1	Secondary	forest regeneration	benefits old-growth	specialist bats in	a fragmented

- 2 tropical landscape
- 3 Ricardo Rocha^{1,2,3*}, Otso Ovaskainen^{3,4}, Adrià López-Baucells^{1,2,5}, Fábio Z. Farneda^{1,2,6},
- 4 Erica M. Sampaio^{2,7}, Paulo E.D. Bobrowiec², Mar Cabeza³, Jorge M. Palmeirim^{1,2} and
- 5 Christoph F.J. Meyer^{1,2,8}

4	r			
	۲			
	L	÷.	,	
1	۰.			

- ⁷ ¹ Centre for Ecology, Evolution and Environmental Changes cE3c, Faculty of
- 8 Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- 9 ² Biological Dynamics of Forest Fragments Project, National Institute for Amazonian
- 10 Research and Smithsonian Tropical Research Institute, 69011-970, Manaus, Brazil
- ³ Metapopulation Research Centre, Faculty of Biosciences, University of Helsinki, FI-
- 12 00014, Helsinki, Finland
- ⁴ Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of
- 14 Science and Technology, N-7491 Trondheim, Norway
- ⁵ Granollers Museum of Natural Sciences, 08402, Catalunya, Spain
- ⁶ Department of Ecology/PPGE, Federal University of Rio de Janeiro, 21941-901 Rio
- 17 *de Janeiro, Brazil*
- ⁷ University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics,
- 19 *89069 Ulm, Germany*
- ⁸ Ecosystems and Environment Research Centre (EERC), School of Environment and
- 21 Life Sciences, University of Salford, Salford, M5 4WT, United Kingdom
- 22
- 23 *Correspondence: Ricardo Rocha; E-mail: ricardo.nature@gmail.com

24 Abstract

Tropical forest loss and fragmentation are due to increase in coming decades. 25 Understanding how matrix dynamics, especially secondary forest regrowth, can lessen 26 fragmentation impacts is key to understanding species persistence in modified 27 landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate 28 how bat assemblages are influenced by the regeneration of the secondary forest matrix. 29 We surveyed bats in continuous forest, forest fragments and secondary forest matrix 30 31 habitats, ~15 and ~30 years after forest clearance, to investigate temporal changes in the 32 occupancy and abundance of old-growth specialist and habitat generalist species. The 33 regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on 34 generalist species were negligible for forest fragments and negative for secondary 35 36 forest. Our results show that the conservation potential of secondary forests for 37 reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, 38 39 are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to 40 fragmented terrestrial settings can be hampered by the dynamic nature of human-41 42 dominated landscapes.

43

Keywords Amazon, habitat fragmentation, habitat restoration, hierarchical modelling of
species communities, forest succession, second growth, habitat specificity.

46

47 Introduction

Humanity's global footprint is so ubiquitous and far-reaching that many argue that we
now live in a new geological epoch, the Anthropocene¹. Habitat loss and fragmentation
are pervasive and conspicuous features of this new historical context, which, in
combination with other human-related threats, are compelling the planet into a "sixth
wave of extinction"^{2,3}.

The scars of the Anthropocene defaunation are being carved deep into the planet's 53 biodiversity strongholds, the tropical forests⁴. As large swaths of old-growth forest give 54 55 way to expanding humanized landscapes, species persisting in forest remnants are left to endure the pervasive consequences of increased isolation and decreased area⁵. 56 Landscape-wide assemblage dynamics in fragments created in the aftermath of 57 deforestation are dependent, to a large extent, on the nature of the matrix within which 58 forest patches are embedded⁶. Conservation science has traditionally conceived the 59 modified matrix as a "sea" of hostile habitat, in which fragments act as "islands" and 60 this analogy has guided much of the theory and practice of the field^{6,7}. However, 61 equating forest fragments with island ecosystems, while appropriate in some situations, 62 fails to accommodate the heterogeneous and dynamic nature of most present-day 63 modified landscapes^{8,9}. 64

Vertebrate assemblage dynamics in tropical land-bridge islands have painted a dire
 portrait of the consequences of forest fragmentation in true island systems¹⁰⁻¹².

Mainland studies that also construed fragments as true islands, have arrived at similar
pessimistic narratives^{13,14}. However, direct comparisons between these two systems
(true islands vs mainland) have revealed that assemblages persisting in forest patches
embedded in terrestrial human-dominated landscapes defy the patterns exhibited by
their water-embedded analogues^{9,15}.

72	Second growth nowadays constitutes the predominant type of forest cover across the
73	tropics ¹⁶ , providing myriad services and natural products to human populations
74	worldwide, and key habitat for countless forest-dwelling species ^{17,18} . Although some
75	fragmentation-related extinctions can be averted by forest regeneration ^{15,19,20} , the role of
76	second growth in biodiversity conservation remains controversial ²¹⁻²³ . Central to the
77	debate is the capacity of secondary forest to preserve old-growth specialist species and
78	to buffer the impacts of fragmentation on assemblages living in forest remnants ^{16,17,24} .
79	We surveyed bats, a taxon demonstrably sensitive to habitat modification ²⁵ , in forest
80	fragments and secondary forest sites, ~ 15 and ~ 30 years after forest clearance in the
81	early 1980s at the Biological Dynamics of Forest Fragments Project (BDFFP), the
82	world's largest and longest-running fragmentation experiment, located in the central
83	Brazilian Amazon ²⁶ (Fig. 1). Determining the responses of tropical species to habitat
84	change is often hindered by the rarity of old-growth specialists for which data are often
85	too sparse for reliable inference at the species level. This commonly leads to the
86	exclusion of species captured less frequently (which are often of conservation concern)
87	from the analysis or to several species being lumped together according to group
88	membership (e.g. feeding guilds), thus preventing the detection of species-specific
89	responses. Here, we overcome this difficulty by employing a joint species distribution
90	modelling framework that combines species-specific models into a single hierarchical
91	model that allows the detection of the relationship between environmental variables and
92	species responses simultaneously at the species and community levels ^{27,28} . Our aim was
93	to examine the effect of matrix regeneration between \sim 1996 and \sim 2011 on old-growth
94	specialist and habitat generalist phyllostomid bat species (and Pteronotus parnellii)
95	across the three main habitats of the BDFFP: continuous primary forest, primary forest
96	fragments and secondary forest matrix. We predicted that the maturation between study

