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ABSTRACT 
Magnetic polymer materials processing involves many multi-physical and chemical effects. Motivated by such 

applications, in the present work a theoretical analysis is conducted of combined heat and mass transfer in 

unsteady mixed convection flow of micropolar fluid over an oscillatory inclined porous plate in a homogenous 

porous medium with heat source, radiation absorption and Joule dissipation. A first order homogenous chemical 

reaction model is used. The transformed non-dimensional boundary value problem is solved using a perturbation 

method and Runge-Kutta fourth order numerical quadrature (shooting technique). The emerging parameters 

dictating the transport phenomena are shown to be the gyro-viscosity micropolar material parameter, magnetic 

field parameter, permeability of the porous medium, Prandtl number, Schmidt number, thermal Grashof number, 

species Grashof number, thermal radiation-conduction parameter, heat absorption parameter, radiation absorption 

parameter, Eckert number, chemical reaction parameter and Eringen coupling number (vortex viscosity ratio 

parameter). The impact of these parameters on linear velocity, microrotation (angular velocity), temperature and 

concentration are evaluated in detail. Results for skin friction coefficient, couple stress coefficient, Nusselt number 

and Sherwood number are also included. Couple stress is observed to be reduced with stronger magnetic field. 

Verification of solutions is achieved with earlier published analytical results. 
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1. INTRODUCTION 

Heat absorption or generation effects arise in many complex thermal technologies featuring high temperature 

differences. These include fire and combustion processes, blast furnaces, nuclear reactor heat removal, material 

fabrication of powders, re-entry aero-thermodynamics, chemical engineering plant experiencing endothermic 

and/or exothermic chemical reactions and cooling of finned heat sinks [1]. Mathematical models of thermal 
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convection flows with heat generation/absorption have therefore attracted significant attention in recent years. In 

these flows, temperature-dependent heat absorption may have a strong effect on heat and mass transfer 

characteristics of the processed materials which include polymers, ceramics, metals, slurries, plastics etc. [2]. 

Magnetic materials processing involves the application of static and/or alternating magnetic fields to control flow 

processes and modify material properties. This is achieved via the Lorentz magnetic body force. Numerous studies 

of magnetic transport phenomena have been communicated for a variety of complex fluids with many 

computational approaches. Khedr et al. [2] used a finite difference method to investigate hydromagnetic flow of 

micropolar fluids along a stretching permeable surface with heat generation of absorption effects. Pal and Biswas 

[3] studied the influence of heat sink on magneto-thermal radiative convective oscillatory flow of a micropolar 

fluid. Mishra et al. [4] investigated coupled free convection heat and mass transfer in magnetized micropolar flow 

with heat source. Srinivas Raju et al. [5] examined heat absorption effects both analytically (Laplace transform 

method) and numerically (finite element method) on unsteady magneto-convection flow over exponentially 

moving vertical plate with buoyancy effects. Other recent studies addressing micropolar flow with heat 

source/sink effects in different configurations include Alam et al. [6] (stretching/shrinking wedge), Mishra et al. 

[7] and Tripathy et al. [8]. Another type of heat absorption is the radiation absorption effect which can be invoked 

in certain materials processing systems. This effect must be considered in addition to thermal radiation heat flux 

which is usually simulated with algebraic flux models. A robust approach for analysing radiation absorption has 

been documented by Dombrovsky and Sazhin [9] who considered applications in vaporization process of n-

decane, combustion processes in diesel engines and other high temperature systems [10]. Satyanarayana et al. 

[11] analysed Hall current and radiation absorption effects on hydromagnetic micropolar flow in a rotating system. 

Kundu et al. [12] examined radiation and thermal diffusion effects on MHD micropolar fluid flow in a rotating 

system. Harish Babu and Satyanarayana [13] reported on the influence of material permeability and radiation 

absorption on heat and mass transfer in magnetohydrodynamic micropolar convection from a moving vertical 

porous plate in a porous medium. 

In magnetohydrodynamic flows, other phenomena may also arise including Hall currents, ion slip and Ohmic 

(Joule) dissipation. In most simulations of magnetic heat transfer, the Joule dissipation term is conventionally 

neglected on the premise that under normal conditions the Eckert number is small based on an order of magnitude 

analysis. Gebhart [14] presented one of the earliest and most definitive studies of viscous dissipation in natural 

convection. Rahman [15] studied the effects of viscous dissipation and Joule heating in convective flows of a 

micropolar fluid, observing that heat transfer rates are decreased with increasing Joule heating effect. Haque et al. 
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[16] examined the steady magnetic natural convection heat transfer in micropolar fluid with Joule heating and 

viscous dissipation.  Effects of viscous dissipation and heat source on an unsteady stretching sheet was examined 

by Reddy et al. [17]. Reddy and Gorla [18] reported Cattaneo-Christov heat flux and viscous dissipation effects 

on nonlinear convective stretching vertical surface for micropolar fluid. Reddy [19] extended the same study by 

incorporating Lorentz force effects. 

Chemical reaction also arises in many industrial processes including reactive polymer flows in heterogeneous 

porous media, gel synthesis, corrosion phenomena in coated components, chemically-reactive vapour deposition 

boundary layers, catalytic combustion boundary layers and multi-stage reactions in metallurgical mass transfer 

and kinetics. Several investigations have considered reactive heat and mass transfer in external boundary layer 

flows for micropolar and other fluids. Sheri and Shamshuddin [20] have addressed the problem of coupled heat 

and mass transfer in magnetohydrodynamic micropolar flow with both viscous dissipation and chemical reaction 

effects. Rout et al. [21] employed a Runge-Kutta fourth order shooting technique to investigate the impact of 

chemical reaction on magnetohydrodynamic free convection flow in a micropolar fluid. Pal and Talukdar [22] 

used a perturbation technique to investigate time-dependent MHD mixed convection periodic flow, heat and mass 

transfer in micropolar fluid with chemical reaction in the presence of thermal radiation. Reddy [23] adopted 

perturbation technique to examine thermal radiation and chemical reaction effects on steady convective slip flow. 

