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ABSTRACT 

      The present study aims to investigate the thermal radiation heat transfer effect on unsteady 

magnetohydrodynamic (MHD) flow of micropolar fluid over a uniformly heated vertical hollow 

cylinder using Bejan’s heat function concept. The normalized conservation equations emerge as a 

system of time-dependent non-linear coupled partial differential equations. Under appropriate wall 

and free stream conditions these equations are solved with an efficient unconditionally stable 

implicit scheme of Crank-Nicolson type. Important thermo-physical parameters featured include 

the magnetic body force parameter (M), Grashof (free convection) parameter (Gr), Eringen 

micropolar material parameter (K), Prandtl number (Pr), conjugate heat transfer parameter (P) and 

radiative-conductive Rosseland parameter (N), are analyzed on the flow-field with ranges 0-3, 105-

106, 0-1.2, 0.7-7.0, 0-0.5 and 0-15, respectively. The time-histories of average values of 

momentum and heat transport coefficients, as well as the steady-state flow variables are presented 

for selected values of these non-dimensional parameters. With elevation in magnetic parameter or 

radiation parameter, the time taken for the flow-field variables to attain the time-independent state 

increases. The dimensionless thermal radiative heat function values are closely correlated with the 

overall rate of heat transfer on the outer hot cylindrical wall. Bejan’s heat flow visualization 

implies that the thermal radiative heat function contours are compact in the neighbourhood of 

leading edge of the boundary layer on the outer hot cylindrical wall. Increasing radiation or 

magnetic parameter values result in an increase in the deviation of heat lines from the hot wall. 

Also, the heatlines are observed to depart slightly away from the hot wall with greater values of 

vortex viscosity. Furthermore, the deviations of flow variables from the hot wall for a micropolar 

fluid are significant compared to the Newtonian fluid (vanishing micropolar vortex viscosity). 

 

KEYWORDS: Micropolar fluid; MHD; vertical slender hollow cylinder; heat function; finite 

difference method; nonlinear convection; thermal radiation; enrobing flows. 
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NOMENCLATURE  

𝐵0         applied magnetic field 

B           magnetic flux 

 𝐶𝑓         dimensionless average momentum transport coefficient 

E          electric field  
Gr          Grashof number 

H          magnetic field  

J           current density 
j              microinertia per unit mass 
𝑐𝑝            specific heat (isobaric) 

 g             acceleration due to gravity 
K             dimensionless vortex viscosity (Eringen micropolar material parameter) 

𝑘1          vortex viscosity 
 𝑘𝑓 , 𝑘𝑠      thermal conductivity of the fluid and the solid cylinder, respectively 

M            magnetic body force parameter  

P              conjugate heat transfer parameter 

N            conduction-radiation parameter (Rosseland number) 

𝑁𝑢           dimensionless average heat transport coefficient 

r              radial coordinate 
𝑟𝑖            radius of the inner cylinder 
𝑃𝑟          Prandtl number 

R              dimensionless radial coordinate   
p            fluid pressure  

𝑞𝑟           radiative heat flux 

X              dimensionless axial coordinate 

U            velocity vector 

U, V        dimensionless velocity components in (X, R) coordinate system  

𝑟𝑜             radius of the outer cylinder   
S            micro-rotation vector  
S′             micro-rotation of the fluid in the xr-plane 
S              dimensionless micro-rotation of the fluid 

𝑇0
′            temperature of the inner cylinder 

x             axial coordinate 

L            length of the cylinder 
u, v          velocity components in (x, r) coordinate system 
𝑡′              dimensional time 

t              dimensionless time 

𝜏𝑖𝑗           stress tensor  

𝑇′            fluid temperature  
 

Greek symbols 

θ              dimensionless temperature 
𝛽𝑇             volumetric coefficient of thermal expansion   
 ∗          mean absorption coefficient 
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γ               spin gradient viscosity 

𝜌               density  
σ ∗           Stefan-Boltzmann constant 
𝜇              dynamic viscosity of the fluid 
Ω′             heat function 
Ω              dimensionless heat function 
               kinematic viscosity of the fluid 

σ             electrical conductivity of the fluid 
𝛼              thermal diffusivity 

ψ              dimensionless stream function 
 

Subscripts 
l, m         grid levels in (X, R) coordinate system 

w            wall conditions 

∞            ambient conditions 

 

Superscripts 

n            time level 

 

 

1. INTRODUCTION 

Unsteady natural convection flows of viscous incompressible fluids from the exterior of 

solid bodies feature in an extensive range of applications including thermal coating processes, 

geophysical transport, fire dynamics and solar collector systems. Both laminar and turbulent flows 

from cylindrical bodies are a significant sub-branch of such problems and frequently feature 

boundary-layer phenomena. Sparrow and Gregg [1] conducted an early study of natural 

convection boundary layer flow from a uniformly heated vertical cylinder. Lee et al. [2] studied a 

similar problem with power-law variation in temperature along a thin vertical cylinder i.e. non-

isothermal free convection flow. These investigations were confined to Newtonian fluids. 

However rheological fluids are invariably encountered in real polymeric materials processing 

systems and require constitutive formulations that do not conform to the classical Navier-Stokes 

model. Furthermore, in numerous investigations, the wall conduction resistance in the case of 

convection heat transfer between a solid cylinder wall and fluid flow is ignored i.e. there is no 

conduction from the solid cylinder wall. However, in many industrial applications, the interfacial 

temperature is needed since the physical characteristics of heat transfer are influenced by the 

temperature dissimilarities between the bulk flow and the solid interface. Therefore, the 

convection in the fluid and the conduction in the solid interface should be determined 

simultaneously. This type of convective flow heat transfer is known as a conjugate heat transfer 

(CHT) process and arises in rocket chamber film cooling, energy conservation, combustion of 

plastics, thermal barrier coating (TBC) of gas turbine components etc. Many researchers have 

widely studied this type of CHT research problems [3-6], with the help of mathematical modelling 

for different flow geometries, although these have been invariably restricted to Newtonian fluids. 

Very few non-Newtonian conjugate heat transfer simulations have been reported however. Rani 

and Reddy [7] examined the influence of Dufour and Soret effects on non-Newtonian fluid flow 
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from a vertical cylinder. Recently Hirschhorn et al. [8] investigated the non-Newtonian 

magnetohydrodynamic (MHD) flow from a plate with slip boundary conditions. 

There is a diverse spectrum of non-Newtonian fluid theories available in the literature. The 

vast majority modify the Navier-Stokes formulation with extra stress tensors to accommodate 

different rheological phenomena including shear thinning/thickening, relaxation, retardation, 

memory etc. However, a more sophisticated family of models exhibit microstructure and these 

belong to a class of fluids with an asymmetric stress tensor. These types of fluids have a wider 

range of application in engineering sciences since they can capture micro-rheological effects 

associated with suspended particles. They are applicable to biological systems, geological 

processes, lubrication (tribology), polymers, liquid crystals, plasmas etc. Among these so-called 

“polar theories” the most comprehensive was developed by Eringen [9] and termed micro-morphic 

fluid mechanics. A subset of this elegant theory was later developed also developed by Eringen 

[10] and termed micropolar fluid theory, wherein a gyration parameter and micro-rotation vector 

is introduced additionally to the classical velocity field to study the kinematics of micro-rotation. 

A further modification for thermal properties was later presented again by Eringen [11]. 

Micropolar fluid dynamics has successfully addressed complex fluids including liquid crystals, 

colloidal solutions, lubricants, ferrofluids, smart fluids, polymeric fluids, animal blood etc. 

