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ABSTRACT 

A mathematical analysis is presented to investigate the nonlinear, isothermal, steady-state, free 

convection boundary layer flow of an incompressible third grade viscoelastic fluid past an 

isothermal inverted cone in the presence of magnetohydrodynamic, thermal radiation and heat 

generation/absorption. The transformed conservation equations for linear momentum, heat and 

mass are solved numerically subject to the realistic boundary conditions using the second-order 

accurate implicit finite-difference Keller Box Method. The numerical code is validated with 

previous studies. Detailed interpretation of the computations is included. The present simulations 

are of interest in chemical engineering systems and solvent and low-density polymer materials 

processing. 
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NOMENCLATURE 

A half angle of the cone 

B0 externally imposed radial magnetic field 
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C concentration 

Cf skin friction coefficient 

cp specific heat 

Dm mass (species) diffusivity 

F radiation parameter 

f dimensionless stream function 

Grx local Grashof number 

g acceleration due to gravity 

K thermal diffusivity 

k thermal conductivity of the fluid 

M magnetic parameter 

N buoyancy ratio parameter 

Nu local Nusselt number 

Pr        Prandtl number 

qr  radiative heat flux 

r local radius of the truncated cone 

Sc Schmidt number 

Sh local Sherwood number 

T         fluid temperature 

u, v dimensionless velocity components along the x - and y – directions, respectively 

V velocity vector 

x stream wise coordinate      

y transverse coordinate 

Greek Symbols 

 thermal diffusivity 

β coefficient of thermal expansion 

* coefficient of concentration expansion 

1 first viscoelastic material fluid parameter 

2 second viscoelastic material fluid parameter 

β3 third grade material parameter 

        kinematic viscosity 

ρ        fluid density 

         Newtonian dynamic viscosity 
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 dimensionless radial coordinate 

 dimensionless temperature 

 dimensionless concentration 

 heat generation/absorption parameter 

 third grade dimensionless viscoelastic fluid parameter 

* Stefan-Boltzmann constant  

 dimensionless tangential coordinate 

 dimensionless stream function 

Subscripts  

w surface conditions on cone (wall) 

 free stream conditions 

 

INTRODUCTION  

Non-Newtonian fluid dynamics continues to grow due to the increasing applications in 

many industries such as china clay, coal in water, sewage sludge, oil-water emulsions, gas-liquid 

dispersions, coal-oil slurries, detergent and paint production, smart coating and suspension 

fabrication, pharmacology, cosmetic creams, physiological transport processes (blood, bile and 

synovial fluid), slurry conveyance, polymer synthesis and food processing. The mathematical 

models in non-Newtonian fluids are more complicated and relate the shear stresses to the 

velocity field [1]. Few non-Newtonian transport modeling include Casson non-Newtonian fluids 

[2], oblique micropolar stagnation flows [3], Walter’s viscoelastic flows [4], Jeffrey’s 

viscoelastic boundary layers [5], magnetized Williamson fluids [6], nanofluid transport from a 

sphere [7], Maxwell fluids [8] Eyring-Powell fluid [9], Tangent Hyperbolic fluid [10] and 

Jeffery Nano fluid [11-12]. 

Most non-Newtonian models involve some form of modification to the momentum 

conservation equations (Newton’s second law). Several fluid models have however emerged as 

strong candidates in successfully mimicking actual non-Newtonian characteristics. Among these, 

the differential type fluid models have proved popular. The simplest subclass of these 

viscoelastic models is the second grade fluid, which describes the normal stress differences but 

cannot predict shear thinning/thickening phenomena. However, the third-grade fluid model is 

capable of predicting both normal stress and shear thinning/thickening phenomena. Many 

researchers have examined the flows of third-grade fluids for various scenarios, usually with a 

mathematical emphasis and very little if any, physical understanding or interpretation of the 
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solutions. These studies are of very limited value to engineers working in complex (polymeric) 

fluid mechanics industries. For instance, Sahoo [13] investigated the flow and heat transfer of 

third grade fluid from an exponentially stretching sheet with partial slip boundary conditions. 

Aziz and Aziz [14] studied the magnetohydrodynamic flow of a third grade fluid in porous 

media with wall mass flux effects. Hayat et al. [15] analyzed axisymmetric flow of a magnetized 

third grade fluid between stretching sheets with heat transfer. Melting heat transfer in the 

stagnation-point flow of third grade fluid from an extending sheet with viscous dissipation was 

addressed by Hayat et al. [16] using the semi-analytical homotopy analysis method. A 

theoretical simulation of hydromagnetic axisymmetric flow of third grade fluid induced by a 

stretching cylinder was presented by Hayat et al. [17]. Samuel et al. [18] considered 

thermodynamic aspects of hydromagnetic third grade fluid flow in a porous media channel.  

