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ABSTRACT 

In this study, a numerical investigation has been performed using the computational Harlow-

Welch MAC (Marker and Cell) finite difference method to analyse the unsteady state two-

dimensional natural convection in lid-driven square cavity with left wall maintained at constant 

heat flux and remaining walls are kept thermally insulated. The significant parameters in the 

present study are Reynolds number (Re), thermal Grashof number (Gr) and Prandtl number 

(Pr) and Peclét number (Pe =PrRe). The structure of thermal convection patterns is analysed 

via streamline, vorticity, pressure and temperature contour plots. The influence of the 

thermophysical parameters on these distributions is described in detail. Validation of solutions 

with earlier studies is included. Mesh independence is also conducted. It is observed that an 

increase in Prandtl number intensifies the primary circulation whereas it reduces the heat 

transfer rate. Increasing thermal Grashof number also decreases heat transfer rates. 

Furthermore the isotherms are significantly compressed towards the left (constant flux) wall 

with a variation in Grashof number while Peclét number is fixed. The study is relevant to solar 

collector heat transfer simulations and also crystal growth technologies.  

 

KEY WORDS: Enclosure; thermal convection; MAC numerics; Thermal Grashof number; 

Lid-driven; vorticity; isotherms; Prandtl number; solar collectors. 

 

1.INTRODUCTION 

The analysis of natural convection in enclosures (cavities) plays an important role in numerous 

branches of engineering technology and applied sciences. These include fire dynamics [1], 
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solar energy collector performance [2], geophysical systems [3], crystal fabrication [4] and bio-

reactor design [5] and the nature of the enclosure may vary from rectangular to elliptic, circular, 

triangular, annular or more complex geometries. Natural (free) convection flows are 

characterized by non-trivial buoyancy forces. The interplay between buoyancy and inertial 

forces exerts a profound influence on flow and thermal structural development. Among closed 

cavity geometries, free convection heat transfer in a rectangular cavity is of particular interest 

in drying technology, electronics device cooling and solar cells. For the case of aspect ratio of 

unity, the square cavity is retrieved. Both theoretical and experimental studies of transport in 

rectangular enclosures have been reported in recent years considering a multiplicity of thermo-

physical and other body force effects. Rudraiah et al. [6] studied the effect of a magnetic field 

on free convection inside a rectangular enclosure. They found that a circular flow was formed 

with a relatively weak magnetic field, the convection was suppressed and the rate of convective 

heat transfer decreased when the magnetic field strength was increased. Garandet et al. [7] 

analysed the effect of a magnetic field on buoyancy driven convection in a rectangular 

enclosure. Bhuvaneswari et al. [8] investigated the numerical solution of the mixed convection 

flow with Soret (thermo-diffusion) effect in a two-sided lid-driven square cavity. They 

observed that the heat and mass transfer rate decreases with greater Richardson number. 

Moallemi et al [9] studied the effect of Prandtl number on the mixed convection in a lid-driven 

cavity with lower wall heated and insulated side walls. They found that the impact of buoyancy 

is amplified for large values of Prandtl number. Sathiyamoorthy et al. [10] studied the free 

convective electrically-conducting flow in a square cavity for uniformly heated adjacent walls 

with magnetic body force, observing that local and average Nusselt number are considerably 

modified with magnetic field. Kakarantzas et al. [11] used a direct numerical method with a 

fractional semi-implicit scheme approach to simulate natural hydromgnetic convection in a 

vertical cylindrical cavity with sinusoidal top wall temperature variation. Saravanan et al. [12] 

examined numerically the two-dimensional buoyancy-driven convection in a square cavity 

with isoflux and isothermal boundary conditions. Walker and Homsy [13]  investigated 

buoyancy-driven convection in a porous cavity. Abdul Hakeema et al. [14] analysed the free 

convection in an air filled square enclosure with thermally active boundaries for different 

boundary conditions.  

Modification in the heat transfer characteristics in cavities via the introduction of 

isothermal fins has also stimulated some interest. Shi and Khodadadi [15] and Lakhal et al. 

