
	
	

Distributed	Agile	Patterns:	An	Approach	to	
Facilitate	Agile	Adoption	in	Offshore	Software	

Development	
	

Maryam	Kausar	
	
	
	
	
	
	
	
	
	
	
	
	

College	of	Science	and	Technology	
School	of	Computing,	Science	and	Engineering	

University	of	Salford,	Manchester,	UK	
	
	

Submitted	in	Partial	Fulfilment	of	the	Requirements	of	the		
Degree	of	Doctor	of	Philosophy	

October	2017	
	

	
	
	
	
	
	

	 2	

Table	of	Contents	

LIST	OF	TABLES	 5	

LIST	OF	FIGURES	 6	

ACKNOWLEDGEMENTS	 7	

DECLARATION	 8	

ABSTRACT:	 9	

CHAPTER	1	 INTRODUCTION	 11	
1.1	RESEARCH	PROBLEM	 13	
1.2	RESEARCH	AIM	AND	OBJECTIVES	 16	
1.3		RESEARCH	QUESTIONS	 16	
1.4	RESEARCH	CONTRIBUTIONS	 17	
1.5	RESEARCH	METHODOLOGY	 18	
1.6	STRUCTURE	AND	HOW	TO	READ	THE	REPORT	 21	
1.7	CHAPTER	SUMMARY	 22	

CHAPTER	2	 	OFFSHORE	SOFTWARE	DEVELOPMENT	 23	
2.1	INTRODUCTION	 23	
2.2	BACKGROUND	OF	OFFSHORE	SOFTWARE	DEVELOPMENT	 23	
2.2.1	OVERVIEW	OF	OFFSHORE	MODELS	 23	
2.2.1.1						Domestic	Outsourcing	 24	
2.2.1.2	 Shared	Services	 25	
2.2.1.3	 Internal	Offshoring	 26	
2.2.1.4	 Offshore	Outsourcing	 27	
2.2.2	BENEFITS	OF	OFFSHORE	SOFTWARE	DEVELOPMENT	 29	
2.2.2.1	 Economic	Benefits	 29	
2.2.2.2	 Political-	Legal	Benefits	 31	
2.2.2.3	 Demographic	and	Geographic	Benefits	 32	
2.2.3.4	 Technological	Benefits	 33	
2.3	A	STUDY	ON	IDENTIFYING	THE	CHALLENGES	OF	OFFSHORE	SOFTWARE	DEVELOPMENT	 34	
2.3.1	TRUST	ISSUES	 36	
2.3.2	SOCIO-CULTURAL	ISSUES	 37	
2.3.3	COMMUNICATION	AND	COORDINATION	ISSUES	 44	
2.3.4	KNOWLEDGE	TRANSFER	ISSUES	 46	
2.4	CRITICAL	ANALYSIS	OF	OFFSHORE	CHALLENGES	ON	SOFTWARE	DEVELOPMENT	PHASE	 50	
2.5	AGILE	OFFSHORE	SOFTWARE	DEVELOPMENT	 64	
2.5.1	AGILE	SOFTWARE	DEVELOPMENT	 64	
2.5.2	AGILE	METHODOLOGY	IN	OFFSHORING	 65	
2.6		AGILE	ADOPTION	IN	OFFSHORE	SOFTWARE	DEVELOPMENT	 67	
2.6.1	TRANSITION	FROM	TRADITIONAL	SOFTWARE	DEVELOPMENT	TO	ADOPTING	AGILE	PRACTICES	 67	
2.6.1.1	 Facilitators	to	Assist	Agile	Adoption	 67	
2.6.1.2	 Framework	to	Support	the	Evaluation,	Adoption	and	Improvement	of	Agile		
		 Methods	 68	
2.6.1.3	 Shared	Mental	Models	to	Understand	Agile	Practices	 69	
2.6.2	AGILE	ADOPTION	IN	OFFSHORING	 70	
2.6.2.1					Use	of	Patterns	in	Agile	Adoption	 70	
2.6.2.2	 Factors	Contributing	to	the	Success	and	Failure	of	Agile	Adoption	 73	
2.6.2.3	 Use	of	Tools	in	Agile	Adoption	in	Offshore	Development	 74	

	 3	

2.6.3	EFFECT	OF	OFFSHORING	ON	AGILE	ADOPTION	 77	
2.7	A	STUDY	ON	THE	USE	OF	PATTERNS	IN	AGILE	ADOPTION	IN	OFFSHORE			DEVELOPMENT	 83	
2.7.1	CURRENT	PATTERNS	FOR	AGILE	ADOPTION	 84	
2.7.2	DISTRIBUTED	AGILE	PATTERNS	 94	
2.8		CHAPTER	SUMMARY	 94	

CHAPTER	3	 	RESEARCH	METHODOLOGY	 96	
3.1	INTRODUCTION	 96	
3.2	OVERVIEW	OF	RESEARCH	ONION	 96	
3.3	RESEARCH	METHODOLOGY	USED	TO	DESIGN	DISTRIBUTED	AGILE	PATTERNS	 103	
3.3.1	RESEARCH	PHILOSOPHY	 103	
3.3.2	RESEARCH	APPROACH	 104	
3.3.3	RESEARCH	STRATEGY	 111	
3.3.4	CHOICE	 120	
3.3.5	TIME	HORIZON	 122	
3.3.6	DATA	COLLECTION	 123	
3.4	CHAPTER	SUMMARY	 124	

CHAPTER	4	 DISTRIBUTED	AGILE	PATTERNS	 125	
4.1	INTRODUCTION	 125	
4.2	DESIGNING	TEMPLATE	FOR	DISTRIBUTED	AGILE	PATTERNS	 125	
4.3	SELECTING	THE	RIGHT	PATTERN	FROM	THE	DISTRIBUTED	AGILE	PATTERNS	CATALOGUE	 128	
4.4	ORGANISING	THE	DISTRIBUTED	AGILE	PATTERNS	CATALOGUE	 131	
4.5		FULL	DISTRIBUTED	AGILE	PATTERNS	CATALOGUE	 133	
4.5.1			MANAGEMENT	PATTERNS	 133	
4.5.1.1	 Distributed	Scrum	of	Scrum	Pattern	 133	
4.5.1.2	 Local	Standup	Meeting	 136	
4.5.1.3	 Local	Sprint	Planning	Meeting	Pattern	 139	
4.5.1.4	 Local	Pair	Programming	Pattern	 141	
4.5.1.5	 Asynchronous	Retrospective	Meetings	Pattern	 143	
4.5.2	COMMUNICATION	PATTERNS	 146	
4.5.2.1	 Global	Scrum	Board	Pattern	 146	
4.5.2.2	 Central	Code	Repository	Pattern	 149	
4.5.2.3	 Asynchronous	Information	Transfer	Pattern	 151	
4.5.2.4	 Synchronous	Communication	Pattern	 153	
4.5.3	COLLABORATION	PATTERNS	 155	
4.5.3.1	 Collaborative	Planning	Poker	Pattern	 156	
4.5.3.2	 Follow-the-Sun	Pattern	 158	
4.5.3.3	 Collective	Project	Planning	Pattern	 161	
4.5.3.4	 Visit	Onshore-Offshore	Team	Pattern	 164	
4.5.4	VERIFICATION	PATTERNS	 166	
4.5.4.1	 Project	Charter	Pattern	 166	
4.5.4.2	 Onshore	Review	Meeting	Pattern	 168	
4.6	CHAPTER	SUMMARY	 171	

CHAPTER	5	 	VALIDATION	AND	EVALUATION	OF	THE	DISTRIBUTED	AGILE	
PATTERNS	CATALOGUE	 172	
5.1	INTRODUCTION	 172	
5.2	REVISED	DISTRIBUTED	AGILE	PATTERNS	 172	
5.3	EVALUATING	DISTRIBUTED	AGILE	PATTERNS	 179	
5.4	CHAPTER	SUMMARY	 184	

	 4	

CHAPTER	6	 	CASE	STUDY	TO	SHOW	APPLICABILITY	OF	DISTRIBUTED	AGILE	
PATTERNS	 	 185	
6.1	INTRODUCTION	 185	
6.2	OVERVIEW	OF	REQUIREMENTS	ENGINEERING	PROCESS	 185	
6.3	REQUIREMENTS	ENGINEERING	PROCESS	IN	TRADITIONAL	SOFTWARE	DEVELOPMENT	VS.	AGILE		
									METHODOLOGY	 186	
6.4	APPROACHES	TO	IMPROVE	REQUIREMENTS	ENGINEERING	PROCESS	IN	AGILE	 187	
6.5	DISTRIBUTED	AGILE	PATTERNS	USED	TO	OVERCOME	REQUIREMENTS	ENGINEERING		
									CHALLENGES	 193	
6.6	MAPPING	DISTRIBUTED	AGILE	PATTERNS	ON	THE	REQUIREMENTS	ENGINEERING		
									LIFECYCLE	 196	
6.7	CHAPTER	SUMMARY	 198	

CHAPTER	7	 CONCLUSIONS	AND	FUTURE	WORK	 199	
7.1	INTRODUCTION	 199	
7.2	MEETING	THE	AIM	AND	OBJECTIVES	AND	ANSWERING	THE	RESEARCH	QUESTIONS	 200	
7.3	RECOMMENDATION	FOR	FUTURE	WORK	 201	
7.4	LIMITATION	OF	THE	STUDY	 202	
7.5	CHAPTER	SUMMARY	 203	

REFERENCES:	 204	

APPENDIX	A:	SELECTED	STUDIES	FOR	OFFSHORE	CHALLENGES	 223	

APPENDIX	B:	OVERVIEW	OF	EXISTING	SOFTWARE	DEVELOPMENT	APPROACHES	228	

APPENDIX	C:	OVERVIEW	OF	BEECHAM	ET	AL.	(2014)	GSD	SOLUTION	 229	

APPENDIX	D:	SAMPLE	QUESTIONS	FOR	SEMI-STRUCTURED	INTERVIEWS	 230	

APPENDIX	E:	CONSENT	FORM	AND	DATA	PROCESSING	STATEMENT	 232	

APPENDIX	F:	UNREVISED	DISTRIBUTED	AGILE	PATTERN	CATALOGUE	 234	

		
	

	
	
	
	
	
	
	
	
	
	
	
	

	 5	

List	of	Tables	
	
TABLE	2.1.	CHALLENGES	IN	OFFSHORE	SOFTWARE	DEVELOPMENT.	 35	
TABLE	2.2	SEVEN	VALUES	FOR	CULTURAL	DIMENSIONS	(TROMPENAARS	ET	AL.,	2004).	 38	
TABLE	2.3.	CULTURAL	COMPARISON	BETWEEN	JAPAN	AND	CHINA	(OZAWA	ET	AL.,	2013).	 41	
TABLE	2.4.	CULTURAL	PATTERNS	IN	SOFTWARE	PROCESS	MISHAPS	(MACGREGOR	ET	AL.	2005).	 42	
TABLE	2.5.	FACTORS	AFFECTING	TASK	ALLOCATION	PROCESS	IN	OFFSHORE	DEVELOPMENT		

	 										(SAJJAD	ET	AL.	2015).	 47	
TABLE	2.6.		OFFSHORE	CHALLENGES	AFFECTING	SOFTWARE	DEVELOPMENT	PHASES.	 51	
TABLE	2.7.	OVERVIEW	OF	EXISTING	APPROACHES	USED	TO	OVERCOME	OFFSHORE	CHALLENGES.	 59	
TABLE	2.8.	COMPARISON	OF	AGILE	DEVELOPMENT	VERSES	OFFSHORE	DEVELOPMENT	(ŠMITE	ET	AL.	2010).	 66	
TABLE	2.9.	AGILE	PRACTICES	USED	FOR	OFFSHORE	DEVELOPMENT	(PAASIVAARA	ET	AL.,	2009).	 76	
TABLE	2.10.	AGILE	PRACTICES	AFFECTED	BY	OFFSHORE	CHALLENGES.	 78	
TABLE	2.11.	DETAIL	OF	THREE	SITES	ADOPTING	AGILE	PRACTICES	AT	R	&	D	UNIT	OF	ERICSSON	(PAASIVAARA	ET	

AL.,	2013).	 80	
TABLE	2.12.	EXISTING	OFFSHORE	SOFTWARE	DEVELOPMENT	PATTERNS.	 85	
TABLE	2.13.	PATTERNS	FOR	AGILE	SOFTWARE	DEVELOPMENT.	 89	
TABLE	2.14.	OVERVIEW	OF	AGILE	ADOPTION	PATTERNS	(ELSSAMADISY	ET	AL.,	2006).	 93	
TABLE	3.1.	OVERVIEW	OF	RESEARCH	ONION.	 98	
TABLE	3.2:	KEY	CONCEPTS	SELECTED	FOR	RELATIONAL	ANALYSIS.	 106	
TABLE	3.3.	SEARCH	TERMS	USED	IN	THIS	REVIEW.	 114	
TABLE	3.4.	OCCURRENCE	OF	AGILE	PRACTICES	IN	LITERATURE	 115	
TABLE	3.5.	SIX	SOURCES	FOR	DATA	COLLECTION	COMPARISON	(YIN,	2003).	 116	
TABLE	3.6.	TYPE	OF	INTERVIEWS	(EASTERBY-SMITH	ET	AL.,	2012).	 118	
TABLE	3.7.	DETAIL	OF	COMPANIES	INTERVIEWED.	 119	
TABLE	3.8.		OVERVIEW	OF	THE	QUANTITATIVE	AND	QUALITATIVE	METHODS	USED	IN	THIS	RESEARCH.	 120	
TABLE	3.9.	TIME	HORIZON	ACROSS	FOUR-YEAR	PHD	RESEARCH.	 122	
TABLE	4.1.	COMPARISON	OF	EXISTING	PATTERNS.	 125	
TABLE	4.2.	CATEGORIES	OF	DISTRIBUTED	AGILE	PATTERNS.	 132	
TABLE	5.1.	DETAILS	OF	THE	COMPANIES.	 172	
TABLE	5.2.	DETAILS	OF	THE	PARTICIPANTS	ATTENDED	THE	WORKSHOP.	 173	
TABLE	5.3.	AGENDA	OF	THE	REFLECTION	WORKSHOP.	 174	
TABLE	5.4.	FLIP	CHART	FORMAT	FOR	THE	REFLECTION	WORKSHOP	(KERTH,	2001).	 174	
TABLE	5.5.	FLIP	CHART	OF	COMPANY	3	PARTICIPANT	5	(C3P5).	 176	
TABLE	5.6.	SUMMARISED	FLIP	CHART	OF	THE	COMPANIES.	 177	
TABLE	5.7.	FEEDBACK	ON	THE	CHALLENGES	DISTRIBUTED	AGILE	PATTERNS	SOLVE.	 178	
TABLE	5.8.	EXISTING	SOLUTIONS	IN	COMPARISON	TO	THE	DAP	CATALOGUE.	 180	
TABLE	6.1.	USING	DISTRIBUTED	AGILE	PATTERNS	TO	ADDRESS	REQUIREMENTS	ENGINEERING	CHALLENGES	IN	

AGILE	OFFSHORE	DEVELOPMENT.	 193	

	 6	

List	of	Figures	
	

FIGURE	1.1	RESEARCH	METHODOLOGY	 18	
FIGURE	2.1	BUSINESS	MODELS	FOR	GLOBAL	SOFTWARE	ENGINEERING	(OECD,	2004).	 24	
FIGURE	2.2.	DISTRIBUTION	OF	WORK	AMONG	MULTIPLE	DISTRIBUTED	TEAMS.	 33	
FIGURE	2.3.	TRADITIONAL	SOFTWARE	DEVELOPMENT	LIFECYCLE.	 50	
FIGURE	2.4.	THE	MAIN	COMPONENTS	OF	THE	AGILE	SOFTWARE	SOLUTION	FRAMEWORK	(QUMER	ET	AL.	2008).	68	
FIGURE	2.5.	AGILE	ADOPTION	AND	IMPROVEMENT	MODEL	(QUMER	ET	AL.,	2007)	 69	
FIGURE	2.6.	SOFTWARE	PROJECT	SUCCESS	RATE	FOR	OFFSHORE	PROJECTS	(MALIK	ET	AL.,	2010).	 74	
FIGURE	3.1.	THE	RESEARCH	ONION	(SAUNDERS	ET	AL.,	2007)	 97	
FIGURE	3.2.	OVERVIEW	OF	DESIGN	AND	DEVELOPMENT	OF	DISTRIBUTED	AGILE	PATTERN	CATALOGUE	 108	
FIGURE.	3.3.	THE	SELECTION	PROCESS	OF	PRIMARY	PAPERS.	 113	
FIGURE	4.1.	PROCESS	OF	SELECTING	PATTERNS	FROM	THE	DISTRIBUTED	AGILE	PATTERN	CATALOGUE.	 130	
FIGURE	4.2.	DISTRIBUTED	AGILE	PATTERNS	APPLICATION	ON	TRADITIONAL	SCRUM	LIFECYCLE	 130	
FIGURE	4.3.	DISTRIBUTION	OF	WORK	AMONG	THREE	DISTRIBUTED	TEAMS	(GUPTA,	2009).	 160	
FIGURE.	5.1.	DOCUMENT	PRESENTED	IN	REFLECTION	WORKSHOP	TO	THE	PARTICIPANT	 175	
FIGURE	6.1.		TRADITIONAL	REQUIREMENTS	ENGINEERING	PROCESS.	 186	
FIGURE		6.2.		AGILE	REQUIREMENTS	CHANGE	MANAGEMENT	PROCESS.	 187	
FIGURE	6.3.	STORY	CARD	BASED	METHODOLOGY	FOLLOWED	BY	SOBA	TOOL	(PATEL	ET	AL.,	2008).	 188	
FIGURE	6.4.	THE	USER	STORY	DELIVERY	PROCESS	(DANEVA	ET	AL.,	2013).	 191	
	

	

	

	

	

	

	

	

	

	

	

	
	

	 7	

Acknowledgements	

	

First	and	foremost,	this	research	would	not	be	possible	without	the	blessing	of	my	Lord	

ALLAH,	the	most	Merciful,	who	has	given	me	the	patience	and	strength	to	finish	this	

PhD	journey.	

	

I	would	like	to	express	my	gratitude	and	sincere	appreciation	to	my	supervisor,	Dr.	Adil	

Al-Yasiri,	for	his	assistance,	guidance,	and	feedback	during	my	PhD.	

	

Special	 thanks	 to	 my	 parents,	 Kausar	 Iqbal	 Malik	 and	 Khalida	 Parveen,	 for	 their	

encouragement	and	prayers.	

	

	I	would	like	to	extend	my	thanks	to	the	members	of	the	School	of	Computing,	Science,	

and	Engineering	at	the	University	of	Salford,	for	supporting	me	during	my	PhD.	

	

Finally,	 I	would	like	to	say	thanks	to	everyone	who	helped	me	achieve	success	in	this	

research.	

	

	

	

	

	

	

	

	

	

	

	

	

	 8	

Declaration	

	

Parts	 of	 the	 research	 presented	 in	 this	 thesis	 has	 been	 published	 in	 the	 following	

papers	and	presentations:	

	

1-	Kausar,	M.,	&	Al-Yasiri,	A.	(2015).	Distributed	Agile	Patterns	for	Offshore	Software	

Development.	 Presented	 in	 the	 12th	 International	 Joint	 Conference	 on	 Computer	

Science	and	Software	Engineering	(JCSSE	2015).	IEEE	Conference	2015.	

	

2-	 Kausar,	M.,	&	Al-Yasiri,	 A.	 (2016).	Using	Distributed	Agile	 Patterns	 for	 Developing	

Offshore	 Projects.	 Presented	 in	 the	 Proceedings	 of	 the	 CSE	 2016	 Annual	 PGR	

Symposium	(CSE-PGSym	16),	University	of	Salford,	Manchester,	United	Kingdom,	2016	

	

3-	Kausar,	M.,	&	Al-Yasiri,	A.	(2017).	Using	Distributed	Agile	Patterns	for	Supporting	the	

Requirements	 Engineering	 Process.		 Presented	 in	 the	 Requirements	 Engineering	 for	

Service	and	Cloud	Computing.	Springer	International	Publishing,	2017.	291-316.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 9	

Abstract:	

	

Over	 a	 decade,	 companies	 have	 been	 using	 agile	 methods	 for	 the	 development	 of	

software.	 However	 with	 the	 increasing	 trends	 of	 offshore	 software	 development,	

companies	 are	 becoming	more	 interested	 in	 using	 agile	 methods	 for	 such	 projects.	

While	 offshore	 development	 has	 several	 dynamic	 benefits	 such	 as	 cost	 reduction,	

flexibility,	 proximity	 to	market,	 concentration	 on	 core	 processes	 and	 easy	 access	 to	

talent,	 they	 have	 introduced	 new	 challenges,	 such	 as	 trust,	 socio-cultural,	

communication	and	coordination,	and	knowledge	transfer	issues.	These	challenges	not	

only	affect	the	development	process	but	also	affect	the	applicability	of	agile	practices	

in	 offshore	 development.	 As	 a	 consequence,	 companies	 have	 been	 modifying	 and	

adapting	agile	practices	to	overcome	these	challenges.	However	there	has	been	little	

effort	 put	 to	 collect	 and	 document	 the	 common	 practices	 that	 have	 been	 used	

repeatedly	to	solve	recurring	problems	in	offshore	development.	

	

Using	 the	 systematic	 literature	 review	 approach	 and	 applying	 customised	 search	

criteria	based	on	 the	 research	questions,	we	 identified	and	 reviewed	over	200	cases	

from	literature.	As	part	of	this	research	we	also	conducted	semi-structured	interviews,	

in	 which	 we	 involved	 practicing	 professionals	 who	 were	 working	 with	 distributed	

teams.	As	a	result,	we	identified	and	documented	a	number	of	solutions	to	address	the	

common	agile	issues	in	software	development,	which	we	classified	as	distributed	agile	

patterns.	

	

This	 research	 presents	 the	 challenges	 caused	 by	 offshore	 development,	 how	 they	

affect	 the	 applicability	 of	 agile	 practices	 in	 offshoring.	 We	 have	 then	 developed	 a	

catalogue	 containing	 the	 identified	 fifteen	 distributed	 agile	 patterns	 and	 have	

classified	them	into	four	categories.	We	have	used	a	case	study	to	explain	how	these	

patterns	can	be	applied	in	offshore	software	development.	To	verify	and	validate	our	

catalogue,	we	conducted	a	 reflection	workshop,	 in	which	we	 invited	professionals	 to	

review	 and	 comment	 on	 the	 patterns.	 The	 participants	 engaged	 in	 reviewing	 the	

patterns	 and	 gave	 constructive	 feedback,	 which	 helped	 in	 improving	 the	 catalogue.	

	 10	

Based	 on	 their	 feedback,	 the	 distributed	 agile	 patterns	 catalogue	was	 finalised.	 The	

catalogue	can	help	practitioners	make	a	more	informed	decision	while	choosing	agile	

for	their	offshore	projects.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 11	

Chapter	1	 Introduction	

	

Recent	advances	in	software	development	have	made	it	possible	and	attractive	for	the	

industry	to	move	towards	Global	Software	Development	(GSD).	GSD	is	referred	to	the	

practice	 in	 which	 companies	 move	 some/all	 part	 of	 their	 software	 project	 to	 an	

offshore	location.	For	some	companies	the	motivation	is	to	cut	down	on	cost,	while	for	

others	 the	motivation	 is	 to	benefit	 from	the	variety	 in	 talents	available	 from	all	over	

the	world,	or	closeness	 to	market.	Nonetheless,	whatever	 the	 reason	was	 to	making	

such	a	decision,	it	is	very	important	for	them	to	consider	which	type	of	global	software	

engineering	 business	 model	 they	 will	 be	 using.	 Work	 has	 been	 done	 on	 proposing	

different	 frameworks	 from	which	 organisations	 can	 select	which	 type	 of	GSD	model	

they	want	 to	 use	 (Robinson	 et.	 al,	 1996;	 Prikladnicki	 et	 al.	 2007	 and	 Agerfalk	 et	 al.		

2008).	We	have	presented	an	overview	of	different	models	in	Section	2.2.1.	

	

The	term	“offshore	outsourcing	or	offshoring”	is	commonly	used	for	the	practice	of	a	

company	to	subcontract	work	to	third	party	companies,	which	are	placed	at	countries	

like	India,	Pakistan,	China	and	Russia	(Prikladnick	et	al.,	2007).	This	way,	a	company	can	

focus	on	 its	core	business	and	 leave	the	development	of	products	to	companies	that	

can	perform	them	in	higher	standards	or	at	cheaper	rates	(Pilatti	et	al.,	2006).	

	

The	 concept	 of	 offshoring	 isn’t	 new	 or	 exclusive	 to	 software	 development;	 many	

companies	for	years	have	been	using	subcontractors	to	provide	assistance	in	multiple	

areas,	from	cleaning	services	to	consultations	(Jahns,	et	al.,	2006).	What	has	changed	is	

that	with	the	help	of	technology	the	scope	of	offshoring	has	expanded	internationally	

(Van,	 2004).	 As	 technology	 has	 reduced	 the	 cost	 of	 communication,	 companies	 can	

exchange	work	products	to	far	away	places,	cheaply	and	efficiently.	

	

A	 decade	 ago	 the	 trend	 of	 offshoring	 had	 increased	 mainly	 in	 the	 sector	 of	

manufacturing	(Garner,	2004)	but	as	communication	became	cheaper	and	faster	more	

companies	 from	 different	 sectors	 started	 adopting	 the	 practice.	 In	 the	 IT	 sector,	

offshoring	has	been	changing	how	organisations	develop	software	around	the	world.	

	 12	

The	main	 reason	 why	 companies	 choose	 offshoring	 is	 because	 of	 lower	 production	

cost	 (Pilatti	et	al.,	2006)	which	 is	mainly	because	of	 low	salaries	 in	countries	outside	

Europe,	 the	 US	 and	 Japan.	 For	 example	 in	 India	 an	 average	 ICT	 worker	 earns	 one	

seventh	 of	 the	 amount	 earned	 by	 a	 British	 employee	 (Global	 Wages	 Comparison,	

2013).		

	

Offshoring	 can	 offer	 additional	 commercial	 advantages	 beyond	 cheaper	 labour;	 for	

example	in	a	country	like	India,	which	profits	90%	of	the	revenues	of	all	IT	and	service	

offshore	 activity,	 produces	 two	 million	 university	 graduates	 per	 year	 (Kobayashi-

Hillary,	2005).	With	this	offshore	companies	can	see	new	opportunities	such	as	access	

to	 larger	 pool	 of	 skilled	 people,	 shared	 best	 practices	 and	proximity	 to	markets	 and	

customers	 (Smite	 et	 al.,	 2011).	 Kobayashi-Hillary	 who	 went	 to	 Bangalore	 to	 open	 a	

software	 facility	 comments	 “The	 issue	 now	 was	 not	 finding	 good	 people;	 it	 was	

filtering	the	excellent	from	the	good”	(Kobayashi-Hillary,	2005).	

	

There	are	many	advantages	of	offshore	development	but	as	GSD	continues	to	grow	it	

has	 been	 noted	 that	 it	 causes	 some	 issues,	 which	 are	 caused	 as	 teams	 become	

distributed	over	different	geographical	 locations	(Damian	et	al.,	2006).	 Issues	such	as	

trust,	 socio-cultural,	 communication	 and	 co-ordination	 and	 knowledge	 transfer	 are	

examples	of	the	challenges	facing	GSD.	On	one	hand	such	issues	represent	barriers	to	

the	distributed	teams;	on	the	other	hand	it	has	particular	impact	on	Agile	teams	which	

favour	 face-to-face	 communication	 and	 co-working	 between	 team	 members.	 A	

number	of	 teams	have	experimented	and	adapted	various	agile	practices	 in	order	 to	

overcome	the	above	challenges.	Such	efforts	(although	documented)	remain	individual	

and	difficult	 to	 share.	 In	 this	 research	we	have	provided	solutions	 for	 some	of	 these	

challenges	by	identifying	agile	practices	that	are	being	used	repeatedly	for	addressing	

global	 software	 development	 issues.	We	 believe	 that	 by	 identifying	 and	 cataloguing	

these	practices	they	can	be	easily	retrieved	and	applied	for	similar	problems.		

	

	

	

	 13	

1.1 Research	Problem	

Traditionally,	software	was	developed	at	one	location	where	the	whole	team	worked	

from	the	same	office.	Similarly	the	clients/sponsors	of	the	project	were	situated	in	the	

same	 country.	 But	 as	 onshore	 software	 development	 became	 expensive	 companies	

started	looking	for	alternative	ways	to	cut	down	on	software	development	cost	(Pilatti,	

Audy,	 2006).	One	 such	alternative	was	 to	move	 some	of	 their	 processes	 to	offshore	

locations,	 as	 due	 to	 decrease	 in	 global	 communication	 rates	 companies	 could	

coordinate	work	via	online	communication	tools	and	setup	cost	in	countries	like	India	

and	China	is	cheaper	in	comparisons	to	countries	like	USA,	UK	and	Japan	(Prikladnick	&	

Audy,	2012;	Bush,	Tiwana,	and	Tsuji,	2008;	McLaughlin,	2003)	

	

But	as	companies	continued	 to	 switch	 to	offshore	development	 it	became	clear	 that	

achieving	 reduced	 cost	 is	 not	 as	 straightforward	 as	 it	 initially	 seemed.	 As	 even	 if	

companies	manage	to	cut	down	cost	on	development	by	setting	up	cheap	offices	and	

finding	 cheap	 labor	 (Global	 Wages	 Comparison,	 2013),	 offshoring	 introduces	 new	

challenges.	 These	 challenges	 appear	 because	 companies	 distributed	 their	 team	 to	

different	 locations	 having	 different	 time	 zones,	 different	 language	 and	 social	 values,	

causing	challenges	such	as:	

	

• The	issue	of	trust	causes	difficulty	in	forming	alliances	among	firms	that	do	not	

know	 each	 other.	 It	 also	 introduces	 a	 risk	 of	 project	 failure	 as	 clients	 are	

concerned	 with	 whether	 the	 offshore	 service	 provider	 will	 deliver	 the	 work	

promised	without	compromising	on	their	requirements.	Lack	of	trust	can	cause	

misunderstanding	 and	 conflicts	 between	 the	 firms	 (Battin	 et	 al.,	 2001).	 This	

issue	will	be	discussed	in	detail	in	section	2.3.1.	

	

• Socio-	Cultural	conflicts,	such	as	a	difference	 in	 languages,	national	traditions,	

values	and	norms	cause	problems	 in	offshore	software	development	 (Carmel,	

1999;	Hofner	et	al.,	2007).	As	the	difference	in	language	or	language	style	can	

cause	 problems	 while	 developing	 the	 code	 as	 the	 offshore	 team	 leaves	

comments	 for	 the	 onshore	 team	 regarding	what	 they	 have	 done	 but	 due	 to	

	 14	

difference	 in	 language	 the	 onshore	 team	 cannot	 understand	 their	 comments	

hence	 resulting	 in	 a	 delay	 in	 the	 project	 development.	 This	 issue	 will	 be	

discussed	in	detail	in	section	2.3.2.	

	

• The	team	faces	communication	and	coordination	issues	(Beulen	et	al.,	2002),	as	

the	team	members	are	distributed	on	different	locations	and	time	differences,	

which	makes	it	difficult	to	have	real-time	face-to-face	communication.	This	can	

cause	problems	in	sharing	information.	This	issue	will	be	discussed	in	detail	 in	

section	2.3.3.	

	

• Companies	started	to	face	knowledge	transfer	issues	they	moved	their	business	

and	development	process	to	offshore	locations,	as	any	mistake	in	the	transfer	

process	 can	 cause	 projects	 to	 fail	 (Kedia	 et	 al.,	 2007).	 This	 issue	 will	 be	

discussed	in	detail	in	section	2.3.4.	

	

These	challenges	were	not	part	of	traditional	software	development	because	the	team	

worked	in	the	same	country	having	the	same	time	zone,	face-to-face	communication,	

and	 same	 social	 values	 (Meyer,	 2006).	 If	 these	 challenges	 are	 not	 handled	 properly	

they	can	make	the	overall	cost	of	the	project	several	times	higher	than	if	the	project	

was	developed	at	any	onshore	location	(Iacovou	et	al.,	2008;	Hartmann	et	al.,2011).		

	

In	 offshoring,	 companies	 also	 have	 to	 deal	 with	 additional	 tasks	 as	 the	 team	 is	

distributed	over	different	time	zones	(Evaristo	et	al.,	2004).	The	additional	tasks	are:	

	

i) They	 have	 to	 maintain	 good	 communication	 with	 all	 its	 offshore	 offices	

otherwise	the	information	flow	will	be	affected	(Carmel	et	al.,	2005),	

	

ii) The	 onshore	 office	 has	 to	 decide	 which	 work/project	 should	 be	 sent	 to	

offshore	 location	and	which	should	be	developed	 in-house	 (Lamersdorf	et	

al.,	2008)	and		

	

	 15	

iii) Once	 the	project	or	process	 is	 selected	 they	need	 to	be	coordinated	with	

the	 onshore	 office	 in	 order	 to	 develop	 a	 product	 that	 meets	 the	 clients	

requirements	(Aundh	et	al.,	2009).	

	

Another	 problem	with	 offshoring	 is	 that	 the	 development	methodology	 for	 offshore	

software	 development	 is	 different	 from	 the	 traditional	 approach	 as	 now	 companies	

can	 either	 follow	 a	 global	 standard	 methodology	 for	 all	 its	 offices	 or	 it	 can	 have	

different	development	methodologies	for	distributed	locations	(Sengupta	et	al.,	2006).	

	

Similarly	 the	 standard	 development	 methodologies	 starting	 from	 waterfall	

development	life	cycle	to	agile	assume	that	the	team	is	located	at	the	same	location.	

So	 if	 a	 company	 applies	 any	 of	 the	 standard	 development	 techniques	 by	 the	 book,	

offshore	 projects	 are	 bound	 to	 fail.	 Many	 companies	 have	 customised	 agile	

methodologies	 for	offshore	projects,	 but	 there	are	 still	 limitations	 to	how	 successful	

those	projects	will	be	as	agile	methodology	focuses	on	face-to-face	meetings	such	as	

daily-stand	up	meeting	and	retrospective	meetings	(Beck	et	al.,	2001).	

	

The	 above	 challenges	 can	 directly	 cause	 problems	 in	 the	 software	 development	 life	

cycle,	which	can	result	into	a	project	to	fail;	more	discussion	is	provided	in	Section	2.4.	

The	problem	that	this	research	will	tackle	is	how	to	overcome	the	identified	challenges	

between	 the	 onshore	 and	 offshore	 teams	 as	 it	 affects	 agile	 practices	 on	 offshore	

projects.	 This	 is	particularly	 important,	 as	 the	emphasis	of	 agile	methodologies	 is	on	

face-to-face	 meetings	 such	 as	 daily-stand	 ups,	 sprint	 meetings	 and	 sprint	 review	

meetings	(Benk	et	al.	2001),	which	are	difficult	to	conduct	in	offshoring	as	the	team	is	

distributed	geographically	in	different	time	zones.	Similarly	agile	focuses	on	the	team	

to	 be	 self-organised	 (Benk	 et	 al.	 2001)	 but	 due	 to	 lack	 or	 delay	 in	 communication	

between	 the	onshore	and	offshore	 team,	 it	 is	 difficult	 to	distribute	work	among	 the	

team	members	efficiently.	These	issues	are	discussed	in	detail	in	Section	2.5.2.	

	

	

	 16	

1.2	Research	Aim	and	Objectives	

	

In	order	to	address	the	challenges	between	onshore	and	offshore	teams	such	as	trust,	

socio-cultural,	 communication	 and	 coordination,	 and	 knowledge	 transfer	 issues,	this	

research	aims	to	propose	a	pattern	based	approach	by	identifying	repeating	solutions	

which	 have	 been	 proven	 in	 overcoming	 those	 challenges	 so	 that	 practitioners	 can	

apply	this	approach	in	order	to	mitigate	the	effect	of	the	challenges	in	their	projects.	In	

addition	to	the	main	goal	of	the	research,	we	have	four	specific	objectives	and	they	are	

summarised	as	the	following:

	

i. To	conduct	systematic	literature	review	to	understand	and	analyse	the	existing	

literature	 on	 offshore	 software	 development.	 This	will	 build	 up	 the	 research	

foundation	and	form	the	research	questions	for	this	research.	

	

ii. Identifying	 the	 key	 challenges	 from	 literature	 that	 occur	 while	 developing	

software	on	offshore	locations	and	investigate	how	agile	practices	can	be	used	

to	overcome	those	challenges	and.	Based	on	literature	and	interviews	identify	

if	 there	 is	 a	 recurring	agile	practices	being	used	 to	 solve	 the	 same	challenge	

that	we	can	classify	as	a	pattern.	

	

iii. Develop	a	catalogue	of	 the	 identified	patterns	that	will	be	documented,	as	 it	

will	focus	on	facilitating	offshore	software	development	projects	by	providing	

as	a	guideline	for	practitioners	that	want	to	offshore	their	projects.	

	

iv. Validating	the	Distributed	Agile	Patterns	catalogue	by	using	Kerth’s	reflection	

workshop	method	(Kerth,	2001)	and	evaluate	the	catalogue	by	comparing	the	

existing	solutions	presented	in	literature.		

1.3		Research	Questions					

	

During	the	course	of	this	research,	a	number	of	questions	have	been	identified	to	be	

addressed:	

	 17	

	

RQ:	What	are	the	recurring	adaptations	of	agile	practices	that	are	being	used	within	

offshore	software	development	in	order	to	address	the	identified	issues?	

	

To	be	more	specific,	the	study’s	focus	was	on	the	following	two	questions:		

	

RQ1:	 What	 are	 the	 agile	 practices	 that	 are	 being	 commonly	 used	 to	 deal	 with	

offshore	challenges?		

	

RQ2:	 Are	 the	 challenges	 identified	 in	 RQ1	 recurring	 in	 offshore	 software	

development?	

1.4	Research	Contributions	

	

There	is	a	lack	of	effort	in	collecting	common	practices	that	have	been	used	repeatedly	

to	solve	recurring	problems	in	offshore	development.	In	this	research	we	have	studied	

over	200	cases	from	the	literature	and	interviewed	practicing	professionals	that	work	

in	 distributed	 teams.	 As	 a	 result	 we	 have	 observed	 a	 number	 of	 solutions	 for	 agile	

issues	 in	 distributed	 development	 settings,	 which	 we	 have	 classified	 as	 Distributed	

Agile	Patterns.	We	defined	distributed	agile	patterns	as	adaptation	of	an	agile	practice	

that	is	being	repeatedly	applied	in	order	to	solve	a	recurring	challenge	in	a	distributed	

project	 scenario.	 The	 difference	 between	 distributed	 patterns	 and	 distributed	 agile	

patterns	is	that	distributed	patterns	only	focus	on	practices	that	are	being	repeatedly	

applied	in	order	to	solve	a	recurring	challenge	in	an	offshore	project	irrespective	of	if	

those	practices	are	agile	or	not	whereas	distributed	agile	patterns	focus	on	repeating	

agile	practices.	

	

This	 research	 confirms	 that	 there	 are	 four	 main	 challenges	 in	 offshore	 software	

development,	 which	 are	 trust,	 socio-cultural,	 communication	 and	 coordination,	 and	

knowledge	 transfer	 issues,	 that	every	organisation	 faces	and	 that	 they	have	adapted	

agile	practices	to	overcome	those	challenges.		

	

	 18	

The	 findings	 of	 this	 research	 will	 strengthen	 the	 existing	 literature	 on	 distributed	

software	development	and	provide	a	knowledge	base	for	agile	practitioners	who	use	

or	intend	to	use	agile	approaches	in	offshore	software	development.	The	documented	

findings	have	been	observed	from	literature	and	practitioners	in	order	to	prepare	the	

patterns	catalogue.	

	

Practitioners	can	use	the	pattern	catalogue	 in	the	beginning	of	offshore	projects	and	

make	informed	decisions	about	how	to	adopt	agile	approaches	as	generalized	patterns	

make	it	easier	for	other	companies	to	reflect	on	and	to	apply	the	results	to	their	own	

cases.		

	

1.5	Research	Methodology				

	

The	following	research	methodology	 is	developed	and	adopted	for	this	research.	The	

main	stages	of	the	methodology	are	outlined	in	Figure	1.1	and	detail	of	each	stage	is	

presented	in	Chapter	3	Research	Methodology.	

	

								 	

Figure	1.1	Research	Methodology	
	

	 19	

	

Step	1:	Review	Previous	Literatures	and	Relevant	Offshoring	Challenges.	

	

In	 this	 step	 the	 previous	 relevant	 works	 is	 reviewed,	 to	 identify	 challenges	

practitioners	 faces	 while	 developing	 their	 projects	 offshore.	 This	 helps	 in	

acquiring	 a	 good	understanding	 of	what	 factors	 affect	 offshore	 projects.	 This	

step	also	helps	in	answering	the	RQ1	mentioned	in	Section	1.3,	as	there	was	a	

need	to	study	what	agile	practices	are	being	used	in	GSD.	

	

Step	2:	Identify	and	Define	the	Research	Problem.	

	

The	 research	 starts	 by	 making	 assumptions	 on	 how	 to	 successfully	 develop	

software	on	offshore	 locations	 to	meet	 the	objectives	of	 the	 research.	 To	do	

this,	the	research	focuses	on	studying	and	analysing	factors	that	affect	offshore	

software	development,	based	on	the	case	studies	of	different	companies	as	this	

helps	in	answering	the	RQ1	mentioned	in	Section	1.3	in	order	to	identify	what	

agile	practices	are	being	used	and	also	to	answer	RQ2	that	is	to	identify	if	those	

practices	are	recurring	or	not.	

	

To	perform	this	step	semi-structured	interviews	are	conducted	with	companies	

who	 had	 chosen	 offshore	 processes	 for	 their	 projects.	 The	 research	 also	

analyses	how	many	companies	use	agile	development	methodologies	for	their	

offshore	software	development	projects	and	what	limitations	they	face.		

	

Step	3:	Collect	Data	from	Systematic	Literature	Review	and	Interviewing	Offshore	

Companies.	

	

This	 research	 is	 carried	 out	 by,	 following	 Kitchenham’s	 guidelines	 for	

conducting	Systematic	Literature	Review	(Kitchenham	et	al.	2007).	This	is	done	

to	 select	 primary	 studies	 from	 the	 existing	 literature.	We	 also	 conducted	 20	

semi-structured	 interviews	with	offshore	companies	to	get	practitioners	point	

of	view	on	the	challenges	they	face	while	working	on	offshore	projects.		

	 20	

Step	4:	Analyse	Data	collected	from	Systematic	Literature	Review	and	Interviewing	

Offshore	companies.	

	

To	 analyse	 the	 data	 collected	 we	 use	 content	 analysis	 as	 proposed	 by	

Kripendorff	to	verify	the	results	of	our	findings	(Kripendorff,	2004).	 	Details	of	

this	step	is	presented	in	section	3.3.2.	

	

Step	5:	Design	and	develop	the	Distributed	Agile	Patterns	Catalogue.	

	

Based	on	the	findings	a	Distributed	Agile	Patterns	Catalogue	is	developed;	this	

is	presented	in	Section	4.5.	

	

Step	6:	Validate	and	Evaluate	the	Pattern	Catalogue.	

	

In	order	 to	validate	 the	Distributed	Agile	Patterns	Catalogue,	we	conducted	a	

workshop	by	using	Kerth’s	keep/try	reflection	workshop	method	(Kerth,	2007).	

By	doing	 this,	 feedback	collected	 from	the	companies	 (who	would	have	been	

interviewed)	 is	 sought	 to	 obtain	 their	 views	 on	 the	 catalogue,	 and	 its	

effectiveness.	Based	on	their	answers	the	catalogue	is	validated	and	this	helps	

in	answering	the	RQ2	mentioned	 in	Section	1.3	as	 it	confirms	that	these	agile	

practices	are	being	used	to	solve	recurring	problems	in	GSD.	

	

To	 evaluate	 the	 pattern	 catalogue	 we	 compare	 the	 catalogue	 with	 other	

solutions	 mentioned	 in	 the	 literature	 for	 solving	 GSD	 challenges,	 which	 is	

presented	in	Section	5.3.	

	

Step	7:	Modify	the	Catalogue	to	Improve	Results.	

	

The	necessary	modifications	are	made	in	the	catalogue	based	on	the	feedback	

given	by	 the	 companies.	 This	 step	allows	 the	 research	 to	 improve	 the	 results	

produced	in	the	catalogue.	

	

	 21	

Step	8:	Document	the	Pattern	Catalogue.	

	

The	 final	 stage	of	 the	 research	 is	 to	document	 the	patterns	 catalogue,	which	

incorporates	 the	 answers	 of	 all	 the	 research	 questions	mentioned	 in	 Section	

1.3.		

	

Based	on	the	above	discussion	it	can	be	seen	that	we	have	used	an	inductive	approach,	

as	the	research	moves	from	specific	 to	general.	As	we	first	 identified	and	designed	a	

specific	research	problem	and	then	developed	a	generic	catalogue	of	distributed	agile	

patterns.	 In	 section	 3.3.2	 we	 have	 presented	 detail	 explanation	 on	 how	 we	 have	

applied	inductive	approach	in	our	research	approach.		

1.6	Structure	and	How	to	Read	the	Report		

	

This	thesis	presents	the	complete	Distributed	Agile	Patterns	Catalogue.	The	remainder	

of	the	thesis	is	arranged	in	the	following	chapters.	Chapter	1	presents	the	research	aim	

and	 objectives,	 the	 research	 problem,	 the	 research	 questions	we	will	 answer	 in	 this	

study	and	the	overview	of	the	research	methodology	that	is	carried	out	to	answer	the	

aim	 and	 objectives	 set	 for	 this	 study.	 Chapter	 2	 Offshore	 Software	 Development,	

presents	 the	 background	 of	 offshore	 software	 development	 which	 concentrates	 on	

describing	different	types	global	software	development	models	as	well	as	what	are	the	

benefits	and	challenges	of	offshore	software	development	and	what	role	agile	plays	in	

overcoming	those	challenges.	It	also	focuses	on	how	patterns	can	be	used	to	overcome	

the	 challenges	 of	 offshore	 development.	 In	 Chapter	 3	 we	 present	 the	 research	

methodology	 that	 has	 been	 followed	 in	 order	 to	 conduct	 this	 research.	 Chapter	 4	

consists	of	 the	 final	 version	of	 the	Distributed	Agile	Patterns	 catalogue,	as	we	didn’t	

want	to	confuse	the	reader	by	presenting	two	versions	of	the	catalogue,	the	unrevised	

version	can	be	found	in	Appendix	F.		Chapter	5	presents	how	the	catalogue	is	validated	

and	 evaluated	 with	 the	 use	 of	 reflective	 workshop	 and	 comparing	 other	 solutions	

present	 in	 literature	 for	 offshore	 software	 development.	 To	 help	 practitioners	

understand	how	 the	Distributed	Agile	Patterns	 can	be	applied,	Chapter	6	presents	 a	

case	 study	 on	 how	 the	 requirement	 phase	 is	 conducted	 using	 the	 distributed	 agile	

	 22	

patterns	 catalogue	 and	 finally	 in	 Chapter	 7,	 the	 conclusions	 has	 summarised	 the	

findings	of	this	research	and	we	have	presented	an	overview	of	the	future	work.	

1.7	Chapter	Summary		
	
This	 chapter	 presented	 an	 introduction	 to	 the	 thesis	 through	 defining	 the	 research	

problem	 and	 discussing	 the	 research	motivation,	 then	 the	 aim	 of	 the	 research,	 the	

objectives,	 and	 research	questions	were	presented.	 The	 research	 contributions	 have	

been	defined	along	with	the	research	methodology,	in	addition	to	defining	the	outline	

of	the	thesis.	

	

In	 summary,	 this	 thesis	 presents	 a	 catalogue	 of	 distributed	 agile	 patterns	 which	

practitioners	can	use	while	offshoring	their	projects.	In	the	next	chapter,	a	background	

for	the	research	field	is	presented.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 23	

Chapter	2	 	Offshore	Software	Development	

	

2.1	Introduction	

	

This	 section	 summaries	 the	 work	 that	 has	 been	 completed	 to-date.	 It	 presents	 the	

background	 research	 that	 has	 been	 done	 on	 offshore	 software	 development	 so	 far.	

The	 background	 involves	 reviewing	 the	 models	 of	 offshoring	 and	 the	 benefits	 it	

provides.	 The	 review	 also	 covers	 and	 highlights	 the	 main	 challenges	 and	 issues	

offshore	 software	 development	 which	 we	 identified	 using	 Systematic	 Literature	

Review.	We	have	also	mentioned	how	agile	can	be	used	to	overcome	those	challenges	

and	what	are	the	limitations	of	agile.	We	have	also	presented	five	approaches	used	in	

literature	 to	 facilitate	practitioners	 in	agile	adoption.	 Lastly	we	have	mentioned	how	

patterns	can	aid	in	agile	adoption	in	offshore	software	development	by	presenting	an	

overview	of	current	patterns	being	used	for	agile	adoption	and	giving	an	overview	of	

the	distributed	agile	patterns.	

	

2.2	Background	of	Offshore	Software	Development	

	

In	 this	 section	 we	 have	 presented	 a	 background	 study	 on	 offshore	 software	

development	 to	 understand	 why	 organisation	 move	 towards	 offshoring	 their	

processes.	We	gave	an	overview	of	different	types	of	offshore	models	based	on	what	

type	of	business	model	 they	chose	 to	 follow	while	offshoring	 their	projects.	We	also	

presented	what	are	the	key	benefits	that	organisations	consider	while	deciding	to	go	

for	offshore	software	development.		

2.2.1	Overview	of	Offshore	Models	

	

When	an	organisation	decides	to	move	some	of	their	processes	to	other	locations,	it	is	

very	 important	 for	 them	 to	 consider	 which	 type	 of	 global	 software	 engineering	

business	model	they	will	be	using.	Robinson	provided	a	framework	to	categorise	these	

	 24	

business	 models	 based	 upon	 relationship	 structure	 and	 geographical	 location	

(Robinson	et	al.,	2004).		

	

Prinkladnicki	used	an	adaptation	of	Robinson’s	framework	based	on	the	most	common	

models	 used	 in	 practice,	 which	was	 than	 presented	 in	 Agerfalk	 and	 Fitzgerald	work	

(Prinkladnicki	et	al.,	2007;	Robinson	et	al.	2004;	Agerfalk	et	al.,	2008).		In	this	thesis	we	

have	used	a	further	adapted	version	with	 inputs	from	the	Organisation	for	Economic	

Co-operation	&	Development	report	(OECD,	2004)	shown	in	Figure	2.1.		The	reason	for	

choosing	 this	 version	 is	 because	 it	 clearly	 identified	 the	 four	main	 business	 models	

selected	by	organisations	that	decide	to	move	their	processes	to	a	different	 location,	

where	 its	 in	 the	same	country	or	an	offshore	 location.	This	section	discusses	each	of	

these	models	in	detail.	

	

	
									

								Figure	2.1	Business	Models	for	Global	Software	Engineering	(OECD,	2004).	

	

2.2.1.1	Domestic	Outsourcing	

	

Domestic	outsourcing	is	also	referred	as	onshore	outsourcing	(Robinson	et	al.,	2004).	

In	 this	 business	 model	 an	 external	 company	 acts	 as	 a	 subcontractor	 for	 providing	

software	 development	 services	 or	 software	 products	 to	 an	 organisation.	 In	 this	

scenario	the	subcontracting	company	is	located	onshore	(Prikladnicki	et	al.,	2012).	The	

	 25	

companies	 that	 select	 this	 type	 of	 business	model	 go	 for	 a	 joint-venture	 offshoring	

approach.	

	

In	 joint	 venture	 offshoring,	 an	 organisation	 collaborates	 with	 a	 local	 company	 to	

develop	software.	This	collaboration	can	take	many	different	forms.	In	some	cases	the	

revenue	stream	is	separated	from	rest	of	the	company’s	business	as	the	servers	being	

outsource	 generates	 its	 own	 revenue	which	 results	 in	 reduced	 risk	 for	 the	 company	

offshoring	their	services.	Both	the	company	share	a	percentage	of	the	revenue	earned.	

	

In	other	cases,	joint	ventures	can	be	between	two	or	more	companies,	the	goal	being	

to	build	an	offshore	centre	with	multiple	owners	in	order	to	reduce	the	start-up	costs	

and	operational	 risks.	Hence	 in	 joint	ventures	companies’	collaboration	can	be	equal	

that	 is	both	of	 the	company	have	equal	 stake	or	 the	companies	can	be	 independent	

but	just	contribute	their	resources	to	each	other.	The	goal	of	this	model	 is	to	benefit	

from	 the	 strengths	 of	 the	 organisations,	 in	 order	 to	 achieve	 a	win-win	 situation	 for	

both	of	them	(Babu,	2005).	

	

To	motivate	 both	 the	 companies	 to	 go	 for	 joint	 venture	 contracts,	many	 companies	

include	 a	 build-operate-transfer	 (BOT)	 clause.	 This	 clause	 helps	 the	 companies	 to	

decide	on	how	they	will	work	together	in	order	to	complete	the	products	(Vashistha	et	

al.,	2005)	and	furthermore	it	also	allows	the	onshore	companies	to	sell	their	stakes	to	

foreign	companies	after	achieving	agreed-upon	milestones.	

Joint	venture	offshoring	has	many	advantages	such	as	both	the	companies	learn	from	

each	other.	It	also	helps	build	relationships	across	the	venders	and	both	the	companies	

share	their	recourses	to	develop	the	best	product	(Babu,	2005).	

	

2.2.1.2 Shared	Services	

	

Shared	Services	is	also	referred	as	onshore	insourcing.	In	this	business	model	there	is	a	

department	 in	 the	 company’s	 building	 or	 a	 subsidiary	 in	 the	 same	 country	 that	

provides	 software	 development	 services	 for	 the	 internal	 projects	 (Prikladnicki	 et	 al.,	

	 26	

2012).	This	model	is	the	most	simple	and	known	business	model	as	not	many	risks	are	

involved	in	adopting	it	since	all	the	teams	are	working	in	the	same	country	(Prikladnicki	

et	al.,	2007).	

	

Many	companies	choose	onshore	insourcing	in	order	to	avoid	the	risk	of	moving	their	

processes	 to	 an	 offshore	 location.	 A	 study	 done	 by	 Amiti	 in	 the	 United	 States,	 the	

United	 Kingdom,	 and	many	 other	 industrialised	 countries	 showed	 that	 jobs	 in	 these	

countries	are	preferred	to	be	 insourced	rather	than	to	outsource	them	because	they	

are	concerned	that	 if	 they	outsourced	more	 jobs	they	will	be	 losing	a	net	amount	of	

jobs	for	their	nationals	(Amiti	et	al.,	2005).	

	

Onshore	insourcing	is	considered	the	better	alternative	to	outsourcing	as	the	jobs	stay	

in	the	country	and	they	do	not	have	to	invest	in	the	start-up	costs	(Prikladnicki	et	al.,	

2012).	 Similarly	 companies	 can	 avoid	 challenges	 such	 as	 communication	 and	

coordination	 problems,	 language	 issues,	 software	 quality	 standard	 issues	 and	 trust	

issues	(Prikladnicki	et	al.,	2007).	

	

2.2.1.3 Internal	Offshoring	

	

Internal	 Offshoring	 is	 also	 referred	 as	 offshore	 insourcing.	 In	 this	 business	model,	 a	

company	 internally	 offshores	 its	 services	 by	 creating	 its	 own	 software	 development	

centre	 (subsidiary)	 in	 foreign	country	 (Prikladnicki	et	al.,	2012).	Some	companies	opt	

for	the	ultimate	approach,	“do	it	yourself	”	that	is	go	out	and	built	your	own	subsidiary	

centre	in	an	offshore	location	(Vashistha	et	al.,	2005).	Many	companies	go	directly	 in	

for	 a	 subsidiary	 or	 local	 offices	 instead	 of	 opting	 for	 joint	 ventures,	 as	 there	

management	is	comfortable	in	dealing	with	international	and	local	market	operations.	

The	common	terms	used	for	this	kind	of	model	 include	offshore	development	centre	

(ODC),	captive	development	centre,	branch	or	local	office.	

	

Companies	 usually	 use	 such	 a	 model	 when	 they	 already	 have	 very	 large	 physical	

presences	 in	 the	countries	 involved	 in	 the	offshoring.	Sometimes	the	captive	centres	

	 27	

run	 independent	 businesses	with	 their	 own	budget	 and	 bottom-line	 accounting.	GE,	

HSBC,	and	American	Express	are	considered	the	most	sophisticated	at	deploying	 this	

model.	 Another	 example	 is	 Citibank	 who	 does	 commercial	 banking	 in	 Brazil	 and	

Portland.		

	

The	advantages	of	this	model	are,	it	guarantees	market	for	a	company’s	services	and	it	

helps	 in	 establishing	 management	 hierarchy.	 It	 also	 alleviates	 some	 organisational	

issues	such	as	control	and	politics	that	manage	the	back-office	offshore	activities	with	

external	 vendors	 (Robinson	 et	 al.,	 2004).	 This	 approach	 has	 one	 key	 challenge	 that	

apart	 from	 internationalisation	 and	 localisation	 of	 business	 management,	 managers	

are	 concerned	 about	 finding	 the	 right	 staff,	 line	 works,	 technical	 experts	 and	 line	

managers	from	multicultural	backgrounds	(Aron	et	al.,	2005).		

	

Many	large	organisations	are	comfortable	in	managing	their	technology	development	

and	innovation	at	local	offices.	Large	software	development	companies	including	IBM,	

Microsoft	 and	 Oracle	 already	 have	 global	 marketplace	 and	 are	 comfortably	 moving	

work	around	the	world	(Babu,	2005).	

	

2.2.1.4 Offshore	Outsourcing	

	

Offshoring	Outsourcing	 is	 also	 referred,	 as	offshoring.	 It	 is	 the	most	 commonly	used	

business	 model	 by	 companies.	 In	 this	 business	 model	 external	 suppliers	 that	 are	

located	 in	 other	 countries	 (offshore)	 provide	 software	 development	 services	

(Prikladnicki	et	al.,	2012).	Carmel	defines	offshoring	as	moving	business	processes	that	

were	being	done	at	a	local	company	to	a	foreign	country	in	order	to	take	advantage	of	

cheap	labour	(Carmel	et	al.,	2005).	While	selecting	this	business	model	companies	can	

choose	from	three	different	approaches	such	as:	

	

i. Service-provider	offshoring,		

ii. Dedicated	centres	and		

iii. Third-party	transplant.	

	 28	

	

In	 service-provider	offshoring,	companies	subcontract	development	work	 to	offshore	

organisations	in	order	to	focus	on	core	business	activities	(Vashistha	et	al.,	2005).	The	

advantages	of	choosing	this	type	of	offshoring	rather	than	building	subsidiary	outlets	is	

similar	 to	 the	 advantages	 provided	 by	 offshoring	 rather	 than	 keeping	 all	 the	

functionalities	 in	 house	 such	 as	 getting	 product	 developed	 at	 low	 cost	 and	

concentrating	more	on	core	business	activities	(Vashistha	et	al.,	2005).	Hence	in	order	

to	avoid	the	risks	attached	with	offshoring	and	capitalize	from	the	benefits	it	provides	

companies	 choose	 to	 outsource	 projects,	 program,	 and	 individual	 work	 orders	 to	

offshore	vendors.		

	

This	model	is	becoming	increasingly	popular	and	it	encompasses	a	wide	range	of	work	

including	small	projects	to	multi-year	contracts	containing	of	budget	up-to	millions	of	

dollars	(Aron	et	al.,	2005).	Popular	companies	such	as	GE,	American	Express,	VeriSign	

and	Abbey	National	are	already	using	this	model	successfully	(Vashistha	et	al.,	2005).	

	

Another	approach	of	this	model	is	to	create	a	dedicated	centre	that	is	some	companies	

are	 too	 cautious	about	quality,	which	prevents	 them	 from	hiring	an	offshore	 service	

provider,	and	they	also	have	issues	with	cost,	which	prevents	them	from	building	their	

own	offshore	centre.	Such	companies	take	an	alternative	approach	in	which	they	build	

dedicated	centre	relationship.	In	this	model	an	offshore	supplier	operates	a	dedicated	

centre	for	a	company	but	the	staff,	equipment	and	resources	are	all	wholly	dedicated	

to	the	company.	

	

Such	 centres	 do	 share	 some	 processes	 and	 long-term	 risks,	 which	 include	 co-

ownership	 or	 co-leasing	 of	 resources.	 An	 example	 of	 a	 company	 using	 this	model	 is	

Wipro.	Wipro	is	a	dedicated	centre	for	Sun	Microsystem	as	it	runs	the	“Orbit”,	which	is	

a	highly	technical	developer	assistance	centre	for	Sun	Microsystem’	Solaris	Operating	

System	(Sadagopan,	2002).	After	working	as	a	dedicated	centre	for	10	years	they	now	

have	 access	 to	 Sun’s	 Wide	 Area	 Network	 and	 troubleshoots	 developer	 needs	 from	

around	the	world.	

	

	 29	

In	 third-party	 transplant	 approach,	 a	 third-party	 rather	 than	 a	 company	 builds	 and	

maintains	 the	 offshore	 presences	 of	 a	 company	 (Vashistha	 et	 al.,	 2005).	 Many	

companies	 that	 already	 outsources	 their	work	 on	 onshore	 third-	 party	 locations	 use	

this	model	as	it’s	a	natural	progress	to	move	their	work	to	offshore	locations	in	order	

to	either	cut	down	on	cost	or	to	gain	profit	by	margining	with	a	third-party,	or	both.	

	

An	example	of	a	company	using	such	a	model	 is	Accenture.	 It	has	more	than	83,000	

employees;	over	5,000	are	based	in	low-cost	delivery	centres	in	locations	such	as	India	

and	 the	 Philippines	 (Robinson	 et	 al.,	 2004).	This	 allows	 its	 client	 companies	 to	 that	

advantage	 from	 the	 low-	 priced	 labour	 without	 having	 to	 go	 through	 the	 risk	 of	

starting	 up	 in	 those	 markets.	 The	 objective	 of	 Accenture	 is	 to	 provide	 a	 faultless	

outsourcing	experience	for	corporations	(Hendrik	et	al.,	2011).		

	

This	model	allows	companies	 like	Accenture	to	distribute	and	manage	their	activities	

across	multiple	 global	 locations	 at	 lower	 rates	without	 risk.	 It	 also	 answers	 to	 faster	

time-to-market	 requests	 by	 dividing	 work	 among	 onshore	 and	 offshore	 locations	

(Robinson	et	al.,	2004).	Many	large	companies	that	hire	global	outsourcers	prefer	this	

distributed	 approach	 as	 this	 model	 saves	 clients	 from	 huge	 investments	 on	 team	

employment	and	it	adapts	to	the	changing	requirements	of	the	client.	

2.2.2	Benefits	of	Offshore	Software	Development	

	

Based	upon	the	framework	mentioned	in	Figure	2.1	the	focus	of	this	report	is	on	the	

offshoring.	In	this	section	we	will	discuss	the	benefits	due	to	which	companies	choose	

offshore	software	development	(Hitt	et	al.,	2002).		

	

2.2.2.1 Economic	Benefits	

	

As	mentioned	in	Chapter	1	that	the	main	reason	for	companies	to	switch	to	offshoring	

is	to	cut	down	on	cost	(Pilatti	et	al.,	2006;	Radlo,	2016).	Similarly	a	research	done	by	

Smite	confirms	that	the	main	reason	for	companies	to	adopt	offshore	development	is	

to	 reduce	 cost	 (Smite	 et	 al.,	 2011).	 Cut-down	 on	 cost	 is	 achieved	 by	 paying	 lower	

	 30	

salaries	to	their	employees	(Smite	et	al.,	2011).	As	in	India,	a	software	developer’s	base	

annual	salary	is	U.S	$15,000	that	is	one	quarter	of	the	salary	of	an	Irish	developer	who	

earns	half	 in	comparison	to	a	US	developer	(Conchúir	et	al.,	2009).	Other	economical	

factors	that	encourage	offshoring	are	 interest	rates,	development	of	capital	markets,	

capital	cost	and	development	of	technology	centres.	