Abdul hameed et al. [19] computed solutions for transient third-grade flow caused by the 

periodic motion of an infinite wall with transpiration. Rashidi et al. [20] conducted an entropy 

generation minimization analysis of convective magnetic flow of third grade non-Newtonian 

fluid from a stretching sheet. Again these studies did even not attempt to evaluate the physics of 

third grade fluid effects making them of minimal interest from an engineering perspective.  

The influence of magnetic field has attracted the interest of researchers due to its 

applications in geophysics, astrophysics and many engineering problems like cooling of nuclear 

reactors, boundary layer control in aerodynamics and cooling towers.  Aracely Lopez et al. [21] 

investigated numerically the heat transfer and entropy generation in a magnetohydrodynamic 

flow of nanofluid through a porous vertical microchannel with nonlinear Radiative heat flux 

using runge-Kutta integration method and shooting technique. Rashad [22] studied the 

magnetohydrodynamic mixed convection flow of Cobalt-kerosene Ferro fluid adjacent to a non-

isothermal wedge under the influence of thermal radiation and partial slip using Thomas 

algorithm. Hayat et al. [23] presented mathematical analysis of magnetohydrodynamics three-

dimensional nonlinear convective flow of Maxwell nanofluid towards a stretching surface in the 

presence of thermal radiation, heat generation/absorption and heat flux. Hayat et al. [24] 

presented the convection flow of viscous fluid by a curved stretching sheet in the presence of 

uniform magnetic field, thermal radiation and chemical reaction. Jalilpour et al. [25] investigated 

the theoretical study of steady stagnation point flow with heat transfer of nanofluid towards a 

stretching surface in the presence of magnetohydrodynamics and thermal radiation using Runge-

Kutta method. Dogonchi et al. [26] analyzed the unsteady squeezing flow and heat transfer of 

MHD nanofluid between the infinite parallel plates with thermal radiation effects using Duan-
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Rach Approach. Siddiq et al. [27] studied the hydromagnetic Radiative stagnation point flow of 

micropolar nanofluid passed through a shrinking sheet using RKF 45 technique. Awais et al. 

[28] reported the MHD flow of nanofluid past a stretching surface in the presence of convective 

cooling which occurs at the boundary has a major role in energy augmentation.   

Heat transfer external to curved bodies is also of some significance in biochemical and 

plastics fabrication processes. Geometrical configurations investigations include circular disks, 

needles, spheroids, elliptical bodies, cones, truncated cones (frustum) and blunt nosed bodies. 

Theoretical studies on laminar free convection flow on axisymmetric bodies have received more 

attention, whether with uniform surface temperature i.e. isothermal conditions (as considered in 

the present study) or in the case of non-uniform surface temperature and surface heat flux 

distributions. Hossain and Paul [29] studied the free convection from a vertical permeable 

circular cone with non-uniform surface temperature. Kairi and Murthy [30] analyzed the effect 

of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-

Newtonian fluid saturated non-Darcy porous medium. Nadeem and Saleem [31] reported the 

unsteady mixed convection analytical study of rotating second grade Nanofluid on a rotating 

cone using similarity transformations and solved analytically using homotopy analysis method. 

Noghrehabadi et al. [32] investigated the natural convection flow of Nanofluids over a vertical 

cone embedded in non-Darcy porous media. Nadeem [33] examined the analytical study of third 

grade fluid over a rotating vertical cone in the presence of nanoparticles. Saleem and Nadeem 

[34] presented the viscous dissipation and slip effects on a rotating vertical cone in a viscous 

fluid using homotopy analysis method. Saleem et al. [35] explored the convectional flow of 

Jeffreys fluid past a rotating cone. Saleem et al. [36] investigated the effects of chemical reaction 

and heat generation or absorption effects of time-dependent second-order viscoelastic fluid on a 

rotating cone. All these investigations revealed that heat and flow features are considerably 

influenced by curvature of the body and more sophisticated thermo fluid behavior is observed 

than in conventional flat plate (wall) systems. 

The objective of the current study is to examine the steady-state, laminar, thermal 

convection boundary layer flows of third grade non-Newtonian fluid from an isothermal inverted 

cone. Appropriate non-similar transformations are deployed to render the conservation equations 

into dimensionless form. The emerging non-dimensional partial differential equations with 

associated boundary conditions constitute a highly nonlinear, coupled two-point boundary value 

problem making exact solutions practically impossible. Keller’s implicit finite difference “box” 

scheme is therefore implemented to obtain approximate computational solutions. Validation with 
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earlier Newtonian solutions is also documented. The boundary value problem features a number 

of dimensionless thermophysical parameters, namely the third grade fluid parameter (), 

viscoelastic material fluid parameters (1, 2), radiation parameter (F), Prandtl number (Pr), 

heat absorption/generation parameter (), magnetic parameter (M) and Buoyancy parameter 

(N). The influence of various parameters on velocity, temperature, concentration, skin friction 

number (surface shear stress function), heat transfer rate (local Nusselt number) and mass 

transfer rate (local Sherwood number) characteristics are studied. The present problem has to the 

authors’ knowledge not appeared thus far in the scientific literature and is relevant to thermal 

fabrication (heat treatment) of paint sprays, water-based rheological gel solvents and low density 

polymeric manufacturing processes in chemical engineering.  

