

OPTIMIZING DEEP LEARNING NETWORKS

USING MULTI-ARMED BANDITS

Salem Abdussalam Ameen

School of Computing, Science and Engineering

College of Science and Technology

University of Salford, Manchester, UK

Submitted in Partial Fulfilment of the Requirements of the Degree of

Doctor of Philosophy

December 2017

i

Contents
1. Introduction .. 1

1.1. Motivation .. 1

1.2. Research Problem ... 3

1.3. Aim and Objectives .. 3

1.4. Research Methodology ... 4

1.5. Thesis Organization .. 8

2. Deep Learning Background ... 11

2.1. Supervised Learning ... 11

2.1.1. The Goal of Supervised Learning .. 12

2.1.2. Regularization ... 13

2.2. Optimization ... 13

2.2.1. Gradient Descent ... 14

2.2.2. Gradient Descent with Momentum .. 16

2.2.3. Adagrad ... 17

2.2.4. RMSProp ... 17

2.2.5. Adam .. 18

2.3. Back Propagation .. 18

2.4. Neural Networks ... 23

2.4.1. Feed Forward Neural Networks .. 24

2.4.2. Convolutional Neural Networks .. 25

2.4.3. Recurrent Networks ... 30

2.4.4. Challenges of Training Neural Networks .. 33

2.5. Summary ... 35

3. Literature Review ... 36

3.1. Background on Pruning Methods ... 36

3.2. Related Work .. 39

3.2.1. Pruning Weights .. 39

3.2.2. Pruning Neurons ... 42

3.2.3. Pruning Feature Maps .. 46

3.3. Summary of other Methods for Pruning ... 48

3.4. Summary ... 50

ii

4. Multi-Armed Bandit ... 51

4.1. Notation .. 51

4.2. Sequential Multi-Armed Bandits .. 53

4.2.1. Random Explorations .. 53

4.2.2. Optimistic Explorations ... 55

4.2.3. Bayesian Bandits ... 57

4.2.4. Adversarial Bandits ... 58

4.2.5. Bandits with Multiple Plays ... 59

4.3. Summary ... 60

5. Multi-Armed Bandit for Pruning Weights ... 62

5.1. Architecture of MAB Pruning method ... 62

5.1.1. Direct Method .. 66

5.1.2. Epsilon-Greedy Algorithm for Pruning the Weights 68

5.1.3. Win-Stay, Lose-Shift Algorithm for Pruning the Weights 71

5.1.4. UCB1 Algorithm for Pruning the Weights .. 72

5.1.5. KL-UCB Algorithm for Pruning the Weights .. 76

5.1.6. Thompson Sampling Algorithm for Pruning the Weights 78

5.1.7. BayesUCB Algorithm for Pruning the Weights ... 79

5.2. Evaluation ... 84

5.2.1. Results from the Experiments on the UCI Data sets 85

5.2.2. Results for the MNIST Data set ... 90

5.3. Summary ... 92

6. Multi-Armed Bandits for Pruning Neurons ... 93

6.1. Summary of MAB Algorithm for Pruning Neurons 93

6.1.1. Direct Method .. 97

6.1.2. Softmax Algorithm for Pruning the Neurons ... 97

6.1.3. Hedge Algorithm for Pruning the Neurons ... 98

6.1.4. EXP3 Algorithm for Pruning the Neurons .. 100

6.2. Evaluation ... 101

6.2.1. Results from the Experiments on the UCI data sets 104

6.2.2. Testing MAB Based Pruning on Deep Learning Networks 114

6.3. Discussion ... 125

6.4. Summary ... 126

iii

7. Multi-Armed Bandits for Pruning Feature Maps ... 127

7.1. Direct Method ... 129

7.2. Evaluation ... 130

7.2.1. Data sets .. 130

7.2.2. Intial Comparison with the Direct Method.. 131

7.2.3. Pruning Feature Maps using UCB1 and Thompson Sampling 134

7.3. Discussion ... 138

7.4. Summary ... 139

8. Pruning Multiple Neurons and Feature Maps using MABs 140

8.1. The Advantage of Pruning Multiple Neurons over Pruning One 141

8.2. MAB Algorithms for Pruning Multiple Neurons and Featue Maps 141

8.3. Evaluation ... 144

8.3.1. Testing on UCI Data sets .. 145

8.3.2. Testing on Deep Learning Data sets ... 145

8.3.3. Comparing with Pruning Single Neurons or Feature Maps 148

8.4. Summary ... 149

9. Conclusion and Future Work .. 150

9.1. Introduction .. 150

9.2. Summary ... 150

9.3. Contribution and Main Findings .. 152

9.4. Future Work .. 153

10. References.. 155

11. Appendices .. 172

iv

List of Tables
TABLE 2-1: EXAMPLE OF A SMALL DATA SET WHERE X0 AND X1 ARE FEATURES AND Y IS THE

OUTPUT. .. 19

TABLE 3-1: SUMMARY OF RELATED WORK. .. 37

TABLE 4-1: A COMPARISON BETWEEN MULTI-ARMED BANDIT ALGORITHMS. 61

TABLE 5-1: CUMULATIVE AVERAGE REWARD FOR BOUNDED REWARDS WHEN PRUNING A

WEIGHT. .. 67

TABLE 5-2: CUMULATIVE AVERAGE REWARD FOR BINARY REWARDS WHEN PRUNING A

WEIGHT. .. 67

TABLE 5-3: WSLS UPDATED THE PROBABILITY P GIVING THE REWARD X AT EACH TRAIL. THE

GREEN CELL REPRESENTS THE WEIGHT WITH THE HIGHEST PROBABILITY WHICH WILL BE

PLAYED AT THE NEXT. .. 72

TABLE 5-4: UCB1 METHOD WHERE X IS THE REWARD, N NUMBER OF PLAYS, T IS THE TOTAL

PLAYING TIME SO FAR, PF IS THE PADDING FUNCTION AND WJI IS THE WEIGHTS (THE

ALGORITHM WILL CHOOSE THE VALUE). ΜJI IS CUMULATIVE AVERAGE REWARD AND

GREEN COLOUR CELL IS THE ARM WILL BE PLAYED NEXT. .. 75

TABLE 5-5: RESULTS OF THOMPSON SAMPLING WHERE X IS THE CURRENT BINARY REWARD

FOR EACH WEIGHT, T THE TOTAL PLAY TIME, S IS THE SUCCESS, AND F IS FAILURE AND

SAMPLE (BETA) IS DRAWN FROM THE BETA DISTRIBUTION FOR EACH WEIGHT. AT EACH

TIME STEP, THE ALGORITHM WILL CHOOSE THE WEIGHT THAT HAS THE HIGHEST REWARD

AMONG THE OTHERS WHICH IS SHOWN IN THE GREEN CELL. ... 80

TABLE 5-6: RESULTS OF BAYESUCB ON DIFFERENT PLAY TIME WHERE X IS THE CURRENT

BINARY REWARD FOR EACH WEIGHT, T THE TOTAL PLAY TIME, S IS THE SUCCESS, AND F

IS FAILURE AND QUANTILE IS DRAWN FROM THE BETA DISTRIBUTION FOR EACH WEIGHT

WITH PROBABILITY 1-(1/T). AT EACH TIME STEP, THE ALGORITHM WILL CHOOSE THE

WEIGHT THAT HAS THE HIGHEST QUANTILE AMONG THE OTHERS WHICH IS SHOWN IN THE

GREEN CELL. ... 82

TABLE 5-7: UCI DATA SETS .. 85

TABLE 5-8: COMPUTED ERROR ON VALIDATION DATA SET BEFORE AND AFTER PRUNED THE

MODEL. THE GREEN CELL SHOWS THE METHOD WITH LESS ERROR WHILE RED CELL SHOWS

THE METHOD WITH LARGE ERROR. THE ARROWS POINT UP IF THE ERROR HIGH, DOWN IF IT

IS LOW OR IN RIGHT DIRECTION IF IT IS IN BETWEEN. ... 87

v

TABLE 5-9: RESULTS OF THE AVERAGE RANK OF THE METHODS ON 12 DIFFERENT DATA SETS.

 ... 88

TABLE 5-10: RUN-TIME PERFORMANCE IN SECONDS FOR THE DIFFERENT PRUNING METHODS

ON DIFFERENT DATA SETS. GREEN CELL SHOWS THE METHODS THAT HAVE LESS

COMPUTATION TIME WHILE THE RED CELL SHOWS THE ONES WITH THE HIGHEST

COMPUTATION TIME. ... 90

TABLE 5-11: NO OF PARAMETERS IN THE LENET’S MODEL... 91

TABLE 5-12: RESULTS OF PRUNING 50% OF TWO LAYERS IN THE LENET’S MODEL. 92

TABLE 6-1: CUMULATIVE AVERAGE REWARD FOR THE BOUNDED REWARDS WHEN PRUNING A

NEURON ON EXAMPLE OF DATA AT EACH FORWARD PROPAGATION. 97

TABLE 6-2: SOFTMAX FUNCTION FOR PRUNING THE NEURONS WHERE 𝜇𝜇𝜇𝜇 IS CUMULATIVE

AVERAGE REWARD, X IS GIVEN REWARD, 𝜏𝜏 = 2 AND P IS THE PROBABILITY. 98

TABLE 6-3: THE STEPS OF CHOOSING NEXT NEURON TO PRUNE BASED OF HEDGE ALGORITHM.

THE GREEN CELL IS THE PROBABILITY OF CHOOSING THE FOLLOWING NEURON. ρ IS THE

GENERATED NON-STATIONARY REWARD, W IS THE WEIGHT AND P IS THE PROBABILITY

FOR CHOOSING THE NEXT NEURON. ϵ = 0.05. ... 99

TABLE 6-4: EXP3 FOR PRUNING THE NEURONS WHERE ρ IS THE CURRENT NON-STATIONARY

REWARD, W IS THE WEIGHT AND P IS THE PROBABILITY FOR CHOOSING THE NEXT NEURON

TO PLAY. Γ=0.1. GREEN CELLS ARE THE NEURONS CHOSEN TO PRUNE. 100

TABLE 6-5: SMALL DATA SET SPECIFICATION. .. 102

TABLE 6-6: DATA SET SPECIFICATION FOR DEEP LEARNING MODELS. 103

TABLE 6-7: HYPERPARAMETERS OF NEURAL NETWORKS TRAINED ON DIFFERENT DATA SETS.

IN ADDITION, THE LEARNING RATE FOR ALL OF THEM IS SET TO 0.001, THE ACTIVATION

FUNCTION IS RELU AND THE NUMBER OF EPOCHS IS 100. ... 103

TABLE 6-8: COMPARISON OF ACCURACY BETWEEN PRUNING BASED ON UCB1 AND DIFFERENT

CLASSIFIERS. THE RESULTS WITH RESPECT TO SOME CLASSIFIERS ARE NOT AVAILABLE IN

THE CASE OF THE FACE DATA SET BECAUSE OF THE RESOURCE REQUIRED. THE GREEN

CELLS INDICATE THAT THE METHOD HAS GOOD ACCURACY IN CONTRAST OF RED CELL.

THE ARROWS POINT UP IF THE ERROR HIGH, DOWN IF IT IS LOW OR IN RIGHT DIRECTION IF

IT IS IN BETWEEN. ... 107

TABLE 6-9: RESULTS OF RANKED ACCURACY, F1 SCORE, PRECISION AND RECALL RESULTS

BASED ON NEMENYI TEST, WHICH IS USED TO COMPARE THE DIFFERENT MODELS ON 16

vi

DIFFERENT DATA SETS. IN THIS TABLE, THE HIGHEST IS THE BETTER AND THE TABLE IS

SORTED ON THE ACCURACY COLUMN. ... 108

TABLE 6-10: THE RESULT BASED ON THE ACCURACY OF PRUNING DEEP NEURAL NETWORKS ON

DIFFERENT DATA SETS USING DIFFERENT ARCHITECTURES. THE TABLE SHOWS THE

PRUNED LAYER, NUMBER OF NEURONS IN PRUNED LAYER AND THE PERCENTAGES OF

REMOVED NEURONS IN THE LAYER. THE GREEN CELLS INDICATE THAT THE METHOD HAS

GOOD ACCURACY IN CONTRAST OF RED CELL. THE ARROWS POINT UP IF THE ERROR HIGH,

DOWN IF IT IS LOW OR IN RIGHT DIRECTION IF IT IS IN BETWEEN. 115

TABLE 6-11: RESULTS OF RANKED ACCURACY RESULTS BASED ON NEMENYI TEST, WHICH IS

USED TO COMPARE THE DIFFERENT MODELS ON SIX DIFFERENT DATA SETS. 124

TABLE 7-1: EXAMPLES OF COMPUTING FLOPS. ... 129

TABLE 7-2: RESULT OF PRUNING CONVOLUTIONAL LAYERS. THE GREEN CELLS INDICATE THAT

THE METHOD HAS GOOD ACCURACY IN CONTRAST OF RED CELL. THE ARROWS POINT UP IF

THE ERROR HIGH, DOWN IF IT IS LOW OR IN RIGHT DIRECTION IF IT IS IN BETWEEN...... 136

TABLE 7-3: AVERAGE RANK OF THE ALGORITHMS FOR PRUNING FEATURE MAPS BASED ON

ACCURACY, WHERE A HIGHER RANK IS BETTER. ... 137

TABLE 8-1: PRUNING USING MP-TS AND MP-UCB1. THE GREEN CELLS INDICATE THAT THE

METHOD HAS GOOD ACCURACY IN CONTRAST OF RED CELL. THE ARROWS POINT UP IF THE

ERROR HIGH, DOWN IF IT IS LOW OR IN RIGHT DIRECTION IF IT IS IN BETWEEN............. 147

TABLE 8-2: SUMMARY OF RESULTS BASED ON ACCURACY FROM THREE COMMON DATA SETS

THAT WERE USED IN PRUNING BASED ON SINGLE OR MULTIPLE NEURONS OR FEATURE

MAPS. CELLS SHADED BLACK INDICATE THERE IS NO RESULT. CELLS SHADED GREEN HAS

BEST ACCURACY WHILE RED HAS THE WORSE. .. 148

TABLE 11-1: RESULTS OF RANKED R SQUARED RESULTS BASED ON NEMENYI TEST, WHICH IS

USED TO COMPARE THE DIFFERENT MODELS ON SIX DIFFERENT DATA SETS. 219

vii

List of Figures
FIGURE 1.1: OVERVIEW OF THE THESIS STRUCTURE... 9

FIGURE 2.1: SGD FLUCTUATION 15

FIGURE 2.2: THE EFFECT OF ADDING MOMENTUM TO GD. .. 16

FIGURE 2.3: EXAMPLE OF GRAPH OF MULTIPLE NODES. .. 20

FIGURE 2.4: DEFINITION OF A SINGLE NEURON WITH INPUTS, ACTIVATION FUNCTION AND

OUTPUTS. .. 24

FIGURE 2.5: ARTIFICIAL NEURAL NETWORK WITH ONE HIDDEN LAYER WHERE W IS THE

WEIGHT, B IS THE BIAS AND F IS A NON-LINEAR FUNCTION. ... 25

FIGURE 2.6: CONVNET MODEL WITH TWO INPUTS (INTENSITY AND DEPTH). 26

FIGURE 2.7: LENET MODEL [83]. ... 29

FIGURE 2.8: ALEXNET MODEL [22].. 29

FIGURE 2.9: RNN ARCHITECTURE. ... 30

FIGURE 2.10: LSTM ARCHITECTURE [100]. .. 31

FIGURE 2.11: END-TO-END MEMORY NETWORKS. (A): A SINGLE LAYER. (B): A MULTIPLE

LAYER. .. 32

FIGURE 2.12: NEURAL NETWORKS (A) AFTER DROPOUT (B) AFTER DROPCONNECTION. 34

FIGURE 3.1: A TIMELINE OF RELATED ALGORITHMS. .. 37

FIGURE 5.1: BLOCK DIAGRAM SHOWS THE MAB TO PRUNE THE WEIGHTS. 64

FIGURE 5.2: THE GENERIC ALGORITHM OF A MAB PRUNING THE WEIGHS. 65

FIGURE 5.3: SYNTHETIC DATA FOR PURPOSE OF EXPLAINING MAB PRUNING ALGORITHMS. 66

FIGURE 5.4: FUNCTION OF EPSILON-GREEDY ALGORITHM TO PRUNE K WEIGHTS. 68

FIGURE 5.5: EPSILON-GREEDY FOR PRUNING 16 WEIGHTS AT DIFFERENT PLAY TIMES. THE RED

DOTS DENOTE THE CHOSEN WEIGHT TO PLAYING. THE TOP ONE PLAYED FIRST AND THE

BOTTOM ONE PLAYED THE LAST. .. 70

FIGURE 5.6: FUNCTION OF WSLS BASED ON PURSUIT ALGORITHM TO PRUNE K WEIGHTS. ... 71

FIGURE 5.7: FUNCTION OF UCB1 ALGORITHM TO PRUNE K WEIGHTS................................... 72

FIGURE 5.8: UCB1 FOR PRUNING 16 WEIGHTS AT DIFFERENT PLAY TIMES. STARTING FROM THE

UPPER LEFT TILL THE BOTTOM AT DIFFERENT TIME. THE VERTICAL LINES REPRESENT THE

CUMULATIVE AVERAGE REWARD (BOTTOM) AND THE PADDING FUNCTION (TOP). THE RED

LINE IS CHOSEN FOR PLAYING. .. 74

FIGURE 5.9: FUNCTION OF KL-UCB ALGORITHM FOR PRUNING THE K WEIGHTS. 76

viii

FIGURE 5.10: COMPUTE Q OF THE WEIGHT WHERE THE CHARTS ON THE TOP REPRESENT THE

WEIGHTS AT THE PLAY TIME BETWEEN (T=49 TO T=64). THEN, THE CHARTS AT THE

BOTTOM REPRESENT COMPUTING THE MAXIMUM Q FOR THE CURRENT CHOSEN WEIGHT.

