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“There are few laws more precise than those of perfect molecular chaos.”

Professor George Porter -The Laws of Disorder

“The probable is what usually happens.”

Aristotle



UNIVERSITY OF SALFORD

Abstract
School of Computing, Science & Engineering

College of Science & Technology

Doctor of Philosophy

by Ian Keith Robinson

A series of Monte-Carlo investigations on the Palladium Hydrogen system are pre-

sented. It is demonstrated that a simple long-range concentration-dependent attractive

force reproduces the form of the pressure-composition isotherms well. Short range

pairwise repulsive forces reproduce much of the hydrogen ordering seen within the lat-

tice. A suitable scaling between the long and short range forces has been found which

appears to reproduce both the isotherms and the short-range ordering to a reasonable

degree.

Programs have been written to generate virtual diffractograms in 1d and 2d in order to

observe ordering in the simulations and inform those performing experimental diffrac-

tion studies

Studies have been performed of the isotope dependence of absorption taking into ac-

count the differing zero point energies of the three hydrogen isotopes.
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Preface

Presented are the results of extensive Monte-Carlo testing of a model of hydrogen in

palladium incorporating short-range repulsive pairwise interactions and long-range at-

traction. The report starts with a discussion of the theoretical background of the Pd-H

system. This is followed by an overview of Monte-Carlo simulations of lattice gases.

Given that we are attempting to reproduce short-range ordering which is typically in-

vestigated using neutron scattering a further section presents how virtual diffraction

patterns may be generated from an unknown structure.

Bridging this background with the detail of the simulations Chapter 4 explains in more

detail the specifics of the modelling.

Chapter 5 looks at how a suitable scaling between long and short-range forces was

found. Given that we are now in a position to produce hopefully meaningful simulations

Chapter 6 looks at short-range ordering. The next absorption and desorption from an

external gas phase for a single isotope system. Chapter 8 discusses diffusion within the

palladium lattice and Chapter 9 discusses modelling systems containing more than one

isotope.

Finally brief conclusions and various appendices are presented.

Copies of the code may be downloaded from http://usir.salford.ac.uk

or www.starfishprime.co.uk

xvi



Chapter 1

Background Theory

1.1 The Palladium-Hydrogen System

Palladium will readily absorb hydrogen from the gaseous state. At the metal’s sur-

face H2 dissociates into protons with the electrons dispersing into the metallic electron

cloud. The proton being much smaller than inter-atomic distances can reside at the

inter-metallic interstitial positions and diffuse through the lattice.

Palladium’s interaction with hydrogen is particularly interesting, it has been widely

studied and has lead to significant applications. It is the only element that will absorb

appreciable concentrations of hydrogen at room temperature and the only one which

can undergo repeated ab/desorption cycles without pulverising [78]. First identified in

1803, palladium is the least dense of the ‘platinum group’ metals and a key component

in hydrogen sensors, catalytic converters and fuel cells. Its peculiar affinity for hydrogen

was first observed by Thomas Graham in 1866. It recently achieved some notoriety for

its use in the Fleischmann-Pons cold fusion claims [55]. Palladium will readily adsorb

hydrogen at room temperature to a 1:0.7 composition though this can be pushed to

1:1 at higher effective pressures via electrochemical loading. There is some evidence

of loading above 1:1 which may result from hydrogen occupying tetrahedral as well

as octahedral interstitials though this is controversial. More generally accepted is the

formation of extra vacancies in the palladium sub-lattice at high external gas pressure

(see section 1.2.3).

Since desorption occurs as readily as absorption the mechanism of hydrogen uptake

in palladium is of great interest in the development of materials for hydrogen storage

1
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systems. Hydrogen fuel cells appear to offer one of the better proposals for powering

electric vehicles due to hydrogen’s high energy density. The development of a suitable

safe storage system for hydrogen gas could contribute greatly to widespread application

of this technology. Whilst palladium’s high price may prohibit widespread bulk appli-

cations it will certainly find use as a safe tritium storage medium for a fusion power

plant. Similarly it could conceivably be used as a static reservoir to continually replen-

ish tritium levels in thermonuclear weapons reducing the need for expensive and risky

movement of warheads to reprocessing facilities.

As the hydrogen isotopes diffuse at different rates [100] and display differing solubili-

ties [95, 146, 122], palladium membranes have potential in hydrogen isotope separation.

Note: throughout ’hydrogen’ refers non-specifically to any hydrogen isotope. ’H’, ’D’

or ’T’ refer to atomic hydrogen generally in the lattice whereas ’HH’, ’HD’, ’HT’ and

so on refer to molecular hydrogen in the gas phase.

1.2 Crystal Structure

Palladium forms a face-centred cubic metallic lattice. In the case of Pd-H the consensus

appears to be that hydrogen ions reside on the octahedral interstitials distributed around

the palladium. These interstitials thus also form an fcc lattice structure – much like

rocksalt (fig 1.1). i.e. the palladium lattice structure does not change on hydrogen load-

ing. Hydrogen ions experience electrostatic repulsion and below a critical temperature

will tend to form the I41/amd (spacegroup 141) structure around H
Pd
∼ 0.6 → 0.7 - the

so-called 50K anomaly (section 1.2.2). Neutron diffraction indicates that in solid pal-

ladium hydrogen occupies the octahedral fcc interstitials around the fcc palladium sites

[107]. Pd−H exists in two phases α and β . At room temperature the α phase forms on

its own up to a concentration of Pd−H0.02 disappearing above Pd−H0.58. The resulting

phase diagram is dominated by a miscibility gap (a two phase region) with the α low

concentration disordered region on one side and a higher concentration ordered β upon

the other fig:1.3. Both phases are present until 0 58 where the alpha phase disappears.

A key significance of this is that hydrogen undergoes significant ab/desorption at simi-

lar constant pressures i.e ∼ atmospheric pressure at ∼ 420K [78]. This miscibility gap

disappears at a critical temperature Tc as reported by Joubert [78] at 566K see fig 1.3.
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FIGURE 1.1: Pd−H – rocksalt struc-
ture, grey lines to octahedral intersti-

tials FIGURE 1.2: Ni4Mo – I4/m structure

bonds drawn for ease of visualisation

FIGURE 1.3: Miscibility Gap: the left-hand graph represents p = 1× 107Pa [78]

McLennan et al. [107] report pure palladium’s fcc structure has a lattice parameter

of 3.890Å rising to ' 4.05Å at H/Pd of 1.0 with the volume increasing by approx.

11% going from α to β phase. This relatively modest expansion compares to the much

larger values seen in other hydrides such as UH3 where the volume expands by a fac-

tor of almost 2 [168]. The mechanical strain in the lattice may be responsible for the

observed hysteresis in the absorption and desorption curves. In the case of palladium

since the volume expansion is relatively small one could expect hysteresis to be fairly

small. Thus absorption/desorption pressures should be similar. If this could be repli-

cated in a cheaper material we may be closer to developing a matrix suitable for com-

monplace hydrogen storage. Wicke and Blaurock presented a study which indicates

that the desorption route represents a ’true strain free equilibrium’. They appear to ar-

gue that absorption is associated with the formation of dislocations leading to higher

absorption pressures. It may be presumed the desorption pressure is lower due to ions
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being trapped upon the dislocations [167].

Pitt and Gray [137] report evidence from neutron diffraction experiments that a sig-

nificant fraction of deuterons (14% in one experiment) may reside at the tetrahedral

interstitials around the palladium. One may reasonably assume that this would also be

the case for hydrogen. A question being whether the deuterons reside only temporar-

ily in the tetrahedral sites as they necessarily diffuse from o-site to o-site via t-site or

whether occupancy is thermodynamically stable. Elsasser et al. [46] argue, on the ba-

sis of ab-initio energy calculations, for deuterium and tritium occupancy of tetrahedral

interstitials.

1.2.1 Phase Changes

The phase changes during ordering may be characterised as either first or second order.

A first order transition presents as a discontinuity in some state variable such as mean

site interaction potential and thus a change in enthalpy. A second order will be con-

tinuous in energy but characterised by a microscopic ordering change observable by a

change in local ordering parameter, in this case such as n.n. or n.n.n occupancy rates.

1.2.2 The 50K Anomaly

Studies of the specific heat of Pd-H by Eichenauer & Schaefer in 1956 showed anoma-

lous behaviour at a temperature of 50K, specifically a time dependent release of heat

fig:1.4. Further work by Jacobs and Manchester [73] at C=0.63 H/Pd discounted relax-

ation of defects and indicated that diffusion leading to a phase transition was the cause.

Anomalous behaviour was also observed in measurements of resistivity, Hall effect and

internal friction. Anderson et al. [4] in 1978 reported neutron diffraction studies of

Pd-D at C=0.64 in which they observed superlattice reflections at
(

1
2
10
)

which they

interpreted as being due to relatively short-range ordering of D on the octahedral in-

terstitials to a range of at least 25Å compared to a lattice parameter of ∼ 4Å. Shortly

afterwards Ellis and Satterthwaite [45] performed neutron diffraction studies of Pd-H

and Pd-D at C=0.78 and T=60K. After an annealing time of up to 2 weeks they reported

superlattice reflections at
(

4
5

2
5
0
)

corresponding to the Ni4Mo structure, I4/m (space-

group 87). This should be apparent as four filled followed by one empty plane in the

[420] plane. Here was evidence of a complex concentration as well as a temperature

dependent phase structure.
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FIGURE 1.4: Temperature dependence of the specific heat for a Pd-H alloy (H/Pd =
0.63) in the 50 K temperature region [45]

1.2.3 Superabdundant Vacancies

Hydrogen concentrations as high as 1.2 H/Pd have been reported by Fukai et al. [53, 54].

Here Pd and Ni were exposed to hydrogen gas pressures of the order of 2-5 GPa. After

removing the hydrogen by heating at a low temperature there remained a residual lattice

expansion that was eliminated on annealing at high temperature. This they explained by

the formation of Frenkel defects where the Pd atoms were forced to occupy interstitial

sites leading to additional vacancies in the metal lattice which could also account for the

much higher hydrogen diffusivity reported. It was surmised that these metal vacancies

could trap up to 6 deuterons and further that the vacancy-hydrogen cluster could then

migrate through the lattice from the surface.

1.3 Some Pertinent Thermodynamic Relationships

Since nanoscale ordering results from systems minimising their free energy it is worth

reviewing some basic thermodynamics.

Enthalpy (H) is the total thermodynamic energy of a system being the sum of its in-

ternal energy (U ) and the energy of formation at constant temperature and pressure, i.e,
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that required to displace the surrounding environment (PV ).

H = U + PV (1.3.1)

When hydrogen enters or leaves palladium we may measure the change in enthalpy

∆U = T∆S − P∆V (1.3.2)

thus as the specific heat capacity

CP =

(
δU

δT

)
P

= T
δS

δT
(1.3.3)

S =

∫ T

0

Cp
T
dT (1.3.4)

In a numerical simulation we should be able to determine the entropy of a large as-

sembly by simply numerically integrating the specific heat, as CV,P = δE
δT

if we have

correctly factored in the inter-atomic interactions.

Gibbs Free Energy (G) can be defined as the maximum work which may be obtained

from a system, for example by a chemical reaction.

G = H − TS (1.3.5)

thus

G = U + PV − TS (1.3.6)

the enthalpy, the internal energy of the system minus TS the energy of formation that

is extracted from the surroundings.

Helmholtz Free Energy (F ) can be considered as the maximum work which may be

obtained from a system at fixed pressure and volume.

F = U − TS (1.3.7)

Note: since the volume expansion of the Pd-H lattice is relatively small at approx 11%

PδV is negligible. Thus
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δH = TδS + PδV ' TδS (1.3.8)

δU = TδS − PδV ' TδS (1.3.9)

δF = −PδV − SδT ' −SδT
(1.3.10)

δG = V δP − SδT (1.3.11)

1.3.1 Entropy

FIGURE 1.5: Contributions to total entropy [87]

Willard Gibbs once referred to entropy as a measure of the ’mixed-up-ness’ of a sys-

tem1. However it may be more helpful to regard it as a measure of how evenly energy

is distributed within a system and thus how much of the energy is not available to do

work. Entropy has three components, configurational, electronic, and vibrational (see

fig 1.5) where:-

S = Sconfig + Selectronic + Svibrational

In the context of physical systems we have two approaches to defining entropy, the

broadly empirical classical thermodynamics of Clausius et. al. and the theoretical statis-

tical approach pioneered by Boltzmann. Starting with the classical view from Clausius

we have the macroscopic definition

∆S =
∆Qrev

T
(1.3.12)

where ∆S is the change in entropy and ∆Qrev the reversible energy added to the system.

1a fragmentary reference in an incomplete work [61]
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Moving to a microscopic statistical definition, the Gibbs Configurational Entropy of a

system may be defined as the sum

SGibbs = −kB
∑
i

pi ln(pi) (1.3.13)

where pi is the probability that the system is in the ith microstate. Assuming that all

the microstates have equal probability then if nstates = Ω then pi = 1
Ω

giving Boltmann’s

famous equation

Sconfig = kB ln Ω (1.3.14)

1.3.1.1 Variation of Configurational Entropy with Concentration

If we have Nv non-interacting vacancies randomly distributed upon a total array of NL

sites then

Ω =
NL!

Nv!Noccupied!
=

NL!