 

NON-NEWTONIAN CONSTITUTIVE THIRD GRADE FLUID MODEL 

In the present study we utilize (in part) the rheological properties of a subclass of non-Newtonian 

fluids known as the third grade fluid. This model physically captures accurately the viscoelastic 

characteristics of certain polymers [37, 38]. The Cauchy stress tensor of an incompressible third 

grade non-Newtonian fluid following Truesdell and Noll [39] takes the form: 

   2 2

1 1 2 2 1 1 3 2 1 2 2 1 3 1 1-            pI A A A A A A A A trA A             

          

(1) 

where  is the extra stress tensor, p is the pressure, I is the identity tensor, i (i = 1, 2),  i (i = 1, 

2, 3) are the material constants and Ak (k = 1, 2, 3) are the first Rivlin-Ericksen tensors [40] 

which are defined as follows: 

   
T

1A = V  + V                         (2) 

   
T1

1 1A = V  +  V ; 1n
n n n

dA
A A n

dt


                  (3) 

The resulting boundary value problem is found to be well-posed and permits a sound 

methodology for analyzing and appraising non-Newtonian effects on the thermo-fluid polymeric 

transport phenomena via the deployment of suitable dimensionless parameters. 

 

MATHEMATICAL MODEL    

Steady-state, laminar, double-diffusive, incompressible flow, thermal convection and mass 

transfer of third grade viscoelastic fluid from an inverted permeable cone with vertex angle 2A, 

is considered, as illustrated in Fig. 1. The vertex of the cone is located at the origin of the 

coordinate system. The x – coordinate is taken along the surface of the cone and y – coordinate is 
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directed normal to the surface of the cone. The acceleration due to gravity g, acts downwards. 

We also assume that the Boussinesq approximation holds, i.e., the density variation is 

experienced solely in the buoyancy term in the momentum equation. Both cone and fluid are 

initially maintained at the same temperature and concentration and are instantaneously raised to 

a temperature wT T  and concentration wC C , the ambient temperature and concentration of 

the fluid which remains unchanged. In line with the approach of Sahoo [13] and Hayat [15-17], 

introducing the boundary layer approximations, the equations for continuity, momentum, energy 

and spices can be written as follows:  

   
0

ru rv

x y

 
 

 
                        (4) 

 

   

2 3 3 2 2

1
1 22 2 3 2

2 22
*3 0

2

1
3 2

6
cos cos

u u u u u u u u u
u v u v

x y y x y y x y y x y

Bu u
g T T A g C C A u

y y


  

 

 
 

 
 

         
       

           

  
      

  

  (5) 

 
2

0

2

1 r

p p

QqT T T
u v T T

x y y c y c


 


  
    

   
       

(6) 

2

2m

C C C
u v D

x y y

  
 

  
           (7) 

The appropriate physical boundary conditions are as follows:  

At  0, 0, 0, ,

, 0, 0, ,

w wy u v T T C C

As y u v T T C C 

    

    
 

             (8) 

In Eq. (6), the Rosseland diffusion flux model [41, 42] is an algebraic approximation and 

defined as follows: 

44

3
r

T
q

k y

 







                      (9) 

where k  - mean absorption coefficient and  

 - Stefan-Boltzmann constant.   

This formulation allows the transformation of the governing integro-differential equation for 

radiative energy balance into electrostatic potential (Coulomb’s law) which is valid for optically-

thick media in which radiation only propagates a limited distance prior to experiencing scattering 

or absorption. It can be shown that the local intensity is caused by radiation emanating from 

nearby locations in the vicinity of which the emission and scattering are comparable to the 

location under consideration. For zones where conditions are appreciably different, the radiation 

has been shown to be greatly attenuated prior to arriving at the location being analyzed. The 
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energy transfer depends only on the conditions in the area near the position under consideration. 

In applying the Rosseland assumption, it is assumed that refractive index of the medium is 

constant, intensity within the porous medium is nearly isotropic and uniform and wavelength 

regions exist where the optical thickness is greater than 5.  

