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ABSTRACT 

Medical imaging is a rapidly evolving sub-field of biomedical engineering as it considers novel 

approaches to visualizing biological tissues with the general goal of improving health. Medical 

imaging research provides improved diagnostic tools in clinical settings and thereby assists in 

the development of drugs and other therapies. Data acquisition and diagnostic interpretation 

with minimum error are important technical aspects of medical imaging. The image quality 

and resolution are critical in visualization of the internal aspects of patient’s body. Although a 

number of user-friendly resources are available for processing image features, such as 

enhancement, colour manipulation and compression, the development and refinement of new 

processing methods is still a worthwhile endeavour. In this article we aim to highlight the role 

of fractional calculus in imaging with the aid of a variety of practical examples. 
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1 INTRODUCTION TO IMAGING IN MEDICINE 

During the past two decades, the “imaging” subfield of biomedical engineering has received a 

considerable attention, not only from biomedical engineers but also from medical physicists 

and mathematicians. This response has served to improve the techniques utilized and 

additionally has expanded this field of research into new frontiers. With the passage of time, 

advanced imaging techniques are continuously being introduced into the field of 

bioengineering with enhanced cost effectiveness and non-invasive properties. Several steps 

such as biomaterial development, analytical methodologies and research on the application of 

concepts (interfacing engineering, computing, mathematics, chemical and physical sciences) 

are intrinsic to the development and success of novel ideas of biomedical engineering. Thus 

due to the successful interface between different disciplines, robust tools for diagnosis and 

therapy for human diseases have developed tremendously. To obtain images of internal aspects 

of the body, the basic imaging techniques which have been developing since 1895 include 

radiology, ultrasonography and magnetic resonance. To overcome the side effects of such 

techniques, different measures have been made and new advanced techniques have been 

introduced. These include ultrasonography, which is the cheapest and most harmless 

technology in radiology. Other methods include magnetic resonance imaging (MRI) which 

makes use of the potential energy stored in the body’s hydrogen atoms, such atoms are 

manipulated by very strong magnetic fields and radiofrequency pulses to produce adequate 

amount of localizing and tissue-specific energy that will be used by highly sophisticated 

computer programs in order to generate 2D and 3D images. Further techniques include Nuclear 

medicine images (NMI) which are generated by giving the patient a short-lived radioactive 

material, and then using γ-camera or a positron emission scanner that records radiation 

emanating from the patient and finally the PET/CT technique which comprises the integration 

of PET functional nuclear medicine data with CT anatomic data (PET/CT). All the techniques 
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of medical imaging depend on different factors, of which probably the most crucial are: the 

technical aspects of data acquisition and diagnostic interpretation with minimum error. The 

image quality and resolution is extremely important since it permits an accurate rendering of 

the patient’s internal body aspects. Although there are several user-friendly resources for 

processing image features, such as enhancement, colour manipulation and compression, the 

development of new processing methods still warrants the attention of researchers. Different 

mathematical models have been used in this field of research, both in the classical integer order 

and in the fractional order sense. Fractional calculus is approximately a three century old field 

of study and is a branch of mathematics that deals with non-integer order differential and 

integral operators. The last few decades have seen a massive surge in interest geared towards 

applications of fractional calculus in many fields of science, engineering and biotechnology [1, 

2, 3]. Fractional order mathematical models have been used in the field of biological sciences 

to understand many complex phenomena. There have been different types of definitions of 

fractional derivatives, and different fractional derivatives are usually associated with different 

discretization schemes and possess different stability and convergence criteria [4]. The most 

commonly used definitions are the Riemann-Liouville and Caputo fractional derivative. In 

view of the fact that the initial-value condition for the Riemann-Liouville definition can be 

written in a fractional derivative form, the physical meaning is not articulate. On the other hand 

the condition for Caputo version is given in classical integer-order derivative form and has an 

explicit physical meaning. Consequently, the fractional derivative 

tD  in the Caputo approach 

is frequently used in the mathematical biology literature [5]. In this article we aim to present 

the role of fractional calculus in imaging with the aid of practical examples such as fractional 

differential calculus for enhancing and restoring image quality [6], fractional order visco-

elasticity models for elastography imaging [7], fractional order differential operators 
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expressing anomalous diffusion [8, 9], diffusion weighted imaging for tissues [10] and other 

applications. 

