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France

(Dated: 23 December 2017)

The propagation of long-wavelength sound in the presence of a metasurface made by arranging acoustic
resonators periodically upon or slightly above an impervious substrate is studied. The method of two-
scale asymptotic homogenization is used to derive effective boundary conditions which account for both the
surface corrugation and the low-frequency resonance. This method is applied to periodic arrays of resonators
of any shape operating in the long-wavelength regime. The approach relies on the existence of the locally
periodic boundary layer developed in the vicinity of the metasurface, where strong near-field interactions of the
resonators with each other and with the substrate take place. These local effects give rise to an effective surface
admittance supplemented by nonlocal contributions from the simple and double gradients of the pressure at
the surface. These phenomena are illustrated for the periodic array of cylindrical Helmholtz resonators with an
extended inner duct. Effects of the centre-to-centre spacing and orientation of the resonators’ opening on the
nonlocality and apparent resonance frequency are studied. The model could be used to design metasurfaces
with specific effective boundary conditions required for particular applications.
–
–

INTRODUCTION

Structured surfaces made of the two-dimensional (2-D)
periodic arrangements of resonators have attracted sub-
stantial interest recently as they provide light-weight and
low-invasive solutions to control wavefields. When the
wavelength around the resonance is significantly longer
than the spatial period of the array, these structured
surfaces can be referred to as ”metasurfaces”. The abil-
ity of metasurfaces to control wavefields have already
been demonstrated in many domains of physics, such
as electromagnetism,1 elastodynamics,2 and acoustics.3,4

Meanwhile, the development of equivalent continuum
models to describe and characterise metasurfaces has be-
come a central issue from both the theoretical and com-
putational points of view. A common phenomenological
approach to the characterisation of a metasurface inte-
rior to the unbounded space (“transmit-arrays” or meta-
screens) is to consider it as an effective layer of subwave-
length thickness. Assuming that the behaviour of the
effective layer complies with standard continuum theo-
ries, such as an effective fluid model in acoustics,5,6 its
presumed effective properties (density and bulk modulus
in acoustics) are usually retrieved numerically or exper-
imentally from the fields specularly reflected from and
transmitted through the metasurface when it is submit-
ted to a normally incident plane wave.7 However, the
exact physical reasons relating these effective properties
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to the surface microstructure can be difficult to identify.
Moreover, such procedure can be less straightforward for
a “reflect-array”, that is a metasurface backed by a sub-
strate impervious to transmission, since only the reflec-
tion coefficient is available in that case.

In this work, an analytical approach to the descrip-
tion, characterisation, and design of the acoustic reso-
nant metasurface arranged against an impervious sub-
strate is presented. It relies on the theory of two-scale
asymptotic homogenisation8,9 to determine the macro-
scopic description of the metasurface, that is the defini-
tion of the effective fields, the equations governing them,
and the effective constitutive parameters. This is possible
if the condition of scale separation ϵ = ℓ/L < 1 is satis-
fied, where ℓ is the characteristic size of the metasurface
unit cell, and L is the characteristic length of the macro-
scopic wave. While this method was initially formu-
lated to describe heterogeneous bulk media,8,9 it has been
adapted since to deal with the problem of structured sur-
faces by means of boundary layer formulations.10–14 Re-
cently, such a formulation has been applied to the present
problem,4 with a description limited to the leading order
of the asymptotic expansions. It was demonstrated that
the metasurface can be described by an effective surface
admittance of local reaction with parameters explicitly
upscaled from the microstructures. In practice, this de-
scription is all the more reliable that the scale parameter
ϵ is considerably less than unity, which has been demon-
strated experimentally.4 However, when the metasurface
is corrugated, for instance when resonators are arranged
upon the substrate rather than buried in it, the effects of
roughness can become noticeable15 when the wavelength
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L is not very large compared to the microstructure size
ℓ (but still with ϵ < 1) similar to Rayleigh scattering in
3-D media.16 Also, discrepancies in the value of the reso-
nance frequency have been observed between the theoret-
ical model and the experiments, which become more sig-
nificant as the scale parameter ϵ approaches unity.4 This
effect is attributed to near-field interactions between the
resonators in the array which modify the so called ”end
correction”. To account for these effects, the method of
two-scale asymptotic homogenisation offers the possibil-
ity to improve the leading order description with correc-
tors by considering higher order terms in the asymptotic
expansions. This approach, first applied to the descrip-
tion of heterogeneous bulk media,16–18 has also been used
for structured surfaces10–14,19–22 and leads to nonlocal
boundary conditions. Here, the approach is applied to
the case of the corrugated resonant metasurface to for-
mulate the effective nonlocal boundary conditions emerg-
ing from the combined effects of corrugation and surface
resonance. In Section I, the homogenisation model for
the metasurface is presented, where the macroscopic de-
scription is derived up to the first corrector and nonlocal
boundary conditions are formulated. In Section II, the
periodic array of slotted cylinders arranged above a rigid
substrate is studied as an example. In particular, the
influence of the strong near-field interactions of the res-
onators with each other and with the substrate on the
macroscopic properties is illustrated.

I. BOUNDARY LAYER HOMOGENISATION MODEL

The propagation of airborne low frequency sound in
the presence of the corrugated resonant metasurface un-
der ambient conditions is studied, with the atmospheric
pressure P0, the adiabatic constant γ, the bulk mod-
ulus B0 = γP0, the density ρ0 and the sound speed
c =

√
B0/ρ0. The metasurface consists of the 2-D Σ-

periodic arrangement of linear acoustic resonators above
the plane surface Γs having the unit normal vector ns

directed into air, see Figure 1. The impervious substrate
Γs is not necessarily rigid, but its rheology is supposed
to comply with the Σ-periodicity. The resonator above
the reference period Σ has the boundary Γr with the unit
normal vector nr directed into air. For the sake of gen-
erality, it is positioned slightly above the surface Γs, but
the model will allow Γs and Γr to be connected. The
analysis is performed in the linear harmonic regime with
the implicit time factor e−iωt. In this system, the pres-
sure p and particle velocity v satisfy the equations of
momentum and mass conservation:

iωρ0v = grad(p), and iωp = B0div(v), (1)

along with Sommerfeld radiation conditions away from
the metasurface, and the following boundary conditions
at the surface Γr and Γs of the resonators and substrate:

v · ns = Rs(p) · ns at Γs; v · nr = Rr(p) · nr at Γr. (2)
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FIG. 1. Illustration of the homogenisation method. (a) Up-
scaling the boundary layer produced by the array of res-
onators above the substrate, the metasurface is described in
terms of effective boundary conditions for the long-wavelength
fields. (b) Unit cell used for homogenisation. (Color online)

