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35 Abstract

36 The development of Genotyping-By-Sequencing (GBS) technologies enables cost-effective 

37 analysis of large numbers of Single Nucleotide Polymorphisms (SNPs), especially in ‘non-

38 model’ species. Nevertheless, as such technologies enter a mature phase, biases and errors 

39 inherent to GBS are becoming evident. Here, we evaluated the performance of double digest 

40 Restriction enzyme Associated DNA (ddRAD) sequencing in SNP genotyping studies 

41 including high number of samples. Datasets of sequence data were generated from three marine 

42 teleost species (>5,500 samples, >2.5x1012 bases in total), using a standardized protocol. A 

43 common bioinformatics pipeline based on STACKS was established, with and without the use 

44 of a reference genome. We performed analyses throughout the production and analysis of 

45 ddRAD data in order to explore (i) the loss of information due to heterogeneous raw read 

46 number across samples; (ii) the discrepancy between expected and observed tag length and 
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47 coverage; (iii) the performances of reference based vs. de novo approaches; (iv) the sources of 

48 potential genotyping errors of the library preparation/bioinformatics protocol, by comparing 

49 technical replicates. Our results showed use of a reference genome and a posteriori genotype 

50 correction improved genotyping precision. Individual read coverage was a key variable for 

51 reproducibility; variance in sequencing depth between loci in the same individual was also 

52 identified as an important factor and found to correlate to tag length. A comparison of 

53 downstream analysis carried out with ddRAD vs single SNP allele specific assay genotypes 

54 provided information about the levels of genotyping imprecision that can have a significant 

55 impact on allele frequency estimations and population assignment. The results and insights 

56 presented here will help to select and improve approaches to the analysis of large datasets based 

57 on RAD-like methodologies.
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58 Introduction

59 The options for studying the genomic constitution of individuals and populations are increasing 

60 rapidly thanks to the development of powerful and accurate sequencing technologies that 

61 provide higher throughput at decreasing costs (Liu et al. 2012). Meanwhile, efficient reduced 

62 representation methods have been proposed to provide high sequence coverage for selected 

63 genomic regions, collectively named as Genotyping-By-Sequencing (GBS) technologies 

64 (Narum et al. 2013). One of these GBS methods, Restriction-site Associated DNA sequencing 

65 (RAD-seq) (Baird et al. 2008) has become particularly popular as it allows the cost-effective 

66 analysis of thousands of markers for tens/hundreds of individuals in a single sequencing lane. 

67 The original RAD protocol has also been modified to optimize throughput and ease of use, 

68 generating several alternative RAD-like methods (e.g. Peterson et al. 2012; Wang et al. 2012; 

69 and the review by Andrews et al. 2016).

70 As GBS technologies enter a more mature phase, biases and errors inherent to such methods 

71 are becoming apparent (Arnold et al. 2013) and comparative analysis of the most popular RAD-

72 like protocols have addressed some of these subjects (Puritz et al. 2014). Two recent studies 

73 (DaCosta e Sorenson 2014; Mastretta‐Yanes et al. 2015) focused specifically on genotyping 

74 issues relating to double digest Restriction enzyme Associated DNA (ddRAD) (Peterson et al. 

75 2012). ddRAD is one of the most recently developed RAD variants, known for its relative 

76 flexibility and ease of use. In addition to the sources of error that also affect other methodologies, 

77 the authors recorded ddRAD-specific issues such as the recovery of restriction fragments 

78 shorter than expected, amplification bias toward GC-rich fragments, non-specific cutting by 

79 restriction enzymes, newly formed restriction enzyme sites and drop of fragment number due 

80 to loss of restriction sites.
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81 Beyond laboratory-based assessments of variation in ddRAD performance, there is a need to 

82 better understand the risk of errors associated with the production and use of ddRAD data, 

83 which is becoming increasingly relied upon for population genetic inference. Unawareness of 

84 the presence of biased markers can indeed lead to artificial excess of homozygotes (Taberlet et 

85 al. 1996), false departure from Hardy–Weinberg equilibrium (Xu et al. 2002), overestimation 

86 of inbreeding (Gomes et al. 1999) and unreliable inferences about population structure that have 

87 the potential to distort research conclusions. As a consequence, natural resource management 

88 and policy can be seriously affected. In this study, we seek to expand the experimental 

89 evaluation of ddRAD by focusing on the performance of common bioinformatics approaches 

90 as applied to multiple, comparable, large ddRAD datasets of marine fish species. A technical 

91 evaluation focused on marine fish data is interesting due to some biological characteristics of 

92 this taxon, such as relatively high SNP frequency, that can further affect genotyping accuracy.

93 The species analyzed in this study are the European sea bass (Dicentrarchus labrax), the 

94 gilthead sea bream (Sparus aurata) and the turbot (Scophtalmus maximus). 

95 Available genomic resources are increasing for three species studied. Sea bass (Tine et al. 2014) 

96 and turbot (Figueras et al. 2016) genomes have already been published and a draft sea bream 

97 genome will soon be published (L. Bargelloni, personal communication) and was made 

98 available for this work. The three differ in the quality of their assembly, as indicated by the 

99 contig length (i.e. their respective N50 values, which is defined as the length N for which 50% 

100 of all bases in the sequences are in a sequence of length L < N). However, they share similar 

101 genome size and can thus provide comparable results (Table 1). The use of species with 

102 different levels of genome sequence development permits assessing effects of the reference 

103 genome quality on approaches that use genomes to improve the performance of clustering 
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104 methods for RAD data (e.g. reference based analysis in STACKS).

105 In this study, we set out to examine how variation in ddRAD sequence datasets and the 

106 application and quality of available reference genome sequences affect the consistency and 

107 accuracy of resulting data, generated through commonly used analytical approaches. The 

108 laboratory and bioinformatic pipeline used to generate the ddRAD datasets followed standard 

109 published methods (see below) and has been summarized in a flowchart (Figure 1). The 

110 performance of the ddRAD pipeline was evaluated at different stages in order to investigate the 

111 causes and effects of variation in individual sample coverage, RAD-tag sequence length and 

112 application and quality of reference genomes on the eventual accuracy and error rates of 

113 individual genotyping. We specifically addressed the following questions:

114 (i) Evaluation of sample representation within multiplexed libraries. What is the 

115 typical variation in terms of number of raw reads per sample when multiple 

116 individuals (144 in our case) are multiplexed in a single sequencing lane?