	

Among	 the	 above-mentioned	 factors,	 development	 of	 technology	 centres	 plays	 an	

important	 role	 in	 finding	 the	 required	 resources.	We	 know	 that	 talented	developers	

are	the	key	factor	for	great	development	productivity	and	quality	however	it	is	difficult	

to	find	them	in	general.	With	the	help	of	offshoring	this	constraint	has	been	solved	as	

it	provides	companies’	access	to	technical	experts	from	all	over	the	world	(Smite	et	al.,	

2011).	For	example	countries	like	India	and	China	are	highly	populated	as	they	have	1	

billion	people	and	they	produce	hundreds	of	thousands	of	software	engineers	per	year	

(Conchúir	et	al.,	2009).		

	

Many	software	companies	get	into	offshore	software	development	in	order	to	provide	

their	clients	with	a	wide	horizon	of	experts	to	choose	from.	As	they	gather	specialised	

people	with	 specific	 skill	 set	and	ability	 to	excel	 in	one	area,	which	enables	 them	 to	

deliver	perfect-engineered	applications.			

	

Another	advantage	provided	by	development	of	technology	centres	is	that	it	provides	

competitive	 advantage	by	 getting	 innovative	 ideas	 from	different	 countries.	 This	has	

been	 also	 confirmed	 by	 a	manager	 at	 Global	 Investments	 who	 said	 “Having	 people	

coming	 from	 different	 backgrounds	 will	 always	 help,	 getting	 different	 views	 from	

different	 people,	 since	 people	 coming	 from	different	 parts	 of	 the	world	would	 have	

different	ways	of	doing	something.”	 (Conchúir	et	al.,	2009).	Research	done	by	Porter	

and	Stern	 shows	 that	Asian	economies	 show	a	high	 rate	of	 investment	 into	national	

innovative	capacity	in	comparison	to	Latin	American	economies	(Porter	et	al.,	2001).		

	

	

	 31	

2.2.2.2 Political-	Legal	Benefits	

	

Political-legal	benefits	include	taxation	laws	(Hitt	et	al.,	2002),	rights	and	working	hours	

of	 labours,	 trade	 barriers	 such	 as	 tariff	 and	 non-tariff	 barriers	 (Stack	 et	 al.,	 2005).	

Treaties	 and	 agreement	within	 trade	 unions	 such	 as	MERCOSUE,	NAFTA	 and	ASEAN	

play	an	important	role	in	encouraging	companies	to	go	for	offshoring.	An	example	of	

trade	 barriers	 is	 that	 for	 the	 past	 10	 years	 they	 keep	 on	 decreasing,	 which	 aid	 in	

facilitating	offshore	agreements	(Jahns	et	al.,	2006;	Oshri	et	al.,	2015).	

	

An	 example	 of	 flexible	 labour	 laws	 can	 be	 see	 from	 the	 success	 of	 an	 overseas	 IT	

services	 provider	Wipro.	 It	 is	 India’s	 most	 successful	 outsourcing	 consultant.	 It	 gets	

12%	of	 its	work	 from	UK	companies	 (The	Economist,	04-03-2004)	and	 in	2012	 it	has	

achieved	 the	 award	of	 ‘Offshoring	Project	 of	 the	 Year'	 by	UK's	National	Outsourcing	

Association	for	their	project	 ‘BT	Recognized’	(Wipro,	14-12-2012).	 In	a	study	done	by	

Economic	Times	showed	that	 India	 is	still	 the	No.	1	destination	for	 IT	offshoring	(The	

Economic	Times	21-12-2010).	

		

Considering	 that	 UK	 economy	 only	 represents	 one-sixth	 of	 the	 west-European	 total	

economy	shows	how	much	UK	companies	are	inclined	towards	offshore	business.	One	

major	reason	behind	this	is	the	flexible	labour	laws	in	the	UK,	which	makes	it	relatively	

easy	for	UK	companies	to	relocate	jobs	offshore.	

	

As	 the	political	 and	 legal	 factors	 provide	 certain	benefits	 they	 also	have	 a	downside	

such	as	due	to	them	labour	conditions	are	exploited	and	some	debate	that	due	to	this	

the	national	 labour	market	 is	effected	as	the	nation	 losses	 jobs	to	offshore	countries	

though	there	is	still	no	consent	on	this	matter	(von	Campenhausen,	2005).	An	example	

of	 this	 is	 that	 in	 a	 debate,	 titled	 “Offshoring	 in	 2012	 and	 beyond”	 held	 by	 British	

Computer	Society	concluded	with	that	the	UK	is	not	going	to	necessarily	lose	IT-related	

jobs	to	overseas	professionals	as	in	order	for	offshoring	to	work	successfully	they	need	

a	highly	skilled	team	on	the	onshore	location,	which	creates	new	job	opportunities	for	

the	people	in	the	UK	(British	Computer	Society,	2012).		

	 32	

2.2.2.3 Demographic	and	Geographic	Benefits	

	

Socio-demographic	 benefits	 include	 population	 size,	 age	 structure,	 education	 levels,	

work	force	motivation	and	time	zone	difference.	As	mentioned	earlier	that	in	countries	

like	India	and	China	are	highly	populated.	They	have	1	billion	people	in	which	53%	of	

the	 population	 is	 under	 the	 age	 of	 25	 (Robinson	 et	 al.,	 2004)	 hence	 producing	

hundreds	of	thousands	of	software	engineers	per	year	(Conchúir	et	al.,	2009).	Another	

significant	factor	is	the	availability	of	English-speaking	population	in	counties	like	India,	

South-	 Africa	 and	 Philippines,	 which	 makes	 it	 easy	 for	 companies	 to	 outsource	

customer	services	such	as	call-centres	to	such	locations	(van	Zoest,	2004).	

	

Considering	 the	 time	 zone	difference	between	 the	offshore	 countries	 companies	 cut	

down	on	 cost	by	 increase	development	 time	by	adopting	 “follow	 the	 sun”	workflow	

which	 means	 it	 allows	 24	 hours	 development	 as	 due	 to	 different	 time	 zones	 a	

company’s	 employees	 can	 do	 development	 24hrs	 a	 day	 (Carmel,	 et	 al.,	 2001).	 For	

example	an	employee	works	from	9	a.m.	to	5p.m.	in	the	USA.	At	5	p.m.	she	hands	over	

the	incomplete	task	to	a	colleague	in	Australia	who	works	from	9	a.m.	to	5	p.m.	based	

on	his	time	zone.	At	5	p.m.	according	to	his	country,	he	transfers	the	updated	task	to	a	

colleague	in	Poland	who	works	on	the	updated	task	for	the	next	eight-hours	and	then	

forwards	it	to	his	colleague	in	the	USA	(Gupta,	2009).	

	

While	the	employee	in	the	USA	had	left	work	two	of	her	colleagues	worked	on	her	task	

as	when	she	will	come	to	the	office	next	morning	a	lot	of	the	work	would	have	been	

done.	 This	work	 scenario	 takes	 advantage	 of	 the	 geographical	 distances	 as	 it	 allows	

people	from	different	time	zones	to	work	round-the-	clock	in	order	to	build	software	

(Gupta,	2007).	

	

The	work	 distribution	 among	 the	 team	 can	 be	 done	 in	 two	ways.	 First	 either	 the	 3	

teams	distributed	on	different	geographical	locations	work	on	the	same	task	and	each	

team	keeps	updated	the	task	as	mentioned	in	the	above	scenario	or	secondly	a	most	

efficient	way	is	that	we	divided	different	aspect	of	the	same	problem	among	the	team	

	 33	

for	 example	 in	 Figure	 2.2	 we	 can	 see	 how	 a	 problem	 has	 been	 distributed	 among	

different	teams	all	over	the	world.	

	

	

	

Figure	2.2.	Distribution	of	Work	among	Multiple	Distributed	Teams.	

	

2.2.3.4 Technological	Benefits	

	

Technological	 benefits	 are	 referred	 to	 the	 development	 of	 telecommunication	 and	

transportation	technologies	especially	the	Internet	and	mobile	communication.		Most	

of	these	developments	happened	due	to	the	dramatic	increase	in	the	memory	size	of	

microprocessors,	storage,	 increase	in	the	integration	of	 information	technologies	and	

telecommunications	(Picot	et	al.,	2003).	

	

Many	 companies	 started	 moving	 towards	 offshoring	 as	 it	 became	 cheaper	 to	

communicate	 with	 offshore	 offices	 via	 conference	 calls	 and	 video	 conferencing	

(Prikladnicki	 et	 al.,	 2012).	 With	 the	 help	 of	 cheaper	 technology	 available	 the	

organisational	 and	 national	 boundaries	 remained	 no	 longer	 important	 as	 now	

companies	can	relocate	their	offices	to	offshore	locations	without	facing	a	huge	hurdle	

of	communication	and	transportation	costs	(Jahns	et	al.,	2006;	Oshri	et	al.,	2015).	

	

Similarly	 use	 of	 standard	 tools	 for	 development	 of	 software	 across	 countries	 helps	

information	sharing	as	all	the	information	is	represented	in	the	same	format	(Beulen	et	

al.,	2005).	From	a	service-provider	point	of	view	use	of	standard	global	tools	supports	

	 34	

consistent	 and	 cost	 effective	 service	 provisioning,	 which	 means	 it	 allows	 consistent	

follow	 of	 information	 throughout	 the	 team	 and	 it	 encourages	 efficient	 delivery	 of	

services	(Beulen	et	al.,	2005).	

	

2.3 	A	Study	on	Identifying	the	Challenges	of	Offshore	Software	Development	

	

As	 highlighted	 in	 the	 previous	 section	 there	 are	many	 benefits	 to	 adopting	 offshore	

development,	 however	 as	 it	 continues	 to	 grow	 (Damian	 et	 al.,	 2006)	 it	 has	 been	

observed	 that	 it	 causes	 some	 challenges,	 due	 to	 temporal,	 geographical	 and	 socio-

cultural	differences		 (Holmstrom	et	 al.,	 2006).	As	 software	development	 is	 a	human-

centric	 and	 socio-technical	 process,	 it	 depends	 on	 complex	 interaction,	 attitudes,	

behavioural	 norms	 and	 communication	 approaches,	 which	 can	 lead	 to	

misunderstandings	 due	 to	 any	misinterpretation	 of	 the	 project	 aims	 that	 can	 result	

into	conflicts,	mistrust	and	underutilization	of	talent	(Ozawa	et	al.,	2013).	Studies	done	

by	 Carmel	 (Carmel	 et	 al.,	 2005)	 and	 by	 Sahay	 (Sahay	 et	 al.	 (2003)	 show	 that	 these	

challenges	can	cause	complications	 to	 the	project	processes	such	as	communication,	

coordination	and	control	of	project	activities	(Damian,	2002,	Jan	et	al.,	2016).	

	

It	 has	 also	 been	 observed	 that	 due	 to	 the	 significant	 differences	 in	 engineering	

culture/style	around	the	world	collaborations	between	countries	have	unique	flavours	

(Herbsleb	et	al.,	2005).	 In	 this	 section	we	will	 study	how	temporal,	geographical	and	

socio-cultural	 differences	can	 pose	 different	 challenges	 for	 companies	 adopting	

offshore	software	development.	The	study	focuses	on	the	challenges	that	occur	in	the-

offshoring	business	model,	offshore	outsourcing.	

	

As	 the	 characteristics	 of	 onshore	 and	 offshore	 are	 different	 causing	 different	

challenges.	 Based	 on	 an	 extensive	 literature	 review	 on	 offshore	 software	

development,	we	 identified	 four	key	challenges	 that	occur	as	 the	team	 is	distributed	

over	 different	 time	 zones	 and	 these	 challenges	 also	 affect	 the	 adoption	 of	 agile	

practices	 in	 offshore	 development.	 In	 this	 section	 we	 study	 the	 challenges	 that	 are	

inherent	to	offshoring	and	then	we	discuss	how	they	affect	agile	practices.	Table	2.1	

	 35	

shows	the	results	of	the	study	that	we	carried	out	to	identify	the	inherent	challenges,	

which	 are	 trust;	 socio-cultural;	 communication	 and	 co-ordination;	 and	 knowledge	

transfer	issues.		The	reason	for	choosing	to	focus	on	these	four	challenges	is	because	

of	 their	 repeated	occurrence	 in	 literature.	 Table	2.1	 shows	 the	 frequency	 that	 these	

challenges	have	occurred	in	the	literature.	The	first	column	shows	the	categories	of	the	

challenges	constructed	from	the	data	extracted	from	the	evidence	that	are	presented	

in	the	second	column.	Each	occurrence	has	the	same	weight,	thus	the	frequency	of	the	

occurrence	 shows	 the	 number	 of	 times	 a	 category	 has	 occurred	 in	 literature.	 The	

selected	studies	are	presented	in	Appendix	A.		

Table	2.1.	Challenges	in	Offshore	Software	Development.	

	

No.	 Challenge	 Evidence	 Occurrence	

1	 Trust		 E1,	 E2,	 E3,	 E4,	 E5,	 E6,	 E7,	 E11,	 E13,	

E19,	E20,	E24,	E28,	E29,	E30,	E33,	E38,	

E41,	E42,	E45,	E46,	E47,	E49,	E54,	E56,	

E57,	E62,	E67	

	

29	

2	 Socio-Cultural		 E1,	 E2,	 E3,	 E4,	 E6,	 E7,	 E11,	 E12,	 E16,	

E18,	E19,	E24,	E26,	E27,	E28,	E31,	E32,	

E35,	E41,	E42,	E46,	E47,	E44,	E48,	E52,	

E62,	E66,	E67	

	

29	

3	 Communication	

and	Co-ordination		

E1,	E4,	E6,	E8,	E9,	E10,	E16,	E16,	E18,	

E19,	E21,	E22,	E23,	E24,	E25,	E28,	E36,	

E37,	E39,	E40,	E41,	E43,	E46,	E47,	E48,	

E50,	E52,	E53,	E55,	E58,	E59,	E60,	E61,	

E62,	E63,	E64,	E65	

	

37	

4	 Knowledge	

Transfer		

E1,	E10,	E14,	E15,	E22,	E32,	E34,	E46,	

E47,	E51,	E53,	E55,	E60,		

13	

	

	 36	

2.3.1 Trust	Issues	

	

The	 first	major	 challenge	 to	 offshore	 development	 is	 the	 factor	 of	 trust.	 Trust	 is	 an	

important	 aspect	 of	 interpersonal	 (Boon	 et	 al.,	 1991)	 as	well	 as	 inter-organisational	

relationship	 (Ring	 et	 al.,	 1994)	 in	 order	 to	 have	 successful	 partnership	 and	 alliances	

among	the	firms	(Das	et	al.,	1998).	It	is	also	considered	as	a	crucial	factor	for	building	

business	 relationships	 as	 trust	 enables	 open	 communication	 which,	 results	 in	 high	

performance	 of	 the	 team,	 high	 quality	 of	 projects	 and	 satisfactory	 decision	 making	

process	(Kanawattanachai	et	al.,	2002;	Morgan	et	al.,	1994;	Rousseau	et	al.,	1998).	

	

In	 terms	 of	 software	 outsourcing,	 trust	 helps	 in	 establishing	 an	 open	 exchange	 of	

information	 and	 cooperative	 behaviour	 among	 the	 companies.	 It	 also	 helps	 in	

removing	conflict	and	negotiation	on	software	development	cost	and	it	also	improves	

response	 to	 any	 crises,	 which	might	 occur	 during	 a	 project	 (Rousseau	 et	 al.,	 1998).	

Moreover	 trust	 also	 enables	 ease	 in	 development	 process	 as	 it	 encourages	 an	 open	

discussion	 in	 the	 requirement	 gathering	 process	 and	 helps	 remove	 unnecessary	

expensive	documentation	(Humphrey,	1989).	

	

Trust	plays	an	important	role	in	offshore	software	development	however	it	is	difficult	

to	 establish	 because	 it	 is	 difficult	 to	 develop	 a	 relationship	 with	 unknown	 foreign	

partners	that	are	timely	and	geographically	distant	(Prikladnicki	et	al.,	2012).	The	main	

reason	 behind	 this	 is	 that	 the	 companies	 do	 not	 have	 any	 relationship	 beyond	 the	

project	itself,	which	is	of	a	limited	duration.	Moreover	trust	can	be	difficult	to	establish	

as	 most	 projects	 are	 developed	 through	 structural	 mechanisms,	 which	 include	

deliverables,	 penalty	 clauses	 and	 reporting	 arrangements	 whereas	 in-house	

development	relays	more	on	trust	rather	than	on	details	structured	reporting	(Lander	

et	al.,	2004).	

	

While	realising	the	difficulty	in	establishing	trust	in	offshore	project	it	is	still	needed	in	

order	to	cooperated	with	foreign	companies	as	distrust	can	hurt	the	performances	as	it	

leads	 to	 finger	 pointing	 and	 each	 organisation	 starts	 focusing	 on	 how	 other	

organisations	 may	 have	 hurt	 the	 project	 whereas	 trust	 improves	 the	 performance	

	 37	

(Sabherwal,	 1999).	 Issues	 in	 trust	 have	 led	 some	 organisations	 to	 create	 their	 own	

software	 development	 centres	 in	 countries	 like	 India,	 China,	 Russia	 and	 Brazil	

(Prikladnicki	et	al.,	2012).	In	Section	2.4	we	have	demonstrated	how	trust	effects	each	

stage	of	software	development	lifecycle.	

2.3.2 Socio-Cultural	Issues	

	

In	offshore	development	distributed	teams	face	many	socio-cultural	differences,	such	

as	difference	 in	 languages,	 national	 traditions,	 values	 and	norms.	 Kluckhohn	 identify	

five	areas	which	all-cultural	groups	have	fundamental	through	differing	beliefs,	which	

are	listed	as	follows	(Kluckhohn	et	al.,	1961):	

	

• How	a	culture	views	human	nature,	

• The	relationship	of	its	people	with	nature	

• Priority	it	gives	to	traditional	customs,	future	plans	or	present	events.	

• How	is	the	society	organised,	is	it	linear	in	hierarchy?	

• How	is	business	and	life	conducted?	Publically	or	privately,	or	a	mix	of	both?	

	

Similarly	 another	 widely	 refereed	 work	 on	 culture	 is	 by	 Hofstede	 (1980,1997),	 who	

developed	a	set	of	cultural	indices.	He	identified	five	cultural	dimensions,	which	are:		

	

• Power	Distance	

• Individualism/Collectivism	

• Masculinity/	Femininity	

• Uncertainty	Avoidance	

• Long-Term/	Short-Term	Orientation.	

	

The	socio-cultural	distance	 is	 the	measure	of	one	person’s	understanding	of	another	

person’s	values	and	norms	 (Pilatti	et	al.,	2006).	 It	 is	commonly	observed	that	people	

from	 one	 society	 strangely	 perceive	 the	 actions	 of	 people	 from	 another	 society	 as	

noted	 by	 Kotlarsky,	 culture	 can	 have	 a	 huge	 effect	 on	 how	 people	 understand	 and	

react	to	certain	situations	(Kotlarsky	et	al.,	2005).	It	has	also	been	observed	that	team	

	 38	

members	with	different	values	cause	conflicts	within	the	team	resulting	in	decrease	in	

motivation,	 involvement	 and	 cohesiveness	 with	 the	 team	 members	 (Ozawa	 et	 al.,	

2013).	

	

Trompenaars	and	Hampden-Turner	build	their	work	on	Hofstede’s	cultural	dimensions	

with	the	focus	on	the	impact	of	 intercultural	variances	on	business	and	management	

process	 (Trompenaars	 et	 al.,	 2004).	 They	 developed	 a	 set	 of	 seven	 values	 for	

dimension,	which	are	shown	in	Table	2.2	below:		

Table	2.2	Seven	Values	for	Cultural	Dimensions	(Trompenaars	et	al.,	2004).	

No.	 Cultural	Value	Dimension	

	

1.	

	

Universalisms							vs.							Particularism	

	

	 Rules	 to	 be	 followed	 under	 all	

circumstances	

Special	 consideration	 based	 on	 the	

uniqueness	of	the	situation.	

	

2.	 				Individualism							vs.							Communication	

	

	 People	 believe	 in	 personal	 freedom	

and	achievement		

People	believe	that	the	group	is	more	

important	 than	 individual	

achievement.	

	

3.	 Specific						vs.							Diffuse	

	

	 Keep	 work	 and	 personal	 lives	

separate.	 Focused	 on	 work-oriented	

relationships.		

Overlap	 between	 work	 and	 personal	

life.	Believe	that	in	order	to	have	good	

relationships	with	co-works	is	vital	for	

the	success	of	their	business.	

	

4.	 					Neutral						vs.							Emotional	

	

	 39	

	 Reluctant	 to	 reveal	 their	 feelings	 and	

make	 an	 effort	 to	 control	 their	

emotions.	

Display	 their	 thoughts	 and	 feelings	

openly.	 People	 find	 ways	 to	 express	

their	emotions,	even	spontaneously	at	

work.		

	

5.		 																																								Achievement						vs.							Ascription	

	

	 The	organisational	 culture	 values	 you	

based	 on	 your	 performance	 at	 work.	

They	 believe	 that	 you	 are	 what	 you	

do.		

	

Status	 in	the	organisation	is	based	on	

a	 variety	 of	 factors	 such	 as	 power,	

title	and	position.		

6.	 				Sequential	Time							vs.							Synchronous	Time	

	

	 Like	events	 to	happen	 in	a	sequential	

order.	 They	 place	 a	 high	 value	 on	

punctuality,	 planning	 and	 sticking	 to	

schedules.	

Focus	 on	 past,	 present	 and	 future	

events	 as	 interwoven	 periods.	 Work	

on	 several	 projects	 at	 once	 and	

consider	 planning	 and	 commits	

flexibly.			

	

7.		 																														Internal	Direction							vs.							Outer	Direction	

	

	 Control	 nature	 of	 their	 environment	

to	 achieve	 their	 goal.	 This	 includes	

how	 they	 work	 with	 teams	 within	

their	organisations.	

Consider	 that	 the	 nature	 of	 the	

environment	 controls	 them	 and	 that	

they	 must	 work	 with	 their	

environment	to	achieve	their	goals.	At	

work	 they	 focus	 their	 actions	 on	

others	 in	 order	 to	 avoid	 conflicts	

where	 possible	 and	 need	 constant	

reassurance	 that	 they	 are	 going	 a	

good	job.		

	 40	

Tylor,	a	well	known	Sociologist	and	Anthropologist	defined	culture,	as	“Culture	is	that	

complex	whole	which	 includes	 knowledge,	 belief,	 art,	morals,	 law,	 customs	 and	 any	

other	 capabilities	and	habits	acquired	by	man	as	a	member	of	 society”	 (Tylor	1871).	

From	this	definition	of	culture	it	is	clear	that	culture	plays	a	great	role	in	all	aspect	of	

life.	 Similarly	 in	 offshore	 software	 development	 the	 socio-cultural	 distance	 between	

distributes	teams	is	a	complex	dimension	as	it	involves	organisational	culture,	national	

culture	 and	 language,	 politics	 and	 motivation	 of	 individuals	 and	 work	 ethics	

(Holmstrom	et	al.,	2006).		

		

Ozawa	 et	 al.	 (2013)	 identified	 three	 main	 challenges	 causes	 due	 to	 socio-cultural	

differences,	which	are:		

	

i) Difference	in	the	openness	in	the	society.		

ii) Difference	in	the	willingness	to	adopt	new	techniques	and	technologies.		

iii) Difference	in	communication	methods,	implicit	over	explicit	communication	

	

The	 most	 obvious	 disadvantage	 is	 language,	 as	 English	 is	 not	 the	 first	 language	 in	

counties	 like	 India,	 Pakistan	 and	 China	 so	 extra	 effort	 is	 required	 to	 communicate.	

Differences	 in	 language	 can	 lead	 to	 miscommunication	 due	 to	 language	 style	 or	

incorrect	 use	 of	 vocabulary	 (Carmel,	 1999;	 Hofner	 et	 al.,	 2007).	 Some	 reports	 show	

that	language	problem	affects	the	product	and	the	code	itself	as	the	comments	in	the	

code	from	an	offshore	team	whose	first	language	is	not	English	may	seem	odd	or	not	

understandable	 by	onshore	 team.	Hence	 adding	 a	 hidden	 cost	 of	 code	maintenance	

(Matloff,	2005).			

	

In	a	research	done	by	Lee,	shows	that	cultural	differences	affect	the	product	and	the	

process	of	development	(Lee	et	al.,	2001).	A	lot	of	work	has	been	done	on	how	much	

cultural	differences	affect	 the	end	product	 in	order	 for	people	of	a	 region	 to	engage	

with	the	product	(Yeo,	2001).	For	example	an	employee	in	a	US	company	can	directly	

pass	work	to	his	peer	in	India	easily	bypassing	the	management	hierarchy	whereas	an	

employee	 in	 India	 cannot	 do	 so	 without	 upsetting	 higher	 management.	 This	 shows	

	 41	

how	cultures	of	two	different	countries	affect	the	workplace	environment	as	in	India,	

they	follow	strict	management	hierarchies	and	in	US	they	don’t	(Matloff,	2005).		

	

A	similar	experience	was	observed	when	a	Japanese	company	offshored	their	software	

project	to	a	company	in	China	(Ozawa	et	al.,	2013).	They	were	facing	difficulties	due	to	

the	low	quality	deliverables	and	a	high	turnover	rate	of	Chinese	members	because	of	

socio-cultural	differences.	Based	on	Ozawa	et	al.	(2013)	we	present	a	summary	of	the	

socio-cultural	difference	between	Japan	and	China	in	Table	2.3	(Ozawa	et	al.,	2013).		

Table	2.3.	Cultural	Comparison	between	Japan	and	China	(Ozawa	et	al.,	2013).	

	

No.	 Japan	 China	

1.		 A	job	is	for	a	lifetime.		 Acquire	new	skills	and	switch	jobs.	

	

2.	

	

Hire	 fresh	 graduates	 and	 teach	 them	

to	fit	in	their	organisation	rather	than	

to	hire	experienced	people.	

	

Prefer	hiring	experienced	people.	

	

3.		

	

Focus	 on	 avoiding	 failure	 and	 use	

existing	 methodologies	 rather	 then	

focusing	 on	 attaining	 success	 and	

trying	new	technologies.	

	

Want	 to	 acquire	 new	 skills	 and	 try	

new	 methodologies	 and	

technologies.	 More	 focused	 on	

success.		

	

4.		

	

Tight	 grouped	 communities,	 so	 they	

understand	 each	 other	 without	

“implicitly”	saying	them.		

	

	

More	diversity,	 so	use	more	explicit	

information	in	communication.		

5.	 Questioning	considered	humiliation.		 Questioning	considered	humiliation.	

	

Due	 to	 the	 differences	 in	 the	 teams’	 socio-cultural	 values,	 the	 Japanese	 company	

found	it	hard	to	retain	its	Chinese	employees,	as	their	motivation	to	work	was	low.	The	

project	specifications	were	not	clear,	as	the	Japanese	company	relied	more	on	implicit	

	 42	

information,	which	were	not	clear	to	the	Chinese	team	members	and	since	questioning	

is	considered	humiliation	 in	both	the	cultures,	 the	Chinese	team	members	didn’t	ask	

the	 Japanese	 clients	 to	 clarify	 the	 requirements	 hence	 resulting	 in	 low	 quality	

deliverables.			

	

MacGregor	 identified	 5	 cultural	 patterns,	 which	 highlight	 the	 problems	 caused	 by	

socio-cultural	 challenge	 when	 the	 team	 is	 distributed	 over	 different	 locations	

(MacGregor	et	al.,	2005).	Table	2.4,	gives	an	overview	of	their	patterns.	Though	they	

are	calling	them	patterns	they	have	classified	some	of	them	as	anti-patterns.	

Table	2.4.	Cultural	Patterns	in	Software	Process	Mishaps	(MacGregor	et	al.	2005).	

	

No.	 Pattern	Name	 Assumption	 Pattern	Overview	

1.	 Yes	(but	No)	 Person	A	has	assumed	

Person	B	meant	“Yes	I	will	

do	it,	when	Person	B	

meant	I	heard	what	you	

said.”	

- Person	B	perceived	Person	

A	to	be	higher	in	

hierarchy.	

	

- B	doesn’t	want	to	affect	

the	deadline.		

	

- Make	clarification	and	

rephrase	request.		

	

2.	 Proxy	Pattern		 Companies	are	not	willing	

to	invest	in	intercultural	

training		

- Place	bi-coded	individuals	

in	a	position	where	they	

can	translate	between	the	

cultures.	

	

3.	 We’ll-	take-you-	

literally	(Anti-

Pattern)	

Different	cultures	may	

have	different	perceptions	

for	a	development	

practice,	process	or	

- Resulting	in	inefficient,	

frustration	and	distress	

among	different	cultural	

teams.	

	 43	

artefact.		

	

4.	 We’re-one-single-

team	

Agile	encourages	“flat	

team”	however	in	some	

cultures	they	follow	a	

more	hierarchical	

approach	depending	on	

power	distance	

	

- Formal	communication	

with	people	on	higher	

hierarchy	level.	

	

- Developers	don’t	feel	they	

have	a	right	to	take	

decisions	regarding	the	

system	they	are	

developing.	

	

	

5.	 The-customer-is-

king	(Anti-Pattern)	

Less	hierarchy	dominant	

structure	encourage	open	

and	direct	communication	

between	the	client	and	

developers.	While	high	

hierarchy	organisation	

prefer	indirect	

communication	between	

the	client	and	developers.	

- When	problem	arises,	

developers	from	high	

hierarchy	organisation,	

the	developers	cannot	

contact	the	client	directly	

hence	causing	delay	in	

development	time.	

	

- Similarly	the	client	might	

feel	that	the	

communication	is	limited.	

	

- As	nature	of	social	culture	

also	affects	the	

relationship	between	the	

developers	and	client	such	

as	where	it	is	work-

oriented	or	relationship	

oriented.	

	 44	

	

From	the	above	examples,	we	can	see	that	socio-cultural	conflicts	can	cause	problems	

in	 the	 development	 of	 an	 offshore	 project.	 In	 order	 to	 solve	 such	 conflicts,	 the	

organisations	need	to	create	an	environment	that	encourages	teams	to	communicate	

with	each	other.		They	need	to	continuously	adapt	team	roles	based	on	the	changing	

relationship	 between	 the	 team	members.	 This	 can	 reduce	dissatisfaction	 among	 the	

employees	and	increase	trust	resulting	in	giving	each	other	more	responsibilities,	thus	

improving	the	quality	of	software.		

	

2.3.3 Communication	and	Coordination	Issues	

	

In	 offshore	 development	 as	 the	 team	 is	 separated	 and	 implemented	 at	 different	

geographical	 locations	 they	 face	 many	 communication	 and	 coordination	 issues	

because	 the	 team	 members	 work	 on	 different	 time	 zones	 or	 time	 shifts	 in	 a	 day	

(Alzoubi	et	al.,	 2016).	 This	 reduces	 the	opportunity	 for	 real-time	communication	 (Al-

Zaidi	et	al.,	2017).	The	basic	issue	in	offshoring	is	handling	the	complex	communication	

and	 team	 coordination,	 as	 they	 can’t	 have	 frequent	 face-to-face	 communication	

(Sahay	et	al.,	2003).	Insufficient	team	communication	often	creates	challenges	such	as	

trust,	relationships	and	efficiency	of	the	team	(Lanubile	et	al.,	2013).		

	

A	research	done	by	Ebert	shows	that	approximately	half	of	all	the	distributed	projects	

fail	 due	 to	 insufficient	 communication	 and	 trust	 among	 the	 team	 members	 (Ebert,	

2012).	 In	 order	 to	 increase	 communication	 among	 the	 team	members,	 awareness	 is	

necessary.	 Awareness	 in	 distributed	 teams	 helps	 in	 ensuring	 that	 individual	

contributions,	contribute	to	the	whole	group’s	effort	to	develop	software	successfully.	

Paul	Dourish	and	Victoria	Bellotti	described	group	awareness	as	“	an	understanding	of	

the	 activities	 of	 others,	 which	 provides	 a	 context	 for	 your	 activity”	 (Dourish	 et	 al.,	

1992).	

	

Group	awareness	can	help	overcome	some	challenges	of	offshore	projects	(Lanubile	et	

al.,	2013).	There	are	four	types	of	group	awareness,	which	are	(Gutwin	et	al.,	1996):		

	 45	

	

• Informal	 awareness	 provides	 information	 about	 which	 team	 members	 are	

around	and	available	for	work.		

	

• Group-structural	awareness	focuses	on	the	knowledge	roles	on	team	members	

and	structure	of	the	team.		

	

• Workspace	 awareness	 gives	 information	 about	 the	 interactions	 the	 team	

members	have	with	shared	resources	at	a	workspace.		

	

• Social	 awareness	 consists	of	 information	 that	 team	members	maintain	about	

each	 other	 in	 conversational	 context	 for	 the	 purpose	 of	 social	 connections	

within	the	team.		

	

In	 order	 to	 achieve	 group	 awareness	 in	 distributed	 teams,	 technology	 plays	 an	

important	 role.	 In	 the	 survey	 conducted	 by	 Lanubile	 focused	 on	which	 technologies	

and	tools	support	group	awareness	and	collaboration	such	as	for	informal	awareness,	

IM	 (Instant	 Message)	 and	 VoIP	 (Voice	 over	 Internet	 Protocol)	 tools	 can	 be	 used	

similarly	for	workspace	awareness	emails	and	RSS	can	be	used	(Lanubile	et	al.,	2013).	

	

Another	 way	 to	 increase	 the	 communication	 between	 the	 teams	 is	 to	 keep	 the	

working	hours	flexible	so	that	the	onshore	and	offshore	teams	can	achieve	overlapping	

hours	 with	 each	 other.	 For	 example	 in	 order	 to	 get	 real-time	 communication,	

occasionally	one	team	has	to	stay	late	and	the	other	team	has	to	come	early	to	have	a	

combined	meeting	via	video/audio	conferencing	tools	(Yu	et	al.,	2016).	Hence	in	order	

to	 organise	 work	 between	 geographically	 distributed	 teams	 we	 must	 consider	

temporal	distance	to	facilitate	the	real-time	communication	(Holmstrom	et	al.,	2006).	

Temporal	distance	 is	a	measure	of	 the	dislocation	 in	time	experienced	by	two	actors	

who	wish	to	interact	(Pilatti	et	al.,	2006).			

	

Asynchronous	 tools	 are	 seen	 as	 a	 crucial	 part	 for	 communication	 and	 coordination	

among	remote	locations.	Due	to	temporal	distance	the	increase	in	the	response	time	

	 46	

creates	a	feeling	of	“being	behind”	as	when	one	location	sends	a	request	they	get	reply	

the	next	day.	As	seen	 in	the	case	study	done	by	Boland	and	Fitzgerald	asynchronous	

communication	overnight	can	be	overwhelming	for	a	developer	beginning	work	in	the	

morning	 (Boland	 et	 al.,	 2004).	 Also	 a	 study	 done	 by	 Holmstrom	 shows	 that	 limited	

overlap	with	colleges	causes	delay	 in	response	which	makes	people	 lose	track	of	 the	

overall	 work	 process	 which	 leads	 to	 problems	 in	 distributed	 yet	 time-crucial	 work	

(Holmstrom	 et	 al.,	 2006).	 Similar	 results	 were	 noted	 by	 Herbsleb,	 the	 drag	 in	 the	

problem	and	 response	 could	 cause	 increase	 in	 the	 cost	 (Herbsleb,	2007).	As	a	 result	

response	 time	 increases	 when	 working	 hours	 do	 not	 overlap	 between	 the	 remote	

locations	(Sarker	et	al.,	2004).			

	

2.3.4 Knowledge	Transfer	Issues	

	

Knowledge	 is	 a	 very	 common	 and	 widely	 used	 concept.	 In	 order	 to	 clarify	 what	 is	

referred	as	knowledge	we	have	used	the	definition	provided	by	Davenport	and	Prusak	

(Davenport	et	al.,	1998).	They	defined	knowledge	as	“A	fluid	mix	of	framed	experience,	

values,	 contextual	 information,	 and	 expert	 insight	 that	 provides	 a	 framework	 for	

evaluating	 and	 incorporating	 new	 experiences	 and	 information.	 It	 originates	 and	 is	

applied	 in	 the	minds	 of	 knowers.	 In	 organisations,	 it	 often	 becomes	 embedded	 not	

only	 in	 documents	 or	 repositories	 but	 also	 in	 organisational	 routines,	 processes,	

practices,	and	norms.”	(Davenport	et	al.,	1998)	

	

Using	 the	 above-mentioned	 definition	 of	 knowledge,	 as	 companies	 started	 moving	

their	 business	 and	 development	 process	 to	 offshore	 locations,	 knowledge	 transfer	

became	 critical	 (Zahedi	 et	 al.,	 2016).	A	 study	done	by	Accenture	 shows	 that	people,	

patent	and	knowledge	comprise	for	70%	of	Exchange-listed	companies	value	whereas	

in	1980	it	was	just	20%	(Aronsson,	2007).	This	shows	how	important	knowledge	is	for	

companies	and	any	mistake	during	a	knowledge	transfer	can	cause	a	negative	affect	on	

the	companies.	In	offshoring	the	process	of	knowledge	transfer	is	not	straightforward	

as	 when	 transferring	 knowledge	 from	 one	 country	 to	 another	 the	 factor	 of	 cultural	

differences	causes	challenges	(Kedia	et	al.,	2007).	Culture	does	not	automatically	affect	

	 47	

the	knowledge	transfer	process	but	if	there	is	poor	management	it	can	cause	projects	

to	fail	(Javidan	et	al.,	2005).	Similarly	in	a	study	done	by	Radoff’s	shows	that	if	we	do	

not	understand	the	cultural	differences	between	the	countries	it	can	cause	a	negative	

impact	 on	 outsourcing	 (Radoff,	 2006).	 As	 we	 need	 to	 understand	 the	 cultural	

differences	 in	order	 to	 successfully	manage	 the	projects.	 The	 report	 also	 shows	 that	

the	companies	that	educate	their	employees	of	 intercultural	communication	increase	

their	productivity	by	30%.	

	

One	major	challenge	organisations	face,	which	directly	affects	the	knowledge	transfer	

process,	 is	 when	 they	 decide	 to	 offshore	 their	 process	 before	 they	 have	 tested	 the	

readiness	 of	 their	 management.	 This	 includes	 the	 difficulties	 of	 keeping	 awareness,	

and	knowledge	cohesion	when	various	working	groups	concurrently	access	it	(Khan	et	

al.,	 2014).	 These	 difficulties	 directly	 affect	 how	 work	 is	 distributed	 through	 task	

allocation	 in	 distributed	 environment.	 According	 to	 Sajjad	 the	 factors	 presented	 in	

table	2.5	should	be	considered	while	allocating	tasks	when	the	team	is	distributed	to	

overcome	the	knowledge	transfer	challenges	(Sajjad	et	al.,	2015).	

Table	2.5.	Factors	Affecting	Task	Allocation	Process	in	Offshore	Development	(Sajjad	

et	al.	2015).		

	
No.	 Factors	 Percentage	 Affect	of	Factor	on	Task	Allocation	Process	in	

Offshore	Development	

1.	 Site	Technical	

Expertise	

68%	 Select	site	with	appropriate	domain	expertise	and	

knowledge	is	crucial.	

	

2.	 Time	Zone	

Different	

63%	 Allocation	 of	 tasks	 should	 be	 based	 on	 the	 time	

zone.	There	are	two	common	approaches	used	by	

practitioners	while	considering	the	time	zone,	they	

either	allocate	 tasks	based	on	Time-Zone	Band	or	

Follow-the-Sun.	The	selection	is	made	considering	

the	 fact	 that	 it	 should	allow	 the	different	 sites	 to	

be	 able	 to	 have	 synchronous	 communication	 to	

	 48	

allow	knowledge	sharing.	

	

3.	 Resource	

Cost	

47%	 Project	Managers	 do	 aim	 to	 assign	work	 units	 to	

low	 cost	 labour	 sites	 in	 order	 to	 cut	 down	 on	

development	cost.	

	

4.	 Task	

Dependency	

44%	 Keeping	 the	 cost	 benefit	 in	 mind,	 it	 is	 however	

advised	 to	 not	 only	 consider	 the	 cost	 while	

assigning	 the	 tasks	 but	 to	 also	 consider	 task	

dependencies.	 As	 high	 task	 dependent	 tasks	

should	be	 assigned	 to	 the	 same	 location	 in	order	

to	save	time	on	communication	and	coordination.	

	

5.	 Vendor	

Reliability		

36%	 The	 perceived	 reliability	 of	 a	 particular	 vendor	

helps	 clients	 to	 better	manage	 tasks	 allocation	 in	

global	software	development.	

	

6.	 Task	Size	 29%	 Task	size	has	also	been	considered	important	as	it	

helps	 in	 deciding	 how	 much	 time	 the	 team	 will	

spend	to	develop	it.	

	

7.	 Vendor	

Maturity	

Level	

21%	

	

It	is	important	to	consider	the	maturity	level	of	the	

vendor	 as,	 if	 they	 are	 new	 to	 offshore	

development,	 they	 may	 face	 issues	 in	 code	

integration.	

	

8.	 Local	

Government	

Regulations	

13%	 This	 factor	 isn't	 directly	 related	 to	 the	 software	

development	 process,	 however	 it	 has	 been	

perceived	as	an	important	factor	to	be	considered	

while	task	allocation.	

	

	 49	

9.	 Requirements	

Stability		

7%	 Based	 on	 the	 type	 of	 project,	 requirements	

stability	 is	 important	 in	 order	 to	 break	 them	 into	

tasks	for	the	team	to	develop.	However	it	has	only	

been	considered	to	be	an	 important	 factor	by	7%	

based	 on	 the	 selected	 literature	 of	 this	 research,	

as	 it	 is	 a	 universal	 fact	 that	 requirements	 do	

change	 and	 organisations	 have	 placed	

requirement	change	management	models	in	place	

to	handle	this	issue.	

	

10.	 Product	

Architecture		

7%	 Since	 the	 requirements	 keep	 changing,	 the	

product	 architecture	 keeps	 evolving	 throughout	

the	software	development	lifecycle.	This	has	been	

considered	as	an	important	factor	by	7%	based	on	

the	articles	selected	from	literature.	

	

11.	 Intellectual	

Property	

Ownership	

2%	 In	 distributed	 software	 development,	 as	 code	 is	

being	 developed	 at	 different	 locations,	 it	 is	

important	 to	 consider	 the	 issue	 of	 intellectual	

property	 however	 this	 factor	 isn't	 considered	

critical	 for	 task	 allocation	 as	 the	 client	 is	 usually	

the	 one	who	 has	 the	 intellectual	 property	 of	 the	

code	being	developed.	

	

The	common	problems	between	with	the	company	that	is	transferring	knowledge	and	

the	 company	 that	 is	 receiving	 the	 knowledge	 are:	 i)	 communication	 problem,	 ii)	

different	ways	to	conduct	work,	iii)	different	work	attitudes,	and	iv)	different	decision-

making	process	(Radoff,	2006).	

	

	

	 50	

2.4 	Critical	Analysis	of	Offshore	Challenges	on	Software	Development	Phase	

	
In	this	section	we	will	discuss	how	the	above,	identified	challenges	affect	the	different	

phases	of	software	development	and	present	a	critical	analysis.		

	

The	 traditional	 software	 development	 lifecycle	 consists	 of	 five	 stages,	 which	 are,	

Requirements,	 Design,	 Coding,	 Testing	 and	 Integration.	 	 Figure	 2.3	 below	 shows	 the	

software	development	lifecycle.	

	

	

Figure	2.3.	Traditional	Software	Development	Lifecycle.	

	

The	execution	of	these	phases	depends	on	whichever	software	development	approach	

the	development	team	decides	to	selected.	An	overview	of	the	existing	approaches	is	

presented	 in	 the	Appendix	 B	 showing	 how	 these	 phases	 are	 executed	 based	 on	 the	

selected	approach.	

	

Based	 on	 the	 literature	 review,	 we	 present	 in	 Table	 2.6	 how	 each	 phase	 of	 the	

traditional	 software	 development	 lifecycle	 is	 affected	when	 organisations	 choose	 to	

move	 their	 projects	offshore.	 	We	have	mapped	 the	 four	 key	 challenges	of	 offshore	

development	on	each	lifecycle	phase	to	show	how	these	offshore	challenges	effect	the	

execution	of	each	phase.		

	

	

	 51	

Table	2.6.		Offshore	Challenges	Affecting	Software	Development	Phases.	

	

No.	 Phase	 Offshore	

Challenge	

Effect	of	Offshore	Challenge	on	Software	

Development	Phase	

1.	 Requirements	 Trust	 • Establishing	 correct	 estimates	 of	

requirements	 is	 difficult,	 as	 onshore	

team	 does	 not	 have	 clear	

understanding	 of	 offshore	 team	 skills	

(Alnuem	et	al.,	2012).	

		

• Getting	 the	 main	 objective	 and	 core	

functional	 requirements	of	 the	project	

clear	 to	all	 the	 team	members	 located	

at	different	sites	is	difficult	(Herbsleb	et	

al.,	2001).		

	

	

Socio-Cultural	 • Differences	 in	 cultural	 values	 and	

language	 can	 cause	 misunderstanding	

of	requirements	(Damian	et	al.,	2003).	

	

• As	 at	 the	 beginning	 of	 the	 project	 the	

client	isn't	sure	of	all	the	requirements,	

which	 can	 result	 in	 vague	

requirements,	 which	 need	 to	 be	 later	

clarified	 to	 the	 teams	 who	 aren’t	 on-

site	(Bird	et	al.,	2009).	

	

• Difference	 in	 ways	 to	 express	

dissatisfaction,	 perception	 regarding	

punctuality,	 scheduling,	 hierarch,	

	 52	

urgency	 or	 risk	 often	 leads	 to	

misunderstanding	 among	 the	 client	

and	team	members	hence	spoiling	 the	

relationship	 (Damian	et	 al.,	 2003;	Niaz	

et	al.,	2012;	Bhat	et	al.,	2006).	

	

Communication	

and	Coordination	

• Changes	in	the	requirements,	needs	to	

be	communicated	to	all	the	distributed	

teams.	 Any	 mistake	 in	 recording	 the	

change	 can	 cause	 problems	 in	 the	

development	 of	 the	 system	 (Sengupta	

et	al.,	2006).	

	

Knowledge	

Transfer	

• As	 the	 project	 is	 being	 developed	 at	

different	 locations,	 there	 can	 be	

inconsistencies	 in	 the	 work	 done	 and	

documented	 user	 stories	 (Bhat	 et	 al.,	

2006).		

	

• Maintaining	bidirectional	traceability	of	

requirements	 across	 different	 sites	 is	

difficult	 as	 each	 site	 is	 working	 on	

different	 requirements	 (Berenbach	 et	

al.,	2006).	

	

• Managing	 requirements,	 on-site	

customer	 and	 daily	 meetings	 become	

difficult	with	distributed	teams	(Bhat	et	

al.,	2006).	

	

	

	 53	

2.	 Design	 Trust	 • Lack	 of	 standard	 method	 that	 can	

proactivity	 verify	 organisation	

structure	 can	 create	mistrust	 between	

the	 client	 and	 the	 team	 (Herbsleb,	

2007).	

	

Socio-Cultural	 • It	 is	 difficult	 to	 communicate	

architecture	 design	 decisions	 to	

geographically	and	culturally	dispersed	

teams	(Clerc,	2008).	

	

• Synchronous	 meetings	 of	 architecture	

and	 developers	 are	 difficult,	 which	

impinge	 building	 of	 common	

understanding	 of	 architecture	 and	

developers	(Bosch	et	al.,	2010)	

	

Communication	

and	Coordination	

• Coordination	 problems	 occur	 due	 to	

lack	 of	 common	 understanding	 of	

architecture	 design	 (Jaakkola	 et	 al.,	

2010).		

	

• It	is	difficult	to	discover	the	correlation	

between	architecture	decision	and	the	

coordination	 requirements	 they	 will	

enforce	(Herbsleb,	2007).		

	

Knowledge	

Transfer	

• Non-textual	 artefacts	 make	 it	 difficult	

to	 highlight	 and	 manage	 change	

(Sengupta,	et	al.,	2006).	

	

	 54	

• Lack	 of	 documents	 that	 describe	 the	

overall	 architecture	 of	 the	 software	

under	 development	 (Ovaska	 et	 al.,	

2003).	

	

• Out-dated	 documentation	 leads	 to	

rework	(Cataldo,	et	al.,	2007).		

	

3.	 Coding		 Trust	

	

	

	

	

	

	

	

Socio-Cultural	

• Insufficient	 social	 integration	 can	

degrade	 the	 performance,	 lower	

motivation	 and	 satisfaction	 of	 the	

developer.	 Resulting	 in	 creating	

mistrust	 between	 the	 client	 and	 the	

development	 team	 (Koehne	 et	 al.,	

2012).		

	

• Due	to	cultural	differences,	developers	

often	 misinterpretation	 each	 other,	

causing	 wrong	 requirements	 to	 be	

coded	(Herbsleb	et	al.,	2005).	

	

	

	 • Misinterpretations	 of	 technical	

vocabulary	 due	 to	 dissimilarity	 in	

technical	 cultures	 causes	

misunderstanding,	 rework	 and	

consequently	 delays	 in	 the	 projects	

(Herbsleb	et	al.,	2005).		

	

• Developers	at	remote	sites,	insufficient	

use	 version	 control	 systems	 due	 to	

different	 organisational	 cultural	 habits	

	 55	

(Cataldo	et	al.,	2007).	

	

• Developers	 belonging	 to	 higher	

economy	countries	usually	do	not	help	

people	 belonging	 to	 low	 economy	

countries	 in	fear	of	 losing	their	 jobs	to	

them	(Bird	et	al.,	2009).	

	

Communication	

and	Coordination	

• Usage	 of	 different	 process	 and	

disparity	 in	 process	 maturity	 at	

different	 sites	 can	 cause	 coordination	

problems	(Bird	et	al.,	2009;	Herbsleb	et	

al.,	2005).	

	

• Staff	 members	 at	 new	 offshore	 sites	

have	a	tendency	to	not	reply	quickly	to	

emails	 of	 onshore	members	 (Herbsleb	

et	al.,	2005).	

	

• Communicating	 all	 the	 details	 and	

norms	of	the	process	to	be	followed	to	

remote	 teams	 is	 very	 time	 consuming	

(Mullick,	et	al.,	2006).		

	

Knowledge	

Transfer	

• Difficulties	 in	 tracking	 information	 in	

distributed	 development	 (Herbsleb	 et	

al.,	2005;	Koehne	et	al.,	2012).	

	

• Divergence	 in	 tool	 usage	 among	

different	 teams	 causes	 knowledge	

transfer	problems	(Bird	et	al.,	2009).		

	

	 56	

4.	 Testing	 Trust	 • Customers	 feel	 insecure	 to	 trust	 their	

real-life	 data	 with	 offshore	

organisations,	 as	 they	 haven’t	 worked	

with	them	before,	hence	they	generate	

mock	 databases	 for	 the	 purpose	 of	

testing	(Sengupta	et	al.,	2006).		

	

• In	 acceptance	 testing,	 as	 feedback	 is	

being	 provided	 indirectly,	 vital	

information	 can	 be	 lost,	 causing	 the	

client	 to	 not	 trust	 the	 development	

team	(Liskin,	et	al.,	2012).	

	

Socio-Cultural	 • Offshore	 testers	 don’t	 get	 sufficient	

cooperation	 from	 the	 onshore	

members	 due	 to	 misunderstanding	

(Tervonen	et	al.,	2013).	

	

• Communication	is	difficult	between	the	

onshore	 testers	 and	 offshore	 testers	

due	 to	 the	 absence	 of	 a	 common	

native	 language	 and	 different	

vocabulary	(Camacho	et	al.,	2013).		

	

Communication	

and	Coordination	

• Face-to-face	meetings	are	difficult	and	

expensive	 causing	 communication	 and	

coordination	 gaps	 among	 the	 team	

members	(Tervonen	et	al.,	2009).	

	

• Reduced	 awareness	 of	 work	 due	 to	

lack	 of	 informal	 contact	 and	

	 57	

geographical	 dispersion	 (Tervonen	 et	

al.,	2013).	

	

• Limited	 budget	 restricts	

communication,	 coordination	 and	

collaboration	mechanism	 (Tervonen	et	

al.,	2013).	

	

Knowledge	

Transfer	

• It	 is	 hard	 to	 spot	 a	 developer	 of	 the	

code	where	a	bug	 is	 found	 (Grechanik	

et	al.,	2010).	

	

• Testers	 in	 the	 development	 countries	

are	not	familiar	with	the	clients	testing	

tools	 and	 code,	 which	 is	 to	 be	 tested	

(Liskin,	et	al.,	2012).	

	

• Due	 to	 frequent	 misinterpretations	 of	

requirements	 and	 interface	

specification	 confusions	 and	

misunderstanding	 occur,	 which	 cause	

inconsistence,	 which	 are	 not	 exposed	

until	 integration	 testing	 (Sengupta	 et	

al.,	2006).	

	

5.	 Integration	 Trust	 • Inadequate	 and	 incomplete	 interface	

specifications	are	identified	only	at	the	

integration	 phase,	 which	 cause	

mistrust	 among	 the	 client	 and	

development	 team	 (Sengupta	 et	 al.,	

2006).	

	

	 58	

Socio-Cultural	 • It	 is	difficult	 to	resolve	difficulties	with	

unfamiliar	 remote	 participants	 while	

integrating	 the	 code	 (Conchúir	 et	 al.,	

2006).	

	

• Due	 to	 lack	 of	 cohesiveness	 and	

cooperation	 between	 the	 different	

locations,	the	offshore	team	feels	they	

are	 integrating	 components	 of	

competitors	(Herbsleb,	et	al.,	2005).	

	

Communication	

and	Coordination	

• Inadequate	communication	and	lack	of	

domain	 knowledge	 lead	 to	 lack	 of	

understanding	 in	 developers	 about	

requirements,	 which	 often	 lead	 to	

misinterpreted	and	conflicting	modules	

(Damian	et	al.,	2003;	Bhat,	et	al.,	2006;	

Sengupta	et	al.,	2006).		

	

• Communication	 between	 remote	 site	

only	 through	 a	 single	 mediator	 can	

because	 the	 cause	 of	 integration	

failure	(Čavrak	et	al.,	2012).	

	

Knowledge	

Transfer	

• Implementing	 different	 code	 branches	

at	 each	 development	 site	 can	 lead	 to	

complex	 integration	 problems	

(Herbsleb,	et	al.,	2005).	

	

• Inadequate	knowledge	and	expertise	in	

GSD	 of	 integration	 team	 can	 increase	

	 59	

risks	 of	 integration	 failure	 (Kommeren	

et	al.,	2007).	

	

• Risk	 of	 integration	 failure	 increases	

with	the	increase	in	interdependencies	

between	 modules	 to	 be	 developed	

(Herbsleb,	2007).	

	

Based	on	the	above	table	we	can	see	how	each	phase	of	the	development	life	cycle	is	

effected	by	offshore	challenges.	From	these	findings	we	can	observe	how	the	offshore	

challenges	are	 interlinked	and	understand	how	these	challenges	are	 interrelated	and	

affect	 the	 development	 lifecycle	 such	 as	 we	 can	 now	 say	 that	 trust,	 socio-cultural,	

communication	and	coordination	and	knowledge	transfer	 issues	effect	all	 the	phases	

of	the	development	lifecycle.		

	

To	 overcome	 the	 challenges	 mentioned	 in	 Table	 2.6,	 work	 has	 been	 done	 using	

different	approaches	such	as	patterns,	ontology-based	and	agile	methodology.	 	Table	

2.7	gives	an	overview	of	such	approaches.	

Table	2.7.	Overview	of	Existing	Approaches	used	to	Overcome	Offshore	Challenges.	

	

No.	 Approach	 Overview	of	the	Approach	

1.	 Use	of	Patterns	for	

Global	Software	

Development	

MacGregor	(MacGregor	et	al.,	2005),	Shah	(Shah	et	al.,	

2012),	 Paasivaara	 (Paasivaara	 et	 al.,	 2003),	 Bricout	

(Bricout,	 2004),	 Lescher	 (Lescher,	 2010),	 van	 Heesch	

(van	 Heesch,	 2015),	 Valimaki	 (Valimaki	 et	 al.,	 2009),	

Pehmöller	 (Pehmöller	 et	 al.,	 2010)	 and	 Salger	 (Salger	

et	 al.,	 2010)	 provided	 patterns	 to	 be	 used	 in	 Global	

Software	 Development.	 Details	 of	 their	 patterns	 can	

be	found	in	Section	2.7.		

	

2.	 Using	Agile	Practices	to	 Beecham	 proposed	 to	 use	 agile	 practices	 to	 solve	

	 60	

Solve	Global	Software	

Development	Problems	

global	 software	 development	 problems	 (Beecham	 et	

al.,	 2014).	 	 The	 aim	 of	 their	 research	was	 to	 answer	

the	research	question:	

	

• What	GSD	problems	can	agile	methods	solve?	

	

They	 interviewed	24	practitioners	 from	FS	 group	and	

from	that	they	presented	16	issues	that	were	raised	by	

the	 practitioners	 while	 they	 developed	 software	

offshore.	They	answered	9	issues	using	agile	practices	

and	 partially	 answered	 3	 and	 left	 4	 unanswered.		

Detail	of	their	solution	can	be	seen	in	Appendix	C.		

	

3.	 Ontology-Based	Multi-

Agent	System	to	

Support	Requirements	

Traceability	in	Multi-

Site	Software	

Development	

Environment	

Pakdeetrakulwong	 proposed	 an	 ontology-based	

solution	 using	 multi-agents	 to	 collect	 requirements	

when	 the	 project	 is	 being	 developed	 is	 offshore	

(Pakdeetrakulwong	 et	 al.,	 2015).	 Their	 proposed	

architecture	had	four	agents:	

	

i) User	Agent	

ii) Recommender	Agent	

iii) Ontology	Agent	

iv) Evolution	Agent	

	

The	main	capabilities	of	these	agents	are	to:	

	

• Handle	 change	 in	 the	 requirements	

(add/update/deleted).	

• Identify	 requirements	 traceability	 information	

and	generate	traceability	matrix.		

• Analyse	 change	 impact	 on	 requirements	 and	

	 61	

software	artefacts.	

• Send	message	to	notify	relevant	user	about	the	

impact	of	requirement	change;	and		

• Recommend	 incomplete	 requirement	

information.	

	

4.	 Experiments	for	

offshore	project	to	

address	centrifugal	

forces.	

Based	 on	 Carmel’s	 identified	 five	 centrifugal	 forces	

that	pull	people,	team	and	product	group	apart	which	

are	as	follows	(Carmel,	2010):	

	

• Geographical	dispersion	

• Coordination	breakdown	

• Loss	of	communication	richness	

• Loss	of	team-ness	

• Cultural	Differences	

	

Crag	Larman	and	Bas	Vodde	designed	experiments	to	

be	 conducted	 by	 offshore	 teams	 in	 order	 to	 address	

these	 issues	 (Larman	 et.	 al.,	 2010).	 An	 overview	 of	

their	experiments	is	listed	below:	

	

• Try..	Fewer	sites	

• Try	..	Think	“multisite”	even	when	close.	

• Avoid..	Believing	in	multi-site	daily	scrum	magic	

or	that	multisite	forces	are	inconsequential.	

• Avoid..	 Thinking	 distributed	 must	 mean	

dispersed.	

• Try..	One	iteration	(Sprint)	for	the	product,	not	

for	site.	

	

Similarly	 they	 designed	 experiments	 related	 to	 team	

	 62	

and	 site	 structures,	 interaction	 and	 coordination,	

multisite	culture	and	norms,	tool,	and	tests.	

	

5.	 Understanding	

Collaborative	Practices	

in	Distributed	Agile	

Development	using	

Theoretical	Concepts	

Modi	 presented	 a	 research	 proposal	 in	 which	 they	

used	an	interpretative	qualitative	approach	along	side	

case	 studies,	 to	 gain	 deeper	 understanding	 into	 how	

teams	 collaborated	 in	 distributed	 agile	 development	

scenario	(Modi	et	al.,	2013).	There	analysis	was	based	

on	 theoretical	 concepts	 such	 as	 common	 ground,	

boundary	 objects	 and	 awareness,.	 The	 aim	 of	 their	

research	 was	 to	 answer	 the	 following	 research	

questions:	

	

• How	 do	 global	 teams	 collaborate	 to	 establish	

common	ground/shared	understanding?	

• How	does	knowledge	sharing	take	place?	

• What	transformation	takes	place?	

• What	 can	 we	 learn	 from	 existing	 distributed	

agile	teams?	

	

Based	 on	 their	 selected	 theoretical	 concepts	 they	

explained	on	how	they	can	help	distributed	 teams	 to	

solve	 the	 collaboration	 challenges.	 Below	 we	 have	

defined	 each	 concept	 and	 given	 an	 overview	 of	 how	

they	 can	 help	 improve	 collaboration	 in	 distributed	

scenario:	

	

• Common	 Ground:	 According	 to	 Clark	 theory	 of	

common	 ground	 regarding	 mutual	 knowledge,	

beliefs	 and	 assumptions	 maintain	 that	 the	

participants	 must	 have	 a	 shared	 awareness	 to	

	 63	

carry	 out	 a	 joint	 activity	 (Clark	 et	 al.,	 1991).	

According	 to	Modi’s	 research	 failure	 to	 establish	

and	 maintain	 a	 common	 ground	 can	 result	 in	

serious	 breakdowns	 in	 collaborative	 work	 (Modi	

et	al.,	2013).			

	

• Boundary	Objects:	Star	defined	boundary	objects	

as	 objects,	 which	 are	 both	 plastic	 enough	 to	

adapt	 to	 local	 needs	 and	 constraints	 of	 the	

several	 parties	 employing	 them,	 yet	 robust	

enough	to	maintain	a	common	identify	across	site	

(Star	et	al.,	 1989).	 	Based	on	Modi’s	 research,	 in	

GSD	the	project	artefacts	such	as	user	stories,	the	

shared	code	and	test	cases	are	the	integral	part	of	

agile	 and	 can	be	 viewed	as	boundary	objects	 in-

use,	 as	 they	 provide	 a	 common	 focus	 to	 the	

project	 goals	 and	 act	 as	 mediators	 for	

communication,	 coordination	 and	 cooperation	

among	 the	 team	 members	 distributed	 over	

different	sites	(Modi	et	al.,	2013).			

	

• Awareness	 is	defined	as	an	understanding	of	 the	

activities	 of	 others,	 which	 provide	 a	 context	 for	

the	 project	 activates.	 According	 to	 Modi’s	

research	 the	 3C	 collaboration	 model,	 defines	

collaboration	 as	 the	 union	 of	 communication,	

coordination	and	cooperation	efforts	(Modi	et	al.,	

2013).			

	

In	 Table	 2.7	 we	 presented	 different	 approaches	 that	 are	 being	 used	 to	 overcome	

offshore	challenges	however	they	have	limitations	for	example	using	agile	practices	to	

solve	 global	 software	 development	 problems	 has	 limitation	 that	 even	 though	 this	

	 64	

approach	answers	GSD	challenges	 it	does	not	discuss	 in	detail	how	practitioners	 can	

solve	 them	as	 they	only	presented	 single	 line	 solutions	 similarly	using	ontologies	 for	

requirements	approach	only	focuses	on	overcoming	the	challenges	of	the	requirement	

phase	by	using	ontologies	and	it	provides	a	very	technical	solution	which	is	difficult	to	

be	used	by	product	owners	that	aren’t	from	IT	background.	Further	we	have	discussed	

these	approaches	in	table	5.8.	

