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ABSTRACT: We investigate the determinants of corporate credit default swap spreads for US, 

UK and EU firms and decompose the predictive power of accounting- and market-based 

variables for spreads in pre-crisis, crisis and post-crisis periods. We find that the predictive 

power of accounting risk measures decreases during and following the crisis, and the growing 

relevance of market-based variables highlights the growing significance of forward-looking risk 

measures for modeling spreads. By decomposing bond yield spreads into default and non-default 

components, we find a significant non-zero basis in the post-crisis period, highlighting the 

mispricing between the two markets. We find that mispricing between the two markets has 

significant predictive power in forecasting subsequent price movement in the CDS market in the 

post-crisis period.  
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1. Introduction 

Credit Default Swap (CDS) spreads has increasingly been used to gauge the financial health of 

corporations in both commercial applications (Moody’s and Bloomberg’s CDS implied default 

probability) and academia. In spite of their popularity, there is widespread disagreement on the 

information relevance of CDS spreads. Understanding what drives CDS spreads is vital and 

beneficial for investors, analysts and policy makers and represents an important research 

question, given the central role that the CDS market plays in assessing the credit worthiness of 

firms and their ability to lead other markets. The growing importance of the CDS market has 

resulted in the extant literature analyzing CDS spreads. 

The earliest studies using CDS spreads (i.e., Hull et al., 2004; Blanco et al., 2005; Longstaff 

et al., 2005) analyze the relationship between CDS spreads and bond yields. Das et al. (2009) and 

Trujillo-Ponce et al. (2014) use CDS spreads as a proxy to analyze models for measuring 

corporate credit risk. Fabozzi et al. (2007) and Baum and Wan (2010) test the influence of 

fundamental variables on CDS pricing, whereas Ericsson et al. (2009) investigate the relationship 

between theoretical determinants of default risk and CDS spreads. Other studies exploring CDS 

spread determinants include those by Norden and Weber (2012), Becchetti et al. (2012), 

Eichengreen et al. (2012), and Annaert et al. (2013), among others. Overall, CDS spread 

determinants have been investigated before but not sufficiently analyzed, and the literature lacks 

a comprehensive comparative analysis. This, coupled with the existence of few studies that 

investigate the determinants of non-financial firms’ CDS spreads across different economic 

conditions, provides the motivation for this study. 
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Our study is developed in two parts. First, we conduct a panel data analysis to study the 

relationship between firm-specific accounting- and market-based variables on corporate CDS 

spreads, while controlling for non-default spread drivers. Further, we decompose the spread 

prediction ability of accounting and market variables and observe how they evolve for US, UK 

and EU firms across sub-periods of analysis. Second, using the methodology developed in 

Longstaff et al. (2005), we decompose bond yield spreads into default and non-default 

components, using CDS spreads as a proxy for default risk to explain the dynamics of the non-

default element of bond yield spreads. This non-zero CDS-bond basis is then used to explain 

subsequent changes in CDS spreads, highlighting the existence of mispricing between the CDS 

and bond markets and the subsequent price correction in the CDS market. 

This paper contributes to the existing literature in the following ways. First, we provide a 

comparative analysis of accounting- and market-based variables, thereby addressing the debate 

(see Das et al., 2009; Galil et al., 2014) on the relative importance of these variables in modeling 

CDS spreads. We document the changing nature of spread predictor variables across different 

markets and sub-periods and decompose the model’s explanatory power, emphasizing their 

relative importance. Second, we employ CDS market illiquidity measures to explain CDS 

spreads and document the growing relevance of non-default spread drivers. Third, we provide a 

comparative evaluation across US, UK and EU, which are the largest markets for corporate CDS 

contracts globally, providing fascinating insights into CDS drivers across different markets. 

Finally, we complement the previous literature (Kim et al., 2016) by investigating the predictive 

power of the basis to study future price movements in the CDS market. Our findings validate that 

the CDS market dominates the information transmission process between the CDS and bond 
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market, which is more prominent in the post-crisis period, and we find the mispricing between 

the two markets has significant predictive power in forecasting subsequent price movement in 

the CDS market. 

The remainder of this paper is organized as follows. Section 2 discusses the relevant 

literature on CDS spreads and spread prediction models. Section 3 presents the data, empirical 

method and the main results. Section 4 discusses the policy implications and concludes. 

2. Literature Review 

2.1 CDS spreads as proxy for corporate credit risk 

Previous studies have focused on various competing measures for estimating corporate credit 

risk dynamics, including the credit rating, bond yields spreads and CDS spreads. CDS spreads 

are considered a better proxy for credit risk compared to bond yields for various reasons (see 

Ericsson et al., 2009). In addition, CDSs also have a more pronounced liquidity relative to bonds 

and as such provide an excellent laboratory for studying the mechanism of the credit market 

(Breitenfellner and Wagner, 2012). Thus, the increasingly popular CDS is considered to provide 

an alternative, more reliable, cross-sectional and time-series indicator of corporate credit risk. 

This, coupled with the existence of a large amount of CDS data, has yielded a wide range of 

studies that have employed CDS spreads as a pure measure of corporate credit risk.  

2.2 Accounting and Market-based measures 

Previous studies on default prediction models have found a significant association between credit 

risk and firm financials. The usefulness of accounting information for credit risk estimation is 
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supported by Das et al. (2009), who found that accounting-based information explains nearly 

two-third of the variation in CDS spreads and has comparable estimation power to market-based 

variables. This is further corroborated by Batta (2011), Hasan et al. (2016) among others. 

Although accounting variables are believed to have some degree of financial distress prediction 

ability, their use in estimating corporate credit risk can be challenged on various grounds. 

Indeed, accounting variables lack a theoretical basis for their use in default prediction models, 

are a ‘backward looking’ model input that is updated with a rather low frequency and released 

with a time lag, suffer from possible accounting manipulations, are sample specific and prone to 

conservatism due to historical cost accounting (Bystorm, 2006). Additionally, accounting 

variables are considered to be of limited utility in predicting defaults because they are prepared 

on a ‘going-concern’ basis (Hillegiest et al., 2004). Overall, despite its limited theoretical 

rationale, accounting information is found to provide a good indication of the financial health of 

the company and hence cannot be ignored.  

The literature on credit risk modeling using market-based measures suggests two competing 

paradigms for modeling credit risk, namely a structural form that uses option pricing theory and 

a reduced form using term structure theory to explain credit spread behavior. The structural form 

(Merton, 1974) assumes that the firm has a simple capital structure comprised of just debt and 

equity and interprets the equity of the firm as a call option on the firm’s asset with debt as the 

strike price. The alternative approach to Merton’s model is the use of the reduced-form model 

developed by Jarrow and Turnbull (1995). Unlike Merton’s model, the reduced-form approach 

does not provide an explicit link between default and firm specific variables (Duffie and 

Singleton, 1999; Switzer and Wang, 2013). Hence, the structural model is preferred over the 
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reduced-form approach because it offers an economically intuitive framework for credit risk 

pricing and is widely used to analyze corporate credit spreads (Ericsson et al., 2009; Hasan et al., 

2016). 

2.3 CDS liquidity 

Liquidity is one of the major concerns in the CDS market especially due to the non-continuous 

nature of trades, which relies heavily on the degree of confidence between counterparties. 

Liquidity in the CDS market could dry up quickly, especially during a crisis period, and could 

take a long time to recover. All CDS trades have certain costs, including search costs, broker 

commissions and asymmetric information costs and the higher the costs the greater the illiquidity 

associated with the corresponding CDS contract (Acharya and Johnson, 2007). Until recently, 

CDS market liquidity has been sparsely studied. Recent studies (e.g., Bongaerts et al., 2011; 

Arakelyan and Serrano, 2012; Lesplingart et al., 2012) have focused on CDS market liquidity 

and found it to be a crucial factor driving CDS spreads. 

Overall, the literature on modeling spreads using accounting, market-based, and non-default 

measures provides conflicting evidence on the usefulness of these variables in explaining CDS 

spread. On one hand, some studies (e.g., Das et al., 2009; Batta, 2011; Hasan et al., 2016) find 

accounting measures to be more informative, whereas other studies (e.g., Galil et al., 2014) find 

market-based variables substantially add to the model’s power of explaining CDS spreads. 