Again, Reddy [24] also examined peristaltic flow in a porous medium with partial slip.   Bég et al. [25] used a 

local similarity method to study free and forced convection reactive boundary layer flows with thermo-diffusion 

effects. Pal and Biswas [26] extended the same study by incorporating thermal radiation and viscous dissipation 

effects 

 In certain materials processing operations, buoyancy forces can be manipulated via inclination. The boundary 

layer flows adjacent to inclined plane surfaces (or indeed other geometries) are therefore of some relevance to 

elucidating the fluid dynamics of such applications.  Rahman et al. [27] analysed heat transfer in micropolar fluid 

along an inclined permeable plate with variable fluid properties. Ajaz and Elangovan [28] investigated the action 

of alternating electric field with the effect of inclined magnetic field on the oscillatory flow of micropolar fluid. 

Other recent studies focused on micropolar fluid dynamics along inclined surface include the works by 

Aurangzaib et al. [29] and Srinivasacharya and Himabindu [30]. These studies all demonstrated the significant 

influence of inclination on thermofluid dynamic characteristics in micropolar fluids via modification of thermal 

and species buoyancy forces. Further studies of inclined plate multi-physical convection flows include Bég et al. 

[31] on magnetic-micropolar thin film flow, Bég et al. [32] on radiative gas convection, Bég et al. [33] on couple 
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stress (polar) magnetic oscillatory flow, Rana et al. [34] on nanofluid convection in porous media and Rao et al. 

[35] on Casson boundary layer slip flows. 

 To the best of our knowledge, the present problem of magnetohydrodynamic oscillatory micropolar mixed 

convective heat and mass transfer from an inclined plate in porous media in the presence of heat source, radiation 

absorption, chemical reaction and Joule (Ohmic) dissipation has been unexplored. A theoretical model is 

developed for this flow scenario. Approximate pperturbation approximation form solutions presented by Pal and 

Biswas [26] provide a benchmark for the present numerical solution in which an efficient Runge-Kutta fourth 

order method with shooting quadrature is employed. The effects of various emerging thermo-physical parameters 

on the velocity, micro-rotation (angular) velocity, temperature and concentration profiles as well as on local skin 

friction coefficient, wall couple stress, Nusselt number and Sherwood number are visualized graphically. The 

study is relevant to multi-physical modelling of magnetic polymer processing [36]. 

 

2. MATHEMATICAL FORMULATION 

The regime under investigation comprises an unsteady laminar magnetohydrodynamic free convective flow, heat 

and mass transfer in an electrically-conducting incompressible micropolar fluid, from a semi-infinite inclined 

permeable plate in the presence of heat absorption, radiation absorption, chemical reaction and Joule dissipation. 

The plate makes an angle   oo
900   to the vertical and is adjacent to a homogenous, isotropic, porous 

medium. The schematic model of physical problem is depicted in Fig. 1.  

 

Fig .1:  Schematic model of physical problem 
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The Eringen [37] micropolar model is employed since it successfully captures microstructural characteristics of 

complex magnetic polymers i.e. it robustly simulates rotatory motions, gyration of fluid micro-elements. 

Micropolar fluids can support couple stresses, shear stresses, body couples and, also exhibit microrotational 

effects and inertia. They effectively model polymers as a dilute suspension of rigid macromolecules with 

individual motions. Micropolar theory therefore captures complex phenomena which are not realizable in other 

non-Newtonian models such as viscoelastic fluids and viscoplastic fluids. Another attraction of micropolar fluids 

is that the Navier-Stokes classical viscous flow model may be extracted as a special case. Extensive details of 

porous media micropolar flow simulation are provided in Bég et al. [38] and Bhargava et al. [39]. The inclination 

angles 
o

,
o

900 and 
oo

900   represents the vertical, horizontal and inclined plate respectively. Darcy’s law 

is assumed and low Reynolds number flow (viscous-dominated regime). A uniform magnetic field of strength 

0
B acts in a direction parallel to the y  axis which is perpendicular to the flow direction. Magnetic Reynolds 

number is very small so induced magnetic field is negligible in comparison to the applied magnetic field. It is also 

assumed that applied or polarized voltage is neglected so that no energy is added or extracted from the fluid by 

electrical means. The fluid is considered to be a gray, absorbing-emitting but non-scattering medium and the 

Rosseland approximation is used to describe the radiative heat flux. The radiative heat flux in the x  direction is 

considered negligible in comparison with that of y direction. The magnetic micropolar fluid contains a species 

which is reactive and obeys first order chemical reaction. To simplify the formulation of the boundary conditions, 

we assumed the size of holes in the porous plate is significantly larger than the characteristic microscopic length 

scale of the micropolar fluid. It is further assumed that the plate is infinite in extent and hence all physical 

quantities depend only on y  and t  . The equations governing the behaviour of an incompressible unsteady 

micropolar fluid in vectoral form are [37,40]:  

 

Conservation of mass:  

0V.                                                                                                                                                                   (1) 

Conservation of momentum:  

     fkVkpV.VtV  
2

                                                                                     (2) 

Conservation of angular momentum:  

         lkVk.Vtj   20000
                                    (3) 
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Conservation of Energy:  

   QTT.VtTpc  
2

                                                                                                              (4) 

Conservation of Species Concentration: 

    
11

2
CCkCDC.VtC                                                                                                              (5) 

 

Where f is the body force per unit mass and l is the body couple per unit mass, V  is the translational vector, 

is the micro-rotation vector and p is the pressure. 000  ,, and k  are the material constants for micropolar 

fluids.  is the fluid density, j  is the micro-inertia,   is the dynamic viscosity,  is the thermal conductivity, 

T  is the fluid temperature, is the dissipation function and pc is the specific heat at constant pressure. Equations 

(1)- (5) represents conservation of mass, linear momentum, angular momentum, energy and species concentration 

respectively. We remark that for 0000  k and vanishing l and f , microrotation   becomes zero 

and equation (2) reduces to classical Navier-Stokes equations. Here microrotation does not affect the global 

motion since for 0k the velocity and microrotation are not coupled. 