 ... 77

FIGURE 5.11: THOMPSON SAMPLING WHERE THERE ARE K WEIGHTS AND 𝑤𝑤𝑤𝑤𝑤𝑤 IS THE WEIGHT

SELECTED TO PLAY NEXT. ... 78

FIGURE 5.12: FUNCTION OF BAYESUCB TO PRUNE K WEIGHTS. .. 79

FIGURE 5.13: THOMPSON SAMPLING FOR CHOOSING THE ARM TO PLAY NEXT BASED ON THE

SAMPLE FROM BETA DISTRIBUTION. THE TWO ARMS ON THE TOP ARE CHOSEN FROM THE

FIRST COLUMN IN THE PREVIOUS TABLE WHILE THE CHARTS IN THE BOTTOM ARE CHOSEN

FROM THE LAST COLUMN OF THE SAME TABLE. ON THE TOP, THE ALGORITHM WILL

CHOOSE THE ARM ON THE LEFT AS IT HAS HIGHER REWARD WHILE ON THE BOTTOM THE

ALGORITHM WILL CHOOSE THE ARM ON THE RIGHT AS IT HAS HIGHER REWARD. 81

FIGURE 5.14: BAYESUCB FOR CHOOSING THE ARM TO PLAY NEXT BASED ON THE SAMPLE

FROM THE BETA DISTRIBUTION. THE TWO ARMS ON THE TOP ARE CHOSEN FROM THE FIRST

COLUMN IN TABLE 5-5 WHILE THE CHARTS AT THE BOTTOM ARE CHOSEN FROM THE LAST

COLUMN OF THE SAME TABLE. ON THE TOP, THE ALGORITHM WILL CHOOSE THE ARM ON

THE LEFT AS IT HAS HIGHER QUINTILE WHILE ON THE BOTTOM THE ALGORITHM WILL

CHOOSE THE ARM ON THE RIGHT AS IT HAS HIGHER QUINTILE 83

FIGURE 5.15: COMPARISON OF ALL CLASSIFIERS AGAINST EACH OTHER WITH THE NEMENYI

TEST. LINES SHOW THE CRITICAL DIFFERENCE FOR EACH METHOD ANY GROUPS OF

CLASSIFIERS THAT ARE NOT SIGNIFICANTLY DIFFERENT (AT P = 0.05) ARE OUT OF THE

LINES. THE BLUE DOT SHOWS THE RANK MEAN WHILE THE LINE DETERMINE THE CD

WHICH 4.33. .. 89

FIGURE 6.1: THE GENERIC ALGORITHM OF A MAB PRUNING NEURONS. 96

FIGURE 6.2: FUNCTION OF SOFTMAX ALGORITHM TO PRUNE K NEURONS. 98

FIGURE 6.3: THE HEDGE FUNCTION FOR PRUNING K NEURONS. .. 99

FIGURE 6.4: EXP3 FUNCTION TO PRUNE K NEURONS. ... 100

FIGURE 6.5: RESULTS OF MAB PRUNING ALGORITHMS. .. 106

FIGURE 6.6: COMPARISON OF THE ACCURACY OF ALL CLASSIFIERS AGAINST EACH OTHER WITH

THE NEMENYI TEST. HORIZONTAL LINES SHOW THE CRITICAL DIFFERENCE AWAY FROM

PROPOSED PRUNING METHODS AND ANY OTHER METHODS. GROUPS OF CLASSIFIERS THAT

ix

ARE NOT SIGNIFICANTLY DIFFERENT (P = 0.0.5) ARE OUT OF THE LINES FROM PROPOSED

METHODS. CD=8.066. .. 110

FIGURE 6.7: COMPARISON OF THE F1 SCORE OF ALL CLASSIFIERS AGAINST EACH OTHER WITH

THE NEMENYI TEST. HORIZONTAL LINES SHOW THE CRITICAL DIFFERENCE AWAY FROM

PROPOSED PRUNING METHODS AND ANY OTHER METHODS. GROUPS OF CLASSIFIERS THAT

ARE NOT SIGNIFICANTLY DIFFERENT (P = 0.0.5) ARE OUT OF THE LINES FROM PROPOSED

METHODS .. 111

FIGURE 6.8: COMPARISON OF THE PRECISION OF ALL CLASSIFIERS AGAINST EACH OTHER WITH

THE NEMENYI TEST. HORIZONTAL LINES SHOW THE CRITICAL DIFFERENCE AWAY FROM

PROPOSED PRUNING METHODS AND ANY OTHER METHODS. GROUPS OF CLASSIFIERS THAT

ARE NOT SIGNIFICANTLY DIFFERENT (P = 0.0.5) ARE OUT OF THE LINES FROM PROPOSED

METHODS. ... 112

FIGURE 6.9: COMPARISON OF THE RECALL OF ALL CLASSIFIERS AGAINST EACH OTHER WITH

THE NEMENYI TEST. HORIZONTAL LINES SHOW THE CRITICAL DIFFERENCE AWAY FROM

PROPOSED PRUNING METHODS AND ANY OTHER METHODS. GROUPS OF CLASSIFIERS THAT

ARE NOT SIGNIFICANTLY DIFFERENT (P = 0.0.5) ARE OUT OF THE LINES FROM PROPOSED

METHODS. ... 113

FIGURE 6.10: COMPARISON OF ALL PRUNING ALGORITHMS AGAINST EACH OTHER WITH THE

NEMENYI TEST. HORIZONTAL LINES SHOW THE CRITICAL DIFFERENCE AWAY FROM

PROPOSED PRUNING ALGORITHMS, THE ORGINAL UNPRUNED MODEL AND TWO OTHER

ALGORITHMS THAT ARE NOT SIGNIFICANTLY DIFFERENT (P = 0.0.5) ARE OUT OF THE LINES

FROM PROPOSED ALGORITHMS. CD=3.218. .. 125

FIGURE 7.1 REMOVING THE FILTER ℱI, J AND CORRESPONDING FEATURE MAP IN XI + 1 IN

CONVNETS. THE TOP DIAGRAM SHOWS THE TWO LAYERS BEFORE PRUNING WHILE THE

BOTTOM DIAGRAM SHOWS THE TWO LAYERS AFTER PRUNING THE FILTER AND FEATURE

MAP. ... 128

FIGURE 7.2: CHANGE IN TRAINING LOSS AS A FUNCTION OF THE REMOVAL OF A SINGLE

FEATURE MAP FROM THE LENET MODEL. THE FIRST CONVOLUTIONAL LAYER IS ON THE

LEFT AND THE SECOND CONVOLUTIONAL LAYER IS ON THE RIGHT. THE TOP ROW SHOWS

THE RESULTS FOR BRUTE FORCE PRUNING, THE MIDDLE IS FOR UCB1 PRUNING AND THE

BOTTOM IS FOR THOMPSON SAMPLING. .. 132

FIGURE 7.3: CUMULATIVE REGRET INCURRED ON LENET MODEL TRAINED ON MNIST DATA

SET COMPARED TO DIRECT METHOD.. 134

x

FIGURE 7.4: COMPARISON OF ALL CLASSIFIERS AGAINST EACH OTHER WITH THE NEMENYI

TEST. HORIZONTAL LINES SHOW THE CRITICAL DIFFERENCE AWAY FROM PROPOSED

PRUNING ALGORITHMS AND ANY ALGORITHMS. CD=1.133. 138

FIGURE 8.1: PRUNING ALGORITHM BASED ON MP-MAB. ... 143

FIGURE 8.2: MP-TS FUNCTION WHERE THERE ARE K NEURONS OR FEATURE MAPS. 144

FIGURE 8.3: MP-UCB1 FUNCTION WHERE THERE ARE K NEURONS OR FEATURE MAPS. 144

FIGURE 8.4: PRUNING MULTIPLE NEURONS AT ONE TIME. ... 146

FIGURE 11.1: VISUALIZATION OF ABALONE DATA. ... 186

FIGURE 11.2: IMPORTANT FEATURES: ON THE TOP WINE QUALITY DATA SET AND ON THE

BOTTOM GLASS DATA SET. .. 187

FIGURE 11.3: THE CORRELATION BETWEEN VARIABLES FROM LEFT TO RIGHT, PEARSON

CORRELATION, SPEARMAN CORRELATION KENDALL CORRELATION. 189

FIGURE 11.4: PCA ON FACE DATA SET. THE 12 PHOTOS ON THE LEFT SHOW SAMPLES FROM THE

DATA WHILE THE 12 ON THE RIGHT SHOW IMAGES AFTER APPLYING PCA. 191

FIGURE 11.5: HYPERPARAMETERS OF THE DECISION TREE ON BOSTON HOUSE DATA SET. .. 192

FIGURE 11.6: FINDING BEST COMBINATION OF PARAMETERS FOR ADABOOST. 194

FIGURE 11.7: ADABOOST ON BOSTON HOUSE DATA SET. .. 195

FIGURE 11.8: ROC ON ADULT DATA SET. ... 197

FIGURE 11.9: SOME CONFUSION MATRICES FOR THE PIMA DATA SET 198

FIGURE 11.10: R-SQUARED ON DIFFERENT MAB PRUNED MODELS ON X-AXIS SHOWS THE

NUMBER OF PRUNED NEURONS AND IN Y-AXIS SHOWS THE ACCURACY. 215

FIGURE 11.11: R-SQUARED OF MAB ALGORITHMS AND THE ORIGINAL UNPRUNED MODEL

TESTED ON REGRESSION TESTING DATA SETS .. 216

FIGURE 11.12: R-SQUARED BETWEEN MAB PRUNING ALGORITHMS PRUNED 25% OF THE

ORIGINAL MODEL AND OTHER REGRESSION MODELS ... 218

FIGURE 11.13: COMPARISON OF ALL CLASSIFIERS AGAINST EACH OTHER WITH THE NEMENYI

TEST. HORIZONTAL LINES SHOW THE CRITICAL DIFFERENCE AWAY FROM PROPOSED

PRUNING METHODS AND ANY OTHER METHODS. GROUPS OF REGRESSIONS THAT ARE NOT

SIGNIFICANTLY DIFFERENT (P = 0.0.5) ARE OUT OF THE LINES FROM PROPOSED METHODS.

CD=10.07 .. 220

xi

Dedication

 This PhD Thesis is dedicated to all members of my family:

My parents, who live abroad and kept their hearts with me.

My wife, Asia Ammar, for her support and patience with me throughout my PhD.

My children, Aram, Assal, Aayat and Muhammed as I spent most of my time on research

and not as much time with them as I would have liked.

xii

Never give up. Today is hard, tomorrow will be worse, but the day after tomorrow will be

sunshine.

Jack Ma

xiii

Acknowledgements

First, I would like to express my sincere gratitude to my advisor, Professor Sunil Vadera, for

the continuous support in my PhD study and related research, for his patience, motivation,

and immense knowledge. His guidance helped me in the research and writing of this thesis

and, I could not have imagined having a better advisor and mentor for my study.

Besides my advisor, I would like to thank Professor Tim Ritchings for his time and

encouraging words.

Last but not the least, I would like to thank my family, my parents and my brother and sisters

for supporting me throughout this project and my life in general.

xiv

Declaration

This dissertation is the result of my own work and includes nothing, which is the outcome

of work done in collaboration except where specifically indicated in the text. It has not been

previously submitted, in part or whole, to any university of institution for any degree,

diploma, or other qualification.

Signed: __

Date: ___

Salem Abdussalam Ameen and full qualifications

Salford

xv

List of Abbreviations and Acronyms

The following table describes the significance of various abbreviations and acronyms used

throughout the thesis.

Abbreviation Meaning

MAB Multi-Armed Bandit

ConvNets Convolution Neural Networks

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

OBD Optimal Brain Damage

OBS Optimal Brain Surgeon

WSLS Win–Stay, Lose–Shift

UCB Upper Confidence Bound

KL-UCB Kullback-Leibler Upper Confidence Bound

BayesUCB Bayesian Upper Confidence Bound

EXP3 Exponential weight algorithm for Exploration and Exploitation

MP-TS Multi play Thompson Sampling

MP-UCB1 Multi play UCB1

TS Thompson Sampling

NN Neural Networks

E Greedy Epsilon Greedy

SM Softmax

G. Prune Greedy Prune

xvi

Abstract
Deep learning has gained significant attention recently following their successful use for

applications such as computer vision, speech recognition, and natural language processing.

These deep learning models are based on very large neural networks, which can require a

significant amount of memory and hence limit the range of applications.

Hence, this study explores methods for pruning deep learning models as a way of reducing

their size, and computational time, but without sacrificing their accuracy.

A literature review was carried out, revealing existing approaches for pruning, their

strengths, and weaknesses. A key issue emerging from this review is that there is a trade-off

between removing a weight or neuron and the potential reduction in accuracy. Thus, this

study develops new algorithms for pruning that utilize a framework, known as a multi-armed

bandit, which has been successfully applied in applications where there is a need to learn

which option to select given the outcome of trials. There are several different multi-arm

bandit methods, and these have been used to develop new algorithms including those based

on the following types of multi-arm bandits: (i) Epsilon-Greedy (ii) Upper Confidence

Bounds (UCB) (iii) Thompson Sampling and (iv) Exponential Weight Algorithm for

Exploration and Exploitation (EXP3).

The algorithms were implemented in Python and a comprehensive empirical evaluation of

their performance was carried out in comparison to both the original neural network models

and existing algorithms for pruning. The existing methods that are compared include:

Random Pruning, Greedy Pruning, Optimal Brain Damage (OBD) and Optimal Brain

Surgeon (OBS). The thesis also includes an empirical comparison with a number of other

learning methods such as KNN, decision trees, SVM, Naïve Bayes, LDA, QDA, logistic

regression, Gaussian process classifier, kernel ridge regression, LASSO regression, linear

regression, Bayesian Ridge regression, boosting, bagging and random forests. The results on

the data sets show that some of the new methods (i) generalize better than the original model

and most of the other methods such as KNN and decision trees (ii) outperform OBS and

OBD in terms of reduction in size, generalization, and computational time (iii) outperform

the greedy algorithm in terms of accuracy.

Chapter 1: Introduction

1

Back propagation neural networks have a long history, dating back to the 1980s [1]. These

neural networks consist of a network of connected neurons typically organized in layers.

Layers are made up of many interconnected neurons which have a nonlinearity function

known as an activation. Patterns or examples are presented to the network via the first layer

which is known as the input layer, which communicates to one or more middle layer(s)

known as the hidden layers where the actual processing is done via a system of weighted

connections. The hidden layers then link to the last layer known as an output layer. The

decades since their first development has seen many applications [2] of neural networks

including in finance [3], a complete check reading system [4], in medical diagnosis [5-8],

and in engineering[9-11]. More recently, there has been significant interest in using deep

neural networks [12-18]. These deep neural networks consist of a sequence of feature

recognition maps, building one layer on top the previous layer and where each layer aims to

provide an abstraction of the previous layer, with the final layer performing classification

[19]. For example, to recognize objects in images, the first layer aims to learn to recognize

edges, the second layer combines edges to form motifs, the third learns to combine motifs

into parts, and the final layer learns to recognize objects from the parts identified in the

previous layer [20].

1. Introduction

1.1. Motivation

Chapter 1: Introduction

2

Interest in these deep networks grew as a result of their success in the ImageNet Large Scale

Visual Recognition Competition (ILSVRC) 1 [21]. In 2012, Krizhevsky et al. [22]

demonstrated significant performance improvements over the state of the art in the ImageNet

benchmark challenge [21] with their deep network system AlexNet [22]. This has been

followed by further advances with deep neural networks such as VGGNet [23], GoogLeNet

[24], ResNet [25] and DenseNet [26].

These deep learning networks can become very large; for example, AlexNet has 8 layers and

ResNet has 152 layers. Hence this thesis focuses on pruning their size. There are four aspects

that motivate the need to prune deep neural networks:

• The first aspect is based on the view that neural networks should aim to mimic the

brain to solve problems where each neuron relates to many others. If one accepts this

view, which is expressed in most texts on the subject (E.g., Gurney [27]), then it is

worth noting how the brain is believed to develop. The number of synapses are very

large immediately after the human birth and this number increases sharply after a

year from birth. Then, this number is pruned and stabilizes to 500 Trillion at the age

of ten [28]. Hence if deep learning is to follow similar steps, they should adopt a

pruning step to remove redundant and unimportant weights after developing the large

networks [29].

• The second aspect involves using deep neural networks in embedded systems [30].

Currently, most applications of deep learning, such as image detection, natural

language processing and speech recognition run on the cloud [31-33]. Running deep

neural networks on mobile platforms is difficult at present given the size of the

models [31-33].

• The third aspect is that reducing the size of models can speed up the prediction

process [34]. This will be especially important for real time applications that use deep

learning models [34, 35].

• The fourth aspect to note is that increasing the number of parameters (weights, biases,

and neurons) does not necessarily grow the robustness or richness of the learned

approximation, but might increase overfitting the data [36].

1 http://www.image-net.org/challenges/LSVRC/2014/

Chapter 1: Introduction

3

The primary solution pursued to address the above issues is based on Occam’s razor [37]:

 “Assume that an occurrence may have two explanations. Out of these, the simpler

would generally be the better one”.

The problem addressed in this thesis is how best to do this in a way that reduces the size of

the network but does not sacrifice performance.

Research on neural networks dates to the middle of the 20th century[38] while back

propagation neural networks dates to the 1980s [1], and has thrived for many years, so not

surprisingly, several techniques have already been developed for pruning neural networks;

however, these techniques can be inefficient and very time consuming [39]. In this thesis,

the goal is to study and develop algorithms for pruning deep neural networks more

efficiently, leading to the following broad questions that need to be addressed:

1. How well do existing algorithms for pruning neural networks perform?

2. Can multi-armed bandit (MAB) best algorithms be developed for pruning and which

methods work best?

3. How does the performance of the MAB based pruning methods compare with other

methods?

Having identified the broad questions, the initial phases of research involved surveying the

literature on deep learning, understanding existing methods and gaining practical experience

with some applications. Practical experience was gained by using various development tools,

such as the Torch scientific computing framework [40] to develop a deep network for

American Sign Language. This initial work developed a convolutional neural network

(ConvNets) aimed at classifying fingerspelling images using both image intensity and depth

data. The developed convolutional network was evaluated by applying it to the problem of

finger spelling recognition for American Sign Language. This initial work, in itself,

produced better results than other published work and led to a journal publication [17]. It

also led to a good understanding of deep learning architectures and a key observation that:

1.2. Research Problem

1.3. Aim and Objectives

Chapter 1: Introduction

4

pruning deep neural networks involves a trade-off between accuracy and the number of the

parameters pruned. That is, as we prune more and more neurons, feature maps or weights,

the accuracy may reduce to a point where the network is not useful.

One of the most successful methods for decision making with trade-offs is known as multi-

armed bandits [41-56]. Multi-armed bandits provide a framework for studying the

exploitation versus exploration dilemma. The scenario for multi-armed bandits involves

modelling a gambler who faces a collection of slot machines and needs to select the sequence

of machines to be played in order to maximize the rewards. The gambler pulls the arm of a

selected machine and receives a reward or not. The goal of the gambler is to maximize the

total rewards obtained during a period of playing time. A player needs to choose between an

arm that gives the best reward so far (exploitation) or discovering some other arms hoping

to find a better arm (exploration).

The aim of this study is to explore if multi-armed bandit algorithms can be used to decide

which neurons, feature maps or weights can be removed and lead to efficient neural network

models. Given this aim, the research objectives are:

1. To survey and review existing methods for pruning neural networks.

2. To research different multi-armed bandit algorithms that can be adopted for pruning

deep neural networks.

3. To utilize multi-armed bandits to develop new methods for pruning deep learning

models.

4. To carry out an empirical evaluation of the new multi-armed bandits pruning

methods with respect to existing approaches for pruning.

Kothari [57] categorises the different types of research based on whether is it descriptive or

analytical, applied or fundamental, quantitative or qualitative and conceptual or

experimental. These are summarized below based on the exposition in Kothari [57].