	

2.5 	Agile	Offshore	Software	Development	

	

In	 this	 section	 we	 will	 first	 explain	 what	 agile	 is	 and	 then	 how	 we	 can	 use	 agile	

methodologies	for	offshore	software	development.	We	have	also	mentioned	what	are	

the	limitations	of	agile	when	used	for	offshoring.	

2.5.1 Agile	Software	Development	

	

In	2001	the	formation	of	agile	manifesto	has	brought	unprecedented	changes	to	how	

software	is	developed	(Beck	et	al.	2001).	The	manifesto	focuses	on	four	points	which	

are:	 i)	 individuals	 and	 interaction	 over	 process	 and	 tools	 ii)	 working	 software	 over	

comprehensive	 documentation	 iii)	 customer	 collaboration	 over	 contract	 negotiation	

and	iv)	responding	to	change	over	following	a	plan.		Broadly	speaking	agile	encourages	

collaborative	development	in	which	people	are	involved	throughout	the	development	

process	allowing	them	to	openly	exchange	which	helps	bridge	the	gap	between	clients	

and	developers	resulting	in	a	successful	product.	

	

Agile	software	development	focuses	on	12	principles	which	are	as	following	(Beck	et	

al.,	2001):	

• “Customer	satisfaction	by	rapid	delivery	of	useful	software	

• Welcome	changing	requirements,	even	late	in	development	

• Working	software	is	delivered	frequently	(weeks	rather	than	months)	

• Working	software	is	the	principal	measure	of	progress	

• Sustainable	development,	able	to	maintain	a	constant	pace	

	 65	

• Close,	daily	cooperation	between	business	people	and	developers	

• Face-to-face	conversation	is	the	best	form	of	communication	(co-location)	

• Projects	are	built	around	motivated	individuals,	who	should	be	trusted	

• Continuous	attention	to	technical	excellence	and	good	design	

• Simplicity—the	art	of	maximizing	the	amount	of	work	not	done—is	essential	

• Self-organizing	teams	

• Regular	adaptation	to	changing	circumstances”.	

Agile	software	development	is	an	iterative	and	incremental	development	model	were	

the	 requirement	 of	 the	 project	 and	 its	 solution	 keeps	 on	 changing	 based	 on	 the	

collaboration	and	coordination	of	self-organised	and	cross-functional	 teams	 (Larman,	

2004).	Agile	development	life	cycle	has	many	methodologies	such	as	Agile	Modelling,	

Agile	 Unified	 Processes,	 Crystal	 Methods,	 Dynamic	 System	 Development	 Method	

(DSDM),	 Extreme	 Programming	 (XP),	 Scrum	 and	 Lean	 etc.	 (Dybå	 et	 al.,	 2008).	 In	

general	agile	methodologies	emphasizes	on	 frequent	delivery	of	product	 increments,	

time	 boxes,	 communication	 and	 collaboration,	 working	 software	 as	 a	 measure	 of	

progress,	adaptive	planning	and	meetings.	

	

A	lot	of	work	is	being	done	on	agile	and	it	is	being	widely	adapted	by	many	companies	

to	develop	software	(Abrahamsson	et	al.,	2003).	A	literature	search	in	the	ISI	Web	of	

Science	 showed	 that	 1551	 research	 papers	 have	 been	 published	 on	 agile	 software	

development	from	2001	till	2010	(Dingsøyr	et	al.,	2012).		

	

2.5.2 Agile	Methodology	in	Offshoring	

	

Companies	that	opt	for	offshoring	perceive	it	as	they	are	taking	risk	in	some	aspects	of	

the	 software	 development	 process	 in	 order	 to	 reduce	 cost	 of	 software	 production	

(Nisar	 et	 al.,	 2004).	 As	 there	 is	 tension	 between	 agile	 benefits	 and	 difficulties	 of	

implementing	agile.	Agile	methods	help	build	trust	and	confidence	between	clients	as	

it	 considers	 customers	 as	 part	 of	 the	 team.	 It	 also	 helps	 in	 reducing	 the	 risk	 of	

production	 of	 low	 quality	 software	 as	 by	 using	 agile	 methods	 like	 unit	 testing,	 pair	

	 66	

programming,	 continuous	 integration	 etc.	 ensures	 good	 quality	 software	 (Danait,	

2005).	 However	 the	 process	 of	 adopting	 agility	 with	 distributed	 projects	 is	 not	

straightforward	(Šmite	et	al.,	2010).	Global	software	engineering	should	focus	on	how	

to	 cleverly	 use	 information	 and	 communication	 technology	 to	 compensate	 for	 the	

inherent	problems	of	distributed	works	and	bridge	the	remote	sites	together	(Hanssen,	

2011).	

	

In	industry	there	are	two	different	opinions	when	it	comes	to	agile:	

	

• Some	 companies	 believe	 that	 agile	 methods	 are	 a	 best	 fit	 for	 offshore	

development	 as	 offshore	 projects	 involve	 high	 risks	 of	 security,	 decreased	

development	 visibility,	 management	 and	 integration.	 Thus	 with	 the	 help	 of	

agile	 methods	 such	 projects	 can	 be	 better	 planned	 and	 executed	 (Simons,	

2002,	Hayes,	2003,	Massol,	2004).		

	

• Some	believe	that	Agile	methods	are	a	mismatch	with	offshoring	(Kontio	et	al.,	

2004).	 Taylor	 claim	 that	 projects	 that	 use	 agile	 for	 offshore	 development	 go	

through	a	lot	of	difficulties	because	of	the	differences	in	development	practices	

as	well	 as	 due	 to	 complex	 development	 environment	 (Taylor	 et	 al.,	 2006).	 A	

characteristic	 comparison	 done	 by	 Šmite	 shows	 how	 agile	 development	 is	

different	 from	offshore	 development	 shown	 in	 Table	 2.8	 below	 (Šmite	 et	 al.,	

2010):	

Table	2.8.	Comparison	of	Agile	Development	verses	Offshore	Development	(Šmite	et	

al.	2010).	

	
No.	 Characteristics		 Agile	Development	 Offshore	

Development	

1.	 Communication	 Informal	

Face-to-face	

Synchronous		

Many-to	Many	

Formal	

Computer-	mediated	

Often	Synchronous	

Tunnelled	

	 67	

2.	 Coordination	 Change-	driven	

Mutual	adjustment,	self	

management	

	

Plan-	driven	

Standardisation	

3.	 Control	 Lightweight	

Cross-functional	team	

Command-and-

control	

Clear	separation	of	

roles	

	

2.6			Agile	Adoption	in	Offshore	Software	Development		

	

In	 this	 section	we	will	 highlight	 approaches	 used	 by	 organisation	 to	 transition	 from	

traditional	 software	 development	 to	 agile	 methodology,	 we	 also	 present	 different	

approaches	used	to	adopt	agile	in	offshore	environment.			

2.6.1	Transition	from	Traditional	Software	Development	to	Adopting	Agile	

Practices	

	

In	 this	 section	 we	 have	 focused	 on	 approaches	 present	 in	 literature	 that	 focus	 on	

facilitating	organisations	to	transit	 from	any	traditional	software	development	model	

to	adopting	agile	practices.	We	haven’t	considered	the	complexity	added	by	offshore	

software	development.	

2.6.1.1 Facilitators	to	Assist	Agile	Adoption	

	

Javdani	conducted	a	study	consisting	of	33	agile	experts	across	13	different	countries	

to	 identify	 facilitators	 that	 would	 help	 organization	 to	 transition	 and	 adopt	 of	 agile	

methods	 (Javdani	 et	 al.,	 2014).	 They	 identified	 8	 facilitators	 that	 would	 help	 agile	

practitioners	to	do	their	job,	which	are	as	follows:		

• Training	

• Good	coaching	and	mentoring	

• Management	buy-in	

	 68	

• Team	member	buy-in	

• Right	people	selection	and	empowering	team	

• Continuous	meeting	and	negotiation	

• Agile	champions	

• Incentive	factors	

	

Based	 on	 their	 results	 it	 is	 clear	 that	 for	 the	 success	 of	 agile	 adoption,	 the	 team	

members	and	management	need	to	have	common	interest.		However	the	limitation	of	

this	research	is	that	it	only	focuses	on	co-located	team	members	and	does	not	discuss	

the	complexity	added	due	to	offshore	teams.		

2.6.1.2 Framework	to	Support	the	Evaluation,	Adoption	and	Improvement	of	Agile	

Methods	

	
Qumer	 also	 suggested	 a	 framework	 to	 support	 the	 evaluation,	 adoption	 and	

improvement	 of	 agile	 methods	 (Qumer	 et	 al.,	 2008).	 In	 their	 framework	 they	

developed	 an	 Agile	 Toolkit,	 which	 facilitated	 the	 construction	 and	 evaluation	 of	

processes	 in	 complex	 software	 projects.	 Figure	 2.4	 shows	 the	main	 components’	 of	

their	 agile	 software	 solution	 framework,	 which	 are	 Agile	 Toolkit,	 Method	 Core	 and	

Software	Technology.	

	

Figure	2.4.	The	Main	Components	of	the	Agile	Software	Solution	Framework	(Qumer	

et	al.	2008).		

	

	 69	

They	 also	 developed	 an	 analytical	 tool	 that	 evaluated	 the	 degree	 of	 agility	 in	 a	

development	practice.	They	also	designed	an	Agile	Adoption	and	Improvement	Model	

(AAIM)	based	on	industry	analysis	and	a	grounded	theory	research	methodology.	The	

AAIM	has	3	agile	blocks:	i)	Agile	Block:	Prompt,	ii)	Agile	Block:	Crux	and	iii)	Agile	Block:	

Apex	which	are	further	divided	into	six	stages	as	shown	in	the	Figure	2.5	below.	This	

model	 focuses	 more	 on	 how	 to	 evaluate	 the	 degree	 of	 agility	 adopted	 in	 an	

organisation	rather	then	providing	a	guideline	on	how	agile	should	be	adopted	and	it	

doesn’t	not	explain	how	agile	should	be	adopted	in	offshore	software	development.	

	

	

Figure	2.5.	Agile	Adoption	and	Improvement	Model	(Qumer	et	al.,	2007)	

	

2.6.1.3 Shared	Mental	Models	to	Understand	Agile	Practices	

	

Yu	used	a	 theory	 from	cognitive	psychology	known	as	shared	mental	models	 to	help	

practitioners	understand	and	apply	agile	practices,	as	according	to	empirical	research	

	 70	

it	was	 found	 that	 the	perceived	benefits	of	agile	 software	development	are	not	 fully	

understood	in	research	or	by	organisations	(Yu	et	al.,	2014).	Hence	causing	to	failures	

in	 achieving	 the	 required	 results.	 There	 research	 emphases	 on	 answering	 three	

research	questions:	

	

i) Why	 is	 improved	 interaction	 needed	 among	 development	 teams	 and	

customers?	

ii) What	aspects	of	 interactions	 should	be	emphasised	among	 the	development	

team	and	customers?	

iii) How	 does	 increased	 interaction	 improve	 collaboration	 during	 software	

development?	

	

They	focused	on	three	Scrum	and	XP	practices,	which	were	System	metaphor,	Standup	

meetings	and	on-site	customer	and	linked	them	to	the	types	of	shared	mental	model	

that	 would	 facilitate	 understanding	 and	 adoption	 of	 agile	 practices.	 For	 example,	

according	 to	 their	 research,	 standup	 meetings	 using	 shared	 mental	 model	 practice	

reflexivity	 can	 enhance	 developers	 understanding	 of	 the	 project.	 Similarly	 that	 with	

efficient	reflective	discusses	during	the	standup	meeting,	the	team	understand	about	

the	project	goals,	challenges,	limitations	and	system	requirements.	

2.6.2	Agile	Adoption	in	Offshoring	

	

In	this	section	we	have	presented	different	approaches	present	in	literature	that	are	

used	to	adopt	agile	practices	in	offshore	software	development.		

2.6.2.1	Use	of	Patterns	in	Agile	Adoption	

	

As	mentioned	in	Section	2.4	work	has	been	done	on	using	patterns	in	global	software	

development.	 In	 this	 section	we	will	 give	 an	overview	of	what	 is	 a	 pattern	 and	how	

they	 can	 be	 used	 to	 facilitate	 agile	 adoption	 in	 offshore	 software	 development.	We	

further	 conducted	 a	 study	 on	 identifying	 existing	 patterns	 used	 in	 GSD	 and	 then	

investigating	 specific	 patterns	 that	 are	 being	 used	 for	 agile	 adoption,	 which	 is	

presented	in	Section	2.7.	

	 71	

The	 term	 ‘pattern’	 was	 introduced	 in	 software	 development	 as	 an	 inspiration	 of	

Christopher	 Alexander	work	 on	 architectural	 patterns.	 He	 defined	 patterns	 as	 “Each	

pattern	describes	a	problem	which	occurs	over	and	over	again	in	our	environment,	and	

then	describes	the	core	of	the	solution	to	that	problem,	in	such	a	way	that	you	can	use	

this	 solution	 a	 million	 times	 over,	 without	 ever	 doing	 it	 the	 same	 way	 twice”	

(Alexander	 et	 al.	 1977).	 He	 used	 this	 definition	 for	 buildings	 and	 town	 patterns	

however	what	he	says	are	true	for	software	patterns	as	well.	

Generally	a	pattern	has	four	essential	elements	(Gamma,	et	al.,	1997):	

	

• The	patter	name:	to	give	a	high	level	of	abstract	to	the	pattern.	It	gives	us	the	

idea	of	what	problem	the	pattern	is	providing	a	solution	for	in	a	word	or	two.	

Giving	a	name	to	a	pattern	makes	it	easy	for	us	to	talk	about	it	with	people	and	

for	documentation.	

	

• The	problem:	helps	in	describing	when	the	pattern	can	be	applied.	It	provides	

details	 of	 the	 problem	 and	 its	 context.	 It	 may	 include	 lists	 of	 conditions	 or	

scenarios,	which	must	be	met	in	order	to	apply	the	pattern.	

	

• The	 solution:	 describes	 the	 elements	 that	 makeup	 the	 patterns,	 their	

relationships	 and	 responsibilities.	 The	 solution	 doesn’t	 describe	 a	 particular	

concrete	practice	or	implementation,	because	a	pattern	is	like	a	template	that	

can	be	applied	in	many	different	scenarios.	A	pattern	does	provide	an	abstract	

description	of	a	problem	and	how	a	general	arrangement	of	elements/practices	

can	solve	it.	

	

• The	 consequence:	 describes	 the	 outcome	 of	 applying	 the	 pattern.	 They	 are	

critical	for	evaluating	a	pattern	and	for	understanding	the	benefit	of	applying	a	

pattern	to	see	if	it	helped	in	solving	the	problem	and	if	yes,	up	to	what	extend.	

For	software	the	consequence	often	refer	to	space	and	time	trade-offs.		

	

	

	 72	

Currently	there	are	six	types	of	patterns:	

- Requirements	 Patterns:	 Robertson	 defined	 requirement	 patterns	 as	

patterns	 that	 provide	 high-level	 abstraction	 of	 system	 requirements	

(Robertson,	 1996).	 They	 help	 in	 the	 creation	 of	 better	 and	 precise	

requirement	descriptions	in	lesser	time.		

	

- Anaylsis	 Patterns:	 Fowler	 defined	 analysis	 patterns	 as	 patterns	 that	

“reflects	 conceptual	 structures	 of	 business	 processes	 rather	 than	 actual	

software	implementations"	(Fowler,	1997).	

	

- Design	 Patterns:	 Gamma	 defined	 as	 “descriptions	 of	 communicating	

objects	and	classes	that	are	customized	to	solve	a	general	design	problem	

in	a	particular	context	(Gamma,	et	al.,	1997).	

	

- Architectural	 Patterns:	 Buschmann	 defined	 architecture	 patterns	 as	

patterns	 that	 contain	 best	 practices	 for	 decomposing	 a	 software	 system	

into	 sub-systems	 (Buschmann	 et	 al.,	 1996).	 They	 also	 specify	 the	

responsibilities	between	the	sub-systems	that	 include	rules	and	guidelines	

for	organizing	the	relationships	between	them.		

	

- Anti-Patterns:	Brown	defined	anti-patterns	as	those	patterns	that	describe	

negative	examples	of	solutions	(Brown	et	al.,	1998).	They	describe	repeated	

negative	 practices	 observed	 while	 solving	 a	 problem	 and	 provide	 better	

solutions.	

	

- Idioms:	 They	 are	 patterns	 of	 the	 lowest	 level	 of	 abstraction.	 They	 show	

common	programming	techniques	and	conventions	that	recur	while	solving	

programming	tasks.	They	are	often	language-	specific.	

	

	 73	

Work	has	also	been	done	on	identifying	offshore	software	development	patterns	and	

agile	 patterns	 in	 offshore	 development.	 MacGregor	 and	 Shah	 designed	 cultural	

patterns	 to	 manage	 the	 cultural	 difference	 challenges	 in	 offshore	 development	

(MacGregor	 et	 al.,	 2005;	 Shah	 et	 al.,	 2012).	 Paasivaara,	 Bricout,	 Lescher	 and	 van	

Heesch	 designed	 communication	 and	 coordination	 patterns	 to	 overcome	

communication	and	coordination	challenges	that	onshore	and	offshore	team	members	

face	while	working	together	(Paasivaara	et	al.,	2003;	Bricout,	2004;	Lescher,	2010;	van	

Heesch,	 2015).	 Valimaki	 designed	 patterns	 for	 project	management	 (Valimaki	 et	 al.,	

2009)	and	Pehmöller	designed	testing	patterns	(Pehmöller	et	al.,	2010).	Salger	worked	

on	designing	patterns	 for	 the	 requirements	engineering	process	 (Salger	et	al.,	2010).	

Overview	of	these	patterns	is	presented	in	Table	2.12.	

	

Similarly	work	has	been	done	on	identifying	agile	offshore	patterns.	Hvatum	designed	

magic	backlog	patterns	to	manage	the	backlog	when	the	project	is	being	developed	at	

multiple	sites	(Hvatum	et	al.,	2015).	Fowler	designed	daily-stand	up	patterns	(Fowler,	

2016)	and	Välimäki	designed	nine	distributed	project	management	and	scrum	patterns	

(Välimäki	 et	 al.,	 2008).	 Cordeiro	 designed	multi-site	 software	 development	 patterns	

(Cordeiro	 et	 al.,	 2007)	 and	 Elssamadisy	 focused	 on	 the	 dynamics	 of	 agile	 adoption	

(Elssamadisy	 et	 al.,	 2006).	 Overview	 of	 these	 patterns	 has	 been	 presented	 in	 Table.	

2.13	

	

2.6.2.2 Factors	Contributing	to	the	Success	and	Failure	of	Agile	Adoption	

	

Malik	 identified	 factors	 that	 contributed	 to	 the	 success	 and	 failure	 of	 agile	 offshore	

software	development,	which	are	as	follows	(Malik	et	al.,	2010):	

	

• Development	Strategy	

• Project	Type	

• Communication	Channel	

• Cultural	Difference	

• Split	Location	

	 74	

• Size	of	Project	

	

According	 to	 their	 research,	 coding	 and	 testing	 phases	 should	 be	 considered	 to	 be	

offshored	 and	 that	 critical	 modules	 such	 as	 project	 planning	 and	 design	 should	 be	

done	 on	 onshore	 location.	 The	 type	 of	 projects	 that	 have	most	 success	 in	 offshore	

development	are	websites	and	web	applications.		Figure	2.6	shows	the	result	of	their	

research	on	finding	what	project	type	is	suitable	for	offshore	development.	

	

	

Figure	2.6.	Software	Project	Success	Rate	for	Offshore	Projects	(Malik	et	al.,	2010).	

	

2.6.2.3 Use	of	Tools	in	Agile	Adoption	in	Offshore	Development	

	

As	mentioned	in	Section	2.3.3,	the	main	issue	with	offshoring	is	communication	gap	as	

agile	 is	 a	 big	mismatch	 as	 its	methods	 focus	 on	 regular	 face-to-face	 communication	

hence	increasing	the	demand	for	communication	(Beck	et	al.,	2001).	An	alternative	to	

this	 approach	 is	 that	 agile	 methods	 solve	 communication	 problem	 by	 “Offshore	

Development	 requires	 more	 communication,	 Agile	 methods	 provides	 more	

communication”	(Nisar	et	al.,	2004).	

	

	 75	

Now	the	question	is	how	to	apply	agile	methods	in	such	a	way	that	we	can	reduce	the	

gap	 without	 providing	 face-to-face	 communication	 as	 the	 teams	 are	 geographically	

split.	 Many	 companies	 have	 solved	 this	 issue	 with	 the	 use	 of	 technology	 as	 they	

(Fowler,	2006;	Simons,	2002;	Danait,	2005):	

	

• Hold	online	voice	or	video	chat	sessions	as	they	provide	real-time	face-to-face	

meetings,	which	allow	the	teams	to	have	an	efficient	conversation	 (Kotlarsky,	

Oshri,	2005).	

	

• Collaborative	 tools	 such	 as	Wiki,	 IM	 and	 discussion	 boards	 help	 improve	 the	

quality	of	communication	of	information.	

	

Another	 issue	 is	the	transfers	of	processes	as	 in	offshoring	companies	move	some	of	

their	business	or	development	processes	to	offshore	location,	which	causes	problems	

when	 companies	 outsource	 critical	 modules	 of	 domain	 specific	 projects.	 General	

Motors	 is	 an	 example	 of	 such	 offshoring	 projects	 where	 they	 outsourced	 the	

development	 of	 their	 web-based	 “New	 Owner	 Centre”	 project.	 Agile	 provides	 a	

solution	to	this	problem	by	sending	ambassadors	from	one	offshore	site	to	another	in	

order	to	help	gather	information	of	the	business	domain.	But	the	disadvantage	to	this	

approach	is	that	this	practice	is	costly	(Fowler,	2004).	

	

Companies	 also	 face	 trust	 issues	 in	 offshoring	 as	 mentioned	 in	 Section	 2.3.1,	 agile	

suggests	 to	 use	 web	 conferencing	 for	 virtual	 white-boarding	 to	 share	 and	 discuss	

project	designs	and	information	(Braithwaite	et	al.,	2005).	This	helps	to	solve	the	issue	

of	knowledge	transfer	mentioned	in	section	2.3.4	as	the	whole	team	is	directly	sharing	

information	face-to-face	via	Internet.	Agile	methods	also	suggest	using	a	shared	code-

repository	as	it	allows	the	teams	to	see	each	other’s	work	(Danait,	2005).		

	

Some	companies	even	opt	to	collocate	the	team	during	the	initial	period	of	the	project	

so	that	the	team	members	can	get	to	know	each	other	(Cottmeyer,	2008).	This	helps	in	

building	 trust	 among	 the	 team	 and	 develops	 sense	 of	 that	 they	 all	 are	 one	 team	

despite	located	at	distributed	locations	(Danait,	2005).	However	to	collocate	the	team	

	 76	

is	a	costly	process	 (Nisar	et	al.,	2004).	 In	a	 literature	study	done	by	Paasivaara	et	al.	

(2009)	 they	 classified	 how	 different	 agile	 practices	 contribute	 in	 offshore	 agile	

projects,	Table	2.9	summarises	their	classification.	

Table	2.9.	Agile	Practices	used	for	Offshore	Development	(Paasivaara	et	al.,	2009).	

	

No.	 Name	of	Agile	Practice	 Description	

1.	 Daily	Scrums	 For	 coordination	 and	 communication	 which	 in	

offshore	projects	is	done	via	video/audio	professional	

conferencing	 tools	 such	 as	 Skype	 (Berczuk,	 2007;	

Danait,	2005;	Jensen,	2003).		

	

2.	 Sprint	 Planning	

Meeting	

Meeting	done	at	the	start	of	every	sprint.	If	difficult	to	

schedule	 it	 for	 whole	 team	 due	 to	 time-zone	

difference,	 only	 team	 leads	 can	 hold	 this	 meeting	

using	 synchronous	 communication	 tools.	 (Berczuk,	

2007;	 Holmstrom,	 Conchùir,	 Agerfalk,	 Fitzgerald,	

2006;	Layman,	Williams,	Damian,	and	Bures,	2006).	

	

3.	 Sprint	Review	Meeting	 The	whole	team	including	the	offshore	team	members	

are	 present	 in	 this	 meeting	 using	 synchronous	

communication	 tools	 to	 discuss	 the	 progress	 of	 the	

project	(Berczuk,	2007).	

	

4.	 Demonstration	of	

Working	Functionality	

After	each	sprint,	new	functionalities	are	added	due	to	

the	 sprint	 review	 meeting.	 These	 new	 requirements	

need	 to	 be	 shared	 via	 videoconferencing	 or	 through	

desktop	sharing	(Berczuk,	2007;	Danait,	2005;	Fowler,	

2006).	

	

5.	 Proxy/Remote	

Customers	

Some	companies	choose	proxy	customers	 in	order	 to	

improve	 quality	 of	 product	 and	 to	 add	 a	 third	 party	

	 77	

which	communicates	with	the	real	customers	and	the	

team.	 The	 proxy	 customers	 can	 take	 decisions	 on	

behalf	 of	 the	 real	 team.	 They	 communicate	with	 the	

team	 via	 videoconferencing	 or	 email	 (Kircher,	 Jain,	

Corsaro,	and	Levine,	2001;	Layman,	Williams,	Damian,	

and	Bures,	2006;	Nisar,	and	Hameed,	2004).		

	

6.	 Distributed	 Scrum	 of	

Scrums	

This	 is	used	when	the	 team	 is	very	 large.	Only	scrum	

masters	meet	 every	 2-3	 days	 either	 in	 person	 or	 via	

videoconferencing	 to	 discuss	 the	 progress	 of	 the	

project	(Jensen	and	Zilmer,	2003;	Smits,	and	Pshigoda,	

2007).	

	

2.6.3	Effect	of	Offshoring	on	Agile	Adoption	

	

In	 the	 Section	 2.3	 we	 identified	 four	 key	 challenges	 that	 affect	 offshore	 software	

development,	 which	 also	 affect	 the	 adoption	 of	 agile	 practices	 in	 offshore	 software	

development	 (Ghafoor	 et	 al.,	 2017).	 For	 example,	 consider	 the	 trust	 issue;	 it	 can	

introduce	 certain	 difficulties	 in	 agile	 practices	 such	 as	 dispute	 over	 collective	

ownership	 of	 code	 and	maintaining	 a	 sustainable	 pace	 of	 the	 project	 development.	

Similarly,	issues	caused	due	to	socio-cultural	differences	also	affect	agile	practices	such	

as	frequent	delivery	of	code,	self-organising	teams,	embracing	change	and	responding	

in	a	timely	manner.			

		

For	 teams	 wanting	 to	 adopt	 agile,	 communication	 and	 coordination	 issues	 are	 very	

important	as	they	impact	most	of	the	agile	practices.	Likewise,	knowledge	and	transfer	

of	knowledge	are	central	to	the	principles	of	agile	software	development	as	they	aid	in	

achieving	 sustainable	 pace	 of	 development,	 motivated	 individuals	 and	 continuous	

code	 review.	 In	 Table	 2.10	 below	we	have	 highlighted	 some	 agile	 practices	 that	 are	

affected	by	the	offshore	challenges.	

	

	 78	

Table	2.10.	Agile	Practices	affected	by	Offshore	Challenges.	

	

No.	 Offshore	

Challenge	

Agile	Practice	 Effect	of	Challenge	on	agile	

practice	

1.	 Trust			 Collective	Ownership	 Dispute	 over	 code	 ownership	

among	 the	 onshore	 and	

offshore	team	members	

	

Sustainable	Pace	 Difficulties	 in	 maintaining	 a	

sustainable	 pace	 of	 project	

development	

	

2.	 Socio-cultural		 Iterative	and	

incremental	

development	

Delays	 in	 frequent	 delivery	 of	

code.	

	

Self-organising	teams	

	

Problems	in	understanding	each	

other’s	cultural	and	social	values	

can	 cause	 a	 barrier	 in	 the	

formation	 of	 self-organising	

teams.		

	

3.	

	

Communication	

and	

Coordination	

	

Sprint	Planning	

	

As	 the	 team	 is	 distributed,	 due	

to	 lack	 of	 sufficient	

communication,	 it	 can	 cause	

projects	 in	 designing	 a	 correct	

sprint.	

	

Continuous	Integration	

	

Multiple	 versions	 of	 code	

developed	 at	 different	 location	

can	 cause	 any	 build	 to	 break	

	 79	

due	to	errors	being	integrated	in	

the	code.	

	

4.	

	

Knowledge	

Transfer	

	

Product	Backlog	

	

Any	 change	 in	 product	 backlog	

not	 documented	 correctly	 can	

cause	a	project	to	fail.	

	

Sprint	Review	

	

Due	 to	 multiple	 locations	 of	

sprint	 development.	 It	 causes	

problems	 in	 determining	 the	

progress	of	the	work	done.	

	

Table	 2.10	 demonstrates	 that	 agile	 practices	 cannot	 be	 used	 as	 it	 is	 in	 offshore	

software	development	and	that	is	why	practitioners	have	been	modifying	and	adapting	

agile	practices.	We	believe	 that	patterns	can	make	 the	agile	adoption	process	easier	

for	practitioners.		

	

A	 case	 study	 done	 by	 Paasivaara	 showed	how	R&D	unit	 of	 Ericsson,	 a	multinational	

telecommunication	 equipment	 and	 services	 company,	 integrated	 its	 global	 sites	 into	

the	 lean	and	agile	transformation	(Paasivaara	et	al.,	2013).	As	part	of	this	study	they	

observed	 how	 Ericsson	 integrated	 three	 sites,	which	were	 Finland,	 Hungary	 and	US.	

They	started	the	agile	adoption	process	with	the	Finland	site	in	which	they	transitioned	

to	agile	methodology	using	an	evolutionary	model,	that	is	they	gradually	transformed	

their	processes	one	at	a	time	and	then	eventually	the	whole	site	shifted	to	using	agile	

practices	 for	 their	 projects.	 Table	 2.11,	 demonstrates	 an	 overview	 of	 how	 agile	

practices	 were	 adopted	 at	 the	 three	 sites.	 Later	 we	 have	 explained	 what	 were	 the	

success	and	failures	of	their	transition:		

	

	

	 80	

Table	2.11.	Detail	of	Three	Sites	Adopting	Agile	Practices	at	R	&	D	Unit	of	Ericsson	

(Paasivaara	et	al.,	2013).	

	

No.	 Finland	 Hungary	 US	

1.	 Transition	Using	four	

phase:	

• Studying	and	

Planning	

• Pilot	Teams	

• Full-Scale	Roll	Out	

• Maturation	and	

Continuous	

Improvement	

	

Transitions	using	two	

phases:	

• Piloting		

• Roll	Out	

Transition	using	three	

phases:	

• Studying	

• Planning	

• Team	Start	Working	

2.	 Hiring	external	

consulting	firm	to	train	

in	agile.		

Hired	a	person	from	a	

competitor	who	had	

started	using	agile		

The	acquired	US	

company	had	a	similar	

product	with	the	

existing	customer.	

Finnish	team	coached	

them.	

	

3.	 Impediment	backlog	

was	at	Finland.	

Didn’t	have	electronic	

access,	however	would	get	

updates	using	phone	call	

or	sometimes	pictures	of	

the	backlog.		

	

The	information	was	

made	available	to	the	

US	team	members	as	

soon	as	possible.		

4.	 Used	an	evolutionary	

change	approach.		

Used	a	very	dramatically	

change	approach.		

	

The	management	did	

final	team	selection.	

5.	 Most	developers	in	 Developers	were	mostly	 The	US	team	has	been	

	 81	

Finland	have	over	10	

years	experience	

working	in	Ericsson.	

young	and	inexperience.	

Hired	right	out	of	school.	

using	lean	and	agile	

practices	for	

development	and	that	

was	evident	from	their	

work.		

	

6.	 Had	more	product	

knowledge	compared	to	

Hungarian	developers.	

Before	the	transition,	the	

Hungarian	team	was	

viewed	more	as	a	sub-

contracting	site	working	

only	on	specific	product	

parts.	

What	was	different	

between	the	Hungary	

and	US	teams	is	that	

they	US	team	were	

involved	in	all	the	levels	

of	the	project.	

	

7.	 Causing	in	competency	

gaps	between	the	

Finland	and	Hungary	

developers	as	a	result	

an	exchange	program	

was	designed.	

	

Some	of	the	developers	

left	the	Hungary	team,	as	

they	didn’t	want	to	adopt	

agile	practices.	

The	team	started	

integrating	with	other	

sites	by	starting	their	

processes	by	intensive	

collaboration	planning	

phase		

8.	 Language	barrier	

stopped	Finnish	team	

members	to	commit	to	

long	stays	in	Hungary.	

Felt	the	support	of	the	

management,	as	they	

visited	the	Hungary	team.		

Mutual	visits	between	

the	sites	at	all	levels	

were	encouraged	

between	the	US	and	

Finnish	teams.	

	

9.	 Due	to	the	national	and	

organisational	culture,	

the	Finnish	team	

members	were	more	

comfortable	forming	

However	the	Hungary	

team	members	felt	they	

need	to	be	told	what	they	

should	do.	

Finnish	experts	visiting	

and	supporting	at	the	

US	site,	during	the	first	

few	months	of	

transition,	helped	the	

	 82	

self-organising	teams	 teams	to	understand	

each	other’s	cultural	

differences.	

		

Based	 on	 the	 above	 presented	 transition	 process	 between	 the	 three	 sites,	 Ericsson,	

found	success	by	following	the	practices	mentioned	below:	

	

• Early	involvement	of	global	sites	

• Broad	involvement	of	at	all	organisational	levels.	

• Competence	Exchange	Program.	

• Constant	Communication	and	Cross-site	visits.	

• Joint	Infrastructure.		

	

However	 having	 presented	 the	 success	 factors	 above,	 Ericsson	 still	 faced	 some	

challenges	during	the	integration	process,	which	are:	

	

• Creating	a	shared	understanding	of	the	change,	that	is	even	though	the	Finland	

and	 Hungary	 sites,	 were	 able	 to	 create	 a	 shared	 understanding	 at	 the	

management	level,	but	communicating	it	to	the	lower	levels	was	difficult.	

	

• Enabling	End-to	End	Development,	as	the	concept	of	delivering	a	working	piece	

of	 code	 within	 2-4	 week	 duration	 was	 a	 new	 concept	 for	 the	 development	

team.	

	

• Bridging	 cultural	 differences,	 as	 all	 the	 three	 sites	 had	 different	 natural	 and	

organisational	cultural	values.	

	

• Creating	 Transparency	 between	 the	 sites,	 as	 the	 Hungary	 site	 felt	 as	 if	 they	

were	 not	 part	 of	 the	 actual	 team	 as	 all	 the	 software	 artefacts	 were	 at	 the	

Finland	site	and	were	not	available	to	the	Hungary	site	electronically.	This	issue	

was	later	resolved	by	using	online	wikis.	

	 83	

	

Researchers	 such	 as	 Holmstrom	 have	 done	 work	 on	 how	 we	 can	 solve	

communication	 and	 coordination	 issues	 using	 agile	 practices	 as	 it	 is	 such	 as	

(Holmstrom	et	al.,	2006):	

	

• XP	Pair	Programming-	Helps	to	increase	time	overlap,	which	in	turn	helps	

in	 reducing	 temporal	 distance.	 However	 they	 did	 not	 discuss	 about	 how	

much	 time	 would	 be	 wasted	 in	 order	 to	 just	 coordinate	 different	 time	

zones.	

	

• Scrum	 Simple	 Planning:	 Helps	 increase	 “team-ness”,	which	 in	 turn	 helps	

reduce	geographical	distance.	 The	 limitation	 to	 this	approach	 is	as	above	

mentioned	the	authors	didn’t	discuss	how	much	effort	would	be	required	

to	communication	and	coordinate	the	distributed	teams.	

	

• XP	Pair	Programming	and	Scrum	Pre-Game	Phase:	Helps	increase	mutual	

understanding	and	 collaboration	between	 the	 teams,	which	 in	 turn	helps	

reduce	sociocultural	distance.	Similarly	the	researchers	didn’t	discuss	how	

efficiently	the	teams	should	collaborate	in	order	to	achieve	this	benefit	as	

in	 order	 to	 collaborate	 with	 geographically	 distributed	 teams	 requires	

coordination	of	time	from	all	the	distributed	sites.		

	

2.7 A	Study	on	the	Use	of	Patterns	in	Agile	Adoption	in	Offshore								

Development	

	

In	this	section	we	have	given	an	overview	of	patterns	currently	present	in	literature	for	

agile	adoption	and	we	have	also	presented	an	overview	of	our	distributed	agile	

patterns	catalogue.	

	

	 84	

2.7.1	Current	Patterns	for	Agile	Adoption	

	

Based	 on	 the	 definition	 of	 patterns	 mentioned	 in	 Section	 2.6.2.1,	 we	 define	 agile	

patterns	as	“focus	on	how	an	agile	practice	is	being	repeatedly	modified	and	used	in	

order	 to	 solve	 a	 recurring	 agile	 problem	 in	 a	 particular	 context”.	 	 The	 difference	

between	an	agile	practice	and	agile	pattern	 is	 that	agile	practices	are	a	 collection	of	

methods	and	techniques	put	together	to	support	the	application	of	agile	methodology	

for	developing	a	project,	whereas	an	agile	pattern	focuses	on	agile	best	practices	that	

occur	 repeatedly	 while	 applying	 agile	 methodology	 for	 developing	 software.	 That	

means	an	agile	pattern	consists	of	best	agile	practice	that	is	being	repeatedly	used	to	

overcome	a	specific	challenge	in	applying	a	practice.		

	

For	 example,	 daily	 standup	 meeting	 is	 an	 agile	 practice,	 which	 helps	 the	 team	 to	

coordinate	 their	 daily	 activity	 by	 answering	 three	 questions:	 i)	 What	 did	 you	 do	

yesterday	 ii)	What	are	you	going	 to	do	 today?	and	 iii)	What	 is	getting	 in	your	way?,	

whereas	daily	morning	 standup	meeting	 is	 an	 agile	 pattern	 as	 it	 has	 been	 observed	

that	 conducting	 daily	 standup	 meeting	 in	 the	 morning	 is	 more	 effective	 than	

conducting	it	during	mid-day	or	at	the	end	of	work-day.	The	repeated	observation	of	

the	modified	practice	 led	to	the	creation	of	daily	morning	standup	meeting	patterns.	

With	 the	help	of	 this	pattern	we	addressed	the	challenge	of	knowledge	transfer	and	

communication	and	coordination	issues.		

	

As	 companies	 are	 choosing	 to	 develop	 software	 offshore,	 new	 patterns	 are	 being	

designed.	 Noll	 has	 worked	 on	 making	 a	 decision	 support	 system	 for	 offshore	

development	 to	 help	 practitioners	 by	 providing	 them	 with	 patterns	 that	 occur	 in	

offshoring	 (Noll	 et	 al.,	 2014).	 Lescher	 provided	 collaboration	 patterns	 for	 global	

development	 that	 he	 observed	 in	 Siemens	 (Lescher,	 2010).	 He	 identified	 5	 patterns	

which	focused	on	improving	the	general	communication	and	coordination	of	the	team	

in	offshore	development	for	example	one	pattern	he	identified	was	Tailored	Training	

in	which	 the	 team	 is	 co-locate	 early	 on	 in	 the	 project	 for	 training	 to	 familiarize	 the	

whole	team	with	technologies	needed	in	the	project.			Similarly	van	Heesch	presented	

two	 collaborative	 patterns	 for	 offshore	 development,	 which	 focused	 on	 how	 the	

	 85	

onshore	and	offshore	team	should	be	formed	in	order	to	improve	collaboration	among	

the	 teams	 (Heesch	 et	 al.,	 2015).	 	 Table	 2.12	 demonstrates	 the	 offshore	 software	

development	patterns	presented	by	practitioners	and	researchers:	

Table	2.12.	Existing	Offshore	Software	Development	Patterns.	

	

No.	 Scope	 Detail	

1.	 Cultural	Patterns	 Based	 on	 the	 exploration	 and	 evidence	 from	 the	

literature	designed	a	 few	patterns	and	some	of	 them	

might	 be	 considered	 as	 anti	 patterns	 (MacGregor	 et	

al.,	2005).	Below	is	the	list	of	their	catalogue:	

• Yes	(but	No)	

• Proxy	Pattern	

• We’ll-take-you-literally	(Anti-Pattern)	

• We’re-one-single-team	(Anti-Pattern)	

• The	customer-is-king	(Anti-Pattern)	

Shah	 presented	 the	 idea	 of	 “cultural	 models”	 as	

patterns	that	govern	conventional	behaviours	(Shah	et	

al.,	 2012).	 As	 according	 to	 them	 patterns	 identified	

using	 dimensions	 specified	 by	 Hofstede’s	 and	

Hampden-Turner,	limits	the	meaning	of	culture,	make	

culture	 to	 be	 viewed	 as	 a	 static	 entity	 and	

characterises	 teams	 based	 on	 nationality	 rather	 then	

individuals.		Following	are	models	presented	by	them:	

• Unproductive	Productivity	

• Hesitant	to	always	say	Yes	

• Owning	rather	than	modularizing	

2.	 Communication	

and	 Collaboration	

The	 identified	 four	 types	 of	 communication	patterns,	

which	are	as	following	(Paasivaara	et	al.,	2003):	

	 86	

Patterns	 • Problem	Solving	

• Informing,	monitoring	and	feedback	

• Relationship	Building	

• Decision	Making	and	Coordination	

	

Bricout	presented	thirteen	communication	patterns	to	

deal	 with	 communication	 between	 the	 team	 and	

different	parts	of	the	organisation,	which	are	(Bricout,	

2004):	

• One	Project	

• Explicit	Communication	Strategy	

• Early	Bonding	

• Face-to-face	Every	2	Months	

• Iterate	as	you	Meet	

• Common	Terminology	

• Continually	Aligned	Process	

• Responsibility	Model	

• Culture	Awareness	

• Flexible	Hours	

• Temporary	Engagement	

• Social	Funds	

• Join	for	Completion	

	

Based	 on	 Lescher	 observation	 of	 offshore	 software	

development	 at	 Siemens,	 identified	 five	 collaborative	

patterns,	which	are	(Lescher,	2010):	

• Tailored	Training	

• Co-located	Analysis	Phase	

• Onsite	Management	Visits	

• Cross-site	Delegation	

• Unfiltered	Line	Manager	Communication	

	 87	

van	Heesch	presented	two	collaborative	patterns	(van	

Heesch,	2015)	which	he	linked	with	the	work	done	by	

Lescher	 and	 Bricout	 (Lescher,	 2010;	 Bricout,	 2004),	

which	are	:	

• Experience	Mix	

• Dissolve	Geographical	Boundaries	

	

3.	 Patterns	for	

Project	

Management		

A	 catalogue	 was	 presented	 for	 global	 software	

development	patterns	for	project	management,	which	

included	the	following	(Valimaki	et	al.,	2009):	

	

• GSD	Strategy	

• Fuzzy	Front-end	

• Communicate	Early	

• Divide	and	Conquer	each	Iteration	

• Key	Roles	On-site	

• Communication	Tools	

• Common	Repositories	and	Tools	

• Work	Allocation	

• Architectural	Work	Allocation		

• Phase-based	Work	Allocation	

• Feature-Based	Work	Allocation	

• Use	Common	Processes	

• Iteration	Planning	

• Multi-level	daily	Meetings	

• Iteration	Review	

• Organise	Knowledge	Transfer	

• Manage	Competence	

• Notice	Cultural	Differences	

	

4.	 Testing	Patterns	 A	 research	 conducted	 with	 Technische	 Universit	̈at	

	 88	

Mu	̈nchen	 (TUM)	 in	 cooperation	 with	 Capgemini,	 a	

German	software	and	consultancy	company	to	identify	

the	 problems	 in	 testing	 a	 GSD	 project	 and	 provide	 a	

solution	 to	 those	 problems	 (Pehmöller	 et	 al.,	 2010).	

They	 developed	 16	 testing	 patterns	 for	 offshore	

projects,	which	are:	

• Test	cases	as	Memorandum	of	understanding	

of	Knowledge	Transfer	

• Light-weight	Per-Acceptance	Test	

• Communication	on	Eye	Level	

• Use	tool	for	Bug	Tracking	

• Moving	on-/off	Business	Analyst	

• Complementing	Testing	Attitudes	

• Align	understanding	of	General	Testing	

Approach	

• Continuous	Integration	Testing		

• Mirrored	Team	Manager	

• Extension	of	the	Day		

• Traceable	Test	Cases	

• Tester’s	Sparring	Partner	

• Complement	test	Skills	

• Synchronised	Test	Environment		

• Central	Test	Environment	

• Evaluation	of	Constraints	of	test	data	

5.	 Requirement	

Engineering	

Patterns	

Salger	 presented	 “Specification	 Patterns”,	 which	

describe	 practices	 that	 analysts	 should	 keep	 in	mind	

while	 writing	 down	 the	 software	 requirement	

specification	document	for	an	offshore	project	(Salger	

et	al.,	2010).	The	identified	the	following	patterns:	

	 89	

• Define	‘Business	Rule’	

• Define	‘Use	Case’	

• On-board	Business	Analyst	during	Requirement	

Engineering		

• Ship	Test	Cases	

• Use	Work	Packages	and	Handover	Checkpoints	

• Use	Bidirectional	Cross	References	

• Map	Business	Terms	to	Entity	Attributes.	

	

Work	 has	 also	 been	 done	 on	 identifying	 agile	 patterns	 in	 offshore	 development.	

Cordeiro	 combined	 organisational	 patterns	 and	 scrum	 to	 provide	 a	 solution	 for	

offshore	development	(Cordeiro	et	al.,	2007).	They	identified	6	patterns	and	proposed	

a	pattern	language	structure	based	on	literature	and	later	adapted	the	patterns	based	

on	 the	 authors’	 experience	 of	 running	 some	multi-site	 projects.	 Välimäki	 presented	

patterns	 for	distributed	scrum,	which	focused	on	finding	practices	to	support	project	

management	in	distributed	scrum	projects	that	use	Application	lifecycle	management	

such	as	Establish	Application	Lifecycle	Management	tool	(Välimäki	et	al.,	2008).	Table	

2.13	below	lists	the	agile	patterns	identified	so	far:	

Table	2.13.	Patterns	for	Agile	Software	Development.		

	
No.	 Pattern	Name	 Detail	

1.	 Magic	Backlog	

Patterns	

Identified	 nine	 backlog	 patterns	 to	 help	 practitioners	

document	 correct	 story	 cards	 as	 a	 need	 to	 formalise	

the	backlog	increased	with	the	size	of	the	project.	The	

pattern	 catalogue	 was	 designed	 based	 on	 their	 50+	

years	 experience	 in	 system	 development,	 however	

their	 focus	has	been	on	co-located	teams	(Hvatum	et	

al.,	2015).	Their	patterns	are:	

	

• Backlog	Frame	

• Backlog	Views	

	 90	

• Backlog	People	

• Backlog	Tales	

• Backlog	Usage	Models	

• Backlog	Placeholders	

• Backlog	Plans	

• Backlog	Connections	

• Backlog	Answers	

	

2.	 Daily	Standup	

Patterns	

Fowler	 presented	 patterns	 for	 daily	 standup	meeting	

however	he	didn’t	consider	software	being	developed	

offshore	(Fowler,	2016).	The	list	of	his	patterns	is:		

	

• Work	Items	Attend		

• Yesterday	Today	Obstacles	

• Improvement	Board	

• Walk	the	Board	

• Obstacles	are	not	Raised		

	

3.	 Distributed	Project	

Management	and	

Scrum	Patterns	

Nine	 distributed	 project	 management	 and	 scrum	

patterns	 were	 presented,	 which	 are	 (Välimäki	 et	 al.,	

2008):	

	

• Have	a	Kick-off	Meeting	

• Make	a	Release	Plan	with	some	Sprints	

• Organise	needed	Scrum	Roles	in	each	Sites	

• Establish	Application	Lifecycle	Management	

Tool		

• Establish	a	fast	and	reliable	infra	

• Establish	efficient	communication	methods	

• Knowledge	Transfer	

• Visualise	Status	of	Project	

	 91	

• Have	merge	Daily	Scrums	

	

4.	 Multi-site	

Software	

Development	

Patterns	

A	pattern	language	was	designed	to	manage	multi-site	

software	 projects	 (Cordeiro	 et	 al.,	 2007).	 They	

combined	 organisational	 patterns	 and	 scrum	 to	 form	

their	 pattern	 language,	 in	 which	 they	 proposed	 6	

patterns,	listed	below:	

	

• Surrogate	Customer	

• Stories	Rework	Subsystem	

• Inversion	of	Control	

• Code	Line	(Code	Ownership)	

• Integration	Build	

• Plan	Bugs	on	Sustainable	Pace	

	

5.		 Agile	Adoption	

Patterns	

Elssamadisy	focused	on	the	dynamics	of	agile	adoption	

that	 is	 focused	 more	 on	 understanding	 the	 ideas,	

values	 and	 philosophy	 supporting	 agility	 in	 order	 to	

optimise	 the	 agile	 adoption	 process	 (Elssamadisy	 et	

al.,	 2006).	 He	 designed	 a	 pattern	 catalogue	 of	 seven	

patterns	 that	 intended	 to	 focus	 on	 the	 granularity	 of	

agile	practices	and	how	 it	would	help	practitioners	 in	

adopting	agile.	The	list	of	this	proposed	patterns	in	as	

following:	

	

• Reciprocal	Visibility		

• Static	Information	Radiator	

• Dynamic	Information	Radiator	

• Evocative	Documentation	

• Standup	Meeting	

• Reaffirmation	Ritual	

	 92	

• Solidarity	Ritual	

	

Elssamadisy	provided	a	template	for	their	adoption	pattern,	which	is	(Elssamadisy	et	

al.,	2006):	

	

• Name:	Unique	name	of	the	pattern.	

• Sketch:	A	story	that	acts	as	a	‘sketch’	for	the	design	of	the	pattern.	

• Context:	Who	and	in	what	circumstances	the	pattern	is	useful.		

• Forces:	Used	to	elaborate	the	context	section	and	give	specific	issues	that	can	

be	resolved	with	the	help	of	the	pattern.	

• Therefore:	Description	of	the	pattern.	

• But:	Consequences	and	limitations	of	the	pattern.		

• How:	Guidelines	of	how	the	pattern	should	be	adopted.	Also	includes	smells	to	

indicate	where	a	pattern	adoption	can	go	wrong.	

• a.k.a:	Similar	published	patterns.	

	

They	proposed	the	customised	format	for	the	purpose	of	documenting	their	patterns;	

they	 introduced	 the	 concept	of	 smells	 in	patterns	and	 introduced	 the	explicit	use	of	

“Abstract	Patterns”.	Abstract	pattern	might	be	seen	as	a	category	of	patterns	as	it	lacks	

an	implementation	independence	of	its	concrete	patterns.	

	

According	to	Amr	Elssamadisy	and),	in	order	to	achieve	successful	agile	adoption,	it	is	

not	 just	 enough	 to	 focus	 on	 what	 practices	 should	 be	 adopted	 rather	 we	 need	 to	

answer	additional	questions	such	as	(Elssamadisy	et	al.,	2006):	

	

• Which	practices	do	I	adopt	first?	

• Which	practices	relate	to	others?	

• Can	I	incrementally	adopt	a	given	practice	or	incrementally	adopt	from	a	set	of	

practices?	

• Can	I	adopt	the	form	of	a	practice	without	altering	its	substance?	

• Can	I	add	to	or	delete	from	a	specified	set	of	practices?	

	 93	

• What	values	and	assumptions	are	presupposed	by	a	given	practice?	

• And,	 consistent	 with	 the	 spirit	 of	 agility,	 what	 business	 value	 does	 each	

practice	deliver?	

	

They	 identified	 7	 patterns,	 which	 are	 mentioned	 in	 Table	 2.13.	 Overview	 of	

Elssamadisy	patterns	is	explained	in	Table	2.14	(Elssamadisy	et	al.,	2006).		

Table	2.14.	Overview	of	Agile	Adoption	Patterns	(Elssamadisy	et	al.,	2006).	

	
No.	 Pattern	Name	 Overview	

1.	 Reciprocal	

Visibility	

Impediment	Change	is	recorded	and	made	visible	to	the	

whole	team.	

	

2.	 Static	

Information	

Radiator	

	

Scrum	Master	makes	common	Scrum	Board	chart	for	the	

whole	team	to	view	

3.	 Dynamic	

Information	

Radiator	

	

Daily	Standup	meetings	and	retrospective	take	place	in	order	

to	exchange	information.	

4.	 Evocative	

Document	

	

Document	is	done	using	symbols	and	informal	style	so	that	it	

is	easier	to	understand.	

5.	 Standup	Meeting		 Daily	standup	meeting	are	conducted	with	the	team	and	this	

is	a	time-boxed	activity.	

	

6.	 Reaffirmation	

Ritual	

The	organisation’s	atmosphere	is	kept	laid-back	in	order	to	

keep	the	team	motivated	to	work.	

	

7.	 Solidarity	Ritual		 The	team	has	its	own	consolidated	space	to	work	and	

conduct	their	meetings.	

	 94	

	

However	their	focus	was	on	how	to	improve	communication	and	coordination	among	

the	 team	 members,	 which	 are	 co-located	 and	 did	 not	 consider	 the	 complications	

added	due	to	distributed	teams	located	in	different	time	zones.	

	

2.7.2	Distributed	Agile	Patterns		

	

	The	 work	 done	 so	 far	 is	 either	 generic	 to	 patterns	 observed	 in	 offshore	 software	

development,	 or	 the	 ones	 that	 target	 agile	 development	 which	 tend	 to	 focus	 on	

project	management	and	coordination	of	a	project.	 In	contrast,	our	research	focuses	

on	 identifying	 distributed	 agile	 patterns	 that	 will	 help	 practitioners’	 adopt	 the	 agile	

practices	 in	an	offshore	software	development	context.	We	studied	many	cases	from	

the	 literature	 and	 observed	 some	 common	 practices	 that	 companies	 utilise	 to	

overcome	the	challenges	of	offshore	development	by	applying	an	agile	methodology.	

From	 our	 observation	 we	 found	 recurring	 solutions	 for	 recurring	 offshore	 problems	

that	the	team	face	from	requirement	gathering	to	deployment	of	the	project.	Building	

on	the	previous	definition	of	agile	patterns,	we	define	a	distributed	agile	pattern	 as	

adaptation	of	an	agile	practice	 that	 is	being	 repeatedly	applied	 in	order	 to	 solve	a	

recurring	challenge	in	a	distributed	project	scenario.	In	our	research,	we	applied	the	

systematic	 literature	 review	 and	 content	 analysis	 research	 methods	 to	 develop	 a	

catalogue	of	 distributed	 agile	 patterns.	As	 a	 result	we	have	 identified	15	distributed	

agile	 patterns,	 which	 we	 have	 organised	 in	 four	 categories.	 Details	 about	 the	

distributed	agile	patterns	catalogue	have	been	discussed	in	Chapter	4.		

	

2.8		Chapter	Summary	
	

This	 chapter	 presented	 an	 overview	 of	 the	 work	 done	 in	 the	 area	 of	 agile	 offshore	

development.	 The	 chapter	 started	 by	 presenting	 a	 background	 on	 offshore	

development	 in	 which	 we	 discussed	 different	 offshore	 models	 and	 what	 are	 the	

benefits	of	offshoring.	We	then	presented	a	study	in	which	we	identified	challenges	in	

offshore	development	and	how	those	challenges	affected	 the	software	development	

	 95	

process.	We	also	discussed	about	agile	software	development	and	how	agile	 is	being	

adopted	in	offshore	software	development.	We	then	presented	a	study	on	the	use	of	

patterns	in	agile	adoption	in	software	development	in	which	we	presented	the	current	

patterns	that	are	being	used	in	agile	adoption	and	gave	an	overview	of	our	distributed	

agile	patterns.	

	

In	 the	 next	 chapter,	 the	 research	 methodology	 used	 in	 this	 research	 has	 been	

presented.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 96	

Chapter	3	 	Research	Methodology		
	

3.1			Introduction	

	

Research	methodology	can	be	defined	as	something	people	undertake	in	order	to	find	

out	 things	 in	 a	 systematic	 way	 thereby	 increasing	 their	 knowledge	 (Saunders	 et	 al.,	

2007).	 	 There	 are	 many	 ways	 in	 which	 research	 methods	 can	 be	 explained.	 In	 this	

chapter	we	will	 firstly	discuss	different	 stages	of	 the	 research	methodology	with	 the	

help	 of	 Saunders’s	 research	 onion	 and	 then	 we	 will	 map	 those	 stages	 to	 how	 we	

carried	out	our	research	(Saunders	et	al.,	2007).	Based	on	our	research	methodology,	

we	have	discussed	the	research	philosophy	we	have	followed	throughout	the	research	

which	 is	 realism	 and	 then	 presented	 our	 research	 approach	 and	 strategy	 based	 on	

which	we	designed	our	research	questions	and	discussed	the	data	source	and	search	

strategies	used	to	collect	the	data	for	the	research.	Lastly	we	have	demonstrated	the	

validation	process	used	for	validating	the	results	of	this	research.	

3.2			Overview	of	Research	Onion	

	

The	 research	onion	was	developed	by	Saunders	 to	 illustrate	 the	stages	 that	must	be	

covered	when	 undertaking	 research	 (Saunders	 et	 al.,	 2007).	 Each	 outer	 layer	 in	 the	

research	 onion	 describes	 a	 more	 detailed	 stage	 of	 research	 process	 and	 contains	

different	ways	in	which	a	layer	of	research	can	be	conducted.	This	approach	provides	

an	effective	progression	through	which	a	research	methodology	can	be	designed	and	

its	 usefulness	 lies	 in	 the	 fact	 that	 it	 can	 adapt	 to	 almost	 any	 type	 of	 research	

methodology	and	can	be	used	in	a	wide	range	of	contexts	(Bryman,	2012).	

	

The	Figure	3.1	demonstrates	an	overview	of	Saunders’s	Research	Model	showing	the	

main	stages	of	the	research	process.	

	

	 97	

	

			Figure	3.1.	The	Research	Onion	(Saunders	et	al.,	2007)	

	

According	 to	Saunders’s	 research	onion	 showed	 in	 Figure	3.1,	 the	 research	needs	 to	

start	by	defining	the	research	philosophy	as	it	helps	in	creating	a	starting	point	for	the	

selection	of	the	appropriate	research	approach,	which	according	to	them	is	the	second	

step	of	the	research	process	(Saunders	et	al.,	2007).	Once	the	researcher	has	selected	

the	research	what	research	approach	they	will	be	using	they	move	on	to	the	next	stage	

of	the	research	process	in	which	they	will	decide	what	research	strategy	they	will	use,	

that	is	what	plan	they	will	follow	to	answer	their	research	questions.		The	fourth	step	is	

deciding	 the	 research	approach	 that	will	 be	used	by	 the	 researcher,	 that	 is	 are	 they	

going	to	use	mono-method,	mixed	method	or	multi-method.	The	fifth	step	is	defining	

the	 time	 horizon	 for	 the	 research,	 as	 that	 will	 determine	 the	 time	 frame	 for	 data	

collection.	The	 last	 step	according	 the	 research	onion	 is	data	collection,	 in	 this	 stage	

the	researcher	decided	how	he/she	will	be	collecting	data	for	their	research,	is	it	going	

to	be	by	using	primary	data	or	secondary	data.		

	

In	 order	 to	 explain	 each	 phase	 of	 the	 research	 onion	 we	 have	 designed	 Table	 3.1,	

which	gives	an	overview	of	each	 research	 step	and	provides	detail	of	what	different	

type	of	processes	 researchers	 can	use	 to	conduct	 their	 research	 in	a	 systematic	way	

with	the	help	of	Saunders’s	research	onion	(Saunders	et	al.,	2007).	

	 98	

Table	3.1.	Overview	of	Research	Onion.	

	

No.	 Research	

Phase	

Definition	 Type	 Detail	

1.	 Research	

Philosophy		

Reflects	the	way	

researchers	

think	 about	 the	

development	

knowledge,	

which	 affects	

the	 way,	 the	

researcher	 does	

his	research.	

		

Positivism	 Assumes	 that	 the	 reality	 exists	

independent	 from	 the	 variables	

under	 observation.	 This	 type	 of	

research	 philosophy	 is	 usually	

considered	 quantitative	 as	 the	

problem	 is	 identified	 from	

literature	hence	only	 focusing	on	

certain	variables.		

	

Realism		 Focuses	on	the	way	people	make	

sense	 of	 the	world,	 especially	 by	

sharing	their	experiences	(Hussey	

et	al.,	1997).	This	type	of	research	

is	 usually	 considered	 qualitative,	

as	 it	 requires	 the	 researcher	 to	

examine	 real-life	 events	 in	 order	

to	 explain	 how	 and	 why	 certain	

obstacles	 occurred	 during	 the	

research.	

	

2.	 Research	

Approaches	

Defines	the	

approach	the	

research	choses	

to	conduct	his	

research.	

Deductive		 In	 this	 approach	 the	 researcher	

starts	 with	 theoretical	

proposition	 and	 them	 moves	

towards	 concrete	 empirical	

evidence.	 That	 is	 the	 researcher	

develops	 the	 hypothesis	 upon	 a	

pre-existing	 theory	 and	 then	

	 99	

formulates	his	research	approach	

to	 test	 it.	 This	 type	 of	 research	

owes	 to	 positivism	 research	

philosophy	 as	 it	 allows	 the	

researcher	 to	 formulate	

hypothesis	 and	 statistical	 testing	

for	the	expected	results.	

	

Inductive		 Characterised	 as	 to	 move	 from	

specific	 to	 general,	 that	

observation	 are	 considered	 a	

starting	 point	 and	 patterns	 are	

looked	 at	 from	 the	 data	 to	

formulate	 a	 research	 problem	

and	 find	 its	 solution.	This	 type	of	

research	 follows	 a	 more	 realism	

research	philosophy.		

	

3.	 Research	

Strategies		

It	is	a	plan	to	

answer	research	

questions,	

which	will	

satisfy	the	

research	

objectives.	

Experiment		 Refereed	 to	 the	 strategy	 of	

creating	 a	 research	 process	 that	

examines	 the	 results	 of	 an	

experiment	 against	 the	 expected	

results.	 This	 research	 strategy	 is	

used	 when	 you	 have	 a	 limited	

number	 of	 factors	 and	 you	want	

to	study	the	relationship	between	

them	and	judge	them	against	the	

expected	research	results.	

	

Survey		 Tend	 to	 be	 used	 in	 quantitative	

research	 projects	 and	 involve	

	 100	

sampling	of	different	proportions	

of	variables.		

	

Case	Study	 Used	when	 the	 researcher	wants	

to	gain	in-depth	understanding	of	

the	 context	 of	 the	 research	

problem.	 Yin	 also	 recommended	

to	 use	 case	 study	 strategy	 for	

when	 the	 researcher	 has	 little	

control	over	events	and	when	the	

focus	 in	on	 contemporary	events	

(Yin,	2003).	

	

Grounded	

Theory	

It	 is	 a	 qualitative	 methodology	

that	 draws	 on	 an	 inductive	

approach	 in	 which	 patterns	 are	

derived	 from	 the	 data	 as	

preconditions	for	the	study	(May,	

2011).	

	

Ethnography		 Involves	 close	 observation	 of	

people	 and	 examines	 their	

cultural	 interactions	 and	 their	

meaning	(Bryman,	2012).	