Expanding 4T  using Taylor series and neglecting higher order terms leads to: 

4 3 44 3T T T T                                 (10) 

Substituting (10) into (9), the heat conservation equation (6) reduces to: 

 
32 2

0

2 2

16

3 p p

QTT T T T
u v T T

x y y k c y c




 






   
    

   
                 (11) 

The stream function, , is defined by ru
y





 and rv
x


 


, and the continuity equation is 

automatically satisfied. Here, r, the local radius is defined as,   sinr x x A . In order to render 

the governing equations and the boundary conditions in dimensionless form, the following non-

dimensional quantities are introduced: 

 

 
 

1/4 1/4 4

3

3/2 1/2 1/23 1 2
1 22 4 2 2

1
, , , , , Pr

2

cos
, , , , ,

4

w
x x x

w

w

x x x x

w

V x T Ty
Gr Gr r Gr f

x T T

g T T x A C C
Gr Gr Gr Gr

x x x C C


       

 

    
     

   

 



 



 
      

 

 
    



            (12) 

In view of Eq. (12), the boundary layer Eqs. (5) – (7) reduce to the following coupled, parabolic, 

nonlinear, dimensionless partial differential equations for momentum, energy and mass for the 

regime:  

     

   

 

2 2

1 1 2

2

1 2

1 1 2

7 1 1 7 1
''' '' ' '' ' ''' 3 2 ''

4 2 2 4 4

4 2 '' ''' 6 '' ''' '
4

' ''' ' ''
' '' ' ''' 3 2 ''

4

iv iv

iv

f ff f f f f ff f f

f f f f N Mf

f f f f f f
f f f f f f

    


    


  

     

 
        

 

     

       
        

       

     (13) 

'' 4 7
1 ' ' ' '

Pr 3 4 4

f
f f

F

  
   

 

   
        

    
     (14) 

'' 7
' ' ' '

4 4

f
f f

Sc

  
  

 

  
    

  
            (15) 

The corresponding transformed boundary conditions are: 
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0, 0, ' 0, 1, 1

, ' 0, '' 0, 0, 0

At f f

As f f

  

  

    

    
       (16)

 

Here primes denotes the ordinary differentiation with respect to , 
 
 








TT

CC
N

w

w



 *

, 

34

K k
F

T







  and 
2

0

p x

Q x

c Gr
  . The skin-friction coefficient (shear stress at the cone surface), 

heat transfer rate (local Nusselt number) and mass transfer rate (local Sherwood number) at the 

cone surface are defined as follows:  

        
33/4

1

5 7
'' ,0 ' '' ,0 ''' , 0 2 '' ,0

4 4
fGr C f f f ff f       
    

 
   (17) 

1/4 '( ,0)Gr Nu                           (18) 

1/4 / ( ,0)x xSh Gr              (19) 

In vicinity of the lower stagnation point,  0 and the boundary layer equations (13) – (15) 

reduce to a system of ordinary differential equations: 

     

   

2 2

1 1 2

2

1 2

7 1 1 7 1
''' '' ' ' ''' 3 2 ''

4 2 2 4 4

4 2 '' ''' 6 '' ''' ' 0
4

ivf ff f f f ff f

f f f f N Mf

  


    

 
      

 

      

   (20) 

'' 4
1 7 ' 0

Pr 3
f

F


 

 
     

 
         (21) 

'' 7
' 0

4
f

Sc


 

 

                       (22) 

The general model is solved using a powerful and unconditionally stable finite difference 

technique introduced by Keller [43]. The Keller-box method has a second order accuracy with 

arbitrary spacing and attractive extrapolation features. It converges quickly and is ideal for 

parabolic problems. 

 

COMPUTATIONAL SOLUTION  

An implicit difference Keller-Box method is implemented to solve the non-linear boundary layer 

Eqs. (13) - (15) subject to the boundary conditions (16). This technique has remained extremely 

popular and maintained comparably efficient than other numerical methods such as finite 

element, boundary elements, spectral methods etc. Keller-Box method has a second order 

accuracy with arbitrary spacing and attractive extrapolation features. It is unconditionally stable 
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and achieves exceptional accuracy. It converges quickly and provides stable numerical meshing 

features and provides an improvement in accuracy on explicit or semi-implicit schemes and 

utilizes customizable stepping in a fully implicit approach. Relevant details are provided in 

Keller [43]. The Keller-Box discretization is fully coupled at each step which reflects the physics 

of parabolic systems – which are also fully coupled.  Discrete  calculus  associated  with  the  

Keller-Box  scheme has also been shown to be fundamentally different  from  all  other  mimetic  

(physics capturing)  numerical  methods, as elaborated in Abdul gaffar et al. [44 - 48].  

