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Abstract 

An analytical analysis is presented in this work to assess the influence of micropolar nature of fluids in fully 

developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate 

microchannel. The walls of the channel are assumed as sinusoidal wavy to analyze the peristaltic flow nature. 

We consider that the wavelength of the wall motion is much larger as compared to the channel width to 

validate the lubrication theory. To simplify the Poisson Boltzmann equation, we also use the Debye-Hückel 

linearization (i.e. wall zeta potential ≤ 25mV). We consider governing equation for micropolar fluid in 

absence of body force and couple effects however external electric field is employed. The solutions for axial 

velocity, spin velocity, flow rate, pressure rise and stream functions subjected to given physical boundary 

conditions are computed. The effects of pertinent parameters like Debye length and Helmholtz-

Smoluchowski velocity which characterize the EDL phenomenon and external electric field, coupling 

number and micropolar parameter which characterize the micropolar fluid behavior, on peristaltic pumping 

are discussed through the illustrations. The results show that peristaltic pumping may alter by applying 

external electric fields. This model can be used to design and engineer the peristalsis-lab-on-chip and micro 

peristaltic syringe pumps for biomedical applications.  
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1. INTRODUCTION 

Electrokinetics or Electro-fluid-dynamics (EFD) is the study of the dynamics of electrically 

charged fluids which is also defined as a bulk movement of the liquid relative to a stationary 

surface subjected to an applied external electric field. It is applicable in a wide variety of 

developing technologies, extending from the cooling of electronic devices to biomedical 

diagnostics. It has gradually emerged as a more preferred alternative flow mechanism for 

transporting the fluids through microfluidic channels/tubes since there is an absence of 

accurate control mechanisms currently available for typical pressure-driven microflows. It 

can be used to fulfill the pumping power requirements and also integrated with the 

peristalsis-lab-on-chip. In this direction, an analytical approach for electrokinetic flow 

through capillary slits was presented subjected to Debye-Hückel linearization by Burgreen 

and Nakache [1]. Later this study was discussed numerically for a narrow cylindrical 

capillary by Rice and Whitehead [2] and numerical results were also validated with 

approximate solutions. This study was further modified for high zeta potential by Levine 

et al. [3]. In some other studies [4-6], applications of electrokinetic effect were discussed. 

Recently, Obliger et al. [7] presented a pore network model of electrokinetic transport 

through charged porous media. Chakraborty [8] discussed the applications of electrokinetic 

transport in Biochemical Reactions. Most recently, some investigations [9-14] on 

electrokinetic transport and its applications are reported in literature in which electrokinetic 

transport with non-Newtonian fluids, nano channels, thermally developing MHD flow, 

thermal transport and monovalent and divalent cations in silica are studied.  

  

In addition of electrokinetic, peristalsis is also taken into consideration in this study to 

focus the applications in physiological transports. Peristalsis is a natural phenomenon 

specially found in digestive system to propel the food from mouth to stomach and chyme 

from stomach to large intestine via small intestine. It is also similar to heart pump by which 

blood is taken to every part of body. It is also observed in urine flow from the kidney to 

the bladder, flow of spermatozoa in the ductus efferentes of the male reproductive tract, 

movement of ovum in the female fallopian tube, and transport of lymph in the lymphatic 

vessels. Considering the biomedical importance of peristaltic pumping of non-Newtonian 

fluids like Jeffrey fluid [15], sisko fluid [16], Jeffrey nanofluid [17] and Carreau fluid [18], 
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some theoretical investigations have recently been presented. Using the combined effects 

of electroosmosis and peristaltic pumping,  [19] have reported first model where he 

discussed the enhancement of peristaltic pumping by electroosmotic mechanism. He also 

considered the thin electric double layer (EDL) where effects of charged surface i.e. EDL 

phenomenon is assumed negligible. Sequentially improvements in this study are reported 

recently in few investigations [20-23] where EDL effects, MHD effects, power law fluids 

and couple stress fluids are taken into consideration.  