117 (ii) Tag length and coverage. Is there any difference between the expected and observed 

118 length of analyzed tags? Does any relationship exist between tag length and depth 

119 of coverage?

120 (i) De novo and reference-based genotyping using STACKS. What is the effect of 

121 different clustering approaches (e.g. de novo vs reference-based, a posteriori 

122 genotyping correction) on the number of markers identified?

123 (ii) Genotyping precision and error rates. What are the effects of the variables described 

124 above on the number of mismatches between technical replicates?

125 Based on these insights we suggest approaches which can help to mitigate the identified risks 

126 of error in ddRAD analysis. Finally, the potential effect of genotyping imprecision on 
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127 downstream analysis was evaluated using comparative data between ddRAD and single SNP 

128 allele specific genotyping, focusing on how genotyping errors could affect allele frequency and 

129 population assignment.

130 Material and Methods

131 Samples and library preparation

132 Specimens of European sea bass, gilthead sea bream and turbot were collected in the context of 

133 the European Union’s FP7 funded project ‘AQUATRACE’ (KBBE 311920). The entire sample 

134 set included more than 5,581 specimens (2,128 European sea bass, 2,156 gilthead sea bream 

135 and 1,297 turbot) from the species’ distribution range, some of which were collected 

136 specifically for the project (years 2013-2014, from now on referred to as “fresh” samples), while 

137 others had been collected earlier (“archived” samples) (Supplementary Material Table). For 

138 fresh samples, fin clips were preserved separately in 95% ethanol at 4°C until genomic DNA 

139 (gDNA) extraction. Samples were extracted either with Invisorb® DNA tissue HTS 96 kit 

140 (Stratec biomedical) or with a standard NaCl isopropanol precipitation protocol (Cruz et al. 

141 2016). Extracted DNA samples were then classified as “high”, “mid” or “low” quality 

142 according to the level of degradation assessed with agarose gel electrophoresis (see 

143 Supplementary material).

144 The same ddRAD protocol, with minor modifications, was used for the three species. The 

145 library preparation followed the original guidelines of Peterson et al. (2012), with some 

146 modifications that facilitate the screening of large number of individuals (see Supplementary 

147 Material for details), and was carried out in three different laboratories within the AquaTrace 

148 consortium, each focusing on a single species: the sea bass at the Laboratory of Biodiversity 

149 and Evolutionary Genomics, University of Leuven, sea bream at the Department of Compared 
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150 Biomedicine and Food Science, University of Padova and turbot at the Departmento de 

151 Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela. To 

152 promote a common standardized approach, staff from the three laboratories completed a hands-

153 on training course in library preparation at the Institute of Aquaculture, Stirling, where the 

154 modified ddRAD protocol originated. Multiple ddRAD libraries were prepared for each species 

155 (sea bream n=14; sea bass n=14; turbot n=9). Each library comprised 144 samples, and in all 

156 the libraries the same three or four control samples for each species were included, to enable 

157 cross-library comparisons and mismatch rates between replicates to be assessed. In particular, 

158 four sea bream specimens (SAC3, SAC4, SAC5 and SAC6 from Sardinia, Italy); three sea bass 

159 specimens (DLTY40, from the Central Mediterranean Sea; DLM44, from the Atlantic and 

160 DLFF1, from a European broodstock); and four turbot specimens (SMFF1, SMFF2 and SMFF3 

161 from a Spanish broodstock; SMNS32 from North Sea’s wild population) were used.

162 Sequence data analysis – standard pipeline

163 The following approach to sequence data analysis was used for all datasets as the basis for 

164 subsequent comparative analysis. Raw data were filtered to retain only high quality reads, using 

165 STACKS 1.28 (J. Catchen et al. 2013; J. M. Catchen et al. 2011) process_radtags program, 

166 which allows simultaneous quality filtering and sample demultiplexing. After barcode removal 

167 (5-7 bases), the sequences were 3’ end-trimmed to a standard 90 nucleotides length. Each read 

168 was then analyzed to assess sequence quality. Briefly, a 3-base sliding window (STACKS’ 

169 option –w) was used to parse each read and where the average phred score of three consecutive 

170 bases was lower than 20 (STACKS’ option –s) the entire read was discarded.

171 STACKS was also used for clustering reads and for SNP discovery, following standard de novo 

172 and reference based pipelines, well described in the program website 
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173 (http://catchenlab.life.illinois.edu/stacks/). In our case parameter –m (minimum number of 

174 reads to call a stacks) was set to four and –M (maximum number of mismatches between reads 

175 to be considered as part of the same cluster) was set to five, according to the suggestion of 

176 Mastretta-Yanes (2015), and considering the longer reads of our study (due to concatenation). 

177 For the de novo approach, reads from primer P1 were concatenated with the reverse 

178 complement sequence of reads from primer P2, obtaining 180 bp pseudo-contigs. This approach 

179 was used to create longer sequence tags which reduces the risk of over-merging (i.e. clustering 

180 together tags coming from different genomic regions) by keeping the information about relative 

181 proximity of Read 1 and Read 2. As an added benefit, this approach allowed to be fully aware 

182 of linkage issues. Since reference based approach require reads to be mapped against a reference, 

183 we used the software package BOWTIE (Langmead et al. 2009), considering read pairing in the 

184 alignment process. We kept only read pairs that matched a single genomic position.

185 When building the RAD-tag catalog a maximum number of five mismatches between tags was 

186 set. For the reference-based approach, clustering was based on mapping position. Within a stack 

187 containing variant reads (i.e. potential SNPs),  the following call thresholds were used: rare 

188 variant frequency (rvf) <0.01 = homozygote; 0.01<rvf<0.1 = ‘genotype unknown’; rvf >0.1 = 

189 heterozygote called. rxstacks, STACKS’ component that corrects genotypes on the basis of 

190 population information, was also implemented for comparison. Finally, we used the algorithm 

191 implemented in STACKS’ populations step to retain only individual loci represented with at 

192 least 10 reads per individual sample and genotyped in at least 80% of the samples analyzed. 

193 This is an important step when the genotypes of multiple individuals need to be compared, as 

194 only shared loci provide useful information for genetic analysis.

