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Abstract 1 

The Eurasian red squirrel’s (Sciurus vulgaris) history in Ireland is largely unknown, but the 2 

original population is thought to have been driven to extinction by humans in the 17th 3 

Century, and multiple records exist for its subsequent reintroduction in the 19th Century. 4 

However, it is currently unknown how these reintroductions affect the red squirrel 5 

population today, or may do so in the future. In this study, we report on the development of 6 

a DNA toolkit for the non-invasive genetic study of the red squirrel. Non-invasively collected 7 

red squirrel samples were combined with other samples collected throughout Ireland and 8 

previously published mitochondrial DNA (mtDNA) data from Ireland, Great Britain and 9 

continental Europe to give an insight into population genetics and historical introductions of 10 

the red squirrel in Ireland. Our findings demonstrate that the Irish red squirrel population is 11 

on a national scale quite genetically diverse, but at a local level contains relatively low levels 12 

of genetic diversity and evidence of genetic structure. This is likely an artefact of the 13 

introduction of a small number of genetically similar animals to specific sites. A lack of 14 

continuous woodland cover in Ireland has prevented further mixing with animals of 15 

different origins that may have been introduced even to neighbouring sites.  Consequently, 16 

some of these genetically isolated populations are or may in the future be at risk of 17 

extinction. The Irish red squirrel population contains mtDNA haplotypes of both a British 18 

and Continental European origin, the former of which are now extinct or simply not 19 

recorded in contemporary Great Britain. The Irish population is therefore important in terms 20 

of red squirrel conservation not only in Ireland, but also for Great Britain, and should be 21 

appropriately managed.  22 

Keywords: Conservation genetics, re-introductions, phylogeography.   23 
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Introduction 1 

The Eurasian red squirrel (Sciurus vulgaris) range extends across the Palaearctic region, 2 

making it the mostly widely distributed squirrel species (Thorington et al. 2012). Population 3 

declines occurred in Ireland and Great Britain between the 17th and 19th Centuries due to 4 

deforestation and trapping of squirrels for the fur trade. According to Le Fanu (1922) 5 

thousands of red squirrel skins were exported from Ireland in the 16th Century, but when 6 

such exports ceased in the 17th Century it is assumed that the population had become 7 

extinct or that numbers were so low that their export was no longer viable (Fairley 1983; 8 

Montgomery et al. 2014).  9 

In the 19th Century, the trading and sale of live red squirrels was fashionable, and up to 10 

20,000 animals were sold annually in London markets (Shorten 1954). Stock was brought in 11 

from the surrounding areas in southern England and imported from Continental Europe. 12 

This geographically diverse stock was used to restore the red squirrel population throughout 13 

Ireland with at least ten documented introductions occurring in the 19th Century (Barrington 14 

1880). These introductions often consisted of a few individuals, and it was their offspring 15 

that were later moved to other locations, resulting in red squirrels being documented 16 

throughout Ireland by 1910 (Shorten 1954).  17 

The North American grey squirrel (Sciurus carolinensis) was introduced into both Great 18 

Britain and Ireland in the late 19th and early 20th Centuries (Shorten 1954). Its spread 19 

contributed to declines of the red squirrel in many parts of its distribution due to a 20 

competitive advantage held by the grey squirrel, and its role in the spread of the squirrelpox 21 

virus (Chantreyet al. 2014). Despite the continued presence of the grey squirrel throughout 22 

many parts of Ireland today, the most recent national squirrel survey found that the grey 23 

squirrel distribution had retracted and the species was absent from parts of its former 24 

range, although still actively invading new areas (Lawton et al. 2015). There is now evidence 25 

that the expanding pine marten (Martes martes) population might be facilitating the 26 

retraction of the grey squirrel population and subsequent expansion of the red squirrel 27 

(Sheehy and Lawton 2014).  28 

At 10.5%, Ireland has the lowest level of forest cover in Europe, after Malta (Teagasc, 2016). 29 

Despite an extensive hedgerow network in parts of the country, habitat fragmentation is a 30 
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threat to woodland species. When this is coupled with the history of translocations, the Irish 1 

red squirrel population is likely to exhibit high levels of genetic isolation. This in turn could 2 

result in a heightened risk of inbreeding, loss of locally adapted ecotypes, and an inability 3 

for new animals to move into the area and ‘rescue’ the remnant stock. Such risks could 4 

ultimately lead to local extinctions as has been seen and predicted in other species 5 

(Weckworth et al. 2012; Mondol et al. 2013), and may already have been a contributing 6 

factor to previous declines of the red squirrel in Ireland. 7 

Finnegan et al. (2008) conducted a mitochondrial DNA (mtDNA) study of the Irish red 8 

squirrel population and found 26 novel haplotypes. Only one haplotype was present in 9 

contemporary Britain, H15 from Hale et al. (2004). This was likely an introduction from 10 

Continental Europe into Great Britain that was subsequently introduced into Ireland. There 11 

were two additional haplotypes found in British museum specimens that were present or 12 

formerly present in the Irish population, but have not been recorded in contemporary Great 13 

Britain to date. Finnegan et al. (2008) suggested that much of the Irish red squirrel stock was 14 

of British and Central European ancestry but due to the widespread decline of the red 15 

squirrel in parts of Great Britain, it is likely that some of the original haplotypes introduced 16 

into Ireland are now extinct in Great Britain.  17 

Studies to date that have attempted to assess levels of genetic diversity and structure of the 18 

red squirrel have relied on DNA extracted from tissue or hair plucked from trapped animals 19 

(e.g. Trizio et al. 2005). Despite a move towards non-invasive genetic studies in other 20 

species, particularly carnivores (Mullins et al. 2010; O’Neill et al. 2013; Sheehy et al. 2014; 21 