2 MEDICAL IMAGING AND ADAPTIVE FRACTIONAL DIFFERENTIATION 

It has been reported that, compared with traditional integral differential approaches, “fractional 

differentials” when applied to image processing can enhance edges, make texture details 

clearer, and preserve smooth areas. Therefore, medical images processed by fractional 

differentials are sharper and have higher contrast. For example, work conducted by Pu et. al 

[11], demonstrates the importance of fractional calculus in imaging with the aid of masks 

(figure 1). For the edge processing, the traditional fractional differentials use the same fractional 

order, textures and smooth areas of image. When edges would be enhanced by high fractional 

orders, weak textures and smooth areas would be ignored. Alternatively, weaker textures and 

smoother areas would be preserved by low fractional orders, such that edges would be 

weakened. Therefore image enhancement is a challenging task. To address such difficulties, 

traditional and improved fractional differential algorithms have been developed for digital 

image processing [12]. Similarly adaptive fractional derivatives have also been used for the 

image de-noising cases [13]. The methods of image enhancement via fractional calculus can 

prove to be helpful in the field of medicine and biology, by improving the image quality. The 

recently proposed adaptive fractional differential approach (AFDA) [6] considers global and 

local information in medical images and yields better enhancement effects than traditional 

image processing methods. The algorithm adapted in their formulation works by segmenting 

every area of the image accurately and processes every pixel of an image (based on the 

characteristics of local information specific to that pixel). This technique focuses on both the 

fractional derivatives and the area based image features. A large number of simulation 

experiments have shown that AFDA achieves the best enhancement effect of medical images 

for medical diagnoses. Therefore the fractional calculus can help to resolve medical imaging 
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issues, such as low contrast and significant noise. In contrast to the fractional differentials used 

in this study, fractional integrals can also prove to be helpful in attenuating high frequency 

components of a signal and in enhancing low frequency components; therefore, fractional 

integrals can remove image noise while preserving texture information. The adaptive fractional 

integral algorithm for image de-noising is an open problem, and when designed in conjunction 

with the developed adaptive fractional differential algorithm (to enhance and preserve image 

texture) can prove to be more fruitful. In figure 2, the comparative study of adaptive results for 

an orthopaedic application i.e. the knee joint is presented [6]. 

3 TISSUE VISCOELASTICITY AND FRACTIONAL ORDER IMAGING 

A recently described approach for elasticity imaging, using propagating acoustic shear waves 

and phase-contrast MRI, has been called magnetic resonance elastography (MRE). Magnetic 

Resonance Elastography (MRE) is an imaging technique that captures the viscoelastic 

properties of soft biological tissues in complex organs such as the brain and liver. An important 

step in this analysis is the reconstruction of material properties through dynamic displacement 

imaging. For the execution of such reconstruction algorithms in these techniques, certain 

viscoelastic material models are used. A model that demonstrates accurately the viscoelasticity 

of soft tissue-like materials could improve the diagnostic capability of elastography. 

Researchers have explored this field initially through classical integer order models and more 

recently through fractional order derivatives. These models include the classical dashpot 

viscoelastic models of Voigt and Kelvin [14], more complex rheological models [15] and 

standard linear solid models [15] for the non-invasive measurement of viscoelasticity of 

different organs including the brain (cerebellum), liver, and as a diagnostic technique for 

detecting cancer and other diseases. The fractional order models have also been used to study 

MRE. In this regard Meral et. al. [7] approximated the viscoelastic material behavior of 

materials through the corresponding fractional differential equations and compared fractional 
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and integer order models to describe their behavior under harmonic mechanical loading. During 

MRE, external force (or pressure) is applied to image the deformation and to identify structural 

mechanical properties. This makes the modelling of elastic, viscous and inertial properties very 

important. Studies have shown that the integer derivative viscoelastic models (such as Kelvin 

and Voigt) based on a combination of purely elastic and viscous elements, have limitations, 

particularly for biological tissues and tissue mimicking phantoms when a range of frequencies 

of motion are considered, and that fractional order viscoelasticity models with fewer 

parameters may be more efficient in describing rheological tissues.  
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Figure 1: To obtain the fractional differential on the eight symmetric directions and make the 

fractional differential masks have anti-rotation capability, 8 fractional differential masks which 

are respectively on the directions of negative x-coordinate, negative y-coordinate, positive x-

coordinate, positive y-coordinate, left downward diagonal, right upward diagonal, left upward 

diagonal, and right downward diagonal are implemented, Csn is the mask coefficient on interest 

pixel [11] (with permission). 