Nv!(NL −Nv)!
(1.3.15)

Applying Stirling’s approximation

lnN ! =
N∑
k=1

ln k =

∫ N

1

lnxdx = [x lnx− x]N1 = N lnN −N + 1 ≈ N lnN −N

(1.3.16)

gives

∆S = k[NL lnNL −Nv lnNv − (NL −Nv) ln(NL −Nv)] (1.3.17)

thus

∆S ' k[Nv lnNL −Nv lnNv] = k

(
Nv ln

NL

Nv

)
(1.3.18)

= −k
(
Nv ln

Nv

NL

)
(1.3.19)

The change in Gibbs free energy caused by the addition of a vacancy to a filled lattice

is given by

∆G = ∆H − T∆S (1.3.20)
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FIGURE 1.6: ∆Sconfig vs r

and the total entropy

∆S = ∆Sconfig −∆Sthermal (1.3.21)

where the equilibrium vacancy concentration r occurs when the free energy is min-

imised. The configurational entropy as a function of vacancy concentration is given

by

∆Sconfig = Nk(r ln r + (1− r) ln(1− r)) (1.3.22)

i.e.

∆S = ∆Svacant + ∆Soccupied (1.3.23)

In the case of a binary mixture of A and B in fractional concentrations rA and rB. The

concentration of empty sites is given by 1− (rA + rB). Thus fig 1.6.

∆Sconfig = NkB (SA + SB + SV acant) (1.3.24)

= Nkb [rA ln rA + rB ln rB + (1− rA − rB) ln (1− rA − rB)] . (1.3.25)

The chemical potential, µ being the change in entropy per addition of a new atom is

µA =
d
(

S
NkB

)
drA

(1.3.26)

In a M.C. or molecular dynamics simulation this may be determined via Widom’s virtual

particle method [170].
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1.3.1.2 Vibrational Entropy

Vibrational entropy arises from the quantised lattice vibrations. A complex quantity

to determine analytically it may simply be determined experimentally from the heat

capacity.

∆Svibrational =

∫ T

T0

Cp
T
dT (1.3.27)

1.3.1.3 Electronic Entropy

Electronic entropy arises when electrons are able to occupy higher energy orbitals. In

these simulations he hydrogen’s electron was assumed to be in the ground state for

temperatures T <∼ 103K

1.3.2 Chemical Potential

Chemical potential can be a somewhat elusive concept. The definition is simple though

being the change in free energy occasioned by the addition or removal of a single parti-

cle at fixed volume & temperature.

µ =

(
∂F

∂N

)
V,T

= −kBT ln

(
ZN+1

ZN

)
(1.3.28)

where F is the Helmholtz Free Energy, ZN is the partition function for N particles and

µ is equal to the molar Gibbs Free Energy

µ = Gmol =
G

nmoles
(1.3.29)

thus from dG = V dP − SdT keeping T constant and varying P gives

dG = V dP (1.3.30)

increasing the pressure from P1 to P2

G(P2)−G(P1) =

∫ P2

P1

V dP (1.3.31)

G(P2) = G(P1) +

∫ P2

P1

V dP (1.3.32)
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since for an ideal gas V = nRT
P

G(P2) = G(P1) +

∫ P2

P1

nRT

P
dP (1.3.33)

G(P2) = G(P1) + nRT ln

(
P2

P1

)
(1.3.34)

dividing by n moles and setting P1 to be some standard pressure p0gives

G(P2)

n
=
G(P1)

n
+RT ln

(
P2

P 0

)
(1.3.35)

therefore

µ2 = µ1 +RT ln

(
P2

P 0

)
(1.3.36)

The chemical potential of a fluid may be described via two terms, the ideal and excess

potentials

µ = µ� + µ∗ (1.3.37)

where µ� is the chemical potential of an ideal gas and µ∗ the excess chemical potential

- the deviation from ideality. This deviation from ideality i.e. the effective pressure is

described as the fugacity fp

µ = µ� +RT ln

(
fP
P0

)
(1.3.38)

hence

µ = µ� +RT ln

(
Peffective

P0

)
(1.3.39)

therefore

µ = µ� +RT ln (P ′) (1.3.40)

Therefore for an ideal gas where the fugacity is equal to the partial pressure Pi the

chemical potential is proportional to the partial pressure lnPi. The partial pressure of

a component of a gaseous mixture is simply the pressure that the specified component

would have if all the other components were removed and it was left to fill the volume

by itself (see fig1.7).
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Thus for a mole fraction of component χi of a mixture at pressure P , the partial pressure

Pi = χiP and thus the chemical potential

µi ∝ lnPi ∝ ln(riP ) (1.3.41)

The chemical potential µ of a lattice gas thus varies as µ = R ln( r
1−r ) see fig 1.7.

 0  1

μ

Concentration

FIGURE 1.7: µ vs r –no interactions theory

1.3.3 Heat Capacity

The heat capacity is of particular significance when considering the behaviour of H in

Pd at the 50K anomoly. In the constant volume of the lattice it indicates how energy

is partitioned between a system’s degrees of freedom. Here quantum effects come into

play.

Starting from the definition

CH =
δU

δT
and the classic result for an ideal gas Ekinetic = Utrans =

3

2
kbT (1.3.42)

we have:

C =
δU

δT
=

3

2
kbT (1.3.43)

The hydrogen atom sitting at a site however has vibrational energy and thus a contri-

bution to C. Treating H as a simple harmonic oscillator we have as solutions to the

Schrödinger equation:

Evib =

(
n+

1

2

)
~ω (1.3.44)

where n is the vibrational quantum number. This results in equally spaced energy levels

at intervals of ~ω.
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The Einstein model treats each atom simply as a vibrator in a parabolic potential un-

coupled to its neighbours.

1.3.4 Thermodynamics of Ab/Desorption

The chemical potential of gaseous atomic hydrogen is half that of the molecular form

hence:-

µH =
1

2
µHH (1.3.45)

µH = µ�H + kT lnPHH =
1

2

(
µ�HH + kT ln rHP

0
)

(1.3.46)

where χH is the mole fraction of H, µ� is the chemical potential at standard pressure

P 0 and PHH the partial pressure of H2. Strictly we should use the fugacity fP rather

than PHH in the case of a non-ideal gas.

This can be rewritten as

exp

(−∆G0
f (H)

kT

)
=

(
χH

(PHH/P 0)

)
(1.3.47)

Here ∆G0
f (H) is the free energy of formation of hydrogen in the lattice from the gas at

standard pressure and temperature.

1.4 Isotope Effects

The Pd-H system displays an unusual reverse isotope effect. Simplistically one would

assume that Deuterium and Tritium’s higher masses and thus lower vibrational frequen-

cies would lead to lower diffusion rates and lower superconducting temperatures than

for protium. In reality the inverse is seen. The diffusivity effect is assumed to be due

to marked differences in their respective zero point energies in both the gas and solid

phases.

Differences can be observed between the different regions on the phase diagram. In the

α + β mixed phase region adding D causes the total concentration to increase whilst

adding D2 to the β region tends to displace H whilst leaving the concentration un-

changed [99]. Understanding this process may give insights into the design of isotope

separation systems involving palladium membranes.
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Considering the diffusivity within the lattice, it is reasonable to postulate that protium’s

higher ZPE will raise its energy closer to the energy barrier between sites and thus make

site exchanges more probable. One could also argue that since the site exchange rate is

likely to be dependent upon the vibrational frequency again the lighter isotope should

diffuse more rapidly. Experimentally the diffusion rate is higher for deuterium. Vine-

yard [163] argued for a more sophisticated approach in which all modes of vibration

were considered. Specifically that aligned with the saddle point separating the two sites

in question.

It should be simple to model this in a simulation by setting ZPE offsets to be added to the

interaction potentials for each site before a jump probability is calculated or conversely

setting offsets to the activation energies for the different isotopes.

Looking now at ab/desorption. Taking the values from fig:1.8, the drop in ZPE of H vs

D is -0.63 vs. 0.47 eV per atom which should make the solution of H more energetically

favoured than D and thus in part account for the greater solubility of H over D. Again

this could be factored into the chemical potentials of the molecular isotopes in the gas

phase.

Deuterium molecules in the gas phase have a lower zero-point energy than molecular

Hydrogen by virtue of their larger mass which leads to lower vibration frequencies.

Thus it requires more energy to break the D–D bond vs the H–H bond.

As the energy of a quantum harmonic oscillator is given by

En = hν

(
n+

1

2

)
(1.4.1)

with

ν ∝ 1√
m

(1.4.2)

the frequency ν will vary as approx 1√
m

. Thus doubling the mass from H to D should

lead to ED ≈ 1√
2
EH . It is clear from the values given in fig: 1.8 that hydrogen’s

potential is anharmonic.

The key questions here are accurately modelling the isotope dependence of adsorption,

desorption and diffusion through the lattice.

• The diffusion constant for D in Pd is faster than that of H (3.8× 10−11 vs. 5.5×
10−11m2s−1) at 298K [53]
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• In the α phase the solubility of H > D as T →∞.

FIGURE 1.8: Potential wells and zero-point energies of the gas (left) and atoms (right)
in the octahedral sites of the Pd lattice. The atom zero-point energies are scaled up
per atom for the threefold degeneracy and must be counted twice for comparison with

molecular energies. [92]

1.4.1 Separation Factor

In a gaseous mixture of H2 and D2 some DH will form in equilibrium with the other

two molecules. We can define an equilibrium constant initially in terms of the partial

pressures P

KHD =
P 2
HD

PH2PD2

(1.4.3)

=

(
nHD
ntotal

P
)2(

nH2

ntotal
P × nD2

ntotal
P
) (1.4.4)

=
(nHD)2

(nH2 × nD2)
(1.4.5)

The separation factor αHD quantifies the differing mix of isotopes between the gas and

solid phases. It is commonly defined [53] as:-

αDH =
(χg/χs)D
(χg/χs)H

(1.4.6)

Thus as the concentration of H in the solid phase increases relative to D, αHD →∞.
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1.5 Basic Theoretical Models of the Pd-H System

1.5.1 The Lacher model

In a seminal paper John Lacher [90] proposed that the two phase region resulted from

a long-range attraction between protons. As hydrogen is added the increasing lattice

distortion leads to an attractive force via some unknown mechanism. Many studies

have shown that the lattice expands approximately linearly with concentration fig:1.9.

Furthermore the expansion rates differ between hydrogen isotopes. It is this expan-

sion which is generally accepted leads to a long-range isotopic concentration dependent

attraction felt by hydrogen atoms within the lattcie

FIGURE 1.9: Expansion of Pd lattice for β-Pd−H and β-PdD [151]

As a transition metal palladium possesses overlapping d and s orbitals accommodating

up to 2 and 10 electrons, respectively. With only 10 electrons available these bands

are incompletely filled. Measurements of paramagnetic susceptibility against hydrogen

concentration suggest that the d band is filled at between 0.53 and 0.66 H per Pd and

that hydrogen absorption in the d band will reach a maximum at a concentration of

CH ∼ 0.6 H
Pd

. Thus it is commonly convenient to define a concentration of θ = CH
0.6

. [3]

Starting with the assumption that the total average absorption energy of NH hydrogen

atoms within a lattice of Ns sites in their lowest energy states E0 is given by a Bragg-

Williams approximation of

< E >= −NHE0 −
1

2

N2
HE0

Ns

(1.5.1)
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Thus
∂E

∂NH

= −E0 −
NHE

Ns

(1.5.2)

ie. the rate of increase of the absorption energy is proportional to CH .

Through an extended derivation considering the partition function of the hydrogen and

Gillespie’s vapour pressure equation

∆H =

Ns∫
0

k

(
∂logeP

1
2

∂T−1

)
Ns

δNs (1.5.3)

Lacher showed that the heat of adsorption

−∆H = 8535nH + 9443n2
H Joules per mol (1.5.4)

Of pressure vs. composition it may be shown that

log
(
P

1
2

)
= log

(
θ

1− θ

)
−
(
χ0 − 1

2
χd + θχ

)
kT

+ logA. (1.5.5)

As logA varies little with temperature this gives

log
(
P

1
2

)
= log

(
θ

1− θ

)
+ 2.3009− (445.6 + 986.7θ)

T
(1.5.6)

From equation 1.5.1 dividing through by Ns gives

< E >

Ns

= −MsE0

Ns

− 1

2

M2
sE

N2
s

=
< E >

Ns

= −θE0 −
1

2
θE (1.5.7)

< E >

Ns

= −θE0

(
1− E ′θ

)
(1.5.8)

Making the assumption that the increase in energy is proportional to the long-range

attractive potential VLR implies that

VLR = −kθ
(

1− k′θ
)

(1.5.9)
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Tcritical 566K CH ' 0.29 [168]

T1 343K CH ∼ 0.025 [102]

T2 343K CH ∼ 0.58 [102]

TABLE 1.1: Some key values

the question now becomes how to determine k and k′ .

1.5.2 The Alefeld Model

In a seminal paper George Alefeld in 1972 [3] proposed a mechanism for long-range

attraction in hydrogen-metal systems as a result of expansion of the metal lattice. He

suggested that as hydrogen enters the lattice it displaces surrounding metal atoms lead-

ing to a long-range displacement around the hydrogen falling off as 1/r2 which could

be observed as a variation from the expected density of the sample. In the case of the

palladium fcc lattice this expansion should be isotropic. Variation in the strain energy

should be observed in plots of enthalpy vs concentration, see fig: 5.3. Alefeld suggested

that this elastic interaction could be described by an elastic dipole tensor, analogous to

an electric dipole tensor used to describe electric dipole moments.