O’Mahony et al. 2017), there have been few such studies conducted with rodents. This is 22 

most likely due to their small body size and elusive behaviour, and the difficulties of 23 

obtaining faeces from arboreal rodents (Reiners et al. 2011).  24 

In this paper, we firstly outline the non-invasive genetic approach used to sample red 25 

squirrels in Ireland. Using these non-invasively collected hair samples, we aimed to provide 26 

information regarding local levels of genetic diversity and population structure. Secondly, 27 

other hair samples were collected from other sources throughout Ireland, and combined 28 

with previously published material from Ireland, Great Britain and Europe to gain insights 29 

into red squirrel genetic heritage. Contemporary levels of genetic diversity were then 30 
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compared to the species’ recent past in Ireland to create an informed discussion regarding 1 

future conservation and management decisions. 2 

Materials and Methods 3 

Sample Collection 4 

Study Area and Hair-Tube Survey Design 5 

Non-invasive hair-tube surveys were used to collect hair samples from red squirrels in 6 

South-East Ireland between 2009 and 2013 (Fig. 1). The hair-tubes were made from 300 mm 7 

lengths of 70 mm diameter PVC piping and the hair or glue patch was as described in 8 

Mullins et al. (2010). Tubes were secured horizontally to trees with wire and were 9 

positioned at a surveyor accessible height at a minimum distance of 30 m apart, with the 10 

hair patch positioned 5-7 cm inside the tube. Between one and three transects were 11 

selected per woodland depending on the size of the woodland and accessibility within it, 12 

and ten hair-tubes were deployed per transect. Bait consisted of maize, peanuts and 13 

hazelnuts, and tubes were visited and rebaited every seven days for four weeks. Patches 14 

containing hair were removed and stored in 30 ml sterile containers at -20 °C prior to DNA 15 

extraction.  16 

Additional hair samples were collected from different projects from the following locations 17 

Cork (n = 4 RTA (road traffic accident)), Wexford (n = 14 (plucked hairs from trapped 18 

animals)), Midlands, (Laois and Offaly) (n = 3 (hair-tube samples)), Dublin (n = 4 (hair-tube 19 

samples)), Galway (n = 11(plucked hairs from trapped animals)) and Northern Ireland, 20 

(Antrim) (n = 11 (plucked hairs from trapped animals)) (Supp. Material 1 and Fig. 1 for 21 

locations). The hair-tube samples from the Midlands were confirmed as red squirrel in 22 

Sheehy et al. (2014) and the Dublin samples were identified to species following the method 23 

described by O’Meara et al. (2012) for the Mammals in a Sustainable Environment (MISE) 24 

project www.miseproject.ie. All of these additional samples went forward for both 25 

microsatellite and mtDNA analysis. DNA Extraction  26 

Genomic DNA (gDNA) was extracted from hair samples using ZR Genomic DNATM–Tissue 27 

MicroPrep (Zymo Research) according to the Solid Tissue and Hair protocol with Zymo-28 

SpinTM II columns. Purified DNA preparations were stored at -20°C.  29 

http://www.miseproject.ie/
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Species identification of non-invasive samples from South-East Ireland 1 

Squirrel samples were genetically identified to species using real-time PCR as per O’Meara 2 

et al. (2012). Samples that failed to test positive for either red or grey squirrel DNA were 3 

subsequently tested for pine marten DNA as per Mullins et al. (2010), since this species 4 

displays sympatry with the squirrel species in the study area.    5 

Assessing the quality and quantity of nDNA in the red squirrel DNA samples 6 

A nuclear DNA (nDNA) real-time PCR assay was designed to target a 153-bp of sequence on 7 

the zinc-finger intron using the forward primer SQF (5’-GTCCACAGCAAGAACTTTCCTCA-3’), 8 

reverse primer SQR (5’-TCAAGTTAGAAGAGTCTGCAGACCTA-3’) and TaqMan® MGB probe 9 

(5’-VIC-CACATGCGAATCCAT-MGB-3’) based on the following sequence (Genbank accession 10 

no.). All novel primers and probes were designed in this study using Primer Express 2 11 

software from Applied Biosystems (Life Technologies), primers purchased from Eurofins 12 

MWG Operon and the TaqMan probe from Applied Biosystems. Each PCR was as described 13 

in O’Meara et al. (2012). The PCR conditions were 50 °C for 2 min, 95 °C for 10 min, followed 14 

by 50 cycles of 95 °C for 15 s and 60 ° C for 1 min. All assays were carried out using an 15 

Applied Biosystems 7300 Real-Time PCR System, and Applied Biosystems Sequence 16 

Detection Software (SDS 1.2.3.) was used for data analysis. This real-time PCR method 17 

provides a Ct value as an output which corresponds to the quantity of DNA present, and 18 

facilitates the selection of good quality DNA samples for microsatellite genotyping using 19 

non-invasive samples (O’Neill et al. 2013; Sheehy et al. 2014) 20 

Microsatellite Panel Selection 21 

The following microsatellite loci were chosen based on their small amplicon size and the 22 

number of alleles observed in previous studies: SCV3, SCV4, SCV6, SCV8, SCV20, SCV23, 23 

SCV31 (Hale et al. 2001b), RSU1, RSU4, RSU5 (Todd 2000), LIS3 and LIS12 (Shibata et al. 24 

2006). The loci designed by Shibata et al. (2006) for the Japanese squirrel (S. lis) had not 25 

previously been tested for cross-species amplification with the red squirrel.  26 

Each primer pair was initially tested in singleplex using the following PCR protocol: 5 µl 27 