1.4. Research Methodology

Chapter 1: Introduction

5

Descriptive Research vs. Analytical Research

In descriptive research, the researcher often conducts surveys and enquiries of different kinds

for the collection of data. Descriptive research is mainly employed when existing issues need

to be addressed or described. This approach finds its application in the fields of social

sciences and business and management studies. This method can be differentiated from other

methods on the basis that the researcher cannot control the variables; as they are only

responsible for reporting events of the past or present. The research projects that undertake

this approach are used for the researcher to analyse the existing factors like how frequently

a population changes their wardrobe, what brands people prefer, which show has the most

viewers etc. All types of survey methods can be classified as descriptive research, including

comparative and correlation techniques. However, analytical research is completely

different from the former as the researcher has to critically evaluate the material through

analysis of given data.

Applied Research vs. Fundamental Research

Research can also be classified as either applied research or fundamental research. In the

former, the researcher aims to resolve an immediate problem faced by society or an

organization. While, in fundamental or pure research the researcher is dedicated to

formulating a theory. Fundamental research is often described as conducting a study with

the sole purpose of obtaining knowledge. To give a few examples: research in which human

behaviour is studied and related generalizations are made can be classified as fundamental

research. Applied research is effective in resolving practical problems at hand; whereas,

fundamental research works to formulate theories that will be used as a basis for further

studies and have applications at present as well as for the future, and contribute to the body

of scientific knowledge.

Quantitative vs. Qualitative 

Quantitative research is used for studies that require quantitative analysis to produce the

results needed; whereas qualitative research is conducted to establish the existence and/or

rationale of a phenomenon. A researcher investigating the reasons for human behaviour,

must undertake qualitative research approach. Qualitative research finds its application most

commonly in the department of behavioural sciences where studies are done to study the

reasons behind human behaviour.

Chapter 1: Introduction

6

Conceptual vs. Experimental (or Empirical)

Conceptual research is based on abstract ideas or theories. It is most popular among

philosophers and thinkers for developing new concepts or for finding new interpretations of

those that already exist. In contrast, experimental research is purely based on experiments

and/or observations and not much regard is given to a system and theory. Experimental

research is a data-based research, where hypotheses are formulated to be verified by

observation or experiment. Data must be collected from its source directly in this type of

research and standard experimentation for the simulation of desired information must be

performed. The researcher is required to have a working hypothesis or guess as to the

probable results for initiating this type of research. Their next responsibility is to gather data

in favour of or against their hypothesis. Then comes the experimental designs stage, where

the materials or subjects are manipulated to obtain the desired information that would prove

or disprove the hypothesis. In this type of research, the experimenter has control over the

variables being studied and the deliberate manipulation of these variables gives us the

results. When a correlation between variables has to be established, empirical research must

be used. It is thought that experiments or empirical studies provide the strongest evidence to

prove or disprove a given hypothesis.

How to Approach Research?

The above summary suggests that two basic approaches to research exist: namely a

quantitative approach and a qualitative approach. In the quantitative approach, the data

generated can be analysed to obtain results. There are three sub-categories of the quantitative

approach: inferential, experimental and simulation approach. In the inferential approach, a

data base is developed, which is then used for determining the features or associations of a

population. A sample population is analysed by questioning or merely on the basis of

observation for the determination of its characteristics, and these characteristics are then

generalized. In the experimental approach, the research environment can be controlled and

certain variables can be manipulated to study their relation with other variables, which

differentiates it from other types of research. In the simulation approach, an artificial

environment is created for fostering relevant information and data to help predict results on

the basis of an existing study, which allows the observer to study dynamic behaviour of a

system under controlled conditions. The initial conditions, parameters, and exogenous

variables, are used to run a simulation study for observing the behaviour of the process over

time. Another application of the simulation approach is found in developing models for

Chapter 1: Introduction

7

predicting results under different conditions. In the qualitative approach the attitudes,

opinions and behaviours are analysed subjectively.

In the field of machine learning, where this thesis sits, researchers have mainly utilized

experimental and theoretical (fundamental) methods; quantitative approach; and analytical

research. Most studies involving algorithm development [58] involve an empirical

comparison with respect to other algorithms and utilize an experimental methodology, hence

in this study also utilizes this approach. The main steps of this approach are:

1. Carrying out an in-depth literature review on the present methods and techniques to

overcome the problem.

2. Design and implement a solution in mind of the problems, which involves devising novel

pruning methods that have the ability to prune deep neural networks

3. Empirical evaluation: This involves carrying out many experiments to test the proposed

methods.

4. Results analysis: Involves analysing and contrasting the results with similar works in the

same domain. A conclusion is established from the findings. The key objective of the

developed methods is achieved, with the results seen to outperform the existing works

in the same field.

To achieve the desired research goal, namely to develop new algorithms for pruning using

MABs that perform well, the following steps are used:

Dataset collection: Most of the modelling approaches in supervised learning fall under the

category of data-driven techniques, in which a model learns from human annotation data. It

is therefore important to highlight the public available data sets such as the data set from

UCI Machine Learning Repository and other different recourses.

Data preparation: For the purposes of this dissertation, the dataset is assumed to be made

up of a set of pairs (x, y), where x is an input example and y is a label. The dataset was

subsequently divided into three folds, usually a training, validation and test fold (usual

percentages could be 60%, 20%, and 20% respectively). However, if the datasets were small

then cross validation was used.

Data pre-processing: The convergence of neural networks can be improved by pre-

processing the data. For example, standardizing the data (taking off the mean and dividing

by the standard deviation individually for every input dimension of x) or subtracting the

Chapter 1: Introduction

8

mean is amongst the common pre-processing techniques. Besides using the fixed statistics

to process the validation and test data, estimating these statistics on the training data is an

important activity, as this appropriately simulates the deployment of the final system into a

real-world application

Architecture design: For the small data sets, forward neural networks were used to build

the model. Image data sets were mostly used for convolutional neural networks and temporal

data sets were used with recurrent neural networks.

Optimization: The neural networks were trained and evaluated on a validation dataset.

During the training, we monitor the training and validation error. Then the model with the

best validation and training error was chosen.

Pruning the model: Once the model was trained then we pruned the model based on the

proposed methods and other pruning methods. A preliminary review of the existing work on

pruning methods, revealed the following types of methods which were used for comparison:

• Direct methods.

• Regularization and pruning based on magnitude.

• Activation methods.

• First and second order derivative pruning.

Evaluation: The pruned models were evaluated one time on the test set and the accuracy is

reported and compared to other pruning techniques. Non-parametric statistical methods are

used to validate differences in performance between the various algorithms.

Figure 1.1 presents the structure of the thesis.

1.5. Thesis Organization

Chapter 1: Introduction

9

Figure 1.1: Overview of the Thesis Structure.

The following summarizes each chapter of the thesis:

Chapter 2. Deep Learning Background: This chapter describes the background and state-

of-the-art deep learning models.

Chapter 3. Literature Review: This chapter begins with a brief introduction to the problem

of reducing the number of parameters in deep neural networks. After a brief history,

details of different kinds of pruning techniques that are identified in the literature

survey are reviewed and their strengths and weaknesses presented.

Chapter 4. Multi-Armed Bandits: The literature includes several multi-armed bandit

algorithms, each with different characteristics. Chapter 4 introduces the algorithms

that are utilized to design and develop the new algorithms for pruning.

Chapter 5. Multi-Armed Bandits for Pruning the Weights: The multi-armed bandits

described in Chapter 4 can be utilized either to develop algorithms for pruning

neurons, feature maps or weights of a neural network. Chapter 5 describes the use of

Chapter 1
Introduction

Chapter 2
Deep Learning Background

Chapter 3
Literature Review

Chapter 4
Multi Armed Bandit (MAB)

Epsilon greedy, Softmax, Win-stay; Lose Shift (WSLS), UCB1,
KL-UCB, BayesUCB, Thompson Sampling, Hedge, EXP3 MP-TS,

MP-UCB1

Chapter 5
MAB pruning the weights using
Epsilon greedy, WSLS, UCB1, KL-
UCB, BayesUCB and Thompson

sampling

Chapter 6
MAB pruning the neurons using
Epsilon greedy, softmax, UCB1,
Thompson sampling, Hedge and

EXP3

Chapter 7
MAB pruning the feature maps in

ConvNets using
UCB1 and Thompson sampling

Chapter 8
MAB pruning multiple neurons at

the same time using MP-UCB1
and MP-TS

Chapter 9
Conclusion and Future works

Chapter 1: Introduction

10

MAB methods for pruning the weights. In addition, the chapter presents

implementation of MAB pruning algorithms. The implementation is used to evaluate

the performance of the MAB pruning algorithms in comparison to each other as well

as with existing algorithms.

Chapter 6. Multi-Armed Bandit Algorithms for Pruning the Neurons: This chapter

presents the MAB algorithms for pruning neurons and presents the results from

comparing the results with state of the art pruning methods.

Chapter 7. Multi-Armed Bandit Algorithms for Pruning Feature Maps: Chapter 7 presents

pruning algorithms based on two MAB methods, known as UCB1 and Thompson

Sampling, for pruning feature maps and their filter of convolutional layers in

ConvNets. The chapter presents the results of pruning the feature maps from

ConvNets and comparing the results with the well-known pruning algorithms.

Chapter 8. Multi Armed Bandit Algorithms for Pruning Multiple Neurons and Feature

Maps: The previous chapters discussed the use of MAB algorithms for pruning

individual weights, neurons or feature maps. This chapter studies the ability of

multiple play Thompson Sampling and UCB1 to prune multiple neurons and feature

maps at the same time.

Chapter 9. Conclusion and future work: This chapter draws the conclusion and suggests

some future work.

Chapter 2: Deep Learning Background

11

This chapter presents the background and technical details of different types of neural

networks. First, we will begin with a conceptual overview of supervised learning which

includes the objective (loss) function and regularization methods. Then, the chapter gives an

introduction to optimization and back propagation. Finally, the chapter gives an introduction

to feed forward neural networks, convolutional neural networks, and recurrent neural

networks. The book by Goodfellow et al. [59] is recommended for a comprehensive and

slower-paced overview. In addition, Karpathy [60], Bishop [61] and Abu-Mostafa et al. [62]

are the main source for this chapter.

In artificial intelligent, computer programs can be used to map a function f between two

spaces for example 𝑓𝑓: X → Y, where X is called an input space and Y is known an output space.

For instance, in visual recognition, the space of images can be represented as the input X and

the interval [0, 1] represents the Y through which the possibility of an object (like a dog)

emerging somewhere in the image is indicated. As another example, in opinion mining, X

could be the sentence and Y could be the opinion of the sentence, such as liked, neutral or

disliked. Traditionally, specifying or programming the function f explicitly can be difficult

for tasks such as image recognition, natural language processing and automatic speech

recognition. Supervised learning offers an alternative in which examples (𝑥𝑥, 𝑦𝑦) ∈ 𝑋𝑋×𝑌𝑌 of

the desired mapping are used to learn the mapping. For our examples, this suggests collecting

a data set of images, wherein each may be marked with the absence or presence of a dog, as

the same is interpreted by human beings or collecting a data set of sentences from social

2. Deep Learning Background

2.1. Supervised Learning

Chapter 2: Deep Learning Background

12

media and where each sentence is labelled by carrying either positive or negative meaning

[60].

More formally, a data set of n examples is given by {(𝑥𝑥1, 𝑦𝑦1), … , (𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛)} , where the

independent and identically distributed (i.i.d.) samples are utilized to produce these

examples from a data generating distribution 𝐷𝐷; 𝑖𝑖. 𝑒𝑒. (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)~𝐷𝐷 for all i [60, 62].

Subsequently, we think about learning the mapping 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌 by looking for a set of

candidate functions, where we attempt to identify the one, which is properly in line with the

training examples.

In particular, a class of functions F is taken into account. Then, to measure the disagreement

between a true label 𝑦𝑦𝑖𝑖 and a predicted label 𝑦𝑦�𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖) for some 𝑓𝑓 ∈ 𝐹𝐹, a scalar-valued loss

function 𝐿𝐿(𝑦𝑦�𝑖𝑖, 𝑦𝑦) is chosen. Finding out 𝑓𝑓∗ ∈ 𝐹𝐹 that minimizes the expected loss is the goal

in learning and formally stated as [62]:

𝑓𝑓∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓∈𝐹𝐹

𝐸𝐸(𝑥𝑥,𝑦𝑦)~𝐷𝐷𝐿𝐿(𝑓𝑓(𝑥𝑥), 𝑦𝑦) (2.1)

Where argmin is argument of the minimum which the value of f for which the expected loss

attains it is minimum. 𝐸𝐸(𝑥𝑥,𝑦𝑦)~𝐷𝐷 is the expected loss over the data generating distribution D.~

means the input data is sampled (generated) from the D. Since all the possible elements of

D are not accessible, the optimization in Equation 2.1 is intractable. Hence, the possibility

cannot be evaluated or without making idealistically strong assumptions about the form of

L, D, or f, we cannot systematically streamline this process. Nonetheless, the expected loss

in Equation 2.1 can be estimated with the aid of sampling and can be determined by

averaging the loss over the available training data [60]:

𝑓𝑓∗ ≈ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓∈𝐹𝐹

1
𝑛𝑛

∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (2.2)

More specifically, the loss over the available training examples is optimized; however, this

is hopefully a good proxy for the actual objective mentioned in Equation 2.1.

2.1.1. The Goal of Supervised Learning

Chapter 2: Deep Learning Background

13

There can be problems where Equation 2.2 is optimized instead of Equation 2.1. For

example, suppose a function f where each 𝑥𝑥𝑖𝑖 in the training data is mapped to its

corresponding 𝑦𝑦𝑖𝑖 , however zero is returned everywhere else. We can present this as a

solution to Equation 2.2 (for any sensible loss function L, where a minimum value is attained

when 𝑦𝑦 = 𝑦𝑦�), but all other points in D that are not in the training set would receive a huge

loss. More specifically, this function would not be expected to be generalized to all

(𝑥𝑥, 𝑦𝑦)~𝐷𝐷. One approach to avoiding this is to introduce a regularization term R into the loss

function [60]:

𝑓𝑓∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓∈𝐹𝐹

1
𝑛𝑛

∑ 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖) + 𝜆𝜆
𝑛𝑛

𝑅𝑅(𝑓𝑓)𝑛𝑛
𝑖𝑖=1 (2.3)

Where 𝜆𝜆 is positive number and there are many types of regularization [63-67], and two that

have been widely used are the L2 and L1 norms:

L2 norm: 𝑅𝑅(𝑓𝑓) = 1
2

∑ 𝑓𝑓2
𝑓𝑓

Where L2 norm is known as weight decay and is the sum of the squares of all the weights in

the network

L1 norm: 𝑅𝑅(𝑓𝑓) = ∑ |𝑓𝑓|𝑓𝑓 .

L1 norm is the sum of the absolute values of the weights:

In the previous section, it was observed that the task of learning a model for a supervised

learning problem can be reduced to solving an optimization problem having the form 𝜃𝜃∗ =

𝑎𝑎𝑎𝑎𝑎𝑎 min
𝜃𝜃

𝑔𝑔(𝜃𝜃), where 𝜃𝜃 is a parameter vector and g normally amalgamates a regularization

penalty and the average loss of all examples. The following subsections present the most

widely used optimization techniques in neural networks [60].

2.1.2. Regularization

2.2. Optimization

Chapter 2: Deep Learning Background

14

By making additional assumptions about 𝑔𝑔 , the efficiency of the optimization can be

enhanced [60]. Specifically, if there is no other option to use except the differentiable

functions, a method known as back propagation (its details will be discussed in the next

section) would be employed to compute the gradient 𝛻𝛻𝜃𝜃𝑔𝑔. A vector of partial derivatives is

referred to as the gradient, which offers the slope of 𝑔𝑔 along every dimension of 𝜃𝜃.

The gradient can be applied as a search direction. We can specifically improve 𝜃𝜃 (in the

sense of attaining lower 𝑔𝑔), by adding a small amount of the negative gradient. In general,

the Gradient Descent (GD) [68, 69] algorithm iterates between the following two steps:

1. The gradient is evaluated.

2. A small step is made in the direction of the negative gradient, the parameters are

updated.

In general, the step size 𝜆𝜆 (also called the learning rate) is a critical parameter in Gradient

Descent (GD). The optimization may not converge or even diverge, if the learning rate is too

high. Moreover, the learning would become a lengthy process, if it is specified very low

[60].

There are three kinds of GD based on how many samples we use to compute the gradient of

the loss function [60].

Batch Gradient Descent: Batch GD computes the gradient of the loss function with respect

the model’s parameters 𝜃𝜃. The following steps summarise the batch GD algorithm [68, 69]:

• Estimate the gradient ∇𝜃𝜃𝑔𝑔(𝜃𝜃) with back propagation over all training data set n

∇𝜃𝜃𝑔𝑔(𝜃𝜃) ≈ ∇𝜃𝜃 �1
𝑛𝑛

∑ 𝐿𝐿(𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖) + 𝑅𝑅(𝑓𝑓𝜃𝜃)𝑛𝑛
𝑖𝑖=1 �

• Compute the direction 𝛿𝛿𝛿𝛿 = 𝜆𝜆∇𝜃𝜃𝑔𝑔(𝜃𝜃) where 𝜆𝜆 ∈ 𝑅𝑅+ (positive real number) is

learning rate or step size

• Perform a parameter update 𝜃𝜃𝑖𝑖+1 = 𝜃𝜃𝑖𝑖 − 𝛿𝛿𝜃𝜃𝑖𝑖

One problem with batch GD occurs when there is a huge training data set (e.g. there are over

1 million training images in ImageNet). Then, these training data sets cannot fit into the

memory during the learning.

2.2.1. Gradient Descent

Chapter 2: Deep Learning Background

15

Stochastic Gradient Descent (SGD): Instead of computing ∇𝜃𝜃𝑔𝑔(𝜃𝜃) ≈

∇𝜃𝜃 �1
𝑛𝑛

∑ 𝐿𝐿(𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖) + 𝑅𝑅(𝑓𝑓𝜃𝜃)𝑛𝑛
𝑖𝑖=1 � over all the training data set, SGD [28] computes over one

single example in the training data set and is faster than batch GD. One problem with this

technique is that SGD performs frequent updates with a high variance that cause the loss

function to fluctuate heavily as shown in Figure 2.1.

Lo
ss

 F
un

ct
io

n

 Number of epochs

Figure 2.1: SGD fluctuation 2.

Mini-Batch Gradient Descent: In this method, the gradient is estimated through a small

mini-batch of examples (e.g. around 200) at a time. As a result, we are enabled to perform a

number of approximate updates rather than fewer exact updates. It is an approach, which has

excellent functionality / working in most practical applications [70].