These studies also concluded that peristaltic pumping can be enhanced with applied 

external electric field. However there is no study on micropolar fluids flow driven by 

electro-osmotic modulated peristaltic pumping. Micropolar fluid represents the fluid which 

consist the randomly oriented particles suspended in a viscous medium. It can support 

couple stresses, body couples and exhibits micro-rotational and micro-inertial effects. It 

can be applicable in physiological fluids transport where suspension of particles play 

import role like in blood (suspension of RBC, WBC and platelets). The theory of 

micropolar fluid was first initiated by Eringen [24]. And in this direction, some interesting 

studies [25-29] on micropolar fluids with peristaltic pumping are documented. The effects 

of coupling parameter and micropolar parameter on peristaltic flow characteristics are 

discussed. Recently some few investigations [30-35] on micropolar fluids flow induced by 

electrokinetic transport are presented where the effect of coupling parameter and 

micropolar parameter on electro-osmosis are examined.  With regard to the rheological 

focus of the current work, it is pertinent to mention that many biochemical analytical 

systems in reality are frequently used to process biofluids, such as saliva solutions, DNA 

solutions, and blood samples, and these cannot be simulated as Newtonian fluids. These 

systems exhibit strong non-Newtonian behaviour which has been confirmed 

experimentally by for example Olivares et al.  [36] who showed that electrokinetic 

phenomena involving non-Newtonian fluids strongly deviate from their Newtonian 

counterparts. They reported extensive experimental investigations for the electro-osmotic 

flow of a typical polymer solution in microchannels showing that the fluids involved follow 

closely viscoelastic and microstructural models of rheology owing to their very complex 

mciro-rheology. References [37] and [38] reported rheological electrokinetic phenomena 

due to the viscoelectric effect and utilized rheological models in which viscosity of the 



4 

 

fluids is a quadratic function of the local electric field strength. These studies also 

demonstrated that the electrokinetic  mobility in shear thinning fluids in laboratory 

experiments is significantly greater than that observed in Newtonian fluids. The 

electroosmotic flow is progressively suppressed with subsequent electrophoretic runs, 

suggesting a “dynamic coating” of the polymers onto the capillary wall. Owing to the very 

high shear rate in the electric double layer, the polymer molecules change their orientation 

and/or conformation, which reduces fluid viscosity in this region. These investigations [36-

38] have also emphasized that viscosity of polyelectrolyte solutions is very intimately 

associated with micro-particles and suspensions which in turn are dependent on the solvent 

quality and the polymer concentration regime. In this regard these studies imply that 

microstructure may exert a critical role in rheological characteristics of electro-osmotic 

flows in micro-channel designs. Further studies confirming the importannce of 

biorheological characterization of electro-osmotic micro-channel flows include [39, 40]. 

 

The fundamental aim of the present work is to theoretically analyze the influence of 

micropolar parameter and coupling parameter on peristaltically developing electroosmotic 

transport in parallel plate micro-channels. The flow is taken to be actuated by an axial 

electric field and peristaltic pumping. The zeta potential is considered less than 25 mV so 

that Debye-Hückel approximation can be used. The wavelength of peristaltic wave is 

assumed to be greater than channel width. Closed form expressions are obtained subjected 

to physical constraints.  The effect of relevant parameters on flow characteristics are 

numerically discussed with the help of illustrations.  

2. MATHEMATICAL FORMULATION OF PROBLEM 

We consider the electroosmotic-augmented peristaltic transport of an incompressible 

micropolar fluid through a microfluidic channel of width a2 . Let HY   be the upper 

and lower boundaries of the channel. The motion is considered to be induced by sinusoidal 

wave trains propagating along the channel walls with a constant speed c . The schematic 

diagram of the problem under consideration is depicted in Figure1 and mathematically 

considered as: 
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 '2
sin ' ctXbaH 




, 

(1)                                                                                                

where b is the wave amplitude,  is the wave length and 't  is the time. The flow is unsteady 

in the laboratory frame  '' , YX , whereas it is steady if observed in the coordinate system

 ',' yx , termed as wave frame, moving with the wave speed c . The transformations 

between these two coordinate systems are as follows: 

' ' ' '' ', ' , ' , ' ,x X ct y Y u U c v V       (2) 

 which  ',' vu  and  '' ,VU  are the velocity components in the wave and laboratory 

frames of reference respectively. 

 

Figure 1. Schematic diagram of electroosmotic flow in presence of peristaltic wave 

propulsion with wave velocity c and wavelength . 