1.5.3 Short-Range Repulsive Forces

Whilst the long-range attraction is responsible for the ab/desorption characteristics it

will not impose any significant short-range tendency to order. Here we need to factor in

the short-range Coulomb repulsion between the protons. See section 4.4.3.
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The Simulation Models

2.1 The Monte Carlo Method

The Monte-Carlo technique when applied to the Ising model involves the random sam-

pling of a system to determine some numerical solution. It is especially useful for com-

plex systems with many variables which are impractical to solve analytically. Here the

approach is to allow atoms to jump between adjacent sites with a probability determined

by the difference in potential between the locations. This simulates the random nature

of statistical mechanics correctly reproducing entropy effects and energy distributions.

2.1.1 The Lattice Gas Model

Lattice gas models are a class of cellular automata (C.A.) which model the microscopic

behaviour of fluids as a set of cells upon a regular lattice. The state of a cell is dependent

upon that of its neighbours and a system of cells is typically permitted to evolve over

time. One classic example of C.A is the Ising model of ferro-magnetism where each

cell may represent atomic spin as a binary state (see fig 2.1).

A lattice gas may be regarded as a form of crystalline gas with particles, atoms or

molecules, constrained to sit at specific sites represented by cells. Particles are assumed

to move by a series of jumps from filled to vacant sites. A site will typically have some

form of potential which may determine whether a jump succeeds. Periodic boundaries

will reproduce a larger sample as long as the boundary lengths are much larger than the

19
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coherence length of the system. In the case of Kawasaki dynamics particles exchange

between nearest neighbour sites whilst Glauber dynamics permit exchanges over arbi-

trary ranges (see fig:2.2. It should be apparent that a system will reach equilibrium more

quickly with Glauber exchanges especially at low temperatures. However Kawasaki dy-

namics model more accurately diffusion effects within a lattice.

FIGURE 2.1: Ising Model

K

G

FIGURE 2.2: Kawasaki vs. Glauber

2.1.2 The Metropolis Algorithm

The question arises of how to determine whether a hydrogen atom performs a site ex-

change (jump). These simulations employed the Metropolis Algorithm [111]. Jumps

are probabilistic and jump probabilities are determined from the difference in Hydro-

gen energies between the two sites in question see fig 2.3. For computational efficiency,

transitions down a potential gradient always proceed, only those ascending a potential

gradient are probabilistic.

P (Ei → Ej) = 1 if ∆E ≤ 0 (2.1.1)

P (Ei → Ej) = e∆Eij/kBT if ∆E > 0 (2.1.2)

with jump probabilities calculated thus:-

P (Ei → Ej) =
1

1 + e∆Eij/kBT
(2.1.3)
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FIGURE 2.3: Metropolis Algorithm

i.e. The probability of successful jump decreases exponentially as the interaction energy

difference ∆E increases.

Why?

We are imposing a Boltzmann distribution on the energies of particles in the system,

i.e. whilst particles will preferentially tend to a low energy state as the temperature rises

there is an increasing probability that they can occupy a higher energy state leaving

empty states at lower energies.

Assuming two states i and j and assuming that Ei > Ej the probability P (E) of a

particle being at energy E is given by

P (E) = eE/kBT (2.1.4)

thus the ratio of particles in the two states is given by

P (Ei)

P (Ej)
=
e−Ei/kBT

e−Ej/kBT
= e−(Ei−Ej)/(kBT ) (2.1.5)

which gives rise to the classic Maxwell-Boltzmann distribution,

Interactions between hydrogen atoms are assumed to be repulsive (−ve) at short-range

with a long-range attraction due to the lattice expansion. If we define ∆E = Vf − Vi
, then considering a lone atom attempting to jump into a site with many filled n.n. and

n.n.n. sites then ∆E = −ve and the jump is unlikely to occur whilst going the other

way∆E = +ve and the jump probability will be higher, P = 1 in the case of the

Metropolis algorithm. Thus jumping ’up’ a potential gradient occurs with a probability

given by a Maxwell-Boltzmann factor.
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2.1.2.1 Modelling an External Bath

The simple model above needs to be modified when atoms are allowed to exchanged

with some external bath. This may be achieved simply by setting the energy of the

hydrogen atoms in the bath to their chemical potential.

2.1.3 Classes of Ensembles

The term Canonical ensemble describes a system of a fixed number of particles in con-

tact with an external heat bath. Micro-canonical (also little or petite) refers to an entirely

isolated system whilst a Grand Canonical ensemble is one in contact with an external

heat and particle bath i.e. both the internal energy and the number of particles in the

system may change. In this work simulations have either been Canonical Monte Carlo,

CMC or Grand Canonical Monte-Carlo GCMC.

2.1.4 Random Walks

Here a particle moves by a series of uncorrelated jumps between sites on a periodic

Bravais lattice where the position vector of any lattice point is given by

R = n1a1 + n2a2 + n3a3 (2.1.6)

where n1, n2, n3 are integers and a1,a2,a3 are non-coplanar primitive translation vec-

tors. After N jumps of uniform length l its displacement relative to the starting position

is given by

R =
N∑
i=1

lri (2.1.7)

where ri denotes an individual displacement. For perfectly random exchanges at infinite

dilution the square mean displacement after n jumps will be

< r2
n >= nr2

i (2.1.8)

where n = t
τ
, τ being the mean residence time on a site.
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At higher concentrations we have a correlation effect, as some sites are blocked by being

occupied. Now there is an enhanced probability of jumping back to the site just left.

< r2 >= f (1− c) t (2.1.9)

with f being the concentration dependent correlation factor 0 < f < 1, t the time in

Monte-Carlo cycles and (1− C) being the probability that a site is empty.

2.1.5 Diffusion

One can start with the basic description of mass flow in three dimensions

J = −
(
Dxx

∂C

∂x
+Dyy

∂C

∂y
+Dzz

∂C

∂z

)
= Dii∇Ci (2.1.10)

where J represents the number particle flux per unit area unit time, C the concentration

and D the diffusion coefficients along the principle crystallographic axes. This is usu-

ally referred to as Fick’s First Law of Diffusion. In the case of an isotropic system this

simplifies to

J = −D∂C
∂x

(2.1.11)

Note that these equations apply only to ideal systems where D is independent of con-

centration and there is no potential gradient due to e.g. gravitation, electrical or thermal

effects. One can now write Fick’s Second Law of Diffusion

∂C

∂t
= Dxx

∂2C

∂x2
+Dyy

∂C2

∂y2
+Dzz

∂C2

∂z2
= Dii∇2Ci. (2.1.12)

Again for an isotropic system this may be simplified to

∂C

∂t
= D

∂C2

∂t2
. (2.1.13)

Consider diffusive flow along a concentration gradient. Assume the number concen-

tration of mobile atoms per unit area at x to be Nx and further along at x + ∆x the

concentration is Nx+∆x. Defining Γ as the mean successful jump frequency and given
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x+∆xx

Cx
Cx+∆x

Jx

−Jx

Jx+∆x

−Jx+∆x

FIGURE 2.4: Diffusion

that an atom may jump in either direction the flow left to right will be

J =
1

2
ΓNx (2.1.14)

and from right to left

Jx+∆x =
1

2
ΓNx+∆x. (2.1.15)

Thus the net flow rate J left to right is

J = Jx+∆x − Jx =
1

2
Γ (Nx+∆x −Nx) . (2.1.16)

Describing J in terms of unit volume gives

J =
1

2
Γ
Nx+∆x −Nx

∆x
(2.1.17)

introducing ∆x for the concentration gradient gives

J =
1

2
Γ∆x

Nx+∆x −Nx

∆x
. (2.1.18)

We may replace N/x with the number concentration C

J = −1

2
Γ(∆x)2∂C

∂x
= −D∂C

∂x
(2.1.19)

i.e. Dchem =
1

2
Γ(∆x)2. (2.1.20)

∆x in the limit is the inter-atomic spacing a. For a non-cubic system where ax, ay, az
and the jump frequencies Γxyz along the crystallographic axes may be unequal we may

write

J = −1

6

[
Γxa

2
x

∂C

∂x
+ Γya

2
y

∂C

∂y
+ Γza

2
z

∂C

∂z

]
(2.1.21)
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thus giving three values for Dchem. In the case of a cubic system such as PdH where the

a and Γ values are equal we have

Dchem =
1

6
a2Γ. (2.1.22)

2.1.6 Temperature Dependence of Diffusion

The empirical Arrhenius relationship is widely applicable to chemical kinematics in-

cluding diffusion:-

D = D0e
− Q
RT (2.1.23)

Here Q is the activation energy. In this case Q will be a measure of the energy barrier

that a diffusing hydrogen ion has to overcome when jumping between adjacent sites.

Thus D → D0 as T →∞. Similarly for Dchem.

2.1.7 Tracer Diffusion

Chemical diffusion refers specifically to the diffusion of a whole population of atoms

in some form of potential or concentration gradient. Tracer diffusion refers to the spon-

taneous movement of a single particle in the absence of such a driving force i.e. in a

system at equilibrium. Taking the general case of Fick’s Law J = −D ∂C
∂x

we can factor

in a concentration dependent correction.

J = −
(
D

kT

)
C
dµ

dx
= −

(
D

kT

)
C
dµ

dC
· dC
dx

= −
(
D

kT

)
C

kT

C (1− C)
· dC
dx

= − D

(1− C)
· dC
dx

(2.1.24)

∴ J = − Dt

1− C
· dC
dx

(2.1.25)

where Dchem = Dt
1−C i.e. at C = 0 Dchem = Dt
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2.1.8 The Tracer Correlation Factor ft

In tracer diffusion we are interested in how far an atom moves in given time – i.e. per

Monte-Carlo cycle, it is apparent that whilst net diffusion may be zero the particles are

still moving and thus some measure of their migration may be determined. Take the case

of a single atom on an empty lattice which is free to jump to any of its 6 neighbours see

fig 2.5. If the atom jumps from site a to site b then it has a 1:6 chance of jumping back

to site a again, a memory effect. Now taking a much higher concentration see fig 2.6.

An atom at a can jump either to p, q, r or b. If it jumps to b then it has but 2 subsequent

options either jumping to c or back to a.

The extreme case of only one vacancy now becomes interesting. Rather than looking at

a particular atom jumping into the vacancy we have a symmetry with the first case if we

consider the vacancy moving through the lattice (much like a hole in a semiconductor.

This ‘tracer correlation factor’ distorts the jump probabilities and thus diffusion rates.

It has been extensively studied analytically and via simulation. [81]

a b

FIGURE 2.5: Tracer Correlation low C

a b

cp

q

r

FIGURE 2.6: Tracer Correlation high
C

Dt (C) = ft (C)
l2

6τ (C)
=
< r2 >

6τ
(2.1.26)

τ (C) =
τ (0)

(1− C)
where τ (C)

C→1−−−−−→∞ (2.1.27)

(1− C) is the site blocking factor In the case of an F.C.C lattice it can be shown that

[81] :-

ft
C→1−−−→ 0.7814 (2.1.28)
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2.1.9 Widom Insertion Method

The Widom ’Ghost Particle’ Insertion Method [18] has been used to determine the

chemical potential of the lattice gas. The potential of a species is calculated by compar-

ing the free energy of a system containing N particles with one containing N + 1 by

simply repeatedly temporarily inserting an extra particle at random locations and deter-

mining the mean rise in internal energy ∆U . We are obviously assuming that adding a

single particle does not significantly disturb the system. This rise in interaction energy

∆U is averaged over Boltzmann factor for that temperature.

µ− µ� = kBT 〈e−
∆U/kBT 〉 (2.1.29)

µ = µ0 + µ∗ (2.1.30)

where µ0 is the chemical potential of an ideal lattice gas and µ∗ the excess chemical

potential. Moving from the molar to particle view as kB = R
NA

Hence for large N

µ∗ = −kBT < ln e−
∆U/kBT > (2.1.31)

Here the average is calculated from many random additions of a single particle to yield

the chemical potential.

2.1.10 Measuring the degree of Ordering

The simplest metric to apply here is to monitor some mean of the number of nn and

nnn sites that are occupied around each occupied interstitial. One generally accepted

method is the Warren-Cowley short range order parameter.

αs.r.o. =

[
1− pnn

CH

]
(2.1.32)

Here pnn or pnnn is the probability of a nn or nnn site being occupied.
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Simulating Diffraction Patterns

3.1 Introduction

Diffraction techniques provide powerful tools to study how materials order at the atomic

level. X-rays were first used to probe microscopic order. These have since been sup-

plemented with electron and neutron diffraction methods. In the specific case of this

work the ordered structures produced by Monte-Carlo molecular dynamic simulations

can be compared to real world samples by calculating their virtual diffraction patterns

for comparison with those from experiment

The study of diffraction patterns from 3-d structures is very well established. Thomas

Young famously observed two slit interference of light in ∼1802 concluding that light

was a wave rather than a particle as proposed by Newton. Such interference patterns are

a natural consequence of Huygens construction where every point on a wavefront may

be assumed to be a source of secondary wavelets. 2-d diffraction gratings were well de-

veloped by the mid 1800s. The possibility of diffraction from 3-d atomic structures was

suggested by Ewald and Laue in 1912 with the first x-ray diffraction pattern produced

shortly thereafter.

The terminology here is somewhat imprecise. A diffraction pattern is the result of the

interference of diffracted waves. At a physical level the processes are the same, we tend

to use interference when referring to a few scatterers and diffraction for many.