Representative studies of micropolar fluids with multiple physical effects include biophysical 

transport phenomena [12-14], magnetohydrodynamics (MHD) flows [15-16] and geomechanics 

[17]. Another interesting application i.e. channel cooling, was considered by Prathap Kumar et al. 

[18] in which fully developed micropolar convection was analysed in a vertical channel. An 

excellent review of the applications of micropolar fluids has been presented by Ariman et al. [19]. 

Recently, Tetbirt et al. [20] studied the hydromagnetic micropolar flow in a vertical channel with 

MHD effect. 

The above studies have generally considered thermal conduction and convection modes of 

heat transfer in micropolar fluid mechanics. However, in high temperature applications (e.g. rocket 

channel cooling, materials processing etc.) thermal radiative heat transfer becomes substantial. 

Radiative transfer also features prominently in glass synthesis processes, combustor design, solar 

energy engineering, nuclear reactor thermo-hydraulics, laser ablation of materials. When fluids 

have electrically-conducting properties then magnetohydrodynamic (MHD) effects are also 

invoked. These may feature Lorentzian body forces, magnetic induction, Ohmic dissipation, Hall 

currents, ionslip effects, Alfven waves etc. Radiative magnetohydrodynamic coating fabrication 

systems therefore require the simultaneous consideration of MHD and thermal radiative effects in 

addition to viscous flow, thermal conduction and convection.  

A careful inspection of the scientific and technical literature has identified that very scant 

attention has been directed towards unsteady hydromagnetic micropolar fluid flow from a radiative 

vertical slender cylinder, which is of great interest in magnetic thermal enrobing flows in materials 

operations. Therefore, in the present article, a theoretical and numerical study of micropolar fluid 

flow over a uniformly heated vertical thin hollow cylinder in the boundary layer region is 

presented. The temperature of the inner cylindrical wall is maintained uniformly and is greater 

than the surrounding fluid temperature. The temperature of the outer cylinder wall is resolved by 

the conjugate solution of the time-independent state energy equation of the solid and fluid flow. 

The transitory effects of the micropolar fluid flow are studied for the momentum and heat transport 

coefficients for different control parameters and compared with the Newtonian fluid flow. The 

non-linear boundary value problem is solved with the Crank-Nicolson implicit finite difference 

method and validation is included with the available existing results in the literature. 
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Usually, the numerical simulation of fluid dynamics problems are analysed only with the 

help of popular visualization techniques such as streamlines, velocity vectors and isotherms. Apart 

from streamlines, the other two can be simulated directly from the primary variables using suitable 

plotting softwares. In a given domain isotherms will contribute to illustrate the temperature 

distribution. However, by utilizing them a visualization of the direction and heat transfer intensity 

is not possible. In particular, in thermal convection flows, the direction of heat flux is not normal 

to temperature contours. Also, isotherms are a proper heat transfer visualization tools only in the 

field of conduction (where, in fact, they have been invented) because only there they are locally 

orthogonal to the true direction of energy flow. Researchers have developed different novel 

visualization tools to explain the flow physics and behavior of the system. Kimura and Bejan [21] 

and Bejan [22] initiated the heat line concept of flow visualization. Heatlines help in visualization 

of the energy flow in the domain. Also, heat lines provide an excellent mechanism for visualizing 

the intensity of heat transfer and furnish well-defined pathways for the energy transfer to occur 

from hot to cold walls. Mahmud and Fraser [23] introduced an alternative visualization technique 

for convective heat transfer called energy streamlines. Transport of different other forms of energy 

like chemical, electrical, magnetic, thermal, potential and kinetic energy are considered in the 

energy streamlines. Hooman [24] initiated another novel visualization tool called energy flux 

vectors which are used to visualize the flow of energy. Further, the energy flux vectors bridge the 

gap between the heatlines and energy streamlines, each of which extensively used for visualization 

purpose. As these vectors are tangent to the heatlines and represents the flow of energy in a 2D 

domain. This technique (energy flux vectors) can be applied for situations where heatlines cannot 

be applied, namely, unsteady problems, 3D flows, and energy equations with source terms. 

Further, by applying the energy flux vectors, the difficulty of formulating the suitable boundary 

conditions for heat lines and energy streamlines can be overcome. However, quantitative estimates 

of heat transfer cannot be obtained using this technique( Mahapatra et al.[25]). Similarly, 

Mahapatra et al. [26], studied the natural convection in alternately active bi-heater located at the 

bottom of an enclosure for different switchover time period. Also, they explained the energy flux 

vectors and streamlines at different time zones. More details about these novel flow visualization 

techniques can be found in ( Mahapatra et al.[25]). However, in the present study the heat lines 

are discussed for steady-state case only. For cylindrical enclosures, Aggarwal and Manhapra [27] 

employed the heat lines concept under steady-state condition for the natural convective heat 

transfer process. In a similar way, Rani and Reddy [28] studied the heat lines for couple stress 

thermal convection from a vertical cylinder. Later, couple stress thermosolutal convection along a 

vertical cylinder was scrutinized by Rani et al. [29] using the concept of heat line and also mass 

line visualization. Using the same idea, recently Das and Basak [30] analysed the rate of heat 

transfer at different zones within enclosures involving discrete heaters. Further elaboration on the 

heat line methodology in thermal convection flows has been provided by Morega [31-32]. Recent 

studies on heat lines can be found in [33-35]. Thusfar their remains a rather sparse literature 

available however deploying the heat lines concept. This, in part, has motivated the present 

investigation wherein for the first time, an attempt has been made to visualize the flow behaviour 

for thermal radiation and magnetohydrodynamic effects using the heat line function concept.    

 

2. MATHEMATICAL MODELLING 

Transient two-dimensional laminar buoyancy-driven (natural convection) electrically –

conducting micropolar boundary layer flow from a radiating slender cylinder of outer radius 𝑟0 
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under the action of a transversely applied (radial) static magnetic field 𝐵0, is considered. The 

physical model is depicted in Fig. 1. A rectangular coordinate system is selected, in which the 

axial coordinate (x-axis) is orientated from the base of the cylinder, while the radial coordinate (r-

axis) is directed  normal to the x-axis. The neighboring fluid temperature is considered to be 

stationary and similar to that of free stream temperature 𝑇∞
′ . The temperature of the interior wall 

of the cylinder is preserved at a uniform value of  𝑇0
′, where 𝑇0

′  >  𝑇∞
′ . At the outset, i.e. 𝑡′ = 0 

the temperature 𝑇∞
′    is uniform for the outer cylinder and the surrounding fluid. Later (𝑡′ > 0), the 

temperature of the outer vertical cylinder is augmented to the fluid-solid interface temperature 

 𝑇𝑤
′  (> 𝑇∞

′  ) and preserved uniformly thereafter. This temperature  𝑇𝑤
′  is resolved by the conjugate 

solution of the time-independent state thermal equation of the solid and the governing equations 

of the micropolar fluid flow and is explained later. The radiative heat flux in the energy equation 

is described by using Rosseland’s approximation which simplifies the general radiative transfer 

equation into a diffusion flux algebraic formulation, generally valid for optically thin flows. Hall 

current, ionslip, magnetic induction and optical thickness effects are neglected. The relevant 

conservation equations for mass and momentum (linear and angular) may be presented as follows: 

 

Law of conservation of mass: 
𝜕(𝑟𝑢)

𝜕𝑥
+

𝜕(𝑟𝑣)

𝜕𝑟
 = 0                                                                                                          (1) 

 

Law of conservation of linear momentum: 

 