 

In the absence of body forces and the body couple, the governing equations for the steady 

flow of an incompressible micropolar fluid driven by combined effects of peristaltic 

pumping and electroosmosis, are given by (see Refs. [26-31]) 
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(6) 

where 'u and 'v are the velocity components in the 'x and 'y directions respectively,   is 

the density of the fluid, 'p  is the pressure, 'w is the microrotation velocity components in 

the direction normal to both the 'x  and 'y  axes, 'J is the micro-inertia constant,  is the 

viscosity constant of the classical fluid dynamics,  ,  are the viscosity constants for 

micropolar fluid, xE is the external electric field.  

Poisson’s equation to describe the electric potential distribution for a symmetric (z: z) 

binary electrolyte solution (Na+ Cl-), is expressed as: 

2 ' e


    , 

 (7)                                                                                                                      

in which   is the permittivity and e  is the density of the total ionic charges given by, 

( )e ez n n    , in which n and n  are the number of densities of cations and anions 

respectively. For further analysis, we use the following non-dimensional variables and 

parameters: 
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in which Re ,   and   represent the Reynolds number, wave number and zeta potential 

respectively. Employing the non-dimensional variables in Eqs.(3-6), we get:  
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where    /N  is the coupling number  10  N ,       /222 aM  

is the micropolar parameter, 02
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(inverse of Debye length) in which BK  is the Boltzmann constant, T  is the average 

temperature of the electrolytic solution and x
HS

E
U

c




   is the dimensionless Helmholtz-
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Applying the Debye-Hückel linearization ( 25mV  ) , the Poisson-Boltzmann equation 

reduces to: 




 2

2

2

m
y

. 
                                                                                                                   

(16) 

In the laboratory frame, the dimensional volume flow rate is defined as:  

   
H

dYtYXUtXQ
0

''''''' ,,, , 
                                                                                         

(17) 

where  '' , tXHH  , which, in the wave frame, may be expressed as:  

    '','''
0

dyyxuxq

H

 , 
                                                                                                       

(18) 

where  'xHH  . Eqs. (2), (17) and (18) yield: 

     '''' ,', tXcHxqtXQ  . (19)                                                                                         

The time-averaged flow rate over a time period T  at a fixed position 'X  is given by 
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Using Eq. (19) into Eq. (20) we get 
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3. ANALYTICAL SOLUTIONS 

Solving Eq.(16) and using boundary conditions (25), the potential function is obtained as: 
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Rearranging the terms in Eq.(30),  the pressure gradient is derived as: 
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The pressure rise per wavelength is defined as (Shapiro et al.[41]): 

1
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dp
p dx

dx
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(32)                                                                                                                    

All above analytical solutions can be reduced to the analytical solution presented in the 

Hayat et al. [42] for 0HSU . That means that Hayat’s model [42] is a particular case of 

the present model.  

4. MECHANICAL EFFICIENCY 

Mechanical efficiency is defined as the ratio between the average rate per wavelength at 

which work is done by the moving fluid against a pressure head and the average rate at 

which the wall do work on the fluid (Shapiro et al. [41]). The mechanical efficiency for 

electroosmotic induced peristaltic transport of micropolar fluid is obtained as: 
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1

0

sin(2 )

Q p
E

dp
x dx

dx
 


 



 
.                                                                                                                            

(33) 

5. RESULTS AND DISCUSSION 

In order to study that how the various physical parameters affect the electroosmotic 

modulated peristaltic pumping characteristic like axial velocity, pressure rise, mechanical 

efficiency and trapping, the analytical solutions are numerically computed and illustrated 

through the Figs. (2-6). 

 

Figs.2(a-d) illustrates the effects of coupling number ( / ( )N     ) which is valid for 

the range 0 1N  , micropolar parameter ( 2 2 (2 ) / ( )M a         ), electro-osmotic 

parameter 02

B

n
m aez

K T
 , which characterizes the electric double layer (EDL) thickness 

(i.e. for m  , the EDL is very thin which physically interpret that there is no effect of 

charged distribution of wall surface on fluid flow) and x
HS

E
U

c




     is the Helmholtz-

Smoluchowski velocity which characterizes the effect of applied external electric field (if 

there is no electric field 0HSU   and physical problem will become peristaltic flow of 

micropolar fluid through microchannel), on velocity profile. Velocity profiles are plotted 

between axial velocity versus transverse displacement for negative pressure gradient (