 

By taking the aforesaid assumptions into consideration the governing boundary layer equations (see Mishra and 

Jena [41]) for unsteady convective oscillatory flow under Boussinesq’s approximation are as   follows:  
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Here u  and v  are velocity components along x  and y   axis respectively,  is the microrotation component 

describes its relationship with the surface stress,  is the kinematic viscosity, r is the kinematic vortex viscosity, 

micro-rotation viscosity,  is the density of magneto-micropolar  fluid, f and c  are coefficient of thermal 

expansion and concentration expansion, K  is permeability of porous medium, is the electrical conductivity of 
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the magneto-micropolar fluid,   is the material property (gyroscopic viscosity) of the magneto-micropolar fluid, 

j  is the micro inertia per unit mass ,
0

B is the applied magnetic field strength, g is the acceleration due to gravity,

 T,T are temperature of fluid at the plate (wall) and far away from surface (free stream),   is thermal 

conductivity of the micropolar fluid-saturated porous medium. At constant pressure p , pC is the specific heat, rq  

is the heat flux, Q  is dimensional heat absorption, 1
Q  is dimensional radiation absorption,  C,C are 

concentration of the solute and far away from surface, D is the molecular diffusivity. It is assumed that the porous 

plate moves with a constant velocity in the longitudinal direction, the free stream velocity follows an exponentially 

increasing (or) decreasing value. The plate temperature and suction velocity vary exponentially with time and 

since there is change in the concentration of species (i.e. solutal), buoyancy effects arise and equation (7) and 

equation (10) are coupled. Under these assumptions following spatial and temporal boundary conditions are: 
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   (11) 

Where n is a scalar constant, and  is a small quantity, the micro-rotation component in boundary condition i.e. 

 y/un 
1

 , describes its relationship with surface stresses. The parameter 1n  assumes values between 

0 and 1 that quantifies the relationship between the micro-gyration vector to the shear stress. When 01 n  this 

corresponds to the case where the particle density is sufficiently large so that microelements close to the wall are 

not able to rotate [42]. When 501 .n   indicates weak concentration and disappearance of anti-symmetric part 

of stress tensor as elaborated by Ahmadi [43]. When 011 .n   represents turbulent boundary layer flows as 

described by Peddieson [44] and Stokes [45]. However, when 501 .n  or 011 .n   this case tends to accelerate 

the flow [44, 45]. Integrating the mass conservation (continuity) equation (1) for variable suction velocity normal 

to the plate which is taken, following Pal and Biswas [3] as: 






 


tn

eAVv 1
0

                                                                                                                                    (12) 

Where A is real constant such that 1A and 0
V is the normal velocity at the plate, negative sign indicates the 

suction velocity is directed towards the plate.  Following Rosseland’s approximation, the radiative heat flux term 

is given by:  
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Here  and k are the Stefan-Boltzmann constant and mean absorption coefficient respectively. The assumed 

Rosseland model is quite accurate for optically-thick media for the present analysis where thermal radiation 

propagates a limited distance prior to encountering scattering or absorption. The refractive index of the fluid-

particle suspension is assumed to be constant, intensity within the fluid is nearly isotropic and uniform, and 

furthermore wavelength regions exist where the optical thickness is usually more than five. Eqn. (13) results in a 

highly nonlinear energy equation in T and it is difficult to obtain a solution. However, researchers have resolved 

this problem by assuming small temperature differences [46] with in the fluid flow. In this situation, Rosseland’s 

model can be linearized about ambient temperature T if the difference in the temperature with in the flow such 

that 4
T can be expressed as linear combination of the temperature. Using Taylor’s series expansion about T  the 

expansion of  4
T  can be written as follows, neglecting higher order terms:  
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Neglecting higher order terms beyond the first degree in  


 TT  , we have: 
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Differentiating Eq. (13) w.r.t y  and using (15), we obtain:  

2

2

3

3
16

y

T

k

T

y

rq








 
                         (16) 

Now simply replacing Eq. (13) with
3

T , Eq. (9) can be expressed as follows: 
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Introducing the following non-dimensional variables: 
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Where all quantities with a prime are dimensionless, In view of equations (11)- (18) the governing equations (7) 

-(10) after dropping primes are transformed into the following system of unsteady coupled, dimensionless partial 

differential equations: 
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The transformed initial and boundary conditions can be written in non-dimensional form as follows: 
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where    22 //j is the dimensionless gyro-viscosity micropolar material parameter, pU is the 

velocity of the moving plate, is dimensionless temperature function,  is dimensionless species concentration, 
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and  ,H,H,F,K,M,
1

 are the Eringen micropolar vortex viscosity parameter, Magnetic parameter, 

permeability of the porous medium, thermal radiation-conduction parameter, heat absorption parameter, radiation 

absorption parameter and chemical reaction parameter respectively. Ec,Gm,Gr,ScPr,  are the Prandtl number, 

Schmidt number, thermal Grashof number, species Grashof number and Eckert number respectively. The 

mathematical statement of the problem is now complete and embodies the solution of equations (19) - (22) under 

the prescribed boundary conditions (23). 