In Eq. (2), Rs and Rr are linear operators describing
the velocity distribution prescribed by the substrate and
the resonator at the boundaries Γs and Γr in response to
the pressure p acting on them. The operators Rs and
Rr are generalised response functions which incorporate
the phenomena taking place inside the resonators and the
substrate. In this sub-structuring approach,Rs describes
the linear dependence of the velocity v at one point x of
the surface Γs on the value of the pressure p at any other
point x′ of Γs, while Rr provides such a description for
the surface Γr. Hence, Rs(p) can be written in the form:

Rs(p)(x ∈ Γr) =

∫
x′∈Γs

R̂s(x,x′, ω)p(x′, ω) dx′, (3)

where R̂s is the Σ-periodic kernel of Rs. An equation

similar to (3) holds for Rr with the kernel R̂r and inte-
gration over Γr. Here, it is assumed that (i) the modelling
of the resonators’ and substrate’s response has been al-

ready performed, that is R̂s and R̂r are known; and (ii)
the resulting effective conditions given by Eq. (2) can be
used in the homogenisation procedure that follows.

A. Boundary layer homogenisation procedure

The problem stated by Eqs. (1) and (2) is studied for
frequencies ω close to the resonance frequency ωo of the
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resonators, and sufficiently low for the condition of scale
separation ϵ = ℓ/L < 1 to be satisfied. Here ℓ is the
characteristic size of both the period Σ and the resonators
in the direction defined by the vector ns, and L = O(c/ω)
is the characteristic length of the macroscopic wavefield.
This introduces two scales in the system: the macro-scale
O(L) related to the Long-Wavelength (LW) field, and the
micro-scale O(ℓ) related to the metasurface array.
When subjected to a LW excitation, the metasurface

produces locally Σ-periodic perturbations in the vicin-
ity of the surface Γs that vanish some distance away
from it. This situation corresponds to a Boundary Layer
(BL) problem, which is studied here in the framework
of the two-scale asymptotic homogenisation (performed
in the tangential directions) coupled with the method
of matched asymptotic expansion (in the normal direc-
tion), as proposed by Nguetseng & Sanchez-Palencia10

and used in other studies.14,21

Firstly, two space variables are introduced: the usual
position vector x for the macroscopic description, and
the auxiliary vector of stretched coordinates y = ϵ−1x to
describe the surface microstructures. Here, the Cartesian
coordinate system (O, e1, e2, e3) is used, where the
origin O belongs to the substrate Γs, the vectors (e1, e2)
are in the plane Γs, and e3 = e1 ∧ e2 = ns, see Figure 1.
Using the Einstein convention of implicit summation on
repeated indexes, the space variables read x = xjej and
y = yjej with j ∈ {1, 2, 3}. Their tangential components
xS = x1e1+x2e2 and yS = y1e1+ y2e2 are also defined.

Secondly, the fields p and v are expanded asymptoti-
cally in powers of the scale parameter ϵ as follows. Away
from the metasurface, the fields p and v experience LW
variations only, and their asymptotic expansions involve

LW fields (P (n),V(n)) that depend only on x, where the
bracketed superscripts indicate the order of the terms:{

p = P (0)(x) + ϵP (1)(x) + ϵ2 . . . ,

v = V(0)(x) + ϵV(1)(x) + ϵ2 . . . .
(4)

In the vicinity of the surface, however, the problem is
somewhat different, due to the presence of the resonators
which induce locally Σ-periodic perturbations. Accord-
ing to two-scale asymptotic homogenisation8,10, the pres-
sure p and particle velocity v in the boundary layer are
set to depend on xS , yS and y3 to describe their macro-
scopic variations in the tangential directions, their local
Σ-periodicity close to the surface, and their local fluctu-
ations in the normal direction respectively. Hence, their
asymptotic expansions close to the metasurface involve
the BL fields (p(n),v(n)) as follows:{

p = p(0)(xS ,yS , y3) + ϵp(1)(xS ,yS , y3) + ϵ2 . . . ,
v = v(0)(xS ,yS , y3) + ϵv(1)(xS ,yS , y3) + ϵ2 . . . .

(5)

Since (p(n),v(n)) are assumed Σ-periodic over yS , it will
be useful to consider the column of air C = Σ × [0,∞]
containing the points with yS that belong to the two-
dimensional period Σ and y3 takes the values in [0,∞],

see Figure 1(b). The cross-sections of C located at y3 = 0
and y3 = ∞ are denoted Σ0 and Σ∞ respectively.

Thirdly, the use of the two-scale spatial description
modifies the differential operators so that ∇ = ∇x away
from the metasurface, and ∇ = ∇S

x + ϵ−1∇y in the
boundary layer region, where ∇x, ∇S

x and ∇y are the
del operators with respect to x, xS and y respectively.
The governing equations (1) and (2) need to be re-written
accordingly. Substituting Eq. (4) into (1), and collecting

terms of equal powers of ϵ, the LW fields (P (n),V(n)) are
found to satisfy the following equations of momentum
and mass conservation:

∀n ≥ 0, iωρ0V
(n) = gradx(P

(n)), (6a)

∀n ≥ 0, iωP (n)/B0 = divx(V
(n)). (6b)

Similarly, substitution of Eq. (5) into (1) leads to the
following equations for the BL fields (p(n),v(n)) with n ∈
{0, 1}:

grady(p
(0)) = 0, (7a)

divy(v
(0)) = 0, (7b)

iωρ0v
(0) = gradS

x(p
(0)) + grady(p

(1)), (7c)

iωp(0)/B0 = divSx(v
(0)) + divy(v

(1)). (7d)

As for the boundary conditions (2), it is important to
note that the response functions as defined in Eq. (3) for
the substrate and the resonators depend spatially on the
variable of micro-description y only, since no macroscopic
modulation of their rheology is considered here. For this
reason, the dependence of the response functions on the
space variable y is recalled by a subscript as Rs

y and Rr
y.