97 periods of the secondary forest surrounding forest fragments would provide extra 98 resources for old-growth specialists, leading to increases in occupancy and abundance in 99 this group both within fragments and the secondary regrowth matrix. Conversely, we expected that the successional advance of the secondary vegetation would have 100 101 diminished the availability of food resources for generalist bats (many of which feed on early-successional plants), hence reducing their abundance in the same habitats. 102 103 Additionally, since similarity in structure and floristic composition between secondary and primary forests increases with regeneration time^{16,29} we predicted bat assemblage 104 105 similarity between continuous forest and secondary forest to be higher ~ 30 years after 106 forest clearance (~ 2011) than half-way through the study period (~ 15 years after forest 107 clearance; ~1996). Similarly, due to a reduction in fragment-matrix contrast, we predicted that assemblage similarity between forest fragments and continuous forest 108 was going to increase over the same period. 109

110

111 **Results**

We captured 4,028 bats in the first period (35, 33 and 22 species in continuous forest,
forest fragments and secondary forest respectively; 20 species shared between the three
habitats) and 2,081 bats in the second period (33, 34 and 35 species in continuous
forest, forest fragments and secondary forest respectively; 26 species shared between
the three habitats). Twenty-seven species were classified as specialists whereas 23 were
classified as habitat generalists (Supplementary Table S1 online).
Our modelling results revealed that the regeneration of the matrix between the two

- 119 periods had overall positive effects on the estimated occupancy and abundance of
- 120 specialist bats in secondary forest sites and fragments, whereas effects on generalist

121	species were negligible (fragments) or negative (secondary forest) (Fig. 2). Model
122	predictions indicate that for specialist bats the mean number of species expected to be
123	captured during a survey visit nearly doubled in fragments (0.81 in ~1996; 1.5 in
124	~2011) while remaining virtually unchanged for generalist species (3.63 in ~1996; 4.17
125	in ~2011). In secondary forest, this figure also increased for specialist bats (0.62 in
126	~1996; 0.91 in ~2011), while decreasing for generalist species (4.5 in ~1996; 2.81 in
127	~2011) and in continuous forest increased for both groups (1.81 in ~1996; 2.79 in
128	~2011 (specialists) and 3.47 in ~1996; 4.7 in ~2011 (generalists)) (Fig. 2). The mean
129	number of individuals captured during a given survey varied little between the first and
130	second period in continuous forest and fragments but decreased by nearly 2/3 in
131	secondary forest (from 23.24 in ~1996 to 8.39 in ~2011) (Supplementary Fig. S2
132	online). In this habitat, generalists and specialists exhibited opposite trends between
133	periods, with the mean number of individuals of generalist species declining from 22.55
134	in ~1996 to 7.3 in ~2011 and the mean number of individuals of specialist species
135	increasing from 0.68 to 1.1 in the same period (Fig. 2).
136	Between ~1996 and ~2011, only 3 and 4 of the 27 species classified as specialists
137	decreased in occupancy respectively in fragments and secondary forest. Furthermore,
138	statistical support for these declines was limited (Fig. 3; Supplementary Table S2
139	online). During the same period, out of the 27 specialists, the abundance increased for
140	24 in fragments and for 23 in secondary forest. In contrast, of the 23 species classified
141	as generalists, 7 declined in occupancy in fragments and 17 in secondary forest (high
142	statistical support for 1 and 7 species, respectively) (Fig. 3; Supplementary Table S2
143	online). Seven generalist species declined in abundance in fragments and 17 in
144	secondary forest (Fig. 3).

Assemblage similarity between continuous forest and fragments increased slightly with time for generalists when considering both occupancy and abundance but declined for specialists. For secondary forests, occupancy- and abundance-based assemblage similarities relative to continuous forest declined for both groups. However, statistical support for these trends was limited (Table 1; See Table Supplementary S3 online for assemblage similarity comparisons for all species combined).

151

152 Discussion

153 There is a lack of studies that directly investigate temporal trends in wildlife responses to fragmentation and even fewer that evaluate how matrix use changes through time 154 (but see^{30,31}). Consequently, in contrast to the evaluation of species responses to spatial 155 features, which has received some attention in the bat conservation literature, temporal 156 variation, and in particular how bat responses to fragmentation are shaped by changes in 157 matrix condition, remains little explored²⁵. Here, we show that most phyllostomid bat 158 species and *Pteronotus parnellii* benefited from the increased permeability of the matrix 159 associated with the maturation of the secondary regrowth surrounding the BDFFP 160 fragments, and that specialist and generalist species exhibited contrasting responses to 161 matrix regeneration across the study landscape. 162

163 As hypothesized, we found that the maturation of second growth surrounding the

164 BDFFP fragments lead to a landscape-wide increase in the occupancy and abundance of

specialists, while reducing the occupancy and abundance of generalists in secondary

- 166 forest sites. Our results therefore mirror the recovery documented for beetle³² and bird³³
- assemblages following the development of secondary vegetation in the matrix at the
- BDFFP. However, it is worth emphasizing that the BDFFP is surrounded by vast

expanses of continuous forest harbouring healthy source populations and is buffered
from selective logging, fires, species invasions, and many other ancillary threats
plaguing contemporary tropical fragmented landscapes²⁶. The recovery here
documented is therefore likely to represent a best-case scenario and patterns reported
might be harder to observe under conditions that increasingly characterize the majority
of human-modified tropical landscapes.