195 Analysis of the pipeline
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196 Here, we describe the methods used to assess the pipeline based on the four issues described in 

197 the Introduction (Figure 1).

198 (i) Evaluation of sample representation within multiplexed libraries

199 Considering the number of samples multiplexed and the average output of the sequencing 

200 platform/chemistry (180 M reads), approximately 1.3 M reads per sample are theoretically 

201 expected. However, even if initial DNA quantification is accurate and input DNA is equal 

202 among samples, subsequent library preparation steps may alter individual representation within 

203 the library resulting in variability in inter-sample sequencing effort. To investigate sample read 

204 homogeneity in libraries with up to 144 pooled individuals, we first established a threshold 

205 number of reads per sample against which to filter individual sample data. A threshold of 150 

206 k reads was chosen as a minimum to accept an individual sample for downstream data 

207 processing, based on an expected number of 7,000 stacks per sample (estimated from in-silico 

208 analysis) and an average coverage of 20x. This threshold was used in the analysis of the 

209 sequencing output for all available ddRAD data including more than 5,000 samples.

210 To identify the factors correlated with fewer reads, we tested the correlation between number 

211 of reads (above or below the threshold) and variables such as “DNA quality”, whether a sample 

212 was “fresh” or “archived”, “individual sample collector” (i.e. the project partner that collected 

213 the sample), and “index barcode” (different length/sequence barcodes could perform differently 

214 in the amplification or sequencing by synthesis steps), testing the effect of each variable under 

215 a Generalized Linear Model (GLM), as implemented in R 3.2.3 library function Rcmdr (Team 

216 2013; Fox 2005). Chi-squared tests were applied to check association between tested variables.

217 For the analysis described further on, only replicate samples with sufficient read numbers were 

218 used.
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219 (ii) Tag length and coverage

220 To understand whether the length of the RAD-tags (‘tag length’) observed corresponded to the 

221 expected length (i.e. the ‘insert length’ from size selection minus adapter length) and to 

222 investigate association between tag length and coverage, we extracted fragment length and 

223 DNA sequences of ddRAD-tags from BOWTIE alignment results. Data on coverage depth was 

224 extracted for each single locus of each sample, separately. To allow comparison between 

225 samples with different average coverage, standardized coverage depth was obtained by dividing 

226 locus specific values by the average coverage across all loci for each sample. Similarly, when 

227 comparing the distribution of the number of tags with different lengths, 10 bp bins were used 

228 and the relative number of tags was calculated dividing the number of tags of a certain length 

229 bin by the average number of tags across all the bins. A Wilcoxon signed-rank test, as 

230 implemented in R 3.2.3 library Rcmdr (Team 2013; Fox 2005), was used to test for differences 

231 between distributions from the three datasets.

232 (iii) De novo and reference-based genotyping using STACKS

233 In order to understand how the alignment to a reference genome influences SNP genotyping, 

234 we obtained individual genotypes using both de novo and reference-based analysis in STACKS. 

235 Since we expected de novo approach to detect also tags that are not contained in the reference 

236 genome, we wanted to evaluate the amount of de novo tags that could be found in the genome. 

237 In order to do this, RAD-tags resulting from de novo analysis (180 bp long) were subsequently 

238 split in two (in order to reconstitute the original 90 bp tags) and mapped against the reference 

239 genome using BOWTIE, with the same parameters used while aligning reads for reference based 

240 analysis. Under both de novo and reference-based analysis, results were compared with and 

241 without the final step in rxstacks. Statistical differences between approaches were tested with 
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242 chi-squared tests.

243 (iv) Genotyping precision and error rates

244 To investigate the level of reproducibility across different bioinformatic approaches we 

245 examined the level of consistency among scored SNP genotypes within the sets of nine to 15 

246 replicated samples for each species. The most frequent genotypes were considered as the 

247 “correct” ones, and mismatches were counted for each locus in each sample to estimate 

248 genotyping error.

249 When comparing results from different approaches, statistical significance was tested using 

250 either on-line applications (e.g. Kruskall-Wallis: http://vassarstats.net) or the Rcmdr library for 

251 R 3.2.3 (Team 2013; Fox 2005). A first global analysis was carried out to assess the effect of 

252 several parameters (“coverage”, “genome reference” mapping, “rxstacks correction”, 

253 percentage of high-quality reads) on mismatch rate across the entire dataset. Individual 

254 mismatch rates were classified either as a binary outcome (0 for values lower than the overall 

255 median mismatch rate, 1 for those equal or greater), or grouped into quartiles for a finer 

256 evaluation of the effects of different explanatory factors. In both cases, either a Generalized 

257 Linear Model (used with binary outcome) or Ordinal Linear Regression (used with samples 

258 grouped into quartiles) were used to detect the most influential variables. The same statistical 

259 approach was then implemented, within each dataset, across single specimens, to look more 

260 into detail at individual-specific features that could affect genotyping quality and to avoid 

261 dataset-specific biases and errors. This additional analysis was possible thanks to the large 

262 number of replicates available for each species and the standardization of library preparation 

263 technique and bioinformatics protocols. Lastly, mismatch rates were analyzed across loci, to 

264 check the expectation that, within each “species+strategy” dataset (e.g. sea bream+de novo or 
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265 turbot+reference based) loci with lower average coverage also showed higher mismatch rates.

266 Assessing the impact of genotyping accuracy

267 The impact of genotyping imprecisions on downstream applications varies depending on the 

268 type of analysis carried out. Since the principal applications of the project data were the analysis 

269 of genetic structure, based on allele frequency, and the development of traceability tools, based 

270 on population assignment, we evaluated the impact of variation in genotype scoring on these 

271 applications. To do this, we used a reduced set of highly informative markers (14 for sea bass, 

272 15 for sea bream and 18 for turbot) genotyped with both ddRAD and with a single SNP allele-

273 specific assay (KASP). Using these approaches we genotyped 22, 25 and 22 samples of sea 

274 bass, sea bream and turbot, respectively. Comparison of the two genotype datasets was 

275 conducted at the following three levels: a) Genotype data: a simple analysis of genotype 

276 mismatch between data from the two approaches analysed in the same individual fish, with missing 

277 data differentiated from observed differences in genotype; b) Allele frequency data: the impact of 

278 individual genotyping mismatches on allele frequencies was assessed by testing for statistical 

279 significance (Student’s T-tests) between allele frequencies across all loci, with genotype 

280 differences not differentiated from missing data in their effect on allele frequencies; c) Individual 

281 assignment data: assignment was conducted using Geneclass2 software (Piry et al. 2000). 