 

3. NUMERICAL SOLUTION 

In the present study, the fourth order Runge-Kutta with shooting technique has been employed to solve the 

transformed unsteady transport problem as described by the non-dimensional governing equations (19) - (22) 

subjected to boundary conditions (23) for different values of controlling parameters. To solve these equations 

(19)- (22) we initially apply the following perturbation equations for velocity, angular velocity (micro-rotation 

component), temperature and concentration with perturbation parameter   assuming 1  . 
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Substituting equation (24) in equations (19) -(22) and in the boundary condition (23) and then equating the 

coefficients of 0 and 1 , yields: 
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First order 
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The above non-linear coupled partial differential equations (25)- (32) with the boundary condition (33) are then 

solved by using Runge-Kutta fourth order numerical method with shooting quadrature. There are several 

important wall (plate) parameters for materials processing boundary layer flows.  

The skin-friction at the plate, in non-dimensional form is given by: 
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The couple stress coefficient at the plate, in non-dimensional form is given by: 
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Nusselt number is computed in non-dimensional form as: 
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Sherwood number is evaluated in the non-dimensional form as follows: 
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where /xoV
x

Re  is the local suction velocity-based Reynolds number 

. 
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4. NUMERICAL RESULTS, VALIDATION AND DISCUSSION 

The prime aim of this paper is to investigate selected parameter effects on chemically reacting micropolar unsteady 

dissipative magneto hydromagnetic mixed convection heat and mass transfer from an oscillatory inclined porous 

plate considering heat absorption, radiation absorption and Joule heating. The dictating thermal, diffusive and 

hydrodynamic parameters are gyro-viscosity micropolar material parameter, magnetic field parameter, 

permeability of the porous medium, Prandtl number, Schmidt number, thermal Grashof number, species Grashof 

number, thermal radiation-conduction parameter, heat absorption parameter, radiation absorption parameter, 

Eckert number, chemical reaction parameter and Eringen coupling number (vortex viscosity ratio parameter). 

Numerical computations for velocity, angular velocity, temperature and concentration are obtained by using 

Runge-Kutta fourth order with shooting technique. This method is well-established in the literature and therefore 

details are not repeated here. Readers are referred to Uddin et al. [47], Bég et al. [48] and Reddy and Sandeep 

[49] for details. The results of this study are compared with analytical results of Pal and Biswas [26]. Table 1, 

displays the comparison of computed numerical results employed by Runge-Kutta fourth order associated with 

shooting technique with those of analytical results obtained via a perturbation technique by Pal and Biswas [26], 

for local skin friction coefficient, wall couple stress coefficient, Nusselt number and Sherwood number for 

different values of ,Sc Pr, ,K ,M F and Ec . These solutions negate angle of inclination, heat absorption and 

radiation absorption, since these terms were ignored in the model of Pal and Biswas [26]. Generally, very good 

correlation is achieved. Table 1 further shows that, as permeability, radiation and Eckert number increases, skin 

friction and couple stress coefficients both increase whereas the converse trend is observed in the case of Nusselt 

number i.e. wall heat transfer rate is reduced with increasing permeability, radiation and Eckert number. It is also 

noticed that as Schmidt number, Prandtl number and magnetic parameter increases there is suppression in skin 

friction and couple stress coefficient whereas there is an increase in Nusselt number. Furthermore, as Schmidt 

number decreases Sherwood number decreases.  
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Table 1: Comparison of the present numerical results of 
fC ,

wC ,
xRe/Nu and 

xRe/Sh with Pal and Biswas 

[20] for Sc , Pr , K , M , F  and Ec when 0 , 0H , 01 H , 1 , 5Gr , 10Gm , 2Sc , 10.Kr  ,,

50.pU  . 

 

 

The influence of , ,M ,Gr ,Gc , ,Up ,K ,F ,H ,H1 ,Ec ,Sc and Kr on the micropolar fluid velocity, 

microrotation, temperature and concentration distributions are presented graphically in Figures 2-18. 

Computations are performed with the following default values of all parameters: ,.010 ,t 1 ,.220 ,A 1

,k 1 ,.n 10 and 1Pr while , ,M ,Gr ,Gc , ,Up ,K ,F ,H ,H1 ,Ec ,Sc Kr  are varied over a range, 

which are listed in the figure legends. 

 Pal and Biswas Perturbation Solutions 

[20] 

Present Numerical Solutions 

Sc  Pr  K  M  F  Ec  
f

C  wC  xRe/Nu  xRe/Sh  fC  
wC  xRe/Nu  xRe/Sh  

2 1 5 2 0.1 0.001 0.2707133 0.0301309 0.8914258 1.9158002 0.27071296 0.03013088 0.89142571 1.91580023 

1 1 5 2 0.1 0.001 0.6682574 0.0745723 0.8914186 0.8975272 0.66825737 0.07457226 0.89141873 0.89752718 

0.5 1 5 2 0.1 0.001 1.1339602 0.1264654 0.8914083 0.3664133 1.13396016 0.12646545 0.89140840 0.36641332 

2 3 5 2 0.1 0.001 -0.8333037 -0.0927355 2.6738615 1.9158002 -0.83330303 -0.09273561 2.67386143 1.915800203 

2 5 5 2 0.1 0.001 -1.2005236 -0.1335068 4.4563727 1.9158002 -1.20052371 -0.13350701 4.45637266 1.91580020 

2 1 3 2 0.1 0.001 -0.0745329 0.0083268 0.8914279 1.9158002 -0.07453304 0.00832675 0.89142811 1.91580020 