	

Action	

Research	

Characterised	 as	 a	 practical	

approach	 to	 a	 specific	 research	

problem,	 within	 a	 community	 of	

practice	 (Bryman,	 2012).	 It	

involves	 reflective	 practices,	 in	

which	professionals	 get	 feedback	

	 101	

on	 their	 research,	 to	 improve	

their	results.	

	

Archival	

Research	

In	 this	 research	 strategy,	 the	

research	 is	 conducted	 from	

existing	 material	 (Flick,	 2012).	

This	form	of	research	may	involve	

systematic	 literature	 review,	

where	 the	 researcher	 examines	

patterns	 in	order	to	establish	the	

sum	of	knowledge	on	a	particular	

study	 or	 to	 examine	 the	

application	of	existing	research	to	

identify	a	specific	problem.		

	

4.	 Choice	 Outlines	the	

research	by	

decided	what	

research	

approach	the	

researcher	will	

use.	

Mono	

Method	

As	 the	 name	 suggests	 it	 involves	

the	 researcher	 using	 one	

approach	for	his	research.	

	

Mixed	

Method	

In	mixed	method,	 the	 researcher	

uses	 two	 or	 more	 methods	 of	

research	 such	 as	 using	 both	

quantitative	 and	 qualitative	

methodology	(Bryman,	2012)	

	

Multi-

Method	

This	involves	that	mixed	methods	

combine	 create	 a	 single	 dataset	

(Flick,	2011)	

	

5.	 Time	Horizon		 Focuses	on	what	

time	is	allocated	

Cross	

Sectional		

The	 time	 frame	 is	 already	

established	 according	 to	 which	

	 102	

to	 complete	 the	

research.		

the	data	has	to	be	collected.	

	

Longitudinal		 Collection	of	data	repeatedly	over	

an	 extended	 time	 period	 and	 is	

used	where	an	important	factor	is	

being	examined	over	a	change	of	

time	(Goddard	et	al.,	2004).	

	

6.	 Data	

Collection	

There	 are	 a	

variety	 of	 ways	

through	 which	

data	 can	 be	

collected.	 In	

quantitative	

methodology,	

the	 researcher	

is	 focused	 on	

measuring	

variables	 or	

counts	 their	

occurrence.	

Whereas	 in	

qualitative	

methodology,	

the	 research	

emphasises	 on	

the	 experience	

of	 a	

phenomena.		

Primary	Data	 Refers	 to	 data	 that	 is	 derived	

from	 first-hand	 sources	 such	 as	

data	 collected	 through	

interviews,	 direct	 observation,	

participant	 observation,	

questionnaires	and	surveys.		

	

Secondary	

Data		

Data	 is	derived	 from	the	work	or	

opinions	 of	 other	 researchers	

(Newman,	 1988).	 For	 example	

archival	 records,	 organisational	

documentation,	 publications	 and	

annual	reports.	

	

	 103	

3.3	Research	Methodology	used	to	Design	Distributed	Agile	Patterns	

	

In	this	section	we	have	focused	on	the	how	we	have	used	Saunders	research	onion	in	

order	to	conduct	our	research	(Saunders	et	al.,	2007).		

	

3.3.1	Research	Philosophy		

	

Based	on	the	definition	of	research	philosophy	mentioned	in	Table	3.1	we	have	used	

Realism	 research	 philosophy	 for	 conducting	 our	 research.	 Since	 the	 focus	 of	 this	

research	is	to	understand	how	practitioners	develop	projects	offshore	while	using	agile	

practices.	 We	 are	 studying	 these	 variables	 in	 the	 real-life	 events.	 This	 is	 reflected	

throughout	 our	 research	 methodology	 mentioned	 in	 Figure	 1.1	 Research	

Methodology.		

	

As	from	Step	1:	Review	Previous	Literature,	we	are	focusing	on	identifying	case	studies	

that	demonstrate	how	practitioners	are	using	developing	software	at	offshore	location	

in	 order	 to	 formulate	 our	 research	 questions,	 which	 is	 Step	 2	 of	 our	 research	

methodology	that	is	to	Identify	and	Define	the	Research	Problem.	

	

In	 order	 to	 conduct	 Step	 3:	 Collect	 Data	 from	 Literature	 and	 Interviews,	 to	 identify	

recurring	agile	practices	that	are	being	used	by	practitioners	to	overcome	challenges	in	

offshore	development,	we	focused	on	examining	the	how	and	why	practitioners	chose	

to	adapt	an	agile	practices	and	if	that	solution	has	been	used	recurrently	to	solve	the	

same	offshore	challenge	by	other	practitioners.		

	

In	 Step	 4:	 Analysing	 Data	 Collected	 from	 Literature	 and	 Interviews,	 we	 used	

Krippendorff’s	 content	 analysis	 (Krippendorff,	 2004).	 Since	 the	 data	 being	 analysed	

was	 based	 on	 real-life	 events	 in	 order	 to	 explain	 how	 practitioners	 adapted	 agile	

practices	 for	 their	 offshore	 projects,	 hence	 this	 reflects	 our	 research	 philosophy	 of	

realism.		

	

	 104	

Based	on	the	data	collected	 in	Step	3	and	the	analyses	done	 in	Step	4.	We	designed	

our	Distributed	Agile	Pattern	Catalogue.	As	Step	3	and	Step	4	were	conducted	using	

real-life	data	 from	events,	 the	pattern	catalogue	 is	based	on	patterns	observed	from	

literature	 and	 by	 practitioners.	 Hence	 Step	 5:	 Design	 and	 Develop	 Distributed	 Agile	

Patterns	Catalogue	has	been	done	following	the	realism	research	philosophy.		

	

Step	 6:	 Validate	 and	 Evaluate	 the	 Distributed	 Agile	 Patter	 Catalogue	 we	 involved	

experts	 to	review	our	pattern	catalogue	and	based	on	their	 feedback	Step	7:	Modify	

the	 Catalogue	 to	 Improve	 the	 Results	 is	 conducted	 in	 which	 we	 have	modified	 our	

catalogue.	

	

Based	on	the	overview	of	each	step	of	our	research	methodology	it	is	evident	that	the	

research	philosophy	chosen	by	us	for	this	research	is	realism.	

	

3.3.2	Research	Approach	

	

As	 mentioned	 in	 Table	 3.1	 there	 are	 two	 types	 of	 research	 approaches	 that	 are	

Deductive	and	Inductive.	The	research	approach	used	for	this	research	is	Inductive.	As	

the	 research	 started	 by	 reviewing	 the	 previous	 literature	 on	 Global	 Software	

Development	 at	 mentioned	 in	 Figure	 1.1	 Research	 Methodology’s	 Step	 1:	 Review	

Previous	Literature.	In	that	step	we	focused	on	studying	cases	in	literature	to	identify	

what	are	the	challenges	in	Global	Software	development	and	based	on	that	study	we	

defined	our	research	problem	and	formulated	our	research	questions,	which	is	Step	2:	

Identify	and	Define	Research	Problem.		

	

To	 further	 refine	 our	 research	 problem	 we	 conducted	 Step	 3:	 Collect	 Data	 from	

Literature	 Review	 and	 Interviews,	 to	 identify	 how	 specific	 challenges	 in	 offshore	

software	development	affect	the	application	of	agile	practices	and	we	moved	towards	

developing	 generic	 distributed	 agile	 patterns	 that	 practitioners	 could	 use	 while	

planning	to	move	their	processes	to	offshore	locations.		

	

	 105	

In	 Step	4:	Analysing	Data	Collected	 from	Literature	and	 Interviews,	we	go	 into	more	

detail	 by	 using	 Krippendorff’s	 content	 analysis	 approach	 to	 analyse	 the	 data	 we	

collected	 in	 Step	 3,	 to	 get	 meaningful	 information	 (Krippendorff,	 2004).	 Content	

Analysis	 is	 a	 research	 tool	 used	 to	 determine	 the	 presences	 of	 certain	 words	 or	

concepts	 within	 text	 or	 set	 of	 texts.	 Researchers	 use	 it	 to	 quantify	 and	 analyse	 the	

presences	of	meaning	and	relationship	of	words	and	concepts.	They	are	usually	used	

for	the	following	purposes:	

	

• Reveal	internal	differences	in	communication	context.	

• Detect	the	existence	of	propaganda.	

• Identify	the	intentions,	focus	or	communication	trends	of	an	 individual,	group	

or	institutions’.	

• Describe	attitudinal	and	behavioural	responses	to	communication.	

• Determine	psychological	or	emotional	state	of	a	person	or	group	of	people.	

	

The	 reason	we	 selected	 this	 approach	was	 to	 identify	 the	 trends	 of	 global	 software	

development	and	understand	the	attitudinal	behaviour	of	offshore	development	and	

how	 it	 effects	 the	 adoption	 of	 agile	 in	 offshore	 projects.	 There	 are	 two	 types	 of	

content	analysis,	conceptual	and	relational,	defined	below	(Writing	@CSU,	2004):	

	

• Conceptual	Analysis:	They	only	focus	of	finding	the	existence	and	frequency	of	

a	text/word	but	do	not	focus	on	if	that	text/word	has	any	relation	with	words	

around	it.	

	

• Relational	 Analysis:	 It	 is	 one	 step	 further	 from	 conceptual	 analysis	 and	 it	

focuses	 on	 examining	 the	 relationships	 among	 concepts	 in	 a	 text	 and	 it	 also	

identifies	words	that	have	similar	meaning.		

	

For	 the	purpose	of	our	 research	we	have	used	relational	analysis	as	we	are	not	only	

focusing	on	counting	the	frequency	of	“Global	Software	Development”	rather	we	also	

	 106	

consider	 its	 relationship	with	 agile	development	 and	we	also	 considered	words	with	

similar	meaning.	Table	3.2	shows	our	selected	key	concepts	and	their	similar	meaning.	

Table	3.2:	Key	Concepts	Selected	for	Relational	Analysis.	

	

Type	 Key	Concepts	 Similar	Meaning	

1	 Global	Software	Development	 Global	Software	Engineering	

Offshore	Software	Development	

Offshoring	

Distributed	Software	Development		

Distributed	Development	

	

2	 Agile	Methodology	 Agile	

Agile	practices	

Agile	methods	

Scrum	

XP	

	

	

Relational	Analysis	has	eight	key	steps	that	are	(Writing	@CSU,	2004):	

	

• Identify	the	question,	as	it	indicates	were	the	research	is	headed	and	why?	

	

• Choose	a	sample	or	samples	for	analysis	that	is	you	need	to	decide	how	much	

information	is	required	for	analysis.	This	step	needs	to	be	conducted	carefully	

as	 the	 sample	 will	 determine	 your	 results	 and	 insufficient	 samples	 can	 limit	

your	results	and	too	much	samples	can	cause	difficulties	in	coding	the	sample.	

	

• Determine	the	type	of	analysis.	There	are	three	types	of	analysis	you	can	select	

from:	 Affect	 extraction,	 Proximity	 analysis	 and	 Cognitive	 mapping.	 The	

approach	we	selected	was	proximity	analysis	as	it	evaluates	concepts	based	on	

co-occurrences	 because	 we	 wanted	 to	 analyse	 global	 software	 development	

	 107	

and	 its	effect	on	agile	 software	development.	Where	as	affect	extraction	 just	

focused	 on	 evaluating	 individual	 concepts	 and	 cognitive	mapping	 focused	 on	

creating	models,	which	isn't	relevant	to	our	research.	

	

• Reduce	 the	 text	 to	 categories	 and	 code	 for	 words	 or	 patterns.	 At	 this	 stage	

coding	is	done	to	identify	mere	existence	of	a	concept/word.	

	

• Explore	the	relationships	between	concepts.	That	is	to	determine	the	degree	to	

which	 two	 or	 more	 concepts	 are	 related	 to	 each	 other	 and	 whether	 that	

relationship	 is	 positive	 or	 negative.	 Lastly	 focus	 on	 the	 direction	 of	 the	

relationship	e.g.	impact	of	X	on	Y	and	in	our	case	it	would	be	study	the	impact	

of	global	software	development	on	agile	software	development.	

	

• Code	 the	 relationships.	 	 In	 this	 step	 statements	 and	 relationships	 between	

concepts	are	coded.	Assigning	codes	to	relationships	is	an	effort	to	determine	

whether	the	ambiguous	words	are	just	filters	or	holds	information.	

	

• Perform	statistical	analyses.	 In	 this	step	we	explore	 the	difference	or	 look	 for	

relationships	among	the	key	words/concepts.	

	

• Map	 out	 the	 representations.	 You	 can	 use	 graphical	 notations	 to	 represent	

your	 findings.	 However	 we	 did	 not	 use	 this	 approach	 as	 our	 focus	 was	 on	

identifying	 the	 relationship	 and	 developing	 our	 distributed	 agile	 pattern	

catalogue.			

	

Detail	of	the	analysis	is	presented	in	Section	3.3.3,	based	on	the	results	of	the	analysis	

we	moved	towards	Step	5:	Design	and	Develop	Distributed	Agile	Patterns	Catalogue.	

The	 main	 follow	 of	 the	 steps	 followed	 to	 develop	 and	 design	 the	 catalogue	 is	

demonstrated	in	Figure	3.2	below:	

	 108	

	

Figure	3.2.	Overview	of	Design	and	Development	of	Distributed	Agile	Pattern	

Catalogue	

	

An	overview	of	what	happens	in	each	step	is	given	below:		

	

Step	1:		Identify	existing	patterns	and	recurring	practices.	

	

As	mentioned	 in	Section	3.3.1,	 the	 research	 started	by	 reviewing	 the	existing	

literature	 from	which	we	 identified	 our	 research	 problem.	 In	 order	 to	 find	 a	

solution	for	the	identified	problem,	we	conducted	systematic	literature	review	

to	identify	patterns	used	to	solve	challenges	in	offshore	software	development.	

Based	 on	 this	 step	 we	 were	 able	 to	 collect	 data	 that	 was	 required	 for	

conducting	 this	 research.	 We	 also	 conducted	 semi-structured	 interviews	 to	

identify	patterns.	Details	of	how	this	step	 is	executed	have	been	presented	 in	

Section	3.3.3.		

	

Step	2:	Analyse	the	identified	patterns.	

	

In	order	to	focus	on	collecting	the	right	data	for	our	research,	we	first	filtered	case	

studies	based	on	the	identified	research	questions	mentioned	in	Section	1.3	and	to	

further	refine	our	data	we	set	a	selection	criteria	which	was	that	the	papers	should	

address	the	following	questions:	

	 109	

	

- Does	 a	 paper	 address	 a	 challenge	 in	 applying	 any	 Agile	 Practice	 in	

distributed	projects?	

	

- Does	 a	 paper	 discuss	 any	 real	 life	 experience	 of	 using	 Agile	 practices	 for	

distributed	projects?	

	

- Is	 their	 any	 Agile	 Practice	 that	 has	 been	 repeatedly	 adapted	 and	 used	 to	

solve	issues	with	distributed	projects?		

	

Based	on	the	above-	identified	criteria,	we	wanted	to	identify	patterns	in	literature	

that	are	being	used	to	solve	an	offshore	development	challenge.	Further	we	also	

focused	 on	 identifying	 solutions	 that	 practitioners	 used	 to	 overcome	 offshore	

challenges	 and	 analyse	 if	 any	 other	 practitioner	 has	 used	 a	 similar	 solution.	We	

have	demonstrated	in	detail	the	filtration	and	selection	process	in	Section	3.3.3.	

	

After	 the	 data	 collection	 phase	 was	 completed	 we	 moved	 towards	 studying	

literature	on	existing	patterns	used	 in	software	development.	Currently	there	are	

six	types	of	patterns	mentioned	in	Section	2.6.2.1.	

	

Step	3:	Develop	Distributed	Agile	Patterns	Catalogue.	

	

From	 the	 systematic	 literature	 review	 and	 semi-structured	 interviews,	 we	

identified	 15	 patterns	 that	 were	 being	 used	 in	 distributed	 agile	 software	

development.	 In	 our	 research	 we	 have	 classified	 an	 agile	 practice	 as	 a	

distributed	agile	pattern	if	it	has	been	repeated	in	more	then	at	least	2	articles	

and	 has	 been	 used	 to	 solve	 a	 recursive	 problem.	 Table	 3.4	 presents	 an	

overview	 of	 how	many	 times	 agile	 practices	 were	 used	 to	 solve	 an	 offshore	

challenge	in	literature,	which	we	further	classified	as	distributed	agile	patterns.	

	

	

	

	 110	

Step	4:	Organise	and	document	the	catalogue.	

	

Based	 on	 the	 existing	 template	 mentioned	 in	 Section	 2.6.2.1,	 we	 selected	

Gamma’s	Design	Patterns	template	in	order	to	preserve	familiarity,	as	they	are	

perceived	 as	 the	 first	 pattern	 catalogue	 to	 be	 documented	 by	 the	 software	

community.		Detail	of	this	step	has	been	discussed	in	Section	4.2.	

	

The	distributed	agile	patterns	were	organised	into	four	categories	based	on	the	

type	 of	 problem	 they	 solved.	 The	 four	 categories	 are	 management,	

communication,	coordination	and	verification	patterns.	Detail	of	each	category	

is	presented	in	Section	4.3.			

	

Step	5:	Map	Distributed	Agile	Patterns	on	Traditional	Scrum	Lifecycle.	

	

The	 identified	15	distributed	agile	patterns	were	mapped	onto	the	traditional	

scrum	lifecycle	in	order	to	help	practitioners	decided	which	distributed	pattern	

can	be	used	at	different	stages	of	the	scrum	which	is	shown	in	Figure	4.2.	

	

Step	6:	Validate	and	Evaluate	the	Distributed	Agile	Pattern	Catalogue.		

	

In	order	to	validate	the	pattern	catalogue	we	used	reflection	workshop	and	to	

evaluate	 it	 we	 compared	 our	 solution	 to	 the	 existing	 solutions	 presented	 in	

literature.	Detail	of	this	step	is	presented	in	Chapter	5.	

	

Step	7:	Finalise	the	Distributed	Agile	Patterns	Catalogue.	

	

Based	 on	 the	 feedback	 given	 to	 us	 as	 part	 of	 the	 reflection	 workshop,	 we	

modified	our	pattern	catalogue.		In	order	to	avoid	confusion	for	the	reader	we	

presented	 the	original	 patterns	 in	Appendix	 F	 and	 the	Revised	 version	of	 the	

catalogue	in	Section	4.5.		

	

	 111	

According	 to	 the	 above	 discussion	 it	 can	 be	 seen	 that	 we	 have	 used	 an	 inductive	

approach,	 as	 the	 research	moves	 from	 specific	 to	 general.	As	we	 first	 identified	 and	

designed	 a	 specific	 research	 problem	 and	 then	 developed	 a	 generic	 catalogue	 of	

distributed	agile	patterns	to	be	used	by	practitioners	while	choosing	to	develop	their	

projects	at	offshore	locations.	

3.3.3	Research	Strategy	

	

As	defined	in	Table	3.1,	research	strategy	determines	the	plan	a	researcher	intends	to	

follow	in	order	to	answer	the	identified	research	questions.	Yin	(2003)	pointed	out	that	

in	 order	 to	 select	 the	 correct	 research	 strategy,	 it	 is	 important	 to	 consider	 three	

aspects	of	the	research,	which	are:	

	

• The	type	of	research	questions	posed;	

• The	extent	of	control	and	investigator	has	over	actual	behavioural	events;	and		

• The	degree	of	focus	on	contemporary	as	opposed	to	historical	events.	

	

There	are	seven	ways	a	researcher	can	achieve	this.	We	have	selected	three	ways	to	

answer	our	research	questions	mentioned	in	Section	1.3,	which	are:	archival	research,	

case	study	and	action	research.	

	

In	order	to	achieve	that	we	start	from	Figure	1.1	Step	1:	Review	Previous	Literature,	in	

which	 we	 study	 cases	 from	 literature,	 this	 form	 of	 research	 is	 referred	 as	 archival	

research	as	research	is	conducted	from	existing	material.	Systematic	Literature	Review	

is	 a	 technique	 to	 identify,	 analyse	 and	 interpret	 relevant	 published	 primary	 studies	

with	 reference	 to	 a	 specific	 research	 questions.	 It	 provides	 a	 summary	 of	 reported	

evidence	available	 for	a	given	area	of	 interest.	 It	 is	different	 from	ordinary	 literature	

surveys	 as	 they	 are	 formally	 planned	 and	 methodically	 executed.	 Kitchenham	

recommended	to	use	SLR	as	a	review	methodology	because	it	allowed	the	researcher	

to	(Kitchenham	et	al.,	2007):	

	

• Systematically	summarise	existing	evidence	from	literature.	

	 112	

• Identify	gaps	in	research.	

• Provide	a	framework	to	position	future	research	activities.		

	

To	 identify	 challenges	 in	 offshore	 development	 we	 conducted	 the	 first	 Systematic	

Literature	Review.	The	details	of	the	SLR	are	mentioned	in	Section	2.3	and	the	studies	

that	were	selected	as	evidence	are	presented	 in	Appendix	A.	Based	on	the	 literature	

review	 we	moved	 to	 the	 Step	 2:	 Identify	 and	 Define	 Research	 Problem.	 The	 board	

objective	of	this	study	was	defined	as	to	answer	the	following	question:	

	

RQ:	What	are	the	recurring	adaptations	of	agile	practices	that	are	being	used	within	

offshore	software	development	in	order	to	address	the	identified	issues?		

	

				To	be	more	specific,	the	study’s	focus	was	on	the	following	two	questions:		

	

RQ1:	 What	 are	 the	 agile	 practices	 that	 are	 being	 commonly	 used	 to	 deal	 with	

offshore	challenges?		

	

RQ2:	 Are	 the	 challenges	 identified	 in	 RQ1	 recurring	 in	 offshore	 software	

development?	

	

As	 mentioned	 earlier	 this	 type	 of	 research	 strategy	 involves	 Systematic	 Literature	

Reviews.	 To	 identify	 patterns	 in	 offshore	 software	 development	 we	 conducted	 the	

second	 Systematic	 Literature	 Review	 following	 Kitchenham	 and	 Charters	 guidelines,	

which	 is	Step	3:	Collect	Data	 from	Literature	Review	and	 Interviews.	To	conduct	 this	

step	 we	 searched	 for	 papers	 that	 are	 written	 in	 English	 and	 that	 where	 available	

online.	 The	 search	 strategy	 includes	 electronic	 databases	 and	 manual	 searches	 of	

conference	proceedings.	The	following	electronic	databases	are	used:	

	

• IEEEXplore	(www.ieeexplore.ieee.org/Xplore)	

• ACM	Digital	Library	(www.portal.acm.org/dl.cfm)	

• Google	Scholar	(www.scholar.google.com)	

• Elsevier	Science	(www.sciencedirect.com)	

	 113	

• AIS	eLibrary	(www.aisel.aisnet.org)	

• SpringerLink	(www.springerlink.com)		

• Taylor	Francis	Online	(http://www.tandfonline.com)		

	

We	also	searched	the	following	conference	proceedings	for	the	papers	on	the	use	of	

Agile	in	offshore	software	development:	1)	Agile	Conference	and	2)	Agile	Processes	in	

Software	 Engineering	 and	 Extreme	 Programming.	 The	 papers	 ranged	 from	 industrial	

experience	 reports,	 theoretical,	empirical	and	experimental	academic	papers.	 Figure.	

3.3,	shows	the	review	process	and	the	number	of	papers	identified	at	each	stage.		

		

	

	

Figure.	3.3.	The	Selection	Process	of	Primary	Papers.	

	

We	designed	Table	3.3	based	on	our	key	concepts	selected	in	Table	3.2.		In	stage	1,	we	

selected	the	databases	using	the	search	items	listed	in	Table	3.3.	Category	1	has	more	

keywords	 and	 shows	 many	 variations	 of	 the	 same	 term	 “Global	 Software	

Development”.	 All	 these	 search	 items	 were	 combined	 using	 the	 Boolean	 “AND”	

operator,	which	requires	that	an	article	that	focuses	on	both	Agile	and	Global	Software	

Development,	will	be	retrieved.	Hence	we	searched	every	possible	combination	of	the	

keywords	 from	Category	 Type	 1	 AND	 Category	 Type	 2.	 Our	 search	 excluded	 articles	

	 114	

that	 addressed	 editorials,	 prefaces,	 article	 reviews,	 discussion	 comments,	 news,	 and	

summaries	 of	 tutorials,	 workshops,	 panels	 and	 poster	 sessions.	 The	 search	 strategy	

resulted	in	a	total	of	6614	“hits”.			

Table	3.3.	Search	Terms	used	in	this	Review.	

	

Type	 Category	 Keywords	

1	 Global	Software	Development	 Global	Software	Engineering	

Global	Software	Development	

Offshore	Software	Development	

Offshoring	

Distributed	Software	Development		

Distributed	Development	

	

2	 Use	of	Agile	Practices	 Agile	

Agile	practices	

Agile	methods	

Scrum	

XP	

	

We	 used	 the	 following	 screening	 criteria	 to	 ensure	 that	 the	 papers	 addressed	 our	

research	topic:	

	

1. Does	a	paper	address	a	challenge	 in	applying	any	Agile	Practice	 in	distributed	

projects?	

	

2. Does	 a	 paper	 discuss	 any	 real	 life	 experience	 of	 using	 Agile	 practices	 for	

distributed	projects?	

	

3. Is	their	any	Agile	Practice	that	has	been	repeatedly	adapted	and	used	to	solve	

issues	with	distributed	projects?		

		

	 115	

In	our	 study	we	also	collected	secondary	data	by	considering	“lesson	 learnt”	 reports	

based	 on	 expert	 opinion	 that	 addressed	 how	 Agile	 practices	 are	 used	 in	 offshore	

projects.		These	3	points	provided	a	measure	of	the	extent	to	which	we	are	confident	

that	 a	 selected	paper	 could	make	a	 valuable	 contribution	 to	understand	 the	 current	

use	of	Agile	practices	in	distributed	settings	and	to	identify	repeating	practices	that	are	

being	 used	 to	 solve	 offshore	 problems.	 Each	 of	 the	 3	 criteria	 was	 graded	 on	 a	

dichotomous	(“yes”	or	“no”)	scale.	

		

We	selected	212	papers	out	of	544	articles	by	carrying	out	a	quality	assessment	based	

on	the	3	screening	criteria.	We	accepted	a	paper	that	satisfied	all	3	criteria	and	graded	

as	all	“yes”.	For	example	we	excluded	papers	that	did	not	show	an	agile	practice	being	

used	 to	 solve	 a	 repeatedly	 occurring	 problem.	 For	 example,	 if	 an	 organisation	 used	

split	 pair	 programming	 teams	 but	 no	 other	 organisation	 used	 it	 for	 better	 code,	we	

didn’t	include	that	as	part	of	our	catalogue.	In	our	research	we	have	classified	an	agile	

practice	as	a	distributed	agile	pattern	 if	 it	has	been	repeated	 in	more	than	at	 least	2	

articles	and	has	been	used	to	solve	a	recurring	problem.	

		

In	 the	 Table	 3.4,	 we	 have	 shown	 how	 many	 times	 an	 agile	 practice	 occurred	 in	

literature	 for	 example	 synchronous	 communication	 practices	 occurred	 in	 over	 200	

papers	while	 collective	 planning	 poker	 activity	 occurred	 in	 10	 papers.	 Based	 on	 the	

frequency	of	a	practice	we	identified	patterns.	

Table	3.4.	Occurrence	of	Agile	Practices	in	Literature	

	
	

	 116	

We	also	 used	 case	 study	 strategy	 for	 our	 research	 as	 according	 to	 Yin,	 a	 case	 study	

examines	 a	 phenomenon	 in	 its	 natural	 setting,	 to	 answer	 how	 and	 why	 questions	

when	the	researcher	has	little	control	over	the	events.	The	case	study	method	covers	

both	 the	 phenomenon	 of	 interest	 and	 its	 content,	 resulting	 in	 producing	 a	 larger	

number	of	potentially	relevant	variables.		

	

According	 to	 Yin	 six	 sources	 of	 evidence	 should	 be	 used	 for	 data	 collection	 for	 case	

study,	which	are	shown	in	Table	3.5	(Yin,	2003).	

Table	3.5.	Six	Sources	for	Data	Collection	Comparison	(Yin,	2003).	

	

No.	 Data	Source	 Advantage	 Limitation	

1.	 Interviews	 • In-depth	knowledge	

and	can	extract	

required	information.	

• Bias	due	to	poorly	

constructed	questions.	

• Response	is	bias.	

• Inaccurate	data,	due	to	

poor	recall	of	events	by	

the	researcher.	

	

2.	 Documents	 • Broad	coverage.	

• Unobtrusive-	not	

created	as	a	result	of	

the	case	study.	

• Biased	selectivity	if	

collection	is	incomplete.	

• Access	may	be	

deliberately	blocked	

• Reporting	biases	based	

on	the	authors’	bias	

reflection.	

	

3.	 Archival	Records	 • Precise	and	

quantitative.	

• Broad	coverage	of	

data.	

• Not	created	as	a	result	

• Accessibility	blocked	due	

to	privacy	issues.	

• Biased	as	it	is	based	on	

the	selection	of	the	

researcher.			

	 117	

of	the	case	study.	

	

4.	 Direct	Observation	 • Covers	events	in	real-

time.	

• Focused	on	covering	

the	context	of	the	

event.	

• Time	consuming		

• Added	cost	based	on	the	

hours	needed	by	the	

human	resource.	

• Events	may	take	place	

differently	as	they	are	

being	observed.	

	

5.	 Participant	

Observation	

• Insightful	in	

understanding	

interpersonal	

behaviour	and	motives.	

• Events	are	covered	in	

real-time.	

• Events	are	focused	on	

context.	

	

• Biased	as	it	is	based	on	

the	researchers	

manipulation	of	results.	

• Time	consuming.	

• Added	cost	due	to	the	

hours	human	resource	

spend	on	the	research.	

6.	 Physical	Artefacts	 • Insightful	into	cultural	

features.	

• Insightful	in	

understanding	

technical	operations.	

• Selectivity-	as	it	depends	

on	the	researcher	what	

he	selects.	

• Depends	on	the	

availability	of	the	

artefacts.	

		

	

Each	source	of	data	has	its	advantages	and	limitations.	For	this	research	we	have	used	

interviews	and	archival	 records.	According	 to	Easterby-Smith	et	 al.	 (2012)	 interviews	

are	the	best	method	of	gathering	information.	There	are	three	types	of	interviews:	

	 118	

Table	3.6.	Type	of	Interviews	(Easterby-Smith	et	al.,	2012).	

	

No.	 Type	 Definition		

1.	 Fully	Structured	

Interview	

Use	questionnaire	to	predefine	the	questions	as	standard	of	

research.		

	

2.	 Semi-

Structured	

Interview	

	

The	researcher	has	a	list	of	themes	and	questions	that	cover	

the	phenomenon	under	study.	However	these	questions	can	

change	 based	 on	 the	 answers	 given	 by	 the	 interviewee	 in	

order	 to	 get	 more	 clarification	 (Robson,	 2002;	 Saunders,	

2007).	

	

3.	 Unstructured	

Interview	

	

This	is	used	to	explore	in	depth	a	general	area	of	interest	for	

the	researcher.	The	basic	objective	is	to	put	the	interviewee	

at	ease	and	allow	them	to	express	themselves.		

	

We	 conducted	 20	 semi-structured	 interviews	 to	 collect	 primary	 data,	 in	 which	 we	

asked	nine	open-ended	questions	covering	different	aspects	of	offshoring	 in	order	to	

get	 expert	 opinion	 regarding	 the	 practices.	 According	 to	 Easterby-Smith	 semi-

structured	interviews	are	appropriate	when	(Easterby-Smith	et	al.	2004):	

	

• The	researcher	wants	to	understand	what	constructs	the	 interviewee	uses	as	

basis	for	his	beliefs	and	opinion	about	the	phenomenon	under	study.	

• Aim	 is	 to	understand	 the	“respondent’s	world”,	 so	 that	 the	 researcher	might	

influence	it	and	challenge	it.	

• Step	 by	 step	 logic	 is	 not	 clear,	 that	 is	 some	 information	 be	 confidential	 or	

sensitive	and	the	interviewee	might	be	reluctant	to	share	the	true	situation.	

	

Jankowicz	 suggested	 that	 semi-structured	 interviews	 are	 a	 powerful	 data	 collection	

technique	 when	 used	 in	 case	 study	 (Jankowicz,	 2005).	 The	 reason	 for	 using	 semi-

structured	interviews	in	this	research	is	because	it	provides	flexibility	to	the	researcher	

	 119	

to	modify	 the	 questions	 in	 order	 to	 understand	 the	 phenomenon	 under	 study.	 The	

sample	used	to	conduct	the	semi-structured	interviews	is	presented	in	Appendix	D.	We	

also	signed	consent	form	from	the	organisations	we	interviewed	due	to	confidentiality	

issues,	which	is	available	in	Appendix	E.	The	companies	we	interviewed	were	selected	

based	 on	 their	 experience	 in	 offshoring	 and	 as	 mentioned	 in	 Table	 3.7	 we	 further	

divided	 them	 into	 three	 categories	 based	 on	 the	 organisational	 type,	 which	 are	

startup,	 breakeven	 and	 profitable.	 Companies	 that	 are	 still	 in	 their	 early	 stages	 of	

earning	 revenue	 and	 have	 not	 yet	 reached	 breakeven	 are	 categorized	 as	 startup;	

companies	that	have	reached	breakeven	based	on	finances	as	breakeven	and	lastly	the	

companies	that	are	generating	profit	as	profitable.	Table	3.7	shows	an	overview	of	the	

organisations	that	were	selected.	

Table	3.7.	Detail	of	Companies	Interviewed.	

	

Category	 Experience	in	offshoring	

(years)	

Offshore	

Projects	

No.	Of	

Companies	

Startup	

Breakeven	

Profitable	

1-2	

>3	

>5	

3	

8-9	

>10	

4	

6	

10	

	

Based	on	the	collected	data,	we	moved	towards	Step	4:	Analysing	Data	Collected	from	

Literature	and	 Interviews	which	has	been	discussed	 in	Section	3.3.2,	based	on	which	

we	 identified	 15	 distributed	 agile	 patterns	 that	 is	 Step	 5:	 Design	 and	 Develop	

Distributed	 Agile	 Patterns	 Catalogue.	 We	 validated	 the	 catalogue	 using	 an	 action	

research	 technique,	 which	 is	 Step	 6:	 Validate	 and	 Evaluate	 the	 Distributed	 Agile	

Patterns	Catalogue,	of	our	research	methodology.		

	

We	 conducted	 a	 reflection	 workshop	 based	 on	 Kerth’s	 “The	 keep/try	 reflection	

workshop”	 for	 verification	 and	 validation	 of	 the	 catalogue.	 For	 this	 workshop	 we	

invited	four	organisations	to	take	part	(Kerth,	2001).	The	focus	of	this	workshop	was	to	

get	feedback	from	companies	in	order	to	obtain	their	views	on	the	identified	patterns.	

Based	on	their	answers,	an	assessment	was	aimed	for	identifying	the	completeness	of	

	 120	

the	 catalogue	 and	 the	 usefulness	 of	 the	 identified	 patterns	 in	 adopting	 agile	 for	

developing	 offshore	 projects	 and	 overcoming	 offshore	 challenges.	 Detail	 of	 the	

validation	and	evaluation	process	has	been	presented	in	Chapter	5.	

3.3.4	Choice	

	

The	 choice	 outlined	 in	 the	 research	 onion	 mentioned	 in	 Table	 3.1	 includes	 three	

methods,	which	are	mono	method,	mixed	method	and	multi-method.	We	selected	to	

use	multi-method	approach	to	conduct	our	research	as	we	used	both	quantitative	and	

qualitative	methods	 for	 determine	our	 results.	 	 The	main	 difference	between	mixed	

method	 and	multi-method	 approach	 is	 that	 is	 provides	 the	 researcher	with	 a	wider	

selection	of	methods	to	use	(Bryman,	2012).			

	

In	multi-method	 researchers	 can	 divide	 their	 research	 into	 separate	 segments,	 with	

each	 segment	 producing	 a	 specific	 dataset;	 each	 is	 dataset	 is	 then	 analysed	 using	

techniques	derived	from	quantitative	or	qualitative	methodologies	(Felizer,	2012).			

	

As	mentioned	in	Section	3.3.4	we	have	used	both	quantitative	and	qualitative	methods	

for	collecting	and	analysing	the	data.	In	Step	3	and	Step	4	of	our	research	methodology	

showed	 in	 Figure	 1.1	Research	Methodology,	we	 started	with	 reviewing	 the	 existing	

literature	(Step	1)	from	which	the	research	questions	were	formulated	(Step	2)	based	

on	 which	 we	 conducted	 systematic	 literature	 review	 and	 interviewed	 practitioners	

(Step	3)	and	then	analysed	the	collected	data	(Step	4).	Table	3.8	shows	an	overview	of	

the	quantitative	and	qualitative	methods	used	in	this	research.		

	

Table	3.8.		Overview	of	the	Quantitative	and	Qualitative	Methods	Used	in	this	

Research.	

No.	 Method	Type	 Used	in	the	Research	

1.	 Quantitative	

Methods	

Step	1:	Review	Previous	Literature.	

	

Step	3:	Collect	Data	From	Literature	Review	and	Interviews:	

	 121	

- Systematic	Literature	Review	(SLR).	

	

Step	6:	Validate	and	Evaluate	the	Distributed	Agile	Patterns	

Catalogue:	

- For	evaluation:	Filter	 the	SLR	to	 identify	solutions	

other	 than	 patterns	 and	 compare	 how	 the	

Distributed	 Agile	 Patterns	 catalogue	 is	 a	

comparatively	a	better	and	easy	solution.		

	

2.	 Qualitative	

Methods	

Step	3:	Collect	Data	From	Literature	Review	and	Interviews:	

- Semi-Structure	Interviews.	

	

Step	 4:	 Analysing	 Data	 Collected	 from	 Literature	 and	

Interview:	

- Content	Analysis	(Relational	Analysis).	

	

Step	 5:	 Design	 and	 Develop	 Distributed	 Agile	 Patterns	

Catalogue:	

- Filtering	 the	 studies	 identified	 in	 the	 SLR	 to	

identify:	

o Solutions	 for	 offshore	 software	

development	challenges	(FSD).	

o Recurring	 agile	 solutions	 for	 adoption	

practices	in	offshoring.	

o Patterns	in	agile	adoption	in	offshoring.		

Step	6:	Validate	and	Evaluate	the	Distributed	Agile	Patterns	

Catalogue:	

- For	 validation:	 Kerth’s,	 “The	 keep/try	 reflection	

workshop”.		

- Evaluation	of	the	catalogue	was	done	by	reviewing	

existing	 work	 done	 on	 designing	 solutions	 other	

	 122	

then	patterns,	to	overcome	offshore	development	

challenges		

	

3.3.5	Time	Horizon	

	

The	Time	Horizon	is	defined	as	the	time	frame	within	which	the	intended	research	is	to	

be	 completed	 in.	 There	 are	 two	 types	 of	 time	 horizons	 in	which	 research	 is	 usually	

conducted	within,	which	are	cross	sectional	and	the	longitudinal	(Bryman,	2012).		For	

the	purpose	of	 this	 research	 the	 time	horizon	 is	 cross	 sectional	 as	 this	 research	was	

conducted	as	part	of	a	PhD	Thesis	and	we	had	a	fix	time	duration	for	data	collection.		

However	since	the	duration	of	the	PhD	was	4-years	we	had	the	flexibility	on	deciding	

when	the	data	collection	should	take	place	based	on	the	progress	of	the	research.		

	

Table	 3.9	 shows	 the	 time	 frame	 in	which	 the	 research	methodology	was	 conducted	

during	the	course	of	the	four	years	of	PhD	Research.		

Table	3.9.	Time	Horizon	across	Four-Year	PhD	Research.	

	

No.	 PhD	Year	 Research	Methodology	Step	Conducted	

1.	 Year	1	(2013)	 Step	1:	Review	Previous	Literature.	

Step	2:	Identify	and	Define	Research	Problem.	

	

2.	 Year	2	(2014)	 Step	3:	Collect	Data	From	Literature	and	Interviews.	

Step	4:	Analysing	Data	Collected	from	Literature	and		

Interviews.	

	

3.	 Year	3	(2015)	 Step	5:	Design	and	Develop	the	Distributed	Agile	Patterns		

Catalogue.	

	

4.	 Year	4	(2016)	 Step	6:	Validate	and	Evaluate	the	Distributed	Agile	Patterns		

Catalogue.	

	 123	

Step	7:	Modify	the	Catalogue	to	Improve	the	Results.	

Step	8:	Write	up	the	PhD	Thesis.	

	

3.3.6	Data	Collection	

	

	The	data	collection	and	analysis	approach	is	dependent	on	the	research	methodology	

a	 researcher	 decides	 to	 use	 (Bryman,	 2012)	 which	 is	 Step	 3:	 Collect	 Data	 From	

Literature	Review	and	 Interviews,	of	our	 research	methodology	 in	 Figure	1.1.	 	 There	

are	basically	two	main	approaches	through	which	data	is	collected	which	are	primary	

and	secondary	data	collection	techniques.		

	

In	this	research	we	have	used	both	primary	and	secondary	techniques	to	collect	data.		

We	used	semi-structure	interviews	as	the	primary	source	of	information	as	it	allowed	

us	 to	 discuss	 in	 detail	 the	 factors	 the	 participants	 considered	 to	 affect	 the	

development	 process	 and	 how	 they	 had	 been	 adapting	 agile	 practices	 for	 their	

offshore	 projects.	 The	 interviews	 were	 open	 ended,	 allowing	 us	 to	 probe	 for	 more	

information	and	gave	us	the	flexibility	of	 rephrasing	questions	and	simplify	a	specific	

question	 if	 it	 was	 too	 complex	 for	 the	 participant	 to	 understand.	 The	 detail	 of	 the	

interview	has	been	presented	 in	Section	3.3.3	and	the	 list	of	questions	asked	can	be	

found	in	Appendix	D.		

	

For	secondary	data	we	studied	over	200	cases	 from	 literature	 to	 identify	patterns	of	

how	 practitioners	were	 adapting	 agile	methods	 for	 distributed	 agile	 projects	 and	 to	

identify	 specific	 challenges	 in	 offshore	 development	 we	 conducted	 systematic	

literature	review,	details	have	been	presented	in	Section	2.3	and	the	studies	that	were	

selected	as	evidence	are	presented	in	Appendix	A.	

	

	

	

	 124	

3.4	Chapter	Summary	
	

In	this	chapter	we	presented	the	research	methodology	used	to	conduct	this	research.	

We	 first	 gave	 an	 overview	 of	 Saunder’s	 research	 onion	 and	 then	 applied	 it	 on	 our	

research	methodology	as	this	helped	us	present	our	methodology	in	a	systematic	way.	

The	research	methodology	was	presented	in	six	stages,	which	are	research	philosophy,	

research	approach,	research	strategy,	choice,	time	horizon	and	data	collection.		

	

In	 the	next	 chapter,	we	have	presented	our	distributed	agile	patterns	 catalogue	and	

how	practitioners	can	use	it.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 125	

Chapter	4	 Distributed	Agile	Patterns		

	

4.1	Introduction	

	

In	 this	 section	 we	 present	 the	 distributed	 agile	 patterns	 that	 were	 identified	 from	

systematic	literature	review	and	semi-structured	interviews.	We	also	present	how	the	

template	 for	 the	distributed	agile	patterns	 is	 designed	and	demonstrate	 the	process	

through	 which	 practitioners	 can	 choose	 which	 pattern	 is	 suitable.	 Further	 the	

catalogue	 is	 divided	 into	 four	 categories	 such	 as	 management,	 communication,	

collaboration	and	verification,	based	on	what	type	of	challenge	the	pattern	solves.		The	

distributed	agile	patterns	are	then	mapped	onto	the	traditional	scrum	lifecycle	to	help	

practitioners	 choose	 patterns	 based	 on	 what	 functionality	 they	 want	 to	 perform.		

Lastly	the	full	distributed	agile	patterns	catalogue	is	presented.	

	

4.2	Designing	Template	for	Distributed	Agile	Patterns	

	

Patterns	 are	 described	 using	 a	 standard	 format	 in	 order	 to	 provide	 structured	

information	that	makes	them	easier	to	understand	and	compare.	In	Table	4.1	we	have	

provided	a	comparison	between	the	existing	different	templates	that	are	used	for	the	

patterns	mentioned	in	Chapter	2	(Robertson,	1996;	Fowler,	1997;	Gamma	et	al.,	1997;	

Buschmann	 et	 al.	 1996;	 Brown	 et	 al.	 1998)	 such	 as	 requirement,	 analysis,	 design,	

architectural,	 anti-patterns	 and	 idioms.	 The	 purpose	 of	 this	 comparison	 is	 to	

understand	what	are	the	key	components	required	for	documenting	a	pattern.	

Table	4.1.	Comparison	of	Existing	Patterns.	

	

Requirement	

Patterns	

Analysis	

Patterns	

Design	

Patterns	

Architectural	

Patterns	

Anti	Patterns	 Idioms	

Name	

	

Name	

	

Name	

	

Name	

	

Name	

	

Name	

	

	 126	

Context	

	

	

Solution	

	

	

Related	

Patterns	

Also	known	

as		

	

Evolution	

	

	

Structural	

Adjustment	

	

Problem	

	

Motivation	

	

	

Context	

	

Applicability	

	

Requireme-

nts	

	

	

Modelling	

	

	

Consequen-

ces	

	

Example	

	

Known	uses	

Intent	

	

	

Also	known	

as	

	

Motivation	

	

	

Applicability	

	

Structure	

	

	

Participants	

	

Collaborat-

ion	

	

Consequen-

ces	

	

Implement-

ation	

	

Sample	

Code	

	

Known	uses	

	

Related	

Problem	

	

	

Category	

	

	

Context	

	

	

Solution	

	

Rational	

	

	

Consequence	

	

Example	

	

Known	uses	

	

	

	

Related	

Patterns	

	

	

Problem	

	

	

Context	

	

	

Solution	

	

	

Consequence	

	

Design	

Rational	

	

Example	

	

Related	Anti	

Patterns	

Intent	

	

	

Also	

known		

	

Motivati-

on	

	

Solution	

	

Sample	

Code	

	

Known	

uses	

	 127	

	

Related	

Patterns	

Patterns	

	

From	 the	 above	 table	 we	 can	 see	 that	 all	 the	 current	 templates	 cover	 detail	

descriptions	of	a	problem	and	its	solution.	As	only	graphical	notations	aren’t	sufficient	

to	 capture	 the	 process	 of	 an	 end	 product,	 in	 order	 to	 reuse	 a	 solution	we	 need	 to	

record	all	 the	decisions	 that	 lead	 to	 form	a	pattern.	Similarly	we	can	see	all	of	 them	

have	 put	 in	 sample	 code	 or	 example	 section	 as	 they	 help	 in	 understanding	 how	 a	

pattern	can	be	used	in	practical	scenarios.	

	

In	 this	 research,	 the	 proposed	 catalogue	 is	 developed	 based	 on	 literature	 and	

interviews	 and	 we	 have	 used	 Gamma’s	 pattern	 template	 in	 order	 to	 preserve	

familiarity,	 as	 they	 are	 perceived	 as	 the	 first	 pattern	 catalogue	 documented	 by	 the	

software	 community.	 A	 customised	 template	 was	 then	 developed	 to	 capture	 the	

specific	 findings	 related	 to	distributed	agile	practices.	 	 The	distributed	agile	patterns	

template	contains	the	following	sections:	

	

• Pattern	 Name:	 As	 patterns	 represent	 generic	 knowledge	 it	 is	 vital	 to	 give	 a	

good	name	 that	would	make	 it	 recognizable	and	 reusable.	A	good	name	also	

helps	in	facilitating	communication	among	practitioners	about	the	pattern.	

	

• Intent:	 A	 short	 statement	 that	 highlights	 the	 issues	 and	 problems	 that	 are	

required	to	be	solved	by	applying	the	pattern.		

	

• Also	known	As:	The	pattern’s	other	well-known	names,	if	any	are	mentioned	in	

this	section.	

	

• Category:	 Based	 on	 the	 similarities	 of	 the	 patterns	 we	 grouped	 them	 into	

different	categories	to	be	able	to	provide	an	abstract	view	of	all	the	patterns.	

	

	 128	

• Motivation:	 It	consists	of	the	description	of	the	problem	and	why	the	pattern	

should	 be	 used	 in	 order	 to	 avoid	 the	 problem	 from	 recurring.	 It	 provides	

scenarios	that	help	understand	the	abstract	description	of	the	pattern.	

	

• Applicability:	Under	what	conditions	the	pattern	can	be	applied.	

	

• Participants:	 The	 participants	 are	 those	 people	 that	 are	 required	 in	 applying	

the	pattern.	

	

• Collaboration:	 How	 participants	 will	 coordinate	 with	 each	 other	 in	 order	 to	

fulfil	their	responsibilities	that	are	required	to	complete	the	projects.	

	

• Consequences:	 Discuss	 the	 trade-offs	 of	 applying	 the	 patterns	 such	 as	

advantages	and	difficulties	faced	when	applying	it.	

	

• Known	uses:	Examples	of	real	scenarios	found	that	follow	the	pattern	in	order	

to	provide	clarity	of	how	the	pattern	can	be	used.	

	

• Related	Pattern:	List	of	similar	patterns	in	order	to	identify	which	patterns	can	

be	used	together	to	improve	a	particular	situation.	

	

4.3			Selecting	the	Right	Pattern	from	the	Distributed	Agile	Patterns	Catalogue	

	

Based	on	 the	 identified	distributed	agile	patterns	and	how	we	have	organised	 them.	

We	 have	 developed	 a	 process	 through	which	 practitioners	 can	 select	which	 pattern	

would	help	them	while	choosing	to	develop	their	software	offshore.	Following	are	the	

steps	the	practitioner	should	follow	in	order	to	select	a	distributed	agile	pattern:		

	

• To	 provide	 ease	 to	 the	 practitioners	 we	 have	 used	 names	 similar	 to	 agile	

practices,	 for	example,	 if	the	practitioner	wants	to	use	the	agile	practice	daily	

standup	 meeting,	 he	 can	 look	 for	 Pattern	 Name	 Local	 Standup	Meeting	 for	

	 129	

distributed	development	or	 for	more	 clarification	he	 can	 look	at	Also	 Known	

As,	which	is	Daily	Scrum	meeting	or	daily	meeting.	Another	alternative	starting	

point	can	be	selecting	which	pattern	the	practitioner	wants	to	use	based	on	the	

Category	 the	 practitioner	 wants	 to	 solve.	 For	 example,	 if	 they	 are	 facing	

management	 issues,	 they	 can	 start	 by	 looking	 at	 the	 patterns	 that	 solve	

management	 problems	 such	 as	 distributed	 scrum	 of	 scrum,	 local	 standup	

meeting,	 local	 sprint	 planning,	 local	 pair	 programming	 and	 asynchronous	

retrospective.		

	

• After	 shortlisting	a	pattern	 the	practitioner,	 can	 further	understand	what	 is	a	

pattern	 does	 by	 reading	 the	 Intent,	 as	 it	 highlights	what	 issues	 and	 how	 the	

pattern	solves	it.	

	

• To	 understand	 in	 detail	what	 problem	 a	 pattern	 solved	 and	what	 is	 the	 best	

way	of	applying	it,	the	practitioner	should	read	the	Motivation	next.			

	

• Every	 pattern	 has	 some	 advantages	 and	 some	 limitations.	 In	 order	 to	 clearly	

understand	 them	 the	 next	 section	 the	 practitioner	 should	 read	 is	

Consequences.	

	

• To	understand	under	which	conditions	a	pattern	is	applicable	and	who	should	

participate	 and	 how	 while	 applying	 a	 pattern,	 the	 practitioner	 should	 read	

Applicability,	Participants	and	Collaboration	sections.	

	

• To	get	more	information	on	how	existing	organisations	and	practitioners	have	

used	this	pattern,	the	practitioner	can	read	Known	Uses.	

	

• If	the	practitioner	wants	to	find	patterns	that	are	related	they	can	read	Related	

Patterns	section.	

	

Figure	 4.1	 shows	 the	 follow	 of	 how	 the	 practitioner	 should	 read	 a	 distributed	 agile	

pattern	 in	order	 to	select	a	pattern	 from	the	distributed	agile	patterns	catalogue	 for	

	 130	

their	offshore	projects.	A	practitioner	can	either	start	by	reading	a	patterns	name	or	by	

the	 category	 as	we	 have	 divided	 our	 pattern	 catalogue	 into	 four	 categories	 such	 as	

management,	communication,	collaboration	and	verification	patterns.	The	categories	

help	the	practitioner	in	deciding	which	type	of	challenge	they	want	to	overcome.	

	

	

Figure	4.1.	Process	of	selecting	patterns	from	the	Distributed	Agile	Pattern	catalogue.	

	

The	 distributed	 agile	 patterns	 are	 spread	 across	 the	 Scrum	 software	 development	

lifecycle	as	shown	in	Figure	4.2.	The	practitioner	can	pick	and	chose	whichever	pattern	

he	would	like	to	apply	and	whichever	Scrum	phase.		The	patterns	names	are	written	in	

red	and	the	blue	box	under	them	shows	on	which	scrum	practices	the	distributed	agile	

pattern	can	be	applied.	

	
	

Figure	4.2.	Distributed	Agile	Patterns	Application	on	Traditional	Scrum	Lifecycle

	

	 131	

4.4	Organising	the	Distributed	Agile	Patterns	Catalogue	

	
Distributed	 agile	 patterns	 vary	 in	 their	 granularity	 and	 level	 of	 abstraction.	 Because	

there	 are	many	 distributed	 agile	 patterns,	 we	 have	 organised	 them	 in	 4	 categories,	

which	are	management,	communication,	collaboration	and	verification	patterns.	This	

classification	helps	in	learning	and	identifying	which	pattern	is	to	be	used	in	a	specific	

scenario.	We	 have	 classified	 distributed	 patterns	 based	 on	 the	 problem	 they	 solve.	

Following	are	the	definition	of	the	4	categories:	

	

• Management	Patterns:	As	 in	offshoring	the	team	is	distributed	over	different	

time	 zones,	 it	 is	difficult	 to	manage	all	 the	distributed	 team	members	and	as	

they	are	working	on	different	modules	of	the	project	it	is	difficult	to	determine	

the	 overall	 progress	 of	 the	 project.	 In	 order	 to	 handle	 this	 problem	 we	 use	

management	 patterns	 as	 they	 consist	 of	 practices	 that	 help	 in	managing	 the	

onshore	 and	 offshore	 team	members	 and	 their	 activities	 to	 effectively	 apply	

agile	in	a	distributed	environment.	

	

• Communication	 Patterns:	 Since	 the	 team	 is	 distributed	 geographically	 over	

different	 time	 zones	 they	 have	 minimum	 overlapping	 working	 hours,	 which	

makes	 it	 difficult	 to	maintain	 real	 time	 communication	 between	 the	 onshore	

and	 offshore	 team	 members.	 Communication	 patterns	 focus	 on	 providing	

solutions	 to	 how	 distributed	 team	 members	 can	 maintain	 an	 effective	

communication	 channel	 in	 an	 agile	 setting	 using	 different	 online	 tools	which	

provide	both	synchronous	and	asynchronous	method	for	communication.	

	

• Collaboration	Patterns:	Even	if	the	nature	of	the	project	is	offshoring,	there	is	

still	a	need	to	conduct	some	collective	team	activities	in	order	to	improve	the	

coordination	among	the	onshore	and	offshore	 team	members.	Because	 if	 the	

onshore	and	offshore	team	members	don’t	meet	each	other	it	creates	mistrust	

and	 misunderstanding	 among	 the	 team	 members,	 which	 affects	 the	 overall	

team’s	productivity.	 In	order	to	solve	this	 issue	collaboration	patterns	provide	

	

	 132	

solutions	 regarding	which	 activities	 the	onshore	 and	offshore	 team	members	

should	conduct	together	to	improve	team	coordination	and	project	progress.	

	

• Verification	 Patterns:	 As	 in	 agile	 we	 focus	 on	 building	 the	 right	 product	

according	 to	 the	 satisfaction	 of	 the	 client.	 But	 as	 the	 team	 is	 distributed	 on	

different	locations	it	is	difficult	to	set	a	standard	guideline	for	all	the	distributed	

development	sites	and	how	to	show	project	progress	to	the	client.	In	order	to	

solve	 this	problem	verification	patterns	 focuses	on	how	efficiently	 the	 clients	

can	 get	 a	 distributed	 project	 developed	 according	 to	 their	 requirements	 and	

monitor	the	progress	of	what	has	been	developed.	

Table	4.2.	Categories	of	Distributed	Agile	Patterns.	

	

	 Category	

	 Management	

Patterns	

Communication	

Patterns	

Collaboration	

Patterns	

Verification	

Patterns	

	

Pattern	

Names	

Distributed	

Scrum	of	Scrum	

	

Local	Standup	

meeting	

	

Local	Sprint	

Planning	

	

Local	Pair	

Programming	

	

Asynchronous	

Retrospective		

	

Global	Scrum	Board	

	

Central	Code	

Repository	

	

Asynchronous	

Information	Transfer	

	

Synchronous	

Communication	

Collaborative	

Planning	Poker		

Follow-the-sun	

	

	

Collective	

Project	Planning	

	

Visit	 onshore-

offshore	

Project	Charter	

	

Onshore	

Review	

Meeting	

	

	 133	

4.5			Full	Distributed	Agile	Patterns	Catalogue	

	

In	 this	 section	 we	 have	 presented	 our	 full	 finalised	 Distributed	 Agile	 Patterns	

Catalogue.	In	order	to	avoid	causing	confusion	for	the	reader	we	presented	the	original	

unrevised	patterns	in	Appendix	F.	

4.5.1			Management	Patterns	

	

In	this	section	we	have	described	the	detail	of	each	management	pattern.	

4.5.1.1 Distributed	Scrum	of	Scrum	Pattern	

	

In	 agile	 methodology,	 Scrum	 is	 an	 iterative	 and	 incremental	 project	 management	

approach	that	provides	a	simple	framework	that	“	inspect	and	adapt”	(Hossain,	Babar,	

and	Paik,	2009).	We	observed	that	in	offshore	projects	the	onshore	and	offshore	team	

practices	 separate	 scrums	 in	 order	 to	 develop	 the	 project.	 Based	 on	 this	 observed	

practice	we	have	designed	the	following	pattern	details:	

	

Pattern	Name	

Distributed	Scrum	of	Scrum	Pattern	

	

Intent	

To	 apply	 scrum,	 sub-teams	 are	 formed	 based	 on	 location.	 Each	 team	 has	 its	

own	scrum.	Scrum	of	scrum	meetings	are	arranged	to	discuss	the	progress	of	

the	project,	which	is	attended	by	key	people.		

	

Also	Known	As		

Scrum	meeting	or	Meta	Scrum	

	

	

	

	

	

	 134	

Category	

Management	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	

manage	 their	 separate	 scrums	 and	 keep	 each	 other	 updated	 of	 the	 project	

progress.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 communication	 and	 co-

ordination,	 and	 knowledge	 transfer	 challenges.	 For	 example	 consider	 a	 team	

that	 is	 divided	 into	 sub-teams	 based	 on	 location	 and	 they	 are	 working	 on	

different	 tasks	 of	 a	 project.	 It	 is	 difficult	 to	 have	 both	 onshore	 and	 offshore	

teamwork	on	the	same	scrum	as	they	both	work	on	different	time	zones	so	in	

order	to	work	on	the	same	project,	both	teams	work	on	separate	scrums.		

	

To	 coordinate	work	 both	 teams	 arrange	 a	 scrum	 of	 scrum	meeting,	which	 is	

attended	by	key	people	from	both	teams	to	update	each	other	of	the	progress	

of	the	project.	

	

Applicability	

Use	Distributed	Scrum	of	Scrum	when:	

• Team	is	distributed	over	different	time	zones.	

• The	overlapping	working	hours	between	the	onshore	and	offshore	team	

is	less.	

Participants	

• Distributed	onshore	and	offshore	agile	team.	

• Scrum	Masters	of	agile	sub-teams	and	Product	owner.	

	

Collaboration	

• Key	members	 from	onshore	and	offshore	 teams	decide	 time	 for	Scrum	of	

Scrum	meeting.	

	

	

	

	

	 135	

Consequences	

The	 Distributed	 Scrum	 of	 Scrum	 pattern	 has	 the	 following	 benefits	 and	

liabilities:	

	

1. It	 prevents	 the	 onshore	 and	 offshore	 team	 from	 wasting	 time	 on	

collaborating	 tasks	 with	 each	 other	 through	 online	 tools	 as	 both	 the	

teams	are	working	on	 their	own	scrum	so	 they	don’t	have	 to	wait	 for	

each	other	to	complete	tasks.	This	helps	overcome	the	communication	

and	coordination	challenges	

	

2. It	provides	control	to	both	onshore	and	offshore	team	to	work	on	their	

scrum,	which	avoids	 the	offshore	 team	 from	having	 to	 adjust	working	

hours	 based	 on	 onshore	 teams	 availability.	 This	 helps	 overcome	 the	

communication	and	coordination	challenges.	

	

3. It	 allows	 key	 people	 such	 as	 Scrum	 Masters	 and	 Product	 owners’	 to	

discuss	 the	 progress	 of	 the	 project	 without	 having	 the	 whole	 team	

present	which	 keeps	 the	meeting	 time	boxed	 and	helps	 in	 knowledge	

transfer	among	the	teams.	

	

4. Its	 limitation	 is	 that	 due	 to	 minimum	 collaboration	 between	 the	

onshore	 and	 offshore	 team,	 both	 sub-teams	 don’t	 feel	 they	 are	 one	

team.	

	

5. Since	only	key	people	attend	the	Scrum	of	Scrum	meeting,	it	limits	face-

to-face	 interaction	 of	 both	 onshore	 and	 offshore	 team,	 which	 affects	

trust	building	between	both	teams.	

	

Known	uses	

When	CheckFree	decided	to	move	their	work	to	an	Indian	offshore	consulting	

firm	they	used	Scrum	of	Scrum	to	gather	and	review	the	over	all	team	statistics	

and	progress	of	the	project	(Cottmeyer,	2008).	Similarly,	multiple	case	studies	

	

	 136	

done	 on	 organisations	 using	 Scrum	 for	 distributed	 teams	 also	 used	 Scrum	of	

Scrum	to	coordinate	work	with	offshore	team	(Hossain	et	al.,	2009;	Paasivaara	

et	 al.,	 2009).	 Siemens	 also	 used	 Scrum	 of	 Scrum	 for	 two	 large	 distributed	

projects	 in	 which	 the	 development	 teams	 were	 located	 in	 USA,	 Europe	 and	

India.	In	their	Scrum	of	Scrum	meetings	they	covered	technical	and	managerial	

issues	that	occurred	in	multiple	teams	(Avritzer	et	al.,	2010)		

	

Related	Patterns	

Distributed	 Scrum	 of	 Scrum	 pattern	 is	 often	 used	 with	 Local	 Sprint	 Planning	

Pattern	and	Asynchronous	Retrospective	meeting	Pattern	as	 the	onshore	and	

offshore	 team	members	 are	working	 on	 different	 story	 cards	 and	 at	 the	 end	

have	their	separate	retrospective	meetings	to	discuss	the	sprint			

4.5.1.2 Local	Standup	Meeting	

	

Agile	methodology	focuses	on	conducting	a	daily	standup	meeting.	We	observed	that	

in	offshore	projects	the	onshore	and	offshore	team	conduct	their	own	separate	daily	

standup	meetings	and	use	online	tools	such	as	Wiki’s	to	share	meeting	minutes	with	

each	other.	Based	on	 this	observed	practice	we	have	designed	 the	 following	pattern	

details:	

	

Pattern	Name	

Local	Standup	Meeting	Pattern	

	

Intent	

To	discuss	daily	updates	on	work	done,	each	local	team	will	conduct	their	own	

standup	meetings.	