𝜌 [
 𝜕𝐔

𝜕𝑡′
+ (𝐔 . ∇)𝐔] =  −𝜌𝑔 − ∇𝑝 + (𝜇 + 𝑘1)∇2𝐔 + 𝑘1∇ × 𝐒 + ( 𝐉 × 𝐁 )                           (2)      

 

where, 𝐉 and 𝐁 are given by Ohm’s law and Maxwell’s equations, namely,   

∇ × 𝐄 = 0,  ∇ × 𝐇 = 4π𝐉 ,  ∇ × 𝐁 = 0,   𝐉 = σ[𝐄 + 𝐔 × 𝐁] 
Law of conservation of angular momentum:                            

 

𝜌𝑗 [
 𝜕𝐒

𝜕𝑡′ + ( 𝐔. ∇)𝐒] = −2𝑘1𝐒 +  𝑘1∇ × 𝐔 − 𝛾(∇ × ∇ × 𝐒)                                                 (3) 

 

Here the following notation applies: 𝑼 is the velocity vector, H is the magnetic field vector, 𝑺 is 

the microrotation vector,  j is the microinertia constant, 𝑘1 is the vortex viscosity coefficient, J is 

the current density, 𝛾 is the spin gradient viscosity, E is the electric field vector, B is the magnetic 

flux vector and 𝜎 is the electrical conductivity of the fluid. It is presumed that the magnetic 

Reynolds number is very small. Therefore, the interaction of the induced axial magnetic field with 

the motion of electrically-conducting micropolar fluid flow is expected to be minuscule compared 

to the interaction of the applied magnetic field.  Further, no external electric field is applied. With 

these assumptions, the Lorentzian magnetic body force term defined by the vector cross product 

𝑱 × 𝑩 in the momentum equation (2) reduces to −σ𝐵0
2𝑢 where 𝐵0 is the strength of the transverse 

magnetic field. Using Boussinesq’s approximation Eqns. (2) & (3) can be re-written as follows: 

 

 𝜌 (
𝜕𝑢

 𝜕𝑡′ + 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑟
) =  
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       (𝜇 + 𝑘1)
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) + 𝑘1

𝜕𝑆′

𝜕𝑟
+ 𝜌𝑔𝛽𝑇(𝑇′ −  𝑇∞

′  ) − 𝜎 𝐵0
2𝑢                                                   (4)  

 
 

𝜌𝑗 (
𝜕𝑆′

 𝜕𝑡′ + 𝑢
𝜕𝑆′

𝜕𝑥
+ 𝑣

𝜕𝑆′

𝜕𝑟
) =   

 

          𝛾
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑆′

𝜕𝑟
) − 𝑘1 (2𝑆′ +

𝜕𝑢

𝜕𝑟
−

𝜕𝑣

𝜕𝑥
)                                                                                         (5)                              

                                                                                                                    
The stress tensors related to micropolar fluid theory are given by [9-11]: 

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + (2𝜇 + 𝑘1)𝑑𝑖𝑗 + 𝑘1𝜀𝑖𝑗𝑚[𝜔𝑚 − S𝑚]                                                                (6) 

               𝑚𝑖𝑗 = 1(∇. 𝐒)𝛿𝑖𝑗 + 1S𝑖,𝑗 + S𝑗,𝑖                                                                          (7) 

Here  𝛿𝑖𝑗, 𝑑𝑖𝑗,  𝜔𝑚 and S𝑚 represent respectively the Kronecker symbol, components of rate of 

strain, vorticity vector and micro-rotation vector, 𝜀𝑖𝑗𝑚 denotes the Levi-Civita symbol, the material 

constants (1, 1, ) are the gyro-viscosity coefficients and a comma in the suffixes denotes 

covariant differentiation. The parameters 1, 1, , µ, 𝑘1 are constrained by the following 

inequalities: 

𝑘1 ≥ 0;  2𝜇 + 𝑘1 ≥ 0;   ≥ 0; |1
| ≤  ;  31 + 1 +  ≥ 0.                                               (8) 

 

Law of conservation of energy (heat): 
𝜕𝑇′

𝜕𝑡′ + 𝑢
𝜕𝑇′

𝜕𝑥
+ 𝑣

𝜕𝑇′

𝜕𝑟
=

𝛼

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇′

𝜕𝑟
 ) −

1

𝜌𝑐𝑝

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑞𝑟 )                                                               (9) 

Using Rosseland’s diffusion approximation, the heat flux 𝑞𝑟 is given by (Brewster [36]) 

                                                                 𝑞𝑟 =  −
4 ∗

3 ∗
𝜕𝑇′4

𝜕𝑟
                                                  (10) 

By Taylor series, the temperature 𝑇′4
 about 𝑇∞

′   is given by 

          𝑇′4
≅ 4(𝑇′𝑇∞

′ 3
) − 3(𝑇∞

′ 4
)                                                                                        (11) 

In view of Eqns. (10) and (11), Eqn. (9) reduces to: 

 

𝜕𝑇′

𝜕𝑡′
+ 𝑢

𝜕𝑇′

𝜕𝑥
+ 𝑣

𝜕𝑇′

𝜕𝑟
=

𝛼

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇′

𝜕𝑟
) + (

16 ∗𝑇∞
′ 3

3𝜌𝑐𝑝 ∗
 )

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇′

𝜕𝑟
 )                                                (12) 

 

The initial and boundary conditions are prescribed as follows: 

 

𝑡′ ≤ 0: 𝑇′ =  𝑇∞
′  ,  𝑆′ = 0, 𝑢 = 0, 𝑣 = 0                 ∀  x and r 

 

𝑡′ > 0: 𝑇′ = 𝑇𝑤
′  ,  𝑆′ = − 

1

2

𝜕𝑢

𝜕𝑟
, 𝑢 = 0, 𝑣 = 0         at  𝑟 =  𝑟0 

 

            𝑇′ =  𝑇∞
′ ,  𝑆′ = 0, 𝑢 = 0, 𝑣 = 0                  at  𝑥 = 0                                               

                                           

            𝑇′ → 𝑇∞
′ , 𝑆′ → 0, 𝑢 → 0, 𝑣 → 0                 as  𝑟 → ∞                                           (13) 

 

Here 𝑇𝑤
′  is the fluid-solid interface temperature and is given by (Chang [37]): 
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𝑇𝑤
′ = 𝑇′(𝑥,  𝑟0) =  𝑟0

𝑘𝑓

𝑘𝑠
ln (

 𝑟0

 𝑟𝑖
)

𝜕𝑇′(𝑥, 𝑟0)

𝜕𝑟
+ 𝑇0

′         at  𝑟 =  𝑟0          (14) 

 

 

To render the mathematical model as non-dimensional and thereby facilitate numerical solutions, 

the following dimensionless quantities are now invoked: 

 

 

 θ =
𝑇′−𝑇∞

′ 

𝑇0
′ −𝑇∞

′ , P =  
𝑘𝑓

𝑘𝑠
ln (

 𝑟0

 𝑟𝑖
) , 𝐺𝑟 =

𝑔𝛽𝑇𝑟0
3(𝑇0

′ −𝑇∞
′ )