The sole reliance on mist-netting data precludes a complete overview of the effects of 175 176 second forest regeneration on the BDFFP chiropteran fauna as a whole since, with the 177 exception of *P. parnellii*, Amazonian aerial insectivorous bats (a diverse group that includes the families Thyropteridae, Furipteridae, Mormoopidae, Emballonuridae, 178 Vespertilionidae, Molossidae and Natalidae³⁴) are not effectively sampled with mist-179 nets³⁵. However, we anticipate that old-growth specialist aerial insectivores are likely to 180 have benefited from the maturation of second growth surrounding the BDFFP fragments 181 in a similar way than their phyllostomid counterparts and to the aerial insectivore P. 182 parnellii. 183

Our results contrast with the catastrophic faunal declines observed in rodent 184 communities by Gibson et al.¹¹ in the forest islands of the Chiew Larn reservoir in 185 Thailand. Whereas most species of the mega-diverse bat assemblage at the BDFFP 186 increased in occupancy and abundance across the second growth-dominated landscape, 187 in the land-bridge island system in Thailand and, during a similar time window (~20 188 vears, Gibson et al.¹¹; ~15 years, our study), most species became extinct in forest 189 190 fragments surrounded by a static matrix (water). The recovery observed at the BDFFP 191 was mostly due to the recolonization of previously deforested areas and forest fragments 192 by specialist species, which increased in all sampled habitats during the second period. This recolonization is likely attributable to an increased diversity of food resources in 193

the matrix, allowing to fulfil the energetic requirements of a larger set of species other 194 than generalists. Additionally, many specialist bats at the BDFFP are highly edge-195 sensitive³⁶⁻³⁸ and consequently the maturation of the secondary vegetation adjoining 196 fragment edges might have increased habitat suitability by reducing the magnitude of 197 edge effects across the landscape. Notwithstanding major morphological and ecological 198 differences between rodents and bats, the widely different trajectories exhibited by 199 assemblages inhabiting true island systems¹¹ and fragments embedded within a 200 regenerating matrix (this study) highlight the potential of second growth forests to 201 202 mitigate fragmentation-related extinctions. 203 In spite of the signs of recovery exhibited by specialist species across our study landscape \sim 30 years after forest clearance, our results do not support an increase in 204 205 assemblage similarity between continuous forest and secondary forest over time. This, together with evidence that bat assemblages in smaller fragments (≤ 10 ha) and 206 secondary forest sites still differ considerably from continuous forest in terms of species 207 richness, evenness, composition and abundance^{35,39}, suggests that the second growth 208 209 matrix at the BDFFP still acts as an environmental filter. This filtering shapes bat assemblages in a trait-mediated manner, selectively benefiting bat species with a 210 phytophagous diet and reduced body mass^{40,41}. Similar pervasive consequences of forest 211 clearance can still be detected in birds⁴²⁻⁴⁴ and primates⁴⁵ in the BDFFP landscape, 212 highlighting that, although second growth can be of conservation significance, primary 213 forest is of irreplaceable value^{24,46}. 214 215 Our results have important implications for the interpretation of land-use change studies

using space-for-time approaches. Researchers rarely have the opportunity to collect data

217 prior to the main disturbance events that mould humanized landscapes. Consequently,

studies often have to rely on nearby sites where the target impact has not yet taken place

and assume that these accurately mimic pre-disturbance conditions⁴⁷. Here, we show 219 220 that the species richness of generalists and both the species richness and abundance of 221 specialists have increased in our reference sites in continuous forest, indicating considerable temporal heterogeneity in undisturbed forest assemblages over a period of 222 \sim 15 years. This suggests that space-for-time results may be undermined not only by 223 confounding effects arising from spatial heterogeneity but also by constraints associated 224 225 with the temporal heterogeneity of the assemblages inhabiting sites used as spatial 226 surrogates. This shifting baseline somewhat limits our capacity to attribute the observed 227 changes in fragment and secondary forest bat assemblages entirely to the effect of 228 matrix maturation. However, the contrasting temporal trends in the species richness of 229 generalists in continuous forest and secondary forest, i.e. increase in continuous forest vs. decrease in secondary forest, indicate that secondary forest regeneration plays an 230 231 important role in the assemblage dynamics across the landscape. Yet, our limited 232 knowledge of the extent of spatial and temporal dynamics of generalist and specialist species in continuous forest and how these fluctuations may relate to patterns in 233 fragmented landscapes still precludes a full understanding of these systems and 234 235 therefore should be a high priority for future research.

Despite the controlled, experimental conditions of the BDFFP, our findings add to an 236 increasing body of evidence $(e.g.^{9,15})$ emphasizing that the transposition of patterns of 237 biodiversity persistence in island ecosystems to fragmented terrestrial settings can be 238 239 hampered by the dynamic nature of human-dominated landscapes, and consequently 240 predictions under the island biogeographic framework can distort our understanding and 241 misguide conservation strategies. Accordingly, and in light of the contrasting temporal 242 trajectories of specialist and generalist species at the BDFFP, alternative theoretical frameworks, importantly, countryside biogeography⁴⁸, in which species' differential 243

habitat affinities can be accommodated, emerge as better suited for forecasting

245 biological changes in human-modified landscapes⁹.

In spite of some noteworthy regional declines in deforestation rates (e.g. Brazilian 246 rainforests), tropical forest loss has increased by more than 2,000 km²/year since the 247 beginning of the millennium⁴⁹. Much of these deforested areas will be used to meet the 248 growing demands for food and biofuel of an increasing human population⁵⁰. However, 249 250 following forest clearing, some converted areas are allowed to regenerate, giving rise to 251 human-modified landscapes in which secondary forests account for an increasing proportion of total forest cover¹⁶. Our results, although contingent on the existence of 252 nearby source populations, add to the evidence that secondary forests offer a 253 tremendous opportunity for both assisted and non-assisted habitat restoration⁵¹. Among 254 255 bats, frugivorous species are effective seed dispersers, especially of pioneer plant species⁵² and gleaning insectivores play essential roles in the reduction of herbivory 256 levels through trophic control of herbivorous arthropods⁵³. Populations able to persist in 257 258 primary forest remnants can therefore enhance second growth successional processes 259 and by doing so, aid in maintaining the provision of ecosystem services and improve habitat quality and connectivity in regenerating tropical forests. 260

To a large extent, the conservation potential of the world's tropical secondary 261 rainforests depends on the legal framework underpinning their governance. In the 262 Brazilian Amazon, the state of Pará has recently introduced legislation recommending 263 protection of >20-year-old secondary forest (as identified through inspection of satellite 264 265 images) as well as younger stands depending on the total stand basal area of native trees and palms⁵⁴. Although legal protection per se does not ensure long-term safeguarding of 266 267 the services provided by second-growth forests, it represents a critical step towards their management. We therefore urge researchers, practitioners and policy makers to adopt 268

similar protective measures, especially in areas where primary forest is scarce or highlyfragmented.