2 1 1 2 0.1 0.001 -0.698520 -0.0776972 0.8914325 1.9158002 -0.69851972 -0.07769716 0.89143240 1.91580020 

2 1 5 3 0.1 0.001 -0.3851199 -0.0427542 0.8914313 1.9158002 -0.38512010 -0.04275425 0.89143120 1.91580020 

2 1 5 4 0.7 0.001 -0.8853874 -0.0985380 0.8914328 1.9158002 -0.88538750 -0.09853814 0.89143276 1.91580020 

2 1 5 2 0.3 0.001 0.5054170 0.0560755 0.7216151 1.9158002 0.50S541692 0.05607532 0.72161508 1.91580020 

2 1 5 2 0.5 0.001 0.6920367 0.0770952 0.6061646 1.9158002 0.69203672 0.07709517 0.60616456 1.91580020 

2 1 5 2 0.1 0.005 0.2717460 0.0301607 0.8912639 1.9158002 0.27174605 0.03016064 0.89126412 1.91580020 

2 1 5 2 0.1 0.007 0.2723846 0.0301891 0.8911055 1.9158002 0.27238457 0.03018908 0.89110549 1.91580020 

2 1 5 2 0.1 0.1 0.2734951 0.0302488 0.8907710 1.9158002 0.27349505 0.03024892 0.89077151 1.91580020 
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Figure 2: Velocity distribution for various Grashof numbers Gr when ,K 5 ,M 2 ,Gc 5

,/ 4  ,1 ,H 1 ,H 1
1
 ,.F 10 ,.Ec 010 ,Sc 2 ,.Kr 10 50.pU  . 

 
Figure 3:Velocity distribution for various species Grashof numbers Gc when ,K 5 ,M 2

,Gr 10 ,/ 4  ,1 ,H 1 ,H 1
1
 ,.F 10 ,.Ec 010 ,Sc 2 ,.Kr 10 50.pU  . 
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Figure 4: Velocity distribution for angle of inclination when ,K 5 ,M 2 ,Gr 10 ,Gc 5

,1 ,H 1 ,H 1
1
 ,.F 10 ,.Ec 010 ,Sc 2 ,.Kr 10 50.pU  . 

 

 
Figure 5: Velocity distribution for Magnetic field parameter M when ,.K 50 ,Gr 10

,Gc 5 ,/ 4  ,1 ,H 1 ,H 1
1
 ,.F 10 ,.Ec 010 ,Sc 2 ,.Kr 10 50.pU  . 
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Figure 6: Velocity distribution for Eringen micropolar vortex viscosity parameter  when

,M 2 ,Gr 10 ,Gc 5 ,/ 4  ,H 1 ,H 1
1
 ,.F 10 ,.Ec 010 ,Sc 2 ,.Kr 10 50.pU  . 

 

 
Figure 7: Velocity distribution for plate moving velocity parameter PU when ,.K 50 ,M 2

,Gr 10 ,Gc 5 ,/ 4  ,1 ,H 1 ,H 1
1
 ,.F 10 ,.Ec 010 ,Sc 2 10.Kr  . 
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Figure 8: Angular velocity distribution for micro-gyration parameter 1n when ,M 2 ,Gr 10

,Gc 5 ,/ 4  ,1 ,H 1 ,H 1
1
 ,.F 10 ,.Ec 010 ,Sc 2 ,.Kr 10 50.pU  . 

 
Figure 9: Temperature distribution for radiation parameter F when ,.K 50 ,M 2 ,Gr 10

,Gc 5 ,/ 4  ,1 ,H 1 ,H 1
1
 ,.Ec 010 ,Sc 2 ,.Kr 10 50.pU  . 
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Figure 10: Temperature distribution for heat source parameter H when ,.K 50 ,M 2

,Gr 10 ,Gc 5 ,/ 4  ,1 ,.F 10 ,H 1
1
 ,.Ec 010 ,Sc 2 ,.Kr 10 50.pU  . 

 

 
Figure 11: Temperature distribution for radiation absorption parameter 1H when ,.K 50

,M 2 ,Gr 10 ,Gc 5 ,/ 4  ,1 ,.F 10 ,H 1 ,.Ec 010 ,Sc 2 ,.Kr 10 50.pU  . 
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Figure 12: Temperature distribution for Eckert number Ec when ,.K 50 ,M 2 ,Gr 10

,Gc 5 ,/ 4  ,1 ,.F 10 ,H 1 ,H 1
1
 ,Sc 2 ,.Kr 10 50.pU  . 

 

 
Figure 13: Concentration distribution for Schmidt number Sc when ,.K 50 ,M 2 ,Gr 10

,Gc 5 ,/ 4  ,1 ,.F 10 ,H 1 ,H 1
1
 ,.Kr 10 50.pU  . 
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Figure 14: Concentration distribution for first order chemical reaction Kr when ,.K 50

,M 2 ,Gr 10 ,Gc 5 ,/ 4  ,1 ,.F 10 ,H 1 ,H 1
1
 ,Sc 2 50.pU  . 

 

 
Figure 15: Skin friction coefficient fC for different values of M when ,.K 50 ,Gr 10

,Gc 5 ,/ 4  ,1 ,.F 10 ,H 1 ,H 1
1
 ,Sc 2 ,.Kr 10 50.pU  . 
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Figure 16: Wall couple stress coefficient wC for different values of M when ,.K 50

,Gr 10 ,Gc 5 ,/ 4  ,1 ,.F 10 ,H 1 ,H 1
1
 ,Sc 2 ,.Kr 10 50.pU  . 