0
dp

dx
  i.e. 5xp   ) and other parameters are fixed 0.6, 1x   . It is observed that the 

velocity profile for negative pressure gradient is parabolic towards transverse direction 

which validate our present model because it is trivial that velocity profile for negative 

pressure gradient is always parabolic. Fig.2a depicts the effects of electro-osmotic 

parameter ( 1,2,3m  ) on velocity profile and it is noted that the region of velocity profile 

expands with reducing the thickness of electric double layer (i.e increasing m ). Fig.2b 

shows the effect of Helmholtz-Smoluchowski velocity ( 0,1,2HSU  ) on velocity profile 

where the curve for 0HSU  shows velocity for pure peristaltically driven flow (See Hayat 

et al. [42]). It is also observed that the velocity is increasing with increasing the magnitude 
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of electric field that physically interprets that peristaltic flow can be enhanced by 

electroosmosis.  Fig.2c represents the effect of micropolar parameter ( 1,10,100M  ) on 

velocity profile and it is revealed that with huge change (1-100) in magnitude of micropolar 

parameter, there is a slight increment in velocity profile that means the micropolar 

parameter does not much affect the flow characteristics. Fig.2d depicts the effect of 

coupling parameter ( 0,0.2,0.4N  ) where the curve for 0N  represents the velocity 

profile for Newtonian fluid. It is further inferred that the velocity profile diminishes with 

increasing the magnitude of coupling parameter. It is physically interpreted that the 

micropolar nature of fluids opposes the fluid flow.  

 

The influences of coupling number, micropolar parameter, electro-osmotic parameter, and 

the Helmholtz-Smoluchowski velocity on the variation of pressure difference ( p ) with 

time averaged flow rate ( Q ) are seen through the Figs.3(a-d). The graphs are plotted 

between pressure difference ( p ) and time averaged flow rate (Q ) to study the pumping 

characteristics at 0.6  . The relation between pressure difference and time averaged flow 

rate is found to be linear which is similar to results of Shapiro et al. [41]. It is also pointed 

out that the maximum flow rate ( 0Q ) is achieved at zero pressure difference ( 0p  ) and 

vice versa. On the basis of pressure difference there are three regions classified as pumping 

region for 0p  , augmented pumping region for 0p   and free pumping for 0p  . 

Fig.3a shows the effect of electro-osmotic parameter ( 1,2,3m  ) on pressure difference 

and it is reported that the pressure difference elevates with reducing the thickness of electric 

double layer (i.e. increasing the value of m ) in all pumping regions. Fig.3b presents the 

effect of Helmholtz-Smoluchowski velocity ( 0,1,2HSU  ) on pressure difference and it is 

observed that pressure difference enhances with increasing the electric field. The curve at 

0HSU   shows the pressure rise generated by purely peristaltic pumping which is same as 

the pressure rise obtained by Hayat et al. [42] for sinusoidal flow regime. Fig.3c illustrates 

the changes in pressure difference with micropolar parameter ( 1,10,100M  ) and it is 

pointed out that there is minor changes with increasing the magnitude of M , increment in 

augmented pumping region, reduction in pumping region and no changes at free pumping 
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zone. Fig.3d reveals the impact of coupling parameter ( 0,0.2,0.4N  ) on pressure 

difference and it is noted that the effect of N on pressure difference is opposite to that of 

M . 

The variation of mechanical efficiency against ratio of time averaged flow rate (Q ) and 

maximum averaged flow rate ( 0Q ) are shown through the Figs.4(a-d) subjected to effects 

of various pertinent physical parameters at 0.8  .  The ranges of 0/Q Q  is considered 

from 0 to 1. It is inferred that the value of mechanical efficiency starts with zero at 

0/ 0Q Q   (it means zero flow rate) and linearly increases and attain maximum value in 

left neighborhood of 0/ 1Q Q   (it means flow rate is very close to maximum flow rate) 

thereafter it goes down to zero at 0/ 1Q Q  (it means the flow rate becomes maximum) 

which is very similar to the results for mechanical efficiency reported by Shapiro et al. 

[41]. The effect of electro-osmotic parameter ( 1,2,3m  ) on mechanical efficiency is seen 

in Fig.4a and mechanical efficiency increases with decreasing the EDL thickness. The 

influence of Helmholtz-Smoluchowski velocity ( 0,1,2HSU  ) on mechanical efficiency is 

presented in Fig.4b and mechanical efficiency goes up with increasing the electric filed. 