271	Human-modified tropical landscapes are in continuous flux, with areas of secondary
272	forest being converted to agricultural land and vice-versa. Vegetation disturbances, both
273	anthropogenic and natural (e.g. fire), are irregular in space and time, moulding mosaic
274	landscapes in which the classic split between fragments and matrix is blurred ⁵⁵ . The
275	ability of species to persist in such dynamic landscapes will ultimately depend on the
276	interaction between their intrinsic traits (e.g. mobility and life span), interspecific
277	interactions and the availability of habitat capable of meeting their specific resource
278	needs. Although hotly debated ^{24,56,57} , the "rescue" potential of secondary forests in these
279	dynamic landscapes is far from negligible ¹⁶ . While adding to mounting evidence that
280	secondary forests are of conservation value, our, and many other long-term studies at
281	the BDFFP (reviewed by Laurance et al. ²⁶) and elsewhere in the tropics (e.g. ^{17,58}) reveal
282	that continuous primary forest and large (> 100 ha) forest fragments are of
283	overwhelming importance for the conservation of tropical biodiversity.
284	Our results show that specialist bats, which occurred at low abundances in secondary
285	regrowth and in forest fragments ~ 15 years after the experimental clearing, have
286	benefited from the increased permeability of the matrix associated with the maturation
287	of the secondary forest in the matrix during the last 15 years. This suggests that matrix
288	management, and specifically the management of regenerating (secondary) forest can
289	majorly dictate the future of biodiversity in human-modified landscapes, including that
290	remaining in fragments of natural vegetation.

291

292 Material and Methods

293	Study area. Bat surveys took place at the Biological Dynamics of Forest Fragments
294	Project (BDFFP), approximately 80 km north of Manaus (2°30'S, 60°W, 30-125 m
295	above sea level), state of Amazonas, Brazil (Fig. 1). Forest in the \sim 1,000 km ² study area
296	is non-flooded (terra firme) rainforest with a canopy height of ca. 23 m and emergent
297	trees reaching 55 m^{59} . The forest at the BDFFP is among the most biodiverse in the
298	world (tree species richness often exceeding 280 species/ ha^{60}) and, with the exception
299	of the experimental fragmentation, has been sheltered from anthropogenic disturbances
300	such as logging and fires. The climate is characterized by a dry season between June
301	and October and annual rainfall varies from 1,900 to 3,500 mm. Eleven fragments were
302	isolated from continuous forest by distances of 80-650 m in the early 1980s and are
303	categorized into size classes of 1, 10 and 100 ha. Fragments were originally located
304	within cattle ranches (3,000-5,000 ha each) but poor soils and low productivity dictated
305	the abandonment of livestock activities and fragments became gradually surrounded by
306	secondary forest dominated mainly by Vismia spp. and Cecropia spp. ²⁶ . Following
307	secondary forest proliferation, fragment isolation was maintained by clearing a 100 m-
308	wide strip of regrowth at intervals of ~ 10 years around most experimental forest
309	fragments. During this study fragment re-isolation occurred between 1999 and 2001.
310	For a description of the study landscape experimental manipulation and ecosystem-wide
311	responses see Laurance et al. ²⁶ .

Bat sampling. In both study periods (1996-2002 and 2011-2013) we sampled bats in
forest fragments (six sites, three of 1 ha and three of 10 ha), secondary forest (seven
sites) and continuous forest (six sites) (Fig. 1). Sampling started at dusk and nets were
deployed until 0:00 am, being revised at intervals of ~20 minutes. Bias in capture rates

due to net shyness was avoided by spacing visits to the same site by periods of three tofour weeks and sampling was interrupted during heavy rains.

During the first sampling period bats were surveyed from January 1996 to June 1999 in 319 forest fragments and continuous forest sites⁶¹, and from October 2001 to November 320 2002 in secondary forest⁶². The mist-netting protocol consisted of eight (secondary 321 forest sites) and 18 to 24 (fragments and continuous forest sites) ground-level mist nets 322 323 (12 m x 2.5 m) placed along existing trails. Trails used for sampling forest fragments 324 were located as close as possible to the centre of the fragment. We surveyed fragment 325 and continuous forest sites on seven to 12 nights and secondary forest sites between 326 three to seven nights. Total mist net effort was 8,757, 9,429 and 860 mist-net hours (mnh; 1 mnh equals one 12 m net open for 1 h) for continuous forest, fragments and 327 328 secondary forests, respectively. Captured bats were identified to species-level and had standard morphometric and demographic data collected. For this first study period, 329 detailed site descriptions, methods and results for fragments and continuous forest can 330 be found in Sampaio⁶³ and Sampaio et al.⁶¹ and for secondary forest in Bobrowiec & 331 Gribel⁶². Our analyses are restricted to ground-level captures in fragment and 332 continuous forest interiors⁶¹ and to captures in Vismia- and Cecropia-dominated 333 secondary forest⁶². Distance between sampling sites ranged from 148 m to 41 km and 334 consequently some level of non-independence between bat assemblages of sites located 335 closer together is plausible. 336

During the second period we re-surveyed all 19 sites between August 2011 and June 2013. The mist-netting protocol consisted of seven (secondary forest sites) and 14 (fragments and continuous forest sites) ground-level mist nets (12 x 2.5 m) placed at existing trails. Total mist net effort was 4,009, 3,963 and 1,941 mnh for continuous forest, fragments and secondary forests, respectively. Similarly to the first period,

captured bats were identified and had standard morphometric and demographic datacollected.

344 Bat capture and handling was conducted following guidelines approved by the

345 American Society of Mammalogists⁶⁴ and in accordance with Brazilian conservation

and animal welfare laws. Sampling guidelines were approved by the ICMBio (Instituto

Chico Mendes de Conservação da Biodiversidade) and research was conducted under
permit number 26877-2.

We restricted our analyses to phyllostomid bats and *Pteronotus parnellii* since all other
 captured species are inadequately sampled with ground-level mist-nets³⁵. Taxonomy
 follows Gardner⁶⁵.