 

 
Figure 17: Variations of Nusselt number xRe/Nu for different values of H when ,.K 50

,M 2 ,Gr 10 ,Gc 5 ,/ 4  ,1 ,.F 10 ,H 1
1
 ,Sc 2 ,.Kr 10 50.pU  . 
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Figure 18:  Nusselt number xRe/Nu for different values of 1H when ,.K 50 ,M 2

,Gr 10 ,Gc 5 ,/ 4  ,1 ,.F 10 ,H 1 ,Sc 2 ,.Kr 10 50.pU  . 

 

 
Figure 19: Sherwood number xRe/Sh for different values of Sc when ,.K 50 ,M 2

,Gr 10 ,Gc 5 ,/ 4  ,1 ,.F 10 ,H 1 ,H 1
1
 ,.Kr 10 50.pU  . 
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Figure 2 illustrates the velocity profiles for different values of thermal Grashof number Gr . This parameter 

describes the relative magnitude of the buoyancy force and viscous forces acting on the micropolar fluid. Grashof 

number 0Gr  for cooling, 0Gr for heating and 0Gr implies an absence of free convection currents. The 

velocity magnitudes are evidently enhanced for an inclined plate with an increase in thermal Grashof number. 

Momentum boundary layer thickness is therefore reduced. This is attributable to the dominance of buoyancy 

forces over the viscous forces, which serves to assist momentum diffusion and accelerates the flow. Furthermore, 

it is also noticed that the fluid velocity magnitude commences with the plate velocity, increases with distance from 

the surface, attains a maximum value near the plate and thereafter decreases monotonically to zero at the free 

stream. Figure 3 presents the response in linear velocity and micro-rotation to a variation in species (solutal) 

Grashof number Gc .This parameter quantifies the relative contribution of species buoyancy force to viscous 

hydrodynamic force. With increasing Gc ,the exacerbation in mass diffusion leads to an acceleration in the flow 

i.e. increase in velocity values and an associated decrease in hydrodynamic boundary layer thickness. We note 

that for the case Gm = 0, species buoyancy effect vanishes and the momentum equation (19) is de-coupled from 

the species diffusion (concentration) equation (22). 

 

Figure 4 shows the influence of angle of inclination of the surface on velocity profiles. It is clearly observed 

that velocity is decreased with an increase of angle of inclination. This is attributable to the greater drag 

experienced at the plate surface relative to the decrease in thermal and species buoyancy forces. Greater effort is 

therefore needed to drive the micropolar fluid along the plate. Furthermore, the buoyancy effects decrease to a 

component of the maximum buoyancy force for a vertical plate, since the buoyancy forces scale with the factor

cos . Hence the fluid attains high velocity profiles for the vertical plate )0.,.( 0ei  and progressively 

decreases with greater inclination of the plate. 

. 

Figure 5 shows the pattern of the velocity for different values of magnetic field parameter M It is observed that 

the amplitude of the velocity is reduced and momentum boundary layer thickness increases when M is increased. 

Physically, in magnetohydrodynamic materials processing, the applied magnetic field exerts a retarding effect on 

the free convective flow, transverse to the direction of imposition of the magnetic field. With increasing the values 

of M , this type of resisting force slows down the fluid i.e. with stronger magnetic field strength the flow is 

decelerated and this is confirmed with the decreasing velocity distribution across the boundary layer. Furthermore, 

an asymptotically smooth solution is obtained for high values of the transverse coordinate (y) indicating that a 
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sufficiently large infinity boundary condition is prescribed in the free stream in the numerical computations. 

Linear momentum boundary layer thickness is therefore increased with greater magnetic parameter. 

 

Figure 6 shows the graphical representation of the non-dimensional velocity on Eringen micropolar vortex 

viscosity parameter  . It is seen that as  increases, the velocity gradient near the porous plate decreases, and 

then approaches to the free stream velocity. Comparison of the velocities for the permeability 5K and 50.K 

cases indicates that, the velocity is greater as permeability increases than that of lesser values of permeability at 

the same values of  . The acceleration in the fluid with higher permeability is caused by the decrease in Darcian 

drag force. Also, it is noteworthy that velocity distribution across the boundary layer is lower for Newtonian fluid 

(  = 0) as compared with stronger micropolar fluid (  = 2) for the same conditions and fluid properties. 

Micropolarity (i.e. increasing vortex viscosity of micro-elements) therefore consistently induces deceleration in 

the flow adjacent to the plate. All profiles are parabolic and peak at some distance from the wall, decaying 

smoothly to vanish in the free stream. A sufficiently larger infinity boundary condition is again confirmed in the 

profiles. 

 

Figure 7 represents the influence of the plate moving velocity Up on velocity the direction of the fluid flow. It is 

noticed that the peak value of velocity across the boundary layer increases near the porous plate as the plate 

velocity increases. The linear flow is therefore accelerated with greater plate velocity. The translation of the plate 

induces a momentum boost in the flow. This pulls the boundary layer faster with greater Up values leading to a 

decrease in momentum boundary layer thickness.  

 

Figure 8 visualizes the effect of micro-rotation vector component 1n  on microrotational (angular velocity) and 

permeability parameter (K). It is apparent that micro-rotational velocity becomes increasingly negative for higher 

values of permeability parameter K due to increase in the porosity of the porous medium. The greater 

permeability encourages reverse spin of micro-elements in the regime. Since the parameter 1n  is associated with 

the boundary condition equation (23), and also corresponds to the vanishing of the anti-symmetric part of the 

stress tensor, it is related to the weak concentration of the microelement of micropolar fluid. As  1n  increases, 

this encourages a reversal in spin of the micro-elements leading to larger negative values of the angular velocity. 