𝜐2  , 𝑈 = 𝐺𝑟−1 2⁄ 𝑢𝑟0

𝜐
 ,  𝑉 = 𝐺𝑟−1 2⁄ 𝑣𝑟0

𝜐
 ,  𝑡 = 𝐺𝑟1 2⁄ 𝜐𝑡′

𝑟0
2  

, X = 
𝑥

𝑟0
 ,  𝑃𝑟 =  

𝜐

𝛼
 , 𝑅 =  

𝑟

 𝑟0
 , 𝑆 = 𝐺𝑟−1 2  ⁄ 𝑆′𝑟0

2

𝜐
, 𝐾 =  

𝑘1

 𝜐𝜌
 , 𝑗 =  𝑟0

2 , 𝛾 =  (𝜇 + 𝑘1 2⁄ )𝑗 =

(1 + 𝐾 2⁄ )𝜇𝑗,  =  
𝑘𝑓

𝑐𝑝
, 𝑀 =  

𝜎 𝐵0
2𝑟0

2

 𝜐𝜌
,  N= 

  ∗𝑘𝑓

 4  𝜎∗ 𝑇
′ 3                                                              (15)                                                                                                                                                                                                                                                                                         

Here all parameters are defined in the nomenclature. Implementing Eqn. (15) in Eqns. (1), (4), (5), 

(12) and also in Eqn. (13), the following normalized, coupled, nonlinear partial differential 

equations (PDEs) emerge: 

 

 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑅
+

𝑉

𝑅
= 0                                                                                                                   (16)                                                                                                           

 
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑅
 = θ + (

1+𝐾

𝐺𝑟1 2⁄ ) (
𝜕2𝑈

𝜕𝑅2 +
1

𝑅

𝜕𝑈

𝜕𝑅
) +

𝐾

𝐺𝑟1 2⁄

𝜕𝑆

𝜕𝑅
− 𝑀𝑈                                       (17)                                                

 
𝜕𝑆

𝜕𝑡
+ 𝑈

𝜕𝑆

𝜕𝑋
+ 𝑉

𝜕𝑆

𝜕𝑅
 =  (

1+𝐾/2

𝐺𝑟1 2⁄ ) (
𝜕2𝑆

𝜕𝑅2 +
1

𝑅

𝜕𝑆

𝜕𝑅
) −

𝐾

𝐺𝑟1 2⁄ (2𝑆 +
𝜕𝑈

𝜕𝑅
−

𝜕𝑉

𝜕𝑋
)                                   (18)                                                              

 
𝜕θ

𝜕𝑡
+ 𝑈

𝜕θ

𝜕𝑋
+ 𝑉

𝜕θ

𝜕𝑅
=

1

𝑃𝑟𝐺𝑟1 2⁄ (1 +
4

3𝑁
) (

𝜕2θ

𝜕𝑅2 +
1

𝑅

𝜕θ

𝜕𝑅
)                                                             (19)           

                                              

   

𝑡 ≤ 0: θ = 0 , 𝑆 = 0, 𝑈 = 0, 𝑉 = 0                             ∀ X and R  

𝑡 > 0: θ − 1 = 𝑃
𝜕θ

𝜕𝑅
 , 𝑆 =

−1

2

𝜕𝑈

𝜕𝑅
, 𝑈 = 0, 𝑉 = 0       at  𝑅 =  1 

           θ = 0, 𝑆 = 0, 𝑈 = 0, 𝑉 = 0                           at  𝑋 = 0 

           θ → 0, 𝑆 → 0, 𝑈 → 0, 𝑉 → 0                         as  𝑅 → ∞                                      (20)                                                                                 
 

 

3. FINITE DIFFERENCE NUMERICAL SOLUTION PROCEDURE 
To solve the normalized time-dependent PDEs. (16) - (19) under boundary conditions  (20), 

an unconditionally stable finite difference iteration scheme of Crank-Nicolson type is employed. 

The finite difference equations to the above Eqs. (16), (17), (18) and (19) are as follows: 

  
𝑈𝑙,𝑚

𝑛+1−𝑈𝑙−1,𝑚
𝑛+1 +𝑈𝑙,𝑚

𝑛 −𝑈𝑙−1,𝑚
𝑛

2Δ𝑋
+

𝑉𝑙,𝑚
𝑛+1−𝑉𝑙,𝑚−1

𝑛+1 +𝑉𝑙,𝑚
𝑛 −𝑉𝑙,𝑚−1

𝑛

2Δ𝑅
 + (𝐽𝑅)𝑉𝑙,𝑚

𝑛+1  = 0                       (21) 
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𝑈𝑙,𝑚
𝑛+1−𝑈𝑙,𝑚

𝑛

Δ𝑡
+

𝑈𝑙,𝑚
𝑛

2Δ𝑋
(𝑈𝑙,𝑚

𝑛+1 − 𝑈𝑙−1,𝑚
𝑛+1 + 𝑈𝑙,𝑚

𝑛 − 𝑈𝑙−1,𝑚
𝑛 )+

𝑉𝑙,𝑚
𝑛

4Δ𝑅
(𝑈𝑙,𝑚

𝑛+1 − 𝑈𝑙,𝑚−1
𝑛+1 + 𝑈𝑙,𝑚

𝑛 − 𝑈𝑙,𝑚−1
𝑛 )   

=  
𝜃𝑙,𝑚

𝑛+1+𝜃𝑙,𝑚
𝑛

2
+ (

1+𝐾/2

𝐺𝑟1 2⁄ ) (𝐽𝑅) (
𝑈𝑙,𝑚+1

𝑛+1 −𝑈𝑙,𝑚−1
𝑛+1 +𝑈𝑙,𝑚+1

𝑛 −𝑈𝑙,𝑚−1
𝑛

4(Δ𝑅)
)  + 𝑀

(𝑈𝑙,𝑚
𝑛+1+𝑈𝑙,𝑚

𝑛+1)

2
 

 (
1+𝐾/2

𝐺𝑟1 2⁄ ) (
𝑈𝑙,𝑚+1

𝑛+1 −2𝑈𝑙,𝑚
𝑛+1+𝑈𝑙,𝑚−1

𝑛+1 +𝑈𝑙,𝑚+1
𝑛 −2𝑈𝑙,𝑚

𝑛 +𝑈𝑙,𝑚−1
𝑛

2(Δ𝑅)2
) +(

𝐾

𝐺𝑟1 2⁄ ) (
𝑆𝑙,𝑚+1

𝑛+1 −𝑆𝑙,𝑚−1
𝑛+1 +𝑆𝑙,𝑚+1

𝑛 −𝑆𝑙,𝑚−1
𝑛

4(Δ𝑅)
)(22) 

𝑆𝑙,𝑚
𝑛+1−𝑆𝑙,𝑚

𝑛

Δ𝑡
+

𝑆𝑙,𝑚
𝑛

2Δ𝑋
(𝑆𝑙,𝑚

𝑛+1 − 𝑆𝑙−1,𝑚
𝑛+1 + 𝑆𝑙,𝑚

𝑛 − 𝑆𝑙−1,𝑚
𝑛 )+

𝑉𝑙,𝑚
𝑛

4Δ𝑅
(𝑆𝑙,𝑚

𝑛+1 − 𝑆𝑙,𝑚−1
𝑛+1 + 𝑆𝑙,𝑚

𝑛 − 𝑆𝑙,𝑚−1
𝑛 ) 

       = (
1+𝐾/2

𝐺𝑟1 2⁄ ) 