282 Individual assignment scores (%) output from GeneClass2 were used to assess differences in 

283 assignment of individual genotypes produced using the two methods and significance was assessed 

284 using Student's T-tests. Reference data for population assignment consisted of a larger set of more 

285 than 900 wild and farmed samples for the three species genotyped with ddRAD.

286

287 Results
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288 The first part of the study addressed the loss of analytical power in terms of number of samples 

289 filtered due to unequal representation of individuals within libraries; it was based on a data set 

290 of more than 5,581 samples, in which the replicate individuals were included.

291 (i) Evaluation of sample representation within multiplexed libraries

292 As indicated by high values of standard deviation (in particular for turbot), variation in the 

293 number of raw reads among individuals within species was very high. In fact, 129 samples (71 

294 sea bass, 16 sea bream and 42 turbot) were represented by less than 1,000 reads and three 

295 samples (all in turbot dataset) had more than 5,000,000 reads. Using the threshold of 150,000 

296 raw reads, 6.8% of sea bass samples, 8.1% of sea bream samples and 16.0% of turbot samples 

297 were discarded. After quality filter was applied, an average of 74.5%±10.8% reads remained 

298 available for further analysis. After filtering, the average number of high quality reads was 

299 similar across species, 687,426±447,701 in European sea bass, 614,099±406,018 in gilthead 

300 sea bream and 610,703±707,152 in turbot. Regression analysis indicated that better quality 

301 DNA resulted in higher number of high quality reads (t= -11.4 p<0.001); similarly, “fresh” 

302 samples had a higher amount of high quality reads than “archived samples” (t= -3.1 p<0.005). 

303 “DNA quality” of individual samples was neither significantly associated with species (X2=4.6 

304 p>0.25), nor with fresh/archived condition (X2=3.1 p>0.25). The DNA of 129 samples showing 

305 less than 1,000 reads were all of good quality, which means that inaccurate quantification or 

306 pipetting errors are probably what caused this strong under-representation.

307 After filtering and quality checking, the final number of replicated samples available for 

308 downstream analysis was 111: 43 sea bream samples (11 replicates for SAC3, 11 for SAC4, 10 

309 for SAC5 and 11 for SAC6) genotyped across 11 independent libraries, 34 sea bass samples (5 

310 replicates for DLCTY_40, 14 for DLT_1 and 15 for DLM_44) genotyped across 15 libraries 
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311 and 34 turbot samples (9 replicates for SMFF1, 8 for SMFF2, 9 for SMFF3 and 8 for SMNS32) 

312 genotyped across 9 libraries.

313 (ii) Tag length and coverage

314 On average across species, 78.4% of the reads were successfully mapped on the reference 

315 genomes and mapping rates ranged from 71.3% uniquely mapped reads in sea bream to 85.4% 

316 in sea bass.

317 Average tag length across datasets was 288.9±110.5 bp. Most of the tags (79.5%) were 100-

318 380 bp. In addition, substantial fractions (21.1% sea bream, 24.5% sea bass, 15.9% turbot) of 

319 analyzed RAD-tags were shorter than 190 bp (the minimum size expected according to the 

320 library construction protocol) (Figure 2). Paired-tests between datasets suggested that size 

321 distribution was not significantly different across species (Wilcoxon signed-rank test, bream-

322 bass p=0.803, bream-turbot p=0.865, bass-turbot p=0.984).

323 Although average coverage depth per locus differed among datasets for the three species (157 

324 ± 94 for sea bass, 248 ± 126 for sea bream, 700 ± 544 for turbot), relative coverage was evenly 

325 distributed (Wilcoxon signed-rank test, bream-bass p=0.697, bream-turbot p=0.865, bass-turbot 

326 p=0.689) with respect to RAD-tag length (Figure 3). Significant (p<0.01) positive linear 

327 correlations between length and coverage were also found for fragments in the range from 100 

328 to 250 bp (Spearman rho=0.903 in sea bream, 0.957 in sea bass and 0.918 in turbot). Fragments 

329 longer than 250 bp showed significant (p<0.01) negative linear correlation between length and 

330 coverage (Spearman rho=-0.969 in sea bream; -0.968 in sea bass, -0.952 in turbot). No 

331 significant correlation between GC content of fragments and coverage depth was observed.

332 (iii) De novo and reference-based genotyping using STACKS

333 The number of independent RAD-tags identified varied depending on the approach. In all cases 



16

334 the number of tags found by the reference genome-based approach was much lower than that 

335 found with the de novo approach (up to 5.5 times, in turbot dataset) (Table 2). However, when 

336 a filter was applied to retain only tags shared by at least 80% of samples analyzed, higher 

337 proportion was retained for reference-based analysis (on average 44.9%±19.7%) than de novo 

338 analysis (on average 9.1%±6.0%). This made that in most cases the final number of retained 

339 tags was higher using the reference-based approach. Similarly, a higher number of SNPs was 

340 observed in the reference-based approach after filtering. The application of the genotype 

341 correction implemented in rxstacks reduced the number of tags by different extents: a minimum 

342 of 63% of total tags were retained in the turbot reference-based analysis and a maximum of 

343 99.6% in the sea bass de novo analysis. The proportion of SNPs retained was comparable, 

344 ranging from 56.9% to 99.8% in turbot (reference-based) and sea bass (de novo), respectively. 

345 Mapping tags from de novo analysis against the reference genomes produced 11,121 matches 

346 for sea bass (28.3% of de novo RAD tags); 11,650 for sea bream (23.0% of de novo RAD tags) 

347 and 7,889 for turbot (6.8% of de novo RAD tags). These figures are in agreement with the 

348 relative length of the genomes utilized (Table 1), while the lower than expected difference 

349 between sea bass and sea bream results can be explained by the lower quality of the bream 

350 assembly, as indicated by the N50 value.