352

353 **Species affinities to primary and secondary forest.** We used the statistical approach developed by Chazdon et al.⁶⁶ to classify species into one of four groups: primary forest 354 specialists, secondary forest specialists, generalists or too rare to classify. Classification 355 was based on the whole dataset of 10,311 captures of 50 species sampled at the BDFFP 356 between 1996 and 2014. Only a sub-set of these captures (6,109) was subsequently used 357 in the joint species distribution models (see below). The method uses a multinominal 358 model based on species relative abundance in both habitats (here defined as continuous 359 360 primary forest vs forest fragments and secondary forest) and simultaneously minimizes bias due to different sampling effort between habitats and due to insufficient captures of 361 rare species. Classification was conducted in R v.3.0.2⁶⁷ using function *clamtest* of the 362 363 *vegan* package and was based on the super-majority specialization threshold (K =2/3) 364 and setting a significance level of P = 0.01. We conservatively grouped primary forest specialists and species too rare to classify into a single group and since only two species 365

were assigned to the secondary forest category, they were lumped together with generalists. We therefore considered two functional groups in our analysis: primary forest species and species too rare to classify (hereafter "specialist species") and generalists and secondary forest specialists (hereafter "generalist species").

370

Joint species distribution model. We applied a joint species distribution model²⁸ to 371 relate the bat occurrence data to environmental covariates. As a sampling unit, we 372 373 considered one mist-netting session in one site (n = 301 mist-netting sessions) (the study 374 design is illustrated in Supplementary Fig. S2 online). As the data involved a large 375 fraction of zeros (70%), we applied a hurdle model, thus modelling separately presence-376 absence (model 1), and abundance conditional on presence (model 2). In model 1, the response variable was the vector of presence-absences of all the 50 species, and we 377 assumed a Bernoulli distribution with a probit link-function (Y matrix, Supplementary 378 Fig. S2 online). In model 2, the response variable was the vector of abundances of those 379 species which were present, whereas species that were absent were considered as 380 381 missing data (Y matrix, Supplementary Fig. S2 online). In this case, we assumed an overdispersed Poisson distribution with a log-link function. Abundance was measured 382 as the number of captured individuals, of which we subtracted one to match the range of 383 the assumed distribution (overdispersed Poisson) with the range of the response variable 384 385 (note that conditional on presence, the smallest value for number of individuals is one, not zero). As explanatory variables, we included habitat type (categorical: continuous 386 387 forest, fragment, or secondary forest), survey period (first (1996-2002) or second survey 388 (2011-13)), percentage of secondary forest cover within a radius of 500 m from each 389 site and the log-transformed survey effort, measured as mist-net hours (X matrix, 390 Supplementary Fig. S2 online). We also included an interaction between survey period

and habitat type, as well as an interaction between survey period and secondary forest
cover. Percent secondary forest cover was measured from a detailed digital map of the
BDFFP landscape based on Landsat Thematic Mapper data from 1996 (for the first
survey period) and 2011 (for the second survey period) – see Carreiras et al.⁶⁸ for image
classification details. A buffer size of 500 m was selected so as to minimize overlap
between neighbouring sites.

To account for repeated measurements at the same sites, we assumed a site-level 397 398 random effect, implemented at the community level using the latent factor approach of Ovaskainen et al.⁶⁹. As species traits, we included the classification into habitat 399 generalists and specialists (T matrix, Supplementary Fig. S2 online). To account for 400 phylogenetic non-independence, we followed Abrego et al.⁷⁰ to structure the error 401 402 variance with a phylogenetic correlation matrix, derived from a phylogenetic tree under the diffusion model (C matrix, Supplementary Fig. S2 online). The phylogenetic tree 403 was taken from Jones et al.⁷¹. We fitted the model in the Bayesian framework using the 404 Gibbs sampler of Ovaskainen et al.^{68,72}. We used the hierarchical modelling of species 405 406 communities (HMSC) software for MatLab (HMSC-MatLab) to fit the model to the data, assuming the default priors described in the Supporting Information of Ovaskainen 407 et al.²⁸. We ran the model for 50,000 iterations out of which 15,000 were discarded as 408 transient. 409

We used the parameterized model to predict the expected species richness and number of captured individuals (for all species and separately for generalists and specialists) in each habitat class and study period per survey visit. Species richness was computed as the sum (over the species) of the occurrence probabilities predicted by model 1. Number of individuals was computed as the sum (over the species) of species-specific abundances, computed as the product of occurrence probability (from model 1) and

abundance conditional on presence (prediction of model 2 plus one). In these 416 predictions, we standardized the mist netting effort to the mean value of a given habitat 417 418 category across both study periods, and the percentage of secondary forest to the mean value of a particular habitat type during a given survey period. Capture effort was 419 standardized within each habitat category and thus the results are comparable between 420 periods but not across habitat types. Species-level responses were assessed by 421 computing the difference between the occurrence probability and mean number of 422 423 individuals expected to be captured per survey visit between the first and the second 424 period. 425 Turnover metrics are considered better suited to quantify biodiversity change in local assemblages through time than simple temporal trends of within-sample diversity 426 (temporal α diversity)⁷³. To characterize assemblage turnover, we computed assemblage 427

similarity between the different habitat categories as well as between the two study

429 periods. Assemblage similarity was defined as the correlation between model-predicted

430 occurrence probabilities or abundances (both log-transformed)⁷⁴. We performed these

431 calculations for all species, and separately for generalists and specialists only.

432 The data used in this study are archived at XXX ...

433

434 Acknowledgments

435 We would like to thank the multitude of volunteers and field assistants who helped

436 collecting the data, the BDFFP management team for logistic support and João M.B.

437 Carreiras for providing secondary forest layers for our study area. Funding was

438 provided by the Portuguese Foundation for Science and Technology to C.F.J.M.

439 (PTDC/BIA-BIC/111184/2009), R.R. (SFRH/BD/80488/2011) and A.L.-B.