X-rays, electrons and neutrons are used in atomic diffraction studies. Relatively in-

expensive and compact equipment is capable of generating x-rays the wavelength of

28
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which is of the order of the inter-atomic spacing. X-rays scatter from electrons – thus

the scattering power of an atom depends upon the number of electrons it possesses i.e.

its atomic number. Palladium with 46 electrons scatters much more strongly than hy-

drogen with only 1. In the case of Pd-H, scattering from the palladium masks the signal

from the hydrogen. Instead thermal neutrons with de-Broglie wavelengths of the order

of Angstroms may be used as the neutron scattering factor does not vary simply with

Z number and is highest for hydrogen. A suitably bright neutron source may be a nu-

clear reactor, such as the I.L.L. at Grenoble or a proton synchrotron such as ISIS at the

Rutherford-Appleton Laboratory which generates neutrons by spallation from a tung-

sten target illuminated by GeV energy protons. This equipment is many times larger,

more expensive and complex than x-ray diffractometers. As x-ray, electron and neu-

tron scattering patterns are due to the summing of scattered waves from the target, it is

straightforward to simulate this process.

A brief overview of scattering theory is first presented followed by a discussion of how

a diffraction pattern may be computed from a simulated sample.

3.1.1 General Scattering Theory

The kinematic model provides a simple view of scattering. An incident wave-front may

be scattered by discontinuities in its path. X-rays scatter from orbital electrons whilst

neutrons scatter from atomic nuclei. These scattering centres act as sources of spherical

wavefronts (s-wave scattering) see fig 3.1. At some distance wave-fronts from many

scatterers interfere thereby creating regions of high and low intensity depending on the

phase contributions from each wave. In this simple treatment the scattering is assumed

k

k′

2θ

FIGURE 3.1: Simple Kinematic Scattering

to be elastic i.e. the magnitude of the scattered wave vector is equal to that of the



Chapter 3. Simulating Diffraction Patterns 30

incident. |k′| = |k|. The scattered amplitude Aj arriving at a detector at a distance Rj

from the jth atom is given by

Aj = A0fe
iK·rj (3.1.1)

Where f the atomic scattering factor is a measure of the scattering power of the atom.

If the distance to the detector is very much greater than the atomic spacing then Rj may

be approximated to a constant R see fig 3.2. In reality a scattered wave is likely to

undergo further scattering. In simple models this effect is ignored as it greatly increases

computing time.

3.1.2 The Scattering Vector q

Consider two atoms i and j, illuminated by a coherent beam of radiation from a source

at ∞, of wavelength λ and thus wavevector |q| = 2π
λ

. The difference between the

incident and scattered wave vector is known as the scattering vector where k′ = k + q

see fig 3.3.

k

k′

q

2θ
rij

FIGURE 3.2: Wave Vectors

k

k′ q

2θ

FIGURE 3.3: k incident, k′ diffracted and q diffraction vectors

Given that |k′| = |k| and ∠ the angle between them

|q| = 2|k| sin
(
k∠k′

2

)
(3.1.2)
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Waves incident on the detector, scattered as qi and qj will interfere and thus a diffraction

pattern may form.

3.1.3 Formation of a Diffraction Pattern

We now imagine an ensemble of N identical atoms sitting at 3d positions ri from some

arbitrary origin r0 with a detector at a distance much greater than the size of the sample

see fig 3.4. We may thus approximate the distance from all points to the detector as a

constant and ignore the amplitude-distance terms. The position of each detector pixel

may be described by k′ with respect to the origin of the sample. At some point k′ on

k

rij

i

j

q
k′

2θ

Detector

FIGURE 3.4: Diffraction pattern from many scattering points

the detector waves scattered from the atoms arrive and interfere. The amplitude of each

scattered wave is given by

A(k′) = fe−i(k−k
′)·r (3.1.3)

As q = (k− k′)

A(q) = fe−i(q·r) (3.1.4)

For N scatterers we sum the waves from each scatterer j

A(q) =
N∑
j=1

fje
−i(q·rj) (3.1.5)
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The detector will measure the intensity of the radiation at each pixel summed over all

scatterers. This is equal to the square of the scattering amplitude A, being a complex

number - strictly the product of the amplitude with its first complex conjugate.

I(q) = |A||A∗| =
N∑
j=1

N∑
k=1

bjbke
−i q·rjk (3.1.6)

The Bragg peaks at nλ = 2d sin θ give information from any long-range ordering.

These simulations are concerned with short-range order resulting from the growth of

crystal domains. The size of domains may be inferred from the broadening of the Bragg

peaks using the Scherrer equation [133]

τ =
Kλ

β sin θ
(3.1.7)

where τ is the domain size, K a dimensionless shape parameter generally taken as 0.9. β

is the full width - half maximum peak broadening expressed in radians and θ the Bragg

angle.

3.1.4 The Role of Reciprocal Space

Reciprocal space (also known as momentum space or k-space) is is a convenient abstrac-

tion when considering diffraction from a periodic structure being the Fourier transform

of the real space direct lattice. Points in reciprocal space represent families of planes

in the direct lattice, see fig 3.5. A key feature is that the vector direction between any

two point in the reciprocal lattice represents the direction between two planes in the

direct lattice and the spacing between points in k-space is the reciprocal of the inter-

planar spacing. Expressing these reciprocal lattice vector lengths as |G| = 2π
λ

gives the

distance in radians per unit length.

If we have a set of atomic positions in real space ri = (hxi +kyi + lzi) then the Fourier

transform is given by

f(r) =
∑
G

f(G)ei(G·r) (3.1.8)

The key point here is that this transform maps directly the diffraction pattern from the

scatterers i.e.

S(q) =
∑
i,j,k

eiG·r (3.1.9)
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FIGURE 3.5: Construction of the Reciprocal Lattice.

Real space points are +, reciprocal points ·

The reciprocal lattice axis vectors are given by

b1 = 2π
a2 × a3

a1 · a2 × a3

b2 = 2π
a3 × a1

a1 · a2 × a3

b3 = 2π
a1 × a2

a1 · a2 × a3

(3.1.10)

Note that b1 is orthogonal to both a2 and a3, b2 is to both a1 and a3 and so on. Points

in the reciprocal lattice are mapped as

G = hb1 + kb2 + lb3 (3.1.11)

As is generally accepted, diffraction peaks occur when q = G. [84]

3.2 Simulating a Diffraction Pattern

Given a known crystal structure one may calculate the reflections from specific planes

- the inverse of conventional experimental crystallography. The alternative approach,

used here is to calculate the diffraction pattern from a set of atomic positions mirror-

ing the physical processes in experimental x-ray or neutron crystallography. Such an a

priori technique makes few of the assumptions of conventional crystallography such as

‘reflection from planes’ though is computationally somewhat expensive. Since we are
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considering an a priori algorithm it may be helpful to initially limit standard crystallo-

graphic terminology and formulate the problem in general physical terms.

We wish to simulate the diffraction pattern formed when a beam of radiation is incident

upon group of atoms. These scatterers interact with the incident radiation resonating

and emitting a spherical wavefront. Different scatterers will have different scattering

powers. Here we are only considering scattering by hydrogen so this scattering factor

can be set to unity i.e. we can ignore the scattering from Pd. A number of methods have

been developed to simulate diffraction patterns directly from atomistic data.

The most direct method takes a rather brute force approach. One simply determines the

linear path lengths, Li from a monochromatic coherent radiation source to each atom

in the model and from there to every pixel on the detector array . Sin and cos of 2πLi
λ

for each path are summed at each pixel giving the resultant amplitude and phase. This

scales directly with Natoms × npixels for a sample of 106 atoms and a linear detector

of 104 pixels one has of the order of 1010 iterations - perfectly acceptable on a modern

workstation. Since each calculation does not depend on the others then this is easily

optimised by parallel processing. One problem here though is the need for the path

lengths to be very long compared to the size of the sample and hence the differences

in atomic positions. This is to avoid distortion of the pattern by some parts of the

sample being significantly closer to the detector than others. If the simulation mirrors

a real diffractometer the sample→ detector distance will be > 108× the inter-atomic

spacing. Assuming that we need to resolve path differences of 10−2 of this spacing we

require a precision of 1 : 1010. To overcome this one needs to use high precision ’long’

real numbers which significantly slows the computation.

A more sophisticated approach involves calculating

I(k′) =
∑
i 6=j

∑
j

eiq·rij (3.2.1)

to every point on the detector array see fig 3.4. If we assume that, to the incoming radi-

ation, each atom acts as a point scatterer and that the atoms do not move their positions

may be represented as a series of δ-functions. A further simplification may be intro-

duced by assuming that the size of the region being sampled is much smaller than the

distance between the sample and the detector. Thus we can assume that the scattering

distance and angle from each atom to each point on the detector are approximately con-

stant. The problem with this method is again the computational load. For a sample of
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105 atoms and a 2d detector of 106 pixels one would need to perform some 1016 calcula-

tions before needing to rotate the sample to ensure that all possible peaks are detected.

Without some optimisation of the algorithm this is impractical. This has the appearance

of Fourier transform and so it should be practical to perform an F.F.T. if we assume that

the scatterers are both point entities and sit on points fixed on a regular 3d lattice. If

the points are permitted to displace from these regular points, via thermal vibration or

during diffusion one cannot perform an FFT. This could be addressed by defining a grid

whose spacing is much smaller than the lattice parameter and limiting scatters to these

discrete positions. With say 106 atoms and 10 intermediate points between the regular

lattice sites results in a grid of 109 points with only 0.1% filled at any time. This will

lead to very large data-arrays which without some optimisation will again add to the

computation time.

3.2.1 Pair Distribution Functions (PDF)

The diffraction pattern is a function of the degree of spatial ordering within the sample

and therefore of the density distribution of scatterers. Taking into account such a pair

distributions is of particular importance when considering partly ordered systems.

The reduced pair distribution function – g(r) is simply the probability of finding a pair

of particles at a specific distance r from one another. g(r) is often expressed in the

normalised form such that as r →∞, g(r)→ 1 and for r < distance of closest approach

g(r) = 0. The pair distribution function may be obtained directly from a molecular

dynamics simulation where it is related to the pair density function ρ(r) by ρ(r) =

ρ0g(r). As r → ∞, ρ(r) will tend to ρ0, the mean number density of the sample and

tend to zero as r → 0

g(r) = 4πr (ρ(r)− ρ0) = 4πρ0r (g(r)− 1) (3.2.2)

Within a shell at a range r1 → r2 we may specify the number of neighbours, a site’s

coordination number as

Nc =

∫ r2

r1

R (r) dr (3.2.3)

In the Debye-Glatter scattering method [64] rather than performing the computationally

intensive sin calculation for every atom pair the calculation is optimised ‘binning’ these
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coordination numbers, see fig 3.6, in advance then calculating

I(q) =
1

N

N∑
i=1

fiNci

sin(2πqri)

2πqri
(3.2.4)

i.e. The inter-atomic distances are calculated for every atom-atom pair then divided into

a histogram where the width of each ‘bin’ is suitably small to give the desired resolution.

The double summation over all atomic pairs is thus reduced to a single sum overN bins.

FIGURE 3.6: Example of binned interatomic distances for C=0.29 ordered f.c.c. lattice

We may now specify a radial distribution functionR(r) describing the number of atoms

in a shell of thickness d(r) at a distance r:-

R(r) = 4πr2ρ(r) (3.2.5)

giving

g(r) =
R(r)

r
− 4πrρ0 (3.2.6)

This may be easily determined at any point in a molecular dynamics simulation. If we

assume initially that atoms sit at precise positions ri without thermal or other displace-

ments then their positions may be expressed as a series of delta functions δ (r0 − ri).

Setting r0 = 0 gives

R(r) =
1

N

∑
i

∑
j

δ (rij) (3.2.7)
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The reduced pair distribution function g(r) is the Fourier Transform of S(q) the total

scattering structure function – effectively the normalised diffraction intensity.

G(r) =
2

π

∫ qmax

qmin

q[S(q)− 1]sin(qr)dq (3.2.8)

The inverse transform is more useful here

S(q) = 1 +
1

q

∫ ∞
0

r(r)sin(qr)dr (3.2.9)

In the 1980s a simulation technique using the Debye scattering equation for powder

samples was developed [64].

I(q) =
1

N

N∑
i=1

N∑
j=1

fifj
sin(2πqrij)

2πqrij
(3.2.10)

where fi, fj are the scattering factors of the respective atoms and q, rij are equal to |q|
and |rij| respectively.

FIGURE 3.7: Virtual Debye Diffraction Pattern of H in Pd demonstrating hkl all odd
or all even as expected for f.c.c. structure

The algorithm may be optimised by binning the distances rij before performing the

computationally intensive sin calculations. With sufficiently narrow bins the errors
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generated are minimal, see fig 3.6. In effect this technique loses the absolute spatial,

i.e. directional, information in favour of a computationally faster method of generating

pair distributions (the bins). The size of crystal regions may be inferred from peak

broadening rather than being directly observed. This technique is very fast, on a 3 GHz

workstation a pattern from 104 atoms, with 104 detector pixels and 105 bins computes

in some 100 seconds, see fig 3.7. Scaling to a more realistic 106 atoms takes ∼ 3 hours.

The technique used here for the contour 2d plots involves summing ei(G·ri) over a range

of Gx and Gy see fig 3.8.

FIGURE 3.8: Sample 2d contour plots of partly filled f.c.c. (f.c.c. real space→ b.c.c
reciprocal space) lattice in hk0 and hk1
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Refining the Computational Model

4.1 The Code

The core simulation was written in Fortran 2003, compiled with Fortran Compiler XE

14.0 and gfortran 4.6x. Benchmarking these CPU intensive linear simulations indicates

that Intel Fortran appears some 10% faster than gFortran. However the code is tested on

both compilers to encourage use of standard code. The aim has been to develop simple

rigorous code rather than optimisations that may be physically invalid. The program is

highly modular and presently runs to some 3000 lines. Data from runs is written-out

to results files which may include the variations in temperature, nn & nnn Warren-

Cowely order parameters, concentration, mean potential energy, mean displacement

due to diffusion and others. The same code is used for Canonical, Grand Canonical and

flow-rate simulations to minimise and hopefully eliminate algorithmic differences.

