized Residual for 
StartSLL.DomHipSOCV 

.092 60 .200* .908 60 .000 

Studentized Residual for 
EndSLL.DomHipSOCV 

.128 60 .015 .919 60 .001 

Studentized Residual for 
PreSLL.NonHipSOCV 

.092 60 .200* .963 60 .066 

Studentized Residual for 
StartSLL.NonHipSOCV 

.104 60 .168 .961 60 .052 

Studentized Residual for 
EndSLL.NonHipSOCV 

.108 60 .080 .932 60 .002 
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Tests of Normality for Performance  
Injured and Uninjured Groups  

 
Noncon
tactKne
eInjured 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 
PreDominantSL
SFPPA 

Yes .135 17 .200* .950 17 .462 

No .049 103 .200* .989 103 .561 

PreDominantSL
SHip 

Yes .144 17 .200* .914 17 .116 

No .054 103 .200* .989 103 .558 

PreDominantSL
LFPPA 

Yes .116 17 .200* .963 17 .685 

No .070 103 .200* .979 103 .097 

PreDominantSL
LHip 

Yes .115 17 .200* .972 17 .846 

No .046 103 .200* .987 103 .407 

StartDominantS
LSFPPA 

Yes .193 17 .091 .922 17 .159 

No .063 103 .200* .995 103 .978 

StartDominantS
LSHip 

Yes .171 17 .200* .933 17 .247 

No .045 103 .200* .993 103 .896 

StartDominantS
LLFPPA 

Yes .103 17 .200* .975 17 .904 

No .052 103 .200* .994 103 .928 

StartDominantS
LLHip 

Yes .188 17 .113 .943 17 .356 

No .078 103 .136 .986 103 .328 

EndDominantS
LSFPPA 

Yes .203 17 .060 .921 17 .156 

No .040 103 .200* .993 103 .883 

EndDominantS
LSHip 

Yes .148 17 .200* .948 17 .433 

No .052 103 .200* .991 103 .690 

EndDominantS
LLFPPA 

Yes .138 17 .200* .938 17 .292 

No .054 103 .200* .995 103 .974 

EndDominantS
LLHip 

Yes .101 17 .200* .979 17 .943 

No .053 103 .200* .986 103 .366 
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Performance Outliers 
Injured and Uninjured Groups 

 
PreDominantSLSFPPA 
 

 
PreDominantSLSHip 
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PreDominantSLLFPPA 

 
 
 
PreDominantSLLHip 
 

 



	  
	  

194	  

 
StartDominantSLSFPPA 
 

 
StartDominantSLSHip 
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StartDominantSLLFPPA 
 

 
 
 
StartDominantSLLHip 
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EndDominantSLSFPPA 

 
 
EndDominantSLSHip 
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EndDominantSLLFPPA 
 

 
 
 
EndDominantSLLHip 
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Tests of Normality for performance-variability  

 
Nonconta
ctKneeInj
ured 

Kolmogorov-Smirnova Shapiro-Wilk 
Statistic df Sig. Statistic df Sig. 

PreDominantSLSFPP
ASOCV 

Yes .091 17 .200* .942 17 .342 

No .081 103 .095 .947 103 .000 

PreDominantSLSHipS
OCV 

Yes .218 17 .030 .886 17 .039 

No .094 103 .027 .966 103 .009 

PreDominantSLLFPP
ASOCV 

Yes .191 17 .099 .868 17 .020 

No .136 103 .000 .929 103 .000 

PreDominantSLLHipS
OCV 

Yes .141 17 .200* .899 17 .066 

No .074 103 .188 .976 103 .058 

StartDominantSLSFP
PASOCV 

Yes .109 17 .200* .957 17 .576 

No .106 103 .007 .936 103 .000 

StartDominantSLSHip
SOCV 

Yes .120 17 .200* .956 17 .559 

No .095 103 .024 .941 103 .000 

StartDominantSLLFP
PASOCV 

Yes .141 17 .200* .932 17 .236 

No .120 103 .001 .914 103 .000 

StartDominantSLLHip
SOCV 

Yes .161 17 .200* .944 17 .371 

No .064 103 .200* .955 103 .001 

EndDominantSLSFPP
ASOCV 

Yes .195 17 .085 .831 17 .006 

No .128 103 .000 .923 103 .000 

EndDominantSLSHip
SOCV 

Yes .088 17 .200* .981 17 .962 

No .131 103 .000 .941 103 .000 

EndDominantSLLFPP
ASOCV 

Yes .108 17 .200* .955 17 .538 

No .098 103 .017 .935 103 .000 

EndDominantSLLHip
SOCV 

Yes .203 17 .062 .868 17 .020 

No .106 103 .006 .924 103 .000 
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