[16] have discussed the impact of adding isothermal fins to one of the active walls in 
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enclosures. They identified flow patterns changed by the hydrodynamic blockage impact 

depending upon the length of the fin and an extra heating of the fluid that is offered by the fin. 

In addition the extra heating mechanism nullifies the hydrodynamic blockage impact and 

contributed to the strengthening of the flow field for high Rayleigh numbers. Conjugate 

conduction-convection in differentially heated cavities containing a conducting or heat 

generating strong block is also addressed in other studies [17-19]. These studies have shown 

that the heat transfer processes in cavities can be balanced by changing the physical and 

geometrical requirements. Roy et al. [20] studied the mixed convection in lid-driven porous 

square cavities with various heating conditions on the horizontal walls and elaborated on the 

influence of Peclét number. Basak et al. [21] used a finite element method to analyse the heat 

transfer and entropy generation in free convection in tilted square enclosures, observing that 

low entropy generation occurs with an inclination of 15° in the convection dominant mode 

irrespective of Prandtl number. Ismael et al. [22] studied the influence of wall slip on combined 

free and forced convection in a lid-driven square enclose with a vertical adiabatic wall. 

Bhattacharya et al. [18] examined the flow structure and temperature patterns during mixed 

convection in a lid-driven trapezoidal cavity with a cold top moving wall and the bottom wall 

being heated by isothermally and non-isothermally. They found that a non-isothermal 

horizontal wall leads to multiple steady states in either the natural convection dominated 

regime or mixed convection regime. Free convection in a lid-driven square cavity induced by 

two mutually perpendicular heated walls has also been considered by other researchers [24, 

25].   

The vast majority of the above studies have ignored unsteadiness effects and been confined 

to single Prandtl numbers. The aim of the present study is to simulate transient natural 

convection in a square cavity with the left side wall uniformly heated (or constant heat flux), 

and the other three walls being thermally insulated. The transformed, dimensionless 

conservation partial differential equations for momentum and energy are strongly non-linear. 

A computational Marker and Cell finite difference scheme (MAC) based on the original 

methodology due to Welch and Harlow [26] is therefore adopted to solve the non-linear 

boundary value problem to determine the pressure, velocity, vorticity and temperature 

distributions in the square enclosure. The influence of Prandtl number, Grashof number and 

Reynolds number is explored. The paper is structured as follows. Section 2 describes the 

mathematical model. Section 3 presents numerical simulation details. Section 4 elaborates on 

computational visualizations and interpretation. Section 5 summarizes the main findings. The 
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present investigation is relevant to further elucidating the time-dependent thermofluid 

dynamics in for example square solar collectors.  

 

2.  MATHEMATICAL MODELLING AND SIMULATION 

The regime under investigation is illustrated in Fig. 1. We consider a two-dimensional square 

cavity with physical dimensions where the left wall is maintained at constant heat flux and the 

remaining three walls are kept thermally insulated. The top wall is assumed to slide from left 

to right with constant velocity, 𝑈0. Thermo-physical properties of the fluid such as thermal 

conductivity, viscosity, specific heat, permeability and thermal expansion coefficient  

treated as constant.  The Boussinesq approximation is invoked for the fluid effects under the 

variation of density with temperature and the resulting buoyancy term couples the flow field to 

the temperature field. The governing equations for the unsteady two-dimensional natural 

convection of mass, momentum and energy in the enclosure (cavity) can be written in terms of 

the following non-dimensional variables and numbers: 

 

Fig.1. Schematic diagram of enclosure heat transfer system  
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The transformed primary and secondary velocity and also thermal boundary conditions are: 
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The dimensionless variables and parameters are defined as: 
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Here X is dimensionless x- coordinate, Y is dimensionless y- coordinate, U is dimensionless x-

direction velocity, V is dimensionless y-direction velocity, θ is dimensionless temperature 

function, P is dimensionless pressure, Pr is Prandtl number, Re is Reynolds number, Gr is 

Grashof number, Tc is cold wall temperature, Th is hot wall temperature, T is dimensional 

temperature, p is dimensional pressure, g is gravity,  is fluid density,  is thermal diffusivity, 

ν is kinematic viscosity, H is height of enclosure (cavity wall dimension), t is dimensional time. 