Further, due to the symmetry in the boundary conditions
(2) on Γs and Γr, the overall boundary Γ = Σ0 ∪ Γr in
the column C is defined, with the unit normal vector n
such that n = ns at Σ0 and n = nr at Γr. The response
function Ry over Γ is also defined, with Ry = Rs

y at Γs

and Ry = Rr
y at Γr. With those notations, substitution

of the asymptotic expansions (5) into (2) yields:

∀n ≥ 0, v(n) · n = Ry(p
(n)) · n at Γ. (8)

Finally, asymptotic matching conditions for the LW
and BL fields are added according to which the inner limit
(as x3 → 0) of the LW fields must match the outer limit
(as y3 → ∞) of the BL fields. The following matching
conditions are considered10,11,19 for the orders ϵ0 and ϵ1:

lim
y3→∞

p(0)(xS ,y) = P
(0)
0 (xS), (9a)

lim
y3→∞

v(0)(xS ,y) = V
(0)
0 (xS). (9b)

lim
y3→∞

[
p(1)(xS ,y)− y3

∂P (0)

∂x3
(xS , 0)

]
= P

(1)
0 (xS), (9c)

lim
y3→∞

[
v(1)(xS ,y)− y3

∂V(0)

∂x3
(xS , 0)

]
= V

(1)
0 (xS), (9d)
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where P
(n)
0 (xS) = P (n)(xS , x3 = 0) and V

(n)
0 (xS) =

V(n)(xS , x3 = 0) are the LW pressure and particle ve-
locity at the surface Γs at the order ϵn. The aim of the
homogenisation model is now to upscale the boundary
conditions (8) in order to provide effective boundary con-
ditions for the LW fields.

B. Effective description at the leading order

Equation (7a) shows that the BL pressure p(0) is in-
dependent from y: it is purely macroscopic and depends
only on xS . Using the matching condition (9a), it is

found to be equal to the LW pressure P
(0)
0 at the surface:

p(0)(xS ,y) ≡ p(0)(xS) ≡ P
(0)
0 . (10)

According to Eq. (7b), the BL flow is locally incompress-
ible at the leading order. Integrating this equation with
respect to y over the column C, using the divergence the-
orem, the Σ-periodicity of v(0), and the boundary con-
dition (8), the following relation is found, involving the

flux Q
(0)
y produced by the substrate and the resonator:

Q(0)
y =

∫
Γ

Ry(p
(0)) · n dΣy =

∫
Σ∞

v(0) · e3 dΣy. (11)

Combining Eq. (11) with the matching condition (9b),
the following equation of mass conservation is derived:∫

Σ∞

v(0) · e3 dΣy = |Σ|ye3 ·V(0)
0 = Q(0)

y , (12)

where |Σ|y =
∫
Σ∞

dΣy is the y-integrated surface area

of the period Σ. This means that the LW velocity V
(0)
0

balances the overall flux Q
(0)
y produced at the surface,

per unit area of the period Σ. Moreover, using Eqs. (10-

12), and the linearity of the operator Ry, the flux Q
(0)
y is

related to the LW pressure P
(0)
0 to result in the effective

boundary condition for the LW field at the leading order:

V
(0)
0 · e3 = −ΥP

(0)
0 , (13)

where the effective admittance Υ of local reaction is:

Υ = − 1

|Σ|y

∫
Γ

Ry(1) · n dΣy. (14)

When the scale separation is sharp, the effective bound-
ary condition (13) is sufficiently accurate to describe the
metasurface.4 However, to account for local effects re-
lated to the strong near-field interactions between the
microstructures, the terms of order ϵ1 need to be incor-
porated, which requires to derive the BL pressure p(1).

C. Evanescent fields and surface flow

The BL pressure p(1) is looked for in the form:

p(1) = P
(1)
0 (xS) + y3

∂P (0)

∂x3
|(xS ,0) + p⋆(1)(xS ,y) (15)

where p⋆(1) is an evanescent field such that p⋆(1) → 0 as
y3 → ∞ according to the matching condition (9c). The
following evanescent velocity field is also defined:

v⋆(0)(xS ,y) = v(0)(xS ,y)−V
(0)
0 , (16)

such that v⋆(0) → 0 as y3 → ∞, according to the match-
ing condition (9b). Combining Eqs. (15) and (16) with
the equations (6a) and (7c) of LW and BL momentum
conservation, the following equation of momentum con-
servation is derived for the evanescent fields:

iωρ0v
⋆(0) = grady(p

⋆(1)). (17)

Now, accounting for conditions described by Eqs. (7b),
(16), (17), (8), and (13) the problem for the evanescent
fields p⋆(1) and v⋆(0) takes the form:

divy(v
⋆(0)) = 0, (18a)

iωρ0v
⋆(0) = grady(p

⋆(1)), (18b)

v⋆(0) · n = [Ry(P
(0)
0 )−V

(0)
0 ] · n at Γ, (18c)

lim
y3→∞

v⋆(0) ≡ 0 and lim
y3→∞

p⋆(1) ≡ 0, (18d)

v⋆(0) and p⋆(1) Σ-periodic over yS . (18e)

Besides, according to the effective boundary condition
(13) and the LW momentum conservation (6a), the LW

velocity V
(0)
0 at the surface can be written as:

V
(0)
0 = −ΥP

(0)
0 e3 +

1

iωρ0
gradS

x(P
(0)
0 ). (19)

Now, the weak formulation of the problem (18) is con-
sidered with p̂ as a test-field. Multiplying Eq. (18a) by
p̂/|Σ|y and y-integrating by parts over the column C,
while considering the Σ-periodicity and evanescence of
the fields, the boundary condition (18c), and Eq. (19),
the following relation is found:

E(p⋆(1), p̂) = − iω

c
F(p̂)P

(0)
0 − G(p̂) · gradS

x(P
(0)
0 ), (20)

where the symmetric definite positive operator E(p⋆(1), p̂)
and the linear operators F(p̂) and G(p̂) read:

E(p⋆(1), p̂) = 1

|Σ|y

∫
C
gradyp

⋆(1) · gradyp̂ dΩy, (21a)

F(p̂) =
ρ0c

|Σ|y

∫
Γ

p̂Ry(1) · n dΓy − ρ0cΥG(p̂) · e3, (21b)

G(p̂) = − 1

|Σ|y

∫
Γ

p̂n dΓy =
1

|Σ|y

∫
C
gradyp̂ dΩy. (21c)

The divergence theorem, and the Σ-periodicity and
evanescence condition for p̂ have been used to derive the
second expression of G(p̂) in Eq. (21c). According to
the Lax-Milgram theorem, Eq. (20) entails the existence
and uniqueness of the solution for p⋆(1). This equation
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shows that the field p⋆(1) is forced linearly by the pres-

sure P
(0)
0 and the components of its tangential gradient

gradS
x(P

(0)
0 ). Hence, it can be written in the form:

p⋆(1)(xS ,y) = − iω

c
d⋆(1)P

(0)
0 −b

⋆(1)
S · gradS

x(P
(0)
0 ), (22)

where d⋆(1)(y) and b
⋆(1)
S (y) = b

⋆(1)
i ei with i ∈ {1, 2} have

the dimension of a length, and satisfy the cell problems:

E(d⋆(1), p̂) = F(p̂), E(b⋆(1)i , p̂) = G(p̂) · ei. (23)

These cell problems are described in their strong formu-

lation in Appendix A. Interestingly, the one for b
⋆(1)
S is

similar to that defining the diffusion tensor in the asymp-
totic homogenisation of periodic porous media9,23 except
that periodicity conditions in the normal direction are re-
placed here by those of rigid boundary at Σ0 and evanes-

cence at Σ∞. While b
⋆(1)
S is a purely geometrical and

real-valued field, the field d⋆(1) can be complex-valued
and depends on the frequency ω due to the frequency-
dependent response function Ry. The field d⋆(1) is re-
lated to the local flux distribution, see Eq. (21b), while

b
⋆(1)
S is related to the corrugation, since G(p̂) · ei = 0

and hence b
⋆(1)
S ≡ 0 for a plane surface Γ. Using the

symmetry and positiveness of E , the following relations
result from the cell problems (23) for i, j ∈ {1, 2}:

E(d⋆(1), b⋆(1)i ) = F(b
⋆(1)
i ) = G(d⋆(1)) · ei, (24a)

E(b⋆(1)i , b
⋆(1)
j ) = G(b⋆(1)j ) · ei = G(b⋆(1)i ) · ej , (24b)

E(b⋆(1)i , b
⋆(1)
i ) = G(b⋆(1)i ) · ei ≥ 0. (24c)

Finally, the following vector field is defined, with implicit
summation over i ∈ {1, 2}:

W
(1)
S (xS) =

1

|Σ|y

(∫
C
v⋆(0) · ei dΩy

)
ei. (25)

The field W
(1)
S (xS) represents the averaged tangential

particle velocity in the vicinity of the surface induced by
the evanescent fields. Hence, it will be referred to as
surface flow in the following. Combining Eq. (25) with

(18b), (21c) and (22), the surface flow W
(1)
S reads:

W
(1)
S (xS) = −

D
(1)
S

ρ0c
P

(0)
0 −

B(1)
S

iωρ0
gradS

x(P
(0)
0 ), (26)

where the tangential vector D
(1)
S and the 2×2 tensor B(1)

S
have the following components, with i, j ∈ {1, 2}:

D
(1)
S |i = G(d⋆(1)) · ei, B(1)

S |ij = G(b⋆(1)j ) · ei. (27)

Due to the symmetry relations (24b) and (24c), the ten-
sor BS is symmetric definite positive. It is important

to note here that the surface flow W
(1)
S (xS) is a purely

macroscopic field which is distinct from the LW velocity

V
(0)
0 , yet forced by it. It is worth recalling that W

(1)
S (xS)

stems from the evanescent fields in the boundary layer
induced by the metasurface micro-structures. Note also

from Eq. (25) that W
(1)
S (xS) is of the corrector order ϵ

1.

D. Effective mass conservation at the corrector order ϵ1

Now that the BL pressure is found, the effective bound-
ary conditions at the corrector order can be derived.
First, the particle velocity v(1) is looked for in the form:

v(1) = V
(1)
0 (xS) + y3

∂V(0)

∂x3
|(xS ,0) + v⋆(1)(xS ,y), (28)

where v⋆(1) is an evanescent field such that v⋆(1) → 0
as y3 → ∞ according to the matching condition (9d).
Using Eqs. (16) and (28), the equation (7d) of BL mass
conservation is modified as:

divy(v
⋆(1)) + divSx(v

⋆(0)) = 0. (29)

Equation (29) is y-integrated over the column C and
the result is divided by |Σ|y. Using the divergence theo-

rem, the Σ-periodicity and evanescence of v⋆(1), and the

definition (25) of W
(1)
S , the following relation is derived:

divSx(W
(1)
S ) =

1

|Σ|y

∫
Γ

v⋆(1) · n dΓy. (30)

After substitution of Eq. (28) into (30) and application of
the boundary condition (8) at the order ϵ1, the equation
of mass conservation at the surface is obtained at the
order ϵ1:[
V

(1)
0 · e3 + z(1) · ∂V

(0)

∂x3
(xS , 0)

]
+ divSx(W

(1)
S ) =

Q
(1)
y

|Σ|y
,

(31)

where the corrector order flux Q
(1)
y produced by the sub-

strate and resonator in C, and the vector z(1) read:

Q(1)
y =

∫
Γ

Ry(p
(1)) · n dΓy, z(1) =

∫
Γ
y3n dΓy

|Σ|y
. (32)