The code allows for three different hydrogen isotopes. Several smaller applications

have been written in vPython. The primary one aids visualisation of a snapshot of the

lattice output as a datafile where the lattice appears as a rotatable, pseudo-3d model with

various visualisation tools such as slicing through in differing planes specified by their

Miller indices, see figs : 4.1 & 4.1 .

39
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FIGURE 4.1: Rotatable view of lattice FIGURE 4.2: Slices through lattice

4.1.1 The Algorithm

The code used a simple and direct model of a Pd lattice with atoms and interstitials

being represented directly by the elements of a multidimensional array i.e. the posi-

tion of an atom is not determined by some vector or coordinate data appended to the

atom description but rather is determined from the element’s position within array. The

model employed various periodic boundaries; either atoms ’wrap around’ in the xyz

directions, or only in the yz with the two x faces being adjacent to a heat bath. The

simulation dimensions may be specified separately in the yz and x directions i.e. either

a cube (x = yz) or rectangle( x 6= yz). Thus diffusion into or through a thin slice may

be represented.

There are four main modes of operation. Grand-Canonical Monte Carlo (GCMC),

Canonical Monte Carlo (CMC) in either case employing Kawasaki dynamics where ex-

changes are between nearest neighbour (nn) pairs or Glauber dynamics with exchanges

permitted over an arbitrary range. In the CMC case hydrogen migrates around a closed

lattice whilst with the GCMC case hydrogen within the lattice may exchange with the

external bath & sink. The bath and sink may be set to different potentials to model flow

through a thin membrane. In either case periodic boundaries may be simulated. Wher-

ever practical common subroutines are used regardless of whether the code is configured

to simulate canonical or grand-canonical ensembles employing only nn jumps or those

over arbitrary distances. Boolean flags were used to switch between the different modes.
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The algorithm picks a hydrogen atom from within the lattice (or an external bath in

the case of the GCMC) then seeks an empty interstitial site to jump to. This may be a

nearest neighbour site or one at an arbitrary distance - in modelling diffusion only nn

exchanges are performed. If an empty destination site is found the sum of the interac-

tion potentials at each site are compared with the jump probability being determined as

a function of the difference in site potential. If the potential of the destination is lower

than the origin then the jump always proceeds. If it is higher the jump may proceed

with a probability given by the Metropolis algorithm p = exp( ∆E
kBT

) [111] as discussed

in Chapter 2

4.2 Brief Overview of Testing

A comprehensive series of runs have been carried out with both the canonical and

grand canonical configurations testing operation and optimising performance. Runs

have compared the operation of the model with theory. In summary:-

• Testing with interactions turned off in the case of the GCMC configuration shows

the concentration of hydrogen within the lattice tending towards 0.5 as one would

expect, see fig:4.3.

• In the case of GCMC simulations of thin samples the concentration varies as

r ∝ P 0.500 (to better than 1:1000) as per Sievert’s Law r ∝ P 0.5 see fig:5.1.

• Canonical runs where the temperature kT is dropped or raised show a clear tran-

sition in mean site potential, fig 6.1 with two changes occurring in a narrow con-

centration range around rH ∼ 0.65, see fig:6.2.

• Simulations appear to have generated results very similar to Bond and Ross [23]

for the variation of transition temperature with CH in the canonical simulation see

fig: 6.6.

• In the case of the Grand Canonical simulation using only short-range repulsive

forces reproduce the expected phase chages but do not correctly reproduce the

miscibility plateau see fig 4.5. Introducing long-range forces based on the Lacher

model produces a clear plateau where the concentration changes dramatically

over a very narrow pressure range, see fig: 7.6. Thus rH varies with Ubath in



Chapter 4. Refining the Computational Model 42

a similar manner to Bond & Ross . The plateau width diminishes as the temper-

ature rises disappearing altogether by kT ∼ 0.4 - the transition temperature seen

in the canonical assemblies.

• The I41/amd structure is seen below the transition temperature in the concentra-

tion range from ∼ 0.25 to ∼ 0.75.

FIGURE 4.3: rH vs. t, GCMC , Interactions Off, T ' 200K

4.3 Experimental Parameters

There exists a wealth of data on the PdH system spanning over 100 years. The review

by Joubert [78] summarises this data. The computational model was calibrated against

Joubert’s recommended values of TC = 566K,χC = 0.22(r = 0.282), PC ,= 20.15 ×
105Pa and r = 0.66 at T = 100K.

4.4 The Grand-Canonical Model

Initially diffusion in from an infinite external bath was tested, i.e. one where the con-

centration and pressure remain constant with the external chemical potential µ at zero
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in the absence of HH interactions within the lattice one would expect the concentration

to tend to rH = 0.5 at µ = 0. The is perfectly reproduced as shown in fig: 4.3.

Now introducing a chemical potential in the external bath — still with zero interactions

between atoms in the lattice we again see the lattice concentration rising to 0.5 H/Pd at

µbath = 0 with C asymptotically approaching 0 and∞ as µbath →= −∞ and +∞, see

fig: 4.4.

FIGURE 4.4: rH vs µbath – CMC simulation with zero lattice interactions

4.4.1 Sieverts Law

The programs deliver an excellent fit to Sieverts Law in that the simulations generated

r = P 0.498µ [28] under conditions when the long and short-range interactions are in-

significant, see fig: 5.1.

4.4.2 The Lacher Model

Lacher proposed an attractive force via some undefined mechanism connected to the

lattice expansion which could explain the adsorption /desorption curves. A number of

models were investigated which are detailed in Chapter 5.
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4.4.3 The Role of Short-Range Forces

As has been discussed previously the long-range attraction reproduces the general shape

of the ab/desorption curves . In the presence of only this long-range attraction there is no

requirement for the hydrogen to adopt any particular configuration. It is the short-range

repulsion that encourages the formation of crystalline structures.

In these simulations the short-range forces are limited to nearest neighbour (nn) and

next-nearest neighbour (nnn) interactions. A site’s interaction potential is computed as

the sum of the interaction potential of the nnn and nnnn neighbours. The values Vnn and

Vnnn were taken from Bond and Ross [23] to test the model against their work where

Vnn = 1
4
Vnnn. Vnn refers to the 12 nearest neighbour sites and Vnnn to the 6 next near-

est neighbour sites. These were originally chosen for a number of reasons - primarily

because the experimental diffuse scattering peak is roughly spherically symmetric cor-

responding to the calculated peak when Vnn = 0.25Vnnn for T > Tcritical. The lack of

the Ni4Mo structure at high concentrations suggests that additional near neighbour, or

triplet, interactions will need to be included.

The problem then arises of determining an effective ratio for the short-range repulsive

to long-range attractive forces.

As one expects simulations show that increasing the strength of the short-range repul-

sion pushes the high concentration end of the miscibility gap towards greater concen-

trations whilst too low a value suppresses ordering.

It would be reasonable to expect that a suitable ratio is one in which the two forces

cancel at a concentration of r = 0.50. However runs demonstrate that this is far too

high. More realistic P-r curves are obtained setting the short range repulsion such that

the net attractive force is a maximum at r = 0.5, see fig: 5.7.

4.4.4 GCMC- Ab/desorption Curves

The code can simulate a Grand Canonical Ensemble with a rectangular block of palla-

dium (strictly a block of interstitial sites) situated between two external baths of hydro-

gen. The isotopic composition and chemical potential of the two baths may be varied

independently as can the temperature and initial composition of the lattice. The code
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may alter the temperature and/or external chemical potential (pressure) and the evolu-

tion of the system monitored. The chemical potential within the lattice can be deter-

mined using the Widom insertion method and the state of ordering determined via short

and long range ordering parameters and mean site potentials. So far the two external

baths have been set to the same state. However these may be varied to simulate a bath

and sink arrangement with diffusion monitored through the lattice.

Firstly shown is a low temperature run with D adsorbing into an initially empty lattice.

Superimposed onto this plot is its inverse demonstrating that the system is symmetrical,

see fig 4.5.

Then a series of runs are plotted at lower concentrations. From an initially empty state

the chemical potential (pressure) of the external bath is raised in steps, see fig: 4.6.
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FIGURE 4.5: rH vs µbath GCMC ensemble with short-range repulsion only- red plot is
absorption green is desorption. Ordered structures appear at 0.15, 0.25, 0.33, 0.5, 0.67,

0.75 and 0.85 H/Pd, limited evidence that model reproduces hysteresis cf. fig 4.7.
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FIGURE 4.6: rH vs µbath — GCMC ensemble with short-range repulsion only - runs
at various temperatures

4.4.5 Tracer Correlation Factor ft

In the simuations ft tends to 0.78 as rH tends to 1 as generally expected for a f.c.c.

structure [81], fig: 4.9.

4.4.6 Zero Point Energy

Hydrogen isotopes possess differing zero point energies ZPE which affect their diffu-

sion within the lattice and between the metal and the external gaseous baths. Firstly

when moving an atom within the lattice the isotope’s ZPE is ignored as it would make

the same contribution at both the starting and destination site and thus not affect the

energetics. If a atom is exchanging between the lattice and external baths the differing

ZPEs will affect the probability of jump success. The model permits differing chemical

potentials for the H2, HD, D2 molecules in the gas phase. Within the lattice H,D and T

may be assigned differing ZPEs.
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FIGURE 4.7: rH vs µbathGCMC ensemble with both long & short range forces –
absorption/desorption curves demonstrating no hysteresis cf. fig 4.5.

4.5 How Random is Intel Random?

A computer can generate a single number at random. One could set up a loop to cycle

through digits stopping at a keypress. Since a person cannot reduce the time between

strokes to much less than 0.1 seconds and given the speed at which the machine can

cycle through a set of digits we can safely assume that a digit has been chosen at ran-

dom. However digital computers are deterministic devices and as such are incapable

of generating strings of genuinely random numbers without the use of some external

device such as one that monitors junction noise in a semiconductor.

Monte Carlo simulations of the type described here necessitate the serial generation

of large quantities of random numbers. Such routines typically develop an initial seed

number from the system time. Subsequent pseudo random numbers are developed from

an algorithm such as the power residue method where the nth number

xn = cxn−1 mod N

where N and c are constants and the algorithm is initialised with a seed number x0 . The

randomness is a result of rounding errors in the calculation.
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Computers are deterministic devices and the algorithm used for such sequences can

only be described as pseudo-random, it is clear that the sequence will repeat after some

interval.

There would seem to be no general theoretical technique for predicting the performance

of most pseudo-random number generating algorithms particularly with regard to the

statistical properties of the numbers generated. The sequence length is generally less

problematic. For the algorithm above this is maximised when

c = 8n : ±3 where n is any positive integer and x0 is any odd integer.

Two comparatively simple tests of the Intel Fortran routine were performed to detect any

gross deviation from a random sequence. Firstly the distribution of numbers generated,

secondly looking for repeated sequences and partial-repetition.

4.5.1 Frequency Distribution

If one generates M numbers in the range 1→ N and tally those which lie in each of the

equal intervals l/N one would expect a uniform distribution across the intervals. One

would require that the individual deviations from the mean tally in each interval should

obey the appropriate statistical laws. The probability of finding x numbers within any

given subinterval is given by

e
−
(

(x−x̄)2

2σ2

)
(4.5.1)

where x̄ is the mean number in all intervals, and σ is the standard deviation given by

σ =
√
x̄

drms =

√
1

M

M∑
d2
i =

√
1

M

M∑
(xi − x̄)2 (4.5.2)

Given that we expect a Gaussian distribution one would expect to find 68% of the tallies

to be within one standard deviation unit of the mean. Additionally we would expect the

rms deviation for all subintervals to approach 0 as M →∞.

To investigate the frequency distribution a program was written to generate 109 numbers

in the range 0 → 1000. These were tallied into 1000 equal intervals and the standard

deviation calculated. No significant statistical deviations were noted.
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4.5.2 Partial-Repetition

The second series of tests attempted to identify any tendency towards repetition of the

random sequence. Intel’s random number generators should have extremely long peri-

ods and it was not expected to cycle within the limit of computation time available, a

comprehensive series of tests would be unfeasible. Checks for more subtle signs of par-

tial repetition and the tendency towards serial correlation were chosen. One could look

for series of numbers consistently above or below the mean, series which increment in

a particular fashion, series which tend to lie within a sub-range of those required and so

on. The tests monitored two aspects of the random series. The first simply measured the

maximum length of any repeated series. The second test was more subtle and looked

for a generalised tendency towards repetition. The program generated 109 integers in

the range 1 to 1000. The first 1000 of which were systematically compared with the rest

and the length of the maximum repeated string was measured.

For any number xi in a string of n random integers on the range 0 → m one would

expect the probability of it equalling xi+δi to be given by

p (xi) = p (xi+δi) =
1

m
(4.5.3)

and the probability of any series of length s beginning with xi to be equal to that at an

arbitary distance along the sequence to be

p =
1

ms
(4.5.4)

Therefore in any series of n numbers we would expect to find a maximum repeated

string length of

n = ms (4.5.5)

On runs of 109 numbers tests found a maximum repetition length of 4, in line with

predictions.

The second test was devised to look for a tendency towards correlation. It generated a

large sample of random real numbers converting them to integers in the range 1→ 1000.