 

NUMERICAL RESULTS AND DISCUSSION  

A comprehensive set of numerical results have been obtained and are illustrated in Figs. 2 – 11 

and tables 1 – 3. The numerical problem comprises of two independent variables (,), three 

dependent fluid dynamic variables (f, , ) and six rheological and thermo-physical parameters, 

viz., , 1, 2, F, M, N, , Sc, Pr. The following default parameter values are deployed:  = 0.1, 

1 = 2 = 0.3, F = 0.5, M = 0.5, N = 0.5, Pr = 7.0,  = 0.1, Sc = 0.6 and  = 1.0. Furthermore, 

the influence of stream-wise coordinate on flow, temperature and concentration characteristics is 

also investigated. The selection of data is consistent with established works in the field; 

specifically for third grade fluids we have adopted data from Sahoo and Poncet [11] which is in 

turn consistent with Truesdell and Noll [39]. The present model reduces to the Newtonian 

isothermal solid cone version of the Hossain-Paul [29] model when non-isothermal wall index 

and wall suction are set to zero in their general model and when Pr = 0.1 (low density polymer), 

1 = 2 =  = 0 (third grade viscoelastic effects vanish). The comparison solutions are 

documented in Table 1 and demonstrate excellent correlation for the heat transfer rate, 

 ' ,0 
 
for various values of . With increasing tangential coordinate there is evidently a 

strong enhancement in heat transfer rates. Table 2 provides KBM solutions for the influence of 

the magnetic parameter, M and the buoyancy parameter, N, on skin friction, heat transfer rate 

and mass transfer rate along with the variation in . In Table 2, we observe that with increasing 

M values, the skin friction is reduced. Also a slight decrease is observed in heat transfer rate and 

mass transfer rate. Increasing N is observed to increase skin friction, heat transfer rate and mass 

transfer rate. In Table 3, we found that with increasing F values, the skin friction and mass 

transfer rate are reduced, whereas, the heat transfer rate is enhanced. And an increasing  is 

observed to decrease skin friction and heat transfer rate but the mass transfer rate is slightly 

increased. 
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Figures 2(a) – 2(c) depicts the velocity (f/), temperature () and concentration () distributions 

with increasing third grade material fluid parameter () through the boundary layer regime. 

There is a strong elevation (Fig. 2(a)) in linear velocity closer to the cone surface with an 

increase in . Hence, the momentum boundary layer thickness is decreased with greater third 

order viscoelastic parameter. The mathematical model reduces to the Newtonian viscous flow 

model as   0, 1  0 and 2  0. The momentum boundary layer equation in this case 

contracts to the familiar equation for Newtonian convection from a cone, viz: 

 
27 1 '

''' '' ' '' ' ' ''
4 2 4

f f
f ff f f N Mf f f


  

 

  
        

  
    (23) 

Greater third order material effects therefore serve to marginally thicken thermal boundary 

layers. The third grade material parameter, , is given by 
2/3

4

3
xGr

x


 where 

2

3

4

cos)(



 AxTTg
Gr w

x


  is the local thermal Grashof number. From careful inspection of the 

parameter, , it emerges that  is directly proportional to third grade material parameter (3) and 

inversely proportional to the square of kinematic viscosity (2). This results in acceleration in 

the boundary layer flow i.e. greater f / values as observed in fig. 2a. The  parameter actually 

arises in a single term in only the linear momentum equation (13), viz +6 (f //)2 f ///, and is 

therefore strongly related to shear rate. As  is increased, the fluid requires a lesser shear to flow 

and stronger elastic effects are present which encourage flow acceleration. The effect is most 

prominent near the cone surface and is reversed further towards the freestream. However, the 

acceleration effect in the near-wall region is substantially greater than the retardation effect at the 

edge of the boundary layer i.e. the latter is a weaker phenomenon. The temperature field (Eq. 14) 

is indirectly influenced by the parameter  again owing to coupling with linear momentum Eq. 

(13) via the thermal buoyancy term (). There is a slight increase in temperature magnitudes in 

fig. 2(b) with a rise in . The thermal boundary layer thickness is therefore enhanced with 

greater rheological effect. The decrease in viscosity associated with greater  values implies that 

momentum diffusion rate is lower relative to thermal diffusion rate in the boundary layer. This 

results in elevated heat diffusion which causes temperatures to increase, a trend which is 

sustained across the boundary layer regime. In fig. 2(c) with increasing  there is a slight 

increase in concentration (). We emphasize that the selection of parameters associated with figs. 