2 https://upload.wikimedia.org/wikipedia/commons/f/f3/Stogra.png

Chapter 2: Deep Learning Background

16

The computation of the update direction (Step 2 in GD) can be adjusted and modified to

improve the rate of convergence. For example, a method, known as momentum [71], utilizes

a proportion of the previous gradients to help maintain a consistent direction thereby often

increasing the rate of convergence. The update Δ𝜃𝜃 is initially computed by updating an

intermediate variable 𝑣𝑣𝑖𝑖+1 = 𝛾𝛾𝑣𝑣𝑖𝑖 + 𝜆𝜆 ∇𝜃𝜃𝑔𝑔(𝜃𝜃) (initialized at zero). It is worth indicating that

an exponentially-decaying sum of previous gradient directions is encompassed in the

variable v. The following steps are the GD with momentum:

• Sample a minibatch of m examples from the training data set

• Estimate the gradient ∇𝜃𝜃𝑔𝑔(𝜃𝜃) with back propagation over m sampling of training

data set n ∇𝜃𝜃𝑔𝑔(𝜃𝜃) ≈ ∇𝜃𝜃 � 1
𝑚𝑚

∑ 𝐿𝐿(𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖) + 𝑅𝑅(𝑓𝑓𝜃𝜃)𝑚𝑚
𝑖𝑖=1 �

• Compute the update direction 𝛿𝛿𝛿𝛿 = 𝑣𝑣 where 𝑣𝑣𝑖𝑖+1 = 𝛾𝛾𝑣𝑣𝑖𝑖 + 𝜆𝜆 ∇𝜃𝜃𝑔𝑔(𝜃𝜃) and 𝛾𝛾 ∈ 𝑅𝑅

(real number and practically set to 0.9) and is called momentum.

• Perform a parameter update 𝜃𝜃𝑖𝑖+1 = 𝜃𝜃𝑖𝑖 − 𝛿𝛿𝜃𝜃𝑖𝑖

Figure 2.2 shows the difference between GD with and without momentum. Figure 2.2(a)

shows the problem of GD which is that GD oscillates across the slopes of the ravine [72],

while Figure 2.2(b) shows how momentum helps accelerate GD in the relevant direction.

(a) GD without momentum (b) GD with momentum

Figure 2.2: The effect of adding momentum to GD3.

3 http://ruder.io/optimizing-gradient-descent/index.html#fn:1

2.2.2. Gradient Descent with Momentum

Chapter 2: Deep Learning Background

17

Adagrad [73] adapts the learning to the parameters. Adagrad uses the estimate of the first

moment of the gradient (the mean). For instance, an intermediate variable r is used by

Adagrad update [73], where 𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 + ∇𝜃𝜃𝑔𝑔(𝜃𝜃)⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) of sum of squared gradients (⨀

is element wise multiplication). Subsequently, the update is modulated by the second

moment (the uncentered variance) like this: 𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑟𝑟

⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) , where 𝛿𝛿 is a small

number (e.g. 1𝑒𝑒−5), stopping division by zero [60]. The steps for Adagrad can be

summarized as following [36]:

• Sample a minibatch of m examples from the training data set

• Estimate the gradient ∇𝜃𝜃𝑔𝑔(𝜃𝜃) with back propagation over m sampling of training

data set n ∇𝜃𝜃𝑔𝑔(𝜃𝜃) ≈ ∇𝜃𝜃 � 1
𝑚𝑚

∑ 𝐿𝐿(𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖) + 𝑅𝑅(𝑓𝑓𝜃𝜃)𝑚𝑚
𝑖𝑖=1 �

• Compute the update direction 𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑟𝑟

⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) where 𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 +

∇𝜃𝜃𝑔𝑔(𝜃𝜃)⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃).

• Perform a parameter update 𝜃𝜃𝑖𝑖+1 = 𝜃𝜃𝑖𝑖 − 𝛿𝛿𝜃𝜃𝑖𝑖

The main advantage of Adagrad is that it does not need to manually update the learning rate

throughout the training and in most practical implementations it is to 0.01 [74, 75]. The main

disadvantage of Adagrad is growth of the denominator because of accumulation of the

squared gradients r. This leads the learning rate to shrink over time [76].

A running mean of the second moment is used by the RMSProp update [77] here, 𝑟𝑟𝑖𝑖+1 =

ρri + (1 − ρ)∇𝜃𝜃𝑔𝑔(𝜃𝜃)⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃), where ρ is often set to 0.99. The following steps summarize

the RMSProp algorithm [36]:

• Sample a minibatch of m examples from the training data set

• Estimate the gradient ∇𝜃𝜃𝑔𝑔(𝜃𝜃) with back propagation over m sampling of training

data set n ∇𝜃𝜃𝑔𝑔(𝜃𝜃) ≈ ∇𝜃𝜃 � 1
𝑚𝑚

∑ 𝐿𝐿(𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖) + 𝑅𝑅(𝑓𝑓𝜃𝜃)𝑚𝑚
𝑖𝑖=1 �

2.2.3. Adagrad

2.2.4. RMSProp

Chapter 2: Deep Learning Background

18

• Compute the update direction 𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑟𝑟

⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) where 𝑟𝑟𝑖𝑖+1 = ρri + (1 −

ρ)∇𝜃𝜃𝑔𝑔(𝜃𝜃)⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃).

• Perform a parameter update 𝜃𝜃𝑖𝑖+1 = 𝜃𝜃𝑖𝑖 − 𝛿𝛿𝜃𝜃𝑖𝑖

Adam adapts the estimation of both the first and second moments [78] and it can be seen as

a mix of RMSProp with momentum. The first moment of the gradients 𝑚𝑚𝑔𝑔 (𝑚𝑚𝑔𝑔,𝑡𝑡is 𝑚𝑚𝑔𝑔 at

time t or the current time) is computed by 𝑚𝑚𝑔𝑔,𝑡𝑡+1 = 𝛽𝛽1𝑚𝑚𝑔𝑔,𝑡𝑡 + (1 − 𝛽𝛽1)∇𝜃𝜃𝑔𝑔(𝜃𝜃) and the

second moment of the gradients 𝑣𝑣𝑔𝑔 (𝑣𝑣𝑔𝑔,𝑡𝑡 𝑖𝑖𝑖𝑖 𝑣𝑣𝑔𝑔𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡) is computed by 𝑣𝑣𝑔𝑔,𝑡𝑡+1 = 𝛽𝛽2𝑣𝑣𝑔𝑔,𝑡𝑡 +

(1 − 𝛽𝛽2)(∇𝜃𝜃𝑔𝑔(𝜃𝜃))2 where 𝛽𝛽1and 𝛽𝛽2 are close to one and practically are set to 0.9 and 0.999

respectively [78]. Subsequently, the update is modulated by these first and second moments

thus: 𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑣𝑣�

𝑚𝑚� , where 𝛿𝛿 is a small number (e.g. 1𝑒𝑒−5) where 𝑚𝑚� = 𝑚𝑚𝑔𝑔

1−𝛽𝛽1
 and 𝑣𝑣� = 𝑣𝑣𝑔𝑔

1−𝛽𝛽2
.

The following steps summarizes the Adam algorithm [37]:

• Sample a minibatch of m examples from the training data set

• Estimate the gradient ∇𝜃𝜃𝑔𝑔(𝜃𝜃) with back propagation over m sampling of training

data set n ∇𝜃𝜃𝑔𝑔(𝜃𝜃) ≈ ∇𝜃𝜃 � 1
𝑚𝑚

∑ 𝐿𝐿(𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖) + 𝑅𝑅(𝑓𝑓𝜃𝜃)𝑚𝑚
𝑖𝑖=1 �

• Compute the update direction 𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑣𝑣�

𝑚𝑚� , where 𝛿𝛿 is a small number (e.g. 1𝑒𝑒−8)

where 𝑚𝑚� = 𝑚𝑚𝑔𝑔

1−𝛽𝛽1
 and 𝑣𝑣� = 𝑣𝑣𝑔𝑔

1−𝛽𝛽2

• Perform a parameter update 𝜃𝜃𝑖𝑖+1 = 𝜃𝜃𝑖𝑖 − 𝛿𝛿𝜃𝜃𝑖𝑖

The previous section shows that if the gradient of the loss function can be estimated, then

GD can be used to reduce it. Back propagation [1, 79-81] is a process where gradients of

scalar valued functions are efficiently computed based on their inputs. From calculus, a

recursive application of the chain rule is none other than the back propagation algorithm.

Remember that 𝑔𝑔 is the main function to calculate the gradients. This function takes the

parameters θ and the data set of examples (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) as input.

2.2.5. Adam

2.3. Back Propagation

Chapter 2: Deep Learning Background

19

To understand back propagation, we assume there is an input vector 𝑥𝑥0, which is converted

through a series of functions 𝑥𝑥𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖−1) where i =1,...,k and the last 𝑥𝑥𝑘𝑘 is a scalar. Then

the following steps summarize the back propagation algorithm [60]:

• Compute forward propagation given the input 𝑥𝑥0. So 𝑥𝑥1 = 𝑓𝑓1(𝑥𝑥0), …, 𝑥𝑥𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖−1),

…, 𝑥𝑥𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘−1) where 𝑓𝑓𝑖𝑖 are activation functions.

• Using the chain rule, compute the gradient 𝜕𝜕𝑥𝑥𝑘𝑘
𝜕𝜕𝑥𝑥0

 that will include computing the

gradient of all intermediate transformations. These gradients are known as a Jacobian

matrix and each transform is given by 𝜕𝜕𝑥𝑥𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖−1⁄ .

• Then, the final gradient is given by 𝜕𝜕𝑥𝑥𝑘𝑘
𝜕𝜕𝑥𝑥0

= ∏ 𝜕𝜕𝑥𝑥𝑖𝑖 𝜕𝜕𝑥𝑥𝑖𝑖−1⁄𝑘𝑘
𝑖𝑖=1 . This matrix product of

all the Jacobians is used by the GD algorithm as an estimate of the gradient ∇𝜃𝜃𝑔𝑔(𝜃𝜃).

Example: To understand back propagation and GD, consider this example: Assume we have

a data set that contains two features 𝑥𝑥0 and 𝑥𝑥1 and one output 𝑦𝑦 as described in the Table

2-1.

X0 X1 y
0 1 1
2 1 4
1 0 2
1 1 1

Table 2-1: Example of a small data set where X0 and X1 are features and y is the output.

Consider the graph in Figure 2.3 (a) which consists of three nodes, two of these nodes

connect to two external inputs and one node connects to the output. Each connection has an

edge as shown in Figure 2.3 where Figure 2.3 (b) represent the operations of the graph where

nodes represent the operations.

Chapter 2: Deep Learning Background

20

x0

x1

Mul(*)

Mul(*)

Add(+)

11 −=w

10 =w
12 =w

23 =w

x0

Mul(*)

Mul(*)

Add(+) Output f

11 −=w

10 =w

12 =w

23 =w

x1

Mul(*)

Mul(*)

(a) Graph with 3 nodes, external inputs, and outputs (b) The graph unfolded to explain the operation

Figure 2.3: Example of graph of multiple nodes.

The following steps represent the GD and back propagation in Figure 2.3:

The first step: For simplicity, we will use SGD which applies GD with one example from

the training data set that is shown in Table 2-1.

The second step: Compute forward propagation as following:

𝑓𝑓1 = 𝑥𝑥0𝑤𝑤0,
𝛿𝛿𝛿𝛿1

𝑑𝑑𝑑𝑑0
= 𝑤𝑤0,

𝛿𝛿𝛿𝛿1

𝛿𝛿𝛿𝛿0
= 𝑥𝑥0

𝑓𝑓2 = 𝑥𝑥1𝑤𝑤1,
𝛿𝛿𝛿𝛿2

𝑑𝑑𝑑𝑑1
= 𝑤𝑤0,

𝛿𝛿𝛿𝛿2

𝛿𝛿𝛿𝛿1
= 𝑥𝑥1

𝑓𝑓3 = 𝑓𝑓1𝑤𝑤2,
𝛿𝛿𝛿𝛿3

𝛿𝛿𝛿𝛿1
= 𝑤𝑤2,

𝛿𝛿𝛿𝛿3

𝛿𝛿𝛿𝛿2
= 𝑓𝑓1

𝑓𝑓4 = 𝑓𝑓2𝑤𝑤3,
𝛿𝛿𝛿𝛿4

𝛿𝛿𝛿𝛿2
= 𝑤𝑤3,

𝛿𝛿𝛿𝛿4

𝛿𝛿𝛿𝛿3
= 𝑓𝑓2

𝑓𝑓 = 𝑓𝑓3 + 𝑓𝑓4,
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿3

= 1,
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿4

= 1

Given the third example in the data set and after substituting the values from Table 2-1 and

Figure 2.3 we get the following:

𝑓𝑓1 = 1×1 = 1

𝑓𝑓2 = 1×−1 = −1

𝑓𝑓3 = 1×1 = 1

𝑓𝑓4 = −1×2 = −2

𝑓𝑓 = 1 + (−2) = −1

Computing the least square error loss function (without regularization for purpose of

illustration):

Chapter 2: Deep Learning Background

21

𝐿𝐿 =
1
2

(𝑦𝑦 − 𝑓𝑓)2 =
1
2

(1 − (−1))2 = 2

Computing the Jacobian matrix using chain role gives:

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

= −2

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿4

=
𝛿𝛿𝛿𝛿
𝛿𝛿𝑓𝑓

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿4

= −2 ∗ 1 = −2

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿3

=
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿3

= −2 ∗ 1 = −2

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿1

=
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿3

𝛿𝛿𝛿𝛿3

𝛿𝛿𝛿𝛿1
= −2 ∗ 1 = −2

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿2

=
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿3

𝛿𝛿𝛿𝛿3

𝛿𝛿𝛿𝛿2
= −2 ∗ 1 = −2

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿0

=
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿3

𝛿𝛿𝛿𝛿3

𝛿𝛿𝛿𝛿1

𝛿𝛿𝛿𝛿1

𝛿𝛿𝛿𝛿0
= −2 ∗ 1 ∗ 1 = −2

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿2

=
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿4

𝛿𝛿𝛿𝛿4

𝛿𝛿𝛿𝛿2
= −2 ∗ 2 = −4

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿3

=
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿4

𝛿𝛿𝛿𝛿4

𝛿𝛿𝛿𝛿3
= −2 ∗ (−1) = 2

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿1

=
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿4

𝛿𝛿𝛿𝛿4

𝛿𝛿𝛿𝛿2

𝛿𝛿𝛿𝛿2

𝛿𝛿𝛿𝛿1
= −2 ∗ 2 ∗ 1 = −4

In this example, we assume the parameters of the graph only Ws then ∇𝜃𝜃𝑔𝑔(𝜃𝜃) = ∇𝑤𝑤𝑔𝑔(𝑤𝑤):

∇𝜃𝜃𝑔𝑔(𝜃𝜃) = ∇𝑤𝑤𝑔𝑔(𝑤𝑤) =

⎣
⎢
⎢
⎢
⎡

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿0

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿1

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿2

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿3⎦

⎥
⎥
⎥
⎤

= �−2 −4
−2 2 �

The next step, after computing ∇𝜃𝜃𝑔𝑔(𝜃𝜃) using back propagation involves updating the

parameters. However, as described in Section 2.2, there are different GD algorithms and the

following presents how each one of them updates the parameters.

Updates using SGD

First, we will start with vanilla SGD. The third step of the algorithm is as following:

𝛿𝛿𝛿𝛿 = 𝜆𝜆∇𝜃𝜃𝑔𝑔(𝜃𝜃) where the learning rate 𝜆𝜆 = 0.1 then

𝛿𝛿𝑤𝑤𝑖𝑖+1 = 𝛿𝛿𝜃𝜃𝑖𝑖+1 = 𝜆𝜆∇𝑤𝑤,𝑖𝑖 𝑔𝑔(𝜃𝜃) = 0.1 ∗ �−2 −4
−2 2 � = �−0.2 −0.4

−0.2 0.2 �

The following is computing the update of the parameters

Chapter 2: Deep Learning Background

22

𝑤𝑤𝑖𝑖+1 = 𝜃𝜃𝑖𝑖+1 = 𝜃𝜃𝑖𝑖 − 𝛿𝛿𝜃𝜃𝑖𝑖 = 𝑤𝑤𝑖𝑖 − 𝛿𝛿𝑤𝑤𝑖𝑖 = �1 −1
1 2 � − �−0.2 −0.4

−0.2 0.2 � = �1.2 −0.6
1.2 1.8 �

GD with momentum at this iteration will give the same result as GD because of 𝑣𝑣𝑖𝑖+1 =

𝛾𝛾𝑣𝑣𝑖𝑖 + 𝜆𝜆 ∇𝜃𝜃𝑔𝑔(𝜃𝜃) and at the beginning 𝑣𝑣 = 0. Then the new 𝑣𝑣𝑖𝑖+1 = 𝛾𝛾𝑣𝑣𝑖𝑖 + 𝜆𝜆 ∇𝜃𝜃𝑔𝑔(𝜃𝜃) = 0 ∗

0.9 + 𝜆𝜆 ∇𝜃𝜃𝑔𝑔(𝜃𝜃) = 𝜆𝜆 ∇𝜃𝜃𝑔𝑔(𝜃𝜃) but after this iteration, 𝑣𝑣 will affect the update.