Moreover, the growing field of research on non-default drivers of CDS spreads (e.g., Tang and 

Yan, 2007; Bongaerts et al., 2011) has compelled further investigation on CDS spread modeling. 
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3. Sample and research design 

3.1 Sample selection: CDS spreads 

Five-year constant maturity quarterly CDS spreads belonging to the senior debt type with a 

modified restructuring clause are downloaded from the Bloomberg database. We use five-year 

CDS spreads because five-year contracts account for nearly 85% of the CDS market and have 

the best liquidity. First, CDS contracts are screened for their underlying firm issuer country and 

observations are limited to those belonging to the US, UK and EU. Second, we exclude CDS 

contracts belonging to the Financial GICS1 sector in line with previous studies that exclude banks 

from empirical investigations due to their special business models, asset-liability structures, 

regulatory requirements on capital adequacy and higher leverage ratios (Hasan et al., 2016). 

Finally, we exclude CDS contracts for firms that have defaulted over the period of investigation 

to ensure our sample is not biased due to non-random attrition. For the EU sample, we start with 

the 17 EU countries. However, due to the unavailability of CDS spread data following from the 

sample selection criteria (as discussed above), the final EU sample contains CDS spreads data 

for firms in 12 EU countries2. 

The combined sample consists of 17,845 quarterly spreads belonging to 704 firms over the 

sample period of 01/01/2005 to 31/12/2012. The unbalanced nature of the sample is consistent 

with other studies (e.g., Das et al., 2009; Galil et al., 2014) because not all CDS contracts trade in 

a given quarter; hence CDS spreads are missing for certain contracts over the period of 

                                                      

1 The Global Industry Classification Standard (GICS) was jointly developed by Standard & Poor’s and MSCI/Barra 

to establish a global standard for categorizing companies into main sectors and industries. 
2 The 12 EU countries include Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, 

Netherlands, Portugal and Spain. 
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investigation. Further, the sample period is subdivided into three sub-period of analysis around 

the Global Financial Crisis (GFC): pre-GFC (01/01/05 – 30/06/07); GFC (01/07/07 – 30/06/09) 

and post-GFC (01/07/09 – 31/12/12), as in Breitenfelner and Wagner (2012). The GFC period 

for the US and UK are closely linked. For the EU, the GFC was transformed into a sovereign 

debt crisis, although in our study it is denoted as the post-GFC period for the EU sample. We aim 

to test the effect of GFC on US, UK and EU corporations and this drives our choice of selecting 

a standard period of analysis across the three samples. We rationalize that the credit risk dynamic 

of listed firms will not only be a function of the economic condition for the national boundary 

but also likely be influenced by global economic conditions because financial markets are global 

and interconnected. Other studies propose a modified version of the period of analysis further 

splitting the crisis period. However, our choice of period is based on the ease of comparing 

corporate credit risk dynamics across the economic conditions and the need to have a sufficient 

number of observations in each period to draw statistically significant inferences. We 

specifically end our sample in Q4 2012 considering the relevant rules for non-financial 

companies under the Dodd-Frank Act (Title VII) passed in 2010, which became final and 

effective after September 2012, with the first expected clearing mandate set in Q4 2012 and 

compliance deadlines set throughout 2013 (Ernest and Young, 2012). The sample end date 

ensures our analysis is not affected by the regulatory changes in the CDS market. 

Table 1 provides the descriptive statistics for CDS spreads aggregated across year for the 

three markets in Panel A3. Although there is an overall decline in spreads from 2009 onwards, 

                                                      

3 We undertake a Kruskal-Wallis rank test of the equality of the population on CDS spreads to confirm the statistical 

significant difference across the three samples, across the whole period as well as each sub-period of analysis, the 

results (not reported here) indicate the difference between the samples is statistically significant. 
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the median spread has remained stubbornly high for both the US and UK, indicating that for 

certain firms, at least the CDS spread has decreased whereas for other it has not. However, the 

spreads are nowhere comparable to the pre-GFC level. For the EU, median spreads reduced 

following the GFC but again rose sharply in the post-GFC period, indicating the turmoil caused 

by the sovereign credit crisis. Panel B breaks down spreads by the issuing country of the 

underlying firm. We notice huge variations in the EU median spread across the GFC and post-

GFC periods. Median spreads for Germany and the Netherlands are lower than those for the US 

and UK; in contrast, those for Portugal, Italy, Greece and Spain are much higher in the post-GFC 

period, highlighting the variable effect of the Eurozone crisis on corporate credit risk.  

 

 

Table 1: Descriptive statistics of credit default swap spreads 

Descriptive statistics of credit default swap spreads (in basis points) from 01/01/05 to 31/12/12, 

for the US, UK and EU broken down by year in Panel A, by country in Panel B, and by GICS 

industry sector in Panel C. N is the number of quarterly CDS spread observations available 

across each year, country and GICS sector. The pre-GFC period is defined as 01/01/05 to 

30/06/07; the GFC period is defined as 01/07/07 to 30/06/09 and the post-GFC period is defined 

as 01/07/ 09 to 31/12/12. 

Panel A: Summary of variables: Spread by year 

US  

Year N Mean Median Min Max Std dev. 

2005 883 92.36 42.72 5.00 2,696.86 168.30 

2006 921 96.17 39.37 5.00 2,670.00 196.22 

2007 1,091 116.36 43.13 4.83 1,731.20 178.78 

2008 1,698 355.04 148.29 19.39 9,110.67 643.27 

2009 1,654 325.71 123.61 17.25 9,108.99 683.43 

2010 1,689 205.76 112.01 17.31 2,443.19 270.50 

2011 1,641 261.34 120.87 15.22 7,199.96 563.21 

2012 1,559 243.25 118.86 12.77 13,080.11 524.90 

Total 11,136 232.96 97.26 4.83 13,080.11 495.54 
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UK  

Year N Mean Median Min Max Std dev. 

2005 259 78.36 42.14 9.00 641.25 105.25 

2006 263 64.22 36.38 3.67 419.38 75.60 

2007 291 82.43 39.17 4.44 590.45 103.41 

2008 338 245.64 124.55 21.27 4,575.94 381.60 

2009 343 243.50 106.37 16.25 8,344.94 550.73 

2010 359 157.51 96.05 17.44 1,212.10 168.35 

2011 356 177.12 106.67 19.72 1,208.55 189.97 

2012 346 153.80 100.58 24.36 857.74 151.02 

Total 2,555 156.76 84.73 3.67 8,344.94 281.19 

 

 

EU  

Year N Mean Median Min Max Std dev. 

2005 425 78.84 37.42 8.95 810.00 114.68 

2006 467 77.67 36.21 5.65 698.33 110.20 

2007 513 87.86 40.23 5.46 870.32 128.13 

2008 545 294.21 136.72 14.00 3,551.34 405.58 

2009 554 386.32 129.30 13.12 10,271.69 831.56 

2010 548 252.12 112.35 18.47 16,102.98 740.17 

2011 564 279.90 148.97 18.52 3,497.36 382.14 

2012 547 263.92 143.99 23.15 2,597.74 316.93 

Total 4,163 223.30 94.69 5.46 16,102.98 484.52 

 

 
Panel B: Summary of variables: Spread by Country 

 Pre-GFC GFC Post-GFC 

Country N Mean Median N Mean Median N Mean Median 

US 2,041 92.50 40.55 3,390 320.85 122.74 5,705 230.99 113.85 

UK 590 70.77 38.00 735 216.05 98.33 1,230 162.59 98.53 

EU 1,017 76.82 36.17 1,210 277.23 108.23 1,936 266.55 131.42 

FRANCE 351 65.10 36.08 382 208.05 104.68 590 211.22 132.63 

GERMANY 265 78.41 36.52 327 276.24 110.66 552 178.87 98.10 

ITALY 92 102.36 49.90 99 301.65 170.00 150 477.68 258.29 

NETHERLANDS 90 51.76 30.88 132 233.69 73.02 203 160.48 77.52 

SPAIN 74 46.03 30.26 83 410.11 126.48 133 419.87 257.29 

FINLAND 59 90.08 43.33 63 425.46 137.72 98 282.65 233.46 

BELGIUM 22 54.98 26.29 34 520.85 98.92 48 729.70 72.12 

PORTUGAL 21 51.88 30.00 19 98.00 79.17 29 425.79 337.44 

IRELAND 15 247.03 185.50 18 327.51 232.29 26 534.10 285.48 

LUXEMBOURG 14 363.78 443.46 34 476.36 360.87 79 381.97 312.06 

GREECE 9 44.70 44.32 9 89.35 88.13 14 846.87 510.31 

AUSTRIA 5 40.64 43.38 10 161.75 88.06 14 115.39 105.96 
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3.2 Spread prediction model 

