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The propagation of long-wavelength sound in the presence of a m as‘mﬁice
resonators periodically upon or slightly above an impervious subs

surface corrugation and the low-frequency resonance. This met
of any shape operating in the long-wavelength regime. The

&

de by arranging acoustic
e is studied. The method of two-

itions which account for both the
o periodic arrays of resonators
ies on the existence of the locally

=g

admittance supplemented by nonlocal contributions from the simple and double gradients of the pressure at

the surface. These phenomena are illustrated for the periodi
extended inner duct. Effects of the centre-to-centre s aé-i\ng an
nonlocality and apparent resonance frequency are studied.

with specific effective boundary conditions require

INTRODUCTION

Structured surfaces made of the two-dimension
periodic arrangements of resonators have

aces”. The abil-
have already

physics, such
3,4

surfaces can be referred to as ”
ity of metasurfaces to contrel
been demonstrated in ma;

as electromagnetism,! e{l?t

Meanwhile, the development
models to describe and‘eharacterise'metasurfaces has be-
come a central issuefT: both*the theoretical and com-
iew. A common phenomenological

(“transmit-arrays” or meta-
ider it As an effective layer of subwave-

effective layer complies with standard continuum theo-
efféctive fluid model in acoustics,>® its
presumed effegtive properties (density and bulk modulus
i i E§e usually retrieved numerically or exper-
the fields specularly reflected from and

ted to, a normally incident plane wave.” However, the
exact physical reasons relating these effective properties
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rray of cylindrical Helmholtz resonators with an
ientation of the resonators’ opening on the
e model could be used to design metasurfaces
r patLic lar applications.

\"bo the surface microstructure can be difficult to identify.

Moreover, such procedure can be less straightforward for
a ‘“reflect-array”, that is a metasurface backed by a sub-
strate impervious to transmission, since only the reflec-
tion coefficient is available in that case.

In this work, an analytical approach to the descrip-
tion, characterisation, and design of the acoustic reso-
nant metasurface arranged against an impervious sub-
strate is presented. It relies on the theory of two-scale
asymptotic homogenisation®® to determine the macro-
scopic description of the metasurface, that is the defini-
tion of the effective fields, the equations governing them,
and the effective constitutive parameters. This is possible
if the condition of scale separation e = /L < 1 is satis-
fied, where £ is the characteristic size of the metasurface
unit cell, and L is the characteristic length of the macro-
scopic wave. While this method was initially formu-
lated to describe heterogeneous bulk media,?? it has been
adapted since to deal with the problem of structured sur-
faces by means of boundary layer formulations.!? 4 Re-
cently, such a formulation has been applied to the present
problem,* with a description limited to the leading order
of the asymptotic expansions. It was demonstrated that
the metasurface can be described by an effective surface
admittance of local reaction with parameters explicitly
upscaled from the microstructures. In practice, this de-
scription is all the more reliable that the scale parameter
€ is considerably less than unity, which has been demon-
strated experimentally.* However, when the metasurface
is corrugated, for instance when resonators are arranged
upon the substrate rather than buried in it, the effects of
roughness can become noticeable'® when the wavelength
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I:] ot very large compared to the microstructure size a /\ b
AIL Y s b =) field (P, V) (B)

¢"hut still with e < 1) similar to Rayleigh scattering in

Publis I&ia.16 Also, discrepancies in the value of the reso-

nance irequency have been observed between the theoret-
ical model and the experiments, which become more sig-
nificant as the scale parameter e approaches unity.# This
effect is attributed to near-field interactions between the
resonators in the array which modify the so called ”end
correction”. To account for these effects, the method of
two-scale asymptotic homogenisation offers the possibil-
ity to improve the leading order description with correc-
tors by considering higher order terms in the asymptotic
expansions. This approach, first applied to the descrip-
tion of heterogeneous bulk media,'® 18 has also been used
for structured surfaces'® 141922 and leads to nonlocal
boundary conditions. Here, the approach is applied to
the case of the corrugated resonant metasurface to for-
mulate the effective nonlocal boundary conditions emerg-
ing from the combined effects of corrugation and surface
resonance. In Section I, the homogenisation model for
the metasurface is presented, where the macroscopic de-
scription is derived up to the first corrector and nonlocal
boundary conditions are formulated. In Section II, the
periodic array of slotted cylinders arranged above a rigi

substrate is studied as an example. In particular, the
influence of the strong near-field interactions of the re

onators with each other and with the substrate H
macroscopic properties is illustrated.