440	(PD/B)	D/52597/2014). F.Z.F. and P.E.D.B. were supported by a CAPES fellowship. OO	
441	was supported by the Academy of Finland (Grants no. 250444 and 273253) and the		
442	Research Council of Norway (CoE grant no. 223257). MC was also supported by the		
443	Acade	my of Finland (Grant no. 257686). This is publication number XXX in the	
444	BDFF	P technical series.	
445			
446	Refere	ences	
447	1	Waters, C. N. et al. The Anthropocene is functionally and stratigraphically	
448		distinct from the Holocene. Science 351 (2016).	
449	2	Dirzo, R. et al. Defaunation in the Anthropocene. Science 345 , 401-406 (2014).	
450	3	Ceballos, G. et al. Accelerated modern human-induced species losses: Entering	
451		the sixth mass extinction. Science Advances, 1, e1400253;	
452		10.1126/sciadv.1400253 (2015).	
453	4	Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P.	
454		Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125-159	
455		(2014).	
456	5	Haddad, N.M. et al. Habitat fragmentation and its lasting impact on Earth's	
457		ecosystems. Science Advances, 1, e1500052; 10.1126/sciadv.1500052 (2015).	
458	6	Watling, J. I., Nowakowski, A. J., Donnelly, M. A. & Orrock, J. L. Meta	
459		analysis reveals the importance of matrix composition for animals in fragmented	
460		habitat. Glob. Ecol. Biogeogr. 20, 209-217 (2011).	
461	7	He, F. & Hubbell, S. P. Species-area relationships always overestimate	
462		extinction rates from habitat loss. Nature 473, 368-371 (2011).	

463	8	Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B. & Smith, A. L.
464		Conceptual domain of the matrix in fragmented landscapes. Trends. Ecol.
465		Evolut. 28, 605-613 (2013).
466	9	Mendenhall, C. D., Karp, D. S., Meyer, C. F., Hadly, E. A. & Daily, G. C.
467		Predicting biodiversity change and averting collapse in agricultural landscapes.
468		<i>Nature</i> 509 , 213-217 (2014).
469	10	Meyer, C. F. J. & Kalko, E. K. V. Assemblage-level responses of phyllostomid
470		bats to tropical forest fragmentation: land-bridge islands as a model system. J.
471		Biogeogr. 35, 1711-1726 (2008).
472	11	Gibson, L. et al. Near-complete extinction of native small mammal fauna 25
473		years after forest fragmentation. Science 341, 1508-1510 (2013).
474	12	Benchimol, M. & Peres, C. A. Predicting local extinctions of Amazonian
475		vertebrates in forest islands created by a mega dam. Biol Cons. 187, 61-72
476		(2015).
477	13	Ferraz, G. et al. Rates of species loss from Amazonian forest fragments. Proc.
478		Natl. Acad. Sci. U.S.A. 100, 14069-14073 (2003).
479	14	Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of
480		conservation opportunity in the Brazilian Amazon. Science 337, 228-232 (2012).
481	15	Wolfe, J. D., Stouffer, P. C., Mokross, K., Powell, L. L. & Anciães, M. M.
482		Island vs. countryside biogeography: an examination of how Amazonian birds
483		respond to forest clearing and fragmentation. Ecosphere 6, art295;
484		10.1890/ES15-00322.1 (2015).

485	16	Chazdon, R. L. Second Growth: The Promise Of Tropical Forest Regeneration
486		In An Age Of Deforestation. (University of Chicago Press, 2014).
487	17	Barlow, J. O. S., Overal, W. L., Araujo, I. S., Gardner, T. A. & Peres, C. A. The
488		value of primary, secondary and plantation forests for fruit-feeding butterflies in
489		the Brazilian Amazon. J. Appl. Ecol. 44, 1001-1012, (2007).
490	18	Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-
491		modified world. Ecol. Lett. 12, 561-582 (2009).
492	19	Stouffer, P. C., Johnson, E. I., Bierregaard Jr, R. O. & Lovejoy, T. E. Understory
493		bird communities in Amazonian rainforest fragments: species turnover through
494		25 years post-isolation in recovering landscapes. PLoS ONE 6, e20543 (2011).
495	20	Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of
496		conservation opportunity in the Brazilian Amazon. Science, 337, 228-232
497		(2012).
498	21	Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. &
499		Tabarelli, M. On the hope for biodiversity-friendly tropical landscapes. Trends.
500		Ecol. Evolut. 28, 462-468 (2013).
501	22	Arroyo-Rodríguez, V. et al. Multiple successional pathways in human-modified
502		tropical landscapes: new insights from forest succession, forest fragmentation
503		and landscape ecology research. Biol. Rev. 92, 326-340 (2017).
504	23	Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive
505		global trends but forest loss and degradation persist in poor tropical countries.
506		Forest Ecol. Manag. 352, 134-145 (2015).

- 507 24 Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical
 508 biodiversity. *Nature* 478, 378-381 (2011).
- 509 25 Meyer, C. F. J., Struebig, M. J. & Willig, M. R. in *Bats In The Anthropocene:*
- 510 Conservation Of Bats In A Changing World (eds C. Christian Voigt & Tigga
- 511 Kingston) 63-103 (Springer International Publishing, 2016).
- Laurance, W. et al. An Amazonian rainforest and its fragments as a laboratory of
 global change. *Biol. Rev.* 10.1111/brv.12343 (2017).
- 514 27 Warton, D. I. et al. So many variables: joint modeling in community ecology.
 515 *Trends. Ecol. Evolut.* **30**, 766-779 (2015).
- 516 28 Ovaskainen, O. et al. How to make more out of community data? A conceptual
 517 framework and its implementation as models and software. *Ecol. Lett.* 20, 561518 576, (2017).
- DeWalt, S. J., Maliakal, S. K. & Denslow, J. S. Changes in vegetation structure
 and composition along a tropical forest chronosequence: implications for
 wildlife. *Forest Ecol. Manag.* 182, 139-151 (2003).
- Youngentob, K. N., Wood, J. T. & Lindenmayer, D. B. The response of arboreal
 marsupials to landscape context over time: a large-scale fragmentation study
 revisited. *J. Biogeogr.* 40, 2082-2093 (2013).
- 525 31 Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth's
- 526 ecosystems. *Science Advances* **1**, e1500052; 10.1126/sciadv.1500052 (2015).
- 32 Quintero, I. & Roslin, T. Rapid recovery of dung beetle communities following
 habitat fragmentation in Central Amazonia. *Ecology* 86, 3303-3311 (2005).