GoTaq® Hot Start Green Master Mix (Promega), 2 µM of each primer, 4 µl DNA, and H2O in a 28 

final volume of 10 µl and amplified using a dropdown PCR protocol involving one cycle of 95 29 
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°C for 10 min, followed by 20 cycles of 95 °C for 30 s and a touchdown from 60 °C to 50 °C 1 

for 1 min decreasing by 0.5 °C per cycle, and then 72 °C for 1.5 minutes. This was followed 2 

by 20 cycles of 95 °C for 30 s, 45 °C for 1 minute and 72 °C for 1.5 minutes, and a final 3 

extension of 72 °C for 10 minutes. Where possible, the reverse primers were redesigned to 4 

sit closer to the repeat motif to reduce the overall size of the amplicon and to increase the 5 

specificity of the primer pair to work in conjunction with non-invasive samples. Mini 6 

microsatellites were successfully designed for SCV4 (miniSCV4R: 5’-7 

GTTTCTTGCACAGGAATCATTTGGGA-3’), SCV31 (miniSCV3R: 5’-8 

GTTTCTTGAACAGAAGTGATATGAGGCCAG-3’) and SCV8 (miniSCV8R: 5’- 9 

TGTGTTTGGGTGTCTGTGTGTT) to amplify shorter fragments of 114-148-bp, 162-166-bp and 10 

162-166-bp, respectively. All reverse primers were also modified following Brownstein et al. 11 

(1996) to include 5′-GTTTCTT-3’ sequences on the reverse primers to promote non-12 

templated nucleotide addition.  13 

The final panel of nine loci were amplified in one of the following three multiplex reactions 14 

using fluorescent labels to enable multiplexing: (a) SCV3 (0.2 µM 6-FAM), LIS12 (0.3 µM 15 

ATTO550), RSU5 (0.18 µM 6-FAM); (b) miniSCV4 (0.15 µM ATTO550), miniSCV31 (0.15 µM 16 

ATTO551), miniSCV8 (0.2 µM 6-FAM); (c) SCV6 (0.25 µM 6-FAM), SCV20 (0.3 µM 6-FAM) and 17 

LIS3 (0.1 6-FAM). The optimised concentrations stated are for both the fluorescently 18 

labelled forward and reverse primers that enabled pooling of the three multiplexes for cost 19 

effective simultaneous fragment analysis. The use of loci SCV23, RSU1 and RSU4 (see above) 20 

was discontinued due to poor amplification under these conditions. The PCR products were 21 

diluted (1:20) in water prior to fragment analysis, and 1 µl was added to 15 µl of HiDi 22 

Formamide with 0.15 µl size standard (GS500 LIZ™). Fragment analysis was completed on an 23 

ABI PRISM®  310  Genetic Analyser with 4% polyacrylamide (POP-4® polymer), in a  47  cm  x 24 

50  µm  capillary,  under  default  run  conditions. Alleles were scored using the GeneMapper 25 

software version 3.7 (Applied Biosystems). All samples were amplified in duplicate and 26 

failed or inconsistent scores across both replicates were independently repeated from the 27 

PCR stage (e.g. Sheehy et al. 2014).  28 

Identification of the red squirrel mtDNA haplotype  29 
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PCR primers were designed to target a 350-bp region of D-loop mtDNA: SvScF (5’-1 

TTCACGGAGGTAGGTAGATTAAGA-3’) and Svul_R (5’-TTGATGTCTATGTAATTCGTGCAT-3’) 2 

using the following sequences AF1110001–AF111027 (Barratt et al. 1999). Each PCR 3 

contained 5 µl GoTaq® Hot Start Green Master Mix (Promega), 2 µM each primer, 4 µl 4 

purified DNA and H20 in a final volume of 10 µl. The PCR conditions were 95 °C for 5 min, 40 5 

cycles of 95 °C for 30 s, 56 °C for 30 s and 72 °C for 30 s, followed by 72 °C for 10 min. PCR 6 

products were visualised, sequenced in both directions on ABI PRISM®  310  Genetic 7 

Analyser.  8 

Microsatellite DNA data analysis 9 

Genetic identification of individual squirrels from hair-tubes 10 

GIMLET, version 1.3.4 (Valière 2002) and MICROCHECKER, version 2.2.3 (van Oosterhout et 11 

al. 2004) were used to assess the replicated data for the presence of errors, allelic drop out, 12 

false alleles, the presence of null alleles, scoring errors due to stutter peaks and the 13 

percentage of positive PCRs. Unique genotypes, observed (HO) and expected (HE) 14 

heterozygosities, the number of alleles (A), and probability of identity for individuals (PI) and 15 

siblings (PISID) were all assessed using GENALEX, version 6.5b (Peakall and Smouse 2006). 16 

The inbreeding coefficient (FIS) was calculated using FSTAT version 2.9.3, with significance 17 

levels for FIS levels calculated by randomizing the alleles among the individuals within the 18 

population and comparison to the observed data to determine deviations from Hardy-19 

Weinberg Equilibrium using 10,000 permutations. 20 

Descriptive statistics of all samples 21 

A representative sample set was selected from the field study area in Co. Waterford, SE 22 

Ireland (n = 15), which included samples from all sites analysed in Co. Waterford. 23 

Populations were divided geographically and groups with at least 11 individuals were 24 

assessed for descriptive statistics. Cork, Dublin and the midlands region had too few 25 

individuals for inclusion for these analyses. HO, HE, A and FIS were assessed as above and 26 

allelic richness (AR), an index of genetic diversity was assessed using FSTAT version 2.9. 27 