Then it scanned for complete or partial repetitions.
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xi xx+1 xx+2 xx+3 xx+4 xx+5 xx+6 xx+7 ..... .....

xi+δi xi+δi+1 xi+δi+2 xi+δi+3 xi+δi+4 xi+δi+5 xi+δi+6 xi+δi+7 ..... .....

TABLE 4.1: Coincidences in random number sequences

The algorithm stores a large sample of random integers in an array. Each value is

compared with that at an interval di further on in the sequence and the number of co-

incidences - matching values is noted. The array is arranged as a loop so comparisons

beyond the end of the range return to the beginning. This is then repeated for intervals

di from 1 to the sample size. The author is unaware of this being a standard form of

correlation test. It was based upon a technique used in cryptoanalysis developed by the

American cryptographer William Freedman in about 1920 [56]. 1

The probability of any integer x being equal to another xi is given by

p (x) = p (xi) =
1

m
(4.5.6)

assuming m degrees of freedom and a uniform distribution. So for the case of m = 100,

one expects to see 10 number pairs per 1000 number series compared. The program

records a histogram of the number of correlations. Additionally if the number of corre-

lations exceeds an arbitrary threshold this is recorded against the offset di, to help detect

any periodicity in correlation peaks.

This delightfully simple yet powerful technique detects not only the repetition of com-

plete but also partial or interrupted repetition whereby for example a repetition occurs

where only some numbers in a given sample repeat. A key feature being that the com-

putational time scales as only N2 with the actual integer comparisons being highly

efficient.

Fig 4.10 shows the correlation histogram produced. It appears to be of a normal distribu-

tion peaking at 103, the expected value. The mean correlation is within < 1 : 104 of the

expected value implying no general tendency of partial or complete repeated sequences

in the 106 random numbers generated.

1It is notable that the worlds first electronic computers applied this technique during the W.W.2 to
help break the German Enigma and Japanese Purple ciphers.
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FIGURE 4.10: Coincidences of Repetition seen in a sample of 106 random numbers
generated by IFort

In summary, runs found no marked deviation for the gross statistical properties which

one would expect to see with a random sequence. thus the Intel Fortran random number

routines were felt to be adequate for these MC simulations.

4.6 Configuration Options

As stated earlier all these simulations used the same core code modules. Many config-

uration options were built-in mostly controlled by simple flags to maximise efficiency.

The most salient of these include:-

• CMC vs. GCMC with hydrogen exchanging with an external bath.

• GCMC case. Two external baths on opposite sides of the Pd lattice which can be

set to differing chemical potentials to model diffusion through a thin membrane.

• Diffusion in and out may be atomic or molecular, via one or two adjacent surface

sites.

• Short and long-range interactions may be disabled with flags.
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• Kawasaki vs. Glauber dynamics are controlled by a flag.

• Separate interaction potentials may be specified for the 3 hydrogen isotopes.

• The composition of the external baths may be specified.

• The chemical potentials of the three hydrogen isotopes in the baths may be sepa-

rately set.

• The size of the lattice may be easily reconfigured. From a cube to a thin or thick

slice.

4.6.1 Output

Output is written to two or more data files. The primary file is a multi-column data

file recording values periodically determined during the run. Other data files record

snapshots of the atomic positions in ’standard’ crystallographic XYZ format permitting

reading by software such as Materials Studio and CrystalMaker. The primary data file

typically records:-

• The atomic concentration of hydrogen isotopes within the lattice.

• The mean distance moved by hydrogen atoms migrating through the lattice by

isotope.

• The Warren-Cowley short range order parameter for both nn and nnn atoms by

isotope.

• The Separation Factor by isotope.

• the mean potential of hydrogen atoms within the lattice by isotope.

• The mean potential of the interstitials sites within the lattice.

• The mean flow rate across a slice of the lattice i.e. when modeling flow through a

thin membrane from a heat bath to a sink by isotope.

• Tracer and chemical diffusion coefficients by isotope.

• Chemical Potential within the lattice via the Widom Insertion Method.

• Chemical Potential within the external gas bath calculated by isotope from the

partial pressures of the isotopes.
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Investigating the Role of Short and
Long Range Forces

This modelling exercise looked at a number of models of the interaction energies be-

tween hydrogen atoms in the lattice. Interaction between the palladium and hydrogen

atoms was limited to assuming that hydrogen sat at fixed octahedral positions between

palladium atoms as has been generally reported. Three scenarios were investigated in

detail

1. Short-range, concentration independent, nearest and next-nearest neighbour re-

pulsion, ‘Bond-Ross’ model.

2. Long-range ‘Lacher-Alefeld model’, with a concentration dependent attraction.

3. The addition of a concentration dependent scaling to nn and nnn repulsion.

5.1 Testing Sieverts’ Law

Sieverts’ Law predicts the solubility of diatomic gases in various metals. It is easy to

show in the absence of conflicting effects that the solubility at equilibrium is propor-

tional to the square root of the partial pressure in the gas phase. In the case of the Pd-H

system at low temperatures and pressures this law breaks down with rising concentration

as the system enters the mixed phase region. Presumably due to interactions between

the H atoms as they order into stable configurations resisting concentration changes. It

54
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may thus be better to regard Sieverts’ law as an empirical relationship broadly applica-

ble to a range of metal-gas systems.

Take the case of hydrogen. The gas must dissociate at the metal surface and we only

need be concerned with the mono-atomic hydrogen which enters the metal.

H2 −−⇀↽−− 2 H

The equilibrium constant K2 =
r2
H

PH2

(5.1.1)

where rH is the concentration of H in Pd and PH2 the partial pressure of H in the gas

phase. Thus

rH = K
√
PH2 (5.1.2)

Clearly the PdH system does not conform to this across the composition range. At low

concentrations in the α phase, however, it does [28]. Simulations here generated rH ∝
P 0.498µ (figs 5.1) This held for long-range ’Lacher’ forces only, short-range repulsion

only and a combination of the two. This was to be expected as at low concentrations

or high temperatures, the long and short-range forces may be neglected and the system

approaches ideality.

FIGURE 5.1: LogerD vs. µbath GCMC ensemble
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5.2 The Lacher-Alefeld Model

Initially simulations were performed with a long-range attractive force of V = kr(1−r)
and without short-range repulsion. The assumptions being a) that the lattice expansion

is a zero at zero concentration, the first hydrogen added being free to expand the ’un-

stressed’ lattice, b) as the concentration rises expansion due to subsequent hydrogen

atoms decreases.

This correctly simulated a two phase region through to the pure β phase beginning at

r ≤ 0.5 rather than r ' 0.6 (fig 5.2). Increasing temperature showed the miscibility gap

shrinking towards a critical temperature at r ' 0.25 rather than the expected value of

0.29. Increasing the value of the long-range force only slightly extended the two phase

region. Introducing a much smaller n.n and n.n.n attractive force correctly reproduced

the I4/amd structure around C = 0.5.

FIGURE 5.2: lnP vs. r, long-range force only, ascending temperature bottom to top

Lacher proposed an empirical fit to the data in that the heat of absorption varied as

−∆H = 8535nH + 9443n2
H Joules per mol [90]. This could be taken to imply that the

long-range potential of a hydrogen atom at a site varies as

VLR = −k1r − k2r
2. (5.2.1)
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This is as as opposed to the later Alefeld [3] model which suggested a variation of

VLR = −kr − kr2. (5.2.2)

see fig: 5.3

FIGURE 5.3: A simplified Lacher-Alefeld model.

The question then becomes finding suitable values for k1 and k2. Simulations were

performed around the ratio of k2

k1
= 9443

8535
suggested by Lacher. The k2 reduces the long

range attraction at higher concentration and thus extends the two phase plateau region

in line with experimental results (fig 5.4). Runs were also performed at a wide range of

values for k2. The ratio given by Lacher appeared to be the optimum of those tested.

The plateau pressure varies as 1/T suggesting that the model is in line with expectations.

(fig 5.5)

This was a rather simplistic interpretation of Lacher’s work. In full form he proposed a

curve fitting of

logep
1
2 = log

(
θ

1− θ

)
− k1θ

RT
+ k2 (5.2.3)

Here θ = n/s is the number of hydrogen atoms to s - the number of absorption sites

fig 5.6. Lacher took this to be 0.59. His reasoning being that Pd as a transition metal

possess overlapping s and d electron orbitals, further that studies of Pd-Au alloys and

the magnetic susceptibility of Pd-H suggested that the extra electrons provided by the

hydrogen completely filled the d orbital at between 0.55 and 0.6 electrons per palladium
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FIGURE 5.4: lnP vs. r, long-range force only, ascending temperature bottom to top

FIGURE 5.5: GCMC Long and short-range forces on.

and that ‘a definite process of hydrogen absorption will reach completion when r = 0.6.

However, whilst this provides good fitting to experimental data concentrations above

0.59H/Pd are seen experimentally.
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FIGURE 5.6: The full fit as proposed by Lacher VLR = −k1r − k2r
2

5.2.1 Lacher-Alefeld - the Role of Short-Range Forces

As has been discussed previously the long-range attraction reproduces the general shape

of the ab/desorption curves . In the presence of only this long-range attraction there is no

requirement for the hydrogen to adopt any particular configuration. It is the short-range

repulsion that encourages the formation of crystalline structures.

In those simulations the short-range forces are limited to nearest neighbour and next-

nearest neighbour interactions. A site’s interaction potential is computed as the sum of

the interaction potential of the nnn and nnnn neighbours.

As expected, simulations show that increasing strength of the short-range repulsion

pushes the high concentration end of the miscibility gap towards greater concentrations

whilst too low a value suppresses ordering. It would be reasonable to expect that a suit-

able ratio is one in which the two forces cancel at a concentration of r = 0.50. However

runs demonstrate that this is far too high. More realistic P-r curves are obtained by

setting the short range interactions such that the net attractive force is a maximum at

C = 0.5 (fig 5.7).

Wang et al. [165] presented a total energy study of various structures in Pd-H (fig

5.8) indicating that the interaction energy is a minimum at r = 0.5. The scaling was

adjusted on the long vs. short-range forces to produce a mean site energy minimum at

r = 0.5. An extensive range of runs indicated that this did not affect the shape of the
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FIGURE 5.7: Various short range scaling factors, dashed line at r=0.67. These are
summed with a long-range force scaled at 1.0

phase diagram. However it did cause interesting additional structures to appear above

r = 0.76.

FIGURE 5.8: Formation energies for various PdAHB structures. The dashed line
represents the lowest-energy states. Wang et al. [165]
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FIGURE 5.9: Formation energies for various PdAHB structures - CMC simulations
employing both long and short-range forces. The similar fit to fig: 5.8 may imply that

these models are valid.

5.3 Combining Long and Short-Range Forces (Bond-

Ross-Lacher-Alefeld)

Many simulations were performed to test the effects of combining the long and short-

range forces. As expected the introduction of the long-range attraction did not change

the form of the phase diagram nor temperatures of the phase changes (fig:5.10). Fur-

ther simulations were performed to investigate the short-range structures which formed

when both long and short-range forces were involved as compared to short-range only.

5.3.1 Force Parameters

Simulations indicate that the following combination of long and short range interactions

correctly reproduced many features of the phase diagram in both canonical and grand-

canonical scenarios.

• Long-range attraction = L.R.ScalingFactor ∗ (1.8r − 1.0r2)

• Short-range repulsion = S.R.ScalingFactor ∗ (1.0nnn + 0.25nnnn)
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FIGURE 5.10: Phase Diagram for various fixed concentrations - (red points:- short-
range forces only, green points:- short and long-range forces)

where nnn, nnnn = numbers of nearest and next nearest neighbour hydrogens to a site

and L.R. ScalingFactor = 1.0 and S.R. ScalingFactor =0.02-0.10.

5.4 Summary

The use of a long-range concentration dependent attraction of the form VLR = (1.8r − 1.0r2)

reproduces the 2-phase region over the expected concentration range with the plateau

pressure varying as 1/T .

To this may be added a short-range repulsion of the form VSR = (1.0nnn + 0.25nnnn).

With suitable scaling between the two, both the plateau and phases changes appear to

conform to experimental data.

However there is a trade-off in this simplistic model in that if too low a ratio of LR:SR

is chosen then steps occur in the pressure composition isotherms at lower temperatures.
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Phase Structures

As the primary focus of these studies was to investigate short-range ordering. routines

were written to calculate virtual diffraction patterns as discussed earlier. These gen-

erated either conventional 1d diffractographs or 2d contour plots from selected crystal

planes as defined by their Miller indices.

6.1 Previous Studies

Wang et al. [165] report the results of a total energy study of Pd-H in which they

looked specifically at ordering in the (420) planes. The I4/amd structure was apparent

as two fully filled planes in (420) followed by two empty stoichiometric at C=0.5. As

the concentration rose to C=0.75 one of the empty planes fills to 3 filled and 1 empty

at c=0.75. In the range to C=0.8 they report that development of the Ni4Mo structure

- I4/m (spacegroup 87) should be energetically favourable. This structure should be

apparent as four filled followed by one empty plane in (420).

6.2 Order-Disorder vs. Temperature

Ordering takes place as the temperature of a canonical or G.C ensemble is reduced.

Plots at rH = 0.05 and rH = 0.65 are shown in fig 6.1 & fig 6.2. These are canon-

ical runs with mean site potential vs T. The temperature of the phase transitions are

unaffected by the long-range Lacher attraction.
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FIGURE 6.1: mean site potential vs T,
r=0.50, single phase transition

FIGURE 6.2: r=0.65, two phase transi-
tions appear

Phase transitions may be observed via a range of metrics. The mean site potential will

change abruptly as atoms undergo a dramatic reordering. One may also observe changes

in the fraction of neighbouring atoms. Whilst the number of nearest neighbours are a

poor indicator of transitions the fraction of next-nearest neighbours shows useful and

interesting detail. Fig 6.3 & Fig 6.4 show the n.n.neighbour plots corresponding to fig

6.1 & fig 6.2 . Routines to monitor the size of grain boundaries via localised changes in

interaction potential also proved useful.