Note that z(1) has the dimension of a length and has
a non-zero component only in the direction e3, that is
z(1) = z(1)e3. Now, combining Eqs. (15), (22) and (32),

and using the linearity of Ry, the source term Q
(1)
y /|Σ|y

in Eq. (31) is found in the form:

Q
(1)
y

|Σ|y
= (χ(1) + µ

(1)
0 )P

(0)
0 +

A
(1)
S

ρ0c
· gradS

xP
(0)
0 −ΥP

(1)
0 ,

(33)

where the scalars χ(1) and µ
(1)
0 and the components of

the vector A
(1)
S are defined as follows, with i ∈ {1, 2}:

χ(1) = − iω

c

1

|Σ|y

∫
Γ

Ry(d
⋆(1)) · n dΓy, (34a)

µ
(1)
0 = − iω

c

ρ0cΥ

|Σ|y

∫
Γ

Ry(y3) · n dΓy, (34b)

A
(1)
S |i = − 1

|Σ|y

∫
Γ

ρ0cRy(b
⋆(1)
i ) · n dΓy. (34c)

The equations (26), (31) and (33) provide the effective
description of the metasurface at the corrector order ϵ1

and are the main results of this section.
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E. Discussion on the effective boundary conditions

Before recomposing the asymptotic expansions and
re-scaling the fields to the physical space, a discussion
should be made here about the nature of the homogeni-
sation model. It results in replacing the corrugated res-
onant metasurface by an effective boundary condition
for the LW field where the exact description of the mi-
crostructures is no longer present and surface properties
are considered instead. In particular, it means that the
surface where the LW fields have to satisfy the effective
boundary condition is not corrugated at the local scale
but is replaced by an equivalent smooth surface, see Fig-
ure 1. That raises the issue of the position of this equiv-
alent surface. It is obvious that it should be located in
the vicinity of the metasurface, that is at a height of the
order of ℓ above the substrate Γs. But positioning it at
x3 = 0 or x3 ∼ ℓ would introduce a phase-shift of the
order of ϵ = ℓω/c in the results. In the approximation
of the leading order, the description is valid up to the
precision ϵ, and such a phase shift is disregarded, as tes-
tified by the fact that the pressure is uniform over C at
the local scale, see Eq. (10). Hence the knowledge of the
exact position of the equivalent surface is not required at
the leading order, as long as it remains in the vicinity of
the metasurface. However, when the homogenisation is
performed up to the corrector order, a phase-shift of the
order of ϵ is no longer within the accuracy of the approx-
imation and the location of the equivalent surface where
the effective boundary conditions are applied must be
specified. This issue regarding the position of the equiv-
alent surface has already been raised in studies on corru-
gated substrates12,14 and is quite similar to the issue of
the thickness of the equivalent interface for 2-D arrays of
inclusions interior to the unbounded space.14,20,22

In the present model, the indication to position the
equivalent surface is in fact given by Eq. (31), wherein the
first two terms can be seen as the Taylor expansion of the
normal component of V at the elevation z(1) above the
surface, in the framework of the asymptotic expansions:

V(1)(xS , 0) · e3 + z(1)
∂V(0) · e3

∂x3
|(xS ,0) = V

(1)

(xS ,ϵz(1))
· e3.
(35)

In other words, the equation (31) of mass conservation
does not contain the normal component of the velocity
calculated at the elevation x3 = 0 prescribed by the
choice of the coordinate system, but, instead, that at
the elevation x3 = ϵz(1). This position in space repre-
sents an averaged height of the corrugation above the
substrate and is independent from the choice of the ori-
gin of the coordinate system. This quantity is there-
fore intrinsic to the system, and indicates the position of
the equivalent surface. To formulate the boundary con-
ditions at elevation x3 = ϵz(1), the LW pressure must
be described there. Since P (0) is uniform at the local
scale, see Eq. (10), the pressure P

(0)
0 can be replaced in

the equations by P
(0)
z = P (0)(xS , ϵz

(1)). However, using

Taylor expansion, the pressure P
(1)
z = P (1)(xS , ϵz

(1)) is
given by:

P (1)
z = P

(1)
0 + z(1)

∂P (0)

∂x3
|(xS ,0), (36)

which leads to the modification of the coefficient µ
(1)
0 by:

µ(1) = − iω

c

ρ0cΥ

|Σ|y

∫
Γ

Ry(y3 − z(1)) · n dΓy. (37)

Now, the leading order and the corrector order solutions
for the LW fields are summed together to provide the ap-
proximations for the macroscopic pressure and particle

velocity, that is V = V(0) + ϵV(1) and P = P (0) + ϵP (1).
The effective parameters identified in the homogenisation
scheme are also rescaled to the physical space, with for
instance z = ϵz(1) or µ = ϵµ(1). This provides the fol-
lowing effective boundary conditions for the LW fields at
the metasurface, where S = Q/|Σ|:

V · e3 + divSx(WS) = S at x3 = z, (38a)

WS(xS) = −DS

ρ0c
P |z −

BS

iωρ0
gradS

x(P )|z, (38b)

S = −(Υ− χ− µ)P |z +
AS

ρ0c
· gradS

x(P )|z. (38c)

Equation (38a) states the effective mass conservation
where the source term S is related to the flux radiated
from the resonators and substrate, and is balanced by
two macroscopic fields: the normal component of the LW
velocity V, and the divergence of the surface flow WS .
Equation (38b) provides the rheological relation for the
surface flow WS , where the last term, due to the tan-
gential flow of air through the surface corrugation, can
be seen as the surface variant of the Darcy Law.9 Equa-
tion (38c) provides the expression for the source term
S, forced by the LW surface pressure and its tangen-
tial gradient. The three equations (38a) to (38c) can be
combined to provide the effective surface condition in the
form of a single equation:

V · e3 = −(Υ− χ− µ)P +
AS +DS

ρ0c
· gradS

x(P )