(
𝑆𝑙,𝑚+1

𝑛+1 −2𝑆𝑙,𝑚
𝑛+1+𝑆𝑙,𝑚−1

𝑛+1 +𝑆𝑙,𝑚+1
𝑛 −2𝑆𝑙,𝑚

𝑛 +𝑆𝑙,𝑚−1
𝑛

2(Δ𝑅)2
)+(

1+
𝐾

2

𝐺𝑟1 2⁄ ) (𝐽𝑅) (
𝑆𝑙,𝑚+1

𝑛+1 −𝑆𝑙,𝑚−1
𝑛+1 +𝑆𝑙,𝑚+1

𝑛 −𝑆𝑙,𝑚−1
𝑛

4(Δ𝑅)
) − 2

𝐾

𝐺𝑟1 2⁄ 𝑆𝑙,𝑚
𝑛  -

(
𝐾

𝐺𝑟1 2⁄ ) (
𝑈𝑙,𝑚+1

𝑛+1 −𝑈𝑙,𝑚−1
𝑛+1 +𝑈𝑙,𝑚+1

𝑛 −𝑈𝑙,𝑚−1
𝑛

4(Δ𝑅)
)+(

𝐾

𝐺𝑟1 2⁄ ) (
𝑉𝑙+1,𝑚

𝑛+1 −𝑉𝑙,𝑚
𝑛+1+𝑉𝑙+1,𝑚

𝑛 −𝑉𝑙,𝑚
𝑛

2(Δ𝑋)
)                               (23)                    

 
θ𝑙,𝑚

𝑛+1−θ𝑙,𝑚
𝑛

Δ𝑡
 + 

𝑈𝑙,𝑚
𝑛

2Δ𝑋
(θ𝑙,𝑚

𝑛+1 − θ𝑙−1,𝑚
𝑛+1 + θ𝑙,𝑚

𝑛 − θ𝑙−1,𝑚
𝑛 ) + 

𝑉𝑙,𝑚
𝑛

4Δ𝑅
(θ𝑙,𝑚+1

𝑛+1 − θ𝑙,𝑚−1
𝑛+1 + θ𝑙,𝑚+1

𝑛 − θ𝑙,𝑚−1
𝑛 )   

= (𝟏 +
𝟒

𝟑𝑵
) [

θ𝑙,𝑚+1
𝑛+1 −2θ𝑙,𝑚

𝑛+1+θ𝑙,𝑚−1
𝑛+1 +θ𝑙,𝑚+1

𝑛 −2θ𝑙,𝑚
𝑛 +θ𝑙,𝑚−1

𝑛

2𝑃𝑟𝐺𝑟1 2⁄ (Δ𝑅)2
] + (JR)[

θ𝑙,𝑚+1
𝑛+1 −θ𝑙,𝑚−1

𝑛+1 +θ𝑙,𝑚+1
𝑛 −θ𝑙,𝑚−1

𝑛

4𝑃𝑟𝐺𝑟1 2⁄  (Δ𝑅)
]   (24)         

 where  𝐽𝑅 =
1

[1+(𝑚−1)Δ𝑅]
. 

 

The computations are executed based on a rectangular finite difference mesh (grid) 

with 𝑋𝑚𝑎𝑥 = 1, 𝑋𝑚𝑖𝑛 = 0, 𝑅𝑚𝑎𝑥 = 7 and 𝑅𝑚𝑖𝑛 = 1 where 𝑅𝑚𝑎𝑥 relates to R = ∞ which lies far 

away from the heat and momentum transport boundary layers.  

 

3.1 Validation of the numerical code using grid independence study: 

To optimize accuracy and compilation times, a grid-independency test has been conducted 

using four different grid sizes of 20 X 120, 30 X 180, 40 X 240, 50 X 300 and 60 X 360 and the 

values of the 𝐶𝑓 and 𝑁𝑢 on the boundary R = 1 are shown in Table 1. A regular grid is used for 

all cases. It is observed from Table 1 that the 50 X 300 grid compared with 40 X 240 and 60 X 

360 does not have any significant effect on the results of 𝐶𝑓 and 𝑁𝑢. Hence according to this 

observation, a uniform grid size of 50 X 300 is sufficiently accurate for this study with the mesh 

step distances of 0.02 and 0.02 in the axial and radial directions, respectively. Similarly, to produce 

a reliable result with respect to time, a grid-independent test has been performed for different time 

step sizes and is shown in Table 2 wherein the time step size Δ𝑡 (𝑡 = 𝑛Δ𝑡, 𝑛 = 0, 1, 2, … ) is fixed 

as 0.01.   

The finite difference procedure begins by computing the solution for the thermal boundary 

layer Eqn. (24) and angular momentum boundary layer Eqn. (23), which yields the temperature 

and micro-rotation fields. Next the linear momentum boundary layer and mass conservation Eqns. 

(22) and (21) provide the solution for the linear velocity field. Equations (22) - (24) at the (n+1)th 

stage using the nth stage known values are specified in the following tridiagonal form: 

 

  𝑎𝑙,𝑚Φ𝑙,𝑚−1
𝑛+1 + 𝑏𝑙,𝑚Φ𝑙,𝑚

𝑛+1 + 𝑐𝑙,𝑚Φ𝑙,𝑚+1
𝑛+1 =  𝑑𝑙,𝑚

𝑛     (25) 
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Here Φ signifies the time-dependent flow-field variables θ, S and U. Thus, Eqns. (22) - (24) at 

each interior grid point on a precise l-level comprise a system of tridiagonal equations. Such a 

complex system of tridiagonal equations is solved by the famous Thomas algorithm. The 

convergence criterion was chosen as 10-6 for all flow-field variables. The truncation error in the 

employed Crank-Nicolson method is O(Δ𝑡2 + Δ𝑋 + Δ𝑅2) and tends to zero as ∆R, ∆X and ∆t → 

0. Further details of the Crank-Nicolson finite difference scheme are documented in Rani et al. 

[38]. 

 

4. RESULTS AND DISCUSSION 
To study the unsteady behavior of simulated micropolar fluid flow-field variables, such as 

U, θ, and S, their values are illustrated at one location, which is adjacent to the hot cylindrical wall. 

The time-independent state velocity, temperature, and micro-rotation profiles are presented along 

with the radial coordinate at X = 1.0. 

       The computer-generated flow-field variables for the case of Newtonian fluids (K = 0.0) are 

similar to those of Lee et al. [2] for P = 𝑀 = 𝑁 = 0.0  and Pr = 0.7, and are illustrated in Fig. 2. 

Also, the local heat transfer rate result obtained by the current research work is compared with 

those of Heckel et al. [39] for a Newtonian fluid, and shown in Table 3. These results are found 

to be in good agreement. The influence of M (magnetic parameter) and N (radiation parameter) on 

the micropolar flow-field are analysed with fixed values of Prandtl number (Pr), Grashof number 

(Gr), vortex viscosity (K) and conjugate heat transfer parameter (P). 

 

4.1 Flow variables    

Velocity:                                   

The simulated linear velocity (U) plotted against time (t) at a spatial location (1, 1.16) for 

different M and N is graphically shown in Fig. 3. The U profile is taken in the vicinity of the hot 

cylindrical wall. Evidently as N increases, the velocity is enhanced with time, attains a temporal 

peak, then marginally decreases, and finally, remains invariant with further progression in time. 