Updates using Adagrad

The following GD is Adagrad, we compute the update direction 𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑟𝑟

⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) where

𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 + ∇𝜃𝜃𝑔𝑔(𝜃𝜃)⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) and r initializes at 0 then

𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 + ∇𝜃𝜃𝑔𝑔(𝜃𝜃)⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) = 0 + �−2 −4
−2 2 � ⨀ �−2 −4

−2 2 � = �4 16
4 4 �

 Then

𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑟𝑟

⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) = 𝛿𝛿𝛿𝛿 = 0.1

0.00005+��4 16
4 4 �

⨀ �−2 −4
−2 2 � = �−0.025 −0.006

−0.025 0.025 �

Then, perform a parameter update

 𝜃𝜃𝑖𝑖+1 = 𝜃𝜃𝑖𝑖 − 𝜆𝜆
𝛿𝛿+√𝑟𝑟

⨀∇𝜃𝜃,𝑖𝑖𝑔𝑔(𝜃𝜃) = �1 −1
1 2 � − �−0.025 −0.006

−0.025 0.025 � = �1.025 −0.99
1.025 1.98 �

Updates using RMSProp

The next GD is RMSProp, we compute the update direction 𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑟𝑟

⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) where

𝑟𝑟𝑖𝑖+1 = ρ𝑟𝑟𝑖𝑖 + (1 − ρ)∇𝜃𝜃𝑔𝑔(𝜃𝜃)⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) and 𝑟𝑟𝑖𝑖 initializes at 0 then

𝑟𝑟𝑖𝑖+1 = ρri + (1 − ρ)∇𝜃𝜃𝑔𝑔(𝜃𝜃)⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) = 0.99 ∗ 0 + (1 − 0.99) ∗

�−2 −4
−2 2 � ⨀ �−2 −4

−2 2 � = �0.04 0.16
0.04 0.04� Then

𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑟𝑟

⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) = 0.1

0.00005+��0.04 0.16
0.04 0.04�

⨀ �−2 −4
−2 2 � = �−0.249 −0.063

−0.249 0.250 �

Then, perform a parameter update

 𝜃𝜃𝑖𝑖+1 = 𝜃𝜃𝑖𝑖 − 𝜆𝜆
𝛿𝛿+√𝑟𝑟

⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) = �1 −1
1 2 � − �−0.249 −0.063

−0.249 0.250 � = �1.25 −0.94
1.25 1.75 �

Chapter 2: Deep Learning Background

23

Updates using Adam

The last GD is Adam, we compute the update direction 𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑣𝑣�

𝑚𝑚� , where 𝛿𝛿 is a small

number where 𝑚𝑚� = 𝑚𝑚𝑔𝑔

1−𝛽𝛽1
 and 𝑣𝑣� = 𝑣𝑣𝑔𝑔

1−𝛽𝛽2
, 𝑚𝑚𝑔𝑔,𝑖𝑖+1 = 𝛽𝛽1𝑚𝑚𝑔𝑔,𝑖𝑖 + (1 − 𝛽𝛽1)∇𝜃𝜃𝑔𝑔(𝜃𝜃) and 𝑣𝑣𝑔𝑔,𝑖𝑖+1 =

𝛽𝛽2𝑣𝑣𝑔𝑔,𝑖𝑖 + (1 − 𝛽𝛽2)(∇𝜃𝜃𝑔𝑔(𝜃𝜃))2

𝑚𝑚𝑔𝑔,𝑖𝑖+1 = 𝛽𝛽1𝑚𝑚𝑔𝑔,𝑖𝑖 + (1 − 𝛽𝛽1)∇𝜃𝜃𝑔𝑔(𝜃𝜃) = 0.9 ∗ 0 + (1 − 0.9) �−2 −4
−2 2 � = �−0.2 −0.4

−0.2 0.2 �

𝑣𝑣𝑔𝑔,𝑖𝑖+1 = 𝛽𝛽2𝑣𝑣𝑔𝑔,𝑖𝑖 + (1 − 𝛽𝛽2)(∇𝜃𝜃𝑔𝑔(𝜃𝜃))2 = 0.999 ∗ 0 + (1 − 0.999)(�−2 −4
−2 2 �)2

= �0.004 0.016
0.004 0.004�

𝑚𝑚� =
�−0.2 −0.4
−0.2 0.2 �

1 − 0.9
= �−2 −4

−2 2 �

𝑣𝑣� =
�0.004 0.016
0.004 0.004�

1 − 0.999
= �4 0.16

4 0.0044�

Then, computing the update direction 𝛿𝛿𝛿𝛿 = 𝜆𝜆
𝛿𝛿+√𝑣𝑣�

𝑚𝑚�

𝛿𝛿𝛿𝛿 =
𝜆𝜆

𝛿𝛿 + √𝑣𝑣�
𝑚𝑚� =

0.1

0.00001 + ��4 0.16
4 0.0044�

�−2 −4
−2 2 � = �−0.025 −0.006

−0.025 0.025 �

Finally, perform a parameter update

 𝜃𝜃𝑖𝑖+1 = 𝜃𝜃𝑖𝑖 − 𝜆𝜆
𝛿𝛿+√𝑟𝑟

⨀∇𝜃𝜃𝑔𝑔(𝜃𝜃) = �1 −1
1 2 � − �−0.025 −0.006

−0.025 0.025 � = �1.025 −0.994
1.025 1.975 �

Finally, from the previous example, we can notice that SGD has less hyperparameters while

Adam has the most.

In the previous sections, it was observed that arbitrary differentiable functions f can be

defined, which map the inputs x to predicted outputs 𝑦𝑦�, and that a GD procedure can be used

to optimize a differentiable loss function. The function f, which has been left unspecified

until now, will now be discussed.

Figure 2.4 shows a neural network with one neuron. In this example, the neuron has three

inputs (𝑥𝑥1, 𝑥𝑥2and 𝑥𝑥3) and one output. Each neuron is connected by weights to the other

2.4. Neural Networks

Chapter 2: Deep Learning Background

24

neurons and these connections are called weights. The weight 𝑤𝑤𝑗𝑗𝑗𝑗
(𝑙𝑙) is the connection at layer

l and is connected between neuron j in the input and neuron i in the layer l. Each neuron has

an activation function which is denoted by f(x) notation.

Figure 2.4: Definition of a single neuron with inputs, activation function and outputs.

Such single neurons provide the building blocks for different architectures for neural

networks. There are several different types of neural networks, namely: feed forward

networks, which have been widely used for classification [82]; Convolutional networks

(ConvNets) [83] which have been utilized mainly for image processing tasks [22-25, 83-87]

and Recurrent networks that take account of previous states [88]. The following subsections

describe these in more detail. There are, of course many other types such as unsupervised

learning networks such as Kohonen networks [89], the Boltzmann machine networks [90],

deep belief networks [91], generative adversarial networks [92] and autoencoder networks

[93, 94] which are not the focus of this thesis. Readers interested in other types of networks

are therefore referred to [59].

A feed forward network consists of layers of neurons, with each layer is connected to the

following layer of neurons. Figure 2.5 presents an example of a feed forward network which

has an input layer with three neurons x1, x2, x3, a hidden layer with three neurons and a

single output.

x1

x2

x3

w)1(

21

w)1(

11

w)1(

31

2.4.1. Feed Forward Neural Networks

Chapter 2: Deep Learning Background

25

Figure 2.5: Artificial neural network with one hidden layer where W is the weight, b is the
bias and f is a non-linear function.

In this network, W1 is a matrix of the weights between the input and hidden layer, and W2 is

a matrix of weights between the hidden layer and the output neuron.

A 2-layer neural network like the one in this figure will have an output: 𝑓𝑓(𝑥𝑥) = 𝑊𝑊2𝑓𝑓(𝑊𝑊1𝑥𝑥),

Where 𝑓𝑓 is an element-wise non-linearity (e.g. sigmoid) and W1,W2 are matrices. A three-

layered network will have an output: 𝑓𝑓(𝑥𝑥) = 𝑊𝑊3𝑓𝑓(𝑊𝑊2𝑓𝑓(𝑊𝑊1𝑥𝑥)).

The entire neural network is shortened (in representational power) to a linear function, if the

non-linearity is an identity function. The sigmoid function 𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥 , tanh function

𝑓𝑓(𝑥𝑥) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑥𝑥) = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥 and the rectified linear neuron function (ReLU) 𝑓𝑓(𝑥𝑥) =

𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥) are thought to be the common settings for the non-linearity. In addition, Leaky

ReLU function [95] adds a small negative slope to ReLU function as follows: 𝑓𝑓(𝑥𝑥) =

� 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0
𝛼𝛼𝛼𝛼 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, where α is small constant and set to 0.01. Maxout networks function [96]

is another generalization of ReLU as given by max (𝑤𝑤1
𝑇𝑇𝑥𝑥 + 𝑏𝑏1, 𝑤𝑤2

𝑇𝑇𝑥𝑥 + 𝑏𝑏2) where it doubles

the number of weights in every neuron. It is worth indicating that the non-linearity is not

usually included in the last layer of the neural network. Moreover, a simple linear

transformation is none other than a 1-layer neural network.

x1

x2

x3

w)1(

21

w)1(

11

w)1(

31

),(bWf

w)2(

11

w)2(

12

w)2(

13

2.4.2. Convolutional Neural Networks

Chapter 2: Deep Learning Background

26

Utilizing fully connected networks of the type illustrated in Figure 2.5, for applications such

as face recognition and speech understanding, is computationally intractable given the large

number of parameters. Convolutional Neural Networks (CNNs, or ConvNets) [83] were

developed specifically for these types of applications, where the data has some spatial

topology (e.g. videos, images, character sequences in text, sound spectrograms in speech

processing or 3D voxel data). A ConvNet typically takes a multi-dimensional array (i.e. a

tensor) as input and produces a classification as an output [60]. For instance:

• In an image processing application, the input could be images represented by a

32×32×3 tensor4 (for 3 colour channels red, green, blue) or represented by 32×32×1

tensor (for 1 grey channel).

• In a speech recognition system, an array of size 1000 ×128 could be used for a sound

spectrogram, which depicts the amplitude of any one of 128 frequencies at any

interval/stage from t = 1 to t=1000.

Figure 2-1 gives an example of a ConvNets from Ameen & Vadera [17] which is described

below.

Figure 2.6: ConvNet model with two inputs (Intensity and Depth).

4 Tensor is a mathematical object that can be used to describe physical properties, just like scalars and vectors

Intensity

Depth

3x32x32

1x32x32

64x28x28 64x14x14 128x5x5128x10x10 3200x1x1 128x1x1

24

Inputs First Stage Second Stage Classifier

Convolution ConvolutionPooling

Pooling
Output

Fully connected

Chapter 2: Deep Learning Background

27

Convolutional Layer: The Convolutional Layer (or the CONV layer) is the core

computational building block of a Convolutional Neural Network, where an input tensor is

taken to deliver an output tensor. This is done through convolving the input with a set of

filters. In general, a convolutional layer is considered for images (i.e. assuming input tensors

with three spatial dimensions) as following [60]:

(a) The input is a tensor of size 𝑊𝑊1×𝐻𝐻1×𝐶𝐶1.

(b) It needs four hyper-parameters, which are: the number of filters5 𝐶𝐶𝑘𝑘, their spatial

extent K, the amount of zero padding on the borders of the input P, and the stride

with which they are applied S.

(c) An output volume of size 𝑊𝑊2×𝐻𝐻2×𝐶𝐶2is generated by the convolutional layer, where

𝑊𝑊2 = 𝑊𝑊1−𝐹𝐹+2𝑝𝑝
𝑠𝑠

+ 1 , 𝐻𝐻2 = 𝐻𝐻1−𝐹𝐹+2𝑝𝑝
𝑠𝑠

+ 1 , and 𝐶𝐶2 = 𝐶𝐶𝑘𝑘 (number of filters equal

number of output feature maps).

(d) Total number of weights is (𝐹𝐹 ∗ 𝐹𝐹 ∗ 𝐶𝐶1 ∗ 𝐶𝐶𝑘𝑘) and total number of biases is 𝐶𝐶𝑘𝑘 while

(𝐹𝐹 ∗ 𝐹𝐹 ∗ 𝐶𝐶1) represents the number of weights in each filter where there are 𝐶𝐶𝑘𝑘

filters.

Given below is the analysis of convolutional layer. The (pre-activation) output of one

neuron, which has connections to that particular chunk of the input array is represented by

the result of a dot product with one filter at one specific location. Moreover, a parameter

sharing scheme is introduced, where all the same weights are used by the neighbouring

neurons in one activation map, since each filter is slid over the input besides using the same

weights at every location. In each convolutional layer, there is a considerable decrease in the

number of parameters, through which overfitting is addressed.

For the example in Figure 2.6, 32 ×32×3 and 32×32×1 inputs are processed with a

convolutional layer with 64 filters having size 5×5×3 and 5×5×1 respectively (parameters

that we want to learn), and they employ a stride of 1 and padding of 0. In this case, the output

would be 28×28×64 in both sides, which represents the firing of all filters at all spatial

locations. To appreciate the difference between a convolution layer and a fully connected

layer, it is worth computing the number of parameters required for Figure 2-6. For the

convolution layer, there are 5*5*3*64 weights and 64 biases in top first convolution layer

and 5*5*1*64 weights and 64 biases in the bottom first convolution layer. Both, the top and

5 A filter and kernel are similar concepts, we therefore use them interchangeably throughout this thesis.

Chapter 2: Deep Learning Background

28

the bottom convolution layer, produce 25,088 outputs. On the other hand, if the same number

of neurons in the hidden layer joins this fully connected layer, we would be using 25088 ∗

(28 ∗ 28 ∗ 3 + 1) = 59,032,064 and 25088 ∗ (28 ∗ 28 ∗ 1 + 1) = 1,969,408

parameters (biases and weights) - a very huge number, and it is anticipated to deeply overfit

even if we assumed that the results could be computed or stored.

Pooling layers: Besides convolutional layers, use of pooling layers to control overfitting is

a common practice. Pooling reduces the size of the representation with a fixed down

sampling transformation Specifically, each channel (activation map or feature map) 6

independently operates the pooling layers and they are then down sampled in a spatial

manner. For example, 2×2 filters with a stride of 2 can be applied, where the max operation

(i.e. over 4 numbers) is computed by each filter. As an outcome, a factor of 2 is used to

downscale an input tensor in both width and height. In addition, a factor of 4 is used to reduce

the representation size by losing some spatial data [60]. In Figure 2.6, both convolutional

layers are pooled from 28×28×64 to 14×14×64 by using max pooling with stride 2.

ConvNet architectures: To conclude, the convolutional layers are stacked to build a

convolutional network. Moreover, pooling layers are used to reduce the computational

complexity of the architecture [60]. For the example in Figure 2.6, 64 filters (feature maps)

are used, each with a 5x5 receptive field7, no zero padding and a stride of one which leads

to 64 planes each of dimension 28x28. In the second stage, 128 filters with the same receptive

field and stride are used, leading to an array of 128x10x10. Each single number in this

dimension is squashed using a Tanh as an activation function. In the first stage, a pooling

operation is applied to reduce the impact of translations and reduce the number of weights

that would be needed. In this example, the 64 filters are pooled by a 2x2 receptive field with

a stride of 2, leading to 64 planes each of dimension 14x14. In the second stage, the 128

filters are pooled by a 2x2 receptive field with stride of 2, leading to 128x5x5 planes.

LeNet model: This is considered to be the first ConvNet [83]. The first layer is the input

layer with width 𝑊𝑊1 = 28 to make a size of 28x28. This is followed by a convolution layer,

6 A channel and feature map are similar concepts, we therefore use them interchangeably throughout this thesis.
7 The receptive field and filter size are similar concepts, we therefore use them interchangeably throughout this

thesis

Chapter 2: Deep Learning Background

29

which is a 5x5 receptive field (kernel with F=5) with no zero padding (P=0) and stride (S=1)

to give 𝑊𝑊2 = 𝑊𝑊1−𝐹𝐹+2∗𝑃𝑃
𝑆𝑆

+ 1 = 28−5+2∗0
1

+ 1 = 23 + 1 = 24 with 24x24 output and four

feature maps. It utilises 2x2 average pooling and a stride of 2 to reduce the size to 24−2
2

+

1 = 12.

Figure 2.7: LeNet Model [83].

AlexNet model: AlexNet [22] is the first successful framework in the ImageNet Large Scale

Visual Recognition Competition (ILSVRC)8 challenge. This is a modified version of the

LeNet model, which allows concatenation of two convolution layers followed with

nonlinearity without the need for pooling layers.

Figure 2.8: AlexNet Model [22].

8 http://www.image-net.org/challenges/LSVRC/2014/

Chapter 2: Deep Learning Background

30

Other Models: There are many other popular architectures in the field of ConvNets like

ZFNet [84], which was the winner of ImageNet competition 2013. Another one is

GoogLeNet [24], which was the winner in that same competition in 2014. In addition,

VGGNet [23] was the second ranked in the same competition in 2014 and they showed that

the deeper a model the better its performance. Finally, ResNet [25] was the winner in the

same competition in 2015.

Many applications have sequences of inputs. For instance, a sequence of words is often

displayed through sentences, where a one-hot vector (i.e. a vector of all zeros except for a

single 1 at the index of the word in a fixed vocabulary) is depicted by each word. A

connectivity pattern, which processes a sequence of vectors {𝑥𝑥1, … , 𝑥𝑥𝑇𝑇} using a recurrence

formula of the form ℎ𝑡𝑡 = 𝑓𝑓𝜃𝜃(ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡) is referred to as a recurrent neural network RNN [88],

where f is a function which will be explained later. Moreover, every time step uses the same

parameters θ, through which we are able to process sequences with an arbitrary number of

vectors [60].

As given in Figure 2.9, mathematically, RNN can be represented by ℎ𝑡𝑡 = f (𝑈𝑈𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑡𝑡−1)

where ℎ𝑡𝑡 is the hidden state at time step t, f is a function of the input 𝑥𝑥𝑡𝑡 weighted by the

weight matrix U with the hidden state of the previous time weighted by the weight matrix

and W. 𝑂𝑂𝑡𝑡 = 𝑓𝑓(𝑉𝑉ℎ𝑡𝑡) is the output state and weighted by matrix V while Y is the actual value.

Finally, L is the loss function, to compute the disagreement between Y and O.

Figure 2.9: RNN architecture.

Data

y x

h

o

L

W
V

U

2.4.3. Recurrent Networks

Chapter 2: Deep Learning Background

31

The main limitation of RNN is a problem known the vanishing and exploding gradient

problem which can occur during the training [97-99]. Where the vanishing gradient problem

occurs when the gradient tends to get smaller as we move backward through the hidden

layers. This means that neurons in the earlier layers learn much more slowly than neurons in

later layers. While the exploding gradient problem occurs when the gradient gets much larger

in earlier layers.

Long Short-Term Memory: The limitations of the basic RNN can be addressed by

designing the LSTM [100]. Figure 2.10 shows the LSTM model.

Figure 2.10: LSTM architecture [100].

The inputs 𝑥𝑥𝑡𝑡 and ℎ𝑡𝑡−1 interact in a more computationally complex manner due to the nature

of its recurrence formula and multiplicative interactions are involved in this mechanism.

Moreover, additive interactions over time steps are used by the LSTM recurrence, which

efficiently propagate gradients backwards in time [100]. Besides a hidden state vector ℎ𝑡𝑡, a

memory vector 𝑐𝑐𝑡𝑡 is also maintained by the LSTM. By using explicit gating mechanisms,

the LSTM can perform the functions, such as: select, write to, read from, or reset the cell at

each time step. Figure 2.10 shows one neuron of a LSTM.

In Figure 2.10, the output can be given by 𝑦𝑦𝑡𝑡 = 𝑜𝑜𝑡𝑡ʘℎ(𝑐𝑐𝑡𝑡) where t is the current time, o is

the output of the output gate, c is the output of the cell state and ʘ is the point-wise

multiplication of two vectors. The output of the output gate is given by 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 +

Chapter 2: Deep Learning Background

32

𝑅𝑅𝑜𝑜𝑦𝑦𝑡𝑡−1 + 𝑃𝑃𝑜𝑜ʘ𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑜𝑜) where 𝑥𝑥𝑡𝑡 is the input at time t, 𝑦𝑦𝑡𝑡−1is the previous output, 𝑅𝑅𝑜𝑜is the

peephole weight and b is a bias. The cell state can be given by 𝑐𝑐𝑡𝑡 = 𝑖𝑖𝑡𝑡ʘ𝑧𝑧𝑡𝑡 + 𝑓𝑓𝑡𝑡ʘ𝑐𝑐𝑡𝑡−1 where

𝑖𝑖𝑡𝑡 is the output of the input gate at time t, 𝑧𝑧𝑡𝑡is the output of the input to the neuron and 𝑓𝑓𝑡𝑡 is

the output of the forget gate. The forget gate can be given by 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑓𝑓𝑦𝑦𝑡𝑡−1 +

𝑃𝑃𝑓𝑓ʘ𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) . The input gate is given by 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑖𝑖𝑦𝑦𝑡𝑡−1 + 𝑃𝑃𝑖𝑖ʘ𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) and

finally, the block input is given by 𝑧𝑧𝑡𝑡 = 𝑔𝑔(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑧𝑧𝑦𝑦𝑡𝑡−1 + 𝑏𝑏𝑧𝑧)[100].