 

Figure 2: Magnetic image resonance enhancement via adaptive fractional modelling [6]. 

Craiem & Armentano [16] proposed two fractional alternative models with one and two spring-

pots. The models were tested in a control state and during smooth muscle activation in animal 

experiments. Their results confirmed the experimental findings to be consistent with fractional 

model predictions. Subsequently after several other studies adapted the fractional approach, 

Xiao [17] examined the effect of varying fractional order parameter (of viscoelasticity) on the 

dependence of afPWV on HR. 

 

4 DIFFUSION WEIGHTED IMAGING AND FRACTIONAL CALCULUS 
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Diffusion-weighted magnetic resonance imaging (DWI or DW-MRI) is an imaging method 

that uses the diffusion of water molecules to generate contrast in MR images. It allows the 

mapping of the diffusion process of molecules, mainly water, in biological tissues, in vivo and 

non-invasively. It has been reported [18] that this technique has the capability of detecting early 

or subtle changes within the brain before any visible abnormality can be seen on conventional 

morphologic imaging. There is growing interest in the application of DWI for the evaluation 

of the patient with cancer. Due to its fast application (typically several minutes) and 

independence from administration of exogenous contrast medium and quantitative properties, 

this methodology can be greatly assistive in tumour assessment. The software tools that are 

available for quantitative analysis on most commercial platforms can be improved, to deal with 

complex processes, with the help of fractional anisotropy, perfusion fraction, different noise 

filtration techniques and image registration techniques. Recent research has confirmed that 

DWI has the ability to detect inherent tissue contrast for the oncologic problems. Following its 

success in the field of neuro-oncology, DWI is achieving substantial success in oncologic 

imaging of the prostate gland, breast and liver. A detailed explanation of the biophysical basis 

of diffusion contrast, the difference between hindered and restricted diffusion, and the 

derivation of diffusion parameters is documented in White et. al. [19], wherein  an advanced 

DWI modeling technique, i.e. restriction spectrum imaging (RSI) has also been described. The 

Bloch equation is a phenomenological description of the precessional motion and relaxation of 

the magnetization arising from nuclear magnetic moment spins. Solving the Bloch equation for 

different combinations of static, radiofrequency and gradient magnetic fields provides the basis 

for NMR spectroscopy and MRI. The correlation between developing pathology and localized 

diffusion relies on diffusion-weighted pulse sequences to probe biophysical models of 

molecular diffusion, which is typically defined as an exponential function of apparent diffusion 

coefficient A and specific gradient pulse sequence parameter p: 
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AP

m eD            (1) 

and the stretched anomalous diffusion as: 

)( AP

m eD            (2) 

 

where α is a measure of tissue complexity that can be derived from fractal models of tissue 

structure. An alternative derivation of equation 2 is discussed in [20] where the spatial 

Laplacian in the Bloch-Torrey equation is generalized to incorporate a fractional order 

Brownian model of diffusivity. The case where the time derivative in the Bloch Torrey equation 

is replaced by a “Riemann-Liouville” fractional order time derivative expressed in the Caputo 

form” has also been discussed. 

 

Figure 3: Low-grade brain tumour (WHO grade II astrocytoma) in the left cerebellum of a 4-

year-old boy. Top row: A, axial unenhanced T1-weighted FLAIR; B, contrast-enhanced T1-

weighted FLAIR; and, C, T2-weighted echoplanar MR images show an enhancing lesion 

surrounded by cysts. Bottom row: MR images with quantitative FROC maps show, D, D 

values; E, b values; and, F, m values. The solid tumour is enclosed within the ROI (red area in 
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C ), which was initially drawn on the T2-weighted echoplanar image with the aid of T1-

weighted images and propagated into the FROC maps. The D, b, and m values within the ROI 

are higher than those for a high-grade brain tumour [21] (with permissions) 

The results showed that both cases revert to the classical results for integer order operations. 