Following Aunon-Nerin et al. (2002), who find the use of the logarithm of spreads provides a 

better fit than their direct use in a regression, and Das et al. (2009), who claim that the inclusion 

of accounting variables improves the overall fit of the model, we estimate the following panel 

data fixed-effect regression function for each firm i and quarter t: 

𝑙𝑛(𝐶𝑆𝑖𝑡) = 𝛼 + ∑ 𝛽𝑗𝐴𝐶𝑖𝑡
𝑗
1 + ∑ 𝛾𝑘𝑀𝐵𝑖𝑡

𝑘
1 + ∑ 𝛿𝑚

𝑚
1 𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑡 + 𝜒𝐿𝐼𝑄𝑖𝑡 + 𝜀𝑖𝑡                           (1)  

The model assumes correlation clustering over time for a given firm with independence over 

firms. We use a fixed-effect panel data regression for the following reasons. First, the OLS 

pooled regression model is too restrictive and does not explain the full richness of our panel 

dataset. Moreover, because the true model is a fixed-effect regression, the pooled OLS regression 

is bound to provide an inconsistent estimate4. Second, we assume that the individual-specific 

effect, i.e., the unobserved heterogeneity αi in the model, is correlated with the regressor5, which 

further substantiates our choice of using a fixed-effect regression. Finally, our model consists of 

regressors that are both firm and time variant and those that are time variant but firm invariant to 

act as time dummies in our model. The fixed-effect regression is better equipped to handle both 

types of regressor in one single regression model. 

In Eqn. 1, βj is a vector of six accounting variables (ACit) for each firm i in quarter t, 

Following Das et al. (2009), we use (SIZE) as a measure of firm size estimated as the log of total 

assets divided by the Consumer Price Index with 2005 as the base. The measure of firm 

                                                      

4 This is tested using the Breusch-Pagan Langrage multiplier test which is found to be significant at 95% level and 

thus does not support the use of pooled OLS regression. 
5 This is tested using the Hausman statistics which is found to be significant at 95% level 
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profitability, return on assets (ROA), is estimated as the net income divided by total assets. 

Financial liquidity is measured by the quick ratio (QUICK), estimated as current assets minus 

inventories over current liabilities. The measure of a firm’s trading account activity (TRADE) is 

estimated as the ratio of inventories to the cost of goods sold. Quarterly sales growth (SALES) is 

estimated as sales divided by the previous quarter sales minus one. The measure of the capital 

structure (LEVERAGE) is estimated as the ratio of total liabilities to total assets.  

In Eqn. 1, γk is a vector of three market-based variables (MBit) for each firm i in quarter t. 

We use the distance to default (DTD) in the Merton model as the primary market measure of 

credit risk. The key to estimating DTD is the estimation of firm value (V) and standard deviation 

of firm value (σV) in the Black-Scholes-Merton (BSM) model. To estimate these two variables, 

we follow the approach as detailed in Vassalou and Xing (2004). Assuming a forecasting horizon 

of 1 year (T), i.e., 250 trading days in a year, first σV is estimated iteratively using the estimated 

equity volatility from the past year as a starting value. Using BSM, for each trading day, V is 

computed using the market value of equity (E) for that day. The estimation procedure is repeated 

for the remaining 250 trading days in that year. The standard deviation of the return in V during 

that period becomes the new starting value for σV for the next iteration. If the difference in σV 

between two successive iterations is less that 10-4, the iteration procedure will be discontinued 

and the values will be inserted in the BSM equation to obtain V. The resulting values of V and σV 

are then used to calculate the firm-specific DTD over a horizon T as in Eqn. 2, 

𝐷𝑇𝐷 =
ln (

𝑉
𝑋) + (𝜇𝑣 −

1
2 𝜎𝑣

2) 𝑇

𝜎𝑣
2√𝑇

                                                                   (2) 
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A default occurs when the ratio of the value of assets to debt is less than one (i.e., its log is 

negative). The exogenous default boundary (X) is set as the book value of short-term liabilities 

plus one half of the long-term liability. It is similar to the one used by KMV CreditMonitorTM 

and considered to be relatively more realistic. The DTD measures the number of standard 

deviations this ratio needs to deviate from its mean for default to occur.  

Average annualized equity return (μV) is estimated using the last 250 trading day market 

capitalization value of equity. A negative relationship between equity return (AER) and CDS 

spreads is expected because better market performance indicates a lower credit risk. Because 

volatility is a measure of market uncertainty, it proxies for market strains that limit capital 

mobility across different market segments or investors’ risk aversion (Pan and Singleton, 2008); 

thus, an increase in volatility should lead to an increase in credit spreads. Volatility measured 

using the annualized standard deviation of equity returns (STDEV) is estimated from the past 250 

trading days’ daily stock price return. 

Apart from firm-specific variables, we also control for a variety of macroeconomic 

indicators that are firm invariant but time variant in our model and act as time dummies 

accounting for time clustering in our dataset. In Eqn. 1, δm represents a vector of three 

macroeconomic indicators. The risk-free rate (RATE) is proxied by the three-month US-LIBOR 

for the US, three-month UK-LIBOR for the UK and three month EURIBOR 6  for the EU. 

Because periods of low interest rates are normally associated with periods of economic 

downturn, we expect a negative relationship. We include the prior year, i.e., the 12-month index 

return (INDEX) using the S&P500 index for the US, the FTSE100 index for the UK, and the 

                                                      

6 The authors acknowledge that these risk-free rate proxies rose sharply in the crisis period, partly due to a lack of 

liquidity in the market. However, these also represent the best available proxy for risk free rate. 
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EURO STOXX 50 Index for the EU. An improvement in the business environment should lessen 

a firm’s chances of default and thus increase their default recovery rates, lowering CDS spreads. 

The prior year return on the respective GICS index sector (GICS_R) provides the sector return. 

Because periods of low market/sector returns are normally related to periods of economic 

downturn, we expect a negative relationship between INDEX, GICS_R and spreads. Thus, 

following Bharath and Shumway (2008) and Ericsson et al. (2009), among others, we use the 

market-wide equity index as a measure of the business environment, the GICS return as measure 

of sector performance and the risk-free rate as measure of economic activity.  

Finally, to control for CDS market illiquidity, we use the absolute quoted bid-ask spread 

(ABS) following Arakelyan and Serrano (2012) as a liquidity measure (LIQit) for each firm i at 

quarter t in Eqn. 1. Lower values point towards higher liquidity in the CDS market, and the value 

is estimated as the absolute difference between the highest bid and the lowest ask quote for the 

underlying CDS contract in the given quarter. As liquidity dries up, the size of the bid-ask spread 

increases, indicating greater divergence of opinion or information asymmetry (Tang and Yan, 

2007). Arakelyan and Serrano (2012) claim that the bid-ask spread reflects order processing, 

inventory holding and asymmetric information costs and is an important factor driving CDS 

spreads 

Table 2 provides the regression output for US, UK and EU samples over whole period and 

sub-periods of analysis. Across the three samples, the size of the firm (SIZE) does not have a 

bearing on the CDS spreads except for a positive relationship for whole period in the US and 

UK. As expected, a significant negative relationship between spread and firm profitability (ROA) 

is observed similar to Das et al. (2009); however, this relationship does not hold in the GFC 
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period across samples. The quick ratio (QUICK), trading account activity (TRADE) and sales 

growth (SALES) exhibit a weak relationship with spreads, which switches signs based on the 

sample and sub-period of analysis. The firm capital structure (LEVERAGE) is found to be mostly 

positive wherever significant, indicating more levered firm has higher credit risk.  

Overall for the accounting variables, the significance of each variable changes for each sub-

period and across the three markets. Our findings above corroborate Kanagaretnam et al. (2016), 

who do not find a statistically significant and consistent association between CDS spreads and 

traditional accounting-based risk measures. This could be attributed to CDS spreads being 

forward-looking risk measure, whereas accounting variables are more likely to capture current 

and past risks.  