End-To-End Memory Networks: The main goal of memory networks is offering memory

to read and write to it in the long term. The main use of this kind of RNN is that it can read

a story and then answer questions by extracting from the story. The other is as dialog agents.

Figure 2.11 shows an End-to-End memory network, as presented in [101].

Figure 2.11: End-To-End Memory Networks. (a): A single layer. (b): A multiple layer.

In the Figure 2.11 (a), the single layer contains two parts, the memory module where the

story is read, then saved in memory; and the controller module used to address and read

between questions and the memory. Every input sentences 𝑥𝑥𝑖𝑖 is embedded twice 𝑚𝑚𝑖𝑖 and 𝑐𝑐𝑖𝑖.

In a question and answering problem, the story will be embedded in the memory module and

the question will be embedded in the controller module. Assume the story has three sentences

followed by a question: John moved to garden, John went to kitchen, John drops apple.

Where is John?

The representation of this story will be as follows:

First: the input sentences will be embedded to memory vectors in the memory module and

the question in the story will be embedded to the controller as following

Chapter 2: Deep Learning Background

33

John moved to garden  m1 and c1 ( means embedded)

John went to kitchen  m2 and c2

John drops apple  m3 and c3

So m1,m2 and m3 will be saved in memory module (Embedding A) and c1,c2

and c3 (Embedding C).

where is John  u1

Second: Apply the dot product between the memory vectors m1,m2,m3 and controller vector

followed by Softmax to get the attention weights such that:

𝑝𝑝𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑢𝑢𝑇𝑇𝑚𝑚𝑖𝑖) = exp (𝑢𝑢𝑇𝑇𝑚𝑚𝑖𝑖) � exp (𝑢𝑢𝑇𝑇𝑚𝑚𝑗𝑗)
𝑗𝑗

�

Third: compute the weighted sum of the memory vectors using:

𝑜𝑜 = � 𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖 = 𝑝𝑝1𝑐𝑐1 + 𝑝𝑝2𝑐𝑐2 + 𝑝𝑝3𝑐𝑐3
𝑖𝑖

Finally: the output o adds it back to the controller where the actual output (W) is kitchen and

back propagation is used to learn weights.

Figure 2.11 (b) shows multiple layers where it extends the model to handle K hop operations.

In the previous example, the answer kitchen is found is the second sentence that means there

is two hop operations. If the answer is found in the fourth sentence, then there are four hop

operations.

Historically, neural networks have been considered to be hard to train, especially if the

networks have more than one layer [102] for many reasons. The first reason is underfitting,

in other words the networks cannot learn complex functions. The reason for this problem

could be that there is not enough data or a vanishing gradient problem. To avoid this problem,

researchers collect more data. The second reason, as aforementioned, is overfitting in the

deep learning field. The reason for overfitting is that the number of parameters is high so the

model learns the noise in the data, which leads to bad generalization. The following are the

most recent popular techniques applied for deep learning in general in addition to the old

techniques like regularization.

2.4.4. Challenges of Training Neural Networks

Chapter 2: Deep Learning Background

34

Dropout parameters: There are two popular types of dropout used for training the models

to avoid overfitting.

Firstly, there is the dropout of the hidden neurons [103]. This type of dropout was introduced

by Hinton and his group, contributed to winning the ImageNet competition in 2012 [104].

The idea behind this dropout technique is to remove hidden neurons stochastically by some

probability. In other words, some hidden neurons are set randomly to zero by some

probability. First, some hidden neurons are randomly set to zero with a given probability.

Then, the same step is taken in the next layer and so on. Figure 2.12 (a) shows the neural

networks after applying random dropout regularization.

(a) (b)

Figure 2.12: Neural networks (a) after dropout (b) after DropConnection.

Secondly, there is dropout on the connections (weights) and this is called DropConnection

[105]. This uses the same idea as general dropout but instead of randomly setting some

neurons according to a given probability, some connections between layers are removed

randomly with given probability. Figure 2.12 (b) shows neural networks after

DropConnection regularization.

Batch Normalization: To overcome the problem of internal covariate shift9, a smaller

learning rate and vanishing gradient, batch normalization[106] is used. Batch normalization

is a transformation that is applied to the activation neuron over the mini batch input (m).

Batch normalization can be given by the following steps, as cited by Ioffe & Szegedy [106];

1. The first step is to compute the mean and the variance of the mini batch as :

9 Change in the input distribution leads to change in the learning system

x1

x2

x3

x1

x2

x3

Chapter 2: Deep Learning Background

35

𝜇𝜇𝐵𝐵 ← 1
𝑚𝑚

∑ 𝑥𝑥𝑖𝑖
𝑚𝑚
𝑖𝑖=1 and 𝜎𝜎𝐵𝐵

2 ← 1
𝑚𝑚

∑ (𝑥𝑥𝑖𝑖 −𝑚𝑚
𝑖𝑖=1 𝜇𝜇𝐵𝐵)2

2. The second step involves normalizing the mini batch input as follows:

𝑥𝑥�𝑖𝑖 ←
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝐵𝐵

�𝜎𝜎𝐵𝐵
2 + 𝜀𝜀

3. Finally, the normalized mini batch is scaled using learnable parameters (γ, β):

 𝑦𝑦𝑖𝑖 ← 𝛾𝛾𝑥𝑥�𝑖𝑖 + 𝛽𝛽

This chapter covered the main concepts behind deep neural networks, as well as the

principles relating supervised learning. Different learning optimization techniques and back

propagation presented in the chapter. In addition, ConvNets and RNNs have present along

with their architectures.

2.5. Summary

Chapter 3: Literature Review

36

The design of a neural network typically begins by defining its topology, namely the number

of layers, the number of neurons for each of the layers, and how the layers are connected.

The network is then trained which involves experimentation, including determining suitable

hyperparameters, such as the learning rate. As outlined in the introduction to this thesis, deep

learning networks can become huge, and hence several methods have been developed for

reducing their size. This chapter presents a survey of existing algorithms for pruning neural

networks and gives an overview of the other methods of designing efficient the neural

networks.

There are many types of neural networks, such as feed forward neural networks (FNNs),

convolution neural networks (ConvNets), recurrent neural networks (RNNs) and recursive

neural networks (RecNN). An important practical question is: What is the size of a FNN,

ConvNets and RNN that leads to optimal performance?

Theoretically Montufar et al. [107] and empirically He et al. [25], Simonyan & Zisserman

[23], Szegedy et al. [24, 108] , Huang et al. [109] show that as a ConvNet gets deeper its

performance gets better even though there might be increased redundancy [29]. Most of the

networks are trained by leveraging high performance parallel architectures such as GPUs

[22, 110], or distributed clusters [74]. These models have a huge number of weights and

neurons, many of which might be unnecessary [29].

3. Literature Review

3.1. Background on Pruning Methods

Chapter 3: Literature Review

37

There is an extensive Literature on pruning neural networks (Reed [111] and Augasta &

Kathirvalavakumar [112]). The literature can be divided in two periods:

• In late of 80s and 90s, the pruning methods focused on forward neural networks

• In the last three years, the pruning methods focus on pruning ConvNets.

The timeline of most related algorithms to our work are shown in Figure 3.1. The first mention

of the importance of pruning neural networks dates to Kruschke [113] until the current days

Wolfe et al [114].

Figure 3.1: A timeline of related algorithms.

These algorithms can be classified based on the type of pruning that they perform which

pruning the weights, neurons, or feature maps (as shown in the first column) and based on the

approach of pruning (as shown in the first row) as be presented in Table 3-1.

 Magnitude Activation First order Second order

Weights Network pruning OBD, OBS

Neurons Local
Bottlenecks Iterative Pruning Skeletonization,

Iterative Re-ranking
Iterative Re-
ranking

Feature
maps

Pruning Smallest
Filters

Channel Level Acceleration,
Network Trimming,
Pruning Feature Map in TL,
Entropy-based Pruning,
Deep Face Model Compression
Using Entropy-based Filter
Selection

Pruning Feature
Map in TL

Table 3-1: Summary of related work.

The following is the description of the methods based on the approach of pruning as they are

discussed in the literature:

Chapter 3: Literature Review

38

1. Direct methods [111] (also known as brute force pruning [114] or oracle pruning

[115]) where, one by one, a weight, neuron or feature map are set to zero, the

network’s performance measured and then a decision is made to retain or remove

the weight, neuron or feature map.

2. Regularization methods in which a regularization term R(W) is added to the loss

function:

1
𝑁𝑁

� 𝐿𝐿𝑖𝑖 +
𝜆𝜆
𝑁𝑁

𝑅𝑅(𝑊𝑊)
𝑁𝑁

𝑖𝑖=1

Where 𝜆𝜆 > 0 is a regularization parameter that can be set to a value that reflects the

weight of the regularization. There are many types of regularization [63-67], and two that

have been widely used are the L2 and L1 norms:

L2 norm: 𝑅𝑅(𝑊𝑊) = 1
2

∑ 𝑤𝑤2
𝑤𝑤

Where L2 norm is known as weight decay and is the sum of the squares of all

the weights in the network

L1 norm: 𝑅𝑅(𝑊𝑊) = ∑ |𝑤𝑤|𝑤𝑤 .

L1 norm is the sum of the absolute values of the weights:

3. Pruning based on magnitude [63, 116-118], pruning based on the magnitude of the

weights is perhaps the simplest method. The motivation of using this method is that

after training the deep neural networks with regularization, unimportant weights are

pushed to zero. Hanson & Pratt [116] and Chauvin [63] add bias terms to the loss

function to penalize the weights then the weights that are smaller than a predefined

threshold are removed.

4. Activation methods [36, 114, 115, 119-121], removing neurons or feature maps based

on their outputs.

5. First order pruning [122] exploiting information contained in the error gradient for

better adapting neural network structure to the data and for improving its

generalization. After computing back propagation, weights [122-124], neurons [36,

114] or feature maps [115] that have less impact on the error gradient are less

important. Recently, Taylor approximation of the error can be simplified by

eliminating second and higher order to estimate the pruned feature maps [115].

Chapter 3: Literature Review

39

6. Second order pruning [122]. Second order information in the error can be exploited

to prune insignificant weights [122]. Methods based on the second order partial

derivative for modelling the error by using the Taylor series expansion to estimate the

unimportant weights or neurons [125-128] where the third and higher order terms of

are eliminated.

These methods have been shown to have different merits. The direct methods are of 𝑂𝑂(𝑁𝑁𝑃𝑃3),

where P is the number weights, neurons or feature maps and N is the size of the training set,

and hence are considered to be intractable [111, 114, 115] . Collins & Kohli [129] show that

regularization (L1 or L2 norm) may not reduce the weights to zero in neural networks [130].

In addition, Gupta et al. [131] present that regularization method does not actually delete

weights from the network, nor does it typically produce weights that are exactly zero. Weights

that are not essential to the solution decay to zero and can be removed using pruning based

magnitude [131]. Hassibi et al. [126] show that pruning based on magnitude can lead to

pruning important weights. Srinivas & Babu [132] conclude that Taylor expansion methods

have difficulty in pruning deep neural networks and Wolfe et al. [114] have recently shown

that direct methods outperform the pruning method based on second order derivatives, which

in turn are known to be better than the pruning method based on first order derivatives [114].

The following are the related work to the proposed methods classified based on their goal

which prune the weights, neurons, or feature maps. Followed by the other techniques which

use different techniques to make deep neural networks more efficient.

Setting one or more connections between two neurons to zero and three different methods

are related to the proposed methods:

Optimal Brain Damage (OBD), a method developed by LeCun et al. [125], was one of the

oldest methods for reducing the size of neural networks. OBD removes the weights that if

3.2. Related Work

3.2.1. Pruning Weights

3.2.1.1. Optimal Brain Damage

Chapter 3: Literature Review

40

set to zero would have least effect on the training error. To measure the effect of changing

weights, LeCun et al. [125] used a Taylor series approximation for the change in loss that

would occur if the weights were perturbed. This analysis leads to the need to solve a Hessian

matrix which can be computationally expensive. To reduce this computational cost, LeCun

et al. [125] ignored the off-diagonal values.

For a loss function 𝐿𝐿(𝑥𝑥), the Taylor expansion evaluated at the point a is defined by [115,

122, 125-128]:

𝐿𝐿(𝑥𝑥) = 𝐿𝐿(𝑎𝑎) +
1
1!

𝐿𝐿′(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎) +
1
2!

𝐿𝐿′′(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎)2 +
1
3!

𝐿𝐿′′′(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎)3 + ⋯

Given the weight w where w ∈ RK and K is the total number of the weights in the model then

a small change on the weight vector w denoted by 𝛿𝛿𝛿𝛿, will cause a change in the loss

function denoted by δ𝐿𝐿

δ𝐿𝐿 = 𝐿𝐿(𝑤𝑤 + δw) − 𝐿𝐿(𝑤𝑤)

LeCun et al. [125] use the Taylor expansion to derive the following equation for the change

in loss when the weights are perturbed:

𝛿𝛿𝛿𝛿 = ∑ 𝑔𝑔𝑖𝑖𝛿𝛿𝑤𝑤𝑖𝑖 + 1
2𝑖𝑖 ∑ ℎ𝑖𝑖𝑖𝑖𝛿𝛿𝑤𝑤𝑖𝑖

2 + 1
2𝑖𝑖 ∑ ℎ𝑖𝑖𝑖𝑖𝛿𝛿𝑤𝑤𝑖𝑖𝛿𝛿𝑤𝑤𝑗𝑗 + 𝑂𝑂(||𝛿𝛿𝛿𝛿||3)𝑖𝑖≠𝑗𝑗 (3.1)

Where 𝑔𝑔𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖

 and ℎ𝑖𝑖𝑖𝑖 = 𝜕𝜕2𝐿𝐿
𝜕𝜕𝑤𝑤𝑖𝑖𝜕𝜕𝑤𝑤𝑗𝑗

 . The second order derivatives, ℎ𝑖𝑖𝑖𝑖 can be presented in

the form of a matrix H that is known as a Hessian matrix [125].

OBD makes some assumptions to the Equation 3.1.

First, computing the optimal H is computationally expensive [125, 132, 133] as it needs to

calculate the second derivative of all the weights. Hence, they introduce diagonal

approximation, which means there are no cross correlations between the perturbations of

multiple weights. The off-diagonal terms in Equation 3.1 will set to zero (which is the third

term in the Equation 3.1). In other words, OBD assumes that the change in loss, 𝛿𝛿𝛿𝛿, is caused

only by each weight individually.

Second, it assumes that the loss L is approximately quadratic and can be safely approximated

by a second order Taylor Series. That is, the last term in Equation 3.1 is assumed to be zero.

Chapter 3: Literature Review

41

Finally, OBD’s equation assumes that the first term in Equation 3.1 can be set to zero given

the network can be expected to be trained to reach a local minimum. After these assumptions

Equation 3.1 is approximated by:

𝛿𝛿𝛿𝛿 = 1
2

∑ ℎ𝑖𝑖𝑖𝑖𝛿𝛿𝑤𝑤𝑖𝑖
2

𝑖𝑖 (3.2)

In Equation 3.2, 𝛿𝛿𝛿𝛿 shows how the loss changes with respect to perturbations of the weight

vector. The 𝛿𝛿𝛿𝛿 relies on the diagonal terms of the Hessian matrix, given by:

ℎ𝑘𝑘𝑘𝑘 = �
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

2
𝑖𝑖𝑖𝑖

= �
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑎𝑎𝑖𝑖

2 𝑥𝑥𝑗𝑗
2

𝑖𝑖𝑖𝑖

Where 𝑥𝑥𝑖𝑖 is the state of neuron i, 𝑎𝑎𝑖𝑖 its total input (weighted sum).

Thus, based on Equation 3.2, the extent to which a weight effects the loss (i.e., the saliency)

is given by:

𝑠𝑠𝑘𝑘 = ℎ𝑘𝑘𝑘𝑘𝑤𝑤𝑘𝑘
2/2

Where 𝑠𝑠𝑘𝑘 is the saliency of the weights 𝑤𝑤𝑘𝑘

Finally, the weights are put in order and those with the lowest saliency are removed and the

network retrained.

Optimal Brain Surgeon (OBS) is a method due to Hassibi et al. [126-128] in which the

Hessian matrix that results from the analysis for OBD is solved without making the

assumption that the off-diagonal elements can be ignored. The other assumptions, such as

ignoring higher order terms and the first term of Equation 3.1 are also assumed in OBS. That

is, Equation 3.1 is rewritten to:

𝛿𝛿𝛿𝛿 = 1
2

𝛿𝛿𝑤𝑤𝑇𝑇 . 𝐻𝐻. 𝛿𝛿𝛿𝛿 (3.3)

Where 𝐻𝐻 = 𝛿𝛿2𝐿𝐿
𝜕𝜕𝑤𝑤2.

Equation 3.3 leads to the following measure of saliency for a weight 𝑤𝑤𝑞𝑞 [126-128] that is

analogous to the one used for OBD:

𝐿𝐿𝑞𝑞 =
1
2

𝑤𝑤𝑞𝑞

2

[𝐻𝐻−1]𝑞𝑞𝑞𝑞

3.2.1.2. Optimal Brain Surgeon

Chapter 3: Literature Review

42

Both OBD and OBS are known to be very slow as they are based on computing the Hessian

matrix [132].

Network Pruning methods [134] remove weights that are below a user specified threshold

value and then retrain the network. Before retraining, they improve dropout (as pruning

already reduced the networks capacity, the retraining dropout ratio needs to be smaller [134,

135] giving the same training data set) by a ratio of the square root of the number of

connections after pruning to the number of connections before pruning as given by:

𝐷𝐷𝑟𝑟 = 𝐷𝐷0�
𝐶𝐶𝑖𝑖𝑖𝑖

𝐶𝐶𝑖𝑖𝑖𝑖

Where 𝐷𝐷𝑟𝑟 and 𝐷𝐷0 is dropout after and before pruning respectively, 𝐶𝐶𝑖𝑖𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑖𝑖 are the

number of links in layers after and before retraining respectively. To find the unnecessary

weights, greedy method is used.

This approach to pruning is adopted for a number of different types of neural networks. For

instance See et al. [136] and Narang et al. [137] also use thresholds to prune RNN and Han

et al. [138, 139] use this method to compress ConvNets and LSTM respectively.

Network Pruning using thresholds is a simple to adopt, however, Srinivas & Babu [132]

have found that it can result in the removal of weights that are important.

Pruning neurons includes pruning all the connection from and into the neurons which is more

efficient than pruning weights. There are four different methods for pruning neurons that are

related to the proposed methods in the thesis.

Local Bottlenecks is a method in which the hidden neurons compete with each other to

survive [113]. Magnitudes of vectors determine the degree to which a neuron affects

the loss function. The gain is a new parameter inside the activation of a neuron to

3.2.1.3. Network Pruning

3.2.2. Pruning Neurons

3.2.2.1. Local Bottlenecks

Chapter 3: Literature Review

43

indicate how much a neuron participates in representing the input. It needs special

back propagation which is called back propagation with adaptive gains [113].