	

Also	Known	As		

Daily	Scrum	meeting	or	daily	meeting		

	

	

	

	 137	

Category	

Management	 category	 as	 this	 pattern	 helps	 the	 team	 members	 of	 both	

onshore	and	offshore	team	manage	their	daily	activities	and	update	each	other	

with	the	work	done.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 communication	 and	 co-

ordination,	and	knowledge	 transfer	challenges.	 	 For	example	consider	a	 team	

that	is	divided	into	sub-teams	that	are	located	on	different	time	zones.	To	have	

a	 collaborative	 daily	 standup	meeting	 is	 difficult	 and	 time	 consuming	 as	 the	

offshore	 team	 either	 has	 to	 come	 early	 to	 work	 or	 stay	 late	 to	 attend	 the	

meeting.	To	avoid	this,	the	onshore	and	offshore	team	conducts	separate	local	

standup	meetings	in	which	they	answer	the	following	questions:	

	

o What	did	you	do	yesterday?	

o What	are	you	doing	to	do	today?	

o What	is	getting	in	your	way?	

	

After	 conducting	 local	 standup	 meetings	 both	 onshore	 and	 offshore	 team	

share,	meeting	minutes	via	online	tools	such	as	Wiki’s	to	keep	both	the	teams	

up	to	date	with	the	progress	of	the	project.	

	

Applicability	

Use	local	standup	meeting	when:	

• Team	is	distributed	over	different	time	zones.	

• The	overlapping	working	hours	between	the	onshore	and	offshore	team	

is	less.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team.	

	

	

	

	 138	

Collaboration	

• Both	 onshore	 and	 offshore	 team	 share-meeting	minutes	with	 each	 other	

using	online	tools.	

	

Consequences	

The	local	standup	meetings	pattern	has	the	following	benefits	and	liabilities:		

	

1. It	 prevents	 the	 offshore	 team	 from	 waiting	 for	 the	 onshore	 team’s	

availability	to	conduct	the	daily	standup	meeting.	This	helps	overcome	the	

communication	and	coordination	challenges.	

	

2. It	 allows	both	onshore	 and	offshore	 team	 flexibility	 to	 conduct	 their	 own	

standup	 meeting	 at	 whichever	 time	 they	 want.	 This	 helps	 overcome	 the	

communication	and	coordination	challenges.	

	

3. It	allows	the	onshore	and	offshore	team	to	transfer	knowledge	by	sharing	

meeting	minutes	with	each	other.	

	

4. It	limits	the	onshore	and	offshore	team	from	real-time	communication	and	

both	team	heavily	rely	on	the	meeting	minutes	so	any	mistake	can	lead	to	

misunderstanding	in	the	progress	of	the	project.		

	

Known	uses	

Organisations	such	as	PulpCo	(Paasivaara	et	al.,	2009)	and	Wipro	Technologies	

(Sureshchandra	et	al.,	2008)	use	local	standup	meetings	for	communicating	the	

progress	of	the	project	with	team	members.	

	

Related	Patterns	

Daily	Standup	meeting	pattern	 is	often	used	with	Global	Scrum	Board	Pattern	

as	 once	 the	 onshore	 and	 offshore	 team	 members	 have	 conducted	 their	

meetings	they	share	the	meeting	minutes	on	a	shared	tool	so	that	both	can	see	

the	project	progress.	

	

	 139	

4.5.1.3 Local	Sprint	Planning	Meeting	Pattern	

	

In	agile,	a	scrum	consists	of	many	sprints.	The	duration	of	a	sprint	varies	from	2	weeks	

to	4	weeks	depending	on	the	size	of	the	project.	At	the	start	of	every	sprint	the	team	

has	 a	 sprint-planning	meeting	 in	which	 the	 team	 defines	 the	 goal	 of	 the	 sprint	 and	

prepare	 the	 sprint	 backlog.	 When	 the	 team	 is	 divided	 and	 is	 working	 on	 different	

modules	 of	 the	 project	 it	 has	 been	 observed	 that	 the	 onshore	 team	members	 and	

offshore	team	members	conduct	their	own	separate	sprint	planning	meetings.	Based	

on	this	observed	practice	we	have	designed	the	following	pattern	details:	

	

Pattern	Name	

Local	Sprint	Planning	Meeting	Pattern	

	

Intent	

Each	team	will	have	their	own	sprint	planning	meetings	

	

Also	Known	As		

	 	Sprint	Planning	Meeting	or	Iteration	Meeting		

	

Category	

Management	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	

work	 on	 their	 separate	 module	 and	 conduct	 independent	 scrum	 and	 sprint	

planning	meetings.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 communication	 and	 co-

ordination,	and	knowledge	transfer	challenges.		For	example	when	a	project	is	

distributed	to	a	team	that	is	divided	over	different	time	zones,	and	are	working	

on	different	modules	of	the	project	and	are	conducting	their	own	scrums.	 	As	

the	 onshore	 and	 offshore	 teams	 conduct	 their	 separate	 scrums,	 they	 also	

conduct	 separate	 sprint	 planning	meetings	 to	 decide	 what	 they	 will	 develop	

	

	 140	

during	 a	 sprint.	 Both	 teams	 prepare	 their	 sprint	 backlogs,	 which	 are	 shared	

using	online	tools.		

	

Applicability	

Use	Local	Sprint	Planning	Meeting	pattern	when:	

• Team	 is	 distributed	 over	 different	 time	 zones	 and	 is	 working	 on	

different	modules/subsystem	of	the	project.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team.	

	

Collaboration	

• The	onshore	team	and	offshore	team	share	sprint	backlog	with	each	other	

to	show	the	work	they	will	be	doing	over	the	next	sprint.	

	

Consequences	

The	Local	Sprint	Planning	Meeting	pattern	has	the	following	benefits	and	liabilities:		

	

1. It	 allows	 both	 teams	 to	 work	 independently	 without	 having	 to	 wait	 for	 the	

onshore	 team	to	be	available	 to	conduct	 the	meeting,	which	helps	overcome	

the	communication	and	coordination	challenges.	

	

2. It	provides	control	to	both	onshore	and	offshore	team	to	work	on	their	scrum	

and	 conduct	 their	 own	 sprint	 planning	 meetings,	 which	 avoids	 the	 offshore	

team	 from	 having	 to	 adjust	 working	 hours	 based	 on	 the	 onshore	 team	

availability.	 This	 helps	 overcome	 the	 communication	 and	 coordination	

challenges.	

	

3. Both	 teams	 can	 share	 their	 sprint	 backlog	 with	 each	 other,	 which	 provides	

visibility	 of	 the	 project	 progress	 and	 helps	 overcome	 the	 knowledge	 sharing	

challenges.	

	

	 141	

	

4. As	both	the	teams	are	working	independently	it	can	cause	the	teams	to	feel,	as	

they	 are	 not	 part	 of	 one	 team,	 rather	 create	 an	 effect	 that	 they	 are	 two	

separate	teams.	

	

Known	uses	

When	CheckFree	decided	to	move	their	work	to	an	Indian	offshore	consulting	

firm	 they	 used	 local	 sprint	 planning	 meetings	 to	 plan	 their	 sprint	 activities	

(Cottmeyer,	2008).		

	

Related	Patterns	

Local	 Sprint	Planning	Patterns	 in	often	used	with	Distributed	Scrum	of	 Scrum	

Pattern	 and	 Global	 Scrum	 board	 Pattern	 as	 the	 meetings	 minutes	 of	 the	

planning	meeting	are	shared	with	both	onshore	and	offshore	team	members.	

4.5.1.4 Local	Pair	Programming	Pattern	

	

In	 agile,	 pair	 programming	 consists	 of	 two	 programmers	 that	 share	 a	 single	

workstation	 that	 is	 they	 share	 one	 screen,	 keyboard	 and	 mouse.	 The	 programmer	

using	the	keyboard	is	usually	called	the	"driver",	the	other,	is	called	“navigator”	as	he	is	

activity	giving	his	 remarks	on	the	code	and	helping	the	driver	 to	write	 the	code.	The	

programmers	 are	 expected	 to	 switch	 roles	 after	 every	 few	 minutes.	 It	 has	 been	

observed	that	when	the	team	is	divided	on	different	locations,	the	team	members	that	

are	 co-located	 form	 pairs	 as	 it	 is	 difficult	 to	 form	 pairs	 with	 other	 locations	 team	

members	 due	 to	 the	 time	 difference.	 Based	 on	 this	 observed	 practice	 we	 have	

designed	the	following	pattern	details:	

	

Pattern	Name	

Local	Pair	Programming	

	

Intent	

Make	pair	programming	teams	from	the	same	location.	

	

	 142	

	

Also	Known	As		

	 	Pair	Programming	or	Paired	Programming		

	

Category	

Management	 category	as	 this	pattern	helps	 the	 local	 team	members	 to	 form	

pairs	and	work	on	their	story	card.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 communication	 and	 co-

ordination	 challenges.	 For	 example	when	a	 team	 is	 distributed	over	different	

locations	based	on	time	zones,	it	is	difficult	to	form	pairs	between	them	due	to	

the	time	difference	in	working	hours.	So	each	team	forms	pairs	based	on	their	

location	as	they	are	co-located	and	can	work	together.	Pair	Programming	helps	

improve	the	quality	of	code	as	instead	of	one	person	writing	the	code	the	other	

person	is	checking	the	code.		

	

Applicability	

Use	Local	Pair	Programming	pattern	when:	

• Team	 is	 distributed	over	 different	 time	 zones	 and	 is	working	 on	 different	

modules/subsystem	of	the	project.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team	and	working	on	different	story	

cards.	

	

Collaboration	

• The	 onshore	 team	 and	 offshore	 team	members	 share	 a	 keyboard	with	 a	

fellow	team	member	from	their	respective	location.	

	

Consequences	

The	Local	Pair	Programming	pattern	has	the	following	benefits	and	liabilities:		

	

	 143	

	

1. The	 offshore	 team	 members	 don’t	 have	 to	 wait	 for	 the	 availability	 of	

onshore	 team	 members	 to	 start	 work,	 which	 helps	 overcome	 the	

communication	and	coordination	challenges.	

	

2. Some	organisations	feel	it’s	a	waste	having	two	resourcing	working	on	the	

same	thing.	

	

Known	uses	

In	a	case	study	conducted	by	Maruping	(2010)	on	an	organisation	that	had	its	

development	centers	in	India,	U.S	West	Coast,	U.S	Mid-West	and	U.S	East	Coast	

showed	that	pairs	where	made	on	the	bases	of	physical	locations.	

	

Related	Patterns	

Since	in	Local	Pair	programming	we	are	selecting	team	members	from	the	same	

location,	we	often	use	it	with	Local	Sprint	Planning	Meeting.	

4.5.1.5 Asynchronous	Retrospective	Meetings	Pattern	

	

In	agile,	when	a	team	is	using	Scrum	at	the	end	of	every	sprint	after	the	sprint	review	

meeting,	 a	 retrospective	meeting	 is	 conducted	 which	 is	 attended	 by	 only	 the	 team	

members	and	the	scrum	master.	 In	this	meeting	the	team	discusses	all	the	good	and	

bad	things	that	happened	during	the	sprint	and	how	they	can	improve	their	work.	They	

also	discuss	the	feedback	given	by	the	client.	It	has	been	observed	that	when	the	team	

is	divided	on	different	time	zones,	teams	conduct	their	own	retrospective	meeting,	as	

due	to	the	time	difference	it	is	difficult	to	have	a	collective	retrospective	at	the	end	of	

each	 sprint	 (Kamaruddin,	 2012).	 Once	 both	 the	 onshore	 and	 offshore	 teams	 have	

conducted	 their	 retrospective	 meeting	 they	 share	 the	 meetings	 minutes	 with	 each	

other	 using	 online	 tools.	 Based	 on	 this	 observed	 practice	 we	 have	 designed	 the	

following	pattern	details:	

	

	

	

	 144	

Pattern	Name	

Asynchronous	Retrospective	Meetings	

	

Intent	

Teams	 conduct	 separate	 retrospective	meetings	 based	 on	 location	 and	 share	

the	 key	 information	 via	 email.	 The	 Scrum	 Masters	 discuss	 possible	

improvements	with	the	team	based	on	the	feedback	from	the	client.	

	

Also	Known	As		

	 	Retrospective	Meetings	or	Iteration	Retrospective		

	

Category	

Management	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	

members	 to	 review	 their	 sprint	 and	 discuss	 their	 performance.	 The	 Scrum	

Master	 advises	 the	 team	 on	 how	 they	 can	 improve	 their	 performance	 and	

discusses	the	feedback	of	the	client.		

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 communication	 and	 co-

ordination,	 and	 knowledge	 transfer	 challenges.	 	 For	 example	when	 a	 team	 is	

divided	 on	 different	 time	 zones	 and	 are	 working	 on	 different	

modules/subsystems	of	a	project	and	conducting	their	own	independent	Scrum	

and	sprints	it	is	difficult	to	have	a	collective	retrospective	meeting.	The	onshore	

and	offshore	team	members	conduct	their	separate	retrospective	meetings	to	

discuss	what	went	good	and	bad	in	the	sprint	and	how	they	can	improve	their	

work	 in	 the	 next	 sprint.	 The	 Scrum	master	 attends	 these	meetings	 and	 gives	

feedback	on	the	performance	on	the	team	and	discusses	the	remarks	given	in	

the	sprint	review	meeting	by	the	client.	Once	both	teams	have	conducted	their	

retrospective	meetings	they	share	the	meeting	minutes	with	each	other	using	

an	online	tool.		

	

	

	

	 145	

Applicability	

Use	Asynchronous	Retrospective	Meetings	when:	

• Team	 is	 distributed	 over	 different	 time	 zones	 and	 is	 working	 on	

different	modules/subsystem	of	the	project.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team	members.	

• Scrum	Master	

	

Collaboration	

• The	onshore	 team	and	offshore	 team	members	share	meeting	minutes	at	

the	end	of	their	retrospective	meetings.	

	

Consequences	

The	Asynchronous	Retrospective	Meetings	pattern	has	the	following	benefits	and	

liabilities:		

	

1. It	 allows	 onshore	 and	 offshore	 team	 members	 to	 conduct	 retrospective	

meeting	 independently	of	 each	other’s	 availability,	which	helps	overcome	

the	communication	and	coordination	challenges.	

	

2. It	 helps	 team	 members	 discuss	 their	 independent	 problems	 and	 doesn’t	

make	both	onshore	and	offshore	 team	to	be	present	 for	 the	meeting	and	

can	share	meeting	minutes	using	online-sharing	tools.	This	helps	overcome	

the	knowledge	transfer	challenges.	

	

3. Since	onshore	and	offshore	team	members	conduct	separate	retrospective	

meetings	they	don’t	understand	each	other’s	problems.	

	

Known	uses	

Elastic	Path,	a	Vancouver,	British	Columbia-based	company	decided	to	offshore	

their	work	to	Luxsoft,	an	outsourcing	partner	used	asynchronous	retrospective	

	

	 146	

sessions	to	discuss	the	sprint	progress	and	well	as	what	improvements	they	can	

make.	 Once	 all	 locations	 had	 conducted	 their	 retrospective	 meetings,	 they	

posted	comments	and	results	on	SharePoint,	which	were	then	viewed	by	Scrum	

Master	and	technical	lead	for	their	remarks	(Vax,	2008).	

	

Related	Patterns	

We	 often	 used	 Distributed	 Scrum	 of	 Scrum	 Pattern	 with	 Asynchronous	

Retrospective	meeting	Pattern.	 It	 is	also	often	used	with	Local	Sprint	Planning	

Pattern	 as	 in	 order	 to	 review	 the	 progress	 of	 a	 sprint	 and	 the	 team	we	 use	

retrospective	 meeting.	 After	 all	 the	 distributed	 teams	 have	 conducted	 their	

retrospective	meetings	 they	 share	 the	meeting	minutes	 with	 each	 for	 which	

they	use	Global	Scrum	Board	Pattern.		

4.5.2	Communication	Patterns	

	

In	this	section	we	have	described	the	detail	of	each	communication	pattern.	

4.5.2.1 Global	Scrum	Board	Pattern	

	

Agile	 has	 many	 artefacts	 such	 as	 product	 backlog,	 sprint	 backlog,	 storyboard,	 task	

board,	 team	 velocity	 and	 burndown	 charts	 which	 help	 the	 team	 in	 managing	 the	

project.	It	has	been	observed	that	when	the	team	is	divided	to	different	locations	they	

maintain	a	online	record	of	all	these	artefacts	so	that	they	can	share	them	with	each	

other	 using	 online	 tools	 such	 as	Wiki’s,	 Rally	 and	 Jira	 (Danait,	 2005;	 Berczuk,	 2007;	

Cottmeyer,	 2008).	 Based	 on	 this	 observed	 practice	 we	 have	 designed	 the	 following	

pattern	details:	

	

Pattern	Name	

Global	Scrum	Board	Pattern		

Intent	

An	 online-shared	 Scrum	 board,	 will	 be	 used	 by,	 both	 onshore	 and	 offshore	

teams	to	view	the	product	backlog,	storyboard,	task	board,	burn	down	charts	

and	other	agile	artefacts	using	online	tools		

	

	 147	

	

Also	Known	As		

	 Scrum	Board	or	Agile	Story	Board	

	

Category	

Communication	category	as	this	pattern	helps	the	onshore	and	offshore	team	

communicate	with	each	other	using	an	online	 tool	 to	view	each	other’s	work	

and	understand	the	progress	of	the	overall	project.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 trust,	 socio-cultural;	

communication	 and	 co-ordination,	 and	 knowledge	 transfer	 challenges.	 	 For	

example	when	a	project	 is	distributed	to	a	team	that	 is	divided	over	different	

time	zones,	and	are	working	on	different	modules	of	the	project,	to	share	their	

work	they	use	an	online	tool	to	display	agile	artefacts.	Based	on	the	work	done	

by	 both	 teams	 it	 is	 easier	 to	 see	 the	 progress	 of	 the	 project	 and	 it	 helps	

understand	if	there	is	a	problem	with	a	team.	

	

Applicability	

Use	Global	Scrum	Board	pattern	when:	

• Team	is	distributed	over	different	time	zones.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team.	

	

Collaboration	

• The	onshore	team	and	offshore	team	share	agile	artefacts	with	each	other	

to	show	their	progress.	

	

Consequences	

The	Global	Scrum	board	pattern	has	the	following	benefits	and	liabilities:		

	

	

	 148	

1. It	allows	the	whole	team	to	see	the	requirements,	which	creates	visibility	of	the	

project	and	helps	in	overcoming	trust	challenges.	The	scrum	board	is	designed	

keeping	the	socio-cultural	differences	in	mind.	

	

2. It	 allows	 the	 onshore	 and	 offshore	 teams	 to	 understand	 the	 progress	 of	 the	

project,	 which	 helps	 overcome	 the	 communication	 and	 coordination	

challenges.	

	

3. It	 increases	 the	 visualization	 of	 the	 work	 done	 by	 each	 team,	 which	 helps	

overcome	knowledge	transfer	challenges.	

	

Known	uses	

FAST,	a	search	company	with	headquarters	 in	Norway	while	building	a	search	

application	on	top	of	 their	core	search	platform	experimented	with	couple	of	

online	tools	to	keep	both	teams	updated	with	the	progress	of	the	project.	They	

tired	 XPlanner	 and	 Jira	 and	 settled	 for	 Jira,	 which	 is	 a	 web-based	 tool	 that	

allowed	 the	 remote	 team	 members	 to	 view	 the	 backlog	 and	 update	 tasks	

whenever	they	wanted	(Berczuk,	2007).	Similarly	in	a	study	done	by	Cristal	on	

an	 organisation	 that	 has	 development	 centres	 across	 North	 America,	 South	

America	and	Asia	 concluded	with	 that	 the	use	of	 a	 global	 scrum	board	 could	

help	 improve	 the	 productivity	 of	 global	 agile	 teams	 (Cristal	 et	 al.,	 2008).	

Similarly	 companies	 like	 Valtech	 (Danait,	 2005),	 Telco	 (Ramesh	 et	 al.,	 2006),	

BNP	 Paribas	 (Massol,	 2004),	 Aginitys	 LLC	 (Armour,	 2007)	 and	 SirsiDynix	

(Sutherland	 et	 al.	 2007)	 used	 online	 tools	 to	 share	 agile	 artefacts	 with	 their	

offshore	team	members.	

	

Related	Patterns	

Global	Scrum	board	pattern	is	often	used	with	Central	Code	Repository	Pattern	

as	the	team	shares	all	the	agile	artefacts	and	code	using	an	online	tool.	

	

	

	 149	

4.5.2.2 Central	Code	Repository	Pattern	

	

In	agile,	when	a	team	is	using	Scrum	and	XP,	the	team	members	are	divided	in	pairs	of	

two	and	are	working	on	different	tasks	during	a	sprint.	When	a	task	is	completed	the	

team	members	commit	their	code	to	a	share	repository	for	continuous	integration	of	

the	code.	 It	 is	observed	that	even	when	the	team	members	are	geographically	apart	

they	 still	 use	 a	 share	 code	 repository	where	 they	 commit	 their	 code	 so	 that	 all	 the	

team	members	 can	 see	 the	 code	 as	 well	 as	 determine	 the	 progress	 of	 the	 project.	

Based	on	this	observed	practice	we	have	designed	the	following	pattern	details:	

	

Pattern	Name	

Central	Code	Repository	

	

Intent	

The	whole	team	will	maintain	a	central	code	repository	so	that	both	team	can	

see	each	other’s	code	and	see	the	progress	of	the	work	done.	

	

Also	Known	As		

	 Source	Code	Repository	or	Global	Build	Repository	

	

Category	

Communication	category	as	this	pattern	helps	the	onshore	and	offshore	team	

members	 to	 write	 code	 and	 share	 it	 on	 a	 central	 code	 repository	 where	 all	

team	members	can	see	the	code	and	edit	it	if	required.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 communication	 and	 co-

ordination,	 and	 knowledge	 transfer	 challenges.	 	 For	 example	when	 a	 team	 is	

divided	 on	 different	 time	 zones	 and	 are	 working	 on	 different	

modules/subsystems	of	 a	project	 they	use	a	 central	 code	 repository	 to	 share	

their	work	with	all	team	members.	They	can	use	online	tools	such	as	GitHub	for	

committing	 their	 code	and	maintain	versions	of	 the	project	 (Räty,	2013).	This	

	

	 150	

helps	 the	 whole	 team	 to	 see	 the	 code	 and	 provides	 visibility	 of	 the	 project	

progress.	

	

Applicability	

Use	Central	Code	Repository	when:	

• Team	 is	 distributed	 over	 different	 time	 zones	 and	 is	 working	 on	

different	modules/subsystem	of	the	project.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team	members.	

	

Collaboration	

• The	 onshore	 team	 and	 offshore	 team	members	 share	 a	 keyboard	with	 a	

fellow	 team	 member	 from	 their	 respective	 location	 and	 once	 they	 have	

finished	a	task	they	commit	their	code	to	a	central	code	repository.	

	

Consequences	

The	Central	Code	Repository	pattern	has	the	following	benefits	and	liabilities:		

	

1. It	 allows	onshore	and	offshore	 team	members	 to	view	each	other’s	 code,	

which	helps	overcome	communication	and	coordination	challenges.	

	

2. It	helps	 in	determining	the	progress	of	 the	project,	which	helps	overcome	

knowledge	transfer	challenges.	

	

3. As	 all	 the	 team	 is	 committing	 to	 a	 central	 repository,	 if	 a	 team	 commits	

code	with	errors	it	can	affect	the	whole	build	of	the	project.	

	

Known	uses	

WDSGlobal	is	a	leading	global	provider	of	knowledge-based	services	to	mobile	

operators,	 manufacturers	 and	 application	 and	 sales	 channels.	 In	 2004	 they	

combined	their	developments,	which	were	 located	 in	UK,	USA	and	Singapore.	

	

	 151	

They	 shared	 their	 code	on	a	 central	 code	 repository	 to	minimize	duplications	

and	reduce	cost	of	maintenance	(Yap,	2005).	Many	companies	use	central	code	

repository	for	their	distributed	projects	such	as	Extol	International	(Kussmaul	et	

al.,	 2004),	 Valtech	 (Danait,	 2005),	 Manco	 (Ramesh	 et	 al.,	 2006),	 Aginity	 LLC	

(Armour,	2007),	SirsiDynix	 (Sutherland	et	al.,	2007),	CEInformant	 (Bose,	2008)	

and	ABC	Bank	(Modi	et	al.,	2013).	

	

Related	Patterns	

Central	Code	Repository	pattern	is	often	used	with	Global	Scrum	Board	Pattern.		

4.5.2.3 Asynchronous	Information	Transfer	Pattern	

	

Agile	 emphases	 on	 close	 face-to-face	 communication	 between	 the	 team	 members	

rather	 than	 detailed	 documentation.	 When	 a	 team	 is	 distributed	 on	 different	 time	

zones	 it	 has	 been	 observed	 that	 the	 teams	 adopted	 asynchronous	 tools	 for	 sharing	

information	 with	 each	 other	 such	 as	 emails,	 wikis	 and	 SharePoint.	 Based	 on	 this	

observed	practice	we	have	designed	the	following	pattern	details:	

	

Pattern	Name	

Asynchronous	Information	Transfer	

	

Intent	

Due	to	the	time	difference	between	the	onshore	and	offshore	team	use	online	

tools	to	exchange	information	with	each	other.	Each	team	should	response	to	

queries	within	12	hours.	

	

Also	Known	As		

	 	Information	Transfer	or	Knowledge	Sharing		

	

Category	

Communication	category	as	this	pattern	helps	the	onshore	and	offshore	team	

members	to	answer	each	other’s	queries	within	12	hours.			

	

	 152	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 communication	 and	 co-

ordination,	and	knowledge	 transfer	 challenges.	 	 For	example	When	a	 team	 is	

divided	on	different	time	zones	they	may	have	queries	about	work	but	due	to	

the	 time	 difference	 they	 cannot	 get	 a	 direct	 reply	 at	 that	 time	 so	 they	 use	

emails	to	communicate	queries,	which	are	then	answered	within	12hours	max.	

Organisations	have	set	standards	for	response	time	in	order	to	avoid	delays	in	

work	(Vax,	2008).	

	

Applicability	

Use	Asynchronous	Information	Transfer	when:	

• Team	is	distributed	over	different	time	zones.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team	members.	

	

Collaboration	

• The	onshore	team	and	offshore	team	members	share	information	and	ask	

queries	using	asynchronous	tools.	

	

Consequences	

The	 Asynchronous	 Information	 Transfer	 pattern	 has	 the	 following	 benefits	 and			

liabilities:		

	

1. It	 allows	 onshore	 and	 offshore	 team	 members	 to	 exchange	 information	

when	 synchronous	 communication	 cannot	 be	 conducted	 due	 to	 working	

hours	 time	 difference.	 This	 helps	 overcome	 the	 knowledge	 transfer	

challenges.	

	

	

	 153	

2. It	helps	team	members	from	waiting	for	onshore	team	member	availability	

to	ask	a	query.	This	helps	overcome	the	communication	and	coordination	

challenges.	

	

3. If	 the	 team	 members	 don’t	 respond	 timely	 it	 can	 cause	 delays	 in	 the	

project.	

	

Known	uses	

VTT	 Technical	 Research	 Centre	 of	 Finland	 and	 National	 University	 of	 Ireland	

conducted	 a	 research	 on	 two	 organisations	 that	 were	 developing	 a	 system	

together.	One	organisation	was	a	customer	organisation	 in	U.S	and	 the	other	

organisation	was	a	development	organisation	located	in	Ireland.	Based	on	their	

findings	the	companies	used	asynchronous	tools	for	communication.	They	used	

wikis	for	storing	documents	and	meeting	minutes	and	used	Emails	for	decisions	

and	 queries	 (Korkala,	 2010).	 Similarly	 Valtech	 used	 Twiki	 for	 asynchronous	

communication	(Danait,	2005).		

	

Related	Patterns	

Asynchronous	 Information	 Transfer	 pattern	 is	 often	 used	 with	 Global	 Scrum	

Board	and	Synchronous	Communication	Pattern.	

4.5.2.4 Synchronous	Communication	Pattern	

	

Agile	 emphases	 on	 close	 face-to-face	 communication	 between	 the	 team	 members	

rather	 than	 detailed	 documentation.	 When	 a	 team	 is	 distributed	 on	 different	 time	

zones	 it	 has	 been	 observed	 that	 the	 teams	 adopted	 synchronous	 tools	 for	 sharing	

information	with	each	other	such	as	voice,	video	conferencing	and	document	sharing	

tools.	Based	on	this	observed	practice	we	have	designed	the	following	pattern	details:	

	

Pattern	Name	

Synchronous	Communication	Pattern	

	

	

	 154	

Intent	

In	 order	 to	 discuss	 issues	 the	 teams	 uses	 synchronous	 tools	 for	 voice,	 video	

conferencing,	document	sharing,	application	sharing	etc.	

	

Also	Known	As		

	 	Synchronous	Knowledge	Transfer	

	

Category	

Communication	category	as	this	pattern	helps	the	onshore	and	offshore	team	

members	to	answer	each	other’s	queries	within	12	hours.			

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 trust,	 socio-cultural	

communication	 and	 coordination,	 and	 knowledge	 transfer	 challenges.	 	 For	

example	when	a	team	is	divided	on	different	time	zones	they	may	have	queries	

which	they	can	discuss	with	the	onshore	team	using	synchronous	tools	to	get	

real-time	response	(Vax,	2008).	

		

Applicability	

Use	Synchronous	Communication	Pattern	when:	

• Team	is	distributed	over	different	time	zones.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team	members.	

	

Collaboration	

• The	onshore	team	and	offshore	team	members	share	information	and	ask	

queries	using	synchronous	tools.	

	

Consequences	

						The	Synchronous	Communication	pattern	has	the	following	benefits	and	liabilities:		

	

	

	 155	

1. It	 allows	 onshore	 and	 offshore	 team	 members	 to	 exchange	 information.	

This	helps	overcome	knowledge	transfer,	communication	and	coordination	

challenges.	

	

2. Team	members	 can	ask	 each	other	questions	which	builds	 trust	 and	help	

understand	 each	 others	 socio-cultural	 differences,	 which	 helps	 overcome	

trust	and	socio-cultural	challenges.		

	

3. It	assists	team	members	from	waiting	for	onshore	team	member	availability	

to	ask	a	query.	This	helps	overcome	the	communication	and	coordination	

challenges.	

	

4. If	 the	 team	 members	 don’t	 respond	 timely	 it	 can	 cause	 delays	 in	 the	

project.	

	

Known	uses	

CampusSoft	 is	 a	 UK	 based	 company	 that	 used	 synchronous	 communication	

when	they	moved	to	Agile	with	their	offshore	suppliers	 in	India	and	Romania.	

They	used	video	conferencing	facilities	for	planning	sessions	and	later	shifted	to	

WebEx	sessions	and	GoToMeeting	so	that	they	could	share	desktops	with	the	

remote	team	members.	For	daily	Scrum	meetings	they	preferred	to	use	Skype	

call	and	made	everyone	wear	headsets	to	make	the	meeting	easier.	For	sprint	

review	meetings	they	used	sharing	desktop	tools	as	well	as	conference	phones	

so	that	members	from	both	end	could	talk	with	each	other	(Summers,	2008).	

	

Related	Patterns	

Synchronous	Communication	pattern	is	often	used	with	Global	Scrum	Board	

and	Asynchronous	Information	Transfer	Pattern.	

4.5.3	Collaboration	Patterns	

	

In	this	section	we	have	described	the	detail	of	each	collaboration	pattern.	

	

	 156	

4.5.3.1 Collaborative	Planning	Poker	Pattern	

	

An	agile	team	plays	planning	poker	to	put	point’s	estimation	on	each	story	card.	The	

product	owner	also	takes	part	in	this	activity.	He	tells	the	team	the	intent	and	value	of	

a	 story	 card	 based	upon	which	 the	 development	 team	assigns	 an	 estimation	 on	 the	

card.	Based	on	 the	points	assigned	 the	 team	members	who	assigned	 the	 lowest	and	

highest	estimation	will	 justify	 their	 reasons.	The	 team	will	have	a	brief	discussion	on	

each	story	and	assign	an	estimation	upon	which	the	whole	team	agrees	on.		

	

It	 has	 been	 observed	 that	 even	 when	 the	 team	 is	 distributed	 the	 planning	 poker	

activity	is	conducted	when	both	teams	are	co-located	for	the	project	planning	activity.	

Based	on	this	observed	practice	we	have	designed	the	following	pattern	details:	

	

Pattern	Name	

Collaborative	Planning	Poker	Pattern		

Intent	

Onshore	and	offshore	team	members	take	part	in	this	activity.	

	

Also	Known	As		

	 Planning	Poker	or	Scrum	Poker	

	

Category	

Collaborative	category	as	this	pattern	helps	the	onshore	and	offshore	team	to	

discuss	the	duration	of	a	story	card.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 trust,	 socio-cultural,	

communication	 and	 co-ordination,	 and	 knowledge	 transfer	 challenges.	 	 For	

example	when	a	project	 is	distributed	to	a	team	that	 is	divided	over	different	

time	 zones,	 it	 is	 important	 that	 all	 the	 team	 members	 agree	 on	 the	 time	

duration	 of	 a	 feature	 before	 they	 start	 developing	 the	 project.	 This	 helps	

estimate	the	duration	of	the	project	completion	as	well	as	it	provides	visibility	

	

	 157	

of	project	progress.	For	this	purpose	the	onshore	and	offshore	team	members	

play	planning	poker	 in	order	to	collectively	agree	on	the	estimation	of	a	story	

card.	Once	the	estimation	 is	decided	they	write	 it	down	and	approved	by	the	

product	owner/client	and	move	on	to	the	next	story	card,	till	all	the	story	cards	

are	estimated.	

	

Applicability	

Use	Planning	Poker	pattern	when:	

• Team	 is	 distributed	 over	 different	 time	 zones	 and	will	 be	working	 on	

different	story	cards	in	a	sprint.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team.	

• Product	owner/Client.	

	

Collaboration	

• The	client	approves	the	estimation	made	by	the	team	members.	

	

Consequences	

The	Planning	Poker	pattern	has	the	following	benefits	and	liabilities:		

	

1. It	allows	the	onshore	and	offshore	teams	to	agree	on	a	story	card	estimation,	

which	helps	the	team	establish	their	team	velocity.	Since	members	from	both	

locations	are	present	during	this	activity,	this	helps	overcome	trust	and	socio-

cultural	challenges.	

	

2. It	 provides	 the	 product	 owner/client	 with	 estimation	 of	 project	 completion,	

which	 helps	 overcome	 the	 communication	 and	 coordination,	 and	 knowledge	

transfer	challenges.	

	

3. If	all	team	members	don’t	agree	on	estimation	on	a	story	card	it	can	lead	to	a	

long	discussion,	resulting	the	planning	poker	to	prolong.		

	

	 158	

	

Known	uses	

UShardware	 has	 development	 centres	 across	 North	 America,	 South	 America	

and	 Asia.	 When	 transitioning	 to	 distributed	 agile	 environment	 they	 used	

planning	poker	activity	for	estimation	of	their	story	cards	(Wildt	et	al.,	2010).		

	

Related	Patterns	

Planning	 Poker	 Pattern	 is	 often	 used	 with	 Collective	 Project	 Planning	 as	 its	

better	 to	 conduct	 this	 pattern	 when	 the	 whole	 team	 is	 co-located.	 The	

estimated	story	cards	are	then	shared	on	the	Global	Scrum	board	so	that	whole	

team	can	view	them	during	the	project.	

4.5.3.2 Follow-the-Sun	Pattern	

	

When	a	agile	team	is	distributed	over	different	time	zones	 it	has	been	observed	that	

companies	cut	down	on	cost	by	increasing	development	time	by	adopting	“follow	the	

sun”	workflow	which	means	 it	allows	24	hours	development	due	to	the	difference	 in	

time	zones	allowing	a	company’s	employees	to	do	development	24hrs	a	day	(Carmel	et	

al.,	 2001;	 Yap,	 2005;	 Kroll,	 et	 al.,	 2012).	 Based	 on	 this	 observed	 practice	 we	 have	

designed	the	following	pattern	details:	

	

Pattern	Name	

Follow-the-Sun	Pattern	

	

Intent	

Onshore	 and	 offshore	 teams	will	work	 9:00	 a.m-5:00	 p.m.	 according	 to	 their	

own	time	zones.	

	

Also	Known	As		

24-hours	Development	Patterns	

	

	

	

	 159	

Category	

Collaboration	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	

manage	their	work	and	handoff	their	work	to	the	other	team	before	they	leave	

from	work.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 communication	 and	 co-

ordination,	and	knowledge	 transfer	challenges.	 	 For	example	consider	a	 team	

that	 is	 divided	 into	 sub-teams	 that	 are	 located	 on	 different	 time	 zones.	 To	

adjust	 the	 working	 hours	 of	 the	 offshore	 team	 for	 both	 the	 onshore	 and	

offshore	team	work	together	is	difficult	as	the	offshore	team	has	to	come	in	the	

evening	and	stay	till	early	morning.	This	makes	the	offshore	team	feel	they	are	

less	important	in	comparison	to	the	onshore	team	and	it	affects	the	employees’	

social	life.	

	

In	 order	 to	 avoid	 that,	 the	 onshore	 and	 offshore	 team	 use	 “follow-the-sun”	

approach.	For	example	an	employee	works	from	9:00	a.m.	to	5:00	p.m.	in	the	

USA.	 At	 5:00	 p.m.	 she	 hands	 over	 the	 incomplete	 task	 to	 a	 colleague	 in	

Australia	who	works	 from	9:00	 a.m.	 to	 5:00	 p.m.	 based	on	his	 time	 zone.	At	

5:00	p.m.	according	to	his	country,	he	transfers	the	updated	task	to	a	colleague	

in	 Poland	who	works	 on	 the	 updated	 task	 for	 the	 next	 eight-hours	 and	 then	

forwards	it	to	his	colleague	in	the	USA	(Gupta,	2009).	

	

While	the	employee	in	the	USA	had	left	work	two	of	her	colleagues	worked	on	

her	 task	 as	when	 she	will	 come	 to	 the	office	 next	morning	 a	 lot	 of	 the	work	

would	have	been	done.	This	work	scenario	takes	advantage	of	the	geographical	

distances	 as	 it	 allows	 people	 from	 different	 time	 zones	 to	 work	 round-the-	

clock	in	order	to	build	software	(Gupta,	2007).	

	

The	work	distribution	among	the	team	can	be	done	in	two	ways.	First	either	the	

3	teams	distributed	on	different	geographical	locations	work	on	the	same	task	

and	each	team	keeps	updated	the	task	as	mentioned	in	the	above	scenario	or	

	

	 160	

secondly	a	most	efficient	way	 is	 that	we	divided	different	aspect	of	 the	same	

problem	among	the	team	for	example	in	Figure	4.3	we	can	see	how	a	problem	

has	been	distributed	among	3	teams	(Gupta,	2009):	

	

						Figure	4.3.	Distribution	of	Work	among	Three	Distributed	Teams	(Gupta,	2009).	

	

Applicability	

Use	follow-the-sun	pattern	when:	

• Team	is	distributed	over	different	time	zones.	

• The	onshore	and	offshore	teams	are	working	on	different	tasks.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team.	

	

Collaboration	

• Both	onshore	and	offshore	team	hand	over	their	work	to	each	other	at	the	

end	of	every	working	day	using	online	tools.		

	

Consequences	

The	follow-the-sun	pattern	has	the	following	benefits	and	liabilities:		

	

1. It	allows	continues	development	during	different	working	shifts	across	different	

time	 zones,	 which	 helps	 overcome	 the	 communication	 and	 coordination	

challenges.	

	

	

	 161	

2. It	allows	both	onshore	and	offshore	team	to	work	according	to	their	time	zone	

and	share	their	work	without	having	to	either	come	early	to	work	or	stay	late	

till	early	morning.	This	helps	overcome	the	knowledge	transfer	challenges.	

	

3. It	reduces	the	development	life	cycle	or	time-to-market	(Denny,	et	al.,	2008).	

	

4. It	 limits	 the	onshore	and	offshore	team	from	real-time	communication	as	 the	

overlapping	working	hours	between	different	time	zones	can	be	less	or	zero.	

	

Known	uses	

Yahoo!	 used	 follow-the-sun	 approach	 when	 they	 offshored	 their	 Yahoo!	

Podcast	product	from	Sunnyvale,	California	campus	to	Yahoo!	Bangalore,	India	

Campus	(Drummond	et	al.,	2008).	Similarly	organisations	like	WDSGlobal	(Yap,	

2005)	and	Wipro	Technologies	(Sureshchandra,	et	al.,	2008)	use	follow-the-sun	

approach.	

	

Related	Patterns	

Follow-the-sun	Pattern	is	often	used	with	Local	Standup	meeting	Pattern	and	

Distributed	Scrum	of	Scrum	Pattern	as	both	onshore	and	offshore	team	

members	are	working	separately.	

4.5.3.3 Collective	Project	Planning	Pattern	

	

Agile	focuses	on	individuals	and	interactions	over	processes	and	tools.	While	planning	

for	the	project	the	whole	team	is	present.	Unlike	the	traditional	development	where	a	

project	manager	hands	a	project	plan	to	the	team.	In	agile	the	whole	team	takes	part	

in	 the	 planning	 activity	 in	 order	 to	 determine	 when	 and	 how	 the	 project	 will	 be	

developed.		It	has	been	observed	that	even	if	the	project	is	of	a	distributed	nature	it	is	

better	 to	 co-locate	 the	 team	 onshore	 and	 offshore	 team	 for	 the	 project	 planning	

activity.	 Based	 on	 this	 observed	 practice	 we	 have	 designed	 the	 following	 pattern	

details:	

	

	

	 162	

Pattern	Name	

Collective	Project	Planning	Pattern		

	

Intent	

Both	 the	 onshore	 team	 and	 the	 offshore	 team	 will	 collectively	 work	 in	 the	

project-planning	phase.	Once	both	team	have	engaged	in	the	project	planning	

activity,	the	team	will	prepare	the	project	backlog.	

	

Also	Known	As		

	 Project	Planning	or	Agile	Project	Planning		

	

Category	

Collaboration	category	as	this	pattern	helps	the	onshore	and	offshore	team	to	

work	together	and	come	up	with	a	project	plan.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 trust,	 socio-cultural	

communication	 and	 co-ordination,	 and	 knowledge	 transfer	 challenges.	 	 For	

example	 consider	 a	 team	 that	 is	 divided	 into	 sub-teams	 that	 are	 located	 on	

different	time	zones	and	both	the	teams	come	to	one	location	to	do	the	project	

planning	activity.	In	the	beginning	of	any	distributed	project,	the	offshore	team	

is	 invited	 to	 the	 onshore	 location	 so	 that	 they	 may	 work	 together	 and	

understand	each	other’s	requirements.		

	

While	the	teams	are	co-located	they	worked	on	preparing	the	product	backlog	

and	they	spend	at	 least	one	or	two	sprints	together	before	the	offshore	team	

leaves	 and	 starts	 working	 on	 the	 project	 (Cottmeyer,	 2008;	 Therrien,	 2008).	

This	 helps	 the	 onshore	 team	 by	making	 the	 offshore	 team	 understand	 their	

working	style	and	work	standard.	

	

Applicability	

Use	Collective	Project	Planning	pattern	when:	

	

	 163	

• Team	is	distributed	over	different	time	zones.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team.	

	

Collaboration	

• Onshore	team	and	offshore	team	work	together	to	make	a	product	backlog.		

	

Consequences	

The	Collective	Project	Planning	pattern	has	the	following	benefits	and	liabilities:		

	

1. It	 allows	 the	 onshore	 and	 offshore	 teams	 to	 work	 together	 and	 understand	

each	 other.	 This	 helps	 build	 trust	 among	 the	 team	 members	 and	 overcome	

communication	and	coordination	challenges.	

	

2. Onshore	team	works	with	the	offshore	team	and	makes	them	understand	what	

type	of	work	they	want.	This	helps	overcome	the	socio-cultural	and	knowledge	

transfer	challenges.	

	

3. It	adds	additional	cost	of	 travel	and	stay	of	 the	offshore	team	at	 the	onshore	

location.	

	

Known	uses	

FAST,	a	search	company	with	headquarters	 in	Norway	while	building	a	search	

application	on	top	of	their	core	search	platform	used	collective	project	planning	

to	 co-locate	 the	 team	 and	 make	 them	 work	 together	 in	 project	 planning	

activities	 (Berczuk,	 2007).	 	 Siemens	 also	 used	 collaborative	 planning	 for	 their	

distributed	projects	 (Avritzer	et	al.,	2010;	Avritzer	et.	al,	2007)	 in	which	 team	

members	from	multiple	sites	got	 involved	in	the	early	stages	of	the	project	 in	

order	to	create	an	open	communication	channel	and	high	level	of	trust	among	

the	distributed	team	members	(Avritzer	et.	al,	2010)	

	

	

	 164	

Related	Patterns	

Collective	Project	Planning	Pattern	is	often	used	with	Project	Charter	Pattern	as	

it	provides	a	central	document	 that	consists	of	 the	goal	and	objectives	of	 the	

project	written	by	the	client.	

4.5.3.4 Visit	Onshore-Offshore	Team	Pattern	

	

As	agile	emphases	on	close	face-to-face	communication	between	the	team	members	it	

has	been	observed	 that	when	 the	 team	 is	divided	on	different	 time	zones,	 the	 team	

members	travel	quarterly	or	annually	to	visit	each	other.	This	activity	helps	build	trust	

among	 the	 team	 members	 and	 helps	 them	 understand	 each	 other’s	 cultural	

differences	 (Ramesh,	2006;	 Therrien,	 2008;	 Summers,	 2008;	Paasivaara	et	 al.,	 2014).		

Based	on	this	observed	practice	we	have	designed	the	following	pattern	details:	

	

Pattern	Name	

Visit	Onshore-Offshore	Team	Pattern	

	

Intent	

Both	onshore	and	offshore	teams	should	quarterly	/	annual	visit	each	other	in	

order	to	build	trust,	exchange	cultural	values	and	improve	team	coordination.		

	

Also	Known	As		

	 	Travel	Onshore-Offshore	

	

Category	

Collaboration	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	

members	 to	 co-locate	 and	 understand	 each	 other	 and	 build	 a	 good	

relationship,	which	improves	team	coordination.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 trust,	 socio-cultural	

communication	 and	 co-ordination,	 and	 knowledge	 transfer	 challenges.	 	 For	

	

	 165	

example	when	a	 team	 is	divided	on	different	 time	 zones	 they	don’t	 feel	 that	

they	 are	 both	 part	 of	 one	 team	 and	 they	 don’t	 trust	 each	 other.	 They	 don’t	

understand	each	other’s	cultural	values	and	work	ethics.	In	order	to	solve	these	

issues	the	onshore	and	offshore	team	visits	each	other	to	develop	the	feeling	of	

trust	 and	 understand	 each	 other’s	 cultural	 and	working	 values.	 During	 these	

visits	they	attend	training	together	as	well	as	engage	into	informal	activities	to	

better	 understand	 each	 other.	 This	 helps	 build	 a	 bond	 between	 the	 team	

members,	which	results	in	good	team	coordination.	

	

Applicability	

Use	Visit	onshore-offshore	Team	when:	

• Team	is	distributed	over	different	time	zones.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team	members.	

	

Collaboration	

• The	onshore	team	and	offshore	team	members	visit	each	other	to	improve	

team	coordination.	

	

Consequences	

The	Visit	onshore-offshore	Team	pattern	has	the	following	benefits	and	liabilities:		

	

1. It	allows	onshore	and	offshore	team	members	to	exchange	cultural	values	

with	 each	 other	 and	work	 ethics.	 This	 helps	 overcome	 socio-cultural	 and	

communication	and	coordination	challenges.	

	

2. It	helps	team	members	to	 feel	 they	are	part	of	one	team,	which	develops	

trust	 among	 onshore	 and	 offshore	 team	 members.	 This	 helps	 overcome	

trust	and	knowledge	transfer	challenges.	

	

3. The	travelling	adds	additional	cost	to	the	project	budget.	

	

	 166	

Known	uses	

Ericsson	is	a	Swedish	multinational	provider	of	communications	technology	and	

services.	To	build	a	XaaS	platform	and	a	set	of	services	they	used	agile	software	

development	 methodologies.	 The	 development	 team	 was	 distributed	 over	 5	

sites	 located	 in	3	countries.	Four	of	 the	sites	were	 located	 in	Europe	and	one	

was	located	in	Asia.	They	conducted	workshops,	which	were	attended	by	team	

members	 from	 different	 locations.	 The	 purpose	 of	 these	 workshops	 was	 to	

create	a	common	vision	for	the	whole	organisation	by	setting	common	values	

as	well	 also	 to	 improve	 the	 collaboration	 between	 the	 sites,	 thus	 build	 trust	

(Paasivaara	et	al.	2014).	

	

Related	Patterns	

Visit	 onshore-offshore	 Team	 pattern	 is	 often	 used	 with	 Collective	 Project	

Planning	Pattern	as	planning	is	better	done	when	the	whole	team	is	co-located.		

4.5.4	Verification	Patterns	

	

In	this	section	we	have	described	the	detail	of	each	verification	pattern.	

4.5.4.1 Project	Charter	Pattern	

	

In	 project	 management,	 project	 charter	 is	 a	 statement	 that	 defines	 the	 scope,	

objectives	 and	 participants	 of	 a	 project.	 It	 is	 used	 to	 explain	 the	 roles	 and	

responsibilities,	outline	of	the	project	objectives	and	identify	main	stakeholders.	It	has	

been	observed	that	while	starting	a	distributed	project	using	agile	many	organisation	

use	project	charter	 to	clarify	 the	goals	and	objectives	of	 the	project	 to	both	onshore	

and	offshore	 team	 (Galen,	2009).	Based	on	 this	observed	practice	we	have	designed	

the	following	pattern	details:	

	

Pattern	Name	

Project	Charter	Pattern		

	

	

	

	 167	

Intent	

Before	starting	the	project	planning	activity,	agile	teams	use	project	charter	in	

order	to	have	a	central	document	between	the	onshore	and	offshore	team	that	

defines	the	project.	

	

Also	Known	As		

	 Project	Definition	or	Project	Statement	

	

Category	

Verification	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	 to	

have	 a	 central	 document	 clarifying	 the	 project	 goals	 and	 objectives,	which	 is	

written	by	the	product	owner/client.	

	

Motivation	

The	motivation	of	this	pattern	 is	to	address	the	trust,	communication	and	co-

ordination,	and	knowledge	transfer	challenges.		For	example	when	a	project	is	

distributed	 to	 a	 team	 that	 is	 divided	 over	 different	 time	 zones,	 a	 central	

document	is	written	known	as	the	project	charter,	which	clarifies	the	onshore	

and	offshore	team	the	goals	and	objectives	of	the	project.	It	also	identifies	the	

roles	and	responsibilities	of	the	onshore	and	offshore	team.	The	purpose	of	this	

activity	is	to	have	a	document	that	helps	the	team	in	the	project-planning	task.		

	

Applicability	

Use	Project	Charter	pattern	when:	

• Team	is	distributed	over	different	time	zones.	

	

Participants	

• Distributed	onshore	and	offshore	agile	team.	

• Client.	

	

	

	

	

	 168	

Collaboration	

• The	client	gives	the	project	charter	to	the	onshore	team	and	offshore	team	

to	clarify	the	goals	of	the	project.	

	

Consequences	

The	Project	Charter	pattern	has	the	following	benefits	and	liabilities:		

	

1. It	allows	the	onshore	and	offshore	teams	to	understand	the	project.	This	helps	

overcome	 communication	 and	 coordination,	 and	 knowledge	 transfer	

challenges.	

	

2. Since	 it	 is	a	single	document	stating	 the	goals	and	objectives	of	 the	project	 it	

helps	establish	trust	between	the	onshore	and	offshore	team	members.		

	

3. It	 is	 intended	to	clearly	set	the	stage	for	the	project	by	aligning	the	team	and	

settings	goals	and	expectations.		

	

Known	uses	

IONA	Technologies	used	Project	Charter	 for	their	distributed	projects	 in	order	

to	 have	 a	 central	 document	 that	 clarifies	 the	 goals	 of	 the	 project	 to	 both	

onshore	 and	 offshore	 team	members	 (Poole,	 2004).	 Similarly	 in	 a	 case	 study	

conducted	 by	 Brown	 (2011)	 on	 Agile-at-Scale	 Delivery	 it	 was	 observed	 that	

organisations	use	project	charter.	

	

Related	Patterns	

Project	Charter	pattern	is	often	used	with	Visit	onshore-offshore	Team	pattern.	

4.5.4.2 Onshore	Review	Meeting	Pattern	

	

In	agile,	at	 the	end	of	each	sprint,	a	sprint	review	meeting	 is	held	 in	which	the	team	

meets	with	the	clients	and	shows	them	the	work	they	have	done	through	a	demo.	In	

this	meeting	the	client	gives	remarks	about	the	work	and	if	they	require	any	changes	

	

	 169	

they	tell	the	team.	It	has	been	observed	that	when	the	team	is	distributed	on	different	

locations,	 then	 the	 team	 that	 is	 co-located	with	 client	 conducts	 the	 review	meeting.	

Based	on	this	observed	practice	we	have	designed	the	following	pattern	details:	

	

Pattern	Name	

Onshore	Review	Meeting		

	

Intent	

The	onshore	team	will	present	the	demo	as	they	are	located	where	the	client	

is.	

	

Also	Known	As		

	 Sprint	Review	Meeting	

	

Category	

Verification	 category	 as	 this	 pattern	 helps	 the	 client	 see	 the	 progress	 of	 the	

project	as	well	as	they	can	suggest	early	changes.	

	

Motivation	

The	 motivation	 of	 this	 pattern	 is	 to	 address	 the	 trust,	 socio-cultural	

communication	 and	 co-ordination,	 and	 knowledge	 transfer	 challenges.	 	 For	

example	 consider	 a	 team	 that	 is	 divided	 into	 sub-teams	 that	 are	 located	 on	

different	time	zones	and	one	of	the	team	is	located	in	the	same	country	as	the	

client.	 In	order	to	show	the	progress	of	the	project	 it	 is	more	convenient	that	

the	team,	which	is	located	near	the	client,	presents	the	demo	in	order	to	have	a	

face-to-face	meeting.	Once	the	meeting	has	ended	the	onshore	team	briefs	the	

offshore	teams	the	remarks	of	the	client.	

	

Applicability	

Use	Onshore	Review	Meeting	pattern	when:	

• Team	is	distributed	over	different	time	zones.	

• The	onshore	is	located	in	the	same	country	as	the	client.	

	

	 170	

	

Participants	

• Distributed	onshore	and	offshore	agile	team.	

• Client	

	

Collaboration	

• Onshore	 team	 presents	 demo	 to	 the	 client	 and	 discusses	 the	 meeting	

minutes	with	the	offshore.	

	

Consequences	

											The	Onshore	Review	Meeting	pattern	has	the	following	benefits	and	liabilities:		

	

1. It	 allows	 the	 client	 to	meet	 the	 development	 team	 face-to-face	 and	 give	

feedback.	 This	 helps	 overcome	 the	 communication	 and	 coordination	

challenges.	

	

2. It	allows	both	onshore	and	clients	to	discuss	what	changes	they	want	and	

how	 much	 time	 will	 be	 required	 based	 on	 the	 modification.	 This	 helps	

overcome	the	knowledge	transfer	challenges.	

	

3. It	 limits	 the	 offshore	 team	 from	meeting	 the	 clients	which	 can	 cause	 the	

offshore	team	from	discussing	the	changes	and	giving	their	remarks	on	the	

clients	feedback.	

	

Known	uses	

Wipro	 Technologies,	 a	 global	 service	 provider	 company	 used	 onshore	 review	

meetings	 so	 that	 they	 could	 get	 quick	 feedback	 from	 the	 customer/business	

user,	 which	 was	 then	 shared	 with	 the	 remote	 team	 over	 mail	 and/or	

teleconference	 (Sureshchandra	 et	 al.,	 2008).	 Similarly	 when	 SirsiDynix,	 USA	

outsourced	 their	 work	 to	 Starsoft,	 Ukraine	 they	 also	 used	 onshore	 review	

meetings	to	show	the	demo	of	the	work	done	(Sutherland	et	al.,	2007)			

	

	

	 171	

	

Related	Patterns	

Onshore	 Review	 Meeting	 pattern	 is	 often	 used	 with	 Asynchronous	

Retrospective	 Meetings	 Pattern	 because	 after	 the	 demo	 both	 onshore	 and	

offshore	team	members	conduct	their	separate	retrospective	meetings.		

	

4.6	Chapter	Summary	
	

This	chapter	presented	the	distributed	agile	patterns	catalogue.		The	chapter	starts	by	

discussing	the	templates	of	existing	patterns	and	then	presents	how	the	template	of	

distirbuted	 agile	 was	 designed.	 We	 then	 discuss	 how	 the	 pattern	 catalogue	 is	

organised	 and	 can	 be	 used	 by	 the	 practitioners.	 At	 the	 end	 of	 the	 chapter	 we	

presented	 the	 whole	 distributed	 agile	 patterns	 catalogue.

	

	 172	

Chapter	5	 	Validation	and	Evaluation	of	the	Distributed	Agile	

Patterns	Catalogue	

	

5.1	Introduction	

	

In	 this	 section	 we	 have	 validated	 and	 evaluated	 the	 Distributed	 Agile	 Patterns	

catalogue.	In	order	to	validate	the	catalogue	we	used	reflection	workshop	technique	as	

proposed	 by	 Kerth	 (Kerth,	 2001).	 For	 the	workshop	we	 invited	 4	 companies	 to	 take	

part.	 From	 each	 company	 two	 representatives	 took	 part.	 The	workshop	 lasted	 from	

9:30	 a.m.-	 4:00	 p.m.,	 in	which	 the	 catalogue	was	 presented	 to	 the	 participants	 and	

then	they	gave	feedback	on	how	to	improve	the	catalogue.		Based	on	their	suggestions	

the	pattern	catalogue	was	modified.		For	evaluation	we	compared	the	catalogue	with	

other	solutions	presented	in	the	literature	and	discussed	their	limitations	and	how	our	

pattern	catalogue	overcomes	those	limitation.	

5.2	Revised	Distributed	Agile	Patterns		

	

In	order	to	verify	and	validate	the	identified	distributed	agile	patterns,	we	conducted	a	

reflection	 workshop	 based	 on	 Kerth’s	 “The	 keep/try	 reflection	 workshop”	 (Kerth,	

2001).	The	reason	for	choosing	this	method	was	to	get	expert	opinions	on	the	patterns	

and	find	out	if	the	patterns	actually	exist	based	on	the	practitioners	point	of	view	and	

if	 they	 help	 practitioners	 in	 applying	 agile	 in	 offshore	 projects.	 To	 conduct	 this	

workshop	four	companies	were	invited	to	take	part;	details	are	shown	in	Table	5.1.	

Table	5.1.	Details	of	the	Companies.	

	

Company	 Category	 Type	of	

Business	

HQ	 Loc.	of	

Business	

	Exp.	

in	

Agile	

C1	 Startup	 IT	services	 Pakistan	 Dubai,	U.K	 2	years	

	

	 173	

	

C2	 Breakeven	 Product-

based	

	

Pakistan	 U.S.A,	U.K	 5	years	

C3	 Breakeven	 Multinational	

IT	service	

provider	

	

Pakistan	 Dubai	 8	years	

C4	 Profitable	 Software	

solutions	

U.S.A	 Pakistan	 10	years	

	

From	each	company,	we	invited	two	participants	to	take	part	in	the	workshop	so	that	

we	can	have	a	managerial	and	development	point	of	view	for	our	patterns.	Table	5.2	

shows	the	details	of	the	participants	and	their	experience	in	agile	and	distributed	agile	

practices	(DAP):	

Table	5.2.	Details	of	the	Participants	Attended	the	Workshop.	

	

Company	 Participant	

Name	

Job	Title	 Role	in	Agile	 Exp.	in	

Agile	

(years)	

Exp.	in	DAP	

C1	 P1	 CEO	 Scrum	

Master	

2	 2	

P2	 Developer	 Developer	 2	 1	

C2	 P3	 CEO	 Product	

Owner	

5	 5	

P4	 Senior	

Developer	

Developer	 5	 5	

C3	 P5	 CEO	 Scrum	

Master	

8	 8	

P6	 Developer	 Developer	 5	 4	

C4	 P7	 Senior	 Developer	 8	 5	

	

	 174	

	

	

Developer	

P8	 Senior	

Software	

Engineer	

Developer	 8	 4	

	

The	workshop	was	conducted	at	C1’s	boardroom	and	 the	duration	was	7	hours.	The	

agenda	of	the	workshop	is	shown	in	Table	5.3	below:	

Table	5.3.	Agenda	of	the	Reflection	Workshop.	

	

No.	 Agenda	Items	 Time	

1.	

2.	

	

3.	

4.	

5.	

Tea	and	Networking	

Introduction	of	what	is	reflection	workshop	

and	discussed	how	we	will	conduct	it	

Discussion	on	Distributed	Agile	Patterns	

Lunch	

Feedback	and	recommendation	

9:30	a.m.	-10:00	a.m.	

10:00a.m.	-11:00	a.m.	

	

11:00	a.m.	–2:00p.m.	

2:00	p.m.	–	3:00	p.m.	

3:00	p.m.-4:00p.m.	

	

The	workshop	was	started	by	explaining	to	the	participants	what	a	reflection	workshop	

is	 and	 what	 is	 expected	 from	 them	 at	 the	 end	 of	 the	 workshop.	 Based	 on	 Kerth	

keep/try	 reflection	 workshop	 method,	 this	 workshop	 focused	 on	 capturing	 three	

things	 on	 a	 flip	 chart,	 which	 was	 then	 displayed	 for	 the	 group	 to	 see	 and	 discuss.	

(Kerth,	2001).		The	three	things	are:							

																					

• What	should	we	keep?	

• Where	are	we	having	on-going	problems?	

• What	do	we	want	to	try	in	the	next	time	period?	

	

The	format	of	the	flip	chart	looks	like	in	the	Table	5.4	below:	

Table	5.4.	Flip	Chart	Format	for	the	Reflection	Workshop	(Kerth,	2001).	

	

	

	 175	

Keep	these	

	

	

Try	these	

Problems	

	

The	 patterns	 catalogue	 was	 presented	 in	 the	 form	 of	 a	 document	 so	 that	 the	

participants	 can	 have	 a	 copy	 and	 make	 notes	 during	 the	 presentation	 (Figure	 5.1).	

Since	 the	 document	was	 new	 to	 the	 participants,	 the	 catalogue	was	 presented	 one	

pattern	 at	 a	 time.	 The	 participants	 were	 then	 invited	 to	 discuss	 among	 themselves	

before	moving	to	the	next	pattern.	The	document	was	presented	as	shown	 in	Figure	

5.1	 to	 help	 make	 the	 documentation	 on	 the	 flip	 chart	 easier	 while	 referring	 to	 a	

pattern:		

	

	

	

	

	

	

	

	

	

	

	

Figure.	5.1.	Document	Presented	in	Reflection	Workshop	to	the	Participant

	

	 176	

As	an	example	to	show	how	we	documented	the	reflection	workshop,	Table	5.5	shows	

the	detail	of	a	flip	chart	of	Company	3	Participant	5	(C3P5).	In	the	Keep	these,	section	

we	 have	 mentioned	 all	 the	 patterns	 that	 C3P5	 thinks	 should	 stay	 as	 they	 were	

presented,	 that	 is	 he	 wants	 section	 1.2-1.5	 to	 remain	 the	 same.	 In	 the	 Problems	

section,	C3P5	wants	Section	2.2	to	be	changed,	as	according	to	him	the	pattern	Central	

Code	Repository	is	too	generic.	