With regard to market-based variables, we find a significant positive relationship between 

the spread and volatility of returns (STDEV), as expected, for the US. For the UK and EU, a 

similar relationship, although not consistent across sub-period, indicates that higher volatility 

drives up credit risk. Annualized equity return (AER) does not exhibit a consistent relationship 

with spreads and is significant only for the US sample in the post-GFC period and for the EU 

sample in the GFC period, but with opposite signs. The coefficient of distance to default (DTD) 

is negative and significant across all sub-periods for the US and EU samples, indicating that a 

greater distance to theoretical default lowers the credit risk of firm. Although this relationship is 

not significant across the sub-periods for the UK sample, the coefficient is mostly negative. 

Overall, the majority of the market-based variables are significant across the samples and most 

sub-periods. 
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The control variables (INDEX and GICS_R) exhibit a significant negative relationship with 

spreads indicating that the credit risk of firm is influenced by the business environment and 

corresponding sector performance. The risk-free rate (RATE) is mostly negative and significant, 

indicating that when the business environment deteriorates, it has a negative effect on firm credit 

risk. It is worth noting that the risk-free rate in the post-GFC period has been kept artificially low 

to ease the business environment in the US and UK. This has not really helped reduce firm risk, 

evident from the positive and significant relationship in the post-GFC period for the US and UK 

samples.  

The measure of CDS illiquidity (ABS) has a positive and significant association with spreads 

in the whole period, indicating that higher illiquidity increases credit risk for the US and UK 

samples. Interestingly, the relationship in the EU sample is negative wherever significant, 

indicating firms that have illiquid CDS contracts have lower credit risk, which points towards 

higher trading on European CDSs in the sovereign crisis period, driving up a firm’s credit risk. 

The overall explanatory power of the model varies across each sub-period and is characterized 

by a low R2 in the pre-GFC period, an increase in R2 during the GFC period followed by a 

reduction in the model’s explanatory power in the post-GFC period. This indicates that 

accounting- and market-based variables are more significant predictors of spreads during the 

crisis period than at other times, which is consistent with Annaert et al. (2013) and Tang and Yan 

(2015). Overall, the spread explanatory power of the predictor variables in our model changes 

significantly based on the period of analysis7. 

                                                      

7 We also undertake a multi-collinearity diagnostic test (not reported here to save space), and the estimated VIF 

(Variance Inflated Factor) score is less than the threshold, indicating the absence of multicollinearity. 
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Table 2: Fixed effect panel data regression 

Panel data fixed effect regression (with robust standard errors) of the log of CDS spreads to accounting- and market-based 

variables. The variables are estimated on a quarterly frequency from the period of 01/01/2005 to 31/12/2012. The R2 reported 

is the fixed effect within regression values. Periods are as defined in Table 1. 
 

 US UK EU 

  

Whole 

Period 

Pre-

GFC GFC Post-GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

SIZE 0.117* 0.044 0.02 0.015 0.401** -0.191 0.771* 0.309 0.25 0.254 -0.533 -0.615 

ROA -1.08*** -0.961* -0.267 -1.614*** -0.379 0.453 -0.458 -2.442** -1.795* -0.59*** -0.176 -3.49** 

QUICK -0.051 -0.066 -0.17*** -0.024 -0.022 -0.139 0.187* 0.086 0.041 -0.326* -0.105 0.025 

TRADE 0.006* -0.018 0.003 0.006 -0.259* 0.219 -0.272 -0.406* 0.046 -0.1 0.05 0.092 

SALES -0.001 -0.001 -0.001 -0.001 0.001* 0.001** -0.001 0.003* -0.001 -0.002* -0.004** -0.001 

LEVERAGE 0.852*** 1.53*** 0.379 1.104*** 1.653** 0.908 1.701** -0.721* 0.144 -1.511 0.095 2.486** 

AER -0.002 0.006 -0.004 -0.002*** 0.019* 0.053 -0.001 -0.004 0.001 -0.008 0.12** -0.002 

STDEV 0.995*** 1.75*** 0.735*** 0.65*** 0.215 -0.148 0.888 1.337** 2.033*** 0.996 0.815 2.129*** 

DTD -0.03*** -0.01*** -0.02*** -0.015*** -0.03*** -0.004 -0.016 0.004 -0.03*** 0.005 -0.05** -0.013** 

RATE -15.9*** -5.09*** -8.2*** 45.775*** -12.42*** -7.132 2.591 31.407** -11.5*** -31.8*** -9.22** -1.31 

INDEX -0.133* -1.38*** -1.12*** 0.038 -0.583*** 1.376*** -1.29*** -0.215* -1.65*** 0.036 -2.08*** -1.34*** 

GICS_R -0.94*** 0.272** -0.69*** -0.693*** -1.076*** -0.512 -0.684** -0.67*** -0.207 -0.217 0.174 -0.32 

ABS 0.001*** 0.001 0.004 -0.002 0.018*** 0.022 0.014*** 0.009 -0.002*** 0.025 -0.001 -0.01*** 

_cons 3.893*** 2.858*** 4.474*** 3.935*** 1.854* 3.794*** -1.046 3.026* 2.985*** 4.478*** 7.951*** 5.991*** 

N 6,169 1,234 1,754 3,181 962 230 241 491 722 213 239 270 

R2 62.69% 23.25% 74.06% 25.56% 54.43% 19.42% 63.71% 26.32% 61.59% 43.71% 62.83% 41.65% 

F statistics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Notes:  ***, **, and * indicate rejection of the null hypothesis at 1%, 5% and 10%, respectively. 
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Das et al. (2009) claim that accounting variables are better predictors of CDS spreads than 

market-based variables; whereas Galil et al. (2014) claim that market-based variables have a 

higher prediction power of spreads. The accounting- and market-based variables in Table 2 

provide mixed results that change based on the sample and sub-period in consideration, pointing 

to the need to further investigate the relative importance of these variables in a spread prediction 

model. We undertake further analysis by decomposing the models’ explanatory power into the 

subset of explanatory variables used in the regression model (Eqn. 1). The Pratt index (Pratt, 

1987; Thomas et al., 1998) is a useful statistical measure that orders independent variables based 

on their relative importance, and we use the pratt index to decompose the model’s explanatory 

power to the subset of predictor variable categories in the regression model, i.e., ACit (SIZE, 

ROA, QUICK, TRADE, SALES, LEVERAGE), MBit (AER, STDEV, DTD), LIQit (ABS_L) and 

CONTROLSt (RATE, INDEX, GICS_R). 

Table 3 provides the output for the Pratt index applied on the regression model in Eqn. 1. 

The Pratt index helps to decompose the explanatory power of the models and attributes it to the 

variable categories (AC, MB, LIQ and CONTROL). Because the model’s explanatory power 

varies across sample and the sub-period, the Pratt index provides a useful gauge of the relative 

importance of these variable categories in modeling CDS spreads. 
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Table 3: Relative importance of CDS spread predictor variables 

Pratt Index estimated for each sample (US, UK and EU) across each sub-period for predictor variable category AC (SIZE, 

ROA, QUICK, TRADE, SALES, LEVERAGE), MB (AER, STDEV, DTD), LIQ (ABS) and CONTROLS (RATE, INDEX, 

GICS_R). In Panel A, the absolute bid-ask spread (ABS) is used as proxy for CDS market illiquidity, whereas the proportional 

quoted bid-ask spread (PROP) and Amihud’s measure (AMH) are used in Panel B and Panel C, respectively. The Pratt index is 

estimated for each variable category with a quarterly frequency from the period of 01/01/2005 to 31/12/2012. Sub-periods are 

as defined in Table 1. 
 

Pratt Index US UK EU 

 Panel A 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

AC 0.22 0.42 0.12 0.36 0.11 0.47 0.06 0.15 0.17 0.38 0.21 0.25 

MB 0.67 0.54 0.84 0.61 0.28 0.41 0.23 0.14 0.64 0.32 0.73 0.68 

LIQ (ABS) 0.00 0.00 0.00 0.00 0.32 0.08 0.53 0.58 0.01 0.21 0.03 0.01 

CONTROL 0.10 0.04 0.04 0.03 0.29 0.04 0.17 0.13 0.19 0.10 0.03 0.06 

             

 

US UK EU 

 Panel B 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

AC 0.22 0.42 0.13 0.36 0.12 0.33 0.11 0.23 0.19 0.50 0.23 0.25 

MB 0.66 0.54 0.81 0.61 0.41 0.33 0.71 0.31 0.56 0.33 0.65 0.65 

LIQ (PROP) 0.01 0.00 0.03 0.00 0.31 0.30 0.11 0.28 0.08 0.07 0.12 0.03 

CONTROL 0.11 0.04 0.02 0.03 0.16 0.03 0.07 0.18 0.17 0.10 0.00 0.06 

             

 

US UK EU 

 Panel C 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

AC 0.22 0.41 0.13 0.35 0.17 0.50 0.14 0.34 0.20 0.50 0.24 0.26 

MB 0.67 0.54 0.82 0.61 0.52 0.45 0.75 0.40 0.64 0.42 0.75 0.69 

LIQ (AMH) 0.01 0.02 0.01 0.01 0.31 0.05 0.10 0.24 0.01 0.05 0.01 0.01 

CONTROL 0.10 0.03 0.04 0.03 0.00 0.00 0.01 0.02 0.16 0.03 0.01 0.05 
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From Table 3 Panel A, we note that the AC and MB variable categories are comparative and 

at times AC variables have higher explanatory power in the pre-GFC period for UK and EU 

samples which is in line with Das et al. (2009). However, for the US sample, MB variables 

(54%) have higher explanatory power compared to AC variables (42%) in the pre-GFC period. 