When the gain of a neuron is zero, it contributes only a bias term to upcoming layers and

no error to back propagate and it is safe to be removed. In case two neurons have parallel or

anti-parallel weight vectors, they are redundant and can be removed as well. The gain for

neuron i from a neuron j (in the same layer) can be obtained from Equation 3.4 as:

𝛿𝛿𝑔𝑔𝑖𝑖
𝑝𝑝 = −𝛾𝛾 ∑ 〈𝑤𝑤�𝑖𝑖

𝑝𝑝, 𝑤𝑤�𝑗𝑗
𝑝𝑝〉2. 𝑔𝑔𝑗𝑗

𝑝𝑝
𝑗𝑗≠𝑖𝑖 (3.4)

Where γ is a small positive constant such as 0.001, 𝑤𝑤�𝑖𝑖
𝑠𝑠is the unit vector in the direction 𝑤𝑤𝑖𝑖

𝑠𝑠,

the operation 〈. , . 〉 represents the inner product, and the superscript p is the pattern. If neuron

i has weights parallel to those of neuron j, then the gain of each will decline in ratio to the

gain of the other and the one with the lesser gain will be directed to zero faster. Since the

gains should not be negative, this regulation can only decline them [111].

Skeletonization is a method for pruning networks that was proposed by Mozer & Smolensky

[36]. As with the other methods, they seek to assess the relevance, 𝜌𝜌𝑖𝑖 , of a neuron by

considering what happens if the neuron is removed:

They introduce a new concept, which is called attentional strength α, which is responsible

for determining whether a neuron should be removed. When 𝛼𝛼𝑖𝑖, the attentional strength at

neuron i, is equal to zero then neuron i has no effect on the rest of the model and when it is

equal to 1 it works like a conventional neuron. That is the output of a neuron j is defined by

𝑜𝑜𝑗𝑗 = 𝑓𝑓(∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝛼𝛼𝑖𝑖𝑜𝑜𝑖𝑖)𝑖𝑖 where 𝑤𝑤𝑗𝑗𝑗𝑗 is the weight between neurons i and j, f is a nonlinear function,

𝛼𝛼𝑖𝑖 are not actual parameters of the system but represent attentional strength.

The relevance of a neuron, 𝜌𝜌𝑖𝑖, is computed using:

𝜌𝜌𝑖𝑖 = 𝐿𝐿𝛼𝛼𝑖𝑖=0 − 𝐿𝐿𝛼𝛼𝑖𝑖=1 ≈ −
𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼𝑖𝑖

|𝛼𝛼𝑖𝑖=1

where 𝐿𝐿𝛼𝛼𝑖𝑖=0 is the loss when 𝛼𝛼𝑖𝑖 = 0 (i.e., the same setting the neuron to zero) and 𝐿𝐿𝛼𝛼𝑖𝑖=1 is

the loss when the 𝛼𝛼𝑖𝑖 = 1 (i.e., the neuron behaves normally).

3.2.2.2. Skeletonization

Chapter 3: Literature Review

44

Mozer & Smolensky [36] compute the derivative 𝜌𝜌𝑖𝑖 during the training process with a

procedure similar to back propagation but observed that the measure can change

dramatically from one training cycle (t) to the next (t+1), and they therefore introduce the

following weighted measure, 𝜌𝜌𝚤𝚤� which produces better estimates as:

𝜌𝜌𝚤𝚤� (𝑡𝑡 + 1) = 0.8𝜌𝜌𝚤𝚤� (𝑡𝑡) + 0.2
𝜕𝜕𝜕𝜕(𝑡𝑡)
𝜕𝜕𝛼𝛼𝑖𝑖

It is worth observing that this method is based on first order derivatives and that other

methods based on first-order derivatives have some limitations when compared to second

order derivatives and the direct method [114].

The Iterative Pruning algorithm, developed by Castellano et al. [140], removes a hidden

neuron and then adjusts the weights of the network using a method known as the conjugate

gradient preconditioned normal equation (CGPCNE) [141].

Castellano et al. [92] define two groups of neurons which they term as the projection and

receptive fields. Given, a neural network 𝑁𝑁 = (𝑉𝑉, 𝐸𝐸, 𝑤𝑤) where V is set of neurons, which is

divided into 𝑉𝑉𝐼𝐼, 𝑉𝑉𝐻𝐻, 𝑉𝑉𝑂𝑂 for input neurons, hidden neurons, and output neurons respectively,

and 𝐸𝐸 ⊆ 𝑉𝑉×𝑉𝑉 is the set of connections where each connection (i,j) is associated with weight

𝑤𝑤𝑖𝑖𝑖𝑖 ∈ ℜ ; for each neuron 𝑖𝑖 ∈ 𝑉𝑉, they define the projection field 𝑃𝑃𝑖𝑖 and receptive field 𝑅𝑅𝑖𝑖 by:

𝑃𝑃𝑖𝑖 = [𝑗𝑗 ∈ 𝑉𝑉|(𝑗𝑗, 𝑖𝑖) ∈ 𝐸𝐸]

𝑅𝑅𝑖𝑖 = [𝑗𝑗 ∈ 𝑉𝑉|(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸]

In other words, they group the neurons that are connected to the removed neuron into two

fields. First, the projection field which has the neurons that their output connect as input to

the removed neuron. Second, the receptive field which holds the neurons that have one of

their input’s connections is the removed neuron’s output.

The network is assumed to be trained on M training examples such that:

Given these definitions, the iterative pruning algorithm, selects a hidden neuron h as follows:

ℎ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ∈𝑉𝑉𝐻𝐻 ∑ 𝑤𝑤ℎ𝑖𝑖
2 ||𝑦𝑦�ℎ||2

2
𝑖𝑖∈𝑃𝑃ℎ (3.5)

y�h change in the output and Ph is projection hidden field. Then remove the neuron and adjust

its weights in 𝑃𝑃𝑖𝑖 and 𝑅𝑅𝑖𝑖 using CGPCNE.

3.2.2.3. Iterative Pruning

Chapter 3: Literature Review

45

Castellano & Fanelli [142] use the same method for feature selection by applying the method

to prune the input neurons instead of the hidden neurons. Fangju [143] uses the Generalized

Inverse Matrix [144] algorithm instead of the CGPCNE algorithm for updating the

remaining weights.

Wolfe et al. [114] investigate two different methods for pruning neurons from neural

networks with two hidden layers that are trained on the MNIST data. The methods are based

on the change of the error using the Taylor series expansion up to the second order as given

in 3.1, but the parameters here are neurons instead on weights. The change in the error of kth

neuron from Equation 3.1 given by:

𝛿𝛿𝐿𝐿𝑘𝑘
2 = −𝑂𝑂𝑘𝑘. 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
|𝑂𝑂𝑘𝑘 + 0.5 . 𝑂𝑂𝑘𝑘

2. 𝜕𝜕2𝐿𝐿
𝜕𝜕𝑂𝑂2 |𝑂𝑂𝑘𝑘 (3.6)

Where L is the loss and 𝑂𝑂𝑘𝑘 is the output at neuron k.

The first method is based on computing δLk
2 using second order back propagation, then

ranking this change and selecting all those below a fixed threshold.

The second method is based on a greedy algorithm. It computes δLk
2 for each neuron and

then prunes the one that has the least value. It then performs forward and back propagation

to compute δLk
2 to remove another neuron with the least value and repeats the process until

some stopping criterion is met (such as the maximum number of neurons to remove,

percentage scaling needed or maximum allowable accuracy [114]). This method is

computationally more expensive but considers the dependencies the neurons might have on

one another which would lead to a change in error contribution every time a dependent

neuron is removed.

However, this method shows that the brute force pruning is the optimal method for pruning

neural network and we believe pruning based MAB is the best to mimic the brute force

pruning. This method is limited to special nonlinearity functions like sigmoid and tanh where

the second order derivative can be computed. However, modern deep learning frameworks

use the ReLU activation function which has approximately zero value at second order

derivative.

3.2.2.4. Iterative Re-ranking

Chapter 3: Literature Review

46

In ConvNets, pruning the feature map improves the inference time and reduces the size of

the model. This section describes five methods for pruning feature maps.

Polyak & Wolf [119] propose an activation-based feature map pruning method which

removes the feature maps with weak activation patterns and their corresponding filters. The

key idea in this approach is to consider the low variance in the outputs of feature maps as an

indication that a feature map is weak. A feature map 𝑋𝑋𝑖𝑖+1,𝑗𝑗 ∈ ℝ𝑤𝑤𝑖𝑖+1×ℎ𝑖𝑖+1 is generated by

applying a filter 𝐹𝐹𝑖𝑖,𝑗𝑗 ∈ ℝ𝑛𝑛𝑖𝑖×𝑘𝑘×𝑘𝑘 to feature maps of the previous layer 𝑋𝑋𝑖𝑖 ∈ ℝ𝑛𝑛𝑖𝑖×𝑤𝑤𝑖𝑖×ℎ𝑖𝑖 , for

instance, 𝑋𝑋𝑖𝑖+1,𝑗𝑗 = 𝐹𝐹𝑖𝑖,𝑗𝑗×𝑋𝑋𝑖𝑖 . Given N randomly selected images {𝑥𝑥1
𝑛𝑛}𝑛𝑛=1

𝑁𝑁 from the training

data set, the statistics of each feature map can be estimated with one epoch forward pass of

the N sampled data [119].

𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣−𝑙𝑙2�𝑋𝑋𝑖𝑖+1,𝑗𝑗� = 𝑣𝑣𝑣𝑣𝑣𝑣 ���𝑋𝑋𝑖𝑖+1,𝑗𝑗
𝑛𝑛 �

2
�

𝑛𝑛=1

𝑁𝑁
� (3.7)

𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣−𝑙𝑙2�𝑋𝑋𝑖𝑖+1,𝑗𝑗� is the contribution variance of channel criterion, which is motivated by the

intuition that an unimportant feature map has almost similar outputs for the whole training

data set and acts like an added bias [119]. Then this feature map (weak feature map) is

pruned.

Hu et al. [120] prune weak feature maps based on the mean zero activation instead of the

variance in Polyak & Wolf [119] method. Hu et al. [96] define Average Percentage of Zeros

(APoZ) to measure the percentage of zero activations of a neuron after the ReLU mapping.

The APoZ of the cth neuron in ith layer is defined as:

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃�𝑂𝑂𝑐𝑐
(𝑖𝑖)� =

∑ ∑ 𝑓𝑓(𝑂𝑂𝑐𝑐,𝑗𝑗
(𝑖𝑖)(𝑘𝑘)=0)𝑗𝑗

𝑁𝑁
𝑘𝑘

𝑁𝑁×𝑀𝑀
 (3.8)

3.2.3. Pruning Feature Maps

3.2.3.1. Channel Level Acceleration

3.2.3.2. Network Trimming

Chapter 3: Literature Review

47

Oc
(i) denotes the output of cth channel in ith layer. A given filter is drawn across the entire

previous layer, moved one or more pixel(s) at a time. Each position results in an activation

of the neuron and the output is collected in the feature map. Then, Oc,j
(i) will be tested across

the dimension of output feature map of Oc
(i) where the function f is 1 or 0 and N denotes the

total number of examples. In their experiments, the number of examples is chosen to be

50,000 images from ImageNet.

Instead of determing a weak feature map based on the mean [120] or the variacne [119] of

its output, Luo & Wu [121] propose an entropy-based metric to evaluate the importance of

each filter. In their filter pruning scenario, if a feature map contains less information, its

corresponding filter is less important, thus could be pruned. To compute the entropy value

of a particular feature map, Luo & Wu [121] first divide it into m different bins, and calculate

the probability of each bin. Finally, the entropy can be calculated as follows:

𝐻𝐻𝑗𝑗 = − ∑ 𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖
𝑚𝑚
𝑖𝑖=1 (3.9)

Where, 𝑝𝑝𝑖𝑖 is the probability of bin i, 𝐻𝐻𝑗𝑗 is the entropy of feature map j. Han et al. [145]

experiment the same method to prune networks given more data sets.

Molchanov et al. [115] introduce a method for pruning filters from ConvNets that relies on

the first order Taylor expansion of the absolute change in the loss function. In every pruning

iteration, one feature map is removed then the model’s parameters are adjusted given one

training example. More precisely:

|𝛿𝛿𝛿𝛿(ℎ𝑖𝑖)| = |𝐿𝐿(𝒟𝒟, ℎ𝑖𝑖 = 0) − 𝐿𝐿(𝒟𝒟, ℎ𝑖𝑖)|

Where δ𝐿𝐿(ℎ𝑖𝑖) is the change of loss function, 𝐿𝐿(𝒟𝒟, ℎ𝑖𝑖) the loss function before removing the

feature map (set the output to zero) and 𝐿𝐿(𝒟𝒟, ℎ𝑖𝑖 = 0) the loss function when the output is set

to zero (ℎ𝑖𝑖 = 0).

According to the Taylor polynomial near ℎ𝑖𝑖 = 0:

𝐿𝐿(𝒟𝒟, ℎ𝑖𝑖 = 0) = 𝐿𝐿(𝒟𝒟, ℎ𝑖𝑖) −
𝜕𝜕𝐿𝐿
𝜕𝜕ℎ𝑖𝑖

ℎ𝑖𝑖 + 𝑅𝑅1(ℎ𝑖𝑖 = 0)

3.2.3.3. Entropy-Based Pruning

3.2.3.4. Pruning Feature Map in Transfer Learning

Chapter 3: Literature Review

48

The higher order (𝑅𝑅1) is eliminated as the widely-used ReLU activation function has almost

zero output in second order partial derivative. Finally, Molchanov et al. [115] obtain the

following measure for deciding which feature map, ℎ𝑖𝑖 should be removed:

|𝛿𝛿𝛿𝛿(ℎ𝑖𝑖)| = � 𝜕𝜕𝜕𝜕
𝜕𝜕ℎ𝑖𝑖

ℎ𝑖𝑖� (3.10)

A potential weakness of this method is that pruning a feature map based on one example

(greedy method) is not resistant to noise.

Hao Li et al. [146] remove the filters that have the smallest absolute sum among the filters

in a convolution layer in ConvNet to reduce FLOPS (floating-point operations). Let 𝑛𝑛𝑖𝑖denote

the number of input feature maps for the ith convolutional layer, ℎ𝑖𝑖 is the height of the input

feature maps and 𝑤𝑤𝑖𝑖 is the width. 𝑥𝑥𝑖𝑖 ∈ ℝ𝑛𝑛𝑖𝑖×ℎ𝑖𝑖×𝑤𝑤𝑖𝑖 are the input feature maps and 𝑥𝑥𝑖𝑖+1 ∈

ℝ𝑛𝑛𝑖𝑖+1×ℎ𝑖𝑖+1×𝑤𝑤𝑖𝑖+1 is the output. This is achieved by applying 𝑛𝑛𝑖𝑖+13D filters ℱ𝑖𝑖,𝑗𝑗 ∈ ℝ𝑛𝑛𝑖𝑖×𝑘𝑘×𝑘𝑘 on

𝑛𝑛𝑖𝑖 2D kernels 𝐾𝐾 ∈ ℝ𝑘𝑘×𝑘𝑘. All filters together, constitute a matrix ℱ𝑖𝑖 ∈ ℝ𝑛𝑛𝑖𝑖×𝑛𝑛𝑖𝑖+1×𝑘𝑘×𝑘𝑘. The

operations of the convolutional layer are 𝑛𝑛𝑖𝑖+1×𝑛𝑛𝑖𝑖×𝑘𝑘2×ℎ𝑖𝑖+1×𝑤𝑤𝑖𝑖+1. Finally, remove filter

ℱ𝑖𝑖,𝑗𝑗 and its corresponding feature map 𝑥𝑥𝑖𝑖+1,𝑗𝑗 [146].

Finally, pruning based on magnitude where this method laid down is simple but has

drawback of eliminated effective weighs [115, 126-128].

There are many other methods that aim to reduce the size of deep neural networks or speed

up the inference time. This subsection presents some bibliographic remarks about these other

methods.

 Srinivas & Babu [132] propose a method that prunes a neuron if it has similar weights with

another neuron in the same layer and then adjusts the remaining weights. In addition, the

following methods are orthogonal with the methods proposed in the thesis and can be used

with the proposed methods [138]. Collins & Kohli [129] develop a method that investigates

3.2.3.5. Pruning Smallest Filters

3.3. Summary of other Methods for Pruning

Chapter 3: Literature Review

49

the use of sparsity inducing regularizes to reduce the number of non-zero weights during

training of Convolution Neural Networks. Chen et al. [147] introduce HashedNets to

compress the deep model. HashedNets uses a hash function to reduce model size by

randomly grouping network connections into hash buckets uniformly, such that connections

in a hash bucket use a single parameter value. Chen et al. [148] develop FreshNets that

converts weights to the frequency domain then use HashedNets to randomly group frequency

parameters into hash buckets. Sainath et al. [149] use a low rank approximation to fully

connect layers at training mode to reduce the number of parameters. They replace the fully

connected layer with a linear layer that has a small number of hidden neurons. Xue et al.

[150] use low-rank factorizations with singular value decomposition after training the model.

Gong et al. [151] use vector quantization to compress the network.

Denton et al. [152] use singular value decomposition to reduce the size of pretrained

ConvNets. Iandola et al. [153] develop SqueezeNet, which aims to achieve the same

performance as AlexNet but with a smaller model to reduce the training time in the ImageNet

data set.

To speed up the deployment time for the ConvNets, Denton et al. [152] exploit the linear

structure of ConvNets and compress each layer individually by slightly deteriorating the

performance of the original model. Jaderberg et al. [154] introduce exploiting low-rank

decompositions of convolutional tensors to speed up the evaluation of ConvNets. Zhang et

al. [155] develop networks with a set of low-rank filters in each layer. This was built after

training a network without this constraint, where the simpler network was selected to

approximate the original full rank network.

To reduce the time of training ConvNets, Hongsheng et al. [156] develop an algorithm using

the sparse convolution method to perform learning of ConvNets for pixel wise classification

of images. Lebedev et al. [157] decrease deployment time by using cp decomposition to

compress a 4d convolution filter and decomposing it to many layers of low complexity.

Vincent et al. [158] present a linear algebraic trick for computing both the value and the

gradient update for a loss function that compares a very high-dimensional target with a

(dense) output prediction. Mathieu et al. [159], Highlander & Rodriguez [160], Rippel et al.

[161] and Pratt et al. [162] use Fourier transform for reducing the training computation time

on ConvNets. This result can be used to quickly compute convolutions in the Fourier

Chapter 3: Literature Review

50

domain, since an elementwise product is much less computationally intensive than a

convolution [159].

This chapter has presented several pruning methods. These methods were categorised into

several groups based the way of pruning.

1. Direct methods where, one by one, a weight, neuron or feature map are set to zero,

the network’s performance measured and then a decision is made to retain or remove

the weight, neuron or feature map.

2. Regularization methods in which a regularization term is added to the loss function.

3. Pruning based on magnitude, which is based on the magnitude of the weights and is

perhaps the simplest method. The motivation of using this method is that after training

the deep neural networks with regularization, unimportant weights are pushed towards

zero.