FSTAT was also used to estimate pair-wise FST statistics, and the significance was tested 28 

using 1000 randomisations and applying a Bonferroni correction. Genotypic linkage 29 
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disequilibrium by Fisher’s method (1000 dememorizations and 5000) iterations were also 1 

calculated using GENEPOP.  2 

 3 

The number of genetic clusters present in the dataset was assessed using STRUCTURE 4 

version 2.3.1 (Pritchard et al. 2000; Falush et al. 2003). The Bayesian clustering algorithm 5 

implemented in the programme was used to analyse the data with default settings with a 6 

burn-in period of 10,000, followed by 100,000 replicates with no prior population 7 

information. The likelihood of K equals 1 to 10, with each K-value replicated three times to 8 

assess the most likely number of inferred populations. The most likely K was assessed by 9 

implementing the ΔK method (Evanno et al. (2005), using STRUCTURE Harvester (Earl and 10 

van Holdt 2012). The web server CLUMPAK was used to summarize and visualize the 11 

STRUCTURE results (Kopelman et al. 2015). To further investigate the presence of genetic 12 

structure, a principal coordinate analysis (PCoA) in GENALEX, version 6.5b (Peakall and 13 

Smouse 2006) was employed to further examine the genetic relationships among the 14 

samples. This multivariate approach was chosen to complement the STRUCTURE analysis as 15 

that might be affected by the presence of related individuals in the dataset.  16 

 17 

To test if geographic distance was affecting genetic differentiation, tests for isolation-by-18 

distance were conducted using Mantel’s test, implemented in GENALEX using Nei’s standard 19 

genetic distance (Nei 1972, 1978) with 999 permutations.  20 

 21 

MtDNA Data Analysis  22 

MtDNA sequences generated in this study were compared by multiple alignments using the 23 

CLUSTALW method in MEGA V.7 (Tamura et al 2011).  Haplotypes were identified using 24 

ARLEQUIN (version 3.5; Excoffier and Lischer 2010). MtDNA haplotypes were compared to 25 

those previously recorded in Ireland and Great Britain (Finnegan et al. 2008) by truncating 26 

the sequences to 263-bp. A median-joining network was constructed using the median 27 

algorithm of Bandelt et al. (1999) in PopART (v1.7.1) (http://popart.otago.ac.nz/) with 28 

default settings. DNASP version 5.10.01 (Librado and Rozas 2009) was used to estimate 29 

nucleotide diversity.  30 
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Finally, the DNA sequences obtained from this study and that of Finnegan et al. (2008) were 1 

compared to those previously published across Europe to compare the genetic heritage of 2 

the Irish population today. The data consisted of samples from Great Britain (including the 3 

Channel Islands), Continental Europe (Sweden, Finland, France, Austria, Poland, Hungary, 4 

Czech Republic, Romania, Slovenia, Spain, Portugal, Italy, Albania and Greece) and eastern 5 

samples from China and Russia all previously published by Hale et al. (2004), Ogden et al. 6 

(2005), Grill et al. (2009) and Simpson et al. (2013). The dataset consisting of 208 sequences 7 

was truncated to 188-bp and visualised via a median-joining network constructed as before 8 

using PopART.  9 

Results 10 

Hair-tube survey 11 

In total there were 110 mammal detections at hair-tubes across the study area in South East 12 

Ireland  (min = 1, max = 21 per site).The real-time PCR species identification tests identified 13 

red squirrel (n = 86), grey squirrel (n = 4) and pine marten (n = 8). The samples that failed to 14 

amplify as red squirrel, grey squirrel or pine marten (n = 12) could not be identified to 15 

species as those samples contained a non-target species or contained DNA of poor quality 16 

that was unsuitable for genetic analyses. The positive red squirrel samples were 17 

subsequently amplified with the nDNA assay and the samples with a Ct < 35 (n = 59) were 18 

selected for amplification with the microsatellite panel.  19 

Microsatellite Analysis  20 

A total of 58 genotypes were obtained from the red squirrel hair-tube samples, with 31 21 

individual red squirrels identified. The number of individual red squirrels identified per site 22 

ranged from one each in the Nire Valley and Boola Bridge to nine in Ballyscanlon (Fig. 1). 23 

Replicated genotypes were recorded at four sites which ranged from one to 16 recaptures. 24 

Low levels of allelic dropout were identified at RSU5 and SCV20 (0.01 each). The overall 25 

dropout rate across all loci and PCRs was 0.03. No occurrences of false alleles were 26 

recorded. The number of alleles per locus ranged from two to four and averaged 3.6 alleles 27 

per loci. Observed heterozygosity averaged 0.53 and expected levels of heterozygosity 28 

averaged 0.48 across all loci. Three loci RSU5, LIS12 and LIS3 showed significant deviations 29 
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from Hardy-Weinberg equilibrium (P = 0.05), and remained so after the Bonferroni 1 

correction was applied (P = 0.0056). Probability of identity averaged 3.5 x 10-1 across loci, 2 

with a cumulative PI of 4.7 x 10-5 (Supp. Material 2).   3 

From the populations which had >11 individuals genotyped, the average number of alleles 4 

per population ranged from 2.7 in the Waterford population to 3.2 in the other populations 5 

(Galway, Wexford and Northern Ireland). Allelic richness ranged from 1.8 in Waterford to 6 

2.2 in Galway. Average levels of expected heterozygosity ranged from 0.40 in Waterford to 7 

0.55 in Galway. Average observed levels of heterozygosity ranged from 0.38 in Waterford to 8 

0.60 in Northern Ireland. FIS values ranged from 0.15 in Galway to -0.35 in Wexford, with 9 

both of those populations showing signification deviations from Hardy–Weinberg 10 

Equilibrium at the 5% significance level. However, no population showed significant 11 

deviation from Hardy-Weinberg equilibrium following Bonferroni correction (P = 0.00079) 12 