\ P

I. BOUNDARY LAYER HOMOGENISATI QOQ
The propagation of airborne low fr Wmd in
the presence of the corrugated resonant mesasurface un-

der ambient conditions is studie ith the atmospheric

periodic arrangement of liiear aCoustie resonators above
the plane surface I'g hskﬂlg th n/tﬂ normal vector ng
directed into air, see F1 uMe mpervious substrate
T’y is not necessari 1‘551., buttits rheology is supposed

periodicity. The resonator above
s the boundary I', with the unit
to air. For the sake of gen-
d sl(ghtly above the surface I'y, but
s and I', to be connected. The
in the linear harmonic regime with
factor e, In this system, the pres-
and pdrticle velocity v satisfy the equations of
mass conservation:

\up&v =grad(p), and iwp = Bydiv(v), (1)

along with Sommerfeld radiation conditions away from
the metasurface, and the following boundary conditions
at the surface I'; and I'y of the resonators and substrate:
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normal vector
erality, it igpositi

v-ng=R%p) nsat Iy; v-n, =R (p) -nyat Ty (2)

Effective
boundary condition
at equivalent surface

Column C

Wi

Unit cell in
boundary layer
homogenisation

Q 3-periodic arrangement of
resg%ators above substrate I'y
-
1. Mlustration of the homogenisation method. (a) Up-
the boundary layer produced by the array of res-
ors above the substrate, the metasurface is described in
terms of effective boundary conditions for the long-wavelength
Ids. (b) Unit cell used for homogenisation. (Color online)

FI
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In Eq. (2), R® and R" are linear operators describing
the velocity distribution prescribed by the substrate and
the resonator at the boundaries I'y and I'; in response to
the pressure p acting on them. The operators R® and
R' are generalised response functions which incorporate
the phenomena taking place inside the resonators and the
substrate. In this sub-structuring approach, R*® describes
the linear dependence of the velocity v at one point x of
the surface I's on the value of the pressure p at any other
point x’ of Ty, while R" provides such a description for
the surface I';. Hence, R*(p) can be written in the form:

Rip)xel) = [ RGox wp w)ix, (6)

where R® is the X-periodic kernel of R®. An equation
similar to (3) holds for R" with the kernel R" and inte-
gration over I';. Here, it is assumed that (i) the modelling
of the resonators’ and sub§trate’s response has been al-
ready performed, that is R® and R" are known; and (ii)
the resulting effective conditions given by Eq. (2) can be
used in the homogenisation procedure that follows.

A. Boundary layer homogenisation procedure

The problem stated by Egs. (1) and (2) is studied for
frequencies w close to the resonance frequency w, of the
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‘ s l« #ators, and sufficiently low for the condition of scale

séparation € = ¢/L < 1 to be satisfied. Here ¢ is the

i&gf ristic size of both the period ¥ and the resonators

1n the direction defined by the vector ng, and L = O(c/w)

is the characteristic length of the macroscopic wavefield.

This introduces two scales in the system: the macro-scale

O(L) related to the Long-Wavelength (LW) field, and the
micro-scale O(¢) related to the metasurface array.

When subjected to a LW excitation, the metasurface
produces locally Y-periodic perturbations in the vicin-
ity of the surface I's that vanish some distance away
from it. This situation corresponds to a Boundary Layer
(BL) problem, which is studied here in the framework
of the two-scale asymptotic homogenisation (performed
in the tangential directions) coupled with the method
of matched asymptotic expansion (in the normal direc-
tion), as proposed by Nguetseng & Sanchez-Palencial®
and used in other studies.!*2!

Firstly, two space variables are introduced: the usual
position vector x for the macroscopic description, and
the auxiliary vector of stretched coordinates y = ¢ ~'x to
describe the surface microstructures. Here, the Cartesian
coordinate system (O, e;, ey, es) is used, where the
origin O belongs to the substrate [, the vectors (e, e

Using the Einstein convention of implicit summation
repeated indexes, the space variables read x = z;
y = y;e; with j € {1,2,3}. Their tangential compon

are in the plane I'y, and e3 = e; A e2 = ng, see Figurﬂ\
0

v= V“”(?
In the vicinity of the Surfage, ho

somewhat different, o thepresence of the resonators
which induce local ‘%riodic perturbations. Accord-
ing to two-scale aSymptotic homogenisation® 10, the pres-
sure p and parficle yelocity, v in the boundary layer are
set to depend on'xg. y¢4nd ys to describe their macro-
scopic varidtionts in the'tangential directions, their local

ver, the problem is

ansions close to the metasurface involve
elds (p™,v(™) as follows:

H%XSUYSJJZQ+€p(1)(X57YSay3)+62-"a (5)
< vl (XS7yS7y3) =+ €V(1)(XS7ySay3) + 62 e

Since (p{™),v(™) are assumed ¥-periodic over yg, it will
be useful to consider the column of air C = 3 x [0, 0]
containing the points with yg that belong to the two-
dimensional period ¥ and y3 takes the values in [0, oo],

see Figure 1(b). The cross-sections of C located at y3 = 0
and y3 = oo are denoted X and Y, respectively.
Thirdly, the use of the two-scale spatial description
modifies the differential operators so that V = V, away
from the metasurface, and V = V¥ + ¢ 1V, in the
boundary layer region, where Vy, Vi and Vy are the
del operators with respect to x, xg and y respectively.
The governing equations (1) and (2) need to be re-written
accordingly. Substituting Eq. (4) into (1), and collecting
terms of equal powersﬁ ¢, the LW fields (P, V(")) are
found to satisfy the fol
and mass conserv; iéh)