Consequently, across the three samples, the results are inconclusive in the pre-GFC period. 

Collectively, AC variables explain on average 42% of R2 for the models in the pre-GFC period 

across the three samples. However, during the GFC period, there is a considerable shift in spread 

prediction ability of MB variables, which increases to 84% and 73% for the US and EU samples. 

In contrast, the proportion of variability explained by AC variables drops to 12% and 21%, 

respectively. In the post-GFC period the MB variables retain relatively higher explanatory power 

for the US and EU samples. Interestingly for the UK sample, in both the GFC and post-GFC 

period, LIQ is a significant contributor to the model’s explanatory power, whereas it is negligible 

for the other sub-period and samples (except for pre-GFC in EU sample), indicating that the 

higher illiquidity of CDS contracts plays a larger role in increasing credit risk for UK firms. The 

CONTROL variables do not contribute much to the model R2 except when the whole period is 

taken into consideration.  

Because liquidity is not directly observed in the market and previous studies have employed 

competing measures to capture CDS illiquidity, we use alternative specifications of the liquidity 

measure as a robustness check8. The proportionally quoted bid-ask spread (PROP), estimated as 

the difference between the bid-ask spread divided by the mean bid-ask spread (Lesplingart et al., 

                                                      

8 We also conduct other robustness checks namely; (1) We include 1 quarter lag of independent variables in the 

regression model to control for endogeneity and (2) We re-run the models using only Q2 and Q4 observations. 

Overall, the findings are consistent. The robustness checks are not reported here and are available on request. 



21 

 

2012), is used, and the models are re-estimated. The results are reported in Panel B. Similarly, 

Amihud (2002) proposes a measure of liquidity (AMH) that is more suitable for low-frequency 

data, estimated as the quarterly average absolute return over the trading volume (Tang and Yan, 

2007). The results are reported in Panel C. Across the three panels in Table 3, the findings are 

consistent and robust to the alternative specifications of the liquidity measure used in this study. 

From the results in Table 2 and Table 3, we conclude that MB variables are more important 

predictors of CDS spreads than AC variables and point towards the growing importance of 

illiquidity in the CDS market as an important driver of CDS spreads, especially in the post-GFC 

period. Moreover, even by adding both the set of predictor variables along with liquidity and 

macroeconomic controls, there is still a substantial portion of spreads that cannot be accounted 

for, especially in the post-GFC period, for all the three markets. Previous studies claims that 

CDS spreads provide a clean measure of default risk. However, the lower explanatory power of 

the models in the post-GFC era may be highlighting the presence of noise in the CDS spreads 

itself, which requires further investigation.  

3.3 Default and non-default component of bond yield spread  

For firms analyzed in the previous section, we estimate the monthly corporate bond yield spread 

based on bracketing procedure as detailed in Longstaff et al. (2005). We use SEC-registered, 

fixed rate, senior, unsecured bonds with no embedded options and with maturity bracketing the 

horizon of CDS spread observations in our dataset. Moreover, each firm needs to have at least 

two bonds to be included in the bracketing set. We are able to obtain the monthly bond yield for 

294 firms in the US, 50 firms in the UK and 95 firms in the EU. The bracketing set procedure 
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uses 3894, 1089 and 2715 individual bonds (for the US, UK and EU, respectively) to draw bond 

yield estimates from 01/01/2005 to 31/12/2012. To estimate the standard benchmark risk-free 

rate, we use treasury curve and interpolate yield on a riskless bond with the same maturity and 

coupon using standard cubic spline algorithm. This estimated risk free rate is subtracted from the 

bond yield to obtain monthly bond yield spreads for each CDS contract. To obtain five year yield 

spreads, we regress yield spreads for individual bonds in the bracketing set on their respective 

maturities. The fitted value of the regression at a 5 year horizon is used to estimate the corporate 

yield spreads for the firm. In total, we are able to estimate 15745, 3034 and 6283 monthly bond 

yield spreads for the US, UK and EU, respectively. We further take the monthly CDS spread as 

an estimate of the default component of the monthly bond yield spread. The difference between 

the two gives the non-default component of bond yield spreads, also referred to as the CDS-bond 

basis (basis henceforth) and is a well-known no-arbitrage relationship.  

Table 4 provides the median yield spreads for each of the sample across the three sub-

periods in Panel A. For the US and the UK, we note that median bond yield spread increases 

during the GFC period with a subsequent decline in the post-GFC period. However, for both the 

US and UK, the median post-GFC spread is much higher than the pre-GFC level. In line with the 

observations for the CDS market, bond yield spreads for the EU are higher in the post-GFC 

period highlighting the effects of the sovereign debt crisis. Panel B provides the median default 

component, the non-default component and the ratio of the median default component to the 

median bond yield spread across firms in the US, UK and EU, respectively. For the US, the 

default component to the yield spread is approximately 25%, escalating to 30% and 50% of the 

bond yield spreads for the pre-GFC, GFC and post-GFC periods. Similarly, the UK and EU 
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samples follow a similar trend with default ratios of 20%, 32% and 53% and 19%, 47% and 66% 

in the pre-GFC, GFC and post-GFC periods, respectively. Table 4 also shows that default risk 

only partially explains the bond yield spread, and the non-default component is a key additional 

explanatory factor9. Although default component represents more than 50% of the total bond 

yield spreads in the post-GFC era, the presence of a significant non-default component in yield 

spreads across the three markets can be witnessed. Thus, although the bond markets have 

stabilized, there is still fear in the market of the possibility of a default, which is still significant 

in the post-crisis period. Moreover, these results are more prominent in the post-GFC period 

across the three markets, irrespective of the type of firm. Longstaff et al. (2005) drew similar 

inferences, but their study argued this effect to be true for only high-rated investment grade US 

firms. Our observations extend this inference across all types of firms and across the three 

samples. 

                                                      

9 We also undertake a Kruskal-Wallis rank test of the equality of the population on bond yield spreads across the 

whole period as well as each sub-period of analysis; the results (not reported here) indicate that the difference 

between the samples is statistically significant. 
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Table 4: Ratio of default component to bond yield spread 

The sample is based on the monthly corporate bond yield spread estimated based on the bracketing approach of Longstaff et al. 

(2005) from 01/01/2005 to 31/12/2012. Dflt is median default component, Ndflt is the median non-default component, Spread 

is the average yield spread over the benchmark 3 month Interbank Offer Rate, and Ratio is the default component divided by 

the yield spread. Ratios denoted by an asterisk are significantly different at the 5% level. NB is the number of monthly bond 

yield spreads in the bracketing set. 
 