351 (iv) Genotyping precision and error rates

352 Our analysis suggested that “rxstacks correction” and “coverage” significantly affected the 

353 level of accuracy in the comparison of different approaches, regardless the species. In particular, 

354 lower mismatch rate were recorded when rxstacks was implemented and when coverage depth 

355 per sample was higher. However, variation in mismatch rates were found between different 

356 species datasets (Table 3); they were apparently linked with differences in species-specific 
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357 coverage, which varied significantly both for de novo RAD-tags (Kruskall-Wallis test, H=15.27 

358 p<0.001) and reference-based ones (Kruskall-Wallis test, H=30.74 p<0.0001). To overcome 

359 biases linked to species-specific differences, more specific tests were carried out within single 

360 datasets. In fact, additional factors were found to be significantly affecting mismatch rate. In 

361 addition to “rxstacks correction”, also “library”, “reference-mapping” and “sample” (only in 

362 the turbot database) showed significant correlations. At species level, “Coverage” showed a 

363 significant correlation in two out of three datasets (sea bream (p<0.05) and turbot (p<0.001)). 

364 Nevertheless, across loci (i.e. within “single species+strategy” dataset) no significant 

365 correlation between mismatch and coverage was found.

366 Impact of genotyping accuracy on population assignment

367 The percentage of samples with at least one different genotype observed in sea bass, sea bream 

368 and turbot was 31.5% (seven samples), 52% (13 samples) and 36% (eight samples), respectively, 

369 reflecting a total level of genotyping variation of 3.7% in sea bass (nine allelic differences), 4.8% 

370 in sea bream (eighteen allelic differences) and 3.0% in turbot (12 allelic differences). Resulting 

371 allele frequencies differed significantly at one locus in sea bream, that displayed the largest single 

372 allele frequency difference between the two genotype datasets (11.5%). A similar single locus 

373 deviation was observed in sea bass, despite the overall difference being non-significant. The effect 

374 of genotyping mismatch on individual assignment was lower; only for turbot, was one individual 

375 assigned to different populations of origin with the two genotype datasets. On closer inspection, 

376 the two genotypes for this sample differed at three alleles observed at two loci. The two genotypes 

377 at first locus were alternate homozygotes, whereas the other discrepancy was between 

378 heterozygous and homozygous genotypes at another locus. Further analysis of the sample based 

379 on population exclusion testing revealed that neither population of origin (wild or farmed) was 
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380 excluded using the two genotype datasets meaning that misassignment would be possible in this 

381 scenario. When this individual was excluded from the sample dataset, there was no significant 

382 difference in quantitative assignment scores between genotypes from RAD and Kasp approaches. 

383 Neither sea bream nor sea bass exhibited discrepancies in population assignment, nor in 

384 assignment scores, obtained with different sets of genotype data.

385 Discussion

386 The aim of the present work was to quantify the level of genetic information that can be obtained 

387 with ddRAD approach, net of information loss during bioinformatic processing; and to evaluate 

388 the performance of different bioinformatics approaches on the number of markers detected and 

389 the precision of the genotype calling. The use of large datasets of marine fish species and the 

390 application of the same approaches as those used in real case studies make our results 

391 informative on the practical application of this technique.

392 (i) Evaluation of sample representation within multiplexed libraries

393 The first step in which genotyping information is lost is quality filtering, required to obtain 

394 reliable results with NGS analysis (Minoche, Dohm, and Himmelbauer 2011; Bokulich et al. 

395 2013). The filtering used in this work was stricter than the default of STACKS filtering, and 

396 probably stricter than many of the filtering approaches used in population genetics studies.  

397 However in this study our filtering process did not result in the loss of many samples; where 

398 samples were removed this was mostly due to low initial read depth resulting from unequal 

399 sequencing effort.

400

401 Relaxing the STACKs filtering parameters would be one method of retaining more reads, 

402 however this would risk increasing genotyping error. An alternative approach, given that low 
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403 sequence quality is typically concentrated at the read ends, would be to employ further trimming 

404 of all reads prior to commencing STACKS analysis. This should have the effect of retaining 

405 more reads during subsequent STACKS filtering based on phred-scores.  Nevertheless, this 

406 procedure still causes loss of potentially high quality genetic information  and a more efficient 

407 approach would be to trim only those reads affected by low quality instead of trimming every 

408 read to the same extent.  This would only be possible if the downstream SNP caller program 

409 allowed for different length reads (unlike STACKS).

410 One of the main advantages of RAD techniques is the possibility of multiplexing many 

411 individuals in the same sequencing run thanks to individual sample barcoding. However, as the 

412 number of multiplexed individual samples increases, the chance to have poorly represented 

413 samples increases as well (Baird et al. 2008; Peterson et al. 2012), causing lower coverage and 

414 in the worst case, too few reliably genotyped or false homozygote excess for a number of 

415 individuals. In particular, the combination of samples at different quality/concentration, rather 

416 than the quality itself of single samples, is the influencing variable (I.e. even using the exact 

417 same starting DNA, result might vary in relation with the other samples genotyped in the same 

418 library). The threshold at 150,000 raw reads used here is much lower than the expected average 

419 number of reads per individual (1.3 millions) and may not be appropriate for other species. In 

420 fact, it should be set taking into consideration the number of expected tag and the desired 

421 average coverage depth. However, “losing” a certain amount of samples (up to 16% in our case) 

422 needs to be considered when planning a ddRAD sequencing project, even when significant 

423 effort was given to equalize DNA input under library preparation.

424 Not surprisingly, DNA quality was a good predictor of poorly performing samples (Graham et 

425 al. 2015). Gel-based quality analysis essentially reflects the level of DNA degradation, that can 
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426 be caused by many factors that act before or after extraction. In our specific case, pre-extraction 

427 factors are probably the most relevant, as extraction and post-extraction protocols were the same 

428 for all the samples. Ethanol has been recognized as a good media for long term tissue storage 

429 (Gillespie et al. 2002; Dawson, Raskoff, and Jacobs 1998), and it is easily available and not 

430 hazardous. Nevertheless, Seutin, White, and Boag (1991) reported that ethanol conservation 

431 can decrease DNA yield and cause significant degradation to the extracted DNA, that can be 

432 reduced by keeping samples refrigerated as soon as possible after sampling. DNA from long-

433 term stored specimens might have some additional features reducing the efficiency in library 

434 preparation. Therefore, when selecting the DNA samples to be pooled as part of the same library, 

435 it is advisable to avoid mixing samples of heterogeneous DNA quality as well as mixing “fresh” 

436 with “archived” specimens. When this is not possible (e.g. for those projects that use only one 

437 or few sequencing pools), an upward correction for the starting amount of DNA of poor quality 

438 samples and DNA from “archived” samples might be considered. However, further analysis is 

439 necessary to better understand how this procedure should be applied.