529	33	Stouffer, P. C., Strong, C. & Naka, L. N. Twenty years of understorey bird
530		extinctions from Amazonian rain forest fragments: consistent trends and
531		landscape mediated dynamics. Divers. Distrib. 15, 88-97 (2009).
532	34	López-Baucells, A. et al. Field Guide to Amazonian Bats. 1-174 (Editora INPA,
533		2016).
534	35	Silva, C.R. & Bernard, E. Bioacoustics as an important complementary tool in
535		bat inventories in the Caatinga drylands of Brazil. Acta Chiropter. 19, 409-418
536		(2017).
537	36	Rocha, R. et al. Consequences of a large-scale fragmentation experiment for
538		Neotropical bats: disentangling the relative importance of local and landscape-
539		scale effects. Landscape Ecol. 32, 31-45 (2017).
540	37	Rocha, R. et al. Design matters: An evaluation of the impact of small man-made
541		forest clearings on tropical bats using a before-after-control-impact design.
542		Forest Ecol. Manag. 401, 8-16 (2017).
543	38	Ferreira, D. F. et al. Season-modulated responses of Neotropical bats to forest
544		fragmentation. Ecol. Evol. 7, 4059–4071; 10.1002/ece3.3005 (2017).
545	39	Rocha, R. et al. Does sex matter? Gender-specific responses to forest
546		fragmentation in Neotropical bats. Biotropica, 49, 881-890 (2017)
547	40	Farneda, F. Z. et al. Trait-related responses to habitat fragmentation in
548		Amazonian bats. J. Appl. Ecol. 52, 1381-1391 (2015).
549	41	Farneda, F.Z. et al. Functional recovery of Amazonian bat assemblages
550		following secondary forest succession. Biol. Cons. 218, 192-199 (2018)

- Figueira, L., Tella, J. L., Camargo, U. M. & Ferraz, G. Autonomous sound
 monitoring shows higher use of Amazon old growth than secondary forest by
 parrots. *Biol. Cons.* 184, 27-35 (2015).
- Powell, L. L., Wolfe, J. D., Johnson, E. I. & Stouffer, P. C. Forest recovery in
 post-pasture Amazonia: Testing a conceptual model of space use by
 insectivorous understory birds. *Biol. Cons.* 194, 22-30 (2016).
- Powell, L. L., Zurita, G., Wolfe, J. D., Johnson, E. I. & Stouffer, P. C. Changes
 in habitat use at rain forest edges through succession: a case study of understory
 birds in the Brazilian Amazon. *Biotropica* 47, 723–732 (2015).
- Lenz, B. B., Jack, K. M. & Spironello, W. R. Edge effects in the primate
- 561 community of the Biological Dynamics of Forest Fragments Project, Amazonas,
 562 Brazil. *Am. J. Phys. Anthropol.* 155, 436-446 (2014).
- 46 Barlow, J. et al. Quantifying the biodiversity value of tropical primary,
 secondary, and plantation forests. *Proc. Natl. Acad. Sci. U.S.A.* 104, 1855518560 (2007).
- França, F. et al. Do space-for-time assessments underestimate the impacts of
 logging on tropical biodiversity? An Amazonian case study using dung beetles. *J. Appl. Ecol.* 53, 1098-1105 (2016).
- Fereira, H. M. & Daily, G. C. Modeling biodiversity dynamics in countryside
 landscapes. *Ecology* 87, 1877-1885 (2006).
- 49 Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover
 572 change. *Science* 342, 850-853 (2013).

573	50	Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its
574		impacts on tropical nature. Trends. Ecol. Evolut. 29, 107-116 (2014).
575	51	Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-
576		scale forest restoration in the tropics: prospects and challenges. <i>Biotropica</i> 48,
577		716-730 (2016).
578	52	de la Peña-Domene, M., Martínez-Garza, C., Palmas-Pérez, S., Rivas-Alonso, E.
579		& Howe, H. F. Roles of birds and bats in early tropical-forest restoration. <i>PLoS</i>
580		ONE 9, e104656; 10.1371/journal.pone.0104656 (2014).
581	53	Maas, B. et al. Bird and bat predation services in tropical forests and
582		agroforestry landscapes. Biol. Rev. 91, 1081–1101 (2016).
583	54	Vieira, I., Gardner, T., Ferreira, J., Lees, A. & Barlow, J. Challenges of
584		governing second-growth forests: a case study from the Brazilian Amazonian
585		State of Pará. Forests 5, 1737-1752 (2014).
586	55	del Castillo, R. F. A conceptual framework to describe the ecology of
587		fragmented landscapes and implications for conservation and management. Ecol.
588		<i>Appl.</i> 25 , 1447-1455 (2015).
589	56	Wright, S. J. & Muller-Landau, H. C. The uncertain future of tropical forest
590		species. Biotropica 38, 443-445 (2006).
591	57	Gardner, T. A., Barlow, J., Parry, L. W. & Peres, C. A. Predicting the Uncertain
592		Future of Tropical Forest Species in a Data Vacuum. Biotropica 39, 25-30
593		(2007).

594	58	Martin, P. A., Newton, A. C. & Bullock, J. M. Carbon pools recover more
595		quickly than plant biodiversity in tropical secondary forests. Proc. R. Soc. Lond.
596		<i>B Biol. Sci.</i> 280 , (2013).
597	59	Bierregaard Jr, R., Gascon, C., Lovejoy, T. & Mesquita, R. The biological
598		dynamics of forest fragments project in Lessons From Amazonia (eds RO
599		Bierregaard J, Gascon C, Lovejoy TE, Mesquita R) 31-42 (New Haven, 2001).
600	60	Oliveira, A. d. & Mori, S. A central Amazonian terra firme forest. I. High tree
601		species richness on poor soils. Biodivers. Conserv. 8, 1219-1244 (1999).
602	61	Sampaio, E. M., Kalko, E. K., Bernard, E., Rodríguez-Herrera, B. & Handley, C.
603		O. A biodiversity assessment of bats (Chiroptera) in a tropical lowland rainforest
604		of Central Amazonia, including methodological and conservation considerations.
605		<i>Stud. Neotrop. Fauna Environ.</i> 38 , 17-31 (2003).
606	62	Bobrowiec, P. & Gribel, R. Effects of different secondary vegetation types on
607		bat community composition in Central Amazonia, Brazil. Anim. Conserv. 13,
608		204-216 (2010).
609	63	Sampaio, E. Effects Of The Forest Fragmentation On The Diversity And
610		Abundance Patterns Of Central Amazonian Bats. (Logos-Verlag, 2001).
611	64	Sikes R. S., Gannon W. L. & Mammalogists, A. C. a. U. C. o. t. A. S
612		Guidelines of the American Society of Mammalogists for the use of wild
613		mammals in research. J. Mammal. 92, 235-253 (2011).
614	65	Gardner, A. Mammals of South America Volume 1: Marsupials, Xenarthrans,
615		Shrews and Bats (The University of Chicago Press, 2007).