Code was written in Visual-Python to generate pseudo-3d representations of the lattice

which could be viewed using stereo glasses. Specific planes could be selected and one

could move through the lattice viewing neighbouring planes in sequence (figs 4.1 & 6.7

& 6.9).

FIGURE 6.3: n.n.n. Short-Range Or-
der, r=0.50, single phase transition

FIGURE 6.4: r=0.65, two phase transi-
tions appear
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FIGURE 6.5: Variation of Transition temperature with rH - canonical ensemble

FIGURE 6.6: Corresponding plot from Bond & Ross [23]
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FIGURE 6.7: View in 420 plane, r=0.5, H-white, Pd-red, Vacancy-green

Concentration Symmetry Structure (4,2,0) plane fill Superlattice Reflections

0.20 I4/m D1a Ni4Mo F-F-F-F-E
(

4
5
, 2

5
, 0
)

0.25 I4/mmm Ni3Mo F-E-E-E
(
1, 1

2
, 0
)

0.33 Immm F-E-E
(

4
3
, 2

3
, 0
)

0.50 I41/amd F-F-E-E
(
1, 1

2
, 0
)

0.50 P4/mmm L10 F-F-E-E (1, 0, 0)

0.67 Immm F-F-E
(

4
3
, 2

3
, 0
)

0.75 Pm3m L12 Ni3Mo F-F-F-E (1, 0, 0)

0.75 I4/mmm DO22 Ni3Mo F-F-F-E
(
1, 1

2
, 0
)

(1, 0, 0)

0.80 I4/m D1a Ni4Mo F-F-F-F-E
(

4
5
, 2

5
, 0
)

TABLE 6.1: Predicted superlattice reflections Blaschko:1991 [21]

6.3 Reference plots in 1 and 2d

As a starting point, plots were generated for a series of the expected structures. Lat-

tices were generated with ideal phases which were checked using a 3d visualiser which

allowed one to ‘move’ through the lattice along the (420) planes to visually confirm

structure [Appendix B figs B.1 to B.5].
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FIGURE 6.8: Fully filled lattice showing reflections expected from an F.C.C. structure
(the small size of the (2,2,2) peak is puzzling).

This becomes interesting when recalling that phases transitions occurred at the same

temperatures with and without the long-range ‘Lacher’ Force active. This confirms the

expectation that the long-range attraction has little effect upon short-range ordering.

The 1d diffractograms appeared identical across concentrations from 0.1 to 1.0 for both

short-range force only and both long plus short range.

6.4 Observed Structures

A great many simulations were performed at differing concentrations and ratios of short

to long-range forces. The most salient features are described, particularly comparing

ordering with only short-range active with both long and short-range active.

6.4.1 Concentrations below 50%

As the stable structures of these structures of the form AxBy the diffraction patterns at

25% and 33% mirror those at 67% and 75%.
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6.4.2 Concentrations above 50%

As predicted the I4/amd structure is apparent with two filled followed by two empty

planes in [420]. This happens whether the long-range forces are active or not.

With the long-range forces scaled as stated previously as the concentration increases one

of the empty planes progressively fills to 3 empty and one filled (420) at r = 0.75H/Pd.

This appears to be the I4/mmm - Ni3Mo structure.

The situation above this concentration becomes interesting though problematic to inter-

pret.

6.4.3 Concentrations 75% to 80%

With long-range forces active this region becomes rich in features. As one would expect

the empty fourth plane in (420) begins to fill. Notably this is partly at the expense of two

of the three filled planes i.e. vacancies start to appear in the two planes either side of the

empty one as that fills more quickly than just from the increased overall concentration.

At r = 0.76 visual observation of four adjacent planes in (420) appears to indicate that

micro-domains are growing into the filled planes fig 6.9. This appears to corroborate

the paper by Blaschko, Fratzl and Klemencic [21]. In this they proposed that for Pd-D

in the concentration range 0.7 < C ≤ 0.78 microdomains of various composition ratios

NixD would form.

FIGURE 6.9: r=0.76, progressive filling of fourth plane (left) in (420) partly due to
vacancies (green) appearing in adjacent planes

The 2d diffraction pattern in (hk0) has now radically changed from that at r = 0.75 fig

6.10 & table: 6.1.
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FIGURE 6.10: r=0.76 , possible superlattice reflections at (0.5,0.5,0) – same at 0.78

At 80% full the structure once again changes giving fig 6.11. Visual inspection of

the lattice indicates that it is forming a degraded Ni3Mo structure i.e small fairly well

ordered regions with ‘clumps’ of interstitials within the ordered regions.

Further work may be required here to be confident that these models can reproduce the

Ni4Mo structure.

FIGURE 6.11: r=0.80, Long-range scaling factor=20
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6.5 Seeking I4/m

Neutron diffraction studies have reported the emergence of the Ni4Mo (I4/m) structure

at C = 0.76 & 0.78 [45, 21] illustrated by superlattice reflections at 4
5
, 2

5
, 0 (see fig:

B.3). Two body pairwise interactions such as the Bond-Ross model do not generate

this structure and this was confirmed here by simulation. Kanamori and Kakehashi [79]

concluded that one would need to extend interaction beyond the 9th nearest neighbour

to replicate these structure.

It was hoped that introducing reasonable values for a ‘Lacher’ long-range interaction

would cause Ni4Mo to appear. This does not seem to be the case. Many simulations

were performed at fixed concentrations where the temperature was gradually lowered to

a simulated temperature of approx 10K. These were repeated for various values of the

long range Lacher interaction where

Long-range attraction = L.R. ScalingFactor ∗
(
1.8r − 1.0r2

)
Short-range repulsive potential =

(
NnnVnn +

1

4
NnnnVnnn

)

with values for the LR:SR scaling factor of between 0 and 500. At no point was there

strong evidence for Ni4Mo. It would be reasonable to conclude that more sophisticated

interactions are required to model this phase.

Given that the introduction of the Lacher interaction reproduced the miscibility gap

simulations modelling the stability of the Ni4Mo structure were performed.

Reversing the above process simulated lattices of ideal Ni4Mo structure had their tem-

peratures raised from approx 10K to observe stability and transitions, again for concen-

trations between 0.70 and 0.85 and long-range scaling from 0 to 500. The temperature

at which Ni4Mo disappeared, ∼ 359K, was independent of the long-range force. As

expected the subsequent phases which formed did differ with temperature. This was

to be expected as such local ordering one would predict would be due to short-range

forces.
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6.6 Summary

At concentrations below r ' 0.5 the long-range Lacher attraction appears to have little

effect upon the structures observed i.e. the short-range forces dominate. As above

r ' 0.7 the Lacher attraction would appear to add more complex structures than the

short-range forces alone. Simulations over a wide ratio of forces did not reproduce the

Ni4Mo structure, however there were faint hints from visual inspection that it may have

started to form.

Interestingly, C.M.C. runs in which the temperature of lattices populated with Ni4Mo

was raised indicate that the temperatures at which this structure disappeared were unaf-

fected by the strength of the Lacher attractive force. This may imply that more localised

short-range forces need to be invoked to explain the formation of this phase. Possibly

a combination of localised attractive as well as repulsive effects or triplet rather than

simple pairwise interactions are required.
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Ab/Desorption Studies

A primary aim of these studies was to produce accurate simulations of the ad/desorp-

tion of hydrogen into bulk Palladium particularly reproducing the mixed phase region

where concentration rises and falls over a very narrow pressure range. Should this be

successful one could then model differences in diffusion between the three hydrogen

isotopes.

Initially attempts were made to model the fine details of transfer at the surface. A hydro-

gen molecule was assumed to dissociate at the surface if there were two closely spaced

vacancies and if the process was energetically favourable. Similarly for diffusion out

from the metal. This approach was abandoned as it was felt to be excessively complex

and computationally expensive. It was felt that the dominant factors on diffusion, sat-

uration of surface sites aside, would be within the bulk of the Pd i.e. that H2 −→ 2 H

occurs very quickly.

Thus after much simulation the model was simplified to a Pd lattice where hydrogen

could move either between adjacent sites within the lattice or occasionally ‘jump’ to

one of two external ‘baths’. The probability of attempting an exchange with the external

baths was equal to that of an atom attempting to jump in. This probability was of the

order of 10−4 of the probability that an atom would attempt simply to exchange to a

neighbouring site to ensure that the lattice was able to stabilise to a preferred structure.

The Pd lattice was modelled as a rectangular slab situated between two external baths

on opposing faces. This was to permit studies of diffusion as through a membrane with

differing pressures and/or isotope concentrations in either bath. Periodic boundaries

were applied on the four faces not in contact with the external reservoirs.
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Typical lattice sizes used were a cube of 40x40x40 palladium atoms with octahedral

interstitial sites half-way between the Palladium atoms. 108 attempted site exchanges

were attempted for each data point, i.e. for each temperature or bath pressure increment.

The main focus of these studies was to investigate the role of long-range attraction in

reproducing the miscibility region.

7.1 Absorption with only Short-Range Repulsive Forces

Initial simulations were performed employing only the Bond-Ross neighbour and next

nearest neighbour repulsions e.g. fig: 7.1. The short-range repulsion alone does not

FIGURE 7.1: Short range repulsion On, Long-Range Off, DD absorbing from bath

seem able to reproduce the level pressure plateau in the two-phase region at although

one could clearly discern steps due to phase ordering processes.
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7.2 Absorption with only Long-Range Attractive Forces

The first studies looked at reproducing the miscibility region using a simple long-range

attraction where VL.R. = z(r − r2) fig: 7.2. Tests were performed with short-range

repulsion switched off then on.

FIGURE 7.2: Short range repulsion off, Long range VL.R. = k(r − r2)

Runs at various temperatures confirmed that as the temperature rose the miscibility

plateau shrank for a given value of VL.R.. Matching a suitable miscibility concentration

range to temperature allowed a reasonable value to be estimated for VL.R.. A problem

became apparent in that this model did not match the experimentally observed con-

centration range well, tending to centre at too low a value of c=0.25 rather than 0.29.

Furthermore, when the short-range repulsive forces were activated ordering processes

became apparent fig 7.3. A variety of models of long-range concentration dependent

force were carefully investigated: VL.R. = k(r), VL.R. = k(1− r), VL.R. = k(r(1− r))
and VL.R. = k1r − k2r

2. Of these the last best reproduced miscibility plateau over the

desired concentration range.

As discussed previously Lacher’s study [90] was taken to imply that a more realistic

model would have VL.R. = −k1r−k2r
2 where k1 = 1.8k2. This reproduced the plateau

centred on r = 0.29 H
Pd

with logep ∝ 1
T

( fig:5.5). The problem now comes in finding a

ratio of short to long-range potentials that reproduces both the miscibility plateau and
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the short-range ordering esp. for r ≤ 0.5. Too low a ratio will cause ordering process to

dominate, too high and the ordering is suppressed. The width of the miscibility region

was taken from a number of sources, esp. Bond & Ross [23] and Wilkinson [173]. The

fact that the upper limit of the 2 phase region is generally accepted to be' 566K allows

a temperature scale to be set on plot of mean site interaction potential kT . Looking at

fig:7.2, kT = 0.2 corresponds to T ' 330K giving an expected concentration range of

r ' 0.05− ' 0.55.

7.3 Adsorption in the Presence of Short and Long-Range

Forces

FIGURE 7.3: Short range repulsion on. Long range VL.R. = k(r − r2). Ordering
process become apparent at too high a ratio of S.R. to L.R. force.

The problem becomes one of finding a suitable ratio of short to long-range force which

accurately reproduces the miscibility plateau whilst permitting short-range ordering to

occur. This was at least partial successful in this simplistic model.

Increasing the ratio of S.R. repulsion to a concentration dependent L.R attraction has

four main effects.
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FIGURE 7.4: Moderate ratio L.R:S.R - ad/desorption pressure very similar with short-
range ordering apparent though no clear phase separation

• The width of the two-phase region decreases particularly from the high concen-

tration side.

• The pressure range of the plateau increases i.e. it develops a slope.

• Short-range ordering introduces steps in plots of chemical potential vs. concen-

tration.

• Short-range ordering effects become more clearly defined. i.e. in plots of mean

site potential vs. temperature.

However even at low S.R.:L.R. ratio ordering can still be clearly seen in plots of short-

range order parameter vs. temperature or virtual diffraction patterns.

7.4 Summary

In summary this simplistic model does appear to reproduce ad/desorption curves well

whilst reproducing phases changes across the concentration range. However the long-

range attraction does inhibit short-range ordering leading to very long anneal times. As

expected it did not reproduce hysteresis seen in experiment.
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FIGURE 7.5: High ratio L.R:S.R - effect of short-range ordering is masked. As the
relative strength of the short-range repulsion is increased then steps appear in the β

phase as seen in fig 7.3
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FIGURE 7.6: High ratio L.R:S.R - ad/desorption pressures very similar.