440 (ii) Tag length and coverage

441 Accuracy and consistency in size selection is not easily achievable, but tag length distribution 

442 was not significantly different across species in our study. From this point of view, the period 

443 of training of the personnel proved to be effective in order to have consistent results. 

444 Nevertheless, tags shorter than 190 bp were retained in our analysis, which was unexpected 

445 considering that size selection step was implemented. Indeed, low accuracy has been 

446 documented in particular for manual vs automated gel band extraction (Puritz 2015). A similar 

447 result was found by DaCosta e Sorenson (2014), who recovered tags down to a length of 10 bp. 

448 In our case, the purification steps performed at the very end of the library preparation protocol, 
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449 should eliminate most inserts shorter than 200 bp, that translates into RAD tags of 75 bp, after 

450 removing adapters. It is important to notice that, considering the 100 bp paired-end sequencing 

451 protocol used, all the analyzed fragments shorter than 190 bp are affected by Read1-Read2 

452 overlapping of the final parts of the sequences, potentially causing SNP duplication, redundant 

453 data and a waste of sequencing effort that further lower the actual power of ddRAD technique. 

454 Improvement in size selection step is fundamental to optimize the performance of the ddRAD 

455 technique.

456 Davey et al. (2013), using data from a Caenorhabditis elegans RAD library, found a strong 

457 positive correlation between fragment length and coverage depth. In other published ddRAD 

458 studies, such as DaCosta e Sorenson (2014), the relationship between coverage and length was 

459 similar to our work. Tags with different lengths show variable coverage within individual 

460 samples. This means that additional care should be taken when multiplex size is calculated, in 

461 order to achieve a desired minimum depth of coverage across loci. According to our results, 

462 loci in the shortest and longest length range will be underrepresented if coverage was calculated 

463 just by dividing the number of individual reads by the number of expected loci. Upward 

464 correction in the number of reads per individual should be applied to obtain minimum coverage 

465 also for loci in short and long fragments.

466 (iii) De novo and reference-based genotyping using STACKS

467 The possibility to use RAD techniques in species without genomic resources (i.e. de novo 

468 approach) has been highlighted as one of the method’s biggest advantages (Willing et al. 2011; 

469 Pegadaraju et al. 2013). However, we showed that using a reference genome improves RAD 

470 genotyping performance, i.e. better precision and higher number of shared markers. With 

471 reference based approach, only reads correctly mapped against the genome are used. Hence, the 
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472 quality of reference-based analysis is also dependent on the quality of the assembly used. In 

473 particular, N50 seemed to better predict mapping percentage compared to average contig length. 

474 Turbot shows the longest average contig length, but ranked second in terms of positive mapping 

475 matches, in agreement with N50 ranking (Table 2). J. Catchen et al. (2013) showed that in 

476 threespined stickleback de novo approach yielded a higher number of tags (42,300) than the 

477 reference based one (37,600), mostly due to loss of loci that could not be mapped against the 

478 reference genome (>4,700). Likewise, in our analysis, using the genome as a reference returned 

479 a lower number of tags compared to the de novo approach (Table 3). In any case, the number 

480 of de novo-based tags that mapped correctly to the reference genome was in good agreement 

481 with the number of tags identified by the reference based analysis. The larger number of de 

482 novo ddRAD tags might then be explained in part by the incomplete mapping of reads against 

483 the reference genome as in the case of threespined stickleback. This seems reasonable 

484 considering that the reference sequences used represent only a portion of the entire genomes of 

485 the species. Indeed, compared to the genome lengths estimated from the c-values, from 70% 

486 (turbot) to 85%(sea bream) of the entire genomes is represented in the references. So, at least 

487 part of the de novo loci found could be real fragments of the genomes, coming from regions 

488 that have been more difficult to sequence and assemble so far. A second possibility is that a 

489 fraction of tags, which STACKS identified as separate “loci” in the de novo analysis, is likely 

490 represented by divergent alleles of the same locus. However, STACKS controls for such 

491 phenomenon through the –M parameter and, in the present study, a less conservative value (–

492 M=5) than the default one (–M=2) was set for all species. More likely, de novo approach might 

493 include some “spurious” loci at individual level. In support of this hypothesis, a filter that 

494 exclude loci shared by less than 80% of individuals, filtered out most of de novo loci. The origin 
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495 of these tags is difficult to find but some sources can be the presence of exogenous DNA, e.g. 

496 from viral/ bacterial contaminants or from other species. In fact, blasting the tags that did not 

497 present matches with sea bream genome showed that around 20% of these tags could come 

498 from virus, bacteria, human or from other species analyzed in the laboratory (data not shown). 

499 Using a filter that prunes poorly shared loci would exclude these RAD. In any case, when using 

500 a de novo approach, a further filter based on alignment of tags with potential contaminant 

501 species should be implemented as it require little bioinformatic effort and reduces a potential 

502 source of background noise in the results. In addition, we cannot exclude the presence of 

503 sequencing errors introduced with amplification in library preparation and sequencing steps. 

504 While we cannot exclude that these sequences can provide useful information or could be used 

505 as dominant markers (Fu et al, 2013), we recognize that they need to be studied more in detail 

506 to understand their origin and whether they can have bad effects on certain downstream 

507 applications (i.e. those requiring the use of markers shared by a percentage of individuals). 

508 Without deeper knowledge of the origin of these sequences, it is therefore advisable to use the 

509 above mentioned filters to reduce source of bias in the final filtered datasets. In general, even if 

510 in the form of a draft, a reference genome should allow more efficient SNP detection.