616	66	Chazdon, R. L. et al. A novel statistical method for classifying habitat
617		generalists and specialists. Ecology 92, 1332-1343 (2011).
618	67	R Core Team R: A language and environment for statistical computing. R
619		Foundation for Statistical Computing, Vienna, Austria. http://www.R-
620		<u>project.org/</u> (2013).
621	68	Carreiras, J. M. B., Jones, J., Lucas, R. M. & Gabriel, C. Land use and land
622		cover change dynamics across the Brazilian Amazon: insights from extensive
623		time-series analysis of remote sensing data. PLoS ONE 9, e104144;
624		10.1371/journal.pone.0104144 (2014).
625	69	Ovaskainen, O., Abrego, N., Halme, P. & Dunson, D. Using latent variable
626		models to identify large networks of species-to-species associations at different
627		spatial scales. Methods Ecol. Evol. 7, 549-555 (2016).
628	70	Abrego, N., Dunson, D., Halme, P., Salcedo, I. & Ovaskainen, O. Wood-
629		inhabiting fungi with tight associations with other species have declined as a
630		response to forest management. Oikos 126, 269–275 (2016).
631	71	Jones, K. E., Purvis, A., MacLarnon, A. N. N., Bininda-Emonds, O. R. P. &
632		Simmons, N. B. A phylogenetic supertree of the bats (Mammalia: Chiroptera).
633		Biol. Rev. 77, 223-259 (2002).
634	72	Ovaskainen, O., Roy, D. B., Fox, R. & Anderson, B. J. Uncovering hidden
635		spatial structure in species communities with spatially explicit joint species
636		distribution models. Methods Ecol. Evol. 7, 428-436 (2016).
637	73	Dornelas, M. et al. Assemblage time series reveal biodiversity change but not
638		systematic loss. Science 344, 296-299 (2014).

639 74 Ovaskainen, O. & Soininen, J. Making more out of sparse data: hierarchical
640 modeling of species communities. *Ecology* 92, 289-295 (2011).

641

642 Author contributions

- 643 C.F.J.M, J.M.P., M.C. and R.R. conceived the ideas; R.R., A.L.-B., F.Z.F, E.S,
- 644 P.E.D.B., J.M.P. and C.F.J.M collected the data; R.R. and O.O. analysed the data and
- 645 RR led the writing. All authors discussed the results and commented on the manuscript.

647 Additional Information

- **Supplementary information** accompanies this paper at
- **Competing Interests:** The authors declare that they have no competing interests.

652 **TABLES**

Table 1. Assemblage similarity between continuous forest and modified habitats

- 654 (fragments and secondary forest), ~15 years and ~30 years after experimental forest
- clearance. We defined the similarity between two assemblages as the correlation
- between model-predicted occurrence probabilities or abundances (both log-
- transformed). The values in the table show posterior mean similarities between
- assemblages inhabiting continuous forests and modified habitats for the two study
- 659 periods, as well as the posterior probability by which the similarities were lower in the
- 660 first period than in the second.

	Fragr	nents	Secondary Forest	
Generalists	Occupancy	Abundance	Occupancy	Abundance
1996-2002	0.64	0.71	0.60	0.68
2011-2013	0.76	0.79	0.51	0.56
Posterior probability	0.8	0.74	0.21	0.31
Specialists				
1996-2002	0.84	0.85	0.78	0.78
2011-2013	0.74	0.76	0.61	0.63
Posterior probability	0.16	0.16	0.09	0.09

662 FIGURE CAPTIONS

669

Figure 1. The Biological Dynamics of Forest Fragments Project (BDFFP), Central Amazon, Brazil. Light green represents secondary forest matrix and dark green continuous forest and forest fragments. Location of the study area within Brazil is shown in the map inset. The map was based on shapefiles provided by the BDFFP management team (http://pdbff.inpa.gov.br/) and was produced in ArcMap 10.3 (http://desktop.arcgis.com/en/arcmap/).

670 Figure 2. Bat species richness and abundance of generalist and specialist bats in 671 continuous forest, fragments and secondary forest, ~15 years (dark-coloured bars) and 672 \sim 30 years (lighter-coloured bars) after experimental forest clearance. Plotted are the predictions of the mean number of species and the mean number of individuals (\pm 673 posterior standard deviation) captured per survey visit. Capture effort was standardized 674 within each habitat category and thus the results are comparable only between periods 675 but not across habitat types. Asterisks stand for high statistical support (posterior 676 677 probability > 95%) for the predictions being higher or lower ~ 30 years after experimental forest clearance (2011-2013) than ~15 years after experimental forest 678 clearance (1996-2002). Species' habitat affinities are reported in Table S1 (for 679 classification description see Methods) and results for all species combined are provided 680 in Supplementary Fig. S1 online. 681 682 Figure 3. Change in species occupancy probability and abundance of generalist and 683

specialist bats in continuous forest, fragments and secondary forest, ~ 15 years and ~ 30

years after experimental forest clearance. Plotted is the percentage of species with

686	positive (green) and negative (red) changes in probability of occurrence and mean
687	number of individuals predicted to be captured per survey visit between the first and
688	second period (~15 and ~30 after experimental forest clearance). Dark and light colours
689	represent respectively, percentage of species with high (posterior probability > 95%)
690	and low statistical support (posterior probability < 95%). Predictions account for within-
691	habitat differences in capture effort between the two periods. Species-specific values are
692	reported in Supplementary Table S2 online; species' habitat affinities are given in
693	Supplementary Table S1 online (for classification description see Methods).

694

FIGURES

Figure 1

695

Continuous forest Fragments Secondary forest Continuous forest Fragments Secondary forest

Continuous forest Fragments Secondary forest Continuous forest Fragments Secondary forest