This trend has also been computed by many other investigators including Takhar et al. [50]. 
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Figure 9, presents the effect of the thermal radiation-conduction parameter F on temperature. This parameter 

defines the relative contribution of thermal radiation heat transfer to thermal conduction heat transfer. When 

1F  thermal radiation dominates over thermal conduction, for 1F  thermal conduction dominates. When 

1F  both thermal conduction and thermal radiation contributions are equal. For the present simulations, we 

confine attention to the case of 1F . Increasing radiation-conduction parameter is found to increase 

temperatures in the boundary layer. Thermal boundary layer thickness is therefore also enhanced with greater 

values of .F The boundary layer is energized with greater radiative flux contribution which leads to higher 

temperatures. 

 

Figure 10 depicts the influence of heat source parameter, H  on temperature distribution in the flow. The heat 

absorption parameter H appearing in (21) quantifies the amount of heat absorbed per unit volume which is given 

by   TwTQ , Q  being a constant coefficient, which may be taken as either positive or negative. The source 

term represents heat absorption for 0H  and heat generation when 0H .Physically speaking, the presence of 

heat absorption has the tendency to reduce the fluid temperature. Greater heat absorption H  clearly reduces the 

temperatures in the domain and the effect is most prominent at the wall. Heat sources and sinks may therefore be 

utilized to great effect in materials processing systems and indeed can be introduced relatively easily in porous 

media. 

Figure 11 presents the evolution in temperature profiles with variation in radiation absorption parameter 1
H . It 

shows that temperature increases as radiation absorption parameter increases. Physically speaking when heat is 

absorbed the buoyancy force tends to accelerate the flow. Thermal boundary layer thickness for micropolar fluids 

is therefore greater than other fluids. The large values of 1H corresponds to an increased dominance of conduction 

over radiation absorption which manifests in an enhancement in buoyancy force and thickness of the thermal 

boundary layer.   

 

Figure 12 displays the effect of Eckert number Ec on temperature profiles. This parameter is associated with the 

viscous heating effect. It signifies the quantity of mechanical energy converted via internal friction to thermal 

energy i.e. heat dissipation. It therefore represents the quantity of conversion of kinetic energy into internal energy 

by work done against the viscous fluid stresses. An increase in Eckert number via dissipation of mechanical energy 

into thermal energy will enhance the temperature of the micropolar fluid in the porous regime. Positive Eckert 

number implies cooling of the wall and therefore a transfer of heat to the micropolar fluid. Convection is therefore 
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intensified and temperatures are markedly increased with greater Eckert number. Very smooth decays in 

temperature profiles are observed for all values of Eckert number and the convergence of profiles in the free 

stream once again confirms that an adequately large infinity boundary condition has been imposed in the present 

numerical method. 

 

Figure 13 presents the evolution in dimensionless concentration profiles with variation in Schmidt number Sc , 

which relates the thickness of the hydrodynamic boundary layer to that of the concentration boundary layer. The 

Schmidt number embodies the ratio of the momentum to the mass diffusivity i.e. D/vSc  .It is observed from 

the figure that the concentration profiles are decreased as the Schmidt number Sc is increased. As expected, mass 

transfer rate increases as y  increases, for all other parameters fixed, i.e. an increase in Sc  decreases the 

concentration boundary layer thickness which is associated with the reduction in the concentration profiles.  

 

Figure 14, illustrates the evolution in concentration with a change in chemical reaction parameter, Kr . The 

reaction parameter is based on a first-order irreversible chemical reaction which takes place both in the bulk of 

the fluid (homogeneous) as well as at plate which is assumed to be catalytic to chemical reaction. In the present 

study, we consider the non-destructive i.e. generative ( 0Kr ) type of homogenous chemical reaction. It is 

noticed that concentration is enhanced in the boundary layer with greater chemical reaction, since more species is 

produced via the chemical reaction. This results in an enhancement in the thickness of the concentration boundary 

layer. These trends for the chemically reacting micropolar fluid concur closely with other studies including, for 

example, Modather et al. [51]. 

 

Figures 15-19 present the influence of various parameters on skin friction ,
f

C the couple stress, ,wC the Nusselt 

number i.e. wall temperature gradient xRe/Nu and local Sherwood number i.e. wall temperature concentration 

gradient xRe/Sh . Figure 15 shows the effect of magnetic parameter on skin friction in the presence of other 

pertinent parameters characterizing the flow phenomena. It is interesting to observe that an increase in magnetic 

parameter skin friction coefficient reduces within the domain 80.y   (approx..). However, the reverse effect is 

encountered for 80.y  i.e. skin friction increases with magnetic parameter. The two-layer variation in the 

profiles remarked due to the combination of various values of parameters which cause a deviation further from 

the plate in the customary behaviour of skin friction i.e. reduction with magnetic parameter. However, the 

dominant influence at and closer to the plate surface is a strong deceleration in the boundary layer flow with 
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greater magnetic field. Figure 16 that the couple stress coefficient is decreased significantly with increasing values 

of magnetic parameter i.e. micro-rotation of micro-elements is stifled with greater transverse magnetic field 

(rotary motions are inhibited). Figure 17 exhibits the effect of heat absorption parameter, H on the rate of heat 

transfer profiles and demonstrates that with increasing values of H near the plate 0.5y   the Nusselt number is 

enhanced whereas it is reduced further from the wall. Increasing radiation absorption parameter, 
1H results in a 

significant loss in the rate of heat transfer coefficient near the plate for which the boundary layer thickness 

decreases. Further, in the ambient state, Nusselt number increases with an increase in radiation absorption 

parameter (Figure 17). Figure 18 illustrates the effect of Schmidt number on rate of mass transfer coefficient i.e. 

Sherwood number for fixed values of other physical parameters prescribed. It is evident that the Sherwood number 

increases with an increase in Schmidt number. This implies that lighter species (higher molecular diffusivity) is 

favourable to enhance the rate of mass transfer. 