Vn 40, SwpoV™ = grad, (P™), (6a)
%{P )/ By = dive (V™). (6b)
b

titusion of Eq. (5) into (1) leads to the
s for the BL fields (p™), v(™) with n €

ing equations of momentum

iwpov(o) = grad,sc (p(o)) + grad, (p(l))7 (7c
iwp® /By = divy (v(?) 4 divy (vV). (7d

(: grad, (p©) = 0, (Ta)
divy (v) (7b)
)
)

' ﬂd\,As for the boundary conditions (2), it is important to

note that the response functions as defined in Eq. (3) for
the substrate and the resonators depend spatially on the
variable of micro-description y only, since no macroscopic
modulation of their rheology is considered here. For this
reason, the dependence of the response functions on the
space variable y is recalled by a subscript as Rj, and Ry,
Further, due to the symmetry in the boundary conditions
(2) on I'y and TI';, the overall boundary I' = ¥o U T, in
the column C is defined, with the unit normal vector n
such that n = ng at ¥y and n = n, at I',. The response
function R, over I' is also defined, with R, = ’R;, at I's
and R, = ’R; at I';. With those notations, substitution
of the asymptotic expansions (5) into (2) yields:

¥n>0, v®.n=R,(p™) natT. (8)

Finally, asymptotic matching conditions for the LW
and BL fields are added according to which the inner limit
(as x3 — 0) of the LW fields must match the outer limit
(as y3 — o) of the BL fields. The following matching
conditions are considered!®11? for the orders €’ and e':

lim p©(xg,y) = PO(O) (xs), (9a)
yg—)OO
lim v (xs,y) =V (xs). (9b)
y3—)OO
_ opP© 1
i %3 3) =075 s O] = PV xs), (99
v

lim [v(l)(xs,y) — Y3 (XS,O)} = Vél)(xs)a (9d)

y3—>00 Oxs
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AL D( ) Xs) = P(n)<Xs,I3 = 0) and V )( ) ==
xz3 = 0) are the LW pressure and particle ve-
PUbllégwg the surface I's at the order €”. The aim of the
homogenisation model is now to upscale the boundary

conditions (8) in order to provide effective boundary con-
ditions for the LW fields.

B. Effective description at the leading order

Equation (7a) shows that the BL pressure p(®) is in-
dependent from y: it is purely macroscopic and depends
only on xg. Using the matching condition (9a), it is

found to be equal to the LW pressure Péo) at the surface:
PO (xs,y) = 9 (xs) = A (10)

According to Eq. (7b), the BL flow is locally incompress-
ible at the leading order. Integrating this equation with
respect to y over the column C, using the divergence the-
orem, the Y-periodicity of v(?), and the boundary con-
dition (8), the following relation is found, involving the

0

flux Q; )

QYY) = / Ry () -nds, = / v . ezdyy,. 1
r

oo

produced by the substrate and the resonator:

Combining Eq. (11) with the matching conditio
the following equation of mass conservation is erlve

/ v . egd%y, = [Llyes - VI = Q)
Yoo

where [X[y, = [; d¥y is the y-integr te a ea
of the period ¥. This means that the 'ty Véo)
balances the overall flux Q;O) produced at surface,

per unit area of the period X. reo using Eqgs. (10-
r Ry \the flux Q§,0) is
in the effective
the leading order:

12), and the linearity of the oper

related to the LW pressure
boundary condition for ?e

v \i , (13)
where the effective d@ance of local reaction is:
T E — Ry(1) -ndx,. (14)

Bl
ratﬂn is sharp, the effective bound-
ciently accurate to describe the

When the seale s
ary conditi n-(13) is

;. the terms of order €' need to be incor-

whicSrequires to derive the BL pressure p(!).

.
C. anescent fields and surface flow

The BL pressure p!) is looked for in the form:

op0)

PV = Py (xs) + ys—— Ors

|(xs,0) + 2" V(xs,y)  (15)

where p*(1) is an evanescent field such that p*() — 0 as
y3 — oo according to the matching condition (9¢). The
following evanescent velocity field is also defined:

v O (xg,y) = v (xs,y) - V{”, (16)
such that v*(©) — 0 as y3 — oo, according to the match-
ing condition (9b). Combining Egs. (15) and (16) with
the equations (6a) andg(7c) of LW and BL momentum
conservation, the fol(lg{ing equation of momentum con-
servation is derived evanescent fields:

v — gead, ("), (7)

itions described by Egs. (7b),

(16), (17) the problem for the evanescent
fields p*(1 takes the form

(18a)

N i L), (18b)

( 0.n=[Ry(P") -~V -n atT, (18c¢)

lim v =0 and lim p*» =0 18d

adim v and  lim p , (18d)

v*(© and p*® S-periodic over yg. (18e)

Be&des according to the effective boundary condition
and the LW momentum conservation (6a), the LW

Velomty V( at the surface can be written as:

VI = 1PV, +

o gradi(Pg°> ). (19)

Now, the weak formulation of the problem (18) is con-
sidered with p as a test-field. Multiplying Eq. (18a) by
p/|Xly and y-integrating by parts over the column C,
while considering the Y-periodicity and evanescence of
the fields, the boundary condition (18c), and Eq. (19),
the following relation is found:

— G(p) - grad;(R)”), (20)