	

In	 the	 section	 Try	 these,	 C3P5	 has	 given	 suggestions	 on	 how	 we	 can	 improve	 the	

patterns,	 such	as	he	wants	us	 to	change	 the	name	of	pattern	1.1	Scrum	of	Scrum	 to	

distributed	Scrum	of	Scrum	because	the	Scrum	of	Scrum	word	is	usually	used	in	agile	

for	 a	 Scrum	 inside	 a	 Scrum	 whereas	 in	 this	 pattern	 we	meant	 two	 separate	 scrum	

working	independently.	

	

Table	5.5.	Flip	Chart	of	Company	3	Participant	5	(C3P5).	

	
Keep	these	

	

• Keep	1.2,1.3,1.4,1.5	

• Keep	2.2,2,3,2,4	

• Keep	3.1,3.2,3.4	

• Keep	4	

	

Try	these	

	

• 1.1:	 Try	 changing	 name	 of	 1.1	 to	

distributed	 Scrum	 of	 Scrum	 as	 just	

scrum	of	scrum	is	confusing.	

	

• 3.3:	Try	coming	up	with	generic	set	

of	 preferences	 and	 then	 let	 the	

distributed	team	define	exactly	how	

they	want	to	collaborate.		

Problems	

	

• 2.2:	 Need	 to	 change	 this	 pattern	 as	 it	 is	 too	

generic,	 that	 is	 add	 details	 on	 what	 code	

repository	should	be	used.	

	

	
	
	

	

	

	

	

	 177	

A	summary	of	the	flip	charts	by	all	participants	is	shown	in	Table	5.6:		

Table	5.6.	Summarised	Flip	Chart	of	the	Companies.	

Keep	these	

• Keep	1.2,1.3,1.4,1.5	

• Keep	2.2,2,3,2,4	

• Keep	3.1,3.2,3.4	

Keep	4	

Try	these	

• 1.1:	 Try	 changing	 name	 of	 1.1	 to	

distributed	 Scrum	 of	 Scrum	 as	 just	

scrum	of	scrum	is	confusing.	

	

• 1.1:	 Try	making	 1.2,1.3,1.4,1.5	 part	

of	 1.1	 as	 they	 are	 related	 to	 each	

other.	

	

• 3.3:	Try	coming	up	with	generic	set	

of	 preferences	 and	 then	 let	 the	

distributed	team	define	exactly	how	

they	want	to	collaborate.	

	

• 4.2:	 Onshore	 review	 is	 good	 and	

recommended,	 however	 in	 some	

demos	 offshore	 team	 should	 also	

be	 there	 especially	 if	 they	 are	

visiting	 the	 onshore	 team.	 This	

would	 boost	 their	 moral	 and	 help	

them	understand	the	client	better.	

	

• To	all	patterns,	add	details	on	which	

challenge	 they	 help	 overcome	 and	

modify	the	consequences	section	to	

highlight	 how	 a	 benefit	 can	 aid	 in	

overcoming	a	challenge.	

Problems	

• 2.2:	 Need	 to	 change	 this	 pattern	 as	 it	 is	 too	

generic,	 that	 is	 add	 details	 on	 what	 code	

repository	should	be	used.	

	

• 3.1:	Whole	 team	 should	 be	 part	 of	 planning	

poker,	as	 it	will	help	 the	team	to	understand	

each	other’s	culture.	
	

• 3.2:	 Only	 applicable	 teams	 that	 are	 in	 the	

time	 zone	next	 to	each	other	 e.g.	 5:00p.m	 is	

9:00	a.m.	in	another	country.	

	
	

	

	
	
	
	

	

	 178	

Table	5.7.	Feedback	on	the	Challenges	Distributed	Agile	Patterns	Solve.	

	
Pattern	Name	 Trust		 Socio-

Cultural	

Communication	and	

Coordination		

Knowledge	

Transfer	

	Agreed	

Distributed	Scrum	of	Scrum	 	 	 	 	 80%	

Local	Stand-up	Meeting	 	 	 	 	 80%	

Follow	the	sun	 	 	 	 	 50%	

Onshore	Review	Meeting	 	 	 	 	 75%	

Collaborative	Project	

Planning		 	

	 	 	 100%	

Project	Charter	

	

	 	 	 75%	

Collaborative	Planning	Poker	

	

	 	 	 100%	

Global	Scrum	Board	

	

	 	 	 100%	

Local	Sprint	Planning		 	 	 	 	 80%	

Local	Pair	Programming	 	 	 	 	 80%	

Central	Code	Repository	 	 	 	 	 100%	

Asynchronous	Retrospective	

Meeting	

	 	 	 	 65%	

Asynchronous	Information	

Transfer	

	 	 	 	 80%	

Synchronous	Communication		

	

	 	 	 100%	

Visit	Onshore-Offshore	

Teams	 	

	 	 	 100%	

	

After	receiving	feedback	on	the	presented	catalogue,	the	discussion	was	then	directed	

towards	 the	 usefulness	 of	 the	 patterns	 to	 help	 overcome	 the	 offshore	 challenges.	

According	 to	 the	 results	 collected	 from	the	workshop,	Table	5.7	 shows	what	pattern	

helps	 solve	 which	 offshore	 challenge	 based	 on	 the	 feedback	 of	 the	 participants.	 As	

shown	in	Table	5.7:	

• 50%	 of	 the	 participants	 agreed	 that	 the	 follow	 the	 sun	 pattern	 helps	 in	

improving	 communication	 and	 coordination	 of	 the	 team.	 However	 the	 other	

half	 believe	 that	 by	 applying	 follow	 the	 sun	 pattern,	 the	 team	 has	 less	

	

	 179	

overlapping	 working	 hours	 which	 results	 in	 less	 real-time	 communication	

among	the	team	members.	

	

• 75%	of	 the	participants	agreed	 that	project	 charter	 pattern	would	help	solve	

the	trust,	communication	and	coordination	and	knowledge	transfer	issue.	As	it	

is	 a	 single	document	 that	 is	 shared	between	 the	onshore	and	offshore	 team,	

defining	the	goal	and	objective	of	the	project.	However	25%	of	the	participants	

believed	that	it	is	difficult	to	establish	trust	at	the	start	of	the	project	through	a	

document	 as	 to	 develop	 trust	 among	 the	 team	 members,	 they	 need	 to	

communicate	with	each	other	frequently	throughout	the	project.	

	

• Similarly	 80%	 of	 the	 participants	 agreed	 that	 distributed	 scrum	 of	 scrum	

pattern	 helps	 solve	 communication	 and	 coordination	 as	 well	 as	 knowledge	

transfer	 issue	 in	 offshore	 software	 development.	 As	 it	 allows	 each	 team	 to	

conduct	their	own	scrum	and	at	the	end	both	teams	share	their	work	with	each	

other	 hence	 providing	 synchronous	 exchange	 of	 communication	 and	

information.			

	

• All	the	participants	agreed	that	visit	onshore-offshore	team	pattern	helps	build	

trust	 among	 the	 onshore	 and	 offshore	 team	 members.	 It	 also	 helps	 team	

members	understand	each	other’s	socio-cultural	differences	and	as	the	team	is	

co-located,	 it	 will	 help	 in	 improving	 the	 team’s	 communication	 and	

coordination	and	knowledge	transfer.		

	

5.3	Evaluating	Distributed	Agile	Patterns	

In	this	section	we	will	evaluate	the	distributed	agile	patterns	(DAP)	approach	with	the	

other	 existing	 approaches	 present	 in	 literature	 and	 discuss	 what	 advantages	 our	

approach	has	over	the	existing	solutions	that	were	mentioned	in	Section	2.4.	

	

	

	 180	

Table	5.8.	Existing	Solutions	in	Comparison	to	the	DAP	Catalogue.	

	

No.	 Type	 Existing	Solutions	for	Global	Software	Development		

1.	 Approach		 Using	Agile	Practices	to	Solve	Global	Software	

Development	Problems.	

	

	 Offshore	Challenges	

answered	in	this	

approach	

	

Beecham	 proposed	 to	 overcome	 the	 challenges	 of	 poor	

communication,	 lack	 of	 control,	 low	 staff	 morale	 and	

ambiguous	 requirements	 (Beecham	 et	 al.,	 2014).	 They	

achieved	 this	 by	 identifying	 agile	 practices	 that	 solve	 the	

identified	 challenges.	 As	 mentioned	 in	 Table	 2.7	 that	 the	

solution	 presented	 did	 not	 provide	 details	 of	 how	 the	

identified	practices	will	overcome	the	offshore	challenges.		

	

Further	they	have	not	addressed	offshore	challenges	such	as	

trust,	socio-cultural	and	knowledge	transfer.			

	

	 Limitation	 The	 limitation	 to	 their	 approach	 is	 that	 even	 though	 they	

have	 considered	 the	 challenges	 of	 GSD,	 they	 have	 not	

discussed	 in	 detail	 how	 practitioners	 can	 solve	 them.	 For	

example	 for	 the	 challenge	 identified	 as	 “vague/missing	

requirements”	 the	 solution	 they	 presented	was	 a	 one	 line	

answer,	 “	 Product	 owner	 role;	 Planning	 game;	 Frequent	

interactions;	 on-site	 customer.”	 They	didn’t	 give	 any	detail	

on	how	or	what	affect	these	practices	will	have.			

	

2.	 Approach	 Ontology-Based	Multi-Agent	System	to	Support	

Requirements	Traceability	in	Multi-Site	Software	

Development	Environment.	

	

	 Offshore	Challenges	 	This	 approach,	 focuses	 on	 communication,	 coordination	

	

	 181	

answered	in	this	

approach	

	

and	 knowledge	 transfer	 challenges.	 They	 have	 used	

software	 engineering	 ontology	 as	 a	 communication	

framework	 to	 enable	 knowledge	 sharing	 and	 reuse.	 The	

proposed	 framework	 supports	 automated	 requirements	

traceability	 tasks.	 As	 mentioned	 in	 Table	 2.7,	 Agent	

Communication	 Language	 is	 used	 for	 requirement	

traceability.		

	

This	approach	only	focuses	on	requirement	traceability	in	a	

distributed	environment	and	they	did	not	consider	offshore	

challenges	such	as	trust	and	socio-cultural	issues.	

	

	 Limitations	 A	major	limitation	to	their	approach	is	that	it	is	too	technical	

considering	 in	 agile	 the	 requirements/user	 stories	 are	

written	by	the	product	owner.	A	simple	request	to	update	a	

requirement	 using	 the	 Agent	 Communication	 Language	

(ACL)	looks	like	below:	

((action (agent-identifier

 :name UserAgent@platform1

 :addresses (sequence

http://192.168.0.4:7778/acc))

(UpdateRequirement

 :name FR03

 :resourceType Requirements)))

	

For	 a	 technical	 person	 it	 isn't	 a	 difficult	 piece	 of	 code,	 but	

considering	 the	 fact	 that	 product	 owners	 do	 not	 have	 a	

technical	 background.	 It	 is	 difficult	 to	 use	 this	 system.	

Secondly	they	have	only	focused	on	the	requirements	phase	

thus	 providing	 us	 with	 an	 incomplete	 solution	 to	 the	

challenges	affecting	the	offshore	development	process	

	

	 182	

	

3.	 Approach	 Experiments	for	Offshore	Project	to	Address	Centrifugal	

Forces.	

	

	 Offshore	Challenges	

answered	in	this	

approach	

	

Larman	 has	 suggested	 experiments	 to	 overcome	 offshore	

challenges	 such	 as	 communication	 and	 coordination	

(Larman	 et	 al.,	 2010).	 But	 they	 have	 just	 provided	 us	with	

brief	 description	 of	 experiments	 that	 they	 think	 based	 on	

their	 experience	 with	 Valtech	 should	 predict	 success	 for	

other	organisations	offshoring	their	projects	using	agile.	For	

example	one	of	their	experiment	is	to:		

	

“Try..	Outside-the-site	agile	coaches,	in	which	they	state	that	

every	 organisation	 benefits	 by	 bringing	 in	 outside	 agile	

coaching	experts	to	act	as	viral	agent.	This	is	doubly	true	for	

offshore	organisations	steeped	in	traditional	command-and-

control	 managements	 and	 process	 culture.	 If	 the	 offshore	

organisation	is	multinational	start	by	looking	for	in-company	

coaches	from	other	nations.“	

	

This	 approach	 focuses	 on	 providing	 agile	 experiments	 in	

distributed	environment	and	they	did	not	consider	offshore	

challenges	 such	 as	 trust,	 socio-cultural	 and	 knowledge	

transfer	issues.	

	

	 Limitations	 Limitation	of	 their	approach	 is	 that	they	have	not	provided	

example	on	how	and	why	should	practitioners	perform	that	

experiment.	 They	 have	 not	 provided	 samples	 of	

organisations	 doing	 that	 experiment	 and	 what	 results	 did	

they	achieve	by	doing	that	experiment	and	what	difference	

does	 it	 make	 if	 practitioners	 do	 not	 perform	 this	

	

	 183	

experiment.	

	

4.	 Approach	 Understanding	Collaborative	Practices	in	Distributed	Agile	

Development	using	Theoretical	Concepts	

	

	 Offshore	Challenges	

answered	in	this	

approach	

	

Modi	 research	 presented	 a	 new	 way	 of	 solving	 the	

collaboration	 challenge	 (Modi	 et	 al.,	 2013).	 They	 have	

presented	 a	model	 representing	 the	 interrelationship	 with	

common	 ground,	 boundary	 objects	 and	 awareness	 as	

according	 to	 their	 proposed	 solution	 interlinking	 these	

theoretical	 models	 within	 the	 globally	 distributed	 agile	

setting,	 can	 lead	 to	 increasing	 awareness	 regarding	 the	

project	 artefacts	 which	 in	 turn	 contributes	 to	 establishing	

and	 negotiating	 common	 ground	 for	 joint	 collaborative	

practices	to	be	held	at	different	distributed	sites.	

	

This	approach	focuses	on	collaboration	challenges	and	does	

not	 consider	 trust,	 socio-cultural	 and	 knowledge	 transfer	

challenges.		

	

	 Limitations	 Although	this	 research	presented	a	new	way	of	solving	 the	

collaboration	challenge;	 they	haven’t	presented	any	results	

as	 their	 idea	 was	 presented	 as	 a	 research	 proposal.	 They	

have	 just	mentioned	what	 research	methodology	 they	will	

use	and	what	 their	 expected	 results	will	 be	based	on	 their	

assumptions.	

	

5.	 Approach	 Distributed	 Agile	 Patterns	 for	 Offshore	 Software	

Development	

	 	

Offshore	Challenges	

answered	in	this	

	

As	 part	 of	 this	 research	 we	 designed	 a	 catalogue	 of	 15	

distributed	 agile	 patterns.	 The	 focus	 of	 these	patterns	was	

	

	 184	

approach	

	

	

	

	

to	 overcome	 offshore	 challenges	 such	 as	 trust,	 socio-

cultural,	 communication	 and	 coordination,	 and	 knowledge	

transfer.	In	chapter	4	we	have	presented	the	catalogue.	

	 Strengths	 Compared	to	the	above-mentioned	approaches,	our	pattern	

catalogue	covers	the	main	challenges	of	offshoring;	we	have	

categorised	the	catalogue	based	on	what	type	of	problem	it	

solves	 such	 as	management,	 communication,	 collaboration	

and	 verification	 patterns.	 The	 pattern	 catalogue	 also	

provides	 details	 of	 how	 practitioners	 can	 use	 the	 patterns	

and	 in	 each	 pattern	 there	 is	 a	 section	 on	 known	 uses	 in	

which	 examples	 are	 given	 on	 which	 companies	 have	 used	

the	pattern.	

	

5.4	Chapter	Summary		

This	 chapter	 presented	 the	 validation	 of	 the	 distributed	 agile	 patterns	 catalogue	 by	

using	 Kerth’s	 (2001)	 keep/try	 reflection	 workshop	 method.	 For	 the	 workshop	 we	

invited	four	companies	to	take	part	and	we	presented	our	patterns	catalogue	to	them.	

Based	on	their	feedback	we	modified	our	patterns	catalogue.	In	order	to	evaluate	the	

results	 of	 this	 research	 we	 compared	 our	 catalogue	 with	 other	 existing	 solution	

present	 in	 literature	 such	 as	 ontology-based	 multi-agent	 system	 to	 support	

requirements	and	experiments	 for	offshore	project	 to	address	centrifugal	 forces.	For	

the	 different	 approaches	 we	 identified	what	 challenges	 they	 helped	 solve	 and	 then	

discussed	their	 limitations	and	further	explained	how	our	patter	catalogue	addresses	

the	offshore	challenges.	

	

In	next	chapter	a	case	study	has	been	presented	which	shows	how	the	distributed	agile	

patterns	can	be	used	in	the	requirement	phase.		

	

	

	

	 185	

Chapter	6	 	Case	Study	to	Show	Applicability	of	Distributed	Agile	

Patterns		

	

6.1	Introduction	

	

In	this	section	we	present	a	case	study	on	how	the	Distributed	Agile	Patterns	catalogue	

can	 be	 used	 for	 offshore	 software	 development	 to	 give	 an	 overview	 to	 the	

practitioners	on	how	to	select	patterns	from	the	catalogue.	However	we	only	focus	on	

the	 requirement-engineering	 phase	 of	 the	 software	 development	 lifecycle.	 The	

chapter	starts	by	presenting	an	overview	of	the	requirements	engineering	process	and	

how	requirements	are	gathered	 in	agile	software	development.	We	then	present	the	

existing	work	done	on	improving	the	requirements	engineering	process	and	lastly	we	

show	 how	 distributed	 agile	 patterns	 can	 be	 used	 to	 overcome	 the	 requirements	

engineering	challenges	in	offshore	development	that	we	highlighted	in	Chapter	2	and	

then	 we	 map	 the	 selected	 distributed	 agile	 patterns	 onto	 the	 requirements	

engineering	lifecycle	to	show	how	the	patterns	improve	each	step	of	the	lifecycle	in	a	

distributed	project.	

	

6.2	Overview	of	Requirements	Engineering	Process	

	

Wiegers	defined	requirements	as	something,	which	a	system	must	have	or	satisfy	or	

perform	 which	 is	 being	 identified	 by	 the	 client	 side	 (Wiegers,	 2007).	 Similarly	 Zave	

stated	 that	 requirements	 engineering	 is	 the	 branch	 of	 software	 engineering	 that	 is	

concerned	 with	 the	 real-world	 goals	 for,	 functions	 of	 and	 constraints	 on	 software	

system	 (Zave,	 1997).	 The	 process	 of	 requirements	 elicitation	 is	 one	 of	 the	 most	

challenging	and	critical	tasks	in	software	development.	According	to	Jacobs	the	cost	of	

incorrect,	misunderstood	and	not	agreed	upon	requirements	affects	all	of	us	in	terms	

of	 time,	money	and	 lost	opportunities	 (Jacobs,	2007).	 Fowler	argued	 that	everything	

else	 in	 software	 development	 depends	 on	 the	 requirements,	 as	 without	 having	 a	

stable	 set	 of	 requirements	 to	 start	with,	 the	 development	 team	 cannot	 start	 coding	

	

	 186	

(Fowler,	 2005).	Darke,	Davis	 and	Anthony	have	also	done	 similar	work	by	explaining	

how	 critical	 the	 requirement	 process	 is	 and	 how	 it	 directly	 impacts	 the	 success	 and	

failure	of	a	project	(Darke,	1997;	Davis,	1989;	Anthony,	1992).		

	

6.3	Requirements	Engineering	Process	in	Traditional	Software	Development	

vs.	Agile	Methodology	

	

In	 traditional	 software	 development	 methodologies,	 the	 client	 would	 predefine	 all	

their	 requirements	 to	 the	development	 team	before	 the	start	of	 subsequent	phases.	

The	team	would	then	analyse	the	requirements	and	finalise	a	software	requirements	

specification	(SRS)	document.	Once	the	client	has	approved	the	document,	they	would	

start	 the	 development	 phase.	 Figure	 6.1	 shows	 the	 traditional	 requirements	

engineering	process.	This	process	of	requirements	elicitation	has	problems	such	as;	a	

long	time	is	spent	in	preparing	this	documentation,	which	causes	issues	in	dealing	with	

future	 requirements	 change	 requests	 from	 the	 client	 once	 the	 actual	 development	

phase	 starts.	 Over	 decades	 of	 software	 development	 we	 have	 learnt	 that	

requirements	change	is	 inevitable	during	the	development	stage,	because	neither	

the	client	nor	the	developers	are	100%	sure	of	all	the	requirements	of	the	system	

at	the	start	of	the	project.			

	

	

Figure	6.1.		Traditional	Requirements	Engineering	Process.	

	

In	 agile	 software	 development,	 this	 problem	 is	 solved	 with	 the	 use	 of	 story	 cards,	

which	 is	a	 lighter	process	 for	the	definition	of	very	high-level	requirements	and	 is	an	

artefact	of	methods	such	as	SCRUM	and	XP.	They	contain	just	enough	information	for	

	

	 187	

the	 developer	 to	 be	 able	 to	 estimate	 how	much	 effort	 and	 time	will	 be	 required	 to	

develop	them	and	can	handle	change	requests	with	little	effort.	There	is	also	an	agile	

requirements	 change	 management	 process	 to	 control	 changing	 requirements	

throughout	 the	 software	 development	 lifecycle.	 Based	 on	 this	 process,	 new	

requirements	can	be	added	and	reprioritized	based	on	the	client’s	request.	Figure	6.2	

illustrates	the	agile	requirements	change	management	process:		

	

	

Figure		6.2.		Agile	Requirements	Change	Management	Process.	

	

6.4	Approaches	to	Improve	Requirements	Engineering	Process	in	Agile	

	

Tools	have	been	made	to	ease	the	process	of	documenting	story	cards.	One	such	tool	

is	SoBA	(Patel	et	al.,	2008).	The	tool	addressed	issues	that	are	remaining	to	be	solving	

regarding	story	card	based	development,	which	are:	

	

i. To	explore	story	card	for	test	driven	development	and	design	for	testability.	

ii. To	structure	story	cards	with	user	stories	and	acceptance	testing.	

iii. To	address	non-functional	requirements	and	effort	estimation	for	story	cards.	

iv. To	express	traditional	software	development	best	practices	as	guidelines	with	a	

tool	support.	

v. To	capture	story	cards	and	plan	tasks	supporting	pair-wise	development.	

	

	

	 188	

This	 model	 can	 capture	 user	 stories	 in	 five	 formats,	 which	 are	 face-to-face	

communication,	 electronic	 discussions,	 knowledge	 and	 experience	 from	 similar	

systems,	 graphical	 notations	 and	 voice.	 This	 tool	 consists	 of	 five	 stages,	 which	 they	

have	based	on	the	traditional	model	for	collection	requirement,	which	are:	capturing	

user	 stories	 and	 refining	 them,	 develop	 story	 cards,	 structuring	 story	 cards,	 effort	

estimation	and	priorities	story	cards.	

	

Figure	 6.3	 shows	 the	methodology	 used	 in	 SoBA	 tool	 to	 document	 story	 cards	 and	

what	steps	are	performed	before	a	user	story	can	go	into	development	phase.		That	is	

the	 customer	 and	 the	 tem	 capture	 the	 user	 stories,	 which	 can	 be	 collected	 in	 five	

different	 multi-media	 format	 such	 as	 face-to-face,	 electronic	 discussion,	 knowledge	

systems,	 graphical	 notation	 and	 voice.	 	 Once	 the	 user	 stories	 are	 captured	 they	 are	

refined	and	documented	into	story	cards	with	indexing.	The	next	steps	are	structuring	

those	 cards	 and	 assigning	 effort	 estimation	 and	 putting	 the	 cards	 in	 prioritization	

order.		Once	the	cards	are	ready	they	are	moved	to	design	and	development	phase	of	

the	project.		

	

Figure	6.3.	Story	Card	Based	Methodology	followed	by	SoBA	Tool	(Patel	et	al.,	2008).	

	

Khan	 conducted	a	 systematic	 literature	 review	 to	 identify	 factors	 that	 generate	 risks	

during	 the	 requirements	 engineering	 process	 in	 a	 global	 software	 development	

	

	 189	

environment.	Based	on	their	research,	they	found	74	factors,	which	they	grouped	into	

8	classifications,	which	are	(Khan	et	al.,	2014):	

i. Communication	and	Distance.	

ii. Cultural,	Background,	Language,	Organisational	and	Time	Differences.	

iii. Knowledge	Management	and	Awareness.	

iv. Management.	

v. Tools,	Technologies	and	Standards.	

vi. Stakeholders.	

vii. Project	and	Process	

viii. Requirements.	

	

These	classifications	can	facilitate	the	practitioners	by	serving	as	a	checklist	to	consider	

while	 capturing	 requirements	 however	 since	 this	 study	has	 only	 collected	data	 from	

literature	and	has	not	validated	their	 findings	from	practitioners,	we	cannot	consider	

this	 as	 a	 standard	 classification	 nor	 we	 don’t	 know	 how	much	 effect	 it	 has	 on	 the	

requirements	process	if	the	practitioner	uses	it.	

	

Work	has	also	been	done	on	how	agile	requirements	can	be	prioritised	in	a	large-scale	

outsourced	 system.	Daneva	 conducted	 an	 empirical	 study	 that	 aimed	prioritise	 agile	

requirements	but	keeping	the	following	points	in	mind	(Daneva	et	al.,	2013):	

	

• Focus	on	not	only	creating	value,	

• But	 also	 accumulating	 it	 over	 time,	 while	 minimizing	 the	 risk	 for	 the	

development	team.	

	

According	 to	 their	 study	 the	 task	of	prioritising	 requirements	was	 the	 job	of	product	

owner	or	the	client	and	the	contextual	factors	affecting	the	requirements	prioritisation	

process	are	as	follows:	

	

• The	need	to	embrace	change,	

• Project	constraints	

• Project	Scope	

	

	 190	

• The	number	of	project	staff.	

	

As	 every	 software	 project	 is	 subjected	 to	 the	 need	 of	 change	 in	 requirements	 and	

every	 project	 has	 constraints,	 Daneva,	 focused	 on	 the	 affects	 of	 project	 scope	 and	

number	 of	 staff	 working	 on	 the	 project	 as	 according	 to	 their	 study,	 the	 scope	

determines	the	complexity	of	the	project	and	the	number	of	staff	is	directly	linked	to	

risk,	as	larger	number	of	clients	often	leads	to	contradiction	in	requirements.	They	also	

classified	requirements	into	six	types	of	dependencies,	which	are	(Daneva	et	al.,	2013):	

	

i. Inter-domain	 dependencies	 are	 referred	 to	 dependencies	 that	 are	 concerned	

with	requirements	 that	are	overlapping	multiple	business	areas	such	as	client	

policies	and	setting	up	client	complaint	management	system.	

	

ii. Intra-domain	 dependencies	 are	 those	 dependencies	 caused	 due	 to	 the	 close	

links	between	the	processes	and	entities.	

	

iii. Dependencies	due	 to	downstream	activities,	such	as	sequencing	 requirements	

that	maximises	the	use	of	available	human	resource.		

	

iv. Team-based	dependencies	deal	with	avoiding	multiple	teams	having	to	do	the	

same	work	or	on	dependent	artefacts.		

	

v. Dependences	among	user	stories	these	are	imposed	by	the	order	of	activities	in	

a	specific	business	process.	

	

vi. Dependencies	among	delivery	 stories,	 these	are	 referred	 to	 the	dependencies	

caused	by	non-functional	requirements.	

	

As	part	of	 their	 study	 they	designed	a	user	story	delivery	process,	which	 is	 shown	 in	

Figure	6.4.		

	

	

	 191	

	

	

Figure	6.4.	The	User	Story	Delivery	Process	(Daneva	et	al.,	2013).	

	

They	 also	 identified	 10	 characteristics	 practices	 that	 should	 be	 followed	 while	

gathering	and	prioritising	user	stories.	An	overview	of	the	practices	is	given	below:	

	

i. Maintain	 traceability	 between	 the	 user	 stories	 and	 delivery	 stories.	 In	 their	

research	 they	 introduced	 the	 concept	 of	 delivery	 stories.	 A	 delivery	 story	

consists	of	the	following:	

	

• Number	of	use	cases	

• Required	time	for	use	cases	implementation	in	person	days	

• Number	of	GUI	screens	

• Required	time	for	GUI	screens	implementation	in	person	days	

• Business	rules	and	validations	

• Number	of	test	scenarios	

• Required	time	for	test	cases	preparation	in	person	days	

• Required	time	for	data	models	in	person	days	

• Total	time	required	for	sub-process	implementation		

	

	

	 192	

ii. Establish	 a	 dedicated	 Delivery	 Story	 Team.	 According	 to	 their	 study	 in	 larger	

projects,	we	need	to	have	a	separate	team	to	handle	the	requirements	process.	

As	unlike	small	projects	which	do	not	have	any	detailed	requirements,	in	large	

projects	there	is	a	need	to	add	detail	in	requirements	to	make	it	easier	for	the	

offshore	team	members	and	clients	to	understand	what	they	have	to	do.	

	

iii. 	Run	 series	 of	 workshops,	 as	 it	 helps	 build	 trust	 between	 the	 client	 and	

development	sites.	

	

iv. Establish	a	Domain	Owner.	As	a	 result	of	 their	 study,	 they	have	 introduced	a	

new	role	of	Domain	Owner,	and	they	classified	it	as	a	critical	role	for	acquiring	

knowledge	about	the	core	business	processes	and	operational	procedures.	

	

v. Understand	the	dependencies	of	requirements	before	carrying	out	the	design	

process.		

	

vi. The	Product	Owner	role	should	be	set-up	at	the	client’s	site.	

	

vii. Set-up	 a	 requirement	 change	 analysis	 management	 process,	 as	 the	

requirements	do	change	over	the	software	development	life	cycle.	

	

viii. Directly	ask	the	Product	Owner	to	confirm	any	change	in	the	requirements.	

	

ix. In	order	to	encourage	transparency,	use	status	reports,	which	should	be	shared	

with	the	client	after	every	three	weeks.	

	

x. Training	on	the	domain	should	be	gradual	and	the	team	should	be	prepared	for	

it.	Most	of	the	time	trainings	were	supported	by	the	client’s	organisation.		

	

However,	SoBA	helps	 in	documenting	and	managing	user	stories	 it	does	not	consider	

the	 complexity	 added	 by	 distributed	 agile	 developments	 such	 as	 any	 change	 in	 the	

requirements	needs	to	be	communicated	over	different	 locations	and	due	to	cultural	

	

	 193	

and	 language	 differences,	 requirements	 can	 be	 misunderstood	 (Patel	 et	 al.,	 2008).	

Similarly	 the	 work	 done	 by	 Daneva	 does	 facilitate	 the	 practitioners	 by	 providing	 us	

with	 a	 checklist	 of	 10	 practices	 to	 consider	while	 documenting	 and	 prioritising	 user	

stories	but	 they	did	not	consider	 the	affect	of	cultural	differences	and	how	 language	

affects	 the	 requirements	 process	 and	 they	 introduced	 two	 new	 concepts	 such	 as	

dedicated	team	for	requirements	and	Domain	owner,	which	add	additional	cost	to	the	

development,	while	as	mentioned	in	Section	2.2.1,	the	main	reason	for	organisations	

to	choose	to	offshore	their	projects,	is	to	cut	down	on	cost	(Daneva	et	al.,	2013).		

	

6.5	Distributed	Agile	Patterns	used	to	Overcome	Requirements	Engineering	

Challenges	

	

In	this	section	we	will	discuss	how	distributed	agile	patterns	can	be	used	to	overcome	

the	 challenges	 we	 identified	 in	 Section	 2.4.	 However	 we	 will	 focus	 only	 on	 the	

requirements	 engineering	process.	 The	 selection	of	 patterns	was	done	 following	 the	

process	identified	in	Figure	4.1.	

	

Table	6.1.	Using	Distributed	Agile	Patterns	to	Address	Requirements	Engineering	

Challenges	in	Agile	Offshore	Development.	

	

No.	 Requirements	

Challenge	in	Agile	

Offshore	

Development	

			Distributed	Agile		

			Pattern	

Solution	

1.		 Requirement	

Estimation	

Collective	Planning		

Poker	

By	 doing	 the	 planning	 poker	

activity	together	all	team	members	

will	 get	 a	 better	 understanding	 of	

each	others	skills.	

	

2.		

	

Objective	and	core	

	

Project	Charter	

	

Having	a	project	charter	document	

	

	 194	

functional	

requirements	

written	at	 the	 start	of	 the	project,	

will	 give	 all	 the	 team	 members	 a	

clear	 understanding	 of	 the	

project’s	 objective	 and	 core	

functional	requirements.		

	

3.	

	

Misunderstanding	

of	requirements	

	

Collective	Project	

Planning	

	

Since	 the	whole	 team	will	 be	 part	

of	 the	 planning	 activity,	 the	

chances	 of	 misunderstanding	 a	

requirement	will	be	reduced.	

	 	 	

Asynchronous	

Information	

Transfer	

	

In	 case	 of	 any	 misunderstanding,	

the	 team	 members	 can	

communicate	 with	 each	 other	

using	asynchronous	tools.	

	 	 	

Synchronous	

Communication		

	

For	 a	 real-time	 response	 to	 any	

misunderstanding,	 the	 team	

members	 can	 use	 synchronous	

methods	for	communication.	

	

4.	

	

Vague	

requirements	

	

Visit	Onshore-

Offshore	

	

To	 clarify	 vague	 requirements,	

onshore	 team	 members	 should	

visit	 offshore	 team	 members	 and	

vice	 versa	 to	 discuss	 the	

requirements	 in	 order	 to	 avoid	

defects.	

	

5.	

	

Changes	in	the	

requirements	

	

Global	Scrum	Board	

	

Any	 change	 in	 the	 requirements,	

will	 be	 updated	 on	 the	 global	

	

	 195	

scrum	board,	which	is	accessible	by	

all	team	members	in	real-time.	

	

6.	

	

Inconsistencies	

	

Central	Code	

Repository		

	

To	 avoid	 any	 inconsistency	

between	 the	 work	 done	 and	 the	

user	stories,	all	the	team	members	

use	 a	 central	 code	 repository,	

which	 is	 accessible	 by	 the	 whole	

team.	All	the	code	is	committed	 in	

that	repository,	enabling	the	whole	

team	to	see	what	work	is	done	and	

what	is	remaining.		

	

7.	

	

Bidirectional	

traceability	of	

requirements	

	

Central	Code	

Repository	

	

With	 the	 help	 of	 a	 central	 code	

repository,	 we	 can	 map	 each	

requirement	with	its	code,	allowing	

traceability	of	all	the	requirements	

being	 developed	 at	 different	

locations.	

	 	 	

Global	Scrum	Board	

	

Status	 of	 all	 requirements	 being	

developed	can	be	recorded	using	a	

global	scrum	board,	which	helps	in	

maintaining	 traceability	 of	

requirements.	

	

8.	

	

Managing	

requirements	

	

Local	Sprint	

Planning	

	

Each	 site	 can	 manage	 their	

requirements	 and	 daily	 meetings	

using	local	sprint	planning.	

	

	

	 196	

6.6	Mapping	Distributed	Agile	Patterns	on	the	Requirements	Engineering	

Lifecycle	

	

In	this	section	we	map	the	distributed	agile	patterns	onto	the	traditional	requirements	

engineering	 lifecycle,	 to	 show	 how	 these	 patterns	 facilitate	 the	 requirements	

engineering	process.	As	shown	in	Figure	6.5	the	four	key	features	of	this	process	are	as	

following:		

	

• Feasibility	 Study:	 In	 this	 process,	 we	 decide	 whether	 or	 not	 the	 proposed	

system	 is	 worthwhile.	 By	 writing	 down	 the	 Project	 Charter	 document	 in	 the	

beginning	of	the	project,	we	can	achieve	this.	As	stated	in	the	Project	Charter	

we	 define	 the	 aim,	 objectives	 and	 core	 functional	 requirements	 of	 the	

proposed	system.		

	

• Requirements	 Elicitation	 and	 Analysis:	 The	 purpose	 of	 this	 process	 is	 to	

identify	 the	application	domain;	 the	 services	 it	will	 provide	and	what	 are	 the	

limitations.	 Three	 distributed	 agile	 patterns	 are	 applied	 in	 these	 phases.	

Collaborative	 project	 planning	 helps	 the	 team	 to	 find	 out	 what	 the	

requirements	 of	 the	 application	 to	 be	 developed.	 Local	 sprint	 planning	 helps	

team	members	in	their	respective	locations	to	discuss	in	detail	the	user	stories	

allocated	 to	 them	 and	 determine	 the	 constrains	 associated	 with	 them.	

Collaborative	Planning	Poker,	allows	the	team	members	to	discuss	the	services	

that	 the	 system	 will	 provide	 and	 estimate	 how	 much	 effort	 is	 required	 to	

develop	them.	

	

• Requirements	 Specification:	Once	the	requirements	have	been	 identified,	we	

document	 them	 in	 the	 SRS	 document.	 As	 in	 agile	 software	 development,	

requirements	are	documented	using	user	stories,	 in	distributed	agile	software	

development;	 we	 use	 a	 Global	 Scrum	 Board,	 where	 all	 the	 story	 cards	 are	

placed.	Hence	any	change	or	modification	in	the	requirements	will	be	updated	

on	the	Global	Scrum	Board,	which	is	accessible	by	all	the	team	in	real-time.		

	

	 197	

	

• Requirements	 Validation:	 In	 this	 process,	 the	 requirements	 are	 validated,	 by	

reviewing	 them	 to	 make	 sure	 that	 the	 identified	 requirements	 are	 in	

accordance	with	what	 the	 client	wants.	 Four	 distributed	 agile	 patterns	make	

sure	 that	 the	 correct	 requirements	 are	 identified.	 Central	 Code	 Repository	

helps	 the	 client	 verify	 that	 the	 code	 being	 developed	 is	 according	 to	

requirements.	 Asynchronous	 Information	 Transfer	 provides	 a	 platform	 to	 the	

team	members	and	the	clients	to	communicate	and	coordinate	the	progress	of	

the	system	being	developed	and	in	case	of	any	confusion,	the	team	can	either	

use	 asynchronous	 or	 synchronous	 tools	 for	 communication,	 according	 to	 the	

communication	standards	defined	using	Synchronous	Communication	Pattern.	

For	further	clarification	of	requirements,	distributed	agile	patterns	suggest	that	

both	onshore	and	offshore	team	members	should	visit	each	other.	

	

In	Figure	6.5	we	have	presented	how	our	distributed	agile	patterns	map	onto	the	four	

phases	 of	 traditional	 requirement	 engineering	 in	 order	 to	 provide	 an	 overview	 to	

practitioners	 on	 which	 distributed	 agile	 pattern	 they	 can	 use	 while	 collecting	

requirements	 for	 their	 offshore	 projects.	 For	 example	 in	 order	 to	 perfome	 the	

requirements	elicitation	and	analysis	phase	in	the	requirement	engineering	process	of	

an	offshore	project,	the	practitioner	can	use	collaborative	project	planning,	local	sprint	

planning	and	collaborative	planning	poker	patterns	

	

Figure	6.5.	Mapping	Distributed	Agile	Patterns	on	Traditional	Requirements	

Engineering	Process.	

	

	 198	

6.7	Chapter	Summary		
	

This	chapter	presented	a	case	study	to	show	how	the	distributed	agile	patterns	can	be	used	in	

offshore	software	development.	The	focus	of	this	case	study	was	on	the	requirement	phase	of	

the	 software	 development	 lifecycle	 so	 the	 chapter	 starts	 by	 giving	 an	 overview	 on	 the	

requirement	engineering	process.	Then	we	provided	a	comparison	between	the	requirement	

process	 in	 traditional	 software	 development	 vs.	 agile	methodology.	 	 Several	 approaches	 to	

improve	 the	 requirement	process	 in	 agile	were	 also	discussed	 in	 this	 chapter.	 Based	on	 the	

offshore	 challenges	 identified	 in	 chapter	 2	we	 discussed	 how	 the	 distributed	 agile	 patterns	

catalogue	can	be	used	to	overcome	them.	Lastly	we	mapped	the	distributed	agile	patterns	on	

the	requirement	engineering	lifecycle.		

	

The	 next	 chapter	 concludes	 the	 thesis,	 discussing	 the	 main	 achievements	 of	 the	

research	 and	 proposing	 a	 set	 of	 recommendations	 for	 improvements	 in	 future	

research.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 199	

Chapter	7	 Conclusions	and	Future	Work		

		

7.1	Introduction	

	

This	 research	 has	 studied	 the	 factors	 that	 effect	 software	 development	 in	 offshore	

environment.	 It	aimed	to	 identify	and	address	the	factors	that	affect	the	adoption	of	

agile	practices	in	offshore	software	development.	In	order	to	achieve	the	research	aim	

and	objectives,	 to	answer	 the	 research	questions	and	 to	maximize	 the	quality	of	 the	

case	study	finding	there	was	a	need	to	choose	the	most	appropriate	research	approach	

and	 strategy	 for	 the	 researcher	 to	 follow	 in	 collecting	 and	 analysing	 the	 data.	 The	

selection	 of	 an	 appropriate	 methodology	 for	 this	 research	 came	 by	 following	 a	

literature	review	based	on	the	research	topic,	setting	the	aim	and	objectives	and	after	

consideration	of	literature	on	research	methodologies.		 	 	

	

Based	 on	 the	 nature	 of	 this	 research,	 the	 phenomenological	 research	 paradigm	 and	

the	 use	 of	 both	 qualitative	 and	 quantitative	 philosophy	 were	 reasoned	 to	 be	 as	

discussed	 in	 Section	 3.3,	 the	 perfect	 means	 to	 undertake	 the	 research	 due	 to	 its	

subjectivity	and	in	order	to	gain	in-depth	understanding	and	to	identify	the	factors	that	

affect	 the	adoption	of	agile	practices	 in	offshore	software	development.	As	adopting	

agile	practices	 in	offshore	software	development	 is	not	a	 straightforward	process.	 In	

this	 research	 we	 have	 conducted	 a	 systematic	 literature	 review	 and	 semi-structure	

interview	 to	 identify	 agile	 practices	 that	 are	 being	 repeatedly	 used	 in	 offshore	

development	to	solve	recurring	problems.	As	a	result,	we	identified	15	distributed	agile	

patterns,	which	were	presented	in	Section	4.5.	To	validate	the	patterns	catalogue	we	

used	 a	 reflection	 workshop	 and	 for	 evaluation	 we	 compared	 our	 solution	 to	 other	

existing	 solutions	 present	 in	 literature	 to	 overcome	 offshore	 challenges,	 which	 we	

have	presented	in	Chapter	5.		

	

In	order	to	help	practitioners	understand	how	the	distributed	agile	patterns	catalogue	

can	be	used	 at	 any	development	phase	we	presented	 a	 case	 study	 in	Chapter	 6,	 on	

	

	 200	

how	 the	 catalogue	 can	 be	 used	 in	 the	 requirement	 phase	 of	 scrum	 based	 software	

development.		

	

7.2	Meeting	the	Aim	and	Objectives	and	Answering	the	Research	Questions	

	

The	main	 research	question	was	answered	by	achieving	 the	aim	of	 this	 study,	which	

was	 to	 address	 the	 issues	 between	 the	 onshore	 and	 offshore	 teams	 that	 are	

developing	 software	 at	 offshore	 locations	 and	 to	 develop	 a	 solution	 by	 identifying	

repeating	solutions	 from	 literature	and	 interviewing	professionals.	This	aim	has	been	

achieved	by	addressing	the	research	objectives	as	follows:	

	

The	 first	 objective	 was	 to	 review	 the	 relevant	 literature	 on	 offshore	 software	

development.	The	 literature	 included	studies	 focusing	on	why	organisations	chose	to	

moves	their	projects	to	offshore	locations,	what	are	different	types	of	global	software	

development	business	models,	what	are	the	advantages	and	limitations	of	choosing	to	

develop	 software	 at	 different	 locations,	 how	 did	 organisation	 overcome	 offshore	

software	development	challenges.	

	

The	second	objective	was	to	identify	key	challenges	that	occur	while	offshore	software	

development	 and	 if	 any	 recurring	 agile	 practices	 are	 being	 used	 to	 overcome	 an	

offshore	 challenges.	 We	 achieved	 this	 by	 conducted	 a	 SLR	 and	 semi-structured	

interviews	as	we	wanted	to	identify	patterns.	

	

Based	 on	 the	 data	 collected	 and	 analysis,	 we	 identified	 agile	 practices	 recurrently	

being	 used	 to	 solve	 offshore	 software	 development	 challenges.	 Based	 on	 observed	

recurring	practices	we	designed	our	distributed	agile	patterns	catalogue,	which	is	the	

third	objective	of	our	research.			

	

The	 fourth	 objective	 was	 to	 validate	 and	 evaluate	 the	 distributed	 agile	 patterns	

catalogue,	 which	we	 achieved	 by	 conducting	 reflection	workshop	 and	 based	 on	 the	

feedback	 we	 revised	 our	 patterns	 catalogue	 and	 for	 evaluation	 we	 compared	 our	

	

	 201	

patterns	 catalogue	 with	 other	 solutions	 such	 as	 using	 ontology-based	 multi-agent	

approach,	 experiments	 for	 offshore	 projects	 designed	 by	 Larman	 et	 at.	 (2010),	 the	

detail	 is	 presented	 in	 Section	 5.3.	 The	 last	 objective	 was	 to	 write	 this	 thesis	 and	

present	it	in	the	viva.		

	

7.3	Recommendation	for	Future	Work	

	

Future	work	has	been	planned	for	this	research,	which	includes	ways	on	how	we	can	

improve	 and	 extend	 the	 research	 presented	 in	 this	 study.	 The	 following	

recommendations	arise	from	the	present	study	for	future	academics	and	professional	

research	that	want	to	work	in	offshore	software	development	and	agile	methodology:	

	

- Researchers	 could	 investigate	 and	 identify	 the	 factors	 that	 effect	 the	

development	of	software	in	domestic	outsourcing,	shared	services	and	internal	

offshoring	 as	 in	 this	 research	 we	 have	 only	 focused	 on	 identifying	 the	

challenges	in	offshore	outsourcing	business	model.		

	

- One	major	direction	 for	 future	work	would	be	 to	apply	 this	 catalogue	 for	 the	

development	of	an	offshore	software	project	that	want	to	adopt	agile	practices	

and	study	the	impact	of	each	pattern	on	different	development	stages.	

	

- Design	a	decision	making	tool	to	help	practitioners	enter	the	challenge	they	are	

facing	 or	 what	 process	 they	 want	 to	 apply	 and	 get	 a	 list	 of	 recommended	

distributed	patterns	that	could	be	used	to	overcome	it.	The	purpose	of	the	tool	

would	be	to	provide	ease	to	practitioners,	as	going	through	all	fifteen	patterns	

can	be	time	consuming.	

	

- Further	research	 is	needed	 into	 identifying	how	development	of	the	code	can	

be	improved	and	identifies	that	is	design	a	set	of	rules	to	be	followed	on	how	

frequent	the	developers	need	to	commit	their	code	and	identify	patterns	from	

	

	 202	

how	practitioners	are	developing	their	code	in	order	to	provide	a	guideline	on	

how	to	manage	and	write	quality	code	in	offshore	software	development.		

	

- Researchers	can	compare	other	development	 lifecycles	such	as	ad-hoc,	 linear,	

evolutionary,	iterative	and	incremental	approaches	as	defined	in	Appendix	B,	to	

identify	patterns	for	offshore	software	development	and	evaluate	them	against	

the	 distributed	 agile	 patterns	 catalogue	 to	 determine	 if	 they	 produce	 better	

results	or	not.	

	

- Finally	 researchers	 can	 explore	 designing	 solutions	 other	 then	 patterns	 and	

evaluate	 their	 solutions	 with	 distributed	 agile	 patterns	 catalogue	 and	

determine	if	their	solutions	present	better	results	then	our	catalogue.		

	

7.4	Limitation	of	the	Study	

	

According	to	Yin	(2003)	every	research	study	is	limited	by	the	constraints	placed	upon	

the	research	and	the	research	environment,	and	this	research	is	no	exception.	In	this	

research	we	have	made	every	effort	to	overcome	these	limitation	to	ensure	that	this	

study	could	be	delivered	smoothly,	but	it	is	not	possible	to	control	all	the	factors	that	

were	likely	to	affect	the	outcomes.		

	

The	limitations	of	this	research	as	are	following:	

	

- Some	cases	identified	in	literature,	just	mentioned	names	of	practices	and	did	

not	 provide	 details	 of	 how	 they	 are	 to	 be	 implemented	 or	 what	 the	 results	

were	after	they	implemented	an	adapted	agile	practice.		

	

- Another	 limitation	 was	 that	 researchers	 had	 identified	 offshore	 software	

development	 challenges	 but	 had	 not	 considered	 the	 complexity	 add	 by	

adopting	agile	practices,	which	limited	our	data	from	literature	and	we	had	to	

	

	 203	

reply	 on	 interviews	 to	 verify	 agile	 practices	 actually	 used	 in	 offshore	

development.	

	

- A	final	limitation	was	that	as	we	also	collected	data	from	interviews,	the	human	

factor	 can	 not	 be	 ignored,	 that	 is	 since	 the	 organisation	 chose	 to	 remain	

anonymous,	some	facts	were	not	allowed	to	be	made	public	such	as	what	was	

the	nature	of	the	projects	being	offshored,	how	critical	the	data	being	shared	

to	 offshore	 locations	 was	 and	 what	 legal	 arrangements	 they	 had	 with	 the	

offshore	 developers	 regarding	 sharing	 of	 information	 for	 the	 purpose	 of	

research.	

7.5	Chapter	Summary	

This	 chapter	 has	 presented	 an	 overall	 conclusion	 for	 the	 thesis.	 The	 aim	 of	 the	

research,	 the	 objectives,	 and	 the	 techniques	 that	 were	 used	 by	 the	 researcher	 to	

achieve	 the	 study	 objectives	 were	 addressed;	 and	 in	 final	 conclusion,	 the	 chapter	

outlined	potential	future	directions,	which	could	be	adopted	as	further	research	work.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 204	

References:	
	

Abrahamsson,	Pekka,	Juhani	Warsta,	Mikko	T.	Siponen,	and	Jussi	Ronkainen	(2003).	"New	directions	

on	 agile	 methods:	 a	 comparative	 analysis."	 In	 Software	 Engineering,	 2003.	 Proceedings.	 25th	

International	Conference	on,	pp.	244-254.	IEEE.	

	

Agerfalk,	 Par	 J.,	 and	 Brian	 Fitzgerald	 (2008).	 "Outsourcing	 to	 an	 unknown	 workforce:	 Exploring	

opensourcing	as	a	global	sourcing	strategy."	MIS	quarterly	32,	no.	2,	385.	

	

Alexander,	 Christopher	 (1977).	 A	 pattern	 language:	 towns,	 buildings,	 construction.	 Oxford	

University	Press,	1977.	

	

Alnuem,	 Mohammed	 Abdullah,	 Arshad	 Ahmad,	 and	 Hashim	 Khan	 (2012).	 "Requirements	

Understanding:	 A	 Challenge	 in	 Global	 Software	 Development,	 Industrial	 Surveys	 in	 Kingdom	 of	

Saudi	Arabia."	In	2012	IEEE	36th	Annual	Computer	Software	and	Applications	Conference,	pp.	297-

306.	IEEE,	2012.	

	

Alzoubi,	 Yehia	 Ibrahim,	 Asif	 Qumer	 Gill,	 and	 Ahmed	 Al-Ani	 (2016).	 "Empirical	 studies	 of	

geographically	 distributed	 agile	 development	 communication	 challenges:	 A	 systematic	

review."	Information	&	Management	53,	no.	1	(2016):	22-37	

	

Al-Zaidi,	 Areej,	 and	 Rizwan	 Qureshi	 (2017).	 "Global	 software	 development	 geographical	 distance	

communication	challenges."	Int.	Arab	J.	Inf.	Technol.	14,	no.	2	(2017):	215-222.	

	

	

Anthony	Byrd.	T,	K.L.C.,	Robert	W.	Zmud,	(1992).	A	Synthesis	of	Research	on	Requirements	Analysis	

and	Knowledge	Acquisition	Techniques.	MIS	Quarterly,	1992.	Vol.	16(No.	1):	p.	pp.	117-138		

	

Armour,	Phillip	G	(2007).	"Agile…	and	offshore."	Communications	of	the	ACM	50,	no.	1	(2007):	13-

16.	

	

Aron,	Ravi,	and	Jitendra	V.	Singh	(2005).	"Getting	offshoring	right."	Harvard	business	review	83,		no.	

12,	135.	

	

Aronsson,	Cecilia.	(2007)	”Kriget	om	talangerna”,	Veckan	Affärer,	nr	8,	p	44.	

	

Avritzer,	 Alberto,	 Francois	 Bronsard,	 and	 Gilberto	Matos	 (2010).	 "Improving	 Global	 Development	

Using	Agile."	In	Agility	Across	Time	and	Space,	pp.	133-148.	Springer	Berlin	Heidelberg,	2010.	

	

	 205	

	

Avritzer,	Alberto,	William	Hasling,	and	Daniel	Paulish	(2007).	"Process	 investigations	for	the	global	

studio	 project	 version	 3.0."	 In	 Global	 Software	 Engineering,	 2007.	 ICGSE	 2007.	 Second	 IEEE	

International	Conference	on,	pp.	247-251.	IEEE,	2007.	

	

Babu,	Mohan	 (2005).	Offshoring	 IT	 services:	 a	 framework	 for	managing	outsourced	projects.	 Tata	

McGraw-Hill	Education.	

	

Beck,	Kent,	Mike	Beedle,	Arie	Van	Bennekum,	Alistair	Cockburn,	Ward	Cunningham,	Martin	Fowler,	

James	Grenning	et	al.	(2001).	"Manifesto	for	agile	software	development”.	

	

Beecham,	 Sarah,	 John	 Noll,	 and	 Ita	 Richardson	 (2014).	 "Using	 Agile	 Practices	 to	 Solve	 Global	

Software	Development	Problems--A	Case	Study."	 In	2014	 IEEE	 International	Conference	on	Global	

Software	Engineeering	Workshops,	pp.	5-10.	IEEE,	2014.	

	

Berczuk,	 Steve.	 "Back	 to	 basics:	 The	 role	 of	 agile	 principles	 in	 success	with	 an	 distributed	 scrum	

team."	In	Agile	Conference	(AGILE),	2007,	pp.	382-388.	IEEE,	2007.	

	

Berenbach,	B.	 (2006).	 Impact	of	organizational	 structure	on	distributed	 requirements	engineering	

processes:	 lessons	 learned.	 In	Proceedings	of	 the	2006	 international	workshop	on	Global	software	

development	for	the	practitioner	(GSD	'06).	ACM,	New	York,	NY,	USA,	15-19.		

	

Beulen,	 Erik,	 Paul	 Van	 Fenema,	 and	 Wendy	 Currie	 (2005).	 "From	 Application	 Outsourcing	 to	

Infrastructure	 Management::	 Extending	 the	 Offshore	 Outsourcing	 Service	 Portfolio."	European	

Management	Journal	23,	no.	2,	133-144.	

	

Bhat,	 J.M.,	 Gupta,	 M.,	 Murthy,	 S.N.	 (2006).	 Overcoming	 Requirements	 Engineering	 Challenges:	

Lessons	from	Offshore	Outsourcing.	IEEE	Softw.	23,	5	(September	2006),	38-44.		

Bricout,	V.,	Heliot,	D.,	Cretoiu,	A.,	Yang,	Y.,	Simien,	T.,	and	Hvatum,	L.,	(2005).	Patterns	for	managing	

distributed	product	development	teams.	Tech.	rep.,	Schlumberger	Oilfield	Services.		

Bird,	C.,	Nagappan,	N.,	Devanbu,	P.,	Gall,	H.,	and	Murphy,	B.	(2009).	Does	distributed	development	

affect	software	quality?	An	empirical	case	study	of	Windows	Vista.	In	Proceedings	of	the	31st	

International	Conference	on	Software	Engineering	(ICSE	'09).	IEEE	Computer	Society,	Washington,	

DC,	USA,	518-528.		

	

	 206	

Braithwaite,	Keith,	and	Tim	Joyce	(2005).	"XP	expanded:	Distributed	extreme	programming."	

In	Extreme	programming	and	agile	processes	in	software	engineering,	pp.	180-188.	Springer	Berlin	

Heidelberg.	

Bryman,	Alan	(2012).	Social	research	methods	(5th	ed.).	Oxford:	Oxford	University	Press.	

	

Buschmann,	 F.,	 Meunier,	 R.,	 Rohnert,	 H.,	 Sommerlad,	 P.,	 Stal,	 M.,	 Sommerlad,	 P.,	 &	 Stal,	 M.	

(1996).	Pattern-oriented	software	architecture,	volume	1:	A	system	of	patterns.	

	

Bosch,	 J.,	 and	 Bosch-Sijtsema,	 P.	 (2010).	 From	 integration	 to	 composition:	 On	 the	 impact	 of	

software	product	lines,	global	development	and	ecosystems.	J.	Syst.	Softw.	83,	1	(January	2010),	67-

76	

	

Boon,	S.,	and	Holmes,	 J.	 (1991).	The	dynamics	of	 interpersonal	 trust:	Resolving	uncertainty	 in	 the	

face	 of	 risk.	In	 R.	 Hinde	 and	 J.	 Groebel	 (Eds.).	 Cooperation	 and	 Prosocial	 Behavior.	 Cambridge	

University	Press,	Cambridge,	UK.	190–211.	

	

Bose,	 Indranil	 (2008).	 "Lessons	 learned	 from	 distributed	 agile	 software	 projects:	 A	 case-based	

analysis."	Communications	of	the	Association	for	Information	Systems	23,	no.	1	(2008):	34.	

	

Brown,	 W.J.,	 Malveau,	 R.C.,	 McCormick,	 H.W.S.,	 Mowbray,	 T.J.	 (1988):	 AntiPatterns:	 Refactoring	

Software,	Architectures,	and	Projects	in	Crisis.	J.	Wiley,	1998.	

	

Čavrak,	 I.,	 Orlić,	 M.,	 and	 Crnković,	 I.	 (2012).	 Collaboration	 patterns	 in	 distributed	 software	

development	projects.	In	Proceedings	of	the	34th	International	Conference	on	Software	Engineering	

(ICSE	'12).	IEEE	Press,	Piscataway,	NJ,	USA,	1235-1244		

	

Camacho,	C.,	Marczak,	S.,	and	Conte,	T.	(2013).	On	the	Identification	of	Best	Practices	for	Improving	

the	 Efficiency	 of	 Testing	 Activities	 in	 Distributed	 Software	 Projects:	 Preliminary	 Findings	 from	 an	

Empirical	 Study.	 In	Proceedings	of	 the	2013	 IEEE	8th	 International	Conference	on	Global	 Software	

Engineering	Workshops	(ICGSEW	'13).	IEEE	Computer	Society,	Washington,	DC,	USA,	1-4.	

	

Carmel,	Erran	(1999).	Global	software	teams:	collaborating	across	borders	and	time	zones.	Prentice	

Hall	PTR.	

	

Carmel,	 Erran,	 and	 Ritu	 Agarwal	 (2001).	 "Tactical	 approaches	 for	 alleviating	 distance	 in	 global	

software	development."	Software,	IEEE	18.2,	22-29.	

	

	

	 207	

Carmel,	Erran,	and	Paul	Tjia	(2005.).	Offshoring	information	technology:	sourcing	and	outsourcing	to	

a	global	workforc.	Cambridge	University	Press.		

	

Cataldo,	 M.,	 Bass,	 M.,	 Herbsleb,	 J.D.,	 Bass,	 L.	 (2007).	 On	 Coordination	 Mechanisms	 in	 Global	

Software	 Development.	 In	 Proceedings	 of	 the	 International	 Conference	 on	 Global	 Software	

Engineering	(ICGSE	'07).	IEEE	Computer	Society,	Washington,	DC,	USA,	71-80.	

	

Clark,	 Herbert	 H.,	 and	 Susan	 E.	 Brennan	 (1991).	 "Grounding	 in	 communication."	 Perspectives	 on	

socially	shared	cognition	13,	no.	1991	(1991):	127-149.	

	

Clerc,	 V.	 (2008).	 Towards	 architectural	 knowledge	 management	 practices	 for	 global	 software	

development.	In	Proceedings	of	the	3rd	international	workshop	on	Sharing	and	reusing	architectural	

knowledge	(SHARK	'08).	ACM,	New	York,	NY,	USA,	23-28.		

	

Conchúir,	Eoin	Ó.,	Pär	 J.	Ågerfalk,	Helena	H.	Olsson,	and	Brian	Fitzgerald	 (2009).	 "Global	 software	

development:	where	are	the	benefits?."	Communications	of	the	ACM	52,	no.	8	.127-131.	

	

Conchúir,	E.,	Holmström,	H.,	Ågerfalk,	P.J.	and	Fitzgerald,	B.	(2006).	Exploring	the	Assumed	Benefits	

of	 Global	 Software	 Development.	 In	 Proceedings	 of	 the	 IEEE	 international	 conference	 on	 Global	

Software	Engineering	(ICGSE	'06).	IEEE	Computer	Society,	Washington,	DC,	USA,	159-168.	

	

Cordeiro,	 Lucas,	 Cassiano	 Becker,	 and	 Raimundo	 Barreto	 (2007).	 "Applying	 Scrum	 and	

Organizational	Patterns	to	Multi-site	Software	Development."	(2007):	46-67.	

	

Cottmeyer,	 Mike	 (2008).	 "The	 good	 and	 bad	 of	 Agile	 offshore	 development."	 In	 Agile,	 2008.	

AGILE'08.	Conference,	pp.	362-367.	IEEE,	2008.	

	

Cristal,	Mauricio,	Daniel	Wildt,	 and	Rafael	 Prikladnicki	 (2008).	 "Usage	of	 Scrum	practices	within	 a	

global	company."	In	Global	Software	Engineering,	2008.	ICGSE	2008.	IEEE	International	Conference	

on,	pp.	222-226.	IEEE,	2008.	

	

Damian,	 Daniela,	 and	 Deependra	 Moitra	 (2006).	 "Guest	 Editors'	 Introduction:	 Global	 Software	

Development:	How	Far	Have	We	Come?."	Software,	IEEE	23,	no.	5,	17-19.	

	

Damian,	 Daniela	 E.,	 and	 Didar	 Zowghi	 (2003).	 "RE	 challenges	 in	multi-site	 software	 development	

organisations."	Requirements	engineering	8,	no.	3	(2003):	149-160.	

	

Danait,	 Ajay	 (2005).	 "Agile	 offshore	 techniques-a	 case	 study."	 In	 Agile	 Conference,	 2005.	

	

	 208	

Proceedings,	pp.	214-217.	IEEE,	2005.	

	

Daneva,	Maya,	 Egbert	 Van	Der	 Veen,	 Chintan	Amrit,	 Smita	Ghaisas,	 Klaas	 Sikkel,	 Ramesh	 Kumar,	

Nirav	Ajmeri,	Uday	Ramteerthkar,	and	Roel	Wieringa.	 (2013).	 "Agile	 requirements	prioritization	 in	

large-scale	 outsourced	 system	projects:	 An	 empirical	 study."	 Journal	 of	 systems	and	 software	 86,	

no.	5	(2013):	1333-1353.	

	

Darke,	 Peta	 (1997).	 G.G.S.,	 User	 viewpoint	 modelling:	 understanding	 and	 representing	 user	

viewpoints	during	requirements	definition.	 Information	Systems	Journal,	1997.	Volume	7(Issue	3):	

p.	pages	213-219.		

	

Das,	Tarun	K.,	and	Bing-Sheng	Teng	 (1998).	 "Between	 trust	and	control:	developing	confidence	 in	

partner	cooperation	in	alliances."	Academy	of	Management	review	23,	no.	3,	491-512.	