511 (iv) Genotyping precision and error rates

512 Genotyping reproducibility across technical replicates is one of the most important test to 

513 evaluate genotyping methods. A first analysis on over 100 replicates over the three species 

514 datasets, showed that “coverage” represented a significant explanatory variable for differences 

515 in mismatch rates. In fact, sea bass’ technical replicates, which were characterized by a 

516 significantly lower coverage, also showed lower precision than the two other species. The effect 

517 of reduced coverage also appears to be affecting samples characterized by a high DNA quality.
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518 Davey et al. (2011) suggested at least 30x average coverage depth for reference genome-based 

519 analysis and at least 60x coverage depth for de novo analysis in order to obtain a complete 

520 coverage of all restriction sites in a genome. In addition, Fountain (2016), based on Mendelian 

521 inheritance incompatibilities, showed that genotyping errors decreased with increasing 

522 coverage from 5x to 30x in both reference based and de novo datasets. In the present study, the 

523 average coverage for all the three species was higher than that suggested in the studies 

524 mentioned, but also the variability across loci was high (36x-386x in sea bass, 31x-2840x in 

525 sea bream and 69x-2731x in turbot), which might influence the outcome in term of mismatch 

526 rates. However, we couldn’t find any significant correlation between mismatch rate and average 

527 locus coverage when analyzing results within single datasets (i.e. “species+strategy”).

528 The same analysis showed that the SNPs in the reference-based tags are more consistently 

529 genotyped than de novo ones in both turbot and sea bream. The positive effect of using a 

530 reference genome on genotyping reproducibility is an additional one to the advantage of 

531 avoiding inflation of tag number described above. More reproducible genotypes are also 

532 obtained when a posteriori genotype correction was implemented. Both approaches (reference-

533 based analysis and a posteriori correction) come at a price as the total number of tags/SNPs 

534 analyzed gets reduced, so its use should be considered to obtain more reliable data according to 

535 the aims of a particular project. Other issues deserve care when using genetic markers. On of 

536 the most important is allelic dropout, that can lead to errors in population statistics, due to biased 

537 heterozygosity estimates (Gautier et al., 2013). Some approaches have been proposed to detect 

538 loci affected by allelic dropout, such as analysis of coverage, based on the expectation that 

539 mutations within the restriction site would result in fewer reads being generated for one allele, 

540 thus creating a bi-modal read depth distribution across loci (Cooke et al., 2016). Nevertheless, 
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541 a preliminary analysis of coverage distribution of our data didn’t show the bi-modal distribution 

542 expected with the high coverage obtained. This may be due to the fact that coverage also varies 

543 with tag length, swamping any signal from allelic drop-out.

544 Impact of genotyping accuracy on population assignment

545 The average level of discrepancy between the test datasets used for the comparison was slightly 

546 higher than the genotyping error recorded with the different ddRAD bioinformatic approaches, 

547 but allowed us to detect the putative threshold at which genotyping imprecision starts affecting 

548 downstream analysis, since we recorded both samples with and without assignment or allele 

549 frequency deviations. In any case, levels of mismatch between replicates higher than those 

550 found in this study (and approaching the threshold identified as causing deviation in 

551 downstream analysis) are commonly found when using RAD genotyping (e.g. Forsström et al. 

552 2017; Pecoraro et al. 2016). According to our results, the effect of sub-4 % genotyping 

553 differences on allele frequency is not significant, while if variation increased (e.g. 4.8 % in sea 

554 bream), the resulting allele frequencies were significantly different. Such findings are clearly 

555 dependent on factors such as sample size and distribution of variation over loci, but do provide 

556 an indication of the point at which genotype variation impacts allele frequency. Population 

557 assignment was only affected when levels of genotyping variation were higher; the only 

558 discrepancy being recorded for turbot where, despite  displaying the lowest overall genotype 

559 variation of the three species, one sample with three allele differences (8.3% of 36 alleles), was 

560 assigned to different source populations. Again, such results will depend on which loci 

561 displayed genotype variation and cannot be used in isolation to define threshold errors. 

562 However, the finding does indicate the potential for realistic levels of genotype error to result 

563 in significant changes to diagnostic results if not accounted for when evaluating the accuracy 
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564 of downstream applications.

565 Conclusions

566 Application of new genotyping techniques is rapidly increasing as they potentially allow more 

567 accurate, easier and less expensive population genetic analysis of any species. However, several 

568 issues might affect the quality of the results. In the present study, it was demonstrated that some 

569 factors, i.e. DNA fragmentation and archived-fresh samples, affect the throughput in terms of 

570 percentage and absolute number of high quality sequence reads in ddRAD datasets. Similarly, 

571 actual fragment length and coverage can differ from expectations, leading to redundant loci and 

572 loci with too low coverage. Although RAD has been proven to be applicable on non-model 

573 species, the use of a preliminary draft genome sequence increase genotyping performance 

574 enabling to obtain higher numbers of loci shared between multiplexed individuals. We highlight 

575 the critical importance of introducing replicate individuals among samples to assess the 

576 performance of the approach used and we demonstrate how variation in genotype datasets can 

577 potentially impact the results of downstream population genetic applications. Our results are 

578 useful for setting up genotyping project and for considering the features that can affect 

579 genotyping throughput and precision.

580 Data deposition

581 Raw sequencing data are available at NCBI, with accession numbers SAMN7145243-7145512.
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Figure 1 Flowchart of the analysis pipeline followed in this study, indicating the results evaluated 

in order to understand the performances of ddRAD sequencing technique



Figure 2: Graph of fragment length vs number of fragments in European sea bass (square), 

gilthead sea bream (diamond) and turbot (triangle). The graph is based on the reference-based 

analysis, as only for this it was possible to obtain information about fragments’ length. Dash 

vertical line indicates the limit under which pair-end tags present overlapping between Read 1 and 

Read 2.
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Figure 3: Graph of fragment length vs coverage depth in European sea bass (squares), gilthead sea bream 

(diamonds) and turbot (triangles). The graph is based on the reference-based analysis, as only here it was 

possible to obtain information about fragments’ length. Coverage is expressed as relative to specific 

average coverage, in order to account for difference between species in average coverage depth. Trend 

lines were calculated as polynomial, third order for sea bass (solid line, R2=0.70), sea bream (dash, 

R2=0.93), turbot (point, R2=0.89)
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Table 1 Details of the genome resources used for European sea bass, gilthead sea bream and 

turbot.