Similarly, the same transient behavior is noticed for M but the temporal peak is absent. Also, it is 

perceived that when t << 1, the conduction dominates the convection. Then the heat transport 

coefficient is swayed by the convection effect resulting in an escalation in velocities. Later before 

attaining the steady-state, the velocities are found to overshoot. Also, in the Fig. 3 it is observed 

that the transient U profile decreases as M or N increases. It is also observed that the time to attain 

the temporal peak upsurges as N increases. Also it is noticed that as M or N increase the time to 

accomplish the steady-state also increases, since a higher M value corresponds to greater retarding 

effect associated with the Lorentzian magnetic body force (greater resistance to the flow) and a 

higher N value allows higher thermal transport across the boundary. The same observation is 

tabulated in Table 4. Similarly, the transient characteristics of temperature and micro-rotation are 

illustrated in Figs. 5 and 7, respectively (described later). With the aid of Fig. 4, these velocity 

fluctuations of M and N are analyzed next. The solutions in the radial direction for the time-

independent state U profile correspond to X = 1.0. Linear velocity commences with the no-slip 

boundary condition, reaches its peak and then decays to zero along the R coordinate satisfying the 

boundary condition (U → 0 as R → ∞). In the neighborhood of the hot wall, it is noted that the 

magnitude of non-dimensional axial velocity (U) is amplified as R rises from Rmin (= 1). With 

increasing M or N, the time to reach the steady-state increases slightly. From Fig. 4, it is also 

apparent that the velocity decreases with increasing values of M or N. This implies that magnetic 
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field suppresses fluid velocity i.e. damps the flow field. This is due to the fact that the application 

of magnetic field to an electrically-conducting fluid gives rise to resistive force which is known as 

the Lorentz force. Also, the boundary layer thickness increases with increasing values of the 

magnetic parameter since the flow is decelerated. Here, the effect of N on the velocity profile can 

be considered. In a typical natural convection without radiative effects, the thermal term 

(
𝜕2θ

𝜕𝑅2 +
1

𝑅

𝜕θ

𝜕𝑅
), which is conventionally positive, makes the convective term to be positive. With the 

radiative effect in this problem a higher value of N yields smaller convective term, resulting in a 

profile of low temperature at X = 1.0 (see Figs. 5 and 6) and, therefore, yields a lower velocity. 

Also Fig. 4 shows that the U profiles attain their peak value nearly at (1, 1.08).  

 

Temperature: 

Figure 5 depicts the impact of M and N on unsteady temperature profile (θ) against the time 

(t) at the location (1, 1.16). From this data, in the beginning for all values of N, the unsteady 

temperature profile is found to drastically increase with time, reaches the peak value, then 

decreases and again slightly increases, and finally attains the time-independent state 

asymptotically. A similar transient behavior is noticed for M but the temporal peak is not seen. For 

all values of M, the transient temperature curves initially coincide and then deviate from each other 

after some time. The time to attain temporal peak upsurges as N increases. Also from Fig. 5 it is 

noticed that as M or N are elevated, the time to accomplish the steady-state increases.  It is also 

observed that the transient temperature value is boosted with greater M whereas it is depleted with 

increasing N. This tendency is also observed in Fig. 6 which depicts the steady-state non-

dimensional θ-profile for the variation of M and N against R at X = 1.0. Here, the temperature 

profile initiates with the solid-fluid interface hot wall temperature and then monotonically 

decrease to zero (θ → 0) along the radial direction (R). It is noticed that the temperature increases 

with increasing M, while the reverse trend is observed for increasing N. As the value of N increases 

from 2 to 15 with fixed M (= 1.0), the temperature decreases markedly i.e. thermal conduction 

dominating radiation induces significant cooling. As a result, the thermal boundary layer thickness 

is decreased due to a rise in N values. Smaller M and larger N values give rise to thinner thermal 

boundary layers, since a smaller M value implies less-suppressed boundary layer flow, and a larger 

N value means smaller thermal convection. 

 

Microrotation:  

In Figure 7 the transient micro-rotation (S) values are plotted at the position (1, 1.16) 

against time for various values of M and N. Evidently transient micro-rotation S decreases with 

time, reach the temporal minimum, again increases and then reaches the asymptotic time-

independent state. Furthermore the time to reach temporal minima for the transient micro-rotation, 

S increases, as M or N are increased. Moreover the time need to attain the steady-state upsurges as 

M or N amplifies. 

The time-independent state S profile at X = 1.0 against the R for the variation of M and N 

are depicted in Fig. 8. In Fig. 8 it is noticed that in the neighborhood of the hot wall the S profiles 

start with negative values, slightly decreases, then increases and attains the peak value [i.e., in the 

interval 𝑅 ∈ (1.20, 1.30)], and finally reaches to the no-slip boundary condition (S = 0) as the 

radial coordinate tends to Rmax. Also, in the region 1<R<1.10, as M or N increase the steady-state 

micro-rotation profile increases. In the neighborhood of the hot wall increasing magnetic field (M) 

leads to decrease in the velocity which causes an increase in S (refer to Fig. 4 and Eqns. 17-18).  
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4.2 Friction and heat transport coefficients 

            The average momentum and heat transport coefficients are significant parameters in heat 

transfer analysis due to their direct involvement in the convection process. The non-dimensional 

average momentum and heat transport coefficients for a micropolar fluid are given by:   

𝐶𝑓 =  ∫ (
𝜕𝑈

𝜕𝑅
)

𝑅=1

1

0
𝑑𝑋                                                                                                           (25)   

𝑁𝑢 =  − ∫ (
𝜕θ

𝜕𝑅
)

𝑅=1

1

0
𝑑𝑋                                                                                                     (26) 

              Figures 9-10 illustrate the distributions in 𝐶𝑓 and 𝑁𝑢  against time (t) covering various 

parametric values of M and N. The effect of various control parameters on 𝐶𝑓 is revealed in Fig. 9. 

At first the 𝐶𝑓 increases with t, and after a certain lapse of time, becomes independent of time 

throughout the transient period. This is probably due to the buoyancy-induced flow-field velocity 

being comparatively small at the initial time-dependent period, as plotted in Fig. 3, and the average 

momentum transport coefficient therefore remains low, as observed in Fig. 9. Also, it is seen that 

𝐶𝑓 decreases with augmenting values of M or N, a feature consistent with the time-dependent 

velocity profile in Fig. 3. The average heat transport coefficient (𝑁𝑢) for several values of M and 

N are graphically shown in Fig. 10. For all values of M and N, in the initial stages, 𝑁𝑢 drastically 

decreases, then slightly increases and finally achieves the time-independent state.  Initially the 

𝑁𝑢 curves coincide with each other and subsequently diverge after some time. Evidently in the 

starting time only heat conduction occurs, and dominates heat convection. From Fig. 4 it is also 

noteworthy that as M increases, the effect of the Lorentz force on the flow field decreases, and 

hence the flow velocity increases in the boundary layer region. This is associated with higher 

temperature gradients at the walls, resulting in higher heat transfer rates. Also, as N increases the 

rate of heat transfer increases. 

4.3 Stream and heat functions 

           The fluid motion is simulated using the non-dimensional stream function ψ that satisfies 

the Eq. (16). The relationship between ψ, U, and V for two-dimensional flows is given by the 

Cauchy-Riemann equations: 

𝑈 =
1

𝑅

𝜕ψ

𝜕𝑅
     and    𝑉 = −

1

𝑅

𝜕ψ

𝜕𝑋
                                                                                              (27)                                                                                   

This yields: 

𝜕2ψ

𝜕𝑋2 +
𝜕2ψ

𝜕𝑅2 = 𝑅
𝜕𝑈

𝜕𝑅
− 𝑅

𝜕𝑉

𝜕𝑋
+ 𝑈                                                                                              (28)                                                                                                                  

Similarly, the heat function Ω′ for the temperature is defined as: 

𝜕Ω′

𝜕𝑥
= 𝜌𝑟𝑣𝑐𝑝(𝑇′ −  𝑇∞

′ ) − 𝑘𝑓𝑟
𝜕𝑇′

𝜕𝑟
− (

16 ∗𝑇∞
′ 3

3𝑘 ∗
 ) (𝑟

𝜕𝑇′

𝜕𝑟
 )                                                     (29a)                                                                                                              

−
1

𝑟

𝜕Ω′

𝜕𝑟
= 𝜌𝑢𝑐𝑝(𝑇′ −  𝑇∞

′ )                                                                                                    (29b)                                                      



13 

 

It can be noted that 𝛺′ satisfies the steady-state energy balance equation (12). The non-dimensional 

heat function Ω =
Ω′

𝑘𝑓( 𝑇0
′− 𝑇∞

′ )𝑟0(1+
4

3𝑁
)
 makes the heat function dimensionless. The maximum value 

of this function equals the overall average heat transport coefficient on the hot wall [21, 40]. Eqns. 