Fractional order dynamics derived for the first case were observed to fit the signal attenuation 

in DWI obtained from Sephadex gels, human articular cartilage and human brain. Future 

developments of this approach may be useful for classifying anomalous diffusion in tissues 

with developing pathology. Recently Karaman and his collaborators [22] have demonstrated 

that the fractional motion diffusion model (FM diffusion model) is reliable over the 

conventional ADC approach, when used with high parametric values to improve differentiating 

between low and high grade paediatric brain tumours. They reported that FM diffusion model 

offers higher specificity, sensitivity, and diagnostic accuracy. Cancer is a growing threat and 

imaging is helping to identify the invasion and metastasis thresholds of this deadly disease, 

specifically for the soft tissues. Differentiating low from high-grade brain tumours without the 

use of invasive biopsy is important for optimizing patient management strategies and 

determining the time point when benign tumors begin to transform into malignant lesions so 

that timely interventions can be applied without unnecessarily compromising patient quality of 

life. The correct time management for the treatment of the tumour, at correct and initial growth 

stages may save patient’s life. The identification of the critical stage, when the tumour 

transforms to malignant from benign, has remained a challenge for the oncologists. Recently, 

a leading research group led by Sui [21] demonstrated with the aid of new parameters of 

fractional calculus, the improved accuracy which is attainable while studying such stages. They 

proposed that with the help of fractional order calculus (FROC) diffusion model, the accuracy 

of MR imaging can be improved, when used to differentiate among low- and high-grade 

paediatric brain tumours. The objective in deploying a fractional order calculus (FROC) 

diffusion model was to overcome the shortcomings of the other available methods such as the 
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mono-exponential diffusion model [23], which have been used for the high-grade tumours. To 

achieve the limiting values for the apparent diffusion coefficient (ADC) and to describe the 

anomalous diffusion process accurately tissues, Sui et. al. [21] presented a detailed analysis. 

 

Figure 4: High-grade brain tumour (WHO grade IV medulloblastoma) in the right cerebellum 

of a 6-year -old boy. Top row: A, axial unenhanced T1-weighted FLAIR; B, contrast-enhanced 

T1-weighted FLAIR; and, C, T2-weighted echoplanar MR images show an enhancing lesion. 

Bottom row: MR images with quantitative FROC maps show, D, D values; E, b values; and, 

F, m values. The solid tumor is enclosed with the ROI (red area in C), which was initially 

drawn on the T2-weighted echoplanar image with the aid of T1-weighted images and 

propagated into the FROC maps. The signal characteristics of anatomic images (A-C) are 

similar to those of the low-grade tumour (cf Fig 1). However, the FROC maps ( D-F ) show 

substantial differences between low- and high-grade tumours [21] (with permissions). 

 

The fractional technique they adopted was linked with a set of parameters including the 

diffusion coefficient, the space fractional order derivative and an additional spatial derivative 
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(to demonstrate the diffusion as well as the porous structure of the tissue through which the 

water molecules diffuse). Some results from this study are presented in figures 3 (for low grade 

brain tumour) and 4 (for low grade), where the fractional order calculus (FROC) diffusion 

model reveals some more realistic results. Several other models and methods are under 

development in the continuation of the available methods. For example the fractional lattice 

Boltzmann method has been introduced recently [24]. On the other hand, the Lattice Boltzmann 

method (LBM) has been used for the two-step computational analysis of magnetic resonance 

flow imaging [25]. The first model component provides fluid dynamic maps by applying LBM. 

The second one couples MR imaging (MRI) modelling with a new magnetization transport 

algorithm based on the Eulerian coordinate approach and uses the flow maps. This technique 

was verified to be an efficient approach with fast computations and the results were shown to 

be in close agreement with the experimental findings. The MRI experiments were conducted 

by the spoiled gradient echo sequence (FLASH), with and without flow compensation along 

the slice-selective and frequency-encoding directions. It is anticipated that the fractional order 

LBM when applied to MRI can improve markedly the image properties. 

 

5 CONCLUSIONS 

In the field of imaging, mathematical models have always contributed positively and have 

worked as smart and efficient tools. Iirrespective of whether they are Poisson image analysis, 

gradient domain high dynamic range compression, colour to gray imaging or for random walks 

for interactive Alpha-Matting, the crucial role of mathematical tools in optimizing imaging 

processing cannot be denied. Particularly, with the advancement in the field of fractional 

imaging, several tools and libraries have been developed and are available online, to improve 

the image quality [26, 27]. A selective and recent collection of fractional-order based image 
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processing methods have been reviewed in this survey to emphasize the importance of the 

methodology of fractional order image processing and fractional order tuning. It is anticipated, 

that specifically the fractional order modelling will prove to be more beneficial in medicine and 

biology in particular in the area of non-invasive studies. 
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