 

Panel A: Median yield spread across each sub-period 

 Whole period Pre-GFC GFC Post- GFC 

Sample NB Spread  NB Spread  NB Spread  NB Spread  

US 15,745 197.78  4,474 113.31  4,038 330.42  7,233 203.29  

UK 3,034 203.48  998 91.86  819 313.79  1,217 220.78  

EU 6,283 176.11  1,767 98.34  1,681 205.95  2,835 224.25  

 

Panel B: Median default and non-default component of yield spread across each sub-period 

 Whole period Pre-GFC GFC Post- GFC 

Country Dflt Ndflt Ratio Dflt Ndflt Ratio Dflt Ndflt Ratio Dflt Ndflt Ratio 

US 77.58 101.36 0.39* 28.50 72.40 0.25* 98.99 186.97 0.30* 102.03 88.94 0.50* 

UK 87.60 117.85 0.43* 18.70 68.29 0.20* 100.16 179.53 0.32* 116.51 114.74 0.53* 

EU1 90.60 85.54 0.51* 18.67 76.16 0.19* 96.07 110.55 0.47* 146.96 81.79 0.66* 

FRANCE 89.76 87.28 0.55* 27.83 72.28 0.26* 102.24 125.93 0.45* 133.26 86.45 0.67* 

GERMANY 112.50 50.26 0.76* 14.19 96.61 0.15* 96.68 79.26 0.60* 142.97 28.78 0.83* 

ITALY 88.12 96.90 0.41* 14.51 86.63 0.15* 80.04 126.44 0.37* 192.10 88.12 0.73* 

NETHERLANDS 70.86 107.16 0.41* 21.63 104.13 0.19* 79.53 131.14 0.37* 100.18 98.07 0.47* 

SPAIN 150.39 36.04 0.71* 10.80 32.97 0.25* 128.99 31.53 0.67* 281.98 45.84 0.81* 

FINLAND 90.31 125.44 0.43* 38.76 73.08 0.34* 118.24 129.04 0.37* 145.20 149.94 0.41* 

BELGIUM 70.69 109.57 0.38* 21.67 61.30 0.24* 75.84 136.72 0.37* 84.56 123.33 0.36* 

PORTUGAL 116.56 83.12 0.35* 12.11 . . 91.50 92.77 0.53* 591.15 82.40 1.06 

IRELAND 156.38 167.44 0.31* 8.58 . . 138.34 . . 616.68 167.44 1.22 

LUXEMBOURG 78.56 140.76 0.41* . . . 121.53 139.90 0.55* 76.91 140.76 0.38* 

AUSTRIA 141.65 54.39 0.70* 14.25 36.15 0.43* 140.02 53.11 0.90 188.58 65.67 0.69* 

 

Note: No Dflt and Ndflt data available for Greece 
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3.4 Predictive power of basis 

Because CDS is essentially an insurance contract against the default of a firm’s bond, the CDS 

and corporate bond markets should theoretically move in tandem, closely interacting with each 

other (Kim et al., 2016). Consequently, the basis should be closer to zero after ignoring some 

technical issues, such as market friction, and any violation of this relationship would represent a 

mispricing between the two markets. CDS spreads are also documented to react more rapidly to 

changes in the credit quality of the underlying firm compared to bond yield spreads (Hull et al., 

2004; Blanco et al., 2005). Moreover, during periods of financial distress, the CDS market is 

found to dominate the information transmission process between the CDS and bond market 

(Delatte et al., 2012). The ability of the CDS market to rapidly adjust to new information 

compared to the bond market suggests that greater mispricing between the two markets would 

lead to rapid adjustment of spreads in CDS market. Consequently the non-zero basis could have 

some spread predictive power and could be used to predict the subsequent movement in the CDS 

market. Most studies (e.g., Longstaff et al., 2005; Bai and Collin-Dufresne, 2014) have focused 

on the cause of the non-zero basis, whereas Kim et al. (2016) is the first to focus on the 

implication of the basis for future price movement in a related market. We extend this 

investigation by using the basis to study future spread changes in the CDS market. Our study is 

different from Kim et al. (2016) in the sense that they investigate the predictive power of basis 

for future returns in corporate bonds. We compliment this by focusing on the predictive power of 

the basis on changes in spreads in the CDS market. 

However, the basis and CDS spreads occur simultaneously and the information 

transmission mechanism means the mispricing between the two markets could drive subsequent 
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spreads in either of the two financial markets, leading to endogeneity issues. To test the direction 

of causality and the effect of one over the other, i.e., between the basis and CDS spread changes, 

we undertake a granger type causality test. 

We test for the direction of causality between the basis and change in CDS spreads. To 

account for the possibility of reverse causality, we develop Eqn. (3) and (4) in line with previous 

studies (Qui et al., 2016) that have applied granger causality tests. Eqn. (3) specifically tests the 

hypothesis that the basis drives changes in CDS spreads, whereas Eqn. (4) tests for the 

possibility of reverse causality. 

∆𝐶𝐷𝑆𝑖𝑡 = 𝛼 + 𝜏1𝐿. ∆𝐶𝐷𝑆𝑖𝑡−1 + 𝜏2𝐵𝐴𝑆𝐼𝑆𝑖𝑡 + 𝜏3𝐿. 𝐵𝐴𝑆𝐼𝑆𝑖𝑡−1 + ∑ 𝛽𝑗𝐴𝐶𝑖𝑡
𝑗
1 + ∑ 𝛾𝑘𝑀𝐵𝑖𝑡

𝑘
1 +

∑ 𝛿𝑚
𝑚
1 𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑡 + 𝜒𝐿𝐼𝑄𝑖𝑡 + 𝜀𝑖𝑡                                                                                                     (3)  

 

𝐵𝐴𝑆𝐼𝑆𝑖𝑡 = 𝛼 + 𝜏1𝐿. 𝐵𝐴𝑆𝐼𝑆𝑖𝑡−1 + 𝜏2∆𝐶𝐷𝑆𝑖𝑡 + 𝜏3𝐿. ∆𝐶𝐷𝑆𝑖𝑡−1 + ∑ 𝛽𝑗𝐴𝐶𝑖𝑡
𝑗
1 + ∑ 𝛾𝑘𝑀𝐵𝑖𝑡

𝑘
1 +

∑ 𝛿𝑚
𝑚
1 𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑡 + 𝜒𝐿𝐼𝑄𝑖𝑡 + 𝜀𝑖𝑡                                                                                                     (4)  

In Eqn. (3), the absolute change in CDS spreads (∆CDS) is a function of lagged change in 

CDS spreads (L.∆CDS), current basis (BASIS) and lagged basis (L.BASIS), whereas in Eqn. (4), 

the basis (BASIS) is a function of the lagged basis (L.BASIS), current change in CDS spreads 

(∆CDS) and lagged changed in CDS spreads (L.∆CDS). Firm-level and macroeconomic controls 

in the models are as detailed in Section 3.2. As a robustness check, we repeat the analysis for the 

percentage change in CDS spreads (%∆CDS) for Eqn. (3) and Eqn. (4).  
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Table 5: Effect of Basis on change in CDS spreads 

Panel data fixed effect regression (with robust standard errors) of the absolute change in CDS spreads (∆CDS) as a function of the lagged 

change in CDS spreads (L.∆CDS), current basis (BASIS) and lagged basis (L.BASIS) while controlling for accounting- and market-based 

variables. Firm-level and macroeconomic controls in the models are as detailed in Section 3.2. The variables are estimated from the period 

of 01/01/2005 to 31/12/2012. The R2 reported is the fixed effect within regression values. Sub-periods are as defined in Table 1. In Panel 

B, as a robustness check, we repeat the analysis for the percentage change in CDS spreads (%∆CDS)  

Panel A: US UK EU 

∆CDS 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

L.∆CDS -0.058 -0.015 -0.146* -0.082* 0.084* 0.191** 0.029 -0.026 0.285*** -0.288 0.199 -0.066 

BASIS -0.028 -0.004 -0.041 -0.076 0.007 0.024** 0.025 -0.054 -0.24** -0.052* -0.217 -0.268 

L.BASIS 0.012 0.021 -0.025 0.115** 0.001 -0.04 -0.012 0.093** 0.243* 0.036 0.303* 0.296* 

SIZE 2.988 -3.514 -12.024 -4.643 8.846* 16.191 30.74 1.519 19.442* 20.529 74.744* 245.567 

ROA -208.4*** 67.202 -227.354* -122.8** 2.265 -21.32* -66.1 15.62 -99.276 28.898 -398.64 148.168 

QUICK -2.631 4.171 -13.321 -1.026 1.556 7.54* -15.01 6.766** 1.367 -13*** 26.469 10.32 

TRADE -0.829 0.371 -9.61 -0.402** 8.039 50.556 12.145 18.584 -28.822 -1.252 140.1** -233.829 

SALES 0.09** 0.059 -0.007 0.059* 0.104* -0.068 0.03 0.214** -0.02** -0.084 0.214 0.007 

LEVERAGE 2.317 -53.615 87.602 -12.033 20.2*** 17.377 -29.668 2.629 65.357 18.195 -20.878 11.519 

AER -1.046* 2.865** -1.688 -0.094 -0.96*** 0.571 -6.5** -1.16*** 1.917 -7.719 -47.9** 3.938 

STDEV -3.723 1.638 -1.692 -89.3*** -5.116 17.494 54.196 -10.063 -142.974** 18.335 -146.3 -156.08* 

DTD -0.557* -0.742* 0.459 -1.05*** -0.074 -0.119 0.648 -0.2 -1.698* 0.248 1.234 -3.632** 

RATE -35.007 -347.4* -607.7** -275.302 31.155 190.465 127.75 339.486 -6.75 -19.211 1103.19 5936.8** 

INDEX 7.832 -4.806 45.911 1.744 3.708 -6.504 9.592 6.518* -97.271** -27.7** 77.414 21.964 

GICS_R -114.6*** -9.478 -176.4*** -70.6*** -25.81** -8.195 -8.354 -39.088* 38.567 50.6** 52.49 -56.021* 

ABS 0.059 -0.005 3.228** 0.678* -1.55*** -0.897 -2.013 -0.962 1.903 -0.452 5.866 10.126 

_cons 4.792 74.883* 65.35 69.4*** -53.75** -105.57 -167.03 -13.995 -77.439 -107.8* -521.3* -1316.245 