Chapter 8

Diffusion within the Palladium Lattice

8.1 Theoretical Background

In section 2.1.5 it was shown that the chemical diffusion coefficient was defined as

Dchem =
1

6
l2Γ =

−J
∂r
∂x

=
Dt

(1− r)
(8.1.1)

Where

Dt = ft (C)
l2

6τ (r)
=
< r2 >

6τ
(8.1.2)

Setting D0 = Dt (r = 0) = l2

6τ(r=0)

Dchem = D0
dµ

dr
=
< r2 >

6τ

dµ

dr
(8.1.3)

It is thus easy in a simulation to determine both Dt and thereby Dchem. The ordering at

any point may be determined by generating a virtual diffraction pattern from a snapshot

of the lattice.

Two broad scenarios were investigated, canonical and grand-canonical assemblies look-

ing at ordering.
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8.2 Canonical Assembly

Simulations were performed to investigate how the tracer diffusion coefficient relates

to ordering processes both with and without long-range forces. Dt and the NNN short-

range order parameter clearly illustrate when the lattice reorders fig: 8.1. Fundamentally

short-range ordering is better simulated without a strong long-range attraction. When

this is present the simulation will still order as without but the anneal times are increased

very significantly indeed to the point where they became impractical.

FIGURE 8.1: NNN SRO & Dt around the transition temperatures, Long-Range Force
Off, r=0.65 (scale 600K ∼ kT 0.35)

In the above run Dt varied smoothly without abrupt change, this was unexpected but

consistently reproducible. At lower concentrations the NNN SRO plot failed to rise at

low temperature as the system, being only partly filled was unable to form a consistently

stable structure fig: 8.2. This was discussed by Blaschko et al [21] in which they postu-

lated that at low temperature microdomains of various PdnH would form. The virtual

diffraction patterns did indicate a smearing of the superlattice points as the temperature

fell though no definitive new reflections appeared.

Introducing the long-range attraction dramatically changes the shapes of these plots

presumably as the attractive force, being much larger than the repulsive at high concen-

trations inhibits movement of hydrogen until larger stresses have built up at which point

dramatic reordering occurs fig: 8.3.
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FIGURE 8.2: NNN SRO around the transition temperatures r=0.30. Scale 600K ∼
0.35

FIGURE 8.3: Successful jump probability around the transition temperatures r=0.65.
Scale 600K ∼ 0.35- arbitrary vertical scale
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Isotopic Effects

9.1 Ab/Desorption Studies

9.1.1 Composition of the External Gases

The manner in which the proportions and energies of the H,D,T external gas mixtures

were represented evolved during this work. The code was developed from the outset

to permit differing chemical potentials to be applied to H2, HD, D2 and so on. It may

be presumed that the chemical potential of a gas phase of a H2, HD and D2 mixture

depends only on PH2 ..

µH =
1

2
(µ0

H2
+RT ln(PH2) (9.1.1)

and

µD =
1

2

[
µ0
D2

+RT ln (PD2)
]

(9.1.2)

Given that

H2 + D2 
 2HD (9.1.3)

thus

2µHD − µH2
− µD2

= 0 (9.1.4)

Therefore

2µ0
HD + 2RT ln (PHD)−

[
µ0

H2
+RT ln

(
PH2

)]
−
[
µ0

D2
+RT ln

(
PD2

)]
= 0 (9.1.5)
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thus

2µ0
HD − µ2

H2
− µD2

2 = −RT
(

P 2
HD

PHDPD2

)
(9.1.6)

therefore

∆µH2
= RTln

(
PH2

)
(9.1.7)

Similarly

∆µD2
= RTln

(
PD2

)
(9.1.8)

Thus we can neglect the proportion of HD which will form in equilibrium in the gas

phase.

9.2 Modelling Isotope Differences

Two effects need to be taken into consideration. The differing chemical potentials of

molecules in the external baths and their differing zero point energies in the Pd lattice.

Taking the lattice first. The interaction potential scaling was determined by comparing

the mean site potentials from the phase diagram with the transition temperature of 566K

allowing them to be converted to meV. To an atom’s interaction potential was simply

added the zpe from fig:1.8.

In the gas phase a similar process was followed though its validity is more debatable.

The program scaled the chemical potentials of HH, DD and TT, which were pressure

and temperature dependent to a potential scaled against Vnn. Very extensive testing as

reported earlier showed that this reproduced the form of the pressure isotherms tolerably

well. To these chemical potentials were added isotope specific zpe again taken from

fig:1.8. The zpe were fixed i.e. were independent of temperature. This simplification

may well not be valid.

Referring to fig: 1.8 the differences in ZPE for a H,D,T atom migrating into or out of the

lattice are -32.5 meV, -23 meV and -18.5 meV respectively. This should energetically

favour the ingress of H > D > T . For movement within the lattice the variation of

ZPE H > D > T should lead to higher diffusion rates for the lighter isotopes.
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9.3 Canonical Simulations

Introducing zpe appears to have two clear consequences. Whilst phase formation ap-

pears unaffected i.e. I41/amd at r ∼ 0.5 it appears that D and T tend to cluster as in

fig: 9.1 . This does not appear to have been reported in the published literature.

FIGURE 9.1: Clustering of isotopes due to differing ZPE. [420] plane I41/amd, pro-
tium orange, deuterium white

Secondly a measure of mean mobility vs concentration plots show the same form with

clear signs of dramatic re-ordering at similar temperatures for the three isotopes

FIGURE 9.2: Canonical simulations, mean mobility vs concentration at T ∼ 150K. Dt

differs little between the isotopes for differing interaction models.
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9.4 Grand Canonical Simulations

Firstly, in the absence of the long-range attractive force which does not reproduce the

pressure-composition isotherms well the separation factor αHD varies unusually fig:

9.3-left. With the long-range force active α appears more in line with experiment fig:

9.3-right. This would appear to be further evidence to support the use of a long-range

attraction in the modelling.

FIGURE 9.3: GCMC αHD vs concentration absorbed from a gas mixture of 1:1
H2:D2at T ∼ 150K. Without Lacher force - left, with Lacher - right.

9.4.1 Variation of Plateau Pressure with Isotope

FIGURE 9.4: Left- Experimental results Lasser [92] : Right- GCMC Simulation: Vari-
ation of Plateau Pressure for H,D and T
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The model would appear to reproduce experimental results of the variation in plateau

pressure in the α− β region tolerably well fig:9.4.

FIGURE 9.5: GCMC Simulation: Variation of Plateau Pressure with H,D,T at 320K.

9.4.2 Variation of Separation Factor with Temperature

The separation factors were measured with a GCMC simulation where the pressure was

lowered such that the lattice concentration dropped from a 100% fill of the two isotopes

in a 1:1 ratio. The external gas was also at a 1:1 composition. α varied approximately

linearly over a temperature range of∼ 100K to 400K though diverged outside this range.

This may be compared to the results of Andreev [5] where the figures are obtained over

a similarly narrow range fig: 9.7.



Isotopic Effects 87

FIGURE 9.6: GCMC Simulation: αx,y with T, reading taken at r=0.7. Absorbing from
a gas mixture of 1:1 composition

FIGURE 9.7: Experimental variation of α [5]
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Conclusions and Outlook

These studies have developed a simple model of the Pd-H system employing a combi-

nation of long-range concentration dependent attractive forces and pairwise repulsive

forces out to the fourth nearest neighbour. These has been extensively tested with over

2000 runs at relatively high resolution and lattice size - typically 104 → 105 atoms. The

code from the outset was monolithic; in the sense that the same engine was used for all

simulations to minimise difference between the differing classes of runs such as GCMC

vs CMC. It finally ran to over 4000 lines of Fortran though could be rendered down to

about half of that if error checking and test routines were removed.

Programs have also been developed to produce virtual diffraction patterns in 1 and 2d

as well as interactive programs to examine the lattice structure in pseudo 3d.

It has been found that a combination of attractive force rather stronger than the repulsive

force reproduces the pressure composition isotherms whilst still permitting short-range

ordering to occur. It appeared unecessary to extend the short-range repulsion beyond the

second nearest neighbour. Most of the expected phase structures appeared but there was

no conclusive sign of the Ni4Mo. However simulated diffraction studies showed signs of

an unusual structure faintly forming atC ∼ 0.8H/Pd. The model did not generate signs

of hysteresis in the pressure decomposition curves, this was the be expected. However

this is further indication that a more complex model needs to be considered.

Incorporating differing zero point energies for the three isotopes in both the gas and

solid phases produced variation in separation factor in-line with experiment. The sim-

ulations however produced tracer diffusion coefficients for pure D systems higher than

expected.
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More generally – what is the purpose of such a model? If the aim is to model pressure-

composition the lack of discontinuity in the isotherms implies that short-range ordering

may be neglected. In this case one would use the simple long-range attractive forces

scaling the model against experimental data. In this modelling at least it has been

shown that the long-range attraction has little effect upon short-range ordering aside

from dramatically increasing the anneal times. Investigation of ordering therefore may

best be performed using short-range forces only. Or a model of long-range attraction

more complex than the simple concentration dependent one here. It is reasonable to

propose that if the attraction is indeed due to lattice distortion then it should be greater

in localised regions of high concentration i.e. have a short-range component.



Appendix A

Some Definitions

A.1 Notes & Definitions

A.1.1 Acoustic vs. optical Phonons:

Acoustic phonons are coherent movements of atoms. Optical phonons occur in solids

with more than one type of atom and are characterised by out of phase displacements

due to differences in charge or mass. Here two atoms move in opposite directions about

a stationary centre of mass.

Chemical Potential of a Gas

µH =
1

2
(µ0

H2
+RT ln(PH2) (A.1.1)

ref [53] . Here the approximation µH = ln(PH2) was used.

Enthalpy

H = U + PV (A.1.2)
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Fick’s First Law

for an isotropic medium

J = −
(
Dxx

δC

δx
+Dyy

δC

δy
+Dzz

δC

δz

)
= −Dii∇Ci (A.1.3)

Fick’s Second Law

again for an isotropic medium

δC

δt
= Dxx

δ2C

δx2
+Dyy

δ2C

δy2
+Dzz

δ2C

δz2
= Dii∇2Ci (A.1.4)

Fugacity

term for non-ideality of a gas

µ = µ0 +RTln
f(P )

P 0
(A.1.5)

where f(P) is the fugacity, the deviation from ideality.

Gibbs Free Energy

G = G0 +RTln
P

P0

(A.1.6)

where G0 is the value of G at P0.

Hamiltonian

The value of the Hamiltonian Ĥ in the case of a closed system is the sum of potential

and kinetic energies of the system.
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Metropolis Algorithm

Transitions down a potential gradient always proceed, only those ascending a potential

gradient are probabilistic.

p(Ei → Ej) = 1 if ∆E ≤ 0 (A.1.7)

p(Ei → Ej) = e∆Eij/kBT if ∆E > 0 (A.1.8)

Whether a jump occurs is determined here by generating a random number r in the

range 0→ 1. If r < e∆Eij/kBT then the jump proceeds.

A.1.2 Molarity

The mole-fraction is defined as

χH =
moles of H

total no of moles present
(A.1.9)

in this case of an fcc lattice of interstititials equal to the number of palladium atom

χH =
NH

NH +NPd

(A.1.10)

Sievert’s Law

C = sP 1/2 where s is the Sievert’s Parameter and P the pressure [129] . hence

C = se
1/2µ (A.1.11)

Separation Factor

defined by Flanagan & Oates [53] as

αDH =
(Cg/Cs)D
(Cg/Cs)H

(A.1.12)
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FIGURE A.1: Molarity vs number concentration

where g and s denote the gaseous and solid phases

Tracer Correlation Factor

ft(C) =
< r2 >

tmcc
(A.1.13)

where tmcc refers to the time elapsed in a Monte Carlo Simulation.

Tracer Diffusion Coefficient

The tracer diffusion coefficient may be determined simply from the ratio of jump at-

tempts to successful jumps [24] Dt = nr2

2t
where n = no of jumps, r= step length (as-

sume=1) and t is the time elapsed. Since tmcc =jump attempts per atom, one may

determine

Dt =
nactualr

2

2nattempted
(A.1.14)
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A.1.3 van’t Hoff Equation

The van’t Hoff equation relates the equilibrium constant K of a reaction to the temper-

ature and (standard) enthalpy change ∆H0. Working in moles:-

d lnK

dT
=

∆H0

RT 2
(A.1.15)

Warren-Cowley short range order parameter

αW.C. =

[
1− Pnn

rH

]
(A.1.16)

where Pnn is the mean number of nearest neighbour pairs. This may be extended to

Pnnn and so on.



Appendix B

Reference Diffractographs

The following virtual diffraction patterns were generated from ideal lattices. Their

structure was checked by the use of a 3d viewer, written in Visual Python which en-

abled one to view either a rotatable 3d image or step though along specified crystal

planes such as (4,2,0) to check that they were filled as expected.
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FIGURE B.1: r = 1.0 H/Pd, reference plots in hk0 and hk1
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FIGURE B.2: r = 0.80, reference plots I4/m– Ni4Mo
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FIGURE B.3: r = 0.75, reference plots I4/mmm– Ni3Mo D022 superlattice reflection
at
(
1, 1

2 , 0
)
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FIGURE B.4: r = 0.67, reference plots, superlattice reflection at
(

4
3 ,

2
3 , 0
)
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FIGURE B.5: Reference Plot r=0.50, I41/amd
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Program Structure
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FIGURE C.1: Program Structure
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Two lists of publications are presented. The first it the actual bibliography of papers

quoted in the thesis. The second is the Further Reading. Both lists are presented num-

bered and in alphabetic order. The FR is a full data base of publications about the Pd-H

system but with the papers quoted in the actual bibliography removed. In the text, the

number of the paper is quoted as it appears in the bibliography. Those in the Further

Reading do not appear in the text.
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