2(a) – (c) (and indeed all other subsequent graphical plots), is deliberate. Unfortunately the vast 
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majority of studies using the third grade model do not elaborate on the physical reasons for 

selection of material parameter values. They arbitrarily specify such parameters and this makes it 

difficult to apply the solutions to real engineering polymeric flows. While such studies are 

mathematically rigorous they are often exercises in analysis and not in physical interpretation- 

see [13-20]. In the constitutive Eq. (1), Truesdell and Noll [39] have shown that for proper 

description of third grade fluids, if all the motions of such liquids are to be compatible with 

thermodynamics in the sense that these motions meet the Clausius-Duhem inequality and if it is 

assumed that the specific Helmholtz free energy is minimum when the fluid is locally at rest, 

then the following conditions must hold: 

.0,0,24,0,0 3213211         (24) 

The specification of 1=2 = 0.3 as defined in Eq. (13) relates to the prescription of the material 

moduli values 1, 2 in the Reiner-Rivlin third grade viscoelastic model i.e. Eq. (24). Evidently, 

the third grade material parameter (3) can have values greater or equal to zero, resulting in  

values dependent on the particular selection. Based on consistency with the work of Akyildiz et 

al. [49] and Bég et al. [50], we study weakly elastic fluids as characteristic of solvents and 

specify 1 = 2 = 0.3. All computations correspond to a  =1.0 i.e. some distance downstream 

from the leading edge ( = 0.0) on the curved surface of the cone. The solutions given are at a 

general location and not confined to extremities of the cone geometry.  

Figures 3(a) - 3(c) illustrates the effect of the first material viscoelastic fluid parameter, 1, on 

the velocity  f  , temperature () and concentration (). The parameter, 1, is directly 

proportional to first material viscoelastic modulus, 1. It appears in numerous terms in the linear 

momentum Eq. (13). As 1 increases, the linear velocity decrease (fig. 3a). This is probably due 

to the relaxation in the rheological fluid with further separation from the cone surface. This 

results in a shear-thickening in the fluid and higher viscosity which slows the boundary layer 

flow in this region leading to an increase in momentum boundary layer thickness. Fig. 3b shows 

that temperatures are consistently enhanced throughout the boundary layer regime with greater 1 

values. The reduction in liquid viscosity results in energy diffusion rate exceeding the 

momentum diffusion rate which heats the boundary layer and increases thermal boundary layer 

thickness. Concentration is found in fig. 3c to be markedly increased with greater values of first 

material viscoelastic fluid parameter, 1.  

Figures 4(a) - 4(c) displays the evolution of velocity  'f , temperature () and concentration () 

functions with a variation in the second material fluid parameter 2. Dimensionless velocity 
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component is observed to be substantially enhanced with increasing 2 values. The definitions of 

1 and 2 only differ in the material modulus (1 and 2) included. However the influence on 

thermo-fluid characteristics is very different. Acceleration is consistently achieved with greater 

2 values, at any location in the boundary layer transverse to the cone surface (fig. 4a), in 

contrast to increasing 1 (fig. 3a) where a different response is induced depending on the location 

in the boundary layer. Larger 2 values correspond to an effective reduction in the viscosity of 

the liquid and greater elasticity. Contrary to fig. 3b, where temperatures are elevated with higher 

1 values, in fig. 4b we observe that temperatures are reduced with larger 2 values. Heat 

diffusion rate is therefore lower with higher 2 values indicating that thermal boundary layer 

thickness is lowered. Concentration is found in fig. 4c to be consistently reduced with higher 

magnitudes of second material viscoelastic fluid parameter, 2.  

Figures 5(a) – 5(c) presents the influence of the radiation parameter (F) on the velocity  'f , 

temperature () and concentration () distributions. We observe in Fig. 5(a) that an increase in F, 

strongly decelerates the flow i.e., depresses linear velocity; this trend is sustained until a certain 

distance normal to the cone surface after which a transition occurs. This parameter appears in the 

energy conservation Eq. (14). 
3

*

4 *

Kk
F

T 

  represents the thermal conduction to the thermal 

radiation heat transfer. Therefore, temperature is decreased with increasing values of F, as 

observed in fig. 5(b). With increasing F values there is also a progressive enhancement in 

concentration as seen in fig. 5(c).  

Figures 6(a) – 6(c) depict the velocity  'f , temperature () and concentration () distributions 

for various values of heat generation or absorption parameter, . With increasing values of heat 

generation ( > 0) the velocity and temperature are significantly accelerated but the 

concentration is slightly decelerated. Whereas, with heat absorption ( < 0) the flow is retarded, 

thermal boundary layer thickness is reduced whereas the concentration boundary layer thickness 

is increased.  

Figures 7(a) – 7(c) illustrates the effects of velocity  'f , temperature () and concentration () 

distributions for various values of the magnetic parameter, M. It is seen that with increasing 

values of M, the flow decelerates i.e., velocity decreases. However, with increasing M, the 

temperature and concentration are enhanced. The Hartmann number, M, simulates the relative 

contribution of Lorentzian magnetohydrodynamics drag force relative to viscous hydrodynamic 

force. As M increases, greater opposition is generated to the flow past the cone leading to 
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deceleration. The supplementary work expended in dragging the polymer against the imposition 

of the transverse magnetic field creates heating the polymer. This dissipation of heat leads to rise 

in temperature and thickening of thermal boundary layers in polymers. This phenomenon is 

extensively presented in magnetohydrodynamics studies [52, 53].      