We note that the emerging thermal Grashof number encompasses the relative influence of 

gravity (buoyancy) forces to viscous forces in the regime. Further details are elaborated in 

Mohamad and Viskanta [27]. 

 

3. MARKER-AND-CELL (MAC) NUMERICAL SOLUTION AND VALIDATION 

The momentum and energy balance equation i.e. Eqns. (2)-(4) have been solved using the MAC 

Method [26]. The continuity equation [Eqn. (1)] is used as a constraint due to mass 

conservation and this constraint may be used to obtain the pressure distribution. The numerical 
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solution obtained in terms of the velocity components ( , )u v and stream functions ( ) are 

evaluated using the relationship between the stream function ( ) and the velocity components 

[28]. Here the stream function ( ) is defined in the usual way as per the Cauchy-Riemann 

equations, u
y





 and v
x


 


. It may be noted that the positive sign of   denotes anti-

clockwise circulation and therefore clockwise circulation is represented by the negative sign of 

 . In the MAC approach although we consider viscous flow, viscosity is not actually required 

for numerical stability [26]. Cell boundaries are labelled with half-integer values in the finite 

difference discretization. The marker particles do not participate in the calculation. Here we 

elaborate on the numerical discretization procedure. Based on the weak conservative form of 

the unsteady two-dimensional Navier-Stokes equations and heat conservation equation as 

defined by eqns. (1)-(4), we implement a grid meshing procedure using the following notation 

at the centre of a cell: 
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Discretized Advection term: 

Similarly we have:  
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The following central difference formula are used for the second order derivatives: 
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Applying to the y-direction momentum conservation eqn. (3) we have:  
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The central difference formula for the Laplacean operator is given by: 
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Effectively the x-momentum equation discretization technique can be summarized as: 

   _ *( 1/ Re* 2 _ );nu tp u dt A D u       (16) 

Where A = advection term, 2 _D u = diffusion term = Laplacian of u . There is a slight 

modification needed in the y-momentum equation due to the addition of a new term. Therefore 

this term must be included in the discretized equation and we have: 
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Where B = advection term, 2 _D v diffusion term=Laplacian of v . It is further noteworthy 

that the temperature term T  is co-located such that it coincides with velocity before using it in 

the above equation to account for the staggered grid. After _u tpand v tp are projected to get 

u and v , we can use the discretized temperature equation to get T  at next time level 
1( )nT 

via 

the algorithm: 

  
1 *( _ 1/ (Re*Pr)* 2 _ )n nT T dt A T D T        (18) 

where _A T  advection term, 2 _D v   diffusion term=Laplacian of T . Next, we integrate in 

time by an incremental step dt  in each iteration until the final time 1.0t   is reached. The 

variables are co-located and plotted. Modern variants of the MAC method utilize the conjugate 

gradient schemes which solve the Poisson equation. Further details are provided in Basak et al. 

[29] and Amsden and Harlow [30]. To confirm mesh independence a grid-independence study 

is conducted. In computational fluid dynamics, of which finite difference simulation is merely 

one methodology, once a mesh provides a solution which is invariant with the finer meshes, 

the coarser mesh can be adopted. This reduces computational cost but retains the necessary 

accuracy. Table 1 shows that accuracy to three decimal places is achieved for Nusselt number 

at the left wall with a mesh of 61 x 61 which is sufficient for heat transfer computations and 

therefore this is adopted for all subsequent simulations.  

 

Grid size Average Nusselt number (Nu) 

21 X 21 0.141527 

41 X 41 0.145274 

51 X 51 0.145483 

61 X 61 0.146316 

71 X 71 0.146956 

 

Table 1: Grid independent study  

 

Furthermore to corroborate the present computations, visualizations of the temperature 

(isotherm) and streamline distributions for two special cases have been provided. These 

replicate the solutions of Basak et al. [29]. The equivalent Rayleigh number used in [29] is 

merely the product of the thermal Grashof number and Prandtl number used in the present 

model (i.e. Ra = Gr Pr). Generally very close correlation is attained, as observed in Figs. 2 

and 3 and confidence in the present MAC computational code is therefore justifiably high. 