The alterations in mechanical efficiency with micropolar parameter ( 1,10,100M  ) is 

depicted in Fig.4c and mechanical efficiency changes slightly (increasing) with a large 

change (increasing) in micropolar parameter. The reduction in mechanical efficiency with 

elevating the magnitude of coupling parameter ( 0,0.2,0.4N  ) is reported in Fig.4d.  

 

An interesting phenomenon of peristaltic pumping known as trapping is discussed in two 

cases through Figs. 5(a-d) and Figs. 6(a-d) subjected to influences of coupling number, 

micropolar parameter and electro-osmotic parameter. Trapping is a process of recirculation 

of center stream lines at good combination of the values of averaged flow rate ( Q ) and 

amplitude of peristaltic wave ( ). In this study the values of averaged flow rate and 

amplitude of peristaltic wave are considered as 0.6, 0.5Q   . The first case (Figs.5(a-d)) 

is considered as for opposing the electric field ( 0HSU  ) that means the electric filed is 

applied opposite to peristaltic pumping and second case (Figs.6(a-d)) is taken for adding 
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the electric field ( 0HSU  ) that means the electric field is applied towards the peristaltic 

flow direction. If we compare the adding and opposing the electric field on trapping, it is 

clear that the center stream lines recirculate and form the bolus in first case however the 

center lines are parallel and contracted at center of channel and adjacent lines recirculate 

in upper and lower parts of channel. It is physically interpreted that when peristaltic 

pumping is dominating (first case) then center lines form bolus while with combined effects 

of electric field and peristaltic pumping (second case) the center stream lines become 

straight and parallel and the stream lines towards channel walls are trapped which is due to 

EDL effects. The effect of micropolar parameter ( 1, 4M  ) on trapping for first case is 

shown in figs.5a&b. It is observed that with the changes from 1 to 4 in micropolar 

parameter, there are very minor changes (negligible) in trapping.  The variation of coupling 

parameter ( 0.1,0.5N  ) is depicted in Figs.5a&5c and it is revealed that size of trapping 

bolus reduces with change in N  from 0.1 to 0.5. The effect of the alteration of electro-

osmotic parameter ( 1,10m  ) on trapping is illustrated in Figs5a &5d and it is found that 

the number of trapping boluses increases with a change of m  from 1 to 10. For second case 

(Figs.6(a-d)), the effects of all three parameters are similar to first case but in Fig.6c, there 

is no trapping bolus when we increase the magnitude of coupling parameter N  from 0.1 

to 0.5. 

 

 

 

  

(a) 
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Fig.2.Velocity profile at 0.6, 1, 5xx p      for different values (a) m  (b) HSU   (c) 

M  (d) N .  
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Fig.3. Plot between p and Q  at 0.6   for different values (a) m  (b) HSU   (c) M  (d) 

N .  
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Fig.4. Mechanical efficiency vs. the ratio of averaged flow rate and maximum averaged 

flow rate at 0.8  for different values of  (a) m  (b) HSU   (c) M  (d) N .  
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Fig.5. Stream lines at 0.6, 0.5Q    and 1HSU   . 
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Fig.6. Stream lines at 0.6, 0.5Q    and 5HSU  . 
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6. CONCLUSIONS 

In this study, we analyze the electroosmosis modulated peristaltic transport of micropolar 

fluids through a microchannel. The effects of the coupling number, micropolar parameter, 

electro-osmotic parameter, and the Helmholtz-Smoluchowski velocity on velocity profile, 

pressure difference, mechanical efficiency and trapping phenomenon are discussed in the 

last section.  The first observation of this study is that peristaltic transport of a micropolar 

fluid enhances with the applied external electric field and also alters with the electric double 

layer formation. Second observation of this study is that electroosmotic peristaltic flow 

varies with an increment in coupling parameter from 0 to 1 however there are minor 

changes (negligible) with large increment in magnitude of micropolar parameter from 1 to 

100. The last and final observation of this study is that the center stream lines are trapped 

with the opposing electric field however the center stream lines are straight and parallel to 

channel length with the adding electric filed. This model is applicable to study the effects 

of microrotation of fluid particles (blood cells) during the fluids transport (blood flow). 

The findings of Hayat et al.[37] can be examined from present analysis with 0HSU . The 

results may also be relevant to the physiological flows and industrial applications in which 

electroosmotic induced peristaltic pumping is used subjected to microrotation of fluid 

particles.  
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