Figures 8(a) – 8(c) presents the profiles for velocity  'f , temperature () and concentration () 

distributions for various values of the buoyancy ratio parameter, N. For N > 0, the flow is 

accelerated. Initially for N < 0 i.e. the buoyancy opposed case where thermal and species 

buoyancy forces act against each other, the flow is decelerated. Further, from cone surface there 

is a transition in the influence of N. N > 0 leads to a slight reduction in velocity with the contrary 

for N < 0. The influence of a large change in N is much less pronounced further from the wall. 

Buoyance forces therefore exert a much more marked effect in the vicinity of the cone surface. A 

very response is sustained by temperature and concentration for different values of N. The 

parameter 
 

 

* C C
N

T T













 expresses the concentration to thermal buoyancy force ratio. For 

cases where N < 1, thermal buoyancy will dominate concentration buoyancy effects and vice 

versa for N > 1.           

Figures 9(a) – 9(c) depict the velocity  'f , temperature () and concentration () distributions 

with radial coordinate, for various stream-wise coordinate values, . This parameter also 

manifest the local Grashof number and can be viewed as a free convection parameter as 

elaborated by Gorla et al. [53]. Clearly, from fig. 9(a) it is observed that as  increases, the fluid 

velocity decreases. This is due to the fact that with greater streamwise coordinate, the flow 

location moves along the cone surface from the apex towards the broad periphery of the cone. 

Buoyancy forces increase as this occurs and these suppress momentum diffusion, leading to 

deceleration in the flow and a thicker boundary layer structure. All the temperature and 

concentration profiles (fig. 9(b) & 9(c) respectively) decay smoothly from the maximum at the 

cone surface to the minimum in the free stream. With progressive distance from the leading edge 

(cone apex), the fluid is therefore cooled and thermal boundary layer thickness decreases.  

Figures 10(a) – 10(c) depict the influence of the third grade dimensionless material parameter, 

, on the dimensionless skin friction coefficient (Cf), heat transfer rate i.e. Nusselt number (Nu) 

and mass transfer rate i.e. Sherwood number (Sh) at the cone surface. In fig. 10(a) It is observed 

that the Cf is enhanced with an increase in . Since higher skin friction corresponds to greater 

acceleration and larger values of third grade material parameter are known to reduce viscosity 
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effects and enhance momentum diffusion, whereas, the surface heat transfer rate (fig. (10b)) is 

reduced substantially with increasing  which again correlates well with temperature 

computations discussed previously. Since temperatures decrease with greater third grade 

material viscoelastic effect, heat transfer to the wall must also fall (heat transfer is enhanced to 

the body of fluid) and this explains why Nusselt number magnitudes are reduced. Fig. 10(c) 

shows that mass transfer rate (Sh) is considerably reduced with greater .  

Figures 11(a) – 11(c) illustrate the effect of the material fluid parameter 1 on the dimensionless 

skin friction (Cf), heat transfer rate i.e. Nusselt number (Nu) and mass transfer rate i.e. Sherwood 

number (Sh) at the cone surface. It is observed that the Cf and Nu are depressed strongly along 

the entire cone surface i.e. for all values of , with an increase in 1, conversely, Sh is 

significantly elevated with increasing 1. The first viscoelastic material modulus parameter 

decelerates the linear flow whereas it raises temperatures (see figs 3(a)-3(c)). This is entirely 

consistent with the results given in figs. 11(a) - 11(c) wherein skin friction and wall heat transfer 

rate (Nusselt number) are depressed whereas the mass transfer rate is elevated.  

 

CONCLUSIONS 

Numerical results are presented for the buoyancy-driven, non-similar, boundary layer flow of 

third grade viscoelastic non-Newtonian fluid external to an isothermal vertical cone. The Keller-

box implicit second order accurate finite difference numerical scheme has been utilized to 

efficiently solve the transformed, dimensionless velocity and thermal boundary layer equations, 

with prescribed boundary conditions. A comprehensive assessment of the effects of the third 

grade parameter (), first and second viscoelastic material fluid parameters (1, 2), thermal 

radiation parameter (F), heat generation/absorption parameter (), Prandtl number (Pr), 

magnetic parameter (M) and Buoyancy ratio parameter (N) and also the streamwise coordinate 

() on thermo-fluid characteristics has been conducted. Very stable and accurate solutions are 

obtained with the present finite differences code. Validation of the implicit Keller box method 

(KBM) solutions has been achieved with earlier Newtonian solutions. The computations have 

shown that the different third grade rheological parameters exert a varied influence on velocity, 

temperature and concentration functions, and also on the gradients of these functions (i.e. skin 

friction, Nusselt number and Sherwood number). Heat transfer rate and mass transfer rate are 

markedly reduced and skin friction is enhanced for all values of . With greater values of first 

viscoelastic material parameter (1) skin friction and heat transfer rate are significantly reduced 

whereas the mass transfer is enhanced. Increasing third grade material parameter () is seen to 
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decrease linear velocity and slightly increases temperature and concentration magnitudes. 