£ 5) =~ Fp)P

where the symmetric definite positive operator &(p*(!), p)
and the linear operators F(p) and G(p) read:

) 1
8(17*(1)’17) |2| /gradyp*(l) gradypdfly, (21a)
y

F(p) = 2° / PRy (1) - ndTy — pocTG(p) - e5, (21b)
Sl e

1
g(p) = /pndF /grad pdfdy. (21c
=" ISy Jo Bty (19

The divergence theorem, and the X-periodicity and
evanescence condition for p have been used to derive the
second expression of G(p) in Eq. (21c¢). According to
the Lax-Milgram theorem, Eq. (20) entails the existence
and uniqueness of the solution for p*(!). This equation
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E] t] at the field p*(V) is forced linearly by the pres-
sure PY" and the components of its tangential gradient
PUbIIShH]‘Sg ’(0) . Hence, it can be written in the form:

pO(xg,y) = — — bV - gradd(R”), (22)

where d*(M) (y) and bg(l)(y) = b:(l)ei with ¢ € {1,2} have
the dimension of a length, and satisfy the cell problems:

@MW, p)=Fp), EO,p)=G6() e  (23)

1
These cell problems are described in their strong formu-
lation in Appendix A. Interestingly, the one for bg(l) is
similar to that defining the diffusion tensor in the asymp-
totic homogenisation of periodic porous media®?3 except
that periodicity conditions in the normal direction are re-
placed here by those of rigid boundary at ¥y and evanes-
cence at Y. While bg(l) is a purely geometrical and
real-valued field, the field d*™) can be complex-valued
and depends on the frequency w due to the frequency-
dependent response function Ry. The field d*M) is re-
lated to the local flux distribution, see Eq. (21b), while

bg(l) is related to the corrugation, since G(p) -e; = 0

1w . 0
—d"WPp

and hence bg(l) = 0 for a plane surface I'. Using th the'houndary condition (8) at the order €',
symmetry and positiveness of £, the following relati&S\ f
0

result from the cell problems (23) for i,j € {1, 2}:
1 1 *
(@M, by = Fo;) = G<d <1>>
g(b:(l)’ b}((l)) _ g(b;(l)) ; *(1

EB:V bWy =g M) . e; > 0.

Finally, the following vector field is de
summation over ¢ € {1,2}:

1
W' (xs) = 5 </cv
(1)

\ hc1t
%y e;.
aged tangential

the surface induced by

be referred to as
Combining Eq. (25) with
flow W(Sl) reads:

BY

asp” 2%
1wpogra (B ), (26)

s ) and the 2x 2 tensor ]B%gl)

DL'|; = G(a*¥) . e;, B(sl)\ij = g(b;(l)) e (27)
e syhmetry relations (24b) and (24c), the ten-
metric definite positive. It is important
here that the surface flow ngl)(xS) is a purely
macroscopic field which is distinct from the LW velocity

V(()O)7 yet forced by it. It is worth recalling that Wg) (xs)
stems from the evanescent fields in the boundary layer
induced by the metasurface micro-structures. Note also

from Eq. (25) that Wg)(xs) is of the corrector order €.

Wznw\

D. Effective mass conservation at the corrector order ¢!

Now that the BL pressure is found, the effective bound-
ary conditions at the corrector order can be derived.
First, the particle velocity v(!) is looked for in the form:

av<0>

v = Vi (xs) + y3 |(xs,0) +vi W (xs,y), (28)

scent field such that v — 0

the matching condition (9d).

m\hKequamon ) of BL mass
as:

+ divd (v*(@) = 0. (29)

where v*() is an eva
as y3 — oo accordi

Using Eqgs. (16) a
conservation is

difie

29& integrated over the column C and
i divided by |X|y. Using the divergence theo-
igdicity and evanescence of v*(1)| and the
definition (25)¢of

ter gubstitution of Eq. (28) into (30) and application of
the equation
ss conservation at the surface is obtained at the

1'611

591), the following relation is derived:

! / v ndry. (30)

(1)
W
«Ws) =151,

(0) (1)
(1) oV 5 (D)
[VO - €3 —+ z(l) . 6333 (X570):| —+ lex(WS ) |E|y
(31)
where the corrector order flux Qg,l) produced by the sub-
strate and resonator in C, and the vector z(1) read:

ysndl’
Q(yn:/Ry(p(l)).ndpw 0 _ Joysndly (32)
r

Note that z(») has the dimension of a length and has
a non-zero component only in the direction eg, that is
z() = z(Me3. Now, combining Eqgs. (15), (22) and (32),
and using the linearity of Ry, the source term Qg,l) /12y
in Eq. (31) is found in the form:

(1) 1)
y :(X(1)+ (1))P(0)+ S ogradfPéo)f

xy TP(U,
|E|y Ho 0 pocC 0

(33)
where the scalars x(!) and ugl) and the components of
the vector Ag) are defined as follows, with 7 € {1,2}:

1
MO / Ry (d*V) - ndly, (34a)
c =y
iw pocY
i) = =28 [ Rylan) - mdr, (310)
c ¥y Jr
1)) _ *(1)y
Ayl = pocRy (b)) -ndly,. (34c)
=k