	

Davenport,	 Thomas,	 H.,	 and	 Prusak,	 Laurence,	 (1998).	 Working	 knowledge.	 Boston:	 Harvard	

Business	School	Press.	

	

Davis,	 A.M	 (1989).	 Software	 Requirements:	 Analysis	 and	 Specification.	 1989:	 Prentice	 Hall.	 352	

pages.		

	

Denny,	 Nathan,	 Shivram	 Mani,	 Ravi	 Sheshu	 Nadella,	 Manish	 Swaminathan,	 and	 Jamie	 Samdal	

(2008).	 "Hybrid	 offshoring:	 Composite	 personae	 and	 evolving	 collaboration	 technologies."	

Information	Resources	Management	Journal	(IRMJ)	21,	no.	1	(2008):	89-104.	

	

Dingsøyr,	Torgeir,	 Sridhar	Nerur,	VenuGopal	Balijepally,	 and	Nils	Brede	Moe	 (2012).	 "A	decade	of	

agile	 methodologies:	 Towards	 explaining	 agile	 software	 development."	Journal	 of	 Systems	 and	

Software	85,	no.	6,	1213-1221.	

	

Dourish,	 Paul,	 and	 Victoria	 Bellotti.	 (1992).	 Awareness	 and	 coordination	 in	 shared	

workspaces.	Proceedings	 of	 the	 1992	 ACM	 conference	 on	 Computer-supported	 cooperative	 work.	

ACM.		

Drummond,	 B.,	 and	 John	 Francis	 Unson	 (2008).	 "Yahoo!	 Distributed	 Agile:	 Notes	 from	 the	world	

over."	In	Agile,	2008.	AGILE'08.	Conference,	pp.	315-321.	IEEE,	2008.	

Dybå,	 Tore,	 and	 Torgeir	 Dingsøyr	 (2008).	 "Empirical	 studies	 of	 agile	 software	 development:	 A	

systematic	review."	Information	and	software	technology	50,	no.	9,	833-859.	

	

	 209	

Easterby-Smith,	 M.,	 Thorpe	 R.	 and	 Lowe	 A.	 (2004)	 Management	 Research:	 An	 Introduction,2nd	

Edition.	SAGE	Publications	Ltd.	London.		

Easterby-Smith,	Mark,	 Richard	 Thorpe,	 and	 Paul	 R.	 Jackson	 (2012).	Management	 research.	 Sage,	

2012.	

Ebert,	 Christof	 (2011).	Global	 software	 and	 IT:	 A	 guide	 to	 distributed	 development,	 projects,	 and	

outsourcing.	Wiley-IEEE	Computer	Society	Press	

Elssamadisy,	Amr,	and	David	West	(2006).	"Adopting	agile	practices:	an	incipient	pattern	language."	

In	Proceedings	of	the	2006	conference	on	Pattern	languages	of	programs,	p.	1.	ACM,	2006.	

	

Flick,	 Uwe.	 (2011).	 Introducing	 research	 methodology:	 A	 beginner's	 guide	 to	 doing	 a	 research	

project.	London:	Sage.	

	

Fowler,	 Martin	 (1997).	 Analysis	 patterns:	 reusable	 object	 models.	 Addison-Wesley	 Professional,	

1997.	

	

Fowler,	 Martin.	 Daily	 Standup	 Patterns.	 Available	 at:	

http://martinfowler.com/articles/itsNotJustStandingUp.html		

	

Fowler,	Martin	(2005).	The	New	Methodology.	2005.	<http://www.martinfowler.com>.		

	

Galen,	Robert	(2009)	SCRUM	Product	Ownership	–	Balancing	Value	from	the	Inside	Out	RGCG	LLC	

2009.	ISBN:	978-0-578-01912-3	

	

Gamma,	 Erich,	 Richard	 Helm,	 Ralph	 Johnson,	 and	 John	 Vlissides.	 Design	 patterns:	 elements	 of	

reusable	object-oriented	software.	Pearson	Education,	1997.	

	

Ghafoor,	Fawad,	Ibrar	Ali	Shah,	and	Nasir	Rashid	(2017).	"Issues	in	Adopting	Agile	Methodologies	in	

Global	and	Local	Software	Development:	A	Systematic	Literature	Review	Protocol	with	Preliminary	

Results."	International	Journal	of	Computer	Applications	160,	no.	7.	

	

Garner,	 C.	 Alan	 (2004).	 Offshoring	 in	 the	 service	 sector:	 Economic	 impact	 and	 policy	

issues.	Economic	Review-Federal	Reserve	Bank	of	Kansas	City	89,	5-38.	

	

Global	Wages	Comparison	from	http://www.paywizard.co.uk/main/pay/global-wage-comparison	

	

	

	 210	

Goddard,	 W.	 &	 Melville,	 S.	 (2004).	 Research	 Methodology:	 An	 Introduction,	 (2nd	 ed.)	 Oxford:	

Blackwell	Publishing.	

	

Grechanik	,M.,	Jones,	J.A.,	Orso,	A.,	and	van	der	Hoek,	A.	(2010).	Bridging	gaps	between	developers	

and	testers	in	globally-distributed	software	development.	In	Proceedings	of	the	FSE/SDP	workshop	

on	Future	of	software	engineering	research	(FoSER	'10).	ACM,	New	York,	NY,	USA,	149-154.	

	

Gupta,	Amar	(2007).	"Expanding	the	24-hour	workplace."	The	Wall	Street	Journal:	15-16.	

	

Gupta,	Amar	(2009).	"Deriving	mutual	benefits	from	offshore	outsourcing."Communications	of	the	

ACM	52,	no.	6	:	122-126.	

	

Gutwin,	 Carl,	 Saul	 Greenberg,	 and	 Mark	 Roseman	 (1996).	 "Workspace	 awareness	 in	 real-time	

distributed	groupware:	Framework,	widgets,	and	evaluation."	People	and	Computers.	281-298.	

	

Hayes	 ,L.G	 (2003).	 “Everything	 you	 know	 about	 Offshore	 Outsourcing	 is	 Wrong”,	 Datamation	

Magazine,	Feb	28,	2003.	

	

Hendrik	C.	Jahn,	Alexandra	Gazendam	and	André	Schlieker	(2011)	Accenture:	The	high-performance	

insurer	 of	 the	 future,	 Accenture.	 [Available	 at:	

http://nstore.accenture.com/Geneva/HP_Insurer_of_the_Future_report.pdf]	

	

Herbsleb,	James	D.,	Audris	Mockus,	Thomas	A.	Finholt,	and	Rebecca	E.	Grinter	(2001).	"An	empirical	

study	 of	 global	 software	 development:	 distance	 and	 speed."	 In	 Proceedings	 of	 the	 23rd	

international	conference	on	software	engineering,	pp.	81-90.	IEEE	Computer	Society,	2001.	

	

Herbsleb,	 J.D.	 (2007).	Global	Software	Engineering:	The	Future	of	Socio-technical	Coordination.	 In	

Future	 of	 Software	 Engineering	 (2007).	 IEEE	 Computer	 Society,	 Washington,	 DC,	 USA,	 188-198.	

DOI=http://dx.doi.org/10.1109/FOSE.2007.11.	

	

Herbsleb,	 J.D.	 Paulish,	 D.J.	 and	 Bass,	 M.	 (2005).	 Global	 software	 development	 at	 siemens:	

experience	 from	 nine	 projects.	 In	 Proceedings	 of	 the	 27th	 international	 conference	 on	 Software	

engineering	(ICSE	'05).	ACM,	New	York,	NY,	USA,	524-533.		

	

Hitt,	 Michael	 A.,	 R.	 Duane	 Ireland,	 and	 Robert	 E.	 Hoskisson	 (2002).	Strategic	 Management:	

Competitiveness	and	Globalization.	South-Western	College	Pub.,	Canada.	

	

	

	 211	

Hofner,	 Gerd,	 and	 V.	 S.	 Mani	 (2007).	 "TAPER:	 A	 generic	 framework	 for	 establishing	 an	 offshore	

development	center."	In	Global	Software	Engineering,	2007.	ICGSE	2007.	Second	IEEE	International	

Conference	,	162-172.	

	

Hofstede,	Geert		(1980).	Culture's	consequences.	Beverly	Hills,	CA:	Sage,	1980.	

	

Hofstede,	Geert	(1997)		Culture	and	organizations--Software	of	the	mind:	McGraw-Hill,	1997.	

	

Holmström,	Helena,	Brian	Fitzgerald,	Pär	J.	Ågerfalk,	and	Eoin	Ó.	Conchúir.	"Agile	practices	reduce	

distance	in	global	software	development."	Information	Systems	Management	23,	no.	3	(2006):	7-18.	

	

Holmstrom,	H.,	Conchúir,	E.	Ó.,	Agerfalk,	 J.,	&	Fitzgerald,	B.	 (2006).	Global	 software	development	

challenges:	A	case	study	on	temporal,	geographical	and	socio-cultural	distance.	In	Global	Software	

Engineering,	2006.	ICGSE'06.	International	Conference),	3-11.	

	

Hossain,	Emam,	Muhammad	Ali	Babar,	and	Hye-young	Paik	(2009).	"Using	scrum	in	global	software	

development:	 a	 systematic	 literature	 review."	 In	Global	 Software	 Engineering,	 2009.	 ICGSE	 2009.	

Fourth	IEEE	International	Conference	on,	pp.	175-184.	Ieee,	2009.	

	

Humphrey,	Watts	S	(1989).	Managing	the	Software	Process	.	Addison-Wesley	Professional.	

	

Hussey,	Jill,	and	Roger	Husse	(1997)y.	"Business	research."	Hampshire:	Palgrave	(1997).	

	

Hvatum,	 Lise	 B.,	 and	 Rebecca	 Wirfs-Brock	 (2015).	 "Patterns	 to	 build	 the	 magic	 backlog."	 In	

Proceedings	of	the	20th	European	Conference	on	Pattern	Languages	of	Programs,	p.	12.	ACM,	2015.	

	

Jaakkola,	 H.,	 Heimbürger,	 A.,	 and	 Linna,	 P.	 (2010).	 Knowledge-oriented	 software	 engineering	

process	in	a	multi-cultural	context.	Software	Quality	Control	18,	2	(June,	2010).	299-319.	

	

Jacobs,	D.,	Requirements	Engineering	so	Things	Don't	Get	Ugly,	in	Companion	to	the	proceedings	of	

the	29th	 International	Conference	on	Software	Engineering.	2007,	 IEEE	Computer	Society.	p.	159-

160.		

	

Jahns,	Christopher,	Evi	Hartmann,	and	Lydia	Bals	(2006).	"Offshoring:	Dimensions	and	diffusion	of	a	

new	business	concept."	Journal	of	Purchasing	and	Supply	Management	12.4	,	218-231.	

	

	

	

	 212	

Jan,	Syed	Roohullah,	Faheem	Dad,	Nouman	Amin,	Abdul	Hameed,	and	Syed	Saad	Ali	Shah	(2016).	

"Issues	 in	 Global	 Software	 Development	 (Communication,	 Coordination	 and	 Trust)	 A	 Critical	

Review."	training	6,	no.	7	(2016):	8.	

	

Jankowicz,	A.	Devi	(2005).	Business	research	projects.	Cengage	Learning	EMEA,	2005.	

	

Javdani	 Gandomani,	 Taghi,	 Hazura	 Zulzalil,	 Abdul	 Azim	 Abdul	 Ghani,	 Abu	 Bakar	 Md	 Sultan,	 and	

Khaironi	Yatim	Shairf	 (2014).	 "Exploring	 facilitators	of	 transition	and	adoption	to	agile	methods:	a	

grounded	theory	study."	Journal	of	Software	9,	no.	7	(2014):	1666-1678.	

	

Javidan,	Mansour,	Günter	K.	Stahl,	Felix	Brodbeck,	and	Celeste	PM	Wilderom	(2005).	"Cross-border	

transfer	 of	 knowledge:	 Cultural	 lessons	 from	 Project	 GLOBE."The	 Academy	 of	 Management	

Executive	19,	no.	2,	59-76.	

	

Jensen,	B.	and	Zilmer,	A.	(2003).	Cross-continent	development	using	Scrum	and	XP.	Proceedings	of	

XP.	Springer	Berlin,	,	pp.146-153	

	

Kanawattanachai,	Prasert,	and	Youngjin	Yoo	(2002).	"Dynamic	nature	of	trust	in	virtual	teams."	The	

Journal	of	Strategic	Information	Systems	11,	no.	3,187-213.	

	

Kamaruddin,	Nina	Kamarina,	Noor	Habibah	Arshad,	and	Azlinah	Mohamed	(2012).	"Chaos	issues	on	

communication	 in	 Agile	 Global	 Software	 Development."	 In	 Business	 Engineering	 and	 Industrial	

Applications	Colloquium	(BEIAC),	2012	IEEE,	pp.	394-398.	IEEE,	2012.	

	

Kausar,	 Maryam	 and	 Adil	 Al-Yasiri	 (2015).	 “Distributed	 Agile	 Patterns	 for	 Offshore	 Software	

Development”	12th	International	Joint	Conference	on	Computer	Science	and	Software	Engineering	

(JCSSE),	IEEE	2015		

	

Kausar,	 Maryam	 and	 Adil	 Al-Yasiri	 (2016).	 Distributed	 Agile	 Patterns.	 [Available	 at:	

http://stp872.edu.csesalford.com/distributedagilepatterns.html]	

	

	

Kedia,	 Ben	 L.	 and	 Lahiri,	 Somnath,	 (2007),	 International	 outsourcing	 of	 services:	 A	 partnership	

model.	Memphis:	Journal	of	International	Management,	13,	22–37	

	

Kerth,	 Norm	 (2001).	 "Project	 Retrospectives:	 A	 Handbook	 for	 Reviews."	Dorset	 House	 Publishing	

(2001).	

	

	

	 213	

Khan,	 Huma	 Hayat,	 Mohd	 Naz’ri	 bin	Mahrin,	 and	 Suriayati	 bt	 Chuprat.	 "Factors	 generating	 risks	

during	 requirement	 engineering	 process	 in	 global	 software	 development	 environment."	

International	Journal	of	Digital	Information	and	Wireless	Communications	(IJDIWC)	4,	no.	1	(2014):	

63-78.	

	

Kircher,	 M.,	 Jain,	 P.,	 Corsaro,	 A.	 and	 Levine,	 D.	 (2001).	 Distributed	 Extreme	 Programming.	

Proceedings	 of	 the	 International	 Conference	 on	 eXtreme	 Programming	 and	 Flexible	 Processes	 in	

Software	Engineering,	Sardinia,	Italy,	May	20	-	23,2001.	

	

Kitchenham,	 B.	&	 Charters,	 S.	 (2007),	 Guidelines	 for	 performing	 Systematic	 Literature	 Reviews	 in	

Software	Engineering,	EBSE2007-001,	Keele	University	and	Durham	University	Joint	Report.	

	

Kluckhohn,	Florence	R.,	and	Fred	L.	Strodtbeck	(1961).	"Variations	in	value	orientations."	(1961).	

	

Kobayashi-Hillary,	 M.	 (2005).	 Outsourcing	 to	 India:	 The	 offshore	 advantage.	 Springer	 Science	 &	

Business	Media.	

	

Koehne,	 B.,	 Shih,	 P.C.,	 and	 Olson,	 J.S.	 (2012).	 Remote	 and	 alone:	 coping	 with	 being	 the	 remote	

member	 on	 the	 team.	 In	 Proceedings	 of	 the	 ACM	 2012	 conference	 on	 Computer	 Supported	

Cooperative	Work	(CSCW	'12).	ACM,	New	York,	NY,	USA,	1257-1266.	

	

Kommeren,	 R.,	 and	 Parviainen,	 P.	 (2007).	 Philips	 experiences	 in	 global	 distributed	 software	

development.	 Empir.	 Softw.	 Eng.	 12,	 6	 (December,	 2007),	 647-660.	

DOI=http://dx.doi.org/10.1007/s10664-007-9047-3.		

	

Kontio,	 Jyrki,	 Magnus	 Hoglund,	 Jan	 Ryden,	 and	 Pekka	 Abrahamsson	 (2004).	 "Managing	

commitments	 and	 risks:	 challenges	 in	 distributed	 agile	 development."	 In	Software	 Engineering,	

2004.	ICSE	2004.	Proceedings.	26th	International	Conference	on,	pp.	732-733.	IEEE	

	

Korkala,	Mikko,	Minna	 Pikkarainen,	 and	 Kieran	 Conboy	 (2010).	 "Combining	 agile	 and	 traditional:	

Customer	 communication	 in	distributed	environment."	 In	Agility	Across	Time	and	Space,	 pp.	201-

216.	Springer	Berlin	Heidelberg,	2010.	

	

Kotlarsky,	Julia,	and	Ilan	Oshri	(2005).	"Social	ties,	knowledge	sharing	and	successful	collaboration	in	

globally	distributed	system	development	projects."	European	Journal	of	Information	Systems	14,	no.	

1,	37-48.	

	

	

	 214	

Krippendorff,	Klaus.	(2004).	Content	analysis:	An	introduction	to	its	methodology,	Thousand	Oaks,	

CA:	Sage	Publications.	

	

Kroll,	Josiane,	Alan	R.	Santos,	Rafael	Prikladnicki,	Estevão	Ricardo	Hess,	Rafael	A.	Glanzner,	Afonso	

Sales,	 Jorge	 Luis	 Nicolas	 Audy,	 and	 Paulo	 Henrique	 Lemelle	 Fernandes	 (2012).	 "Follow-the-Sun	

Software	 Development:	 A	 Controlled	 Experiment	 to	 Evaluate	 the	 Benefits	 of	 Adaptive	 and	

Prescriptive	Approaches."	In	SEKE,	pp.	551-556.	2012.	

	

Kussmaul,	Clifton,	Roger	Jack,	and	Barry	Sponsler	(2004).	"Outsourcing	and	offshoring	with	agility:	A	

case	 study."	 In	 Extreme	 Programming	 and	 Agile	 Methods-XP/Agile	 Universe	 2004,	 pp.	 147-154.	

Springer	Berlin	Heidelberg,	2004.	

	

Lander,	Maria	Cristina,	Russell	L.	Purvis,	Gordon	E.	McCray,	and	William	Leigh	(2004).	Trust-building	

mechanisms	 utilized	 in	 outsourced	 IS	 development	 projects:	 a	 case	 study.	Information	 &	

Management	41,	no.	4	.509-528.	

	

Lanubile,	 Filippo,	 Fabio	 Calefato,	 and	 Christof	 Ebert	 (2013).	 Group	 Awareness	 in	 Global	 Software	

Engineering.	IEEE	Software	.	18-23.	

	

Larman,	Craig	(2004).	Agile	and	Iterative	Development:	A	Manager's	Guide.	Addison-Wesley.	p.	27.	

ISBN	978-0-13-111155-4	

	

Larman,	 Craig	 (2010).	 Practices	 for	 Scaling	 Lean	 and	 Agile	 Development:	 Large.	 Addison-Wesley	

Professional,	2010.	

	

Layman,L.,Williams,L.,Damian,D.and	 Bures,H.	 (2006.)	 Essential	 communication	 practices	 for	

extreme	 programming	 in	 a	 glob-	 al	 software	 development	 team.	 Information	 and	 Software	

Technology,	vol.	48,	no.	9,	pp.	781-794	

	

Lee,	 Sang	M.,	 and	 Suzanne	 J.	 Peterson	 (2001)	 .	 "Culture,	 entrepreneurial	 orientation,	 and	 global	

competitiveness."	Journal	of	world	business	35,	no.	4	(2001):	401-416.	

	

Lescher,	 Christian	 (2010).	 "Patterns	 for	 global	 development:	 how	 to	 build	 one	 global	 team?."	

Proceedings	of	the	15th	European	Conference	on	Pattern	Languages	of	Programs.	ACM,	2010.	

	

Liskin,	 O.,	 Herrmann,	 C.,	 Knauss,	 E.,	 Kurpick,	 T.,	 Rumpe,	 B.,	 and	 Schneider,	 K.	 (2012).	 Supporting	

Acceptance	Testing	in	Distributed	Software	Projects	with	Integrated	Feedback	Systems:	Experiences	

and	 Requirements.	 In	 Proceedings	 of	 the	 2012	 IEEE	 Seventh	 International	 Conference	 on	 Global	

	

	 215	

Software	Engineering	(ICGSE	'12).	IEEE	Computer	Society,	Washington,	DC,	USA,	84-93.	

	

MacGregor,	Eve,	Yvonne	Hsieh,	and	Philippe	Kruchten	(2005).	"Cultural	patterns	in	software	process	

mishaps:	 incidents	 in	global	projects."	 In	ACM	SIGSOFT	Software	Engineering	Notes,	vol.	30,	no.	4,	

pp.	1-5.	ACM,	2005.	

	

Malik,	Fareesa,	and	Hammad	Majeed	(2010).	"Effect	of	Development	Strategies	and	Project	Types	

on	Offshore	Software	Development	using	Agile	Paradigm–A	Study."	 In	2010	Agile	Conference,	pp.	

67-74.	IEEE,	2010.	

	

Massol,	Vincent	(2004),	Technical	talk	on	“Agile	Offshore	Methods”		TheServerSide.com,	Jan	6,	2004	

	

Maruping,	Likoebe	M	(2010).	"Implementing	Extreme	Programming	in	Distributed	Software	Project	

Teams:	 Strategies	 and	 Challenges."	 In	 Agility	 Across	 Time	 and	 Space,	 pp.	 11-30.	 Springer	 Berlin	

Heidelberg,	2010.	

	

Massol,	Vincent	(2004).	"“Case	Study:	Distributed	Agile	Development."	TheServerSide.	com	(2004).	

	

Matloff,	Norman	(2005).	"Offshoring:	What	can	go	wrong?."	IT	professional	7,	no.	4,	39-45.	

	

May,	Tim	(2011).	Social	research.	McGraw-Hill	Education	(UK),	2011.	

	

Modi,	 Sunila,	 Pamela	 Abbott,	 and	 Steve	 Counsell	 (2013).	 "Negotiating	 common	 ground	 in	

distributed	agile	development:	A	case	study	perspective."	 In	Global	Software	Engineering	 (ICGSE),	

2013	IEEE	8th	International	Conference	on,	pp.	80-89.	IEEE,	2013.	

	

Morgan,	 Robert	 M.,	 and	 Shelby	 D.	 Hunt	 (1994).	 "The	 commitment-trust	 theory	 of	 relationship	

marketing."	the	journal	of	marketing	,	20-38.	

	

Mullick,	N.,	Bass,	M.,	Houda,	Z.,	Paulish,	P.,	and	Cataldo,	M.	(2006).	Siemens	Global	Studio	Project:	

Experiences	 Adopting	 an	 Integrated	 GSD	 Infrastructure.	 In	 Proceedings	 of	 the	 IEEE	 international	

conference	 on	 Global	 Software	 Engineering	 (ICGSE	 '06).	 IEEE	 Computer	 Society,	Washington,	 DC,	

USA,	203-212.	

	

Newman,	Isadore.	(1998).	Qualitative-quantitative	research	methodology:	Exploring	the	interactive	

continuum.	Carbondale:	Southern	Illinois	University	Press.	

	

	

	 216	

Niazi,	 M.,	 El-Attar,	 M.,	 Usma,	 M.,	 and	 Ikram,	 N.	 (2012).	 GlobReq:	 A	 framework	 for	 improving	

requirements	 engineering	 in	 global	 software	 development	 projects:	 Preliminary	 results.	 In	

proceedings	 of	 the	 16th	 International	 Conference	 on	 Evaluation	 &	 Assessment	 in	 Software	

Engineering	(EASE	2012).	(May	14-15,	2012)	166-170.	

	

Nisar,	 Muhammad	 F.,	 and	 Tahir	 Hameed	 (2004).	 "Agile	 methods	 handling	 offshore	 software	

development	issues."	In	Multitopic	Conference,	2004.	Proceedings	of	INMIC	2004.	8th	International,	

pp.	417-422.	IEEE.	

	

Noll,	 J.,	 Richardson,	 I.,	 &	 Beecham,	 S.	 (2014).	 Patternizing	 GSD	 Research:	 Maintainable	 Decision	

Support	for	Global	Software	Development.	

	

OECD	 (2004).	OECD	 information	 technology	outlook:	Organisation	 for	economic	 co-operation	and	

development.	Retrieved	January	2009,	from	http://	www.oecd.org/dataoecd/22/18/37620123.pdf.	

	

Oshri,	 Ilan,	 Julia	 Kotlarsky,	 and	 Leslie	 P.	 Willcocks.	The	 Handbook	 of	 Global	 Outsourcing	 and	

Offshoring	3rd	Edition.	Springer,	2015.	

	

Ovaska,	 P.,	 Rossi,	 M.	 and	 Marttiin,	 P.	 (2003).	 Architecture	 as	 a	 coordination	 tool	 in	 multi-site	

software	development.	Softw.	Process:	Improve.	Pract.	8(2003)	233–247.	

	

Ozawa,	H.,	&	Zhang,	L.	(2013).	Adapting	Agile	Methodology	to	Overcome	Social	Differences	in	

Project	Members.	In	Agile	Conference	(AGILE),	2013	(pp.	82-87).	IEEE.	

	

Paasivaara,	Maria,	and	Casper	Lassenius	(2003).	"Collaboration	practices	in	global	inter-

organizational	software	development	projects."	Software	Process:	Improvement	and	Practice	8,	no.	

4	(2003):	183-199.	

	

Paasivaara,	Maria,	 Sandra	 Durasiewicz,	 and	 Casper	 Lassenius	 (2009).	 "Using	 scrum	 in	 distributed	

agile	 development:	 A	 multiple	 case	 study."	 In	 Global	 Software	 Engineering,	 2009.	 ICGSE	 2009.	

Fourth	IEEE	International	Conference	on,	pp.	195-204.	IEEE,	2009.	

	

Pakdeetrakulwong,	 Udsanee,	 Pornpit	 Wongthongtham,	 and	 Naveed	 Khan	 (2015).	 "An	 Ontology-

Based	 Multi-Agent	 System	 to	 Support	 Requirements	 Traceability	 in	 Multi-Site	 Software	

Development	 Environment."	 In	 Proceedings	 of	 the	 ASWEC	 2015	 24th	 Australasian	 Software	

Engineering	Conference,	pp.	96-100.	ACM,	2015.	

	

	

	 217	

Patel,	Chetankumar,	and	Muthu	Ramachandran	(2008).	"SoBA:	A	Tool	Support	for	Story	Card	Based	

Agile	Software	Development."	In	SETP,	pp.	17-23.	2008.	

	

Pehmöller,	Anneke,	Frank	Salger,	and	Stefan	Wagner(2010).	"Patterns	for	testing	in	global	software	

development."	 In	 Proceedings	 of	 the	 13th	 International	 Conference	 on	 Quality	 Engineering	 in	

Software	Technology.	2010.	

	

Picot,	Arnold,	Ralf	Reichwald,	and	Rolf	T.	Wigand.	(2003).	"Die	grenzenlose	Unternehmung.".	

	

Pilatti,	 Leonardo,	 and	 Jorge	 Luis	 Nicolas	 Audy	 (2006).	 "Global	 Software	 Development	 Offshore	

Insourcing	Organizations	 Characteristics:	 Lessons	 Learned	 from	 a	 Case	 Study."	 In	Global	 Software	

Engineering,	2006.	ICGSE'06.	International	Conference,	249-250.		

	

Prikladnicki,	 Rafael,	 Jorge	 Luis	 Nicolas	 Audy,	 Daniela	 Damian,	 and	 Toacy	 Cavalcante	 de	 Oliveira	

(2007).	 "Distributed	 Software	 Development:	 Practices	 and	 challenges	 in	 different	 business	

strategies	of	offshoring	and	onshoring."	In	Global	Software	Engineering,	2007.	ICGSE	2007.	Second	

IEEE	International	Conference,	262-274.		

	

Prikladnicki,	Rafael,	and	Jorge	Luis	Nicolas	Audy	(2012).	"Managing	Global	Software	Engineering:	A	

Comparative	 Analysis	 of	 Offshore	 Outsourcing	 and	 the	 Internal	 Offshoring	 of	 Software	

Development."	Information	Systems	Management	29,	no.	3:	216-232.	

	

Prikladnicki,	 Rafael,	 Sabrina	 Marczak,	 Erran	 Carmel,	 and	 Christof	 Ebert	 (2012).	 "Technologies	 to	

Support	Collaboration	across	Time	Zones."	Software,	IEEE29,	no.	3,	10-13.	

	

Poole,	Charles	J	(2004).	"Distributed	product	development	using	extreme	programming."	In	Extreme	

Programming	and	Agile	 Processes	 in	 Software	 Engineering,	 pp.	 60-67.	 Springer	Berlin	Heidelberg,	

2004.	

	

Qumer,	Asif,	Brian	Henderson-sellers,	and	Tom	Mcbride	(2007).	"Agile	adoption	and	improvement	

model."	(2007).	

	

Qumer,	Asif,	and	Brian	Henderson-Sellers	(2008).	"An	evaluation	of	the	degree	of	agility	in	six	agile	

methods	and	its	applicability	for	method	engineering."	Information	and	software	technology	50,	no.	

4	(2008):	280-295.	

	

Qumer,	Asif,	and	Brian	Henderson-Sellers	(2008).	"A	framework	to	support	the	evaluation,	adoption	

and	improvement	of	agile	methods	in	practice."	Journal	of	Systems	and	Software	81,	no.	11	(2008):	

	

	 218	

1899-1919.	

	

Radlo,	 Mariusz-Jan	 (2016).	 "Offshoring	 and	 Outsourcing	 in	 Economic	 Theories."	 In	Offshoring,	

Outsourcing	and	Production	Fragmentation,	pp.	41-97.	Palgrave	Macmillan,	London,	2016.	

	

	

Radoff,	 Sandy	 (2006).	 “Improved	 Cross-Cultural	 Communication	 Increases	 Global	 Sourcing	

Productivity”.	United	States:	Accenture	

	

Ramesh,	Balasubramaniam,	Lan	Cao,	Kannan	Mohan,	and	Peng	Xu	(2006).	"Can	distributed	software	

development	be	agile?."	Communications	of	the	ACM	49,	no.	10	(2006):	41-46.		

	

Räty,	 Petteri,	 Benjamin	 Behm,	 Kim-Karol	 Dikert,	Maria	 Paasivaara,	 Casper	 Lassenius,	 and	 Daniela	

Damian	(2013).	"Communication	Practices	in	a	Distributed	Scrum	Project."	CoRR	(2013).	

	

Ring,	 P.,	 and	 Van	 de	 Ven,	 A	 (2004).	 Developmental	 processes	 of	 cooperative	 interorganizational	

relationships.	Acad.	Mgt.	Rev.	19,	1	.90–118.	

	

Robertson,	 S.	 (1996).	 Requirements	 Patterns	 Via	 Events/Use	 Cases.	 In	Proceedings	 Pattern	

Languages	of	Programming.	

	

Robinson,	Marcia,	and	Ravi	Kalakota	 (2004).	Offshore	outsourcing:	Business	models,	ROI	and	best	

practices.	Mivar	Press.	

	

Robson,	C	(2002).	Real	world	research:	A	resource	for	social	scientist	and	practitioners	(2nd	Edition,	

Blackwell	Publishers,	Oxford.	

	

Rousseau,	Denise	M.,	Sim	B.	Sitkin,	Ronald	S.	Burt,	and	Colin	Camerer	(1998).	"Not	so	different	after	

all:	A	cross-discipline	view	of	trust."	Academy	of	management	review	23,	no.	3,	393-404.	

	

Sabherwal,	Rajiv	(1999).	"The	role	of	trust	in	outsourced	IS	development	projects.	Communications	

of	the	ACM	42.2	.80-86.	

	

Sadagopan,	S	(2002),	Indian	IT	Companies	–	Do	you	know	Wipro?,	Times	of	India,	May	13,	2002	

Sahay,	 Sundeep,	 Brian	 Nicholson,	 and	 Shenai	 Krishna	 (2003).	 Global	 IT	 outsourcing:	 software	

development	across	borders.	Cambridge	University	Press.			

	

	 219	

Salger,	Frank,	Jochen	Englert,	and	Gregor	Engels	(2010).	"Towards	Specification	Patterns	for	Global	

Software	 Development	 Projects-Experiences	 from	 the	 Industry."	 In	 Quality	 of	 Information	 and	

Communications	 Technology	 (QUATIC),	 2010	 Seventh	 International	 Conference	 on	 the,	 pp.	 73-78.	

IEEE,	2010.	

Saunders,	M.,	P	Lewis	(2007)	-	Research	methods	for	business	students,	2007	

Sarker,	Suprateek,	and	Sundeep	Sahay	(2004).	Implications	of	space	and	time	for	distributed	work:	

an	 interpretive	 study	 of	 US–Norwegian	 systems	 development	 teams.	 European	 Journal	 of	

Information	Systems	13.1	.3-20.			

Sengupta,	 B.,	 Chandra,	 S.,	 and	 Sinha,	 V.	 (2006).	 A	 research	 agenda	 for	 distributed	 software	

development.	In	Proceedings	of	the	28th	international	conference	on	Software	engineering	(2006).	

ACM,	New	York,	NY,	USA,	731-740.	DOI=http://doi.acm.org/10.1145/1134285.1134402.		

Shah,	Hina,	Nancy	J.	Nersessian,	Mary	 Jean	Harrold,	and	Wendy	Newstetter	 (2012).	"Studying	the	

influence	 of	 culture	 in	 global	 software	 engineering:	 thinking	 in	 terms	 of	 cultural	 models."	 In	

Proceedings	 of	 the	 4th	 international	 conference	 on	 Intercultural	 Collaboration,	 pp.	 77-86.	 ACM,	

2012.	

Simons,	Matt	(2002).	"Internationally	agile."	Inform	IT.	

Smite,	 Darja,	 and	 Claes	 Wohlin	 (2011).	 "A	 whisper	 of	 evidence	 in	 global	 software	 engineering."	

Software,	IEEE	28.4,	15-18.	

Šmite,	 Darja,	 Nils	 Brede	 Moe,	 and	 Pär	 J.	 Ågerfalk	 (2010).	 "Fundamentals	 of	 Agile	 Distributed	

Software	Development."	In	Agility	Across	Time	and	Space,	pp.	3-7.	Springer	Berlin	Heidelberg.	

Smits,	 H.	 and	 Pshigoda,	 G	 (2007).	 Implementing	 scrum	 in	 a	 distributed	 software	 development	

organization.	Proceedings	of	AGILE	2007,	pp.	371-375.	

Summers,	Mark	(2008).	"Insights	into	an	Agile	adventure	with	offshore	partners."	In	Agile,	2008.	

AGILE'08.	Conference,	pp.	333-338.	IEEE,	2008.	

	

Sureshchandra,	 Kalpana,	 and	 Jagadish	 Shrinivasavadhani	 (2008).	 "Adopting	 agile	 in	 distributed	

development."	In	Global	Software	Engineering,	2008.	ICGSE	2008.	IEEE	International	Conference	on,	

pp.	217-221.	IEEE,	2008.	

	

Sutherland,	Jeff,	Anton	Viktorov,	Jack	Blount,	and	Nikolai	Puntikov	(2007).	"Distributed	scrum:	Agile	

project	management	with	outsourced	development	teams."	In	System	Sciences,	2007.	HICSS	2007.	

	

	 220	

40th	Annual	Hawaii	International	Conference	on,	pp.	274a-274a.	IEEE,	2007.	

	

Stack,	Martin,	and	Ricard	Downing	(2005).	"Another	 look	at	offshoring:	Which	 jobs	are	at	risk	and	

why?."	Business	Horizons	48,	no.	6	,	513-523.	

	

Star,	Susan	Leigh,	and	James	R.	Griesemer	(1989).	"Institutional	ecology,translations'	and	boundary	

objects:	Amateurs	and	professionals	in	Berkeley's	Museum	of	Vertebrate	Zoology,	1907-39."	Social	

studies	of	science	19,	no.	3	(1989):	387-420.	

	

Taylor,	Philip	S.,	Des	Greer,	Paul	Sage,	Gerry	Coleman,	Kevin	McDaid,	and	Frank	Keenan	(2006).	"Do	

agile	 GSD	 experience	 reports	 help	 the	 practitioner?."	 In	 Proceedings	 of	 the	 2006	 international	

workshop	on	Global	software	development	for	the	practitioner,	pp.	87-93.	ACM.	

	

Tervonen,	 I.,	Haapalahti,	 A.,	Harjumaa,	 L.,	 Simila,	 J.	 (2013).	Outsourcing	 Software	 Testing:	A	Case	

Study	 in	 the	 Oulu	 Area.	 In	 Proceedings	 of	 the	 2013	 13th	 International	 Conference	 on	 Quality	

Software	(QSIC	'13).	IEEE	Computer	Society,	Washington,	DC,	USA,	65-74.	

	

Tervonen,	I.,	Mustonen,	T.	(2009).	Offshoring	Test	Automation:	Observations	and	Lessons	Learned.	

In	Proceedings	 of	 the	 2009	 Fourth	 IEEE	 International	 Conference	 on	 Global	 Software	 Engineering	

(ICGSE	'09).	IEEE	Computer	Society,	Washington,	DC,	USA,	226-235.	

	

Therrien,	Elaine	(2008).	"Overcoming	the	Challenges	of	Building	a	Distributed	Agile	Organization."	In	

AGILE,	pp.	368-372.	2008.	

	

Trompenaars,	 Fons,	 and	 Charles	 Hampden-Turner	 (2004).	 Managing	 people	 across	 cultures.	

Chichester:	Capstone,	2004.	

	

Tylor,	 Edward	 Burnett	 (1871).	Primitive	 culture:	 researches	 into	 the	 development	 of	 mythology,	

philosophy,	religion,	art,	and	custom.	Vol.	2.	J.	Murray,	1871.	

	

Välimäki,	 Antti,	 and	 Jukka	 Kääriäinen	 (2008).	 "Patterns	 for	 Distributed	 Scrum—A	 Case	 Study."	

Enterprise	interoperability	III.	Springer	London,	2008.	85-97.	

	

Välimäki,	Antti,	Jukka	Kääriäinen,	and	Kai	Koskimies	(2009).	"Global	Software	Development	Patterns	

for	Project	Management."	In	European	Conference	on	Software	Process	Improvement,	pp.	137-148.	

Springer	Berlin	Heidelberg,	2009.	

	

	

	 221	

van	Heesch,	Uwe	(2015).	"Collaboration	patterns	for	offshore	software	development."	Proceedings	

of	the	20th	European	Conference	on	Pattern	Languages	of	Programs.	ACM,	2015	

	

Van	Zoest,	Anna		(2004).	Offshoring	practices	in	the	UK	–	Where	are	the	Limits?	.	Institute	for	Public	

Policy	Research.	.		

	

Vashistha,	Atul,	and	Avinash	Vashistha	(2005).	The	offshore	nation:	the	rise	of	services	globalization.	

New	York:	Tata	McGraw-Hill	Publishing	Company	Limited.	

	

Vax,	 Michael,	 Stephen	 Michaud	 (2008).	 "Distributed	 Agile:	 Growing	 a	 Practice	 Together,"AGILE	

Conference,	pp.	310-314,	Agile	2008.	

	

von	 Campenhausen,	 C.	 (2005).	 "Offshoring	 rules–Auslagern	 von	 unterstützenden	

Funktionen."	Zeitschrift	für	Betriebswirtschaft	75,	no.	1,	5-13.	

	

Wiegers,	K.	(2007)	.	Process	Impact.	2007.	<http://www.processimpact.com>.		

	

Wildt,	 Daniel,	 and	 Rafael	 Prikladnicki	 (2010).	 "Transitioning	 from	 Distributed	 and	 Traditional	 to	

Distributed	and	Agile:	An	Experience	Report."	In	Agility	Across	Time	and	Space,	pp.	31-46.	Springer	

Berlin	Heidelberg,	2010.	

	

Wipro	(2012).	Available	at:	http://www.wipro.com/newsroom/Wipro-Project-for-BT-Recognized-as-

the-Offshoring-Project-of-the-Year-by-UKs-National-Outsourcing-Association	

	

Yap,	 Monica	 (2005).	 "Follow	 the	 sun:	 distributed	 extreme	 programming	 development."	 In	 Agile	

Conference,	2005.	Proceedings,	pp.	218-224.	IEEE,	2005.	

	

Yeo,	Alvin	W	(2001).	"Global-software	development	lifecycle:	An	exploratory	study."	In	Proceedings	

of	the	SIGCHI	conference	on	Human	factors	in	computing	systems,	pp.	104-111.	ACM	

	

Yu,	 Liguo,	 Zhong	 Guan,	 and	 Srini	 Ramaswamy	 (2016).	 "The	 effect	 of	 time	 zone	 difference	 on	

asynchronous	communications	in	global	software	development."	International	Journal	of	Computer	

Applications	in	Technology	53,	no.	3	(2016):	213-225.	

	

Yin,	 R.	 K.	 (2003)	 Case	 Study	 Research	 Design	 and	 Methods,	 Thousand	 Oaks,	 3rd	 Edition,	 Sage	

Publications,	Inc.		

	

Yu,	Xiaodan,	and	Stacie	Petter	(2014).	"Understanding	agile	software	development	practices	using	

	

	 222	

shared	mental	models	theory."	Information	and	Software	Technology	56,	no.	8	(2014):	911-921.		

	

Zahedi,	 Mansooreh,	Mojtaba	 Shahin,	 and	Muhammad	 Ali	 Babar	 (2016).	 "A	 systematic	 review	 of	

knowledge	sharing	challenges	and	practices	in	global	software	development."	International	Journal	

of	Information	Management	36,	no.	6	(2016):	995-1019.	

	

Zave,	 Pamela	 (1997).	 "Classification	 of	 research	 efforts	 in	 requirements	 engineering."	 ACM	

Computing	Surveys	(CSUR)	29,	no.	4	(1997):	315-321.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 223	

Appendix	A:	Selected	Studies	for	Offshore	Challenges	

Selected	Studies	for	identifying	the	challenges	in	offshore	software	development:	

[E1]. Avritzer,	Alberto,	and	Adailton	Lima.	"An	empirical	approach	for	the	assessment	of	scheduling	risk	
in	a	 large	globally	distributed	 industrial	software	project."	 In	Global	Software	Engineering,	2009.	
ICGSE	2009.	Fourth	IEEE	International	Conference	on,	pp.	341-346.	IEEE,	2009.	

	
[E2]. Bannerman,	Paul	L.,	Emam	Hossain,	and	Ross	Jeffery	(2012)	.	"Scrum	practice	mitigation	of	global	

software	 development	 coordination	 challenges:	 a	 distinctive	 advantage?."	 In	 System	 Science	
(HICSS),	2012	45th	Hawaii	International	Conference	on,	pp.	5309-5318.	IEEE.	

	
[E3]. Battin,	Robert	D.,	Ron	Crocker,	Joe	Kreidler,	and	K.	Subramanian	(2001).	"Leveraging	resources	in	

global	software	development."	Software,	IEEE	18,	no.	2	(2001):	70-77.	
	
[E4]. Boden,	Alexander,	Bernhard	Nett,	and	Volker	Wulf	(2007).	"Coordination	practices	 in	distributed	

software	development	of	 small	 enterprises."	 In	Global	 Software	 Engineering,	 2007.	 ICGSE	2007.	
Second	IEEE	International	Conference	on,	pp.	235-246.	IEEE.	

	
[E5]. Boon,	S.,	and	Holmes,	J.	(1991).	The	dynamics	of	interpersonal	trust:	Resolving	uncertainty	in	the	

face	 of	 risk.	In	 R.	 Hinde	 and	 J.	 Groebel	 (Eds.).	 Cooperation	 and	 Prosocial	 Behavior.	 Cambridge	
University	Press,	Cambridge,	UK.	190–211.	

	
[E6]. Bosch,	 Jan,	 and	 Petra	 Bosch-Sijtsema	 (2010).	 "Coordination	 between	 global	 agile	 teams:	 From	

process	to	architecture."	In	Agility	Across	Time	and	Space,	pp.	217-233.	Springer	Berlin	Heidelberg.	
	
[E7]. Carmel,	 Erran	 (1999).	Global	 software	 teams:	 collaborating	 across	 borders	 and	 time	 zones.	

Prentice	Hall	PTR.	
	

	
[E8]. Carmel,	 Erran,	 and	 Ritu	 Agarwal	 (2001).	 "Tactical	 approaches	 for	 alleviating	 distance	 in	 global	

software	development."	Software,	IEEE	18,	no.	2:	22-29.	
	

[E9]. Cataldo,	 Marcelo,	 Patrick	 A.	 Wagstrom,	 James	 D.	 Herbsleb,	 and	 Kathleen	 M.	 Carley	 (2006).	
"Identification	 of	 coordination	 requirements:	 implications	 for	 the	 Design	 of	 collaboration	 and	
awareness	tools."	In	Proceedings	of	the	2006	20th	anniversary	conference	on	Computer	supported	
cooperative	work,	pp.	353-362.	ACM.	

	
[E10]. Cataldo,	Marcelo,	Charles	Shelton,	Yongjoon	Choi,	Yun-Yin	Huang,	Vytesh	Ramesh,	Darpan	Saini,	

and	 Liang-Yun	 Wang	 (2009).	 "Camel:	 A	 tool	 for	 collaborative	 distributed	 software	 design."	 In	
Global	Software	Engineering,	2009.	 ICGSE	2009.	Fourth	IEEE	International	Conference	on,	pp.	83-
92.	IEEE.	

	
[E11]. Cusick,	James,	and	Alpana	Prasad	(2006).	"A	practical	management	and	engineering	approach	to	

offshore	collaboration."	Software,	IEEE	23,	no.	5:	20-29.	
	

[E12]. Damian,	 Daniela	 E.,	 and	 Didar	 Zowghi	 (2003).	 "An	 insight	 into	 the	 interplay	 between	 culture,	
conflict	and	distance	in	globally	distributed	requirements	negotiations."	In	System	Sciences,	2003.	
Proceedings	of	the	36th	Annual	Hawaii	International	Conference	on,	pp.	10-pp.	IEEE.	

	
[E13]. Das,	Tarun	K.,	and	Bing-Sheng	Teng	(1998).	"Between	trust	and	control:	developing	confidence	in	

partner	cooperation	in	alliances."	Academy	of	Management	review	23,	no.	3,	491-512.	
	
[E14]. Davenport,	 Thomas,	 H.,	 and	 Prusak,	 Laurence,	 (1998).	 Working	 knowledge.	 Boston:	 Harvard	

Business	School	Press.	
	

	

	 224	

[E15]. Desouza,	 Kevin	 C.,	 Yukika	 Awazu,	 and	 Peter	 Baloh	 (2006).	 "Managing	 knowledge	 in	 global	
software	development	efforts:	Issues	and	practices."	IEEE	software	23,	no.	5:	30	

	
	

[E16]. Dorairaj,	Siva,	James	Noble,	and	Petra	Malik	(2011).	"Effective	communication	in	distributed	Agile	
software	 development	 teams."	 In	 Agile	 Processes	 in	 Software	 Engineering	 and	 Extreme	
Programming,	pp.	102-116.	Springer	Berlin	Heidelberg.	

	
[E17]. Dourish,	 Paul,	 and	 Victoria	 Bellotti.	 (1992).	 Awareness	 and	 coordination	 in	 shared	

workspaces.	Proceedings	of	the	1992	ACM	conference	on	Computer-supported	cooperative	work.	
ACM.		

	
	

[E18]. Ebert,	Christof	 (2011).	Global	software	and	 IT:	A	guide	to	distributed	development,	projects,	and	
outsourcing.	Wiley-IEEE	Computer	Society	Press	

	
[E19]. Evaristo,	 J.	 Roberto,	 Richard	 Scudder,	 Kevin	 C.	 Desouza,	 and	Osam	 Sato	 (2004).	 "A	 dimensional	

analysis	 of	 geographically	 distributed	 project	 teams:	 a	 case	 study."	 Journal	 of	 Engineering	 and	
technology	Management	21,	no.	3:	175-189.	

	
[E20]. Gotel,	Olly,	Vidya	Kulkarni,	Des	Phal,	Moniphal	Say,	Christelle	Scharff,	and	Thanwadee	Sunetnanta	

(2009).	 "Evolving	 an	 Infrastructure	 for	 Engineering,	 Communication,	 Project	 Management	 and	
Socialization	 to	Facilitate	Student	Global	 Software	Development	Projects."	 In	Proc.	of	 the	 Indian	
Software	Engineering	Conference	(ISEC	2009),	Pune,	India.	

	
[E21]. Green,	 R.,	 T.	 Mazzuchi,	 and	 S.	 Sarkani	 (2010).	 "Communication	 and	 quality	 in	 distributed	 agile	

development:	an	empirical	case	study."	Proceeding	in	World	Academy	of	Science,	Engineering	and	
Technology	61:	322-328.	

	
[E22]. Grundy,	 John,	 John	 Hosking,	 and	 Rick	 Mugridge	 (1998).	 "Coordinating	 distributed	 software	

development	 projects	 with	 integrated	 process	 modelling	 and	 enactment	 environments."	 In	
wetice,	p.	39.	IEEE.	

	
[E23]. Gutwin,	 Carl,	 Saul	 Greenberg,	 and	 Mark	 Roseman	 (1996).	 "Workspace	 awareness	 in	 real-time	

distributed	groupware:	Framework,	widgets,	and	evaluation."	People	and	Computers.	281-298.	
	
[E24]. Herbsleb,	James	D.,	Daniel	J.	Paulish,	and	Matthew	Bass	(2005).	"Global	software	development	at	

siemens:	experience	from	nine	projects."	 In	Software	Engineering,	2005.	 ICSE	2005.	Proceedings.	
27th	International	Conference	,	524-533.	

	
[E25]. Herbsleb,	 James	 D	 (2007).	 "Global	 software	 engineering:	 The	 future	 of	 socio-technical	

coordination."	In	2007	Future	of	Software	Engineering,	pp.	188-198.	IEEE	Computer	Society.	
	
[E26]. Hofner,	Gerd,	 and	V.	 S.	Mani	 (2007).	 "TAPER:	A	 generic	 framework	 for	 establishing	 an	 offshore	

development	 center."	 In	Global	 Software	 Engineering,	 2007.	 ICGSE	 2007.	 Second	 IEEE	
International	Conference	,	162-172.	

	
[E27]. Hofstede,	 Geert,	 Michael	 Harris	 Bond,	 and	 Chung-leung	 Luk	 (1993).	 "Individual	 perceptions	 of	

organizational	cultures:	A	methodological	treatise	on	levels	of	analysis."	Organization	Studies	14,	
no.	4:	483-503.	

	
[E28]. Holmström,	Helena,	Brian	Fitzgerald,	Pär	J.	Ågerfalk,	and	Eoin	Ó.	Conchúir.	(2006):		"Agile	practices	

reduce	distance	in	global	software	development."	Information	Systems	Management	23,	no.	3	7-
18.	

	

	

	 225	

[E29]. Hsieh,	 Yvonne	 (2006).	 "Culture	 and	 shared	 understanding	 in	 distributed	 requirements	
engineering."	 In	Global	 Software	 Engineering,	 2006.	 ICGSE'06.	 International	 Conference	 on,	 pp.	
101-108.	IEEE.	

	
[E30]. Humphrey,	Watts	S	(1989).	Managing	the	Software	Process	.	Addison-Wesley	Professional.	
	

[E31]. Iacovou,	 Charalambos	 L.,	 and	 Robbie	 Nakatsu	 (2008).	 "A	 risk	 profile	 of	 offshore-outsourced	
development	projects."	Communications	of	the	ACM	51,	no.	6:	89-94.	

	
[E32]. Javidan,	 Mansour,	 Günter	 K.	 Stahl,	 Felix	 Brodbeck,	 and	 Celeste	 PM	 Wilderom	 (2005).	 "Cross-

border	transfer	of	knowledge:	Cultural	lessons	from	Project	GLOBE."The	Academy	of	Management	
Executive	19,	no.	2,	59-76.	

	
[E33]. Kanawattanachai,	 Prasert,	 and	 Youngjin	 Yoo	 (2002).	 "Dynamic	 nature	 of	 trust	 in	 virtual	

teams."	The	Journal	of	Strategic	Information	Systems	11,	no.	3,187-213.	
	
[E34]. Kedia,	 Ben	 L.	 and	 Lahiri,	 Somnath,	 (2007),	 International	 outsourcing	 of	 services:	 A	 partnership	

model.	Memphis:	Journal	of	International	Management,	13,	22–37	
	
[E35]. Kobayashi-Hillary,	Mark.	(2005).	Outsourcing	to	India:	the	offshore	advantage.	ISBN	3-540-23943-

X	Springer-Verlag	Berlin	Heidelberg	New	York.	
	
[E36]. Korkala,	 Mikko,	 and	 Pekka	 Abrahamsson	 (2007).	 "Communication	 in	 distributed	 agile	

development:	 A	 case	 study."	 In	 Software	 Engineering	 and	 Advanced	 Applications,	 2007.	 33rd	
EUROMICRO	Conference	on,	pp.	203-210.	IEEE.	

	
[E37]. Korkala,	 Mikko,	 and	 Frank	 Maurer	 (2014).	 "Waste	 identification	 as	 the	 means	 for	 improving	

communication	 in	 globally	 distributed	 agile	 software	 development."	 Journal	 of	 Systems	 and	
Software	95:	122-140.	

	
[E38]. Lander,	 Maria	 Cristina,	 Russell	 L.	 Purvis,	 Gordon	 E.	 McCray,	 and	 William	 Leigh	 (2004).	 Trust-

building	mechanisms	utilized	in	outsourced	IS	development	projects:	a	case	study.	Information	&	
Management	41,	no.	4	.509-528.	

	
[E39]. Lanubile,	 Filippo,	 Daniela	 Damian,	 and	 Heather	 L.	 Oppenheimer	 (2003).	 "Global	 software	

development:	 technical,	 organizational,	 and	 social	 challenges."	 ACM	 SIGSOFT	 Software	
Engineering	Notes	28,	no.	6:	2-2.	

	
[E40]. Lanubile,	Filippo,	Fabio	Calefato,	and	Christof	Ebert	(2013).	Group	Awareness	 in	Global	Software	

Engineering.	IEEE	Software	.	18-23.	
	
[E41]. Layman,	 Lucas,	 Laurie	 Williams,	 Daniela	 Damian,	 and	 Hynek	 Bures	 (2006).	 "Essential	

communication	 practices	 for	 Extreme	 Programming	 in	 a	 global	 software	 development	 team."	
Information	and	software	technology	48,	no.	9:	781-794.	

	
[E42]. Lee,	Seiyoung,	and	Hwan-Seung	Yong	(2010).	"Distributed	agile:	project	management	 in	a	global	

environment."	Empirical	Software	Engineering	15,	no.	2:	204-217.	
	
[E43]. Maruping,	 Likoebe	 M	 (2010).	 "Implementing	 Extreme	 Programming	 in	 Distributed	 Software	

Project	Teams:	Strategies	and	Challenges."	 In	Agility	Across	Time	and	Space,	pp.	11-30.	Springer	
Berlin	Heidelberg.	

	
[E44]. Matloff,	Norman	(2005).	"Offshoring:	What	can	go	wrong?."	IT	professional	7,	no.	4,	39-45.	
	
[E45]. Morgan,	 Robert	M.,	 and	 Shelby	 D.	 Hunt	 (1994).	 "The	 commitment-trust	 theory	 of	 relationship	

marketing."	the	journal	of	marketing	,	20-38.	

	

	 226	

	
[E46]. Paasivaara,	Maria,	Sandra	Durasiewicz,	and	Casper	Lassenius	 (2009).	"Using	scrum	 in	distributed	

agile	 development:	 A	 multiple	 case	 study."	 In	Global	 Software	 Engineering,	 2009.	 ICGSE	 2009.	
Fourth	IEEE	International	Conference	on,	pp.	195-204.	IEEE.	

	
[E47]. Paasivaara,	Maria,	 Casper	 Lassenius,	 Daniela	 Damian,	 Petteri	 Raty,	 and	 Adrian	 Schroter	 (2013).	

"Teaching	 students	 global	 software	 engineering	 skills	 using	 distributed	 scrum."	 In	 Software	
Engineering	(ICSE),	2013	35th	International	Conference	on,	pp.	1128-1137.	IEEE.	

	
[E48]. Pilatti,	 Leonardo,	 and	 Jorge	 Luis	 Nicolas	 Audy	 (2006).	 "Global	 Software	 Development	 Offshore	

Insourcing	Organizations	Characteristics:	Lessons	Learned	from	a	Case	Study."	In	Global	Software	
Engineering,	2006.	ICGSE'06.	International	Conference,	249-250.	

	
[E49]. Prikladnicki,	Rafael,	and	Jorge	Luis	Nicolas	Audy	(2012).	"Managing	Global	Software	Engineering:	A	

Comparative	 Analysis	 of	 Offshore	 Outsourcing	 and	 the	 Internal	 Offshoring	 of	 Software	
Development."	Information	Systems	Management	29,	no.	3:	216-232.	

	
[E50]. Qumer	 Gill,	 Asif,	 and	 Deborah	 Bunker	 (2013).	 "Towards	 the	 development	 of	 a	 cloud-based	

communication	technologies	assessment	tool:	An	analysis	of	practitioners'	perspectives."	VINE	43,	
no.	1:	57-77.	

	
[E51]. Radoff,	 Sandy	 (2006).	 “Improved	 Cross-Cultural	 Communication	 Increases	 Global	 Sourcing	

Productivity”.	United	States:	Accenture	
	

[E52]. Ralyté,	 Jolita,	 Xavier	 Lamielle,	Nicolas	Arni-Bloch,	 and	Michel	 Léonard	 (2008).	 "A	 framework	 for	
supporting	management	in	distributed	information	systems	development."	In	Research	Challenges	
in	Information	Science,	2008.	RCIS	2008.	Second	International	Conference	on,	pp.	381-392.	IEEE.	

	
[E53]. Ramasubbu,	 Narayan,	 Mayuram	 S.	 Krishnan,	 and	 Prasad	 Kompalli	 (2005).	 "Leveraging	 global	

resources:	A	process	maturity	framework	for	managing	distributed	development."	Software,	IEEE	
22,	no.	3:	80-86.	

	
[E54]. Ring,	P.,	 and	Van	de	Ven,	A	 (2004).	Developmental	processes	of	 cooperative	 interorganizational	

relationships.	Acad.	Mgt.	Rev.	19,	1	.90–118.	
	
[E55]. Robarts,	 Jane	M	 (2008).	 "Practical	 considerations	 for	 distributed	 agile	 projects."	 In	Agile,	 2008.	

AGILE'08.	Conference,	pp.	327-332.	IEEE.	
	
[E56]. Rousseau,	Denise	M.,	 Sim	B.	 Sitkin,	Ronald	 S.	Burt,	 and	Colin	Camerer	 (1998).	 "Not	 so	different	

after	all:	A	cross-discipline	view	of	trust."	Academy	of	management	review	23,	no.	3,	393-404.	
	
[E57]. Sabherwal,	 Rajiv	 (1999).	 "The	 role	 of	 trust	 in	 outsourced	 IS	 development	 projects.	

Communications	of	the	ACM	42.2	.80-86.	
	

[E58]. Sahay,	 Sundeep,	 Brian	 Nicholson,	 and	 Shenai	 Krishna	 (2003).	 Global	 IT	 outsourcing:	 software	
development	across	borders.	Cambridge	University	Press.			

	
[E59]. Sarker,	Suprateek,	and	Sundeep	Sahay	(2004).	Implications	of	space	and	time	for	distributed	work:	

an	 interpretive	 study	 of	 US–Norwegian	 systems	 development	 teams.	 European	 Journal	 of	
Information	Systems	13.1	.3-20.			

	
[E60]. Sindhgatta,	 Renuka,	 Bikram	 Sengupta,	 and	 Subhajit	 Datta	 (2011).	 "Coping	 with	 distance:	 an	

empirical	study	of	communication	on	the	jazz	platform."	In	Proceedings	of	the	ACM	international	
conference	 companion	 on	 Object	 oriented	 programming	 systems	 languages	 and	 applications	
companion,	pp.	155-162.	ACM.	

	

	

	 227	

[E61]. Taweel,	 Adel,	 Brendan	 Delaney,	 Theodoros	 N.	 Arvanitis,	 and	 Lei	 Zhao	 (2009).	 "Communication,	
knowledge	 and	 co-ordination	 management	 in	 globally	 distributed	 software	 development:	
Informed	by	a	scientific	software	engineering	case	study."	 In	Global	Software	Engineering,	2009.	
ICGSE	2009.	Fourth	IEEE	International	Conference	on,	pp.	370-375.	IEEE.	

	
[E62]. Taxén,	Lars	(2006).	"An	integration	centric	approach	for	the	coordination	of	distributed	software	

development	projects."	Information	and	software	technology	48,	no.	9:	767-780.	
	

[E63]. Välimäki,	Antti,	and	 Jukka	Kääriäinen	 (2008).	 "Patterns	 for	Distributed	Scrum—A	Case	Study."	 In	
Enterprise	interoperability	III,	pp.	85-97.	Springer	London.	

	
[E64]. Vallon,	Raoul,	Stefan	Strobl,	Mario	Bernhart,	and	Thomas	Grechenig	 (2013).	 Inter-organizational	

Co-development	 with	 Scrum:	 Experiences	 and	 Lessons	 Learned	 from	 a	 Distributed	 Corporate	
Development	Environment.	Springer	Berlin	Heidelberg.	

	
[E65]. Yadav,	Vanita,	Monica	Adya,	Dhruv	Nath,	and	Varadharajan	Sridhar	(2007).	"Investigating	an'Agile-

Rigid'Approach	in	Globally	Distributed	Requirements	Analysis."	PACIS	2007	Proceedings:	12.	
	

[E66]. Yeo,	 Alvin	 W.	 "Global-software	 development	 lifecycle:	 An	 exploratory	 study.	 (2001)."	 In	
Proceedings	of	the	SIGCHI	conference	on	Human	factors	in	computing	systems,	pp.	104-111.	ACM.	

	
[E67]. Zieris,	Franz,	and	Stephan	Salinger	(2013).	"Doing	scrum	rather	than	being	agile:	a	case	study	on	

actual	nearshoring	practices."	In	Global	Software	Engineering	(ICGSE),	2013	IEEE	8th	International	
Conference	on,	pp.	144-153.	IEEE.	

	

	

	

	

	

	
	
	
	
	
	

	

	 228	

Appendix	B:	Overview	of	Existing	Software	Development	
Approaches	
	
No.	 Software	Development	

Approach	
Phases	Execution	in	the	Software	Development	

Approach	
1.	 Ad-Hoc	 In	 this	 approach	 a	 developer	 writes	 code	 without	

any	 formal	 software	 requirement	 specification	
document.	There	 is	no	design	phase;	 the	developer	
directly	goes	to	coding	phase	and	follows	a	build	and	
fix	approach.		
	

2.	 Linear	 This	 the	 traditional	 approach,	 in	 which	 the	 phases	
are	 executed	 linearly.	 That	 is	 when	 one	 phase	 is	
complete,	only	then	can	the	developer	move	to	the	
next	 phase.	 For	 example,	 the	 team	 needs	 to	 first	
complete	 the	design	phase	before	 they	 can	go	 into	
development	 phase	 and	 once	 a	 phase	 has	 been	
completed	the	development	team	cannot	go	back	to	
it.	
	

3.	 Evolutionary	 In	 evolutionary	 approach,	 the	 development	 team	
can	move	across	analysis,	design	and	coding	phases,	
thus	 providing	 the	 developers	 the	 freedom	 to	 go	
back	 to	design	phase	and	correct	 a	design	mistake.		
However	 the	 team	has	 to	 stick	 to	 the	objectives	of	
the	project	and	cannot	change	them.	
	