Increasing stream-wise coordinate () decelerates the boundary layer flow and cools the 

boundary layer. The Keller-box code is able to solve nonlinear rheological boundary layer flow 

problems very efficiently and therefore presents excellent promise in simulating transport 

phenomena in other non-Newtonian fluids. In this regard it is being explored with other non-

Newtonian formulations and the results of these studies will be communicated imminently.  
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Fig. 1 Physical model and coordinate system 
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Tables 

Table 1: Comparison values of  ' ,0  for various values of   with Pr = 0.1, 1 = 2 = = 0, 

M = 0, F = 0.5,  = 0.1, Sc = 0.6, N = 0.5 for only isothermal, solid cone case selected from 

Hossain and Paul [24]. 

 
 ' ,0   

Hossain and Paul [24] Present results 

0.0 0.24584 0.24583 

0.1 0.25089 0.25088 

0.2 0.25601 0.25599 

0.4 0.26630 0.26629 

0.6 0.27662 0.27658 

0.8 0.28694 0.28691 

1.0 0.29731 0.29729 

2.0 0.35131 0.35128 

 

Table 2: Values of Cf, Nu and Sh computed with KBM numerical approaches for different N, 

and M,  with ε1 = ε2 = 0.3,  = 0.1, Pr = 7.0, F = 0.5,  = 0.1, and Sc = 0.6. 

M N 
 = 1.0  = 2.0  = 3.0 

Cf Nu
 

Sh Cf Nu
 

Sh Cf Nu
 

Sh 

0.05 

0.5 

0.4177 1.6225 0.8942 0.1564 3.6671 1.3444 0.0738 5.6613 1.8754 

0.25 0.4080 1.6207 0.8937 0.1545 3.6668 1.3443 0.0735 5.6607 1.8753 

0.5 0.3966 1.6186 0.8932 0.1523 3.6667 1.3442 0.0730 5.6570 1.8752 

1.0 0.3762 1.6150 0.8922 0.1481 3.6666 1.3442 0.0720 5.6562 1.8751 

1.5 0.3585 1.6122 0.8914 0.1443 3.6665 1.3440 0.0711 5.6596 1.8749 

0.5 

-0.05 0.2129 1.5731 0.8806 0.0512 3.6489 1.3337 0.0166 5.6394 1.8590 

-0.01 0.2262 1.5766 0.8816 0.0586 3.6508 1.3345 0.0207 5.6426 1.8601 

0.1 0.2630 1.5860 0.8842 0.0788 3.6559 1.3366 0.0319 5.6497 1.8638 

0.2 0.2963 1.5944 0.8865 0.0972 3.6591 1.3388 0.0422 5.6543 1.8673 

0.3 0.3297 1.6026 0.8888 0.1156 3.6621 1.3408 0.0525 5.6573 1.8704 
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Table 3: Values of Cf, Nu and Sh computed with KBM numerical approaches for different F,  

and  with ε1 = 0.3, ε2 = 0.3, = 0.1, Pr = 7.0, M = 0.5, N = 0.5 and Sc = 0.6.  

F  
 = 1.0  = 2.0  = 3.0 

Cf Nu
 

Sh Cf Nu
 

Sh Cf Nu
 

Sh 

0.05 

0.1 

0.9754 0.4147 0.8315 0.6469 0.5780 1.3045 0.3996 0.7826 1.8541 

0.05 0.8299 0.6282 0.8008 0.4615 1.0056 1.2752 0.2348 1.4675 1.8392 

0.15 0.7337 0.8319 0.7798 0.3612 1.4333 1.2606 0.1680 2.1304 1.8348 

0.2 0.6658 1.0260 0.7652 0.3014 1.8739 1.2535 0.1357 2.7536 1.8330 

0.25 0.6156 1.2106 0.7548 0.2648 2.2326 1.2498 0.1176 3.3384 1.8321 

0.5 

-1.0 0.4288 2.7267 0.7248 0.1862 4.5445 1.2444 0.0858 6.1259 1.8307 

-0.5 0.4481 2.4401 0.7269 0.1895 4.3416 1.2444 0.0859 5.9765 1.8308 

0.0 0.4776 2.0882 0.7304 0.1934 4.1187 1.2445 0.0860 5.8196 1.8311 

0.25 0.4999 1.8688 0.7331 0.1956 3.9976 1.2445 0.0861 5.7380 1.8316 

0.35 0.5115 1.7677 0.7345 0.1965 3.9469 1.2446 0.0862 5.7049 1.8319 

 

 

 

 