9 
 

 
 

                   Basak et.al. [29]                        Present MAC Results 

 

 

  
Fig 2: Comparison contour plots, non-uniform bottom heating, 𝑇 = 𝑠𝑖𝑛(𝜋𝑥), 𝑃𝑟 = 10, Ra = 105.  

  
Fig. 3: Contour plots, non-uniform bottom heating, 𝑇 = 1, with 𝑃𝑟 = 0.7 and 𝑅𝑎 = 5 105.  

 

4. MAC NUMERICAL RESULTS AND DISCUSSION  
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left wall of square cavity is maintained at a constant heat flux the remaining walls are thermally 

isolated. In figs. 4a-d to 6a-d thermal Grashof number (Gr) is varied keeping Pr = 0.7 (air) 

and Re = 10 (laminar).  The results are depicted as stream lines, isotherms (temperatures), 

vorticity and pressure profiles. 

  

  
 

                                             Figs.4a-d.  Pr =  0.7, Re = 10, Gr = 0.1 
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                                               Figs. 5a-d.  Pr =  0.7, Re = 10, Gr = 0.2 

  

  
                                               Figs. 6a-d.  Pr =  0.7, Re = 10, Gr = 0.3 
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                                                Figs. 7a-d.  Pr =  0.9, Re = 10, Gr = 0.1 
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                                                 Figs. 8a-d.  Pr =  1.0, Re = 10, Gr = 0.1 

 

 

 

 

  

  
       Figs. 9a-d.  Pr =  2.0, Re = 10, Gr = 0.1 
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        Figs. 10a-d.  Pr =  3.0, Re = 10, Gr = 0.1 
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       Figs. 11a-d.  Pr =  5.0, Re = 10, Gr = 0.1 

 

 

To establish the influence of thermal Grashof number on each of the four distributions, 

respective comparisons have to be made as follows: For stream function which defines velocity 

distribution in the cavity we compare Fig 4a (Gr = 0.1) versus Fig 5a (Gr = 0.2) and Fig 6a 

(Gr = 0.3). For temperature (isotherms) which define thermal convection pattern in the 

enclosure we compare Fig 4b (Gr = 0.1) versus Fig 5b (Gr = 0.2), Fig 6b (Gr = 0.3). For 

vorticity which defines intensity of circulation in the cavity we compare Fig 4c (Gr = 0.1) 

versus Fig 5c (Gr = 0.2) and Fig 6c (Gr = 0.3). For pressure evolution in the enclosure we 

compare Fig 4d (Gr = 0.1) versus Fig 5d (Gr = 0.2) and Fig 6d (Gr = 0.3). With increasing 

Grashof number there is a decrease in the streamline contour magnitudes. Primary circulation 

generally occupies most of the square cavity, although it is slightly biased towards the lower 

left corner. This is probably attributable to the constant heat flux condition imposed at the left 

wall. The strength of the circulation is weakened with greater thermal Grashof number. For 

example in the interior core of the streamline patterns, the maximum value of stream function 

is progressively decreased from 0.375 to 0.136 and thereafter to 0.0624.  The thermal Grashof 

number features in the thermal buoyancy coupling term,
T

T

Gr

)1(1
2


, in the dimensionless 

momentum conservation equations. Increasing values of this parameter correspond to an 

enhancement in thermal buoyancy effect relative to viscous hydrodynamic effect. Since Gr <1 

in all computations, there is a dominance of viscous force in the enclosure over thermal 

buoyancy force. This serves to damp the flow and to decrease velocities, manifesting in 

depletion in streamline contour values. The general structure of streamlines is not hugely 

modified although there is widening in the gaps between contours which is characteristic of 

decelerating flow in the cavity. With an increment in thermal Grashof number the temperature 
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magnitudes (isotherms) are intensified towards the left wall. There is a strong distortion at Gr 

= 0.1 (fig. 4b) which is homogenized in fig. 5b and even more so in fig. 5d for Gr = 0.3. The 

effective tripling in the thermal buoyancy force therefore stabilizes  temperature circulation 

and orientates the temperature distribution towards the left wall. Isotherms become 

increasingly parallel to the left wall and the deflected contours observed at low thermal Grashof 

number are all but eliminated. However isotherm magnitudes are reduced and this is also 

associated frequently with stronger thermal buoyancy effect, as described by Gebhart et al. 