The equations (26), (31) and (33) provide the effective
description of the metasurface at the corrector order e
and are the main results of this section.
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‘ s Fpisc ussion on the effective boundary conditions ion, 21

PUbIISq’)Ie og recomposing the asymptotic expansions and
re-scaling the fields to the physical space, a discussion
should be made here about the nature of the homogeni-
sation model. It results in replacing the corrugated res-
onant metasurface by an effective boundary condition
for the LW field where the exact description of the mi-
crostructures is no longer present and surface properties
are considered instead. In particular, it means that the
surface where the LW fields have to satisfy the effective
boundary condition is not corrugated at the local scale
but is replaced by an equivalent smooth surface, see Fig-
ure 1. That raises the issue of the position of this equiv-
alent surface. It is obvious that it should be located in
the vicinity of the metasurface, that is at a height of the
order of ¢ above the substrate I's. But positioning it at
r3 = 0 or z3 ~ £ would introduce a phase-shift of the
order of € = fw/c in the results. In the approximation
of the leading order, the description is valid up to the
precision €, and such a phase shift is disregarded, as tes-
tified by the fact that the pressure is uniform over C at
the local scale, see Eq. (10). Hence the knowledge of the
exact position of the equivalent surface is not requlred
the leading order, as long as it remains in the v101n1t
the metasurface. However, when the homogenisa on 1
performed up to the corrector order, a phase-shift
order of € is no longer within the accuracy of t appr
imation and the location of the equivalent surf e
the effective boundary conditions are applied
specified. This issue regarding the position

ere

alent surface has already been raised instudies onsgorru-
gated substrates'?14 and is quite similamt issue of
the thickness of the equivalent interface for arrays of

inclusions interior to the unbou 22

In the present model, the i

Vz'ion 21 above the
ptotic expansions:

- es.

(35)
(31) of mass conservation
mal component of the velocity
calculated fat the se tion x3 = 0 prescribed by the

coordinate system, but, instead, that at
o (1)
ez\V).

— vt
- V(xs,ez(l))

This position in space repre-
ed height of the corrugation above the
nd.ds independent from the choice of the ori-
he coordinate system. This quantity is there-
forentfinsie to the system, and indicates the position of
the equivalent surface. To formulate the boundary con-
ditions at elevation z3 = ez(!), the LW pressure must
be described there. Since P(® is uniform at the local
scale, see Eq. (10), the pressure Péo) can be replaced in

the equations by PZ(O) = PO)(xg,ez(1)). However, using

given by:

1) _ p(D) ap
PY =P + 2 TxBRXS,O)v (36)

which leads to the modification of the coefficient p (1) by:

Ry(ys —21) -ndly. (37)

corrector order solutions
med together to provide the ap-
1acroscopic pressure and particle

Now, the leading
for the LW fields
proximations
velocity, that is

boundary conditions for the LW fields at

t& , where S = Q/|3]:
\Vag ‘B—Fdlv WS) S at x3 =z,

(38a)
Wilxs) = P|z—.B grad(P)l.,  (38h)
1w po
A S
—(T—x— u)P|z+p— grady (P)l..  (38¢)

Equation (38a) states the effective mass conservation
where the source term S is related to the flux radiated
from the resonators and substrate, and is balanced by
two macroscopic fields: the normal component of the LW
velocity V, and the divergence of the surface low Wg.
Equation (38b) provides the rheological relation for the
surface flow W, where the last term, due to the tan-
gential flow of air through the surface corrugation, can
be seen as the surface variant of the Darcy Law.? Equa-
tion (38c) provides the expression for the source term
S, forced by the LW surface pressure and its tangen-
tial gradient. The three equations (38a) to (38¢c) can be
combined to provide the effective surface condition in the
form of a single equation:

As+D
V'e?,:—(T—X—M)P‘i'% - grady (P)
0

B

5. grady[gradf(P)] at x3 = z,

iwpo

(39)

where : is the tensor double contraction. Equation (39)

shows that the normal component of the velocity de-
pends on the simple and second gradients of the pres-
sure at the surface. Hence, microstructural effects re-
sult in an effective nonlocal boundary conditions for the
metasurface. Note that other nonlocal effects induced
by microstructures have been reported for elastodynamic
metasurfaces'® and for bulk media,?* 25 despite differ-
ences in the physical approaches to describe them. The
boundary condition described by Eq. (39) is the final re-
sult of the homogenisation model.
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ivation and description of the metasurface