 

 

5. CONCLUSIONS 

A mathematical model has been developed for unsteady magnetohydrodynamic mixed convection heat and mass 

transfer of an oscillatory viscous incompressible, electrically- conducting, heat absorbing and radiating micropolar 

fluid flow from an inclined porous plate in a porous medium. The model includes chemical reaction, heat source, 

radiation absorption and Joule dissipation effects. Numerical solutions are obtained based on a perturbation 

analysis of the transformed conservation equations. A parametric study of the emerging parameters on non-

dimensional velocity, angular velocity, temperature and concentration profiles. Validation of the solutions with 

previous perturbation solutions derived by Pal and Biswas [26] is conducted. Excellent correlation is achieved. 

The main findings of the present investigation may be summarized as follows 

• It is found that, the velocity is decreased with an increase in magnetic parameter, angle of inclination and 

Eringen micropolar vortex viscosity parameters. The reverse trend is observed with increasing Grashof 

number, modified Grashof number and plate moving velocity. 

• Micro-rotation (angular velocity) decreases as micro-gyration parameter increases for higher values of 

permeability. 

• An increase in the thermal radiation, radiation absorption parameter and Eckert number leads to an 

enhancement in temperature and thermal boundary layer thickness. The opposite behaviour is computed with 

increasing heat absorption parameter. 
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• Species concentration decreases with increasing values of Schmidt number and positive values of chemical 

reaction parameter (generative reaction) whereas it is reduced with negative values of reaction parameter 

(destructive reaction). 

• Generally skin friction is strongly reduced with increasing magnetic field.  

• Couple stress coefficient is reduced significantly with increasing values of magnetic parameter. 

• Sherwood number (rate of mass transfer coefficient) increases with an increase in Schmidt number.  

The study is relevant to multi-physical modelling of magnetic polymer processing. Future studies will consider 

more complex fluid such as nanofluid with different bases and will be communicated soon.  
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 APPENDIX 

The set of coupled nonlinear governing boundary-layer equations (20) - (27) together with the boundary 

conditions, equation (28) are solved numerically using Runge-Kutta method along with shooting technique. The 

higher order nonlinear differential equations (20) - (27) are converted into simultaneous nonlinear differential 

equations of first order and they are further transformed into initial value problem by applying the shooting 

technique. The resultant initial value problem is solved by employing Runge-Kutta fourth order method. The step 

size  = 0.001 is used to obtain the numerical solution. From the process of numerical computation, the skin-

friction coefficient, the couple stress coefficient, the Nusselt number and Sherwood number which are respectively 

proportional to (0), (0), (0)u w    and (0)   are also sorted out and then presented in graphs. 

The numerical procedure as follows: 

Let,  
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Where  a  and b  are used for initial and boundary conditions respectively.  

 

NOMENCLATURE 

Roman 

A    small real positive constant 

0B    Magnetic field strength 

C    Concentration of the solute [ 3mmol ] 

fC    Skin friction coefficient 

wC    Wall couple stress 

pC    Specific heat at constant pressure [ 11  KKgJ ] 

C    Free stream concentration [ 3mmol ] 

mD   Molecular diffusivity [ 12 sm ] 

Ec    Eckert number 

F    radiation conduction parameter 

g    Acceleration due to gravity [ 1ms ] 

mG   Solutal Grashof number 

rG     Grashof number 
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H     Heat absorption parameter 

1H     radiation absorption parameter 

j    micro inertia per unit mass [ 2m ] 

j    dimensionless micro inertia per unit mass 

K      permeability parameter [ 2m ] 

K     dimensionless permeability parameter 

Kr    chemical reaction parameter 

M    magnetic field parameter 

n    frequency parameter [ hertz] 

1n    parameter related micro-gyration vector and shear stress 

Nu   Nusselt number 

p    constant pressure 

Pr    Prandtl number 

rq    Radiative heat flux [ 2Wm ] 

xRe  local Reynolds number 

Sc   Schmidt number  

Sh   Sherwood number  

t     dimensional time [ s ] 

t    dimensionless time 

T    Temperature of the field in the boundary layer [ K ] 

wT   wall temperature of the fluid [ K ] 

T    Temperature of the fluid in free stream [ K ] 

u    velocity component in x-direction [ 1ms ] 

u    dimensionless velocity component in x-direction 
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0U    Free stream velocity [ 1ms ] 

p
u   uniform velocity of the fluid in its own plane [ 1ms ] 

pU  dimensionless velocity of the plate 

0V    scale suction velocity at the plate [ 1ms ] 

v    velocity component in y-direction [ 1ms ] 

v    dimensionless velocity component in y-direction 

y,x  distance along and perpendicular to the plate [ m ] 

                                               

Greek symbols 

   angle of inclination 

  viscosity ratio parameter 

c   volumetric coefficient of concentration expansion [
1

K ] 

f   volumetric coefficient of concentration expansion [
1

K ] 

  dimensionless gyro-viscosity micropolar related parameter 

  spin gradient viscosity [ 1mskg ] 

  small positive quantity 

  dimensionless temperature 

  fluid dynamic viscosity 

  kinematic viscosity [ 12 sm ] 

r  kinematic rotational viscosity [ 12 sm ] 

  density of micropolar fluid [
3mkg ] 

  electrical conductivity of the fluid [ 1mS ] 



35 
 

  Stefan-Boltzmann constant [ 42  KWm ] 

  thermal conductivity [ 11  KWm ] 

  mean absorption coefficient [ 1m ] 

  component of angular velocity [ 22 sm ] 

  dimensionless angular velocity component 

  coefficient of gryo-viscosity [ 1mskg ] 

  dimensionless concentration 

 

Subscripts 

w   surface conditions  

  conditions far away from the plate 