(Table 1). 13 

The pairwise FST estimates showed that the geographically divided populations were highly 14 

differentiated from one another (Table 2). The overall FST = 0.237, 99% C.L = 0.158, 0.324 15 

was found to be significantly different from zero. The result of Mantel’s test revealed a 16 

significant pattern of isolation by distance (IBD) (R² = 0.1015; P = < 0.001) which was 17 

expected as samples were used from a broad geographical area, without sampling between 18 

the regions.  19 

Genetic Structure 20 

A total of 58 individuals were analysed for assignment, removing samples that failed to 21 

amplify at two or more loci. The STRUCTURE programme found that K = 4 was the most 22 

likely number of genetic clusters in the population. Using the Evanno et al. (2005) method 23 

implemented in STRUCTURE HARVESTER (Earl and van Holt 2012), there was not a clear 24 

divide between K = 3 and K = 4 as the most appropriate number of genetic clusters in the 25 

red squirrel population (Supp. Material 2). However, K = 4 also showed lowest deviance 26 

from the mean, and appeared more uniform in comparison to the other K values in Fig. 2 (K 27 

= 2, 3 and 4) suggesting that this was the most reliable estimate.  28 
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The PCoA was used to visualise the clustering of individuals. This analysis accounted for 1 

51.57% of the overall genetic variation, and clustered the Waterford and Cork samples 2 

closely together. The Wexford and Northern Irish samples clustered as groups, while the 3 

Galway samples were more dispersed. All geographically divided groups exhibited some 4 

level of overlap (Fig. 3). The results from the population assignment based PCoA were in 5 

agreement with the STRUCTURE output for K = 3 and K = 4.    6 

Identification of the MtDNA haplotypes from hair-tubes 7 

DNA sequenced for haplotype analysis revealed a total of six mtDNA haplotypes in Co. 8 

Waterford including the four haplotypes previously published by Finnegan et al. (2008) 9 

(IE16, IE18, IEGB1 and IEGB2), and two novel haplotypes (IE23 and IE24 Genbank Accession 10 

no:) (Fig. 1).  11 

MtDNA analysis from across Ireland 12 

The mtDNA haplotypes varied across the sampling area which was reflected by a high level 13 

of haplotype diversity. A table of all haplotypes from this study and those previously 14 

recorded by Finnegan et al. (2008) are provided in Supp. Material 3. Across the 263-bp of 15 

sequence, 226 sites were monomorphic, 37 polymorphic (including a total of 46 mutations), 16 

11 sites included singletons and 26 sites were parsimony informative with an overall 17 

nucleotide diversity of 0.029 ± 0.095 and gene diversity of 0.995 ± 0.00007. A total of six 18 

haplotypes were unique to this study.  19 

The red squirrel haplotypes from this study were compared to those previously recorded in 20 

Ireland by Finnegan et al. (2008) and visualised using a network diagram in Fig. 4. The 21 

haplotype network reflects a high level of genetic variation within red squirrels across 22 

Ireland, but also within the study area in Co. Waterford. As in Finnegan et al. (2008), the 23 

majority of the haplotypes found in this study were similar to IEGB haplotypes which were 24 

previously recorded in museum specimens in Britain and contemporary Irish haplotypes. 25 

However, IEGB2 was previously only recorded in museum samples in Ireland, but was found 26 

to be present in this study in Co. Waterford. Finnegan et al. (2008) described IE17 and IE14 27 

as being of a Continental European and British origin, and IE24 (newly discovered in this 28 

study), also appeared to group closely to this haplotype, suggesting a Central European 29 
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origin. Samples from Antrim in Northern Ireland, included two haplotypes, (IE25 and IE26) 1 

both similar to IE7, a haplotype previously recorded in the area by Finnegan et al. (2008). 2 

Samples from Cork contained the haplotypes IE18 and IE27, again both closely related. IE18 3 

was previously recorded in Cork and West Waterford, and this haplotype showed close 4 

similarity to a haplotype observed in Northern Ireland, possibly representing a similar 5 

colonization history, or introductions from the same source. Samples from Co. Dublin 6 

contained the haplotype IE2. 7 

Finally, the European-wide network diagram showed low levels of geographic clustering 8 

across Europe with many samples from Continental Europe overlapping with those from 9 

Great Britain, and a small number of Irish haplotypes (Fig. 5). A large number of the 10 

Continental European haplotypes were identified as identical haplotypes once the DNA 11 

sequences were truncated, and these are represented by larger vortexes in the diagram. A 12 

group of Irish and British museum haplotypes branched out from the main European 13 

samples indicating a degree of separation from the main European cluster. The other 14 

separated branch included samples from Southern Italy (Calabria), Russia and China.  15 

Discussion 16 

Non-invasive genetic sampling of red squirrels 17 

The techniques presented in this paper offer a novel way to remotely obtain a source of 18 

DNA from red squirrels. The accuracy and sensitivity of the real-time PCR species 19 

identification and nDNA screening offer an efficient and robust technique to select samples 20 

for genotyping of non-invasive samples. As in O’Neill et al. (2013), the Ct values obtained 21 

from real-time PCR offer an insight into the quality and quantity of DNA in each sample, 22 

allowing only good quality samples to be used for genotyping. 89% of samples collected in 23 

this study using hair-tubes were identified to species level using the red squirrel, grey 24 

squirrel and pine marten real-time PCR assays. The samples that were not identified as red 25 

squirrel, grey squirrel or pine marten either had non-detectable quantities of DNA or may 26 

have originated from species that we did not test for. Of the positively identified red squirrel 27 

samples, 68.5% of samples were deemed suitable for microsatellite genotyping by using a 28 

real-time PCR assay that assessed the quantity and quality of the nDNA in each DNA extract. 29 