The aim of this section is to describe the effects of the
boundary condition (39) on the sound reflection from the
metasurface, and investigate the possibility to achieve the
total absorption of sound at the resonance frequency. For
this, the metasurface consisting of the array of cylindrical
Helmholtz resonators arranged periodically in the direc-
tion e; with the period size £ = 42 mm, and postioned
at the distance h = 0.02¢ ~ 0.8 mm above a rigid sub-
strate is studied, see Figure 2(a). The resonators are sup-
posed to be infinitely long with their axes in the direction
eo. In the plane (eq,e3), they have the outer diameter
2r = 29 mm and the opening I', of width e = 1.5 mm
oriented in the direction defined by the angle o counted
from e;. Each resonator consists of a cylindrical inner
cavity of diameter 2r' = 13.4 mm connected to the out-
side via a duct of width e rolled around the inner cavity,
see Figure 2(b). The relative positions of the inner and
outer apertures is defined by the angle § = 227°. The arc
portion of the duct is positioned at equal distance from

the resonator. The inner walls of the resonators are ‘as-
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(a) Périodic arrangement of cylindrical resonators
rigid substrate. (b) Geometry of a cylindri-
esonator with an extended inner duct. (c)
maliﬁ admittance at the duct outside aperture of the

tzf resonator considered in the study; the dots are

ian form Eq. (42) with parameters obtained by fitting
results. In figure (c), the colour-map represents FEM

elmh%ﬂ-I
. 1 tati int d the li d to th
the boundary of the cavity and the outer boundary I', A\é‘g computation points an e lines correspond to the

rface
ce,

sumed rigid. Plane wave reflection from the meta
is studied, with (eq, e3) as the plane of incidence.
the problem can be solved in the two dimensiodal Car
sian coordinate system (ej,es). The reasons léadi
the design are explained in Section IIC.

to
.

B. Model for the resonators and substrat \

Since the substrate is rigid £t ollowing relation
holds: RS (p) -ns = 0. As fo %ol‘nz resonator,
its boundary T', is rigid, the opening Ty,
which is supposed sufficien ke the following
assumptions®”: (i) the l?éiad ticle/velooity is uniform
over the opening I';,, with the valuew,; and (ii) the veloc-

ecan value (p) = |I,|7? frapdr
'13 the opening T, by v, = Y{(p),

(40)

ce Y is computed numerically using
ient Method (FEM) by solving for the
eveloping inside the resonator in response to

sure P, = 1 applied at the duct outside aperture
¢ inset in Figure 2(c). To do so, the Helmholtz
, div(gradp,)+w?(p,/B;)p: = 0, is solved, where
pr and B, are the effective density and bulk modulus of
air in the resonator. In the inner cavity, viscous and
thermal losses are neglected* and p, = py and B, = By
there. In the narrow duct, however, viscous and thermal

results for the pressure amplitude inside the resonator in re-
onse to a unit pressure P, = 1 at the duct outside aperture
at the resonance. (Color online)

effects are significant, and the effective density and bulk
modulus of air in the duct are given by®5:

—_ P B Bo
PTTT0(e/s,) T T+ (v - D)@(e/dy)

where 6, = /4v/(pow) and §, = 6,/VPr are vis-
cous and thermal skin-depths, with v and Pr being the
viscosity and the Prandlt number of air, and where
®(X) = tanh(X+v/—i)/(X+/—i) is a form function.>®
In this FEM simulation, the admittance Y is given by
Y = (grad(p;) -n,/(iwp;)), and results are shown in Fig-
ure 3(c). The following Lorentzian form is assumed for
it:

(41)

pocY = iocw/ [wg — 128w — w2] ) (42)

where the resonance frequency w,, the loss factor £/w, <
1 and the parameter o are retrieved by fitting Eq. (42)
with the FEM results, see Figure 2(c). That provides
wo/(2m) & 712.5 Hz & /w, ~ 3.1% and o /w, ~ 1.71.

C. Effective parameters from the homogenisation model

Now, the effective parameters involved in the bound-
ary conditions (39) can be computed. As the problem
considered is two-dimensional, only 7 scalar parameters
are required: the admittance coefficients T, x, and u, the


http://dx.doi.org/10.1063/1.5011385

AIP v

Publishing

| This manuscript was accepted by J. Appl. Phys. Click here to see the version of record. |

. 2 T ; :
—h/l=0 (0) /e 068 | [2rje=070 | [2rj¢ =072 |01/
g0l === +h/L = 0.02 . h/€=0 h/€ = 0.02 h/t =05 21
h/f=0.5 LeenTTTe .. 15 1L 1L ]
x  15¢ Yo 0.5
= ~ L v 4 s 1 1T 1T
= R4 —_— r/é =0.7 (S
10} . X 0
% :15\
5 & =X 0.5
/.c 1 ; 0.5
L | YA .
0 0.2 0.4 0.6 0.8 1 - 0 1
2r /¢ 2z /¢ <-1
(C) 10 ‘ 20 ‘ (d) 2 :‘_900 9*/(g*)
a =-90° a N
o hie=05 |g>
8t < ]
10 1.5¢ ]
CN U
® 6l J 0.5
~ ) N
= 0z, T 06 E 1
| — /=0 0
e hfl = 0.02 0.5
2 - b/l =05
~— o 0.5
Y50 290 90 180 (0-1 1.1 0 11 0 1
« |degree] iy 14 2z /0 2z /0 <-1
FIG. 3. Numerical solutions for the evanescent fields b and ¢* =@ /(pocY’) defined by Egs. (A1-A2), and analysis of the
effective parameters B and (g*). (a) Dependence of B ondthe resonator normalised diameter 2r/¢ and elevation h/¢ above the