+
BS

iωρ0
: gradS

x [grad
S
x(P )] at x3 = z,

(39)
where : is the tensor double contraction. Equation (39)
shows that the normal component of the velocity de-
pends on the simple and second gradients of the pres-
sure at the surface. Hence, microstructural effects re-
sult in an effective nonlocal boundary conditions for the
metasurface. Note that other nonlocal effects induced
by microstructures have been reported for elastodynamic
metasurfaces13 and for bulk media,24–26 despite differ-
ences in the physical approaches to describe them. The
boundary condition described by Eq. (39) is the final re-
sult of the homogenisation model.
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II. APPLICATION

A. Motivation and description of the metasurface

The aim of this section is to describe the effects of the
boundary condition (39) on the sound reflection from the
metasurface, and investigate the possibility to achieve the
total absorption of sound at the resonance frequency. For
this, the metasurface consisting of the array of cylindrical
Helmholtz resonators arranged periodically in the direc-
tion e1 with the period size ℓ = 42 mm, and postioned
at the distance h = 0.02ℓ ≈ 0.8 mm above a rigid sub-
strate is studied, see Figure 2(a). The resonators are sup-
posed to be infinitely long with their axes in the direction
e2. In the plane (e1, e3), they have the outer diameter
2r = 29 mm and the opening Γa of width e = 1.5 mm
oriented in the direction defined by the angle α counted
from e1. Each resonator consists of a cylindrical inner
cavity of diameter 2r′ = 13.4 mm connected to the out-
side via a duct of width e rolled around the inner cavity,
see Figure 2(b). The relative positions of the inner and
outer apertures is defined by the angle β = 227o. The arc
portion of the duct is positioned at equal distance from
the boundary of the cavity and the outer boundary Γr of
the resonator. The inner walls of the resonators are as-
sumed rigid. Plane wave reflection from the metasurface
is studied, with (e1, e3) as the plane of incidence. Hence,
the problem can be solved in the two dimensional Carte-
sian coordinate system (e1, e3). The reasons leading to
the design are explained in Section IIC.

B. Model for the resonators and substrate

Since the substrate is rigid, the following relation
holds: Rs

y (p) · ns ≡ 0. As for the Helmholtz resonator,
its boundary Γr is rigid, except for the opening Γa,
which is supposed sufficiently small to make the following
assumptions27: (i) the radial particle velocity is uniform
over the opening Γa, with the value vo; and (ii) the veloc-
ity vo is related to the mean value ⟨p⟩ = |Γa|−1

∫
Γa

p dΓ

of the pressure p acting at the opening Γa by vo = Y ⟨p⟩,
where Y is an admittance. Hence, the response function
of the overall surface Γ satisfies:

Ry (p) · n = Y ⟨p⟩Π(y) at Γ, (40)

where Π(y) is equal to 1 over Γa and 0 elsewhere on Γ.
Here, the admittance Y is computed numerically using
the Finite Element Method (FEM) by solving for the
pressure pr developing inside the resonator in response to
unit pressure Pa ≡ 1 applied at the duct outside aperture
Γa, see inset in Figure 2(c). To do so, the Helmholtz
equation, div(gradpr)+ω2(ρr/Br)pr = 0, is solved, where
ρr and Br are the effective density and bulk modulus of
air in the resonator. In the inner cavity, viscous and
thermal losses are neglected4 and ρr = ρ0 and Br = B0

there. In the narrow duct, however, viscous and thermal
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FIG. 2. (a) Periodic arrangement of cylindrical resonators
above the rigid substrate. (b) Geometry of a cylindri-
cal Helmholtz resonator with an extended inner duct. (c)
Normalised admittance at the duct outside aperture of the
Helmholtz resonator considered in the study; the dots are
FEM computation points and the lines correspond to the
Lorenzian form Eq. (42) with parameters obtained by fitting
FEM results. In figure (c), the colour-map represents FEM
results for the pressure amplitude inside the resonator in re-
sponse to a unit pressure Pa ≡ 1 at the duct outside aperture
at the resonance. (Color online)

effects are significant, and the effective density and bulk
modulus of air in the duct are given by5,6:

ρr =
ρ0

1− Φ(e/δv)
, Br =

B0

1 + (γ − 1)Φ(e/δt)
, (41)

where δv =
√
4ν/(ρ0ω) and δt = δv/

√
Pr are vis-

cous and thermal skin-depths, with ν and Pr being the
viscosity and the Prandlt number of air, and where
Φ(X) = tanh(X

√
−i)/(X

√
−i) is a form function.5,6

In this FEM simulation, the admittance Y is given by
Y = ⟨grad(pr) ·nr/(iωρr)⟩, and results are shown in Fig-
ure 3(c). The following Lorentzian form is assumed for
it:

ρ0cY = iσω/
[
ω2
o − i2ξω − ω2

]
, (42)

where the resonance frequency ωo, the loss factor ξ/ωo ≪
1 and the parameter σ are retrieved by fitting Eq. (42)
with the FEM results, see Figure 2(c). That provides
ωo/(2π) ≈ 712.5 Hz ξ/ωo ≈ 3.1% and σ/ωo ≈ 1.71.

C. Effective parameters from the homogenisation model

Now, the effective parameters involved in the bound-
ary conditions (39) can be computed. As the problem
considered is two-dimensional, only 7 scalar parameters
are required: the admittance coefficients Υ, χ, and µ, the
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FIG. 3. Numerical solutions for the evanescent fields b⋆1 and g⋆ = d⋆/(ρ0cY ) defined by Eqs. (A1-A2), and analysis of the
effective parameters B and ⟨g⋆⟩. (a) Dependence of B on the resonator normalised diameter 2r/ℓ and elevation h/ℓ above the
substrate. (b) Colour-maps of b⋆1 for different values of 2r/ℓ and h/ℓ. (c) Dependence of ⟨g⋆⟩ on the normalised elevation h/ℓ
and orientation angle α of the resonator opening. (d) Colour-maps of g⋆ for different values of α and h/ℓ. (Color online)

e1-components A1 = AS ·e1 and D1 = DS ·e1 of the vec-
tors AS and DS , the component B = (BS .e1) · e1 of the
tensor BS , and the elevation z for the equivalent surface.
Their expressions can be found in Eqs. (14), (34a), (37),
(34c), (27) and (32). Using the response function given
by Eq. (40), with the normalised admittance given by
Eq. (42), and the symmetry relation given by Eq. (24a),
these coefficients are derived in the form:

ρ0cΥ = −iηω/[ω2
o − i2ξω − ω2], with η = eσ/ℓ, (43a)

χ = iωΥ(ρ0cY )⟨g⋆⟩/c, with g⋆ = d⋆/(ρ0cY ), (43b)

µ = iωΥ(ρ0cΥ)ζ/c, with ζ = ⟨x3 − z⟩, (43c)

A1 = ρ0cΥ⟨b⋆1⟩ = −D1, (43d)

B = G(b⋆1) · e1, and z = πr2/ℓ, (43e)

In Eq. (43b), the field g⋆ is purely geometrical and
real-valued, since it satisfies the same equations (A2) as
d⋆ except for the boundary condition (A2b) which be-
comes grady(g

⋆(1)) · n = (2e/ℓ)e3 · n − Π(y) at Γ. In
Eq. (43c), the length ζ corresponds to the mean distance
between the equivalent surface positioned at x3 = z and
the points of the aperture Γa. It can approximated by
ζ ≈ h+ r(1+sinα)− z using the relation sin(e/r) ≈ e/r,
where e/r ≪ 1 is the angular opening of the aperture
Γa. In Eq. (43d), the relation A1 = −D1 implies that
the simple gradient term in the effective boundary con-
dition (39) is not present in the case studied here. This
is due to the fact that the plane (e2, e3) is a plane of
symmetry for the cell C when the whole boundary of the

Helmholtz resonator is supposed to be rigid: it leads to
the relation G(b⋆1) · e3 = 0 used in the computation of
D1. In Eq. (43e), the coefficient B has the dimension of
a length. Its expression is related to the field b⋆1 satisfy-
ing the cell problem described in Eq. (A1) which depends
only on the corrugation. The length B appears in the
effective boundary condition (39), where it weights the
term with the double gradient of the pressure. Hence,
the length B characterises, at the macroscopic scale, the
micro-corrugation of the surface, and it will be referred
to as the characteristic corrugation length in what fol-
lows. It is worth mentioning also that the position z of
the equivalent surface given by Eq. (43e) is independent
from the elevation h of the resonators above the rigid sub-
strate. Finally, since χ+ µ = O(ϵΥ), Taylor expansion
is performed to provide:

ρ0c(Υ−χ−µ) ≈ ρ0cΥ/ [1 + iωρ0c(Y ⟨g⋆⟩+Υζ)/c] . (44)

Using the expressions (42) and (43a) for ρ0cY and ρ0cΥ,
the equation (44) is transformed as:

ρ0c(Υ− χ− µ) ≈ −iηω/[ω2
o − i2ξω − (κω)2], (45a)

where κ =
√
1 + (⟨g⋆⟩/e− ζ/ℓ)eσ/c. (45b)

Comparison of Eq. (45) with (43a) shows that the cor-
rector χ + µ changes the apparent resonance frequency
from ωo to ωo/κ. The resonance frequency of the single
Helmholtz resonator above the rigid substrate is already
known to decrease as the opening of the resonator is ori-
ented towards the substrate.27 Here, the variations in the
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resonance frequency are due to the strong near-field in-
teractions of all the resonators with each other and with
the substrate. It is important to note that the value of
ρ0c(Υ − χ − µ) at the frequency ωo/κ is equal to the
same value η/(2ξ) as that of the leading order admit-
tance ρ0cΥ at the eigenfrequency ωo. If, according to the
leading order calculations, the admittance matching with
air, ρ0cΥ = 1, is achieved at the resonance frequency ωo,
accounting for the correctors of order ϵ1 preserves this
condition, but it happens at the frequency ωo/κ.

The field b⋆1 is computed numerically solving the cell
problem (A1) by means of the FEM. To justify the de-
sign, the calculations are performed for different cylinder
radius r and elevation h. That results in the charac-
teristic corrugation length B shown in Figure 3(a). For
a given elevation h, the dependence of B on the nor-
malised radius r/ℓ is not monotonous: its maximum
value B/ℓ ∈ [0.16, 0.24] is reached for 2r/ℓ ∈ [0.69, 0.72].
The characteristic corrugation length B is larger for
cylinders upon the substrate, decreases sharply as the
elevation h increases, see the inset in Figure 3(a), and
reaches a stationary value for h/ℓ ≥ 0.3 approximately.
Colour-maps of the field b⋆1 are given in Figures 3(b) for
different elevations h/ℓ and at values of r/ℓ for which B/ℓ
is maximum. They confirm the fact that b⋆1 is confined
to the surface, consistently with the notion of evanes-
cent fields. While a strong interaction between the array
and the substrate occurs for cylinders close to the sur-
face h → 0, the field b⋆1 tends to remain confined in the
vicinity of the array and nearly vanishes at the substrate
when the cylinders are positioned further from it. In this
case, the interaction of the array with the substrate is
very weak, which explains why B/ℓ reaches its station-
ary value.

The resonator diameter has been chosen to provide
2r/ℓ ≈ 0.69, so that B/ℓ is close to its maximum values
(which still depend on the elevation h) to enhance the ef-
fects from the nonlocal contributions. Besides, the duct
and cavity of the resonator have been designed accord-
ing to the following constraints: (i) the scale parameter
ϵo = ℓωo/c at the resonance is equal to 0.55 < 1 which is
sufficiently close to unity for the corrector term to have
noticeable contribution, yet ϵ2o = 0.3 so that terms of
the second corrector order remain small; and (ii) the ad-
mittance matching ρ0cΥ = η/(2ξ) = 1 at the resonance
frequency ωo is achieved. Then, the cell problem for the
field g⋆ is solved numerically using the FEM. Its nor-
malised mean value ⟨g⋆⟩/e over the duct outside aperture
is computed for different elevations h and orientation an-
gles α of the opening, see Figure 3(c). It shows that, the
elevation h has nearly no effect on ⟨g⋆⟩ when the aper-
ture is turned away from the surface: ⟨g⋆⟩/e reached its
minimum value ≈ 0.89 for the orientation angle α = 90o,
and varies only slightly over the range α ∈ [0, 180o] to
reach ≈ 1.4 at α = 0 and α = 180o. Conversely, the
variations of ⟨g⋆⟩/e with the elevation h are very signif-
icant for α ∈ [−180o, 0], especially when the aperture is
facing the rigid substrate at α = −90o. For that orien-
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FIG. 4. (a) Amplitude and (b) phase of the reflection coef-
ficient R for different angles of incidence θ and orientation
angles α of the resonators opening. Computations with the
elevation h/ℓ = 0.02.(Color online)