4.	 Iterative	and	Incremental		 Iterative	and	incremental	approach	allows	the	team	
to	repeat	a	phase,	as	many	times	they	need	to	and	
allows	 them	 to	 move	 back	 and	 forth	 between	
different	phases	based	on	the	teams’	requirement.		

	

	

	
	

	
	
	
	

	

	 229	

Appendix	C:	Overview	of	Beecham	et	al.	(2014)	GSD	Solution	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	

	 230	

Appendix	D:	Sample	Questions	for	Semi-Structured	Interviews	
	
	
The	duration	of	the	interview	is	30-45	minutes.	We	have	divided	the	interview	into	3	
section	 based	 on	 the	 type	 of	 questions.	 Section	 1	 consists	 of	 shorts	 question	 that	
require	 direct	 answers.	 Section	 2	 consists	 of	 questions	 regarding	 the	 methodology	
used	 for	 offshore	 project	 and	 section	 3	 consists	 of	 questions	 that	 require	 detail	
answers,	as	they	will	determine	the	results	for	the	research.	
	
Section	1:	Organisation	
	
In	this	section	we	will	be	asking	questions	regarding	the	organisation	in	order	to	have	a	
general	overview	of	the	experience	of	the	organisation	in	offshoring	projects	and	agile	
methodology.	As	this	information	will	help	us	understand	whether	organisations	with	
different	 experiences	 with	 agile	 and	 offshoring	 projects	 face	 similar	 problems	 with	
communication	and	coordination	issue	among	the	onshore	and	offshore	teams	or	not.	
	

1. What	is	the	name	and	age	group	of	the	company?	
2. What	is	the	organisation’s	experience	with	agile?	
3. How	many	years	have	they	done	offshoring?	
4. How	has	their	experience	been	with	offshoring?	
5. How	many	projects	have	they	done	on	offshore	locations?	

	

Section	2:	Methodology	

In	 this	 section	we	 start	 by	 asking	 the	 following	question	 in	 order	 to	 get	 information	
about	 what	 methodology	 the	 organisation	 uses	 for	 developing	 offshore	 projects	 to	
determine	if	they	use	agile	methodology	or	not.	
	

1. What	 software	 development	 methodology	 does	 your	 organisation	 use	 for	
offshore	projects?	

	
Based	 on	 their	 reply	 of	 the	 above	 question	 we	 will	 ask	 further	 questions	 s	 to	
understand	how	the	organisation	uses	agile	and	whether	they	face	any	issues	with	it:	
	

• Have	you	used	agile	methodology	for	any	offshore	project?	
• Due	 to	 the	 difference	 in	 time	 do	 you	 feel	 you	 have	 to	 wait	 a	 lot	 for	

feedback/work	 from	 the	offshore	 team?	Does	 it	make	 it	difficult	 to	 complete	
the	project	on	time?	

• How	does	your	organisation	manage	time	different	between	the	teams?	
• Does	 the	 offshore	 and	 onshore	 teams	 use	 the	 same	 development	

methodology?	
• Do	 you	 feel	 you	 have	 to	 repeat	 yourself	 a	 lot	while	 communicating	with	 the	

offshore	team?	Does	this	slow	down	the	development	process?	
	
	
	

	

	 231	

Section	3:	Research	
	
In	this	section,	we	ask	detail	description	of	the	following	questions	to	understand	if	the	
organisation	 is	 facing	 or	 has	 faced	 communication	 and	 coordination	 issues	 while	
developing	software	offshore	and	if	they	managed	to	over	come	it	or	not	and	if	they	
have	faced	any	other	challenge	while	developing	offshore	projects:	
	

1. How	efficient	 is	 the	current	methodology	 in	handling	 the	communication	and	
coordination	of	work	between	the	onshore	and	offshore	team.	

2. Have	you	faced	any	difficult	in	the	current	methodology?	If	yes	where	you	able	
to	solve	the	issue?	

3. In	the	current	methodology	do	you	think	there	 is	need	for	some	modification	
that	would	help	improve	the	offshoring	projects?	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 232	

Appendix	E:	Consent	Form	and	Data	Processing	Statement	
	
Below	is	the	consent	and	data	processing	statement	form,	the	organisations	we	
interviewed	signed.		

Interview consent and data processing statement
Name: Maryam Kausar, email: m.kausar@edu.salford.ac.uk

If	 you	 consent	 to	 being	 interviewed	 and	 to	 any	 data	 gathered	 being	 processed	 as	
outlined	 below,	 please	 print	 and	 sign	 your	 name,	 and	 date	 the	 form,	 in	 the	 spaces	
provided.	
	
Project	Facts:	
	

• This	 project	 -	 ‘Agile	 and	 Beyond	 Agile	 Software	 Development	 Techniques	 for	
Application	in	Offshore	Development”	is	being	conducted	by	a	research	team	at	
the	University	of	Salford.	

	
• All	data	will	be	treated	as	personal	under	the	1998	Data	Protection	Act,	and	will	

be	stored	securely.	
	

• Interviews	will	be	recorded	and	transcribed	by	the	research	team.	
	

• A	 copy	 of	 your	 interview	 transcript	 will	 be	 provided,	 free	 of	 charge,	 upon	
request.		

	
• Data	 collected	 may	 be	 processed	 manually	 and	 with	 the	 aid	 of	 computer	

software.	
	

• I	have	the	right	to	withdraw	from	the	research	at	any	stage	in	the	research	
	
Consents:	
	

• With	 respect	 to	 information	 resulting	 from	 the	 study	 being	 used	 in	 future	
publication	and/or	reports	outside	the	research	team,	I	consent	to	the	following:	

	
My	name	may	be	identified	
	 □	YES		 	 	 	 	 	 □NO	
	
My	words	may	be	quoted	
	 □	YES		 	 	 	 	 	 □NO	

	 	 	 	 	
• I	 am	 willing	 to	 cooperate	 in	 the	 future	 if	 a	 need	 for	 further	 information	 is	

required	
	
	 □	YES		 	 	 	 	 	 □NO	
	

	

	 233	

• I/my	employer	consent	to	our	interviews	being	recorded	by	recording	devices.	
	
	 □	YES		 	 	 	 	 	 □NO	

	
	
	
	
Please	print	your	name:	 ..	
	
	
Organisation:		 	 										..	
	
	
Signature:	 ..		 Date:	..	
	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 234	

Appendix	F:	Unrevised	Distributed	Agile	Pattern	Catalogue	
	
In	this	section	we	have	presented	the	unrevised	distributed	agile	patterns	before	they	
were	validated.		As	most	of	the	patterns	were	not	changed	we	have	only	presented	the	
ones	that	were	changed	after	the	validation	process.	
	
a)	Management	Patterns	
In	this	section	we	have	described	the	detail	of	each	management	pattern.	
	
1.	Scrum	of	Scrum	Pattern	
	
In	 agile	 methodology,	 Scrum	 is	 an	 iterative	 and	 incremental	 project	 management	
approach	that	provides	a	simple	framework	that	“	inspect	and	adapt”	(Hossain,	Babar,	
and	Paik,	2009).	We	observed	that	in	offshore	projects	the	onshore	and	offshore	team	
practices	 separate	 scrums	 in	 order	 to	 develop	 the	 project.	 Based	 on	 this	 observed	
practice	we	have	designed	the	following	pattern	details:	
	
Pattern	Name	

Scrum	of	Scrum	Pattern	
Intent	

To	 apply	 scrum,	 sub-teams	 are	 formed	 based	 on	 location.	 Each	 team	 has	 its	
own	scrum.	Scrum	of	scrum	meetings	are	arranged	to	discuss	the	progress	of	
the	project,	which	is	attended	by	key	people.		

Also	Known	As		
Scrum	meeting	or	Meta	Scrum	

Category	
Management	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	
manage	 their	 separate	 scrums	 and	 keep	 each	 other	 updated	 of	 the	 project	
progress.	

Motivation	
Consider	a	team	that	is	divided	into	sub-teams	based	on	location	and	they	are	
working	on	different	tasks	of	a	project.	It	is	difficult	to	have	both	onshore	and	
offshore	 teamwork	on	 the	same	scrum	as	 they	both	are	working	on	different	
time	 zones	 so	 in	 order	 to	 work	 on	 the	 same	 project,	 both	 teams	 work	 on	
separate	scrums.		
	
To	 coordinate	work	 both	 teams	 arrange	 a	 scrum	 of	 scrum	meeting,	which	 is	
attended	by	key	people	from	both	teams	to	update	each	other	of	the	progress	
of	the	project.	

Applicability	
Use	Scrum	of	Scrum	when:	

• Team	is	distributed	over	different	time	zones.	
• The	overlapping	working	hours	between	the	onshore	and	offshore	team	

is	less.	
Participants	

• Distributed	onshore	and	offshore	agile	team.	
• Scrum	Masters	of	agile	sub-teams	and	Product	owner.	

	

	 235	

Collaboration	
• Key	members	 from	onshore	and	offshore	 teams	decide	 time	 for	Scrum	of	

Scrum	meeting.	
Consequences	

The	Scrum	of	Scrum	pattern	has	the	following	benefits	and	liabilities:	
1. It	 prevents	 the	 onshore	 and	 offshore	 team	 from	 wasting	 time	 on	

collaborating	tasks	with	each	other	through	online	tools	as	both	the	teams	
are	working	on	their	own	scrum	so	they	don’t	have	to	wait	for	each	other	to	
complete	tasks.		

2. It	 provides	 control	 to	 both	 onshore	 and	 offshore	 team	 to	 work	 on	 their	
scrum,	which	avoids	the	offshore	team	from	having	to	adjust	working	hours	
based	on	onshore	teams	availability.	

3. It	allows	key	people	such	as	Scrum	Masters	and	Product	owners’	to	discuss	
the	progress	of	 the	project	without	having	 the	whole	 team	present	which	
keeps	the	meeting	time	boxed.	

4. Its	 limitation	 is	 that	 due	 to	minimum	 collaboration	 between	 the	 onshore	
and	offshore	team,	both	sub-teams	don’t	feel	they	are	one	team.	

5. Since	only	key	people	attend	the	Scrum	of	Scrum	meeting,	it	limits	face-to-
face	 interaction	 of	 both	 onshore	 and	 offshore	 team,	 which	 affects	 trust	
building	between	both	teams.	

Known	uses	
When	CheckFree	decided	to	move	their	work	to	an	Indian	offshore	consulting	
firm	they	used	Scrum	of	Scrum	to	gather	and	review	the	over	all	team	statistics	
and	progress	of	the	project	(Cottmeyer,	2008).	Similarly,	multiple	case	studies	
done	 on	 organisations	 using	 Scrum	 for	 distributed	 teams	 also	 used	 Scrum	of	
Scrum	to	coordinate	their	work	with	offshore	team	(Hossain,	Babar,	and	Paik,	
2009;	Paasivaara,	Durasiewicz,	and	Lassenius,	2009).	Siemens	also	used	Scrum	
of	 Scrum	 for	 two	 large	 distributed	 projects	 in	which	 the	 development	 teams	
were	located	in	USA,	Europe	and	India.	In	their	Scrum	of	Scrum	meetings	they	
covered	 technical	 and	 managerial	 issues	 that	 occurred	 in	 multiple	 teams	
(Avritzer	et	al.,	2010)		

Related	Patterns	
Scrum	of	Scrum	pattern	 is	often	used	with	Local	Sprint	Planning	Pattern	 (and	
Asynchronous	Retrospective	meeting	Pattern	as	the	onshore	and	offshore	team	
members	 are	 working	 on	 different	 story	 cards	 and	 at	 the	 end	 have	 their	
separate	retrospective	meetings	to	discuss	the	sprint			

	
2.	Local	Standup	Meeting	
	
Agile	methodology	focuses	on	conducting	a	daily	standup	meeting.	We	observed	that	
in	offshore	projects	the	onshore	and	offshore	team	conduct	their	own	separate	daily	
standup	meetings	and	use	online	tools	such	as	Wiki’s	to	share	meeting	minutes	with	
each	other.	Based	on	 this	observed	practice	we	have	designed	 the	 following	pattern	
details:	
	
Pattern	Name	

Local	Standup	Meeting	Pattern	

	

	 236	

Intent	
To	discuss	daily	updates	on	work	done,	each	local	team	will	conduct	their	own	
standup	meetings.	

Also	Known	As		
Daily	Scrum	meeting	or	daily	meeting		

	
Category	

Management	 category	 as	 this	 pattern	 helps	 the	 team	 members	 of	 both	
onshore	and	offshore	team	manage	their	daily	activities	and	update	each	other	
with	the	work	done.	

Motivation	
Consider	 a	 team	 that	 is	 divided	 into	 sub-teams	 that	 are	 located	 on	 different	
time	zones.	To	have	a	collaborative	daily	standup	meeting	is	difficult	and	time	
consuming	as	the	offshore	team	either	has	to	come	early	to	work	or	stay	late	to	
attend	 the	meeting.	 To	 avoid	 this,	 the	 onshore	 and	 offshore	 team	 conducts	
separate	local	standup	meetings	in	which	they	answer	the	following	questions:	

o What	did	you	do	yesterday?	
o What	are	you	going	to	do	today?	
o What	is	getting	in	your	way?	

	
After	conducting	local	standup	meetings	both	onshore	and	offshore	team	share	
their	meeting	minutes	via	online	tools	such	as	Wiki’s	to	keep	both	the	teams	up	
to	with	the	progress	of	the	project.	

Applicability	
Use	local	standup	meeting	when:	

• Team	is	distributed	over	different	time	zones.	
• The	overlapping	working	hours	between	the	onshore	and	offshore	team	

is	less.	
Participants	

• Distributed	onshore	and	offshore	agile	team.	
Collaboration	

• Both	 onshore	 and	 offshore	 team	 share	meeting	minutes	with	 each	 other	
using	online	tools.	

Consequences	
The	local	standup	meetings	pattern	has	the	following	benefits	and	liabilities:		
1. It	 prevents	 the	 offshore	 team	 from	 waiting	 for	 the	 onshore	 team’s	

availability	to	conduct	the	daily	standup	meeting.		
2. It	 allows	both	onshore	 and	offshore	 team	 flexibility	 to	 conduct	 their	 own	

standup	meeting	at	whichever	time	they	want.	
3. It	limits	the	onshore	and	offshore	team	from	real-time	communication	and	

both	team	heavily	rely	on	the	meeting	minutes	so	any	mistake	can	lead	to	
misunderstanding	in	the	progress	of	the	project.	

Known	uses	
Organisations	 such	 as	 PulpCo	 (Paasivaara,	 Durasiewicz,	 and	 Lassenius,	 2009)	
and	 Wipro	 Technologies	 (Sureshchandra	 et	 al.,	 2008)	 use	 local	 standup	
meetings	for	communicating	the	progress	of	the	project	with	team	members.	

	

	

	 237	

Related	Patterns	
Daily	Standup	meeting	pattern	 is	often	used	with	Global	Scrum	Board	Pattern	
as	 once	 the	 onshore	 and	 offshore	 team	 members	 have	 conducted	 their	
meetings	they	share	the	meeting	minutes	on	a	shared	tool	so	that	both	can	see	
the	project	progress.	

	
3.		Local	Sprint	Planning	Meeting	Pattern	
	
In	agile,	a	scrum	consists	of	many	sprints.	The	duration	of	a	sprint	varies	from	2	weeks	
to	4	weeks	depending	on	the	size	of	the	project.	At	the	start	of	every	sprint	the	team	
has	 a	 sprint-planning	meeting	 in	which	 the	 team	 defines	 the	 goal	 of	 the	 sprint	 and	
prepare	 the	 sprint	 backlog.	 When	 the	 team	 is	 divided	 and	 is	 working	 on	 different	
modules	 of	 the	 project	 it	 has	 been	 observed	 that	 the	 onshore	 team	members	 and	
offshore	team	members	conduct	their	own	separate	sprint	planning	meetings.	Based	
on	this	observed	practice	we	have	designed	the	following	pattern	details:	
	
Pattern	Name	

Local	Sprint	Planning	Meeting	Pattern	
Intent	

Each	team	will	have	their	own	sprint	planning	meetings	
Also	Known	As		
	 	Sprint	Planning	Meeting	or	Iteration	Meeting		
Category	

Management	category	as	this	pattern	helps	the	onshore	and	offshore	team	to	
work	 on	 their	 separate	 module	 and	 conduct	 independent	 scrum	 and	 sprint	
planning	meetings.	

Motivation	
When	 a	 project	 is	 distributed	 to	 a	 team	 that	 is	 divided	 over	 different	 time	
zones,	and	are	working	on	different	modules	of	the	project	and	are	conducting	
their	own	Scrum.	 	As	 the	onshore	and	offshore	 team	conducts	 their	 separate	
Scrum,	 they	 also	 conduct	 separate	 sprint	 planning	 meetings	 to	 decide	 what	
they	 will	 develop	 during	 a	 sprint.	 Both	 teams	 prepare	 their	 sprint	 backlogs,	
which	are	shared	using	online	tools.		

Applicability	
Use	Local	Sprint	Planning	Meeting	pattern	when:	

• Team	 is	 distributed	 over	 different	 time	 zones	 and	 is	 working	 on	
different	modules/subsystem	of	the	project.	

Participants	
• Distributed	onshore	and	offshore	agile	team.	

Collaboration	
• The	onshore	team	and	offshore	team	share	sprint	backlog	with	each	other	

to	show	the	work	they	will	be	doing	over	the	next	sprint.	
Consequences	

The	Local	Sprint	Planning	Meeting	pattern	has	the	following	benefits	and	liabilities:		
1. It	allows	both	teams	to	work	independently	without	having	to	wait	for	the	

onshore	team	to	be	available	to	conduct	the	meeting.	

	

	 238	

2. It	 provides	 control	 to	 both	 onshore	 and	 offshore	 team	 to	 work	 on	 their	
separate	 scrum	 and	 conduct	 their	 own	 sprint	 planning	 meeting,	 which	
avoids	 the	 offshore	 team	 from	 having	 to	 adjust	 working	 hours	 based	 on	
onshore	teams	availability.	

3. Both	teams	can	share	their	sprint	backlog	with	each	other,	which	provides	
visibility	of	the	project	progress.		

4. As	both	the	teams	are	working	independently	it	can	cause	the	teams	to	feel	
as	 they	 are	 not	 part	 of	 one	 team	 and	 create	 an	 effect	 that	 they	 are	 two	
separate	teams.	

Known	uses	
When	CheckFree	decided	to	move	their	work	to	an	Indian	offshore	consulting	
firm	 they	 used	 local	 sprint	 planning	 meetings	 to	 plan	 their	 sprint	 activities	
(Cottmeyer,	2008).		

Related	Patterns	
Local	Sprint	Planning	Patterns	 in	often	used	with	Scrum	of	Scrum	Pattern	and	
Global	Scrum	board	Pattern	as	the	meetings	minutes	of	the	planning	meeting	
are	shared	with	both	onshore	and	offshore	team	members.	

	
4	Local	Pair	Programming	Pattern	
	
In	 agile,	 pair	 programming	 consists	 of	 two	 programmers	 that	 share	 a	 single	
workstation	 that	 is	 they	 share	 one	 screen,	 keyboard	 and	 mouse.	 The	 programmer	
using	the	keyboard	is	usually	called	the	"driver",	the	other,	is	called	“navigator”	as	he	is	
activity	giving	his	 remarks	on	the	code	and	helping	the	driver	 to	write	 the	code.	The	
programmers	 are	 expected	 to	 switch	 roles	 after	 every	 few	 minutes.	 It	 has	 been	
observed	that	when	the	team	is	divided	on	different	locations,	the	team	members	that	
are	 co-located	 form	 pairs	 as	 it	 is	 difficult	 to	 form	 pairs	 with	 other	 locations	 team	
members	 due	 to	 the	 time	 difference.	 Based	 on	 this	 observed	 practice	 we	 have	
designed	the	following	pattern	details:	
	
Pattern	Name	

Local	Pair	Programming	
Intent	

Make	pair	programming	teams	from	the	same	location.	
Also	Known	As		
	 	Pair	Programming	or	Paired	Programming		
Category	

Management	 category	as	 this	pattern	helps	 the	 local	 team	members	 to	 form	
pairs	and	work	on	their	story	card.	

Motivation	
When	a	team	is	distributed	over	different	 locations	based	on	time	zones,	 it	 is	
difficult	 to	 form	 pairs	 between	 them	 due	 to	 the	 time	 difference	 in	 working	
hours.	So	each	team	forms	pairs	based	on	their	location	as	they	are	co-located	
and	can	work	together.	Pair	Programming	helps	improve	the	quality	of	code	as	
instead	of	one	person	writing	the	code	the	other	person	is	checking	the	code.		

Applicability	
Use	Local	Pair	Programming	pattern	when:	

	

	 239	

• Team	 is	 distributed	over	 different	 time	 zones	 and	 is	working	 on	 different	
modules/subsystem	of	the	project	

Participants	
• Distributed	onshore	and	offshore	agile	team	and	working	on	different	story	

cards.	
Collaboration	

• The	 onshore	 team	 and	 offshore	 team	members	 share	 a	 keyboard	with	 a	
fellow	team	member	from	their	respective	location.	

Consequences	
The	Local	Pair	Programming	pattern	has	the	following	benefits:		

1. The	 offshore	 team	 members	 don’t	 have	 to	 wait	 for	 the	 availability	 of	
onshore	team	members	to	start	work.		

2. Some	organisations	 feel	 it’s	 a	waste	of	 having	 two	 resourcing	working	on	
the	same	thing.	

Known	uses	
In	a	case	study	conducted	by	Maruping	(2010)	on	an	organisation	that	had	its	
development	centers	in	India,	U.S	West	Coast,	U.S	Mid-West	and	U.S	East	Coast	
showed	that	pairs	where	made	on	the	bases	of	physical	locations.	

Related	Patterns	
Since	in	Local	Pair	programming	we	are	selecting	team	members	from	the	same	
location,	we	often	use	it	with	Local	Sprint	Planning	Meeting.	

	
5	Asynchronous	Retrospective	meetings	Pattern	
	
In	agile,	when	a	team	is	using	Scrum	at	the	end	of	every	sprint	after	the	sprint	review	
meeting,	 a	 retrospective	meeting	 is	 conducted	 which	 is	 attended	 by	 only	 the	 team	
members	and	the	scrum	master.	 In	this	meeting	the	team	discusses	all	the	good	and	
bad	things	that	happened	during	the	sprint	and	how	they	can	improve	their	work.	They	
also	discuss	the	feedback	given	by	the	client.	It	has	been	observed	that	when	the	team	
is	divided	on	different	time	zones,	teams	conduct	their	own	retrospective	meeting,	as	
due	 to	 the	 time	difference	 it	 is	difficult	 to	have	a	collective	 retrospective	meeting	at	
the	end	of	each	sprint	(Kamaruddin,	2012).	Once	both	the	onshore	and	offshore	teams	
have	 conducted	 their	 retrospective	 meeting	 they	 share	 the	 meetings	 minutes	 with	
each	other	using	online	tools.	Based	on	this	observed	practice	we	have	designed	the	
following	pattern	details:	
	
Pattern	Name	

Asynchronous	Retrospective	meetings	
Intent	

Teams	 conduct	 separate	 retrospective	meetings	 based	 on	 location	 and	 share	
the	 key	 information	 via	 online	 tools.	 The	 Scrum	 Masters	 discuss	 possible	
improvements	with	the	team	based	on	the	feedback	from	the	client.	

Also	Known	As		
	 	Retrospective	meetings	or	Iteration	Retrospective		
Category	

Management	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	
members	 to	 review	 their	 sprint	 and	 discuss	 their	 performance.	 The	 Scrum	

	

	 240	

Master	 advises	 the	 team	 on	 how	 they	 can	 improve	 their	 performance	 and	
discusses	the	feedback	of	the	client.		

Motivation	
When	a	team	 is	divided	on	different	 time	zones	and	are	working	on	different	
modules/subsystems	of	a	project	and	conducting	their	own	independent	Scrum	
and	sprints	it	is	difficult	to	have	a	collective	retrospective	meeting.	The	onshore	
and	offshore	team	members	conduct	their	separate	retrospective	meetings	to	
discuss	what	went	good	and	bad	in	the	sprint	and	how	they	can	improve	their	
work	 in	 the	 next	 sprint.	 The	 Scrum	master	 attends	 these	meetings	 and	 gives	
feedback	on	the	performance	on	the	team	and	discusses	the	remarks	given	in	
the	sprint	review	meeting	by	the	client.	Once	both	teams	have	conducted	their	
retrospective	meetings	they	share	the	meeting	minutes	with	each	other	using	
an	online	tool.		

Applicability	
Use	Asynchronous	Retrospective	meetings	when:	

• Team	 is	 distributed	 over	 different	 time	 zones	 and	 is	 working	 on	
different	modules/subsystem	of	the	project.	

Participants	
• Distributed	onshore	and	offshore	agile	team	members.	
• Scrum	Master	

Collaboration	
• The	onshore	 team	and	offshore	 team	members	share	meeting	minutes	at	

the	end	of	their	retrospective	meetings.	
Consequences	

The	Asynchronous	Retrospective	meetings	pattern	has	 the	 following	benefits	and	
liabilities:		

1. It	 allows	 onshore	 and	 offshore	 team	 members	 to	 conduct	 retrospective	
meeting	independently	of	each	other’s	availability.	

2. It	 helps	 team	 members	 discuss	 their	 independent	 problems	 and	 doesn’t	
make	both	onshore	and	offshore	team	to	be	present	for	the	meeting.	

3. Since	onshore	and	offshore	team	members	conduct	separate	retrospective	
meetings	they	don’t	understand	each	other’s	problems.	

Known	uses	
Elastic	Path,	a	Vancouver,	British	Columbia-based	company	decided	to	offshore	
their	work	to	Luxsoft,	an	outsourcing	partner	used	asynchronous	retrospective	
sessions	to	discuss	the	sprint	progress	and	well	as	what	improvements	they	can	
make.	 Once	 all	 locations	 had	 conducted	 their	 retrospective	 meetings,	 they	
posted	comments	and	results	on	SharePoint,	which	were	then	viewed	by	Scrum	
Master	and	technical	lead	for	their	remarks	(Vax,	2008).	

Related	Patterns	
We	 often	 used	 Scrum	 of	 Scrum	 Pattern	 with	 Asynchronous	 Retrospective	
meeting	 Pattern.	 It	 is	 also	 often	 used	 with	 Local	 Sprint	 Planning	 Pattern	
(explained	in	8.3)	as	in	order	to	review	the	progress	of	a	sprint	and	the	team	we	
use	retrospective	meeting.	After	all	the	distributed	teams	have	conducted	their	
retrospective	meetings	 they	 share	 the	meeting	minutes	 with	 each	 for	 which	
they	use	Global	Scrum	Board	Pattern.		

	

	

	 241	

b)	Communication	Patterns	
	
In	this	section	we	have	described	the	detail	of	each	communication	pattern.	
	
1.	Global	Scrum	Board	Pattern	
	
Agile	 has	 many	 artefacts	 such	 as	 product	 backlog,	 sprint	 backlog,	 storyboard,	 task	
board,	 team	 velocity	 and	 burndown	 charts	 which	 help	 the	 team	 in	 managing	 the	
project.	It	has	been	observed	that	when	the	team	is	divided	to	different	locations	they	
maintain	a	online	record	of	all	these	artefacts	so	that	they	can	share	them	with	each	
other	 using	 online	 tools	 such	 as	Wiki’s,	 Rally	 and	 Jira	 (Danait,	 2005;	 Beruzuk,	 2007;	
Cottmeyer,	 2008).	 Based	 on	 this	 observed	 practice	 we	 have	 designed	 the	 following	
pattern	details:	
	
Pattern	Name	

Global	Scrum	Board	Pattern		
Intent	

An	 online-shared	 Scrum	 board,	 will	 be	 used	 by,	 both	 onshore	 and	 offshore	
team	 to	 view	 the	product	 backlog,	 storyboard,	 task	 board,	 burn	down	 charts	
and	other	agile	artefacts	using	online	tools.	

Also	Known	As		
	 Scrum	Board	or	Agile	Story	Board	
Category	

Communication	category	as	this	pattern	helps	the	onshore	and	offshore	team	
communicate	with	each	other	using	an	online	 tool	 to	view	each	other’s	work	
and	understand	the	progress	of	the	overall	project.	

Motivation	
When	 a	 project	 is	 distributed	 to	 a	 team	 that	 is	 divided	 over	 different	 time	
zones,	and	are	working	on	different	modules	of	the	project,	to	share	their	work	
they	use	an	online	 tool	 to	display	agile	artefacts.	Based	on	 the	work	done	by	
both	 teams	 it	 is	 easier	 to	 see	 the	 progress	 of	 the	 project	 and	 it	 helps	
understand	if	there	is	a	problem	with	a	team	or	not.	

Applicability	
Use	Global	Scrum	Board	pattern	when:	

• Team	is	distributed	over	different	time	zones.	
Participants	

• Distributed	onshore	and	offshore	agile	team.	
Collaboration	

• The	onshore	team	and	offshore	team	share	agile	artifacts	with	each	other	
to	show	their	progress.	

Consequences	
The	Global	Scrum	board	pattern	has	the	following	benefits:		
1. It	 allows	 the	 onshore	 and	 offshore	 teams	 to	 understand	 the	 progress	 of	 the	

project.		
2. It	increases	the	visualization	of	the	work	done	by	each	team.	

	
	

	

	 242	

Known	uses	
FAST,	a	search	company	with	headquarters	 in	Norway	while	building	a	search	
application	on	 top	of	 their	core	search	platform	experimented	with	couple	of	
online	tools	to	keep	both	teams	updated	with	the	progress	of	the	project.	They	
tired	 XPlanner	 and	 Jira	 and	 settled	 for	 Jira,	 which	 is	 a	 web-based	 tool	 that	
allowed	 the	 remote	 team	 members	 to	 view	 the	 backlog	 and	 update	 tasks	
whenever	they	wanted	(Berzuk,	2007).	Similarly	in	a	study	done	by	Cristal	et	al.	
(2008)	on	an	organisation	that	has	development	centers	across	North	America,	
South	America	and	Asia	concluded	with	 that	 the	use	of	a	global	 scrum	board	
can	 help	 improve	 the	 productivity	 of	 global	 agile	 teams.	 Similarly	 companies	
like	Valtech	 (Danait,	2005),	Telco	 (Ramesh	et	al.,	 2006),	BNP	Paribas	 (Massol,	
2004),	Aginity	LLC	(Armour,	2007)	and	SirsiDynix	(Sutherland	et	al.	2007)	used	
online	tools	to	share	agile	artefacts	with	their	offshore	team	members.	

Related	Patterns	
Global	Scrum	board	pattern	is	often	used	with	Central	Code	Repository	Pattern	
as	the	team	shares	all	the	agile	artefacts	and	code	using	an	online	tool.	

	
2.		Central	Code	Repository	Pattern	
	
In	agile,	when	a	team	is	using	Scrum	and	XP,	the	team	members	are	divided	in	pairs	of	
two	and	are	working	on	different	tasks	during	a	sprint.	When	a	task	is	completed	the	
team	members	commit	their	code	to	a	share	repository	for	continuous	integration	of	
the	code.	 It	 is	observed	that	even	when	the	team	members	are	geographically	apart	
they	 still	 use	 a	 share	 code	 repository	where	 they	 commit	 their	 code	 so	 that	 all	 the	
team	members	 can	 see	 the	 code	 as	 well	 as	 determine	 the	 progress	 of	 the	 project.	
Based	on	this	observed	practice	we	have	designed	the	following	pattern	details:	
	
Pattern	Name	

Central	Code	Repository	
Intent	

The	whole	team	will	maintain	a	central	code	repository	so	that	both	team	can	
see	each	other’s	code	and	see	the	progress	of	the	work	done.	

Also	Known	As		
	 Source	Code	Repository	or	Global	Build	Repository	
Category	

Communication	category	as	this	pattern	helps	the	onshore	and	offshore	team	
members	 to	 write	 code	 and	 share	 it	 on	 a	 central	 code	 repository	 where	 all	
team	members	can	see	the	code	and	edit	it	if	required.	

Motivation	
When	a	team	 is	divided	on	different	 time	zones	and	are	working	on	different	
modules/subsystems	of	 a	project	 they	use	 a	 central	 code	 repository	 to	 share	
their	work	with	all	team	members.	They	can	use	online	tools	such	as	GitHub	for	
committing	 their	 code	and	maintain	versions	of	 the	project	 (Räty,	2013).	This	
helps	 the	 whole	 team	 to	 see	 the	 code	 and	 provides	 visibility	 of	 the	 project	
progress.	

Applicability	
Use	Central	Code	Repository	when:	

	

	 243	

• Team	 is	 distributed	 over	 different	 time	 zones	 and	 is	 working	 on	
different	modules/subsystem	of	the	project.	

Participants	
• Distributed	onshore	and	offshore	agile	team	members.	

Collaboration	
• The	 onshore	 team	 and	 offshore	 team	members	 share	 a	 keyboard	with	 a	

fellow	 team	 member	 from	 their	 respective	 location	 and	 once	 they	 have	
finished	a	task	they	commit	their	code	to	a	central	code	repository.	

Consequences	
The	Central	Code	Repository	pattern	has	the	following	benefits:		

1. It	allows	onshore	and	offshore	team	members	to	view	each	other’s	code.	
2. It	helps	in	determining	the	progress	of	the	project.	
3. As	 all	 the	 team	 is	 committing	 to	 a	 central	 repository,	 if	 a	 team	 commits	

code	with	errors	it	can	affect	the	whole	build	of	the	project.	
Known	uses	

WDSGlobal	is	a	leading	global	provider	of	knowledge-based	services	to	mobile	
operators,	 manufacturers	 and	 application	 and	 sales	 channels.	 In	 2004	 they	
combined	their	developments,	which	were	 located	 in	UK,	USA	and	Singapore.	
They	 shared	 their	 code	on	a	 central	 code	 repository	 to	minimize	duplications	
and	reduce	cost	of	maintenance	(Yap,	2005).	Many	companies	use	central	code	
repository	for	their	distributed	projects	such	as	Extol	International	(Kussmaul	et	
al.,	 2004),	 Valtech	 (Danait,	 2005),	Manco	 (Ramesh	 et	 al.,	 2006),	 Aginity	 LLC	
(Armour,	2007)	,	SirsiDynix	(Sutherland	et	al.,	2007),	CEInformant	(Bose,	2008)	
and	ABC	Bank	(Modi	et	al.,	2013).	

Related	Patterns	
Central	Code	Repository	pattern	is	often	used	with	Global	Scrum	Board	Pattern.		

	
3.	Asynchronous	Information	Transfer	Pattern	
	
Agile	 emphases	 on	 close	 face-to-face	 communication	 between	 the	 team	 members	
rather	 than	 detailed	 documentation.	 When	 a	 team	 is	 distributed	 on	 different	 time	
zones	 it	 has	 been	 observed	 that	 the	 teams	 adopted	 asynchronous	 tools	 for	 sharing	
information	with	each	other	such	as	emails,	wikis,	SharePoint.	Based	on	this	observed	
practice	we	have	designed	the	following	pattern	details:	
	
Pattern	Name	

Asynchronous	Information	Transfer	
Intent	

Due	to	the	time	difference	between	the	onshore	and	offshore	team	use	online	
tools	to	exchange	information	with	each	other.	Each	team	should	response	to	
queries	within	12	hours.	

Also	Known	As		
	 	Information	Transfer	or	Knowledge	Sharing		
Category	

Communication	category	as	this	pattern	helps	the	onshore	and	offshore	team	
members	to	answer	each	other’s	queries	within	12	hours.			

	

	

	 244	

Motivation	
When	a	team	is	divided	on	different	time	zones	they	may	have	queries	about	
work	but	due	to	the	time	difference	they	cannot	get	a	direct	reply	at	that	time	
so	 they	use	emails	 to	 communicate	queries,	which	are	 then	answered	within	
12hours	max.	Organisations	have	 set	 standards	 for	 response	 time	 in	order	 to	
avoid	delays	in	work	(Vax,	2008).	

Applicability	
Use	Asynchronous	Information	Transfer	when:	

• Team	is	distributed	over	different	time	zones.	
Participants	

• Distributed	onshore	and	offshore	agile	team	members.	
Collaboration	

• The	onshore	team	and	offshore	team	members	share	 information	and	ask	
queries	using	asynchronous	tools.	

Consequences	
The	Asynchronous	Information	Transfer	pattern	has	the	following	benefits:		

1. It	 allows	 onshore	 and	 offshore	 team	 members	 to	 exchange	 information	
when	 synchronous	 communication	 cannot	 be	 conducted	 due	 to	 working	
hours	time	difference.	

2. It	helps	team	members	from	waiting	for	onshore	team	member	availability	
to	ask	a	query.	

3. If	 the	 team	 members	 don’t	 respond	 timely	 it	 can	 cause	 delays	 in	 the	
project.	

Known	uses	
VTT	 Technical	 Research	 Centre	 of	 Finland	 and	 National	 University	 of	 Ireland	
conducted	 a	 research	 on	 two	 organisations	 that	 were	 developing	 a	 system	
together.	One	organisation	was	a	customer	organisation	 in	U.S	and	 the	other	
organisation	was	a	development	organisation	located	in	Ireland.	Based	on	their	
findings	the	companies	used	asynchronous	tools	for	communication.	They	used	
wikis	for	storing	documents	and	meeting	minutes	and	used	Emails	for	decisions	
and	 queries	 (Korkala,	 2010).	 Similarly	 Valtech	 used	 Twiki	 for	 asynchronous	
communication	(Danait,	2005).		

Related	Patterns	
Asynchronous	 Information	 Transfer	 pattern	 is	 often	 used	 with	 Global	 Scrum	
Board	and	Synchronous	Communication	Pattern.		
	

4.	Synchronous	Communication	Pattern	
	
Agile	 emphases	 on	 close	 face-to-face	 communication	 between	 the	 team	 members	
rather	 than	 detailed	 documentation.	 When	 a	 team	 is	 distributed	 on	 different	 time	
zones	 it	 has	 been	 observed	 that	 the	 teams	 adopted	 asynchronous	 tools	 for	 sharing	
information	with	each	other	such	as	emails,	wikis,	SharePoint.	Based	on	this	observed	
practice	we	have	designed	the	following	pattern	details:	
	
Pattern	Name	

Synchronous	Communication	Pattern	
	

	

	 245	

Intent	
In	 order	 to	 discuss	 issues	 the	 teams	 uses	 synchronous	 tools	 for	 voice,	 video	
conferencing,	document	sharing,	application	sharing	etc.	

Also	Known	As		
	 	Synchronous	Knowledge	Transfer	
Category	

Communication	category	as	this	pattern	helps	the	onshore	and	offshore	team	
members	to	answer	each	other’s	queries	within	12	hours.			

Motivation	
When	a	team	is	divided	on	different	time	zones	they	may	have	queries	about	
work	but	due	to	the	time	difference	they	cannot	get	a	direct	reply	at	that	time	
so	 they	use	emails	 to	 communicate	queries,	which	are	 then	answered	within	
12hours	max.	Organisations	have	 set	 standards	 for	 response	 time	 in	order	 to	
avoid	delays	in	work	(Vax,	2008).	

Applicability	
Use	Synchronous	Communication	Pattern	when:	

• Team	is	distributed	over	different	time	zones.	
Participants	

• Distributed	onshore	and	offshore	agile	team	members.	
Collaboration	

• The	onshore	team	and	offshore	team	members	share	 information	and	ask	
queries	using	asynchronous	tools.	

Consequences	
The	Synchronous	Communication	pattern	has	the	following	benefits:		

1. It	allows	onshore	and	offshore	team	members	to	exchange	information	
when	synchronous	communication	cannot	be	conducted	due	to	working	
hours	time	difference.	

2. It	 helps	 team	 members	 from	 waiting	 for	 onshore	 team	 member	
availability	to	ask	a	query.	

3. If	 the	 team	members	 don’t	 respond	 timely	 it	 can	 cause	 delays	 in	 the	
project.	

Known	uses	
CampusSoft	 is	 a	 UK	 based	 company	 that	 used	 synchronous	 communication	
when	they	moved	to	Agile	with	their	offshore	suppliers	 in	India	and	Romania.	
They	used	video	conferencing	facilities	for	planning	sessions	and	later	shifted	to	
WebEx	sessions	and	GoToMeeting	so	that	they	could	share	desktops	with	the	
remote	team	members.	For	daily	Scrum	meetings	they	preferred	to	use	Skype	
call	and	made	everyone	wear	headsets	to	make	the	meeting	easier.	For	sprint	
review	meetings	they	used	sharing	desktop	tools	as	well	as	conference	phones	
so	that	members	from	both	end	could	talk	with	each	other	(Summers,	2008).	

Related	Patterns	
Synchronous	Communication	pattern	is	often	used	with	Global	Scrum	Board	
and	Asynchronous	Information	Transfer	Pattern		

	
c)	Collaboration	Patterns	
	
In	this	section	we	have	described	the	detail	of	each	collaboration	pattern.	

	

	 246	

	
1.	Collaborative	Planning	Poker	Pattern	
	
An	agile	 team	plays	planning	poker	 to	put	points	estimation	on	each	story	card.	The	
product	owner	also	takes	part	in	this	activity.	He	tells	the	team	the	intent	and	value	of	
a	 story	 card	 based	upon	which	 the	 development	 team	assigns	 an	 estimation	 on	 the	
card.	Based	on	 the	points	assigned	 the	 team	members	who	assigned	 the	 lowest	and	
highest	estimation	will	 justify	 their	 reasons.	The	 team	will	have	a	brief	discussion	on	
each	story	and	assign	an	estimation	upon	which	the	whole	team	agrees	on.		
	
It	 has	 been	 observed	 that	 even	 when	 the	 team	 is	 distributed	 the	 planning	 poker	
activity	is	conducted	when	both	teams	are	co-located	for	the	project	planning	activity.	
Based	on	this	observed	practice	we	have	designed	the	following	pattern	details:	
	
Pattern	Name	

Collaborative	Planning	Poker	Pattern		
Intent	

Only	Key	people	will	hold	this	activity	from	onshore	and	offshore	team.	
Also	Known	As		
	 Planning	Poker	or	Scrum	Poker	
Category	

Collaborative	category	as	this	pattern	helps	the	onshore	and	offshore	team	to	
discuss	the	duration	of	a	story	card.	

Motivation	
When	 a	 project	 is	 distributed	 to	 a	 team	 that	 is	 divided	 over	 different	 time	
zones,	it	is	important	that	all	the	team	members	agree	on	the	time	duration	of	
a	 feature	 before	 they	 start	 developing	 the	 project.	 This	 helps	 estimate	 the	
duration	 of	 the	 project	 completion	 as	 well	 as	 it	 provides	 visibility	 of	 project	
progress.	 For	 this	 purpose	 the	 onshore	 and	 offshore	 team	 members	 play	
planning	poker	in	order	to	collectively	agree	on	the	estimation	of	a	story	card.	
Once	the	estimation	is	decided	they	write	it	down	and	approved	by	the	product	
owner/client	 and	move	 on	 to	 the	 next	 story	 card,	 till	 all	 the	 story	 cards	 are	
estimated.		

Applicability	
Use	Planning	Poker	pattern	when:	

• Team	 is	 distributed	 over	 different	 time	 zones	 and	will	 be	working	 on	
different	story	cards	in	a	sprint.	

Participants	
• Distributed	onshore	and	offshore	agile	team.	
• Product	owner/Client.	

Collaboration	
• The	client	approves	the	estimation	made	by	the	team	members.	

Consequences	
The	Planning	Poker	pattern	has	the	following	benefits:		

1. It	 allows	 the	 onshore	 and	 offshore	 teams	 to	 agree	 on	 a	 story	 card	
estimation,	which	helps	the	team	establish	their	team	velocity.		

2. It	provides	the	product	owner/client	with	estimation	of	project	completion	

	

	 247	

3. If	all	team	members	don’t	agree	on	estimation	on	a	story	card	it	can	lead	to	
a	long	discussion,	resulting	the	planning	poker	to	prolong.		

Known	uses	
UShardware	 has	 development	 centers	 across	 North	 America,	 South	 America	
and	 Asia.	 When	 transitioning	 to	 distributed	 agile	 environment	 they	 used	
planning	poker	activity	 for	estimation	of	 their	 story	 cards	 (Wildt,	 Prikladnicki,	
2010).		

Related	Patterns	
Planning	 Poker	 Pattern	 is	 often	 used	 with	 Collective	 Project	 Planning	 as	 its	
better	 to	 conduct	 this	 pattern	 when	 the	 whole	 team	 is	 co-located.	 The	
estimated	story	cards	are	then	shared	on	the	Global	Scrum	board	so	that	whole	
team	can	view	them	during	the	project.	

	
2.	Follow-the-sun	Pattern	
	
When	a	agile	team	is	distributed	over	different	time	zones	 it	has	been	observed	that	
companies	cut	down	on	cost	by	increasing	development	time	by	adopting	“follow	the	
sun”	workflow	which	means	 it	allows	24	hours	development	due	to	the	difference	 in	
time	zones	allowing	a	company’s	employees	to	do	development	24hrs	a	day	(Carmel,	
Agarwal	2001;	Yap,2005;	Kroll,	et	al.,2012).Based	on	this	observed	practice	we	have	
designed	the	following	pattern	details:	
	
Pattern	Name	

Follow-the-sun	Pattern	
Intent	

Onshore	and	offshore	teams	will	work	9a.m	-5p.m	according	to	their	own	time	
zones.	

Also	Known	As		
24hours	development	Patterns	

Category	
Collaboration	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	
manage	their	work	and	handoff	their	work	to	the	other	team	before	they	leave	
from	work.	

Motivation	
Consider	 a	 team	 that	 is	 divided	 into	 sub-teams	 that	 are	 located	 on	 different	
time	 zones.	 To	 adjust	 the	 working	 hours	 of	 the	 offshore	 team	 for	 both	 the	
onshore	and	offshore	team	work	together	is	difficult	as	the	offshore	team	has	
to	 come	 in	 the	 evening	 and	 stay	 till	 early	morning.	 This	makes	 the	 offshore	
team	 feel	 they	 are	 less	 important	 in	 comparison	 to	 the	 onshore	 team	 and	 it	
affects	the	employees’	social	life.	
	
In	 order	 to	 avoid	 that,	 the	 onshore	 and	 offshore	 team	 “follow-the-sun”	
approach.	For	example	an	employee	works	from	9	a.m.	to	5p.m.	in	the	USA.	At	
5	 p.m.	 she	 hands	 over	 the	 incomplete	 task	 to	 a	 colleague	 in	 Australia	 who	
works	from	9	a.m.	to	5	p.m.	based	on	his	time	zone.	At	5	p.m.	according	to	his	
country,	he	transfers	the	updated	task	to	a	colleague	in	Poland	who	works	on	

	

	 248	

the	updated	task	for	the	next	eight-hours	and	then	forwards	it	to	his	colleague	
in	the	USA	(Gupta,	2009).	

	
While	the	employee	in	the	USA	had	left	work	two	of	her	colleagues	worked	on	
her	 task	 as	when	 she	will	 come	 to	 the	office	 next	morning	 a	 lot	 of	 the	work	
would	have	been	done.	This	work	scenario	takes	advantage	of	the	geographical	
distances	 as	 it	 allows	 people	 from	 different	 time	 zones	 to	 work	 round-the-	
clock	in	order	to	build	software	(Gupta,	2007).	

	
The	work	distribution	among	the	team	can	be	done	in	two	ways.	First	either	the	
3	teams	distributed	on	different	geographical	locations	work	on	the	same	task	
and	each	team	keeps	updated	the	task	as	mentioned	in	the	above	scenario	or	
secondly	a	most	efficient	way	 is	 that	we	divided	different	aspect	of	 the	same	
problem	among	the	team	for	example	 in	Figure	3	we	can	see	how	a	problem	
has	been	distributed	among	3	teams	(Gupta,	2009):	

 Figure	7.3.1.	Distribution	of	work	among	3	distributed	teams.	

Applicability	
Use	follow-the-sun	pattern	when:	

• Team	is	distributed	over	different	time	zones.	
• The	onshore	and	offshore	teams	are	working	on	different	tasks.	

Participants	
• Distributed	onshore	and	offshore	agile	team.	

Collaboration	
• Both	onshore	and	offshore	team	hand	over	their	work	to	each	other	at	the	

end	of	every	working	day	using	online	tools.		
Consequences	

The	follow-the-sun	pattern	has	the	following	benefits	and	liabilities:		
1. It	 allows	 continues	 development	 during	 different	 working	 shifts	 across	

different	time	zones.	
2. It	allows	both	onshore	and	offshore	team	to	work	according	 to	 their	 time	

zone	 without	 having	 to	 either	 come	 early	 to	 work	 or	 stay	 late	 till	 early	
morning.	

3. It	 reduces	 the	 development	 life	 cycle	 or	 time-to-market	 (Denny,	 et	 al.,	
2008).	

4. It	 limits	 the	onshore	and	offshore	 team	 from	 real-time	communication	as	
the	overlapping	working	hours	between	different	time	zones	can	be	less	or	
zero.	

	

	 249	

Known	uses	
Yahoo!	 used	 follow-the-sun	 approach	 when	 they	 offshored	 their	 Yahoo!	
Podcast	product	from	Sunnyvale,	California	campus	to	Yahoo!	Bangalore,	India	
Campus	 (Drummond,	 Unson,	 2008).	 Similarly	 organisations	 like	 WDSGlobal	
(Yap,2005)	 and	 Wipro	 Technologies	 (Sureshchandra,	 et	 al.,2008)	 use	 follow-
sun-approach.	

Related	Patterns	
Follow-the-sun	Pattern	is	often	used	with	Local	Standup	meeting	Pattern	and		
Scrum	of	Scrum	Pattern	as	both	onshore	and	offshore	team	members	are	
working	separately.	

	
3.	Collective	Project	Planning	Pattern	
	
Agile	focuses	on	individuals	and	interactions	over	processes	and	tools.	While	planning	
for	the	project	the	whole	team	is	present.	Unlike	the	traditional	development	where	a	
project	manager	hands	a	project	plan	to	the	team.	In	agile	the	whole	team	takes	part	
in	 the	 planning	 activity	 in	 order	 to	 determine	 when	 and	 how	 the	 project	 will	 be	
developed.		It	has	been	observed	that	even	if	the	project	is	of	a	distributed	nature	it	is	
better	 to	 co-locate	 the	 team	 onshore	 and	 offshore	 team	 for	 the	 project	 planning	
activity.	 Based	 on	 this	 observed	 practice	 we	 have	 designed	 the	 following	 pattern	
details:	
	
Pattern	Name	

Collective	Project	Planning	Pattern		
Intent	

Both	 the	 onshore	 team	 and	 the	 offshore	 team	 will	 collectively	 work	 in	 the	
project-planning	phase.	Once	both	team	have	engaged	in	the	project	planning	
activity,	the	team	will	prepare	the	project	backlog.	

Also	Known	As		
	 Project	Planning	or	Agile	Project	Planning		
Category	

Coordination	category	as	this	pattern	helps	the	onshore	and	offshore	team	to	
work	together	and	come	up	with	a	project	plan.	

Motivation	
Consider	 a	 team	 that	 is	 divided	 into	 sub-teams	 that	 are	 located	 on	 different	
time	zones	and	both	the	teams	come	to	one	location	to	do	the	project	planning	
activity.	In	the	beginning	of	any	distributed	project,	the	offshore	team	is	invited	
to	the	onshore	location	so	that	they	may	work	together	and	understand	each	
other’s	requirements.		
	
While	the	teams	are	co-located	they	worked	on	preparing	the	product	backlog	
and	they	spend	at	 least	one	or	two	sprints	together	before	the	offshore	team	
leaves	and	starts	working	on	the	project	(Cottmeyer,2008;	Therrien,2008).	This	
helps	the	onshore	team	by	making	the	offshore	team	understand	their	working	
style	and	work	standard.	

Applicability	
Use	Collective	Project	Planning	pattern	when:	

	

	 250	

• Team	is	distributed	over	different	time	zones.	
Participants	

• Distributed	onshore	and	offshore	agile	team.	
Collaboration	

• Onshore	team	and	offshore	team	work	together	to	make	a	product	backlog.		
Consequences	

The	Collective	Project	Planning	pattern	has	the	following	benefits	and	liabilities:		
1. It	 allows	 the	 onshore	 and	 offshore	 teams	 to	 work	 together	 and	 understand	

each	other.		
2. Onshore	team	works	with	the	offshore	team	and	makes	them	understand	what	

type	of	work	they	want.	
3. It	adds	additional	cost	of	 travel	and	stay	of	 the	offshore	team	at	 the	onshore	

location.	
Known	uses	

FAST,	a	search	company	with	headquarters	 in	Norway	while	building	a	search	
application	on	top	of	their	core	search	platform	used	collective	project	planning	
to	 co-locate	 the	 team	 and	 make	 them	 work	 together	 in	 project	 planning	
activities	 (Berczuk,	 2007).	 	 Siemens	 also	 used	 collaborative	 planning	 for	 their	
distributed	projects	(Avritzer,	Paulish,	2010;	Avritzer	et.	al,	2007)	in	which	team	
members	from	multiple	sites	got	 involved	in	the	early	stages	of	the	project	 in	
order	to	create	an	open	communication	channel	and	high	level	of	trust	among	
the	distributed	team	members	(Avritzer	et.	al,	2010)	

Related	Patterns	
Collective	Project	Planning	Pattern	is	often	used	with	Project	Charter	Pattern	as	
it	provides	a	central	document	 that	consists	of	 the	goal	and	objectives	of	 the	
project	written	by	the	client.	

	
4.	Visit	onshore-offshore	Team	Pattern	
	
As	agile	emphases	on	close	face-to-face	communication	between	the	team	members	it	
has	been	observed	 that	when	 the	 team	 is	divided	on	different	 time	zones,	 the	 team	
members	travel	quarterly	or	annually	to	visit	each	other.	This	activity	helps	build	trust	
among	 the	 team	 members	 and	 helps	 them	 understand	 each	 other’s	 cultural	
differences	 (Ramesh,	 2006;	 Therrien,	 2008;	 Summers,	 2008;	Paasivaara	et	 al.,	 2014).		
Based	on	this	observed	practice	we	have	designed	the	following	pattern	details:	
Pattern	Name	

Visit	onshore-offshore	Team	Pattern	
Intent	

Both	onshore	and	offshore	teams	should	quarterly	/	annual	visit	each	other	in	
order	to	build	trust,	exchange	cultural	values	and	improve	team	coordination.		

	
Also	Known	As		
	 	Travel	onshore-offshore	
Category	

Collaboration	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	
members	to	co-locate	and	understand	each	other	and	build	a	good	
relationship,	which	improves	team	coordination.	

	

	 251	

Motivation	
When	a	 team	 is	divided	on	different	 time	zones	 they	don’t	 feel	 that	 they	are	
both	part	of	one	team	and	they	don’t	trust	each	other.	They	don’t	understand	
each	other’s	cultural	values	and	work	ethics.	In	order	to	solve	these	issues	the	
onshore	and	offshore	team	visits	each	other	to	develop	the	feeling	of	trust	and	
understand	each	other’s	 cultural	 and	working	values.	During	 these	visits	 they	
attend	 training	 together	 as	 well	 as	 engage	 into	 informal	 activities	 to	 better	
understand	each	other.	 This	helps	build	a	bond	between	 the	 team	members,	
which	results	in	good	team	coordination.	

Applicability	
Use	Visit	onshore-offshore	Team	when:	

• Team	is	distributed	over	different	time	zones.	
Participants	

• Distributed	onshore	and	offshore	agile	team	members.	
Collaboration	

• The	onshore	team	and	offshore	team	members	visit	each	other	to	improve	
team	coordination.	

Consequences	
The	Visit	onshore-offshore	Team	pattern	has	the	following	benefits:		

1. It	allows	onshore	and	offshore	team	members	to	exchange	cultural	values	
with	each	other	and	work	ethics.	

2. It	helps	team	members	to	 feel	 they	are	part	of	one	team,	which	develops	
trust	among	onshore	and	offshore	team	members.	

3. The	travelling	adds	additional	cost	to	the	project	budget.	
Known	uses	

Ericsson	is	a	Swedish	multinational	provider	of	communications	technology	and	
services.	To	build	a	XaaS	platform	and	a	set	of	services	they	used	agile	software	
development	 methodologies.	 The	 development	 team	 was	 distributed	 over	 5	
sites	 located	 in	3	countries.	Four	of	 the	sites	were	 located	 in	Europe	and	one	
was	located	in	Asia.	They	conducted	workshops,	which	were	attended	by	team	
members	 from	 different	 locations.	 The	 purpose	 of	 these	 workshops	 was	 to	
create	a	common	vision	for	the	whole	organisation	by	setting	common	values	
as	well	 also	 to	 improve	 the	 collaboration	 between	 the	 sites,	 thus	 build	 trust	
(Paasivaara	et	al.	2014).	

Related	Patterns	
Visit	 onshore-offshore	 Team	 pattern	 is	 often	 used	 with	 Collective	 Project	
Planning	Pattern	as	planning	is	better	done	when	the	whole	team	is	co-located.		
	

d)	Verification	Patterns	
	
In	this	section	we	have	described	the	detail	of	each	verification	pattern.	
	
1. Project	Charter	Pattern	

	
In	 project	 management,	 project	 charter	 is	 a	 statement	 that	 defines	 the	 scope,	
objectives	 and	 participants	 of	 a	 project.	 It	 is	 used	 to	 explain	 the	 roles	 and	
responsibilities,	outline	of	the	project	objectives	and	identify	main	stakeholders.	It	has	

	

	 252	

been	observed	that	while	starting	a	distributed	project	using	agile	many	organisation	
use	project	charter	 to	clarify	 the	goals	and	objectives	of	 the	project	 to	both	onshore	
and	offshore	 team	 (Galen,	2009).	Based	on	 this	observed	practice	we	have	designed	
the	following	pattern	details:	
Pattern	Name	

Project	Charter	Pattern		
Intent	

Before	starting	the	project	planning	activity,	agile	teams	use	project	charter	in	
order	to	have	a	central	document	between	the	onshore	and	offshore	team	that	
defines	the	project.	

Also	Known	As		
	 Project	Definition	or	Project	Statement	
Category	

Verification	 category	 as	 this	 pattern	 helps	 the	 onshore	 and	 offshore	 team	 to	
have	 a	 central	 document	 clarifying	 the	 project	 goals	 and	 objectives,	which	 is	
written	by	the	product	owner/client.	

Motivation	
When	 a	 project	 is	 distributed	 to	 a	 team	 that	 is	 divided	 over	 different	 time	
zones,	 a	 central	 document	 is	 written	 known	 as	 the	 project	 charter,	 which	
clarifies	the	onshore	and	offshore	team	the	goals	and	objectives	of	the	project.	
It	 also	 identifies	 the	 roles	 and	 responsibilities	 of	 the	 onshore	 and	 offshore	
team.	The	purpose	of	this	activity	is	to	have	a	document	that	helps	the	team	in	
the	project-planning	task.		

Applicability	
Use	Project	Charter	pattern	when:	

• Team	is	distributed	over	different	time	zones.	
Participants	

• Distributed	onshore	and	offshore	agile	team.	
• Client.	

Collaboration	
• The	client	gives	the	project	charter	to	the	onshore	team	and	offshore	team	

to	clarify	the	goals	of	the	project.	
Consequences	

The	Project	Charter	pattern	has	the	following	benefits:		
1. It	allows	the	onshore	and	offshore	teams	to	understand	the	project.		
2. It	 is	 intended	to	clearly	set	the	stage	for	the	project	by	aligning	the	team	and	

settings	goals	and	expectations.		
Known	uses	

IONA	Technologies	used	Project	Charter	 for	their	distributed	projects	 in	order	
to	 have	 a	 central	 document	 that	 clarifies	 the	 goals	 of	 the	 project	 to	 both	
onshore	 and	 offshore	 team	members	 (Poole,	 2004).	 Similarly	 in	 a	 case	 study	
conducted	 by	 Brown	 (2011)	 on	 Agile-at-Scale	 Delivery	 it	 was	 observed	 that	
organisations	use	project	charter.	

Related	Patterns	
Project	Charter	pattern	is	often	used	with	Visit	onshore-offshore	Team	pattern.	

	
	

	

	 253	

2.		Onshore	Review	Meeting	Pattern	
	
In	agile,	at	 the	end	of	each	sprint,	a	sprint	review	meeting	 is	held	 in	which	the	team	
meets	with	the	clients	and	shows	them	the	work	they	have	done	through	a	demo.	In	
this	meeting	the	client	gives	remarks	about	the	work	and	if	they	require	any	changes	
they	tell	the	team.	It	has	been	observed	that	when	the	team	is	distributed	on	different	
locations,	then	the	team	that	is	co-located	with	client	conducts	the	review	meeting.	
	
Based	on	this	observed	practice	we	have	designed	the	following	pattern	details:	
Pattern	Name	

Onshore	Review	Meeting		
Intent	

The	 onshore	 team	 will	 present	 the	 demo	 as	 they	 are	 located	 where	 the	
client	is.	

Also	Known	As		
	 Sprint	Review	Meeting	
Category	

Verification	 category	 as	 this	 pattern	 helps	 the	 client	 see	 the	 progress	 of	 the	
project	as	well	as	they	can	suggest	early	changes.	

Motivation	
Consider	 a	 team	 that	 is	 divided	 into	 sub-teams	 that	 are	 located	 on	 different	
time	zones	and	one	of	the	team	is	located	in	the	same	country	as	the	client.	In	
order	to	show	the	progress	of	the	project	it	is	more	convenient	that	the	team,	
which	is	located	near	the	client,	presents	the	demo	in	order	to	have	a	face-to-
face	 meeting.	 Once	 the	 meeting	 has	 ended	 the	 onshore	 team	 briefs	 the	
offshore	teams	the	remarks	of	the	client.	

Applicability	
Use	Onshore	Review	Meeting	pattern	when:	

• Team	is	distributed	over	different	time	zones.	
• The	onshore	is	located	in	the	same	country	as	the	client.	

Participants	
• Distributed	onshore	and	offshore	agile	team.	
• Client	

Collaboration	
• Onshore	 team	 presents	 demo	 to	 the	 client	 and	 discusses	 the	 meeting	

minutes	with	the	offshore.	
Consequences	

The	Onshore	Review	Meeting	pattern	has	the	following	benefits	and	liabilities:		
1. It	 allows	 the	 client	 to	 meet	 the	 development	 team	 face-to-face	 and	 give	

feedback.	
2. It	allows	both	onshore	and	clients	to	discuss	what	changes	they	want	and	how	

much	time	will	be	required	based	on	the	modification.	
3. It	 limits	 the	 offshore	 team	 from	 meeting	 the	 clients	 which	 can	 cause	 the	

offshore	 team	 from	 discussing	 the	 changes	 and	 giving	 their	 remarks	 on	 the	
clients	feedback.	

	
	

	

	 254	

Known	uses	
Wipro	 Technologies,	 a	 global	 service	 provider	 company	 used	 onshore	 review	
meetings	 so	 that	 they	 could	 get	 quick	 feedback	 from	 the	 customer/business	
user,	 which	 was	 then	 shared	 with	 the	 remote	 team	 over	 mail	 and/or	
teleconference	 (Sureshchandra	 et	 al.,	 2008).	 Similarly	 when	 SirsiDynix,	 USA	
outsourced	 their	 work	 to	 Starsoft,	 Ukraine	 they	 also	 used	 onshore	 review	
meetings	to	show	the	demo	of	the	work	done	(Sutherland	et	al.,	2007)			

Related	Patterns	
Onshore	 Review	 Meeting	 pattern	 is	 often	 used	 with	 Asynchronous	
Retrospective	 Meetings	 Pattern	 because	 after	 the	 demo	 both	 onshore	 and	
offshore	 team	 members	 conduct	 their	 separate	 retrospective	 meetings.

	

	 255	

	

	 256	

	