(29a) and (29b) in terms of 𝛺 can be rewritten as: 

𝜕Ω

𝜕𝑋
=

𝑃𝑟𝐺𝑟1/2(𝑅𝑉𝜃)

(1+
4

3𝑁
)

− 𝑅
𝜕θ

𝜕𝑅
                                                                                               (30a)                                                              

−
𝜕Ω

𝜕𝑅
=

𝑃𝑟𝐺𝑟1/2

(1+
4

3𝑁
)

(𝑅𝑈θ)                                                                                                    (30b)                                                                       

The above equations identically satisfy the time-independent state form of the heat conservation 

Eqn. (19). Using Eqns. 30a,b, one can obtain the following Poisson equation which gives heat 

function field as: 

𝜕2Ω

𝜕𝑋2 +
𝜕2Ω

𝜕𝑅2 =  
𝑃𝑟

(1+
4

3𝑁
)

[𝑅
𝜕(𝑉θ)

𝜕𝑋
− 𝑅

𝜕(𝑈θ)

𝜕𝑅
− 𝑈θ]  − 𝑅

𝜕2θ

𝜕𝑋𝜕𝑅
                                                       (31)                                                                                               

            The values of 𝜓, 𝜃 and 𝛺 are calculated using central finite differences of second-order. 

The steady-state streamlines, isotherms and heat lines are presented in Figs. 11a-11c, respectively, 

for different values of the magnetic and conduction-radiation parameters, M and N. In each figure, 

the variation of M is shown between (i) and (ii); similarly, N between (ii) and (iii). For all control 

parameters, the variation in isotherms and heat lines occurs in the proximity of the hot cylindrical 

wall as compared to that of the streamlines. Fig. 11a indicates that the streamlines are moving 

slightly away from the hot wall and becoming denser with increasing values of M or N. Also, the 

heat transfer intensity from the wall to the micropolar fluid is maximized for increasing values of 

X, and decreases as X decreases. Fig. 11b reveals that the isotherms are departing from the hot wall 

for greater values of M and becoming closer to the hot wall as N increases. The fluid flow with 

heat transfer visualization can be appraised with the aid of heat lines as shown in Fig. 11c. The 

heat lines illustrate the heat extraction from a hot cylindrical wall in the boundary layer region. 

The heat function contours indicate bordered corridors and are efficient tools for the heat transfer 

flow visualization and examination, rather than only streamlines and isotherms. Additionally as 

the magnetic parameter M increases, the maximum value of 𝛺 decreases, since  𝑁𝑢  decreases on 

the hot wall as shown in Table 5. As M or N are increased, these heat lines move away from the 

hot wall. As N increases the maximum value of the heat function (𝛺) increases since 𝑁𝑢  increases 

(Table 5). Finally, it is concluded that the heat lines occur in the neighborhood of the hot 

cylindrical wall i.e. near to thermal boundary layer as assumed by the boundary layer theory 

hypothesis.  

Figure 12 illustrates the time-independent heat lines for different values of K with fixed values of 

other physical parameters. It is evident that the amount of the heat transfer from the hot cylindrical 

wall to the fluid is a maximum for rising values of X, and it is reduced as X decreases. The main 

observation in this figure is the significant heat transfer processes that take place in proximity to 

the hot cylindrical wall, as presumed by the boundary-layer theory. The heatlines are observed to 

migrate slightly away from the hot wall with an elevation in micropolar vortex viscosity parameter, 
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K. Also, it is seen that as K upsurges the peak value of the heat function (Ω) decreases since the 

average heat transport coefficient is reduced on the hot wall. Further, it is noticed that the heatlines 

occur very close to the hot cylindrical wall. However this behaviour is not exhibited in the case of 

streamlines.  

4.4 Comparison between micropolar and Newtonian fluid flows 

Figures 13a, b illustrate the U, 𝜃 and S contours for micropolar and Newtonian fluid cases, 

respectively. The influence of K on the flow-field variable contours is revealed in Fig. 13. As K 

decreases the velocity and micro-rotation contours tend to move away from the hot wall, while the 

opposite trend is computed in the temperature distribution. In the boundary layer region of the hot 

cylindrical wall, with increasing value of K, the variation in the velocity contour levels is reduced 

and the opposite trend is noted in the case of the isotherms and micro-rotation contours. Further, 

it is identified that the deviation of velocity and micro-rotation contours of the Newtonian fluid (K 

= 0) from a hot wall exhibit greater magnitudes compared with those of a micropolar fluid (K > 0) 

and for temperature contours, the converse trend is computed. Also, at any given location in the 

2D-rectangular region i.e. 0 < 𝑋 ≤ 1.0, 1 < 𝑅 ≤ 1.12, the velocity of the micropolar fluid flow is 

observed to be smaller than the Newtonian fluid flow. However, for the temperature and micro-

rotation the reverse trend is observed at any location in the (X, R) coordinate system except at the 

boundary points (X = 0, R = 1 & R = 20). Also, the time-independent state temperature contours 

for micropolar fluid are slightly different with thicker thermal boundary layer than for a Newtonian 

fluid. 

          Table 4 tabulates differences between micropolar and Newtonian fluid flows for the flow-

field variables with their temporal peak and the time-independent state values for different M and 

N. For all values of M and N, the time required for U, 𝜃 and S to attain the steady-state for the 

micropolar fluid (K > 0) is less than for a Newtonian fluid (K = 0). Also, the peak velocity values 

occurring at X = 1.0 for micropolar fluid are smaller compared with those of a Newtonian fluid. 

          Table 5 tabulates the differences between micropolar and Newtonian fluids about the 

average momentum and heat transport coefficients. The values of these coefficients for a 

micropolar fluid (K > 0) are of lower magnitude compared with a Newtonian fluid (K = 0). Thus, 

the characteristics of average momentum and heat transport coefficients of micropolar fluids 

significantly vary from those of Newtonian fluids, indicating that the presence of suspensions 

(micro-elements) which characterize real rheological materials exerts a non-trivial contribution. 

5. CONCLUDING REMARKS 
          A numerical study has been conducted to evaluate the thermo-fluid characteristics of 

transient two-dimensional laminar buoyancy-driven hydromagnetic micropolar fluid flow from a 

radiating slender cylinder with Bejan’s heat line concept. This study has been motivated by further 

elaborating the thermal and hydrodynamic characteristics of certain magnetic high-temperature 

enrobing processes which are being deployed in the aerospace and automotive engineering sectors. 