tation angle, ⟨g⋆⟩/e reaches its maximum value: it tends
to infinity as h → 0, when radiation from the aperture is
nearly impossible, and decreases sharply as the elevation
h increases, see inset in Figure 3(c), to reach the sta-
tionary value ⟨g⋆⟩/e ≈ 2.4 for the elevations h/ℓ ≥ 0.3
approximately. The colour-maps of the field g⋆ for dif-
ferent orientation angles α and elevations h are provided
in Figure 3(d). They confirm that the evanescent field
g⋆ remains confined to the surface. In addition, it tends
to remain mostly located between the inclusions and the
rigid backing for α ∈ [−180o, 0].

D. Reflection from the metasurface

Finally, the reflection of the incident plane wave
eiω(x1 sin θ−(x3−z) cos θ)/c from the metasurface is studied,
where θ is the angle of incidence counted from e3. The
specularly reflected wave is Reiω(x1 sin θ+(x3−z) cos θ)/c,
where R is the pressure reflection coefficient. Using
Eqs. (39) and (43), the reflection coefficient reads:

R =
cos θ − Λ

cos θ + Λ
, Λ = ρ0c(Υ− µ− χ)− iωB sin2 θ

c
. (46)

At normal incidence, θ = 0, the nonlocal contribution to
the boundary conditions vanish and R tends to its usual
expression for the surface with the admittance Υ−χ−µ.
The perfect absorption R = 0 is achieved if θ = 0 and
the critical coupling condition ρ0c(Υ − χ − µ) = 1 is
satisfied. Nonlocal contribution to the boundary con-
ditions becomes significant at oblique and grazing inci-
dence. If the resonators are replaced by rigid scatterers,
then Λ = −iωB sin2(θ)/c, and the perfect reflection of
the wave |R| = 1 is achieved for any angle θ and frequency
ω. The perfect reflection |R| = 1 is also achieved for
any angle and frequency for lossless resonators (ξ = 0).
Nevertheless, a phase shift that depends on θ and ω is
induced in those two cases. The amplitude and phase
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of R are plotted in Figure 4 for θ ∈ {0o, 60o} and for
the opening orientation angles α = ±90o. The elevation
h/ℓ = 0.02 has been chosen. As expected from the de-
sign, the perfect absorption of sound R = 0 is achieved at
apparent resonance frequencies lower than ωo (by 53 Hz
for α = −90o) at normal incidence θ = 0. At the oblique
incidence θ = 60o, the sound absorption is lower at the
apparent frequency, and an additional phase shift due to
the nonlocal contribution can be observed in the reflec-
tion coefficient, even at frequencies away from the reso-
nance.

CONCLUSION

The present study showed that models of local reac-
tion for metasurfaces are valid when a sharp scale sepa-
ration exists between the sound wavelength and the char-
acteristic size of the surface lattice. However, when the
scale separation is not sharp, nonlocal contributions to
the effective boundary conditions for the corrugated res-
onant metasurfaces should be accounted for. The nonlo-
cal effective boundary conditions have been derived ac-
counting for the correctors in the two-scale asymptotic
homogenisation analysis. The model developed here has
been illustrated for the 2-D array of cylindrical Helmholtz
resonators with an extended duct, but the analytical re-
sults summarised in Eqs. (38) are valid for 3-D geometry,
for any resonators and substrate the behaviour of which
can be described by the linear response functions given
by Eq. (3), and any LW field satisfying the condition of
scale separation. In particular, the non-local contribu-
tions should lead to anisotropic effects in 3-D, since the
effective nonlocal parameters are tensors. The results
are useful for the design of corrugated resonant meta-
surfaces, where the corrugation/radiation coupling could
be used to tune the resonance frequency and the type of
boundary conditions by simply changing the orientation
of the resonators. Obtaining effective boundary condi-
tions for metasurfaces with more complicated geometry
of the elementary cell (when it contains several mistuned
resonators for instance) will be the next step in the work.

ACKNOWLEDGMENTS

The authors gratefully acknowledge S. Taherzadeh and
K. Attenborough for their support. L. S. and J.-P. G. are
grateful to RFI Le Mans Acoustique (Région Pays de la
Loire). This work is part of PEALS project funded by the
U.K. Engineering and Physical Sciences Research Coun-
cil under grant agreement EP/K037234/1. The collabo-
ration resulted in this work was also supported by COST
(European Cooperation in Science and Technology) Ac-
tion DENORMS CA15125.

Appendix A: Cell problems in their strong formulation

The strong formulation of the cell problems (23) reads:

divy(grady(b
⋆(1)
i )− ei) = 0, (A1a)

(grady(b
⋆(1)
i )− ei) · n = 0 at Γ, (A1b)

lim
y3→∞

grady(b
⋆(1)
i ) ≡ 0, (A1c)

lim
y3→∞

b
⋆(1)
i ≡ 0 and b

⋆(1)
i Σ-periodic over yS . (A1d)

divy(grady(d
⋆(1))) = 0, (A2a)

grady(d
⋆(1)) · n = −ρ0c [Ry(1) + Υe3] · n at Γ, (A2b)

lim
y3→∞

grady(d
⋆(1)) ≡ 0, (A2c)

lim
y3→∞

d⋆(1) ≡ 0 and d⋆(1) Σ-periodic over yS , (A2d)
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3N. Jiménez, W. Huang, V. Romero-Garćıa, V. Pagneux, and
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