As a result of this screening method, a high level of genotyping success was achieved in this 30 
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study, with 98.3% of the samples that passed the screening threshold producing reliable 1 

genotyping data, thus reducing the amount of time and resources required for this analysis 2 

and substantially reducing the risk of introducing genotyping errors, an inherent problem in 3 

some non-invasive genetic studies (Broquet et al. 2007).  4 

Population Genetics 5 

For the non-invasively collected samples from Co. Waterford, average levels of 6 

heterozygosity were 0.48 and homozygosity were 0.53, with an average number of alleles of 7 

3.6. These values are comparable to populations previously reported from Italy, Northern 8 

England and Jersey but higher than the island of Anglesey, although the panel of 9 

microsatellites used in those studies varied (Ogden et al. 2005; Trizio et al. 2005; Simpson et 10 

al. 2013). Three loci showed significant deviations from Hardy-Weinberg equilibrium in this 11 

study which might be attributed to genetic admixture caused by divergent origins of the 12 

population (Simpson et al. 2013). When the Waterford sample size was reduced and 13 

compared to the wider Irish population, there was no evidence of deviation from Hardy-14 

Weinberg equilibrium, again indicating that genetic structuring was occurring within the 15 

county.  16 

The mtDNA haplotype analysis of the hair-tube samples from Co. Waterford revealed a high 17 

level of genetic diversity within the county. The haplotypes found in the Nire Valley included 18 

some that were not found elsewhere in the county, providing further indication of genetic 19 

structure. This area is somewhat isolated as it is surrounded by the River Suir and the 20 

Comeragh Mountains, which may inhibit migration within Co. Waterford (Fig. 1). It is likely 21 

that multiple colonisations and introductions took place due to the mixed heritage seen in 22 

this study, with some of the haplotypes being of an Irish/British origin, and IE24 appearing 23 

to be more related to Continental European haplotypes. This is consistent with the mixed-24 

origin red squirrels introduced into Ireland in the late 1800s (Barrington 1880; Shorten 25 

1954). 26 

Both the microsatellite DNA and mtDNA analysis showed high levels of genetic diversity and 27 

differentiation in the Irish red squirrel population. The genetic assignment assessment 28 

methods showed that the geographically divided populations sampled in this study were 29 

genetically differentiated from one another. However, this interpretation is complicated due 30 



15 
 

to the sampling approach used in this study due to difficulties implementing a systematic 1 

sampling approach across the country, and this was evident in the isolation-by-distance 2 

analysis which showed that populations were isolated by distance which may have 3 

influenced the STRUCTURE results (Frantz et al. 2009). The results may be further impacted 4 

by the history of the red squirrel population in Ireland which has clearly originated from 5 

multiple sources within Great Britain and Continental Europe, making population 6 

differentiation more likely.  7 

At a national level, the Irish red squirrel is genetically quite diverse. At a local level however, 8 

genetic diversity is relatively low as only small numbers of mtDNA haplotypes were 9 

observed per woodland and the haplotype composition varied from site to site. This 10 

suggests a lack of continuous gene flow across sites and small populations of squirrels may 11 

be at particular risk of local extinction. The lack of contemporary gene flow between 12 

isolated populations has been recognised as a conservation risk in other species including 13 

the caribou (Rangifer tarandus) in western North America and the Indian tiger (Panthera 14 

tigris)  (Weckworth et al. 2012; Mondol et al. 2013). Possible mitigation measures should 15 

include the protection and maintenance of hedgerows as they are important wildlife 16 

corridors in Ireland (Hickie 2004). Clear felling and over thinning of woodlands should be 17 

avoided and continuous forest cover practices should be encouraged where possible.  18 

Simpson et al. (2013) showed evidence of a similar 120-year-old genetic footprint that has 19 

remained on the island of Jersey. There was also evidence of a spatial pattern that revealed 20 

a higher incidence of the disease amyloidosis where divergent haplotypes of red squirrels 21 

met in the centre of the island, possibly linked to genetic outbreeding. Such results have 22 

important implications in Ireland where many reintroductions have taken place and there 23 

are high numbers of divergent mtDNA haplotypes present leading to the possibility of the 24 

occurrence of an outbreeding depression.  25 

The establishment of the invasive grey squirrel in Britain and Ireland has many parallels to 26 

the introduction of the red squirrel in Ireland. For instance, the grey squirrel establishment 27 

in Britain was facilitated by people moving squirrels to new areas in the late 19th and early 28 

20th centuries. With the aid of microsatellite analysis, Signorile et al. (2016) was able to trace 29 

the genetic footprint of the 1911 introduction in Ireland back to Woburn in Bedforshire. The 30 
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Woburn population had been imported from New Jersey, USA. However, multiple 1 

introductions from different sources within the US also took place into Great Britain, and 2 

Signorile et al. (2016) found that this divergent stock did not mix as much as expected. In 3 

fact, the genetic diversity of the species is quite low and their invasion success was linked to 4 

their intentional movement by people rather than their ecological ability to invade.  5 

Given the potential risks of localised extinction of isolated populations in Ireland and their 6 

history of human-mediated introductions and current lack of conservation management, 7 

population enhancement projects should be considered. Population reinforcements should 8 

be considered on a site-by-site basis selecting animals with similar haplotypes to the 9 

resident population rather than choosing animals by geographic proximity that may have 10 

highly divergent haplotypes. For instance, if a population reinforcement project was to be 11 

considered in the Nire Valley, Co Waterford where the haplotype IE24 (a continental 12 

European type haplotype) was found, animals with similar haplotypes such as IE14 (found in 13 