substrate. (b) Colour-maps of b7 for different values of 2r/

hd

(c) Dependence of (g*) on the normalised elevation h/¢

and orientation angle a of the resonator opening. (d)%\s of g* for different values of o and h/¢. (Color online)

of )eb\

- e; of the

tensor Bg, and the elevation z for the egquiva rface.
Their expressions can be found in Egs. a), (37),
(34c), (27) and (32). Using the response fupction given

by Eq. (40), with the normalise
Eq. (42), and the symmetry rel
these coefficients are derived i

admittancesgiven by
ion given by Eq. (24a),
form:

pocY = —inw/[w) — 2w
= T (e ) e
= 1wY (pocT)¢/c,

A1 = pocY(b7)
B = g(b;) e

(
* L0 /(pocY), (43b

—~
B
w
o

Db
= 7rr2/€,

(43d
(43e)

£

ﬁel}?g is purely geometrical and
tisfies the same equations (A2) as

real-value

d* except for the Bourldary condition (A2b) which be-
comes grad *(1)3- n = (2¢/0)ez-n —Il(y) at I'. In
Eq. (43c), the length ¢ corresponds to the mean distance
betwe

the ea;\ivalent surface positioned at x3 = z and

the _poin e aperture I',. It can approximated by
¢ 1+ sin ) — z using the relation sin(e/r) =~ e/r,
where e/r < 1 is the angular opening of the aperture
.. In\Eq. (43d), the relation A; = —D; implies that

the simple gradient term in the effective boundary con-
dition (39) is not present in the case studied here. This
is due to the fact that the plane (es,es) is a plane of
symmetry for the cell C when the whole boundary of the

Helmholtz resonator is supposed to be rigid: it leads to
the relation G(b}) - e3 = 0 used in the computation of
D;. In Eq. (43e), the coefficient B has the dimension of
a length. Its expression is related to the field b7 satisfy-
ing the cell problem described in Eq. (A1) which depends
only on the corrugation. The length B appears in the
effective boundary condition (39), where it weights the
term with the double gradient of the pressure. Hence,
the length B characterises, at the macroscopic scale, the
micro-corrugation of the surface, and it will be referred
to as the characteristic corrugation length in what fol-
lows. It is worth mentioning also that the position z of
the equivalent surface given by Eq. (43e) is independent
from the elevation h of the resonators above the rigid sub-
strate. Finally, since y + u = O(eY), Taylor expansion
is performed to provide:

poc(T=x—p) = pocY/ [L +iwpoc(Y(g*) + TC)/c] . (44)

Using the expressions (42) and (43a) for pocY and pocY,
the equation (44) is transformed as:

poc(T = x = p) & —inw/[w; —i26w — (kw)?],  (45a)
where k= +/1+ ((g*)/e —(/l)ea/c. (45b)

Comparison of Eq. (45) with (43a) shows that the cor-
rector x + p changes the apparent resonance frequency
from w, to w,/k. The resonance frequency of the single
Helmholtz resonator above the rigid substrate is already
known to decrease as the opening of the resonator is ori-
ented towards the substrate.?” Here, the variations in the
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t« #ance frequency are due to the strong near-field in-

eractions of all the resonators with each other and with

PUbI|§1 IJhgs trate. It is important to note that the value of
poc(L — x — u) at the frequency w,/k is equal to the
same value 1/(2£) as that of the leading order admit-
tance pocY at the eigenfrequency w,. If, according to the
leading order calculations, the admittance matching with
air, poc Y = 1, is achieved at the resonance frequency w,,
accounting for the correctors of order €' preserves this
condition, but it happens at the frequency w,/k.

The field b7 is computed numerically solving the cell
problem (A1) by means of the FEM. To justify the de-
sign, the calculations are performed for different cylinder
radius r and elevation h. That results in the charac-
teristic corrugation length B shown in Figure 3(a). For
a given elevation h, the dependence of B on the nor-
malised radius 7/¢ is not monotonous: its maximum
value B/{ € [0.16, 0.24] is reached for 2r/¢ € [0.69, 0.72].
The characteristic corrugation length B is larger for
cylinders upon the substrate, decreases sharply as the
elevation h increases, see the inset in Figure 3(a), and
reaches a stationary value for h/¢ > 0.3 approximately.
Colour-maps of the field b} are given in Figures 3(b) for

1
= o5
0 I I
TF ‘ ‘
w 0
3 /
-TTe \ / ‘\ I I 3
0.3 0.5 0.6 0.9 1 11
equency [kHz]
FIG. 4. (a)A htu b) phase of the reflection coef-

rent a les of incidence 6 and orientation
sonators opening. Computations with the
.(Color online)

t *) /e reaches its maximum value: it tends
t 'nﬁnit?as h — 0, when radiation from the aperture is
carly impossible, and decreases sharply as the elevation

tionary value (g*)/e ~ 2.4 for the elevations h/¢ > 0.3

different elevations h/¢ and at values of r /¢ for which B /(\iu‘creases, see inset in Figure 3(c), to reach the sta-

to the surface, consistently with the notion of eyanes-
cent fields. While a strong interaction between the‘azr
and the substrate occurs for cylinders close tg the s