N 5,415 962 1,387 3,066 492 124 144 224 287 84 104 99 

R2 8.15% 3.60% 10.00% 16.48% 21.34% 13.96% 12.04% 48.57% 42.24% 19.11% 52.09% 50.16% 

F statistics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Notes: ***, **, and * indicate rejection of the null hypothesis at 1%, 5% and 10%, respectively, based on t statistics. 

  

Panel B US UK EU 

%∆CDS 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

L.%∆CDS -0.04*** -0.039 -0.08*** -0.12*** 0.044 0.143 -0.059 -0.012 -0.044 -0.2 -0.091 -0.193* 

BASIS 0.003 -0.004 0.009** -0.07*** 0.013 0.038* 0.021 -0.068 -0.1*** -0.13** -0.068 -0.12* 

L.BASIS 0.005 0.004 0.01*** 0.07*** -0.001 -0.08 -0.018 0.13*** 0.091*** 0.12 0.09** 0.171*** 

SIZE -1.232 -10.2** -11.1* -1.01 16.032*** 43.369 28.449 0.238 4.06 39.75 21.832 62.805 

ROA -49.5*** -26.272 -40.891* -59.3*** -10.476 -46.693 -18.11 9.542 -106.011 44.133 -185.7 -60.683 

QUICK 0.13 5.67* -4.758 0.127 5.155* 20.173 -2.764 8.01** 1.397 -37.7*** 22.092 11.589** 

TRADE -0.503** -0.083 1.469 -0.5*** 19.578 112.291 149.1* 12.332 -9.4 -11.678 38.594 -78.483 

SALES 0.044*** 0.05* 0.013 0.048*** 0.026 -0.218 -0.014 0.208* -0.022*** -0.178 0.017 -0.001 

LEVERAGE -1.821 -15.47 29.084 -7.099 19.958 81.592 -97.5 -3.75 -21.931 92.439 -119.7 6.221 

AER -0.192 2.8*** -0.454** -0.103 -0.826** 2.763 -1.965 -0.076 2.067** -32.9** -18.05 3.694*** 

STDEV -9.97*** 26.645 -14.419 -20.3*** 18.627 26.388 90.905 -29.502 -77.32*** 129.813 -34.86 -74.55** 

DTD -0.28*** -0.199 -0.095 -0.25*** 0.339 -0.213 0.754 -0.332 -0.963** 1.484 3.21 -2.54*** 

RATE 38.84*** -313*** -312*** 465.072* 146.12*** 50.23 213.1 605.607 89.089 179.297 430.7 550.648 

INDEX 7.925*** 8.234 56.4** 8.354*** 9.508** -19.501 -9.285 10.9** -71.42*** -119*** -30.95 -42.1*** 

GICS_R -57.3*** -26.5** -67.6*** -48.9*** -31.21** -11.687 -26.23 -42.812* 18.797 208*** -12.02 1.447 

ABS -0.022 -0.034 2.39*** -0.109 -0.984* -2.912 -3.827 -1.183 1.181*** -0.962 2.138* 3.826** 

_cons 15.8* 75.05** 67.166 18.095 -111.8*** -271.7 -142.5 0.007 22.031 -261.4 -116.6 -313.823 

N 5,415 962 1,387 3,066 492 124 144 224 287 84 104 99 

R2 12.64% 4.85% 18.20% 23.25% 8.00% 10.36% 10.8% 31.78% 28.07% 19.35% 35.9% 38.03% 

F Statistics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 6: Effect of change in CDS spreads on Basis – Reverse Causality test 

Panel data fixed effect regression (with robust standard errors) of the current basis (BASIS) as a function of the lagged basis (L.BASIS), 

absolute change in CDS spreads (∆CDS) and lagged absolute change in CDS spreads (L.∆CDS) while controlling for accounting- and 

market-based variables. Firm-level and macroeconomic controls in the models are as detailed in Section 3.2. The variables are estimated 

from the period of 01/01/2005 to 31/12/2012. The R2 reported is the fixed effect within regression values. Sub-periods are as defined in 

Table 1. In Panel B, as a robustness check, we repeat the analysis using the percentage change in CDS spreads (%∆CDS). 

Panel A: US UK EU 

BASIS  Whole Period Pre-GFC GFC Post-GFC Whole Period Pre-GFC GFC Post-GFC Whole Period Pre-GFC GFC Post-GFC 

L.BASIS 0.464*** 0.49*** 0.152 0.491*** 0.527*** 0.37*** 0.2** 0.48*** 0.654*** 0.40*** 0.43*** 0.474*** 

∆CDS -0.162** -0.066 -0.217** -0.255 0.05 0.669** 0.099 -0.691* -0.48*** -1.073** -0.413* -0.42*** 

L.∆CDS -0.036 0.067 -0.146 0.002 0.116 1.11* 0.16 -0.042 -0.071 -0.079 -0.17 -0.136 

SIZE -20.072 4.271 -104.149 -15.559 23.682 -71.443 143.5** 90.079* 30.862 38.565 137.758 -53.228 

ROA -575.852 -81.833 -974.341 93.64 -104.841 239.59* -550*** -55.332 -487.335** -50.919 -1796** -160.911 

QUICK 11.61 -5.508 84.493 -6.918 16.43*** -20.383 -19.49 -5.408 15.75** 74.8** 7.811 5.23 

TRADE 0.634 7.492** -39.96* 2.144*** 32.493 -134.54 95.333 -147.087 -44.043* -19.765 6.498 111.811 

SALES 0.151 0.034 1.196 -0.004 0.248 0.314 -0.97 -0.764* -0.058*** -0.925 0.025 -0.021 

LEVERAGE -34.611 -81.267 612.444 -122*** -134.613** -72.588 -966** -23.707 47.114** 81.341 -688.5 -23.368 

AER -0.308 1.745 2.27 0.705 -1.338*** -7.706 -7.801 -1.09 2.833** 6.303 49.585 2.237 

STDEV 184.13*** -178.5* 218.97* 108.9** 129.818 195.373 653.5** 189.7** -11.286 -634.264 -396.9 57.196 

DTD 2.26** 0.156 10.9*** 0.939** 0.36 2.11 18.0*** 0.392 -2.55*** -6.662 -16.3** -1.536 

RATE 275.042* -48.459 -2112.7* 603.345 78.633 -1877.1 1847** 3185* -61.342 -1665* -1168.3 3161.24 

INDEX -103.6*** -68.19 -79.63 -46.5*** -61.074*** 43.849 -613*** -24.911 -162.28*** 88.268 -196.1* -188*** 

GICS_R -169.1*** -5.429 -351*** -64.4*** -28.486 -95.695 89.921 -83.5*** 102.518* -213* 251.858 91.504* 

ABS 0.165 0.086 5.703 1.012 0.264 6.438 -3.538 -2.764 -0.11 1.425 1.703 1.741 

_cons 128.438 122.278 200.241 175** -37.702 476*** -565.04 -439.689 -102.492 33.157 51.139 285.867 

N 5,415 962 1,387 3,066 492 124 144 224 287 84 104 99 

R2 36.54% 22.47% 23.06% 37.18% 65.22% 34.28% 56.72% 49.51% 69.93% 49.93% 65.88% 50.99% 

F statistics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Panel B: US UK EU 