[31]. The isotherm magnitude reduces from 0.756 (fig. 4b) to 0.682 (fig. 5b) and plummets to 

the minimum of 0.653 (fig. 6b). Effectively thermal buoyancy can be utilized to cool the 

enclosure regime and this has important implications in electronic systems. However in solar 

collectors where the opposite effect is desired weaker buoyancy is critical to achieving higher 

temperatures in the enclosure (collector). There is a substantial reduction in vorticity 

magnitudes also with increasing Grashof number. The retardation induced with greater thermal 

buoyancy also reduces the intensity of circulation in the enclosure which decreases iso-vorticity 

contour magnitudes. We observe that the maximum value associated with the inner core of the 

flow falls from 7.9 (fig. 4c) to 3.19 (fig. 5c) and finally the lowest value of 1.46 (fig 6c). Again 

it is evident that there is skewness in the contours towards the left wall. The contour gaps 

increase and there is a shrinking in the inner circulation zone with greater thermal Grashof 

number. Pressure magnitudes are  however markedly increased with greater thermal Grashof 

number in the upper left zone of the enclosure whereas they are depressed in the lower left zone 

and everywhere else. In the top left corner of the cavity, for Gr = 0.1 (fig. 4d) the pressure is -

3.71, for Gr = 0.2 (fig. 5d) it is -1.11 and for Gr = 0.3 (fig. 6d) the values becomes positive i.e. 

+0.635, indicating an ascent in pressures. Conversely at the bottom left corner pressures fall 

from a maximum of 16.8, to 4.09 and eventually to 1.7, constituting a significant pressure 

reduction in this location. The influence of thermal Grashof number is therefore impactful on 

all characteristics of the enclosure flow. 

In figs. 7a-d to 11a-d Prandtl number (Pr) is varied keeping Re = 10 (laminar) and Gr = 0.1 

(i.e. very weak thermal buoyancy). Again to acquire a proper perspective of the influence of Pr 

which is a characteristic property of the fluid, inspection of the graphs is conducted as follows. 

For stream function which defines velocity distribution in the cavity we compare Fig 7a (Pr = 

0.9) versus Fig 8a (Pr = 1.0), Fig 9a (Pr = 2.0), Fig 10a (Pr = 3.0) and Fig 11a (Pr = 5.0). For 

temperature (isotherms) which defines convective heat transfer convection pattern in the 

enclosure we compare Fig 7b (Pr = 0.9) versus Fig 8b (Pr = 1.0), Fig 9b (Pr = 2.0), Fig 10b 

(Pr = 3.0) and Fig 11b (Pr = 5.0). For vorticity which quantifies the intensity of circulation 
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patterns in the enclosure we compare Fig 7c (Pr = 0.9) versus Fig 8c (Pr = 1.0), Fig 9c (Pr = 

2.0), Fig 10c (Pr = 3.0) and Fig 11c (Pr = 5.0). For pressure distribution in the enclosure we 

compare Fig 7d (Pr = 0.9) versus Fig 8d (Pr = 1.0), Fig 9d (Pr = 2.0), Fig 10d (Pr = 3.0) and 

Fig 11d (Pr = 5.0). The Prandtl number is the ratio of momentum diffusivity to the thermal 

diffusivity. Larger values of Prandtl number correspond to the case of less heat transfer from 

the boundary to the fluid. Prandtl number is also the product of dynamic viscosity and specific 

heat capacity divided by the thermal conductivity of the fluid. With Prandtl number lower than 

unity, the momentum diffusion rate is exceeded by the thermal (energy) diffusion rate. When 