Wexford in this study) and IE17 (found in Down and Wicklow by Finnegan et al. (2008)) 14 

could be considered. Indeed, some of the Irish populations may also be considered as 15 

potential reintroduction/reinforcement candidates for conservation efforts in Great Britain, 16 

particularly in areas in England where red squirrels are now extinct. Haplotypes such as the 17 

IEGBs and those closely related would be worth considering.  18 

However, feasibility studies would firstly need to take place to ensure that the source 19 

populations within Ireland were viable and could sustain removal as per IUCN Guidelines 20 

(IUCN/SSC 2013). The non-invasive genetic toolset described in this study can be used to 21 

assess contemporary and historical diversity to aid in the consideration of any translocation 22 

or population restoration projects. 23 

 24 

Irish red squirrels in relation to their European counterparts 25 

Red squirrels are known to have low levels of phylogeographic structure across Europe (Grill 26 

et al. 2009). This was also evident from our comparative analysis where little geographic 27 

structure was evident across much of Europe. Whilst it was clear that some of the Irish 28 

mtDNA haplotypes held affinities to continental European samples, a branch of Irish and 29 
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British museum mtDNA haplotypes showed differentiation from the rest of Europe (Fig. 5). 1 

The results from this study show the importance of the Irish population in a European 2 

context as they include mtDNA haplotypes that are now extinct or have not been recorded 3 

in contemporary Great Britain or elsewhere in Europe. This mirrors the situation with stoats 4 

(Mustela erminea) and pygmy shrews (Sorex minutus) whereby Ireland houses 5 

lineages/haplogroups which have either disappeared or are rare in Britain and other parts of 6 

Europe (Martinkova et al. 2007; McDevitt et al. 2011). 7 

Finnegan et al. (2009) morphologically examined red squirrels in Ireland and found that 59% 8 

of the samples examined exhibited a light or blonde tail and ear tufts, a trait also seen in 9 

Cumbria, Scotland and Wales, but not commonly recorded elsewhere in Europe. Other 10 

species, including the Irish stoat, (Mustela erminea) also have unique morphological 11 

features when compared to stoats elsewhere in Europe (Miller 1912). More research is 12 

needed to investigate if the outlying mtDNA haplotypes seen in this study (Fig. 5) also 13 

represent individuals with the blonde colour trait. Future work could involve the DNA 14 

sequencing of a longer fragment of mtDNA and additional microsatellite data from squirrels 15 

across Ireland, Great Britain and Europe to test the likelihood of different historical 16 

scenarios that may have caused this outlying group.  17 

Conclusion 18 

It is imperative to actively conserve the Irish red squirrel population given the role people 19 

have previously played in their current distribution, habitat availability and connectivity 20 

which will need appropriate management going forward to prevent populations from 21 

becoming further genetically isolated and potentially becoming extinct. The Irish red squirrel 22 

population has a unique genetic heritage in a European context, but more importantly 23 

represents a gene pool that is now potentially extinct in some of Great Britain, and could 24 

potentially be used as a source population should translocation or reinforcement projects 25 

be considered there as well as in Ireland. The Irish red squirrel population therefore 26 

represents an important population that is worthy of conservation management both from 27 

an Irish and British perspective and could be considered as a joint responsibility given the 28 

importance to both islands.  29 

30 
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List of Tables 1 

Table 1 2 

Average descriptive statistics for red squirrel populations in Ireland. Abbreviations are 3 

number of samples amplified per loci (N), number of alleles per loci (A), observed 4 

heterozygosity (HO), expected heterozygosity (HE), (AR) allelic richness, (FIS) inbreeding 5 

coefficient, (WAT) Waterford, (GAL) Galway, (WX) Wexford, and (NI) Northern Ireland with 6 

values in bold indicating significant deviation from Hardy-Weinberg Equilibrium at P = 0.05.  7 

Table 2 8 

Pairwise FST values generated using the microsatellite data between (WAT) Waterford, (GAL) 9 

Galway, (WX) Wexford, and (NI) Northern Ireland, and corresponding significance values in 10 

bold after Bonferroni correction (P = 0.002).  11 

  12 
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List of Figures 1 

Figure 1 2 

Upper inset: Map of Ireland with counties mentioned and sampled in this study. 3 

Abbreviations: Antrim (ANT), Down (DOW), Dublin (DUB), Wicklow (WK), Wexford (WX), 4 

Waterford (WAT), Kilkenny (KK), Tipperary (TIP), Limerick (LK), Cork (CK), Kerry (KY), Offaly 5 

(OFF), Laois (LAO) and Galway (GAL). Map of survey sampling locations in Co. Waterford. 6 

Lower inset: Distribution of mtDNA haplotypes found in Co. Waterford. County border (red) 7 

and rivers (blue) also shown. Abbreviations for survey sites: Gardenmorris (GM), 8 

Ballyscanlon (BS), Brownswood (BW), Guilcagh (GC), Kildalton (KD), Nire Valley (NV), 9 

Faithlegg (FL), Mahon Bridge (MB), Boola Bridge (BO) and Ballymacabry (BC). 10 

Figure  11 

Graphical output from Bayesian analysis in STRUCTURE showing assignment probabilities of 12 

individuals to clusters for K = 2, K = 3 and K = 4. Clusters were divided into the following 13 

groups: Dublin (DUB), Waterford (WAT), Cork (CK), Galway (GAL), Wexford (WX), Midlands 14 

(MDS), and Northern Ireland (NI).  15 

Figure 3 16 

PCoA of red squirrel individuals. Populations were divided into the following groups: Dublin 17 

(DUB), Waterford (WAT), Cork (CK), Galway (GAL), Wexford (WX), Midlands (MDS), and 18 

Northern Ireland (NI).  19 

Figure 4 20 

Median-joining network of mtDNA sequences from Irish individuals from this study and 21 