Species Length (Mbp) N° of contigs
Average contig 

length
N50 (kbp) Reference

European sea 

bass
668.3 37,783 17,687 62 Tine et al., 2014

Gilthead sea 

bream
770.3 259,783 2,965 13.35

Bargelloni et 

al., unpublished

Turbot 544.2 16,463 33,058 31.2
Figueras et al. 

2016



Table 2 Summary of the STACKS' analyses on European sea bass, gilthead sea bream and turbot 

using de novo and reference based approaches. Application of the correction sub-program rxstacks 

is indicated under column ‘Correction’. SNP frequency is calculated as the number of base pairs 

analyzed (180 bp x number of tags for the de novo approach; 90 bp x number of tags for the 

reference based approach) and the SNPs detected. ‘Tags 80%’ indicates the number of tags after 

filtering for those shared by at least 80% of individuals analyzed.

Species
Type of 

analysis
Correction Tags SNPs SNP freq Tags 80%

Average 

coverage

No 

correction
19,672 16,342 216.7 3,246 111.0 ± 65.9

de novo

rxstacks 19,595 15,612 225.9 1,347
101.51 ± 

59.6

No 

correction
13,458 3,013 402.0 4,913 156.8 ± 94.3

European 

sea bass

reference 

based

rxstacks 13,379 3,007 400.4 1,764 153.9 ± 92.9

No 

correction
25,322 39,842 114.4 3,913 151.5 ± 72.0

de novo

rxstacks 24,257 31,790 137.3 2,353 89.3 ± 48.3

No 

correction
13,659 5,161 238.2 7,091

247.7 ± 

126.4

Gilthead sea 

bream

reference 

based

rxstacks 12,293 4,388 252.1 5,796 109.9 ± 52.6

No 

correction
58,171 26,635 393.1 1,674

272.1 ± 

226.8

Turbot de novo

rxstacks 56,320 21,582 469.7 1,631
157.3 ± 

150.2



No 

correction
8,887 2,530 316.1 4,175

700.9 ± 

544.6reference 

based

rxstacks 5,595 1,440 346.7 4,106
255.4 ± 

230.3



Table 3 Summary of mismatch analysis on European sea bass, gilthead sea bream and turbot using 

de novo and reference based approaches. Values are given as average or median percentage of 

genotypes that differ from the consensus (most frequently recorded) genotype over the total number 

of genotypes analyzed (number of individuals analyzed x number of SNPs). Application of 

correction subroutine rxstacks is indicated under column ‘Correction’.

Species Type of analysis Correction
Average % of 

mismatches

Median % of 

mismatches

No correction 2.9 0.9

de novo

rxstacks 2.9 0.9

No correction 1.9 0.5

Sea bass

reference based

rxstacks 1.7 0.4

No correction 0.7 0.3

de novo

rxstacks 1.3 0.3

No correction 0.2 0.2

Sea bream

reference based

rxstacks 0.1 0.1

No correction 0.5 0.2

de novo

rxstacks 0.6 0.1

No correction 0.4 0.2

Turbot

reference based

rxstacks 0.3 0.1



1 Performance and precision of double digestion RAD (ddRAD) genotyping in multiplexed datasets of 

2 marine fish species

3

4 Supplementary Material

5

6 Detailed library preparation protocol

7 Each group used biochemical consumables from the same manufacturers and were supplied with custom 

8 barcoded ddRAD adapters mixes, sourced from the same original stocks prepared at the Institute of 

9 Aquaculture, Stirling.

10 The original protocol of Peterson et al. (2012) involved processing each sample separately (i.e. restriction 

11 digestion, adapter ligation, fragment size selection, PCR amplification and purification, quantitation) prior 

12 to pooling into a single library for sequencing. A modified protocol (described in detail elsewhere; 

13 Palaikostas et al. 2014; Manousaki et al. 2016), which was more convenient for screening large numbers of 

14 individuals, was used for this project. The methodology allowed for pooling of samples after the adapter 

15 ligation step, which greatly reduced the number of manipulations required, ensured consistent size 

16 selection within libraries and reduced construction time to two to three working days. Library preparation 

17 began with basic qualitative and quantitative assessment of extracted DNA samples. DNA quality was 

18 evaluated by gel electrophoresis (0.8% agarose 0.5x TAE) and concentration was accurately measured by 

19 fluorimetry with each sample being finally diluted to 7 ng/µL in 5 mM Tris pH 8.5. For a library (144 

20 samples), individual DNA samples (21 ng) were first simultaneously digested with SbfI (recognition site 

21 CCTGCA'GG) and SphI (recognition site GCATG'C) restriction enzymes, at 37° during 45 minutes. An adapter 

22 mix comprising individual-specific barcoded combinations of P1 (SbfI-compatible) and P2 (SphI-compatible) 

23 HPLC purified adapters (compatible with Illumina sequencing chemistry) were then added / ligated. 

24 Adapters were designed such that adapter– genomic DNA ligations did not reconstitute RE sites, residual RE 

25 activity limiting concatemerization of genomic fragments. Each adapter included an inline five- or seven-

26 base barcode, allowing for post-sequencing identification of individuals (P1-P2 combinatorial barcoding). 

27 The ligation reactions were terminated by heat inactivation and all 144 samples combined in a single pool. 



28 Following column purification of the pooled sample, DNA fragments in the range of 320 bp to 590 bp were 

29 size selected by agarose gel electrophoresis, followed by gel-based column purification. The eluted size-

30 selected DNA template was then PCR amplified (14 cycles, 400 uL volume), column purified down to a 50 uL 

31 volume and then subjected to a further clean-up using an equal volume of AMPure magnetic beads (Perkin-

32 Elmer, UK) (used in sea bream and turbot), to maximize removal of small fragments (less than ca. 200 bp). 

33 The final library was eluted in c.20 µL10 mM Tris pH 8.5.

34 Libraries were sequenced on Illumina HiSeq 2500 sequencers with pair-end (PE) 100 base option to allow 

35 sequencing of both barcodes at the Genomics Core of the University of Leuven, Belgium (sea bass and sea 

36 bream) and BMR S.r.l, Padova, Italy (turbot).

37 DNA quality from agarose gel electrophoresis

Figure Example of “high” (a), “mid” (b) and “low” (c) quality DNA taken from agarose gel of DNA samples 

used in the study. On the leftmost well run 1 kb ladder.

38
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