BASIS  

Whole 

Period 

Pre-

GFC GFC 

Post-

GFC 

Whole 

Period Pre-GFC GFC Post-GFC 

Whole 

Period Pre-GFC GFC Post-GFC 

L.BASIS 0.46*** 0.49*** 0.17 0.50*** 0.526*** 0.38*** 0.211** 0.49*** 0.639*** 0.407*** 0.40*** 0.473*** 

%∆CDS 0.097 -0.128 0.463 -0.9*** 0.061 0.167* 0.067 -0.604* -0.64*** -0.408** -0.489 -0.536** 

L.%∆CDS -0.079 0.243 -0.33* -0.098 0.199 0.529*** 0.11 -0.04 -0.092 -0.04 0.008 -0.399 

SIZE -20.63 4.656 -101.17 -14.76 20.591 -65.251 151.1** 88.98* 25.66 33.015 127.57 -145.053 

ROA -539.22 -87.775 -909.96 63.264 -98.317 240.54* -575.5*** -60.82 -516.9** -60.65 -1729** -287.762* 

QUICK 12.14 -5.453 90.27 -6.282 15.65*** -17.515 -26.29 -5.11 18.40* 73.5** 9.624 6.886 

TRADE 0.80 7.468** -37.01* 1.702*** 30.866 -108.14 67.01 -152.6 -32.01* -23.559 -57.988 197.12* 

SALES 0.13 0.037 1.20 0.028 0.25 0.35 -0.94 -0.78** -0.06*** -0.892 -0.187 -0.027 

LEVERAGE -35.31 -77.229 577.7 -121*** -134.7** -83.695 -964.9** -28.1 4.85 99.487 -728.05 -39.57 

AER -0.10 1.689 3.098 0.615 -1.421** -7.89 -10.91** -0.302 2.74** 1.49 76.61** 3.09 

STDEV 185.7*** -175.5* 224.4** 106.9*** 124.736 188.68 653.5** 177.6* 45.37* -597.874 -275.34 85.98 

DTD 2.381** 0.141 10.6*** 0.913** 0.274 1.929 18.03*** 0.325 -2.12*** -6.269 -15.2** -1.46 

RATE 280.962* -41.017 -1873.8* 1069.451 53.179 -1674.7 1828** 3331.8* 72.26 -1584* -1228.2 652.78 

INDEX -105.9*** -61.793 -96.895 -37.6*** -62.05*** 47.316 -601.2*** -22.3 -148.9** 71.631 -248.7** -239.9*** 

GICS_R -147.3*** -10.312 -290.9*** -89.2*** -25.106 -108.18 95.20 -82.28*** 102.8* -186.75 210.754 121.3** 

ABS 0.155 0.093 4.54 0.725 0.371 4.746 -3.44 -2.821 -1.08 1.376 -1.823 -1.27 

_cons 127.685* 116.579 185.146 168.898** -18.18 446*** -601.8* -428.88 -75.1 40.702 146.644 799.24 

N 5,415 962 1,387 3,066 492 124 144 224 287 84 104 99 

R2 36.27% 22.61% 22.66% 39.88% 65.40% 34.24% 56.25% 49.73% 67.19% 49.80% 62.19% 49.05% 

F statistics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Notes:  ***, **, and * indicate rejection of the null hypothesis at 1%, 5% and 10%, respectively, based on t statistics. 
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Table 5 reports the result of testing Eqn. (3), i.e., the effect of BASIS on ∆CDS, and Table 6 

reports the results of Eqn. (4), i.e., the reverse causality test, the effect of ∆CDS on BASIS. From 

Table 6, we do not find any evidence of causality running from ∆CDS to BASIS for both absolute 

change (Panel A) and percentage change in CDS spreads (Panel B). From Table 5, we note some 

evidence of causality from lagged BASIS to ∆CDS in the post-GFC period. This finding suggests 

that when there is higher mispricing between the CDS and the bond market, the CDS spreads in the 

subsequent period converge to reflect the new credit dynamics of the firm. This effect is more 

pronounced in the post-GFC period and cannot be attributed for other periods across the three 

samples.  

These findings extend the literature (Shleifer and Vishny, 1997; Kim et al., 2016) on the limit 

to arbitrage by documenting the existence of mispricing between the CDS and the bond markets, 

leading to subsequent price correction in the CDS market. The effect on the CDS market following 

the mispricing between the CDS and bond markets contributes to the importance of financial market 

in improving the efficiency and quality of related markets. Our findings that the price adjustment in 

the CDS market is more pronounced following the mispricing between the two markets, in the post-

GFC period, highlight that CDS markets in the post-GFC era maybe driven by other non-default 

drivers and may not be reflective of the true default dynamic of a firm. 
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4. Conclusion 

Using an extensive sample that covers firms in the US, UK and EU as well as a wider timeline of 

analysis covering different economic conditions, we provide a comparative evaluation of corporate 

CDS spread dynamics. Our model incorporates firm-specific accounting, market-based and liquidity 

measures to examine the extent to which corporate CDS spreads are sensitive to various 

determinants of firm credit risk. Given the explosion in the use of CDS contracts by market 

participants, our findings have a number of implications for policy makers.  

Consistent with Annaert et al. (2013) and Tang and Yan (2015), we find that spread predictor 

variables are better in explaining CDS spreads during periods of financial distress than at other 

times across the three samples. This suggests that during dire economic conditions, CDS spreads 

provide a better representation of corporate credit risk and may be subject to greater noise during 

other periods. Additionally, a substantial portion of CDS spreads in the post-crisis period that could 

not be explained by the comprehensive model points towards the growing influence of non-default 

drivers of CDS spreads. This finding implies that policy makers should ensure that they do not 

relying solely on the CDS market as an estimate of the credit risk signal at all times but rather 

consider other market (equity and bond markets) indicators in conjunction with CDS market signals. 

This finding has implications for the use of CDS spreads for regulation and estimation of systemic 

risk (e.g., Flannery et al., 2010; Giglio, 2011), advocating caution on the implementation of rules 

based on CDS spreads. Moreover, we find the variables driving CDS spreads change over time, for 

the UK and EU samples over the sample periods consistent with studies for bond yield spreads. 

Thus, our results imply that policy makers need to be aware of the period and context in which 

estimates are made and, if the context changes or the estimation period is long, prioritize re-

estimation of the model. 
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By decomposing the spread prediction ability of accounting- and market-based variables, our 

findings (for 10 out of 12 cases) corroborate Galil et al. (2014), who claim that market based 

variables have higher predictive power of spreads.. Especially, during and following the financial 

crisis, market-based variables turn out to be more important predictors of CDS spreads, and the 

growing importance of CDS market liquidity is evident, specifically in the UK sample. This 

considerable spread prediction ability of market-based variables points towards the benefits of using 

forward-looking measures such as DTD compared to backward-looking accounting variables; thus, 

our findings support and extend the observations drawn by Galil et al. (2014). This has major 

implications for financial accounting regulators, who need to ensure corporate reporting, which 

represents an essential means by which companies communicate with their stakeholders, provide a 

true, fair and timely representation of the firm credit risk.  

By splitting the bond yield spread into default and non-default components, we are able to 

isolate and show that default risk, proxied by CDS spreads, only partially explains bond yield 

spreads and that the presence of a significant proportion of non-default components points towards a 

greater mispricing between the bond and CDS markets, both during and following the global 

financial crisis. This mispricing, which is represented by the significant non-zero basis, could either 

reflect the divergence in opinions between the financial markets or presence of non-default driven 

market constraints that hinder the asset pricing process. Although the previous literature has 

ventured into the causes of mispricing, few have tried to investigate the predictive power of this 

mispricing to study price movement in the related market. We find a positive relationship between 

the CDS-bond basis and subsequent changes in CDS spreads, indicating that higher mispricing 

causes a rapid adjustment of CDS spreads in the post-crisis period. This finding has a number of 

implications. First, CDS spreads in the post-crisis period seem to respond more rapidly to 

mispricing than at other times. Second, mispricing could be a potential driver of CDS spreads in the 
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aftermath of the financial crisis, which needs to be understood to enable speculative arbitrage 

opportunities. Third, the spillover of pricing information between the bond and CDS markets points 

towards the limit of arbitrage between the two financial markets. Our findings, which document the 

existence of mispricing between CDS and bond markets, leading to a subsequent price correction in 

the CDS market in the post-crisis era, contributes to the importance of the corporate bond market in 

improving the efficiency and quality of the corporate CDS market.  
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