is maximum. They confirm the fact that b7 is conﬁ&\d\

when the cylinders are positioned further fr:
case, the interaction of the array with!the s
very weak, which explains why B/¢ reaele

ary value.
10sen to provide
i aximum values
tojenhance the ef-

esides, the duct

station-

The resonator diameter has

ing to the following c
€0 = fw,/c at the re nce 15vequal to 0.55 < 1 which is
sufficiently close t urﬁ‘?b for the'corrector term to have
i vet €2 = 0.3 so that terms of
-emain small; and (ii) the ad-
n/(2£) = 1 at the resonance
hen, the cell problem for the

field g*

erent elevations h and orientation an-
the opening, see Figure 3(c). It shows that, the
ha$ nearly no effect on (g*) when the aper-

urned away from the surface: (g*)/e reached its
im value =~ 0.89 for the orientation angle o = 90°,
and vagies only slightly over the range a € [0, 180°] to
reach = 1.4 at @« = 0 and o = 180°. Conversely, the
variations of (¢g*)/e with the elevation h are very signif-
icant for o € [—180°, 0], especially when the aperture is
facing the rigid substrate at a = —90°. For that orien-

oximately. The colour-maps of the field g* for dif-
ferent orientation angles o and elevations h are provided
m Figure 3(d). They confirm that the evanescent field
g* remains confined to the surface. In addition, it tends
to remain mostly located between the inclusions and the
rigid backing for « € [-180°, 0].

D. Reflection from the metasurface

Finally, the reflection of the incident plane wave
elw(zsin0—(zs—2)cosO)/c from the metasurface is studied,
where 0 is the angle of incidence counted from es. The
specularly reflected wave is Rel@(@1sinf+(zs—z)cost)/c
where R is the pressure reflection coefficient. Using
Egs. (39) and (43), the reflection coefficient reads:

cosf — A iwB sin? §

R= osO F A’ A:POC(T_N_X)_f- (46)
At normal incidence, # = 0, the nonlocal contribution to
the boundary conditions vanish and R tends to its usual
expression for the surface with the admittance T —x — p.
The perfect absorption R = 0 is achieved if § = 0 and
the critical coupling condition poc(YT — x — p) = 1 is
satisfied. Nonlocal contribution to the boundary con-
ditions becomes significant at oblique and grazing inci-
dence. If the resonators are replaced by rigid scatterers,
then A = —iwBsin?(6)/c, and the perfect reflection of
the wave | R| = 1 is achieved for any angle § and frequency
w. The perfect reflection |R| = 1 is also achieved for
any angle and frequency for lossless resonators (£ = 0).
Nevertheless, a phase shift that depends on 0 and w is
induced in those two cases. The amplitude and phase
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IS ar¢ plotted in Figure 4 for § € {0°, 60°} and for

.opening orientation angles a = +90°. The elevation
‘hzlllg] 02 has been chosen. As expected from the de-
sign, the perfect absorption of sound R = 0 is achieved at
apparent resonance frequencies lower than w, (by 53 Hz
for o = —90°) at normal incidence § = 0. At the oblique
incidence 6 = 60°, the sound absorption is lower at the
apparent frequency, and an additional phase shift due to
the nonlocal contribution can be observed in the reflec-
tion coefficient, even at frequencies away from the reso-
nance.

CONCLUSION

The present study showed that models of local reac-
tion for metasurfaces are valid when a sharp scale sepa-
ration exists between the sound wavelength and the char-
acteristic size of the surface lattice. However, when the
scale separation is not sharp, nonlocal contributions to
the effective boundary conditions for the corrugated res-
onant metasurfaces should be accounted for. The nonl

homogenisation analysis. The model developed hete

been illustrated for the 2-D array of cylindrical Helmlioltz
resonators with an extended duct, but the an ical re-
sults summarised in Eqs. (38) are valid for 3:D g &rnﬁr&
for any resonators and substrate the behaWour of Which
can be described by the linear respons funw en
by Eq. (3), and any LW field satisfyin t%t n of
scale separation. In particular, the non-leca itribu-
tions should lead to anisotropic effects in 3-Dysince the
effective nonlocal parameters are temnsers. The results
are useful for the design of gorrugated Tesonant meta-
surfaces, where the corrugation/radiagion coupling could
be used to tune the reson fréquency and the type of
boundary conditions bzz impl 1anéng the orientation
of the resonators. Ob effective boundary condi-
tions for metasurfacés“with e complicated geometry
of the elementary (‘v:f}en it contains several mistuned
resonators for ingtance)will be the next step in the work.
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Appendix A: Cell problems in their strong formulation

The strong formulation of the cell problems (23) reads:

divy(grady(b:(l)) —e;) =0, (Ala)
(grad, (b}") —e;) n=0at T, (A1b)
lim grad, (b*(l)) =0 (Alc)
Yz —00
lim b { ™ 5 periodic over yg. (Ald)
Yz — 00

divy (grad, (€ DO

)

(A2a
(A2b
(A2¢

)
)
)
)

and d*(Y S-periodic over vs, (A2d
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Unit cell in
Y-periodic arrangement of boundary layer
resonators above substrate I's homogenisation
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