Pr attains unity value both heat and momentum are diffused at equal rates (momentum and 

thermal boundary layer thicknesses at the enclosure walls are equivalent). When Pr exceeds 

unity, the momentum diffusion rate exceeds thermal diffusion rate. Inspection of figs 5a-9a 

indicates that stream function magnitudes are progressively reduced with an increase in Prandtl 

number. For example in the inner core of the circulating fluid, where maximum stream function 

values arise on the streamline plots, magnitudes decrease from +0.325 (Pr = 0.9) through 

+0.305(Pr = 1.0), + 0.183 (Pr = 2.0), +0.128 (Pr = 3.0)  to finally + 0.0747 (Pr = 5.0). The 

separation of the streamline contours simultaneously increases indicating a deceleration in the 

circulating flow. With greater Prandtl number the heat transfer from the left wall to the body 

of fluid and therefore to the right wall is enhanced. The higher Prandtl number corresponds to 

greater thermal conductivity of the fluid which encourages thermal diffusion and boosts 

temperatures as observed in Figs 7b, 8b, 9b, 10b and 11b. Isotherms are systematically drawn 

closer to the left wall and also to each other indicating that the flow is energized with greater 

Prandtl number. Heat transfer rates to the walls are therefore reduced. With an increase in 

Prandtl number, the vorticity is also stifled significantly. This is both in the core flow and also 

at other locations. The maximum vorticity is located in the core flow (which is skewed towards 

the left wall of the cavity). The core flow region shrinks with increasing Prandtl number. 

Magnitudes here drop from +6.99 (positive values imply anti-clockwise circulation) for Pr = 

0.9 through +6.63 (Pr = 1.0), to +4.5 (Pr = 2.0) to +3.34 (Pr = 3.0) to eventually +2.19 (Pr = 

5.0). There is concurrently a growth in vortex pattern in the right wall proximity as the vorticity 

is decreased in the left zone of the enclosure. However the strength of the newly developing 

zones is decreased i.e. vorticity magnitudes still are reduced with increase in Prandtl number 

even in the right wall zone of the enclosure. Finally a reduction in pressure contour magnitudes 

is also observed with increasing Prandtl number (figs. 7d-11d). Pressure contours continuously 

diverge from each other as this occurs.  
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5.  CONCLUSIONS 

A numerical investigation of unsteady heat and momentum transfer in a Newtonian fluid 

occupying a square cavity has been conducted. The non-dimensional conservation equations 

have been solved with the Harlow-Welch Marked and Cell (MAC) finite difference approach. 

The square cavity has been simulated with a constant heat flux at the left wall and thermal 

insulation at all other walls. A grid independence study has been conducted. Also solutions 

have been validated with earlier published computations for special base wall heating 

conditions. The influence of several control parameters has been elucidated via streamline, 

temperature (isotherm), vorticity and pressure plots. The computations have shown that: 

(i) With an increment in thermal Grashof number (i.e. buoyancy effect) there is a 

reduction in streamline contour magnitudes (i.e. flow deceleration), an increase in 

temperature magnitudes (isotherms) and an associated decrease in wall heat transfer 

rates, a suppression of vorticity and intensity of circulation and an enhancement in 

pressure magnitudes in the upper left zone of the enclosure.  

(ii) With increasing Prandtl number, there is a decrease in stream function magnitudes 

(flow retardation), increase in isotherm magnitudes (i.e. heating of the enclosure 

fluid) and associated depression in wall heat transfer rates, a reduction in vorticity 

(and therefore inhibition of circulation in the cavity) and finally a suppression in 

pressure contour magnitudes.  

 

The MAC numerical scheme apparently achieves efficient and accurate solutions for transient 

enclosure thermal convection. The current study has however been confined to Newtonian 

fluids and has ignored thermal radiation. Non-Newtonian working fluids e.g. micropolar [5] 

and radiative flux models [2] are also of interest in optimizing solar collector thermal 

performance [32] and will be addressed in the near future.  
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