The Crank-Nicolson computational method has been applied to solve the normalized transport 

equations. The computations are carried out for different values of magnetic parameter, M (= 1.0, 

2.0 and 3.0) and conduction-radiation parameter N (= 2.0, 5.0 and 15). It is observed that with 

increasing values of M or N, the time elapsed to reach the steady-state increases for velocity and 

temperature profiles. However as M or N increase the velocity decreases i.e. the boundary layer 
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flow is decelerated and linear momentum boundary layer thickness is increased. With increasing 

M, the temperature increases owing to the supplementary work expended in dragging the 

micropolar fluid against the action of the transverse magnetic field which is dissipated as thermal 

energy (heat). Furthermore skin friction and Nusselt number (𝐶𝑓 and 𝑁𝑢 ) both decrease as M 

increases which is attributable to the deceleration in the flow and the provision of extra heat 

resulting from the inhibiting action of the magnetic field. The deviations of velocity, temperature 

and micro-rotation profiles of micropolar fluid flow from those of the Newtonian fluid flow turn 

are also computed to be substantial. Bejan’s heat flow concept includes the heat line plots. The 

physical characteristics of heat lines are an excellent aid in evaluating thermal convection physics 

and achieving heat transfer visualization in the entire two-dimensional domain. Also in a given 

rectangular region, the heat lines provide a robust approach for assessing the heat transfer rate at 

all levels. The employed non-dimensional thermal radiative heat function is closely related to the 

average heat transport coefficient on the hot cylindrical wall and characterizes the overall heat 

transfer rate process from the hot wall to the cold wall. It is noticed that as M or N increases, the 

heat lines move away from the hot wall. Also, as N is increased, the maximum value of Ω increases 

and the opposite trend is generated with increasing M. Further, the heatlines are slightly moving 

away from the hot wall for amplifying values of K . Flow visualization indicates that the heat lines 

exist in a finite region which is identified to be adjacent to the hot cylindrical wall. Finally, the 

present simulations have shown that flow profiles, average heat and momentum transport 

coefficients of the micropolar fluid flow (K > 0) deviate noticeably from those of a Newtonian 

fluid (K = 0). Finally, the current work has utilized a simple algebraic radiative flux model, has 

neglected many magnetohydrodynamic effects and has been confined to the classical Fourier heat 

conduction model. A possible pathway for future work is to consider a more sophisticated radiative 

flux model e.g. P1 differential approximation [41], to consider Hall and ionslip current effects [42] 

and employ a non-Fourier heat conduction model which correctly predicts finite thermo-elastic 

waves [43]. 
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TABLES 

Table 1. Grid independence test for selecting mesh size. 

  

 

 

 

 

 

 

 

 

Table 2. Grid independence test for selecting time step size. 

 

 

 

Grid size 

 

  𝐶𝑓 for Pr = 0.7, Gr = 106, P = 

0.5, K = 1.2, M = 2.0 and N = 2.0. 

 

  𝑁𝑢  for Pr = 0.7, Gr =106, P = 

0.5, K = 1.2, M = 2.0 and N = 2.0. 

20 X 120  3.1548 6.3239 

30 X 180 3.3992 6.5121 

40 X 240 3.8032                       6.9215 

50 X 300 3.8147 6.9636 

60 X 360 3.8149 6.9639 

Time 

step size      

(Δ𝑡 ) 

 𝐶𝑓 for Pr = 0.7, Gr = 106, P = 0.5, K 

= 1.2, M = 2.0 and N = 2.0. 

𝑁𝑢  for  Pr = 0.7, Gr =106, P = 0.5, K = 

1.2, M = 2.0 and N = 2.0. 

0.5 3.8151 6.9631 

0.1 3.8148 6.9634 

0.08 3.8148 6.9634 

0.05 3.8148 6.9634 

0.02 3.8148 6.9634 

0.01 3.8147  6.9636 
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Table 3. Comparison of local heat transport coefficient with P = 0.0, M = 0.0, N = 0.0, K = 

0.0 and Gr = 105 at X = 0.05. 

 

 

 

 

 

Table 4. The time required for various flow-field variables to attain the temporal peak and the 

time-independent state; the peak velocity for various M and N with P = 0.5, Pr = 0.7 and 

Gr = 106  for (a) micropolar fluid (K = 1.2); (b) Newtonian fluid (K = 0.0). 

 

 M        N   Temporal peak time (t) of 

U(1, 1.16)       θ(1, 1.16) 

steady-

state 

time (t) 

Peak 

velocity (U) 

at X = 1.0 

(a) Micropolar fluid (K = 1.2) 

  

1.0    2.0 

1.0    5.0 

1.0    15.0 

2.0    2.0 

3.0    2.0      

              

                15.58             14.98                 

                17.23             16.63                 

                18.37             17.70                 

                   -                     -                       

                   -                     -                        

 

32.65 

32.89 

33.00 

48.59 

50.00 

 

 

0.1309 

0.1180 

0.1112 

0.0941 

0.0749 

(b) Newtonian fluid (K = 0.0) 

 

 

1.0    2.0 

1.0    5.0 

1.0    15.0 

2.0    2.0 

3.0    2.0        

                15.32            14.90                     

                16.58            16.50                  

                17.74            17.58                            

                   -                     -                        

                   -                     -                        

 

32.73 

33.05 

33.22 

48.60 

50.10 

    0.1364 

0.1228 

0.1158 

0.0965 

0.0761 

 

 

 

 

Pr 0.7     7.0 

Present     0.7858    1.1608 

Heckel et al. [39] 0.7820 1.1609 
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Table 5. Comparison between the (a) micropolar fluid (K = 1.2) and (b) Newtonian fluid (K = 

0.0) flows for various values of M and N regarding the average values of  𝐶𝑓 and 𝑁𝑢 with 

Pr = 0.7, P = 0.5 and Gr = 105. 

 

  M                    N          
fC  Nu  

(a) Micropolar fluid (K = 1.2) 

 1.0              2.0 

1.0              5.0 

1.0              15.0 

2.0              2.0 

3.0              2.0         

   4.4545 

  4 .0914 

   3.9018 

   3.8147 

   3.4110 

   7.9238 

   8.6184 

   9.0217 

   6.9636 

   6.3388 

(b) Newtonian fluid (K = 0.0) 

  1.0            2.0 

1.0             5.0 

1.0             15.0 

2.0             2.0 

3.0             2.0        

   5.0874 

   4.6732 

   4.4570 

   4.3009 

   3.8087 

   8.1112 

   8.8380 

   9.2607 

   7.0909 

   6.4335 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flow geometry and cylindrical coordinate system. 
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Fig. 2. Comparison of flow-field variables. 
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Fig. 3. Time-dependent velocity profile (U) versus time (t) at the point (1, 1.16) for the effect 

of M and N. 
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Fig. 4. Simulated time-independent state velocity profile (U) versus R at X = 1.0 for the effect 

of M and N.  
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Fig. 5. Simulated time-dependent temperature profile (θ) versus time (t) at the point (1, 1.16) 

for the effect of M and N. 
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Fig. 6. Time-independent state temperature profile (θ) versus R at X = 1.0 for the effect of M 

and N. 
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Fig. 7. Time-dependent microrotation (S) profile at the point (1, 1.16) for the effect of M and N. 
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Fig. 8.  Simulated time-independent state microrotation (S) profile against R at X = 1.0 for the 

effect of M and N. 
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Fig. 9. Average momentum transport coefficient (𝐶𝑓
̅̅ ̅) profile against t for the effect of M and N. 
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Fig. 10. Average heat transport coefficient (𝑁𝑢 ) profile against t for the effect of M and N. 
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(11b) 



34 

 

 

 

 

 

(11c) 

Fig. 11.  Time-independent state (a) streamlines (ψ); (b) isotherms (θ); and (c) heatlines (Ω) 

for various values of M and N. 
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Fig. 12.  Time-independent state heat lines (Ω) for various values of K . 

 

 

 

 



36 

 

 

 

 

Fig. 13. Time-independent state contours of velocity (U), temperature (θ) and microrotation (S) 

for (a) micropolar fluid (K = 1.2); & (b) Newtonian fluid (K = 0.0). 

 

 