Finnegan et al. (2008).  22 

Figure 5 23 

Median-joining network of mtDNA sequences divided into groups from Great Britain (GB), 24 

museum samples from Great Britain (mGB), Jersey and the Isle of Wight (CI), Ireland (IE), 25 

Europe (EU) and Russia and China (RC).  26 
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Table 1 

 
N NA AR HO HE FIS 

WAT 16.7 2.7 1.8 0.38 0.4 0.009 

GAL 10.1 3.2 2.2 0.48 0.56 0.153 

WX 13.7 3.2 1.9 0.56 0.44 -0.346 

NI 10.8 3.2 2.1 0.6 0.52 0.001 
 

 

 

Table 2 

 

  WAT CK GAL WX MDS NI 

DUB 0.228 0.257 0.06 0.297 0.041 0.189 

WAT 
 

0.257 0.216 0.343 0.182 0.287 

CK 
  

0.174 0.397 0.258 0.334 

GAL 
   

0.199 0.105 0.215 

WX 
    

0.234 0.260 

MDS           0.076 
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Figure 4 
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Figure 5 
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Supplementary material 1:  

Geographic locations of samples, the collectors involved and the number of samples from 

each area.  

 

 

 

 

 

 

 

Supplementary material 2: 

 

Descriptive statistics for non-invasively identified red squirrels identified in Co. Waterford. 

Size range (SR), number of samples amplified per loci (N), number of alleles per loci (A), 

observed heterozygosity (HO), expected heterozygosity (HE), inbreeding coefficient (FIS) 

values in bold indicating values that significantly indicating significant deviation from Hardy-

Weinberg Equilibrium at P = 0.05, probability of identity per locus (PI) and probability of 

identity for siblings (PIsib).  

 

 

 
Rsu5 Lis12 Scv3 miniScv4 miniScv31 miniScv8 Scv6 Scv20 Lis3 Average 

SR 185 -189 203 -209 136 -138 114 -118 167 -173 162 -168 172 -180 213 -219 171 -175 
 

N 29 28 29 27 22 28 30 29 30 28 

A 3 4 2 3 4 4 4 4 4 3.6 

HO 0.45 0.29 0.59 0.48 0.36 0.64 0.8 0.48 0.7 0.53 

HE 0.41 0.31 0.49 0.44 0.45 0.67 0.59 0.43 0.55 0.48 

Fis -0.40 -0.42 -0.24 -0.17 -0.16 -0.13 -0.23 -0.34 -0.23 -0.25 

PI 4. x 10-1 4.9 x 10-1 3.8 x 10-1 4.0 x 10-1 3.4 x 10-1 1.6 x 10-1 2.6 x 10-1 3.9 x 10-1 2.8 x 10-1 3.5 x 10-1 

PIsib 6.5 x 10-1 7.2 x 10-1 6.0 x 10-1 6.4 x 10-1 6.1 x 10-1 4.6 x 10-1 5.2 x 10-1 6.3 x 10-1 5.4 x 10-1 6.0 x 10-1 

 

Location  Collectors No 

   

Midlands (Laois + Offaly) E. Sheehy 3 

Wexford (The Raven) W. Carr & F. Marnell 14 

Galway (Derryclare) C. Waters & C. Lawton 11 

Northern Ireland (Antrim) D. Tosh 11 

Dublin (Carrickgollogan)  S. Rubalcava 4 

Cork (Glengarriff) P. Sleeman 4 
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Supplementary material 2:  

(a) Ln (probability of data) for K ranging from 1 to 10. (b) Estimation of number of subpopulations 

using delta K values for K ranging from 1 to 10 using the method developed  by Evanno et al. (2005). 

 

(a) 
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(b) 
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Supplementary material 3:  

Locations of recorded mtDNA haplotypes in Ireland. Haplotypes recorded in this study are 

displayed in bold. Locations mapped in Fig. 1.  

 

Haplotype Location  Source 

IE1 Dublin Finnegan et al. (2008) 

IE2 Wicklow, Dublin  Finnegan et al. (2008), this study 

IE3 Wicklow Finnegan et al. (2008) 

IE4 Wicklow Finnegan et al. (2008) 

IE5 Wicklow Finnegan et al. (2008) 

IE6 Wicklow Finnegan et al. (2008) 

IE7 Antrim Finnegan et al. (2008) 

IE8 Kerry Finnegan et al. (2008) 

IE9 Kerry Finnegan et al. (2008) 

IE10 Galway Finnegan et al. (2008) 

IE11 Galway Finnegan et al. (2008) 

IE12 Galway Finnegan et al. (2008) 

IE13 Galway Finnegan et al. (2008) 

IE14 Wexford Finnegan et al. (2008), this study 

IE15 Wicklow, Kerry Finnegan et al. (2008) 

IE16 Limerick, Galway, Waterford Finnegan et al. (2008), this study 

IE17 Down, Wicklow Finnegan et al. (2008) 

IE18 Waterford, Cork Finnegan et al. (2008), this study 

IE19 Dublin Finnegan et al. (2008) 

IE20 Kilkenny Finnegan et al. (2008) 

IE21 Wicklow Finnegan et al. (2008) 

IE22 Dublin, Galway Finnegan et al. (2008) 

IE23 Waterford This study 

IE24 Waterford This study 

IE25 Antrim, Northern Ireland This study 

IE26 Antrim, Northern Ireland This study 

IE27 Cork This study 

IEGB1 
Cork, Kerry, Galway, Wicklow, Tipperary, 

England Finnegan et al. (2008) 

IEGB2  Kilkenny, Laois, Wicklow, England Finnegan et al. (2008) 

H15 Wicklow, the Netherlands Hale et al. (2004), Finnegan et al. (2008) 
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