4. Activation methods, which remove neurons or feature maps based on their outputs.

5. First and second order pruning, which exploit information contained in the error

gradient for better adapting neural network structure to the data and for improving

generalization.

Pruning can be applied to reduce the number of weights, neurons or feature maps. Chapter

5,6 and 7 uses some of these methods to compare the results relative to the new MAB based

methods developed in this thesis.

3.4. Summary

Chapter 4: Multi-Armed Bandit

51

As motivated in the previous chapters, pruning neural networks involves a trade-off between

the amount of pruning and the accuracy. Historically, Arrow et al. [163] was among the first

to recognize the importance of developing a theory that supported decision making for the

important trade-off between exploration and exploitation. This was followed by the seminal

work of Lai & Robbins, [43, 164] in which they proved a lower bound for the regret of the

finite-armed, multi-armed bandit problem. Since then, there has been significant research on

developing algorithms that aim to achieve the lower bound.

The term multi-armed bandits refer to a framework that is based on modelling a gambler

who faces a collection of slot machines and needs to select which machines to play in order

to maximize the returns. Prior to each pull, the gambler will know the expected return or

payoff, based on the previous history of pulls and will be able to use this to decide whether

to exploit the best arm or explore other arms with the hope of gaining a greater reward.

This chapter summarises multi-arm bandit algorithms. Section 4.1 introduces the notation,

Section 4.2 describes the algorithms and readers are referred to [165-167] for more complete

and comprehensive accounts of the theory associated with the convergence properties of

multi-arm bandits [165].

This section introduces the notation which will be used with multi-armed bandit in the rest

of the thesis. The notation used is based on Burtini et al.[165] and Galichet [168]:

4. Multi-Armed Bandit

4.1. Notation

Chapter 4: Multi-Armed Bandit

52

• K denotes the number of arms, machines, or options 𝐾𝐾 ∈ 𝑁𝑁+ in other word 𝐾𝐾 =

{2,3, … };

• 𝑣𝑣𝑖𝑖 denotes the (unknown) bounded reward distribution associated with the ith arm;

• 𝜇𝜇𝑖𝑖 denotes the expectation of 𝑣𝑣𝑖𝑖 (𝜇𝜇𝑖𝑖 = 𝔼𝔼[𝑣𝑣𝑖𝑖]);

• 𝜇𝜇∗ is the maximum expectation taken over all arms (𝜇𝜇∗ = max
𝑖𝑖=1…𝐾𝐾

𝜇𝜇𝑖𝑖);

• 𝛿𝛿𝑖𝑖 is the optimality gap of the ith arm (𝛿𝛿𝑖𝑖 = 𝜇𝜇∗ − 𝜇𝜇𝑖𝑖);

• T denotes the time horizon (𝑇𝑇 ∈ 𝑁𝑁+), which might be finite or infinite;

• t denotes the current time step;

• 𝑎𝑎𝑡𝑡 is the arm selected at time t;

• 𝑋𝑋𝑖𝑖,𝑡𝑡 is the tth selected reward drawn from distribution 𝑣𝑣𝑖𝑖;

• 𝑋𝑋𝑎𝑎𝑡𝑡,𝑡𝑡 is the reward obtained at time t. Every arm has its own unknown reward at time

t so when the arm is selected, for example arm 𝑎𝑎𝑡𝑡 then X𝑖𝑖,𝑡𝑡 = X𝑎𝑎𝑡𝑡,𝑡𝑡 but we do not

know the reward for the other arms;

• 𝑛𝑛𝑖𝑖 is the number of times the ith arm has been selected up to time t (𝑛𝑛𝑖𝑖 = ∑ 𝕀𝕀𝑎𝑎𝑡𝑡=𝑖𝑖
𝑡𝑡
𝑘𝑘=1)

where 𝕀𝕀𝑎𝑎𝑡𝑡=𝑖𝑖 = 1when 𝑎𝑎𝑡𝑡 is chosen otherwise is zero (it counts the number of times

arm 𝑎𝑎𝑡𝑡 is chosen during the time t).

The goal of multi-armed bandits is to maximise the reward over the time horizon. The

maximum cumulative reward (gain or payoff) gathered along time H is defined by

∑ X𝑎𝑎𝑡𝑡,𝑡𝑡
𝐻𝐻
𝑡𝑡=1 . Maximizing the agent’s total reward is equivalent to minimizing its total regret

compared to the oracle (optimal) strategy which define by 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈{1…𝐾𝐾}

∑ 𝑋𝑋𝑖𝑖,𝑡𝑡
𝐻𝐻
𝑡𝑡=1 Then, cumulative

regret 𝑅𝑅 of the agent at time t is defined by

 𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈{1…𝐾𝐾}

∑ 𝑋𝑋𝑖𝑖,𝑡𝑡
𝐻𝐻
𝑡𝑡=1 − ∑ 𝑋𝑋𝑎𝑎𝑡𝑡,𝑡𝑡

𝐻𝐻
𝑡𝑡=1 (4.1)

where the goal is minimizing the regret.

There are three broad categories of multi-armed bandits: (i) problems where the aim is to

pull one arm at a time and maximize the total reward given a number of pulls and the world

is stationary; (ii) adversarial problems where the goal is to play one arm at a time and

maximize the total reward given a number of pulls and given the world is not stationary (iii)

multi-play problems where the aim is to pull multiple arms at a time and maximize the total

Chapter 4: Multi-Armed Bandit

53

reward given a number of pulls and the world is stationary. The following subsections

describe algorithms in these categories.

There are five types of multi-armed bandit algorithms that have been proposed: random

explorations [169], optimistic explorations [170], and Bayesian algorithms [171, 172]. The

following subsections describe and present the algorithms that are utilized in this thesis.

In random explorations [169], arms are pulled randomly, expected returns calculated and a

strategy for deciding when to exploit the best arm or explore other arms is employed.

In this technique, the next arm 𝑎𝑎𝑡𝑡+1 is chosen randomly from the arms space. The main

drawback of this method is that there is no guarantee the arm being chosen is the right arm

that needs to be play.

The simplest approach to the MAB problem is to select arms randomly for a number of times

(exploration), compute the average rewards and then select the best arm repeatedly

(exploitation):

𝑎𝑎𝑡𝑡+1 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈{1…𝐾𝐾}

[𝜇𝜇𝑖𝑖] (4.2)

Where 𝜇𝜇𝑖𝑖 is the empirical mean reward of ith arm and time t.

One drawback of this method is it could lead to a suboptimal arm being selected. In other

words, there might be a better arm if the initial random exploration has not been long enough.

4.2. Sequential Multi-Armed Bandits

4.2.1. Random Explorations

4.2.1.1. Random Selection Algorithm

4.2.1.2. Greedy Algorithm

Chapter 4: Multi-Armed Bandit

54

One common random exploration algorithm, known as ε-greedy [173-175] pulls (i.e.

exploits) the current best arm with a probability 1−ε, and otherwise pull another arm

randomly (i.e., explore). More formally, the Epsilon-greedy algorithm selects the next arm

at+1 as follows:

𝑎𝑎𝑡𝑡+1 = �𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚[𝜇𝜇𝑡𝑡(1), 𝜇𝜇𝑡𝑡(2), … , 𝜇𝜇𝑡𝑡(𝑘𝑘)] , 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦 1 − ε
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 {1. . 𝑘𝑘}, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ε (4.3)

Where there are k arms, and 𝜇𝜇𝑡𝑡(𝑖𝑖) denotes the current average reward.

Selecting a suitable ε for this algorithm can be challenging. where if ε is large then, the

algorithm will waste many playing pulling random arms without gaining much while if ε is

too small, then the learning will be slow [165]. Hence some authors have proposed a strategy

of decaying ε over time [175]. For example, White [176] proposes decaying ε by 1
log (𝑡𝑡+𝜑𝜑)

where 𝜑𝜑 is very small number and t is the round or number of plays to date.

Another technique, known as the Win–Stay, Lose–Shift (WSLS) heuristic is recognized as

one of the most simplified models with which bandit problem decision-making can be done

[177, 178]. The WSLS algorithm is based on pursuit methods [55] and changes the

probability of the choosing an arm over time depending on whether it is selected or not in

the current round. If the current arm is selected (i.e., wins), then it makes the probability

stronger otherwise makes it weaker. More formally, let 𝑃𝑃𝑡𝑡(𝑎𝑎) be the probability of choosing

arm a at time t, then the update equations are:

𝑃𝑃𝑡𝑡+1(𝑎𝑎) = �𝑃𝑃𝑡𝑡(𝑎𝑎) + 𝛽𝛽(1 − 𝑃𝑃𝑡𝑡(𝑎𝑎)), 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑃𝑃𝑡𝑡(𝑎𝑎) − 𝛽𝛽𝑃𝑃𝑡𝑡(𝑎𝑎), 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (4.4)

Where β is a scaling parameter for rewarding the winner or penalizing the loser.

4.2.1.3. Epsilon-Greedy Algorithm

4.2.1.4. Win-Stay, Lose-Shift Algorithm

Chapter 4: Multi-Armed Bandit

55

The Softmax algorithm [174] uses the Gibbs (Boltzmann) distribution to estimate the

probability for each arm based on the rewards for each arm. Arms that have a higher expected

payoff will have a higher probability to be selected and 𝑃𝑃𝑖𝑖 is given by:

𝑃𝑃𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒
𝜇𝜇𝑖𝑖
𝜏𝜏 ∑ 𝑒𝑒𝑒𝑒𝑝𝑝𝐾𝐾

𝑘𝑘=1� 𝜇𝜇𝑘𝑘
𝜏𝜏

 (4.5)

Where 𝜏𝜏 ∈ ℝ+ is temperature and experiments are carried out to discover the value of 𝜏𝜏.

When τ is large, the model works like random selection and when it is small, it gives greater

priority to those arms that have a higher mean value. Like, Epsilon-greedy, 𝜏𝜏 can be constant

or decay over time.

As mentioned above, prior to pulling the next arm, the gambler will know the expected

reward for each arm based on its history of previous lever pulls. A simple approach to

selecting the next arm is to use the arm with the largest reward. However, this ignores the

fact that the early estimates of the reward may be inaccurate. Thus, the main idea for

optimistic exploration is to maintain confidence bounds on the expected rewards and to

select the arm with the largest upper bound, ensuring there is sufficient exploration at the

start, but also maximize exploitation given that the bounds tighten as the number of lever

pulls increase. Multi-armed bandit methods that adopt this optimistic approach are known

as Upper Confidence Bound (UCB) algorithms [164, 175], More formally, UCB algorithms

aim to select the next arm, 𝑎𝑎𝑡𝑡 as follows:

𝑎𝑎𝑡𝑡+1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖∈{1…𝐾𝐾}

(𝜇𝜇𝑖𝑖 + 𝑃𝑃𝑓𝑓𝑖𝑖) (4.6)

Where 𝜇𝜇𝑖𝑖 is the expected reward for arm 𝑎𝑎𝑖𝑖 and 𝑃𝑃𝑓𝑓𝑖𝑖 is a padding function that is used to

provide an upper bound for the reward for the arm.

4.2.1.5. Softmax Algorithm

4.2.2. Optimistic Explorations

Chapter 4: Multi-Armed Bandit

56

One of the earliest and most widely cited UCB algorithm is known as UCB1, which uses the

following selection function:

𝑎𝑎𝑡𝑡+1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎 (
𝑖𝑖∈{1…𝐾𝐾}

𝜇𝜇𝑖𝑖 + �2𝑙𝑙𝑙𝑙𝑙𝑙 (𝑡𝑡)
𝑛𝑛𝑖𝑖

) (4.7)

Where 𝑛𝑛𝑖𝑖 is the number of times arm a has been chosen and t is the total number of rounds.

UCB1 begins by playing each arm once to create an initial estimate. Then, for each iteration

t, arm a is selected using Equation 4.7. Initially, when arms have only been pulled a few

times, the padding function in Equation 4.7 allows exploration, but as the number of rounds,

t, increases and the number of times arms are played increases, the padding function reduces,

leading to greater exploitation of the arm that returns the largest reward

KL-UCB [179] presents an alternative approach where the padding function is derived from

the Kullback-Leibler (KL) divergence measure, leading to a selection function where the next

arm to pull is given by:

𝑎𝑎𝑡𝑡+1 = argmax (
𝑖𝑖∈{1…𝐾𝐾}

𝑄𝑄(𝑖𝑖))

𝑄𝑄(𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞

�𝑞𝑞 ∈ [𝜇𝜇𝑖𝑖, 1] ∶ 𝑑𝑑(𝜇𝜇𝑖𝑖, 𝑞𝑞) ≤ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)+𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡))
𝑛𝑛𝑖𝑖

� (4.8)

Where d is the Kullback-Leibler divergence measure and c is constant. Kullback & Leibler

[180], Garivier & Cappé [181] defines the Kullback-Leibler divergence with the Bernoulli

distribution 𝑑𝑑(𝑝𝑝, 𝑞𝑞) as:

𝑑𝑑(𝑝𝑝, 𝑞𝑞) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝
𝑞𝑞

+ (1 − 𝑝𝑝)𝑙𝑙𝑙𝑙𝑙𝑙 (1−𝑝𝑝
1−𝑞𝑞

) (4.9)

Where, 0𝑙𝑙𝑙𝑙𝑙𝑙0 = 0, 0𝑙𝑙𝑙𝑙𝑙𝑙 0
0

= 0 and 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥
0

= +∞ for x>0.

4.2.2.1. UCB1 Algorithm

4.2.2.2. KL-UCB Algorithm

Chapter 4: Multi-Armed Bandit

57

In the Bayesian approach, the reward from each arm is represented by a probability

distribution that is updated in a Bayesian fashion. If 𝑃𝑃(𝑅𝑅) is the prior probability of a reward,

then the goal is to compute a posterior distribution 𝑃𝑃(𝑅𝑅|ℎ𝑡𝑡) where ℎ𝑡𝑡 is the history of

rewards and actions. Two different Bayesian bandit algorithms, namely Thompson Sampling

and BayesUCB are described below.

One of the first algorithms that adopted a Bayesian approach was Thompson Sampling [41].

Given 𝑠𝑠𝑎𝑎, the number of times an arm results in a reward and, 𝑓𝑓𝑎𝑎, the number of times an

arm fails to deliver a reward, the probability distribution for the arm is defined by the beta

distribution [171, 172]:

𝑃𝑃(𝑥𝑥) =
(1 − 𝑥𝑥)𝛽𝛽−1𝑥𝑥𝛼𝛼−1

𝐵𝐵(𝛼𝛼, 𝛽𝛽)

Where α is set to 𝑠𝑠𝑎𝑎 + 1 and β is set to 𝑓𝑓𝑎𝑎 + 1.

In a more recent development that uses a Bayesian approach, Kaufmann et al. [182] propose

an algorithm BayesUCB, in which the quantiles of a distribution are estimated to

increasingly tight bounds and used to determine the next step:

𝑎𝑎𝑡𝑡+1 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞

𝑞𝑞𝑖𝑖(𝑡𝑡) = 𝑄𝑄(1 − 1
𝑡𝑡

, 𝜆𝜆𝑖𝑖
𝑡𝑡−1) (4.10)

Where Q is a quantile function for a distribution λ at the α level and is defined by:

Q(α,λ) such that P(X≤Q(α,λ)) = α

4.2.3. Bayesian Bandits

4.2.3.1. Thompson Sampling Algorithm

4.2.3.2. BayesUCB Algorithm

Chapter 4: Multi-Armed Bandit

58

Another form of the multi-armed bandit problem is called the adversarial bandit. In this form,

at each iteration an agent chooses an arm and an adversary simultaneously chooses the

reward structure for each arm. This is one of the strongest generalizations of the bandit

problem [165] as it removes all assumptions of the distribution and a solution to the

adversarial bandit problem is a generalized solution to the more specific bandit problems

[165]10. There are two kinds of adversarial bandit algorithms studied in the thesis and they

are explained in the following subsections.

There are different variations of the Hedge algorithm [183] in the literature [184-186] and

the version used in this thesis focuses on maximising rewards, and hence is presented in this

section.

𝑃𝑃𝑡𝑡 = 𝑤𝑤𝑖𝑖(𝑡𝑡)
∑ 𝑤𝑤𝑗𝑗(𝑡𝑡)𝑛𝑛

𝑗𝑗=1
 (4.11)

 𝑤𝑤𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤𝑖𝑖(𝑡𝑡)(1 + 𝜖𝜖)𝜌𝜌𝑖𝑖(𝑡𝑡) (4.12)

The arm is chosen with probability proportional to the weights 𝑃𝑃𝑡𝑡, 𝜌𝜌𝑖𝑖(𝑡𝑡) is the current reward

of the chosen arm and 𝜖𝜖 is very small number.

The EXP3 (the exponential-weight algorithm for exploration and exploitation) algorithm

[170, 175, 187, 188] is based on the Hedge algorithm.

The parameter γ is called the exploration rate and sets how much the algorithm will explore

the action space. Where γ ∈ [0, 1] but the standard setting is γ = 0.1 [170, 189] which means

10 https://en.wikipedia.org/wiki/Multi-armed_bandit#cite_ref-40

4.2.4. Adversarial Bandits

4.2.4.1. Hedge Algorithm

4.2.4.2. EXP3 Algorithm

Chapter 4: Multi-Armed Bandit

59

10% of exploration. After the arm a is played and the reward 𝜌𝜌𝑎𝑎 is given to the arm, its

weight is updated using:

𝑤𝑤𝑎𝑎,𝑡𝑡 = 𝑤𝑤𝑎𝑎,𝑡𝑡−1. 𝑒𝑒
𝛾𝛾. 𝜌𝜌𝑎𝑎

𝑝𝑝𝑎𝑎,𝑡𝑡.𝐾𝐾 (4.13)

In this expression, the 𝑤𝑤𝑎𝑎,𝑡𝑡 is known as the arm a with particular weight and t is the time and

P is the selection criteria. In each iteration, the probability of each specific arm to play next

is given by:

𝑃𝑃𝑎𝑎,𝑡𝑡 = (1 − 𝛾𝛾) 𝑤𝑤𝑖𝑖,𝑡𝑡
∑ 𝑤𝑤𝑗𝑗,𝑡𝑡

𝐾𝐾
𝑖𝑖=0

+ 𝛾𝛾. 1
𝐾𝐾

 (4.14)

A new kind of problems is bandits with multiple plays where at each time t the policy

chooses m arms. Examples applications where multiple play bandits can be useful include

recommender systems and online advertising environments where several options need to

be presented at the same time such as showing numerous advertisements on a single page or

offering multiple product suggestions.

An extended version of Thompson Sampling with binary rewards known as MP-TS

(multiple play Thompson Sampling) is introduced by Komiyama et al. [190]. The adopt

Thompson Sampling in which the sampling process provides the top m arms in each iteration

instead of top 1.

An example application of multiple play bandits is presented by Burtini et al. [165], who use

it to decide which products to display in an online advertising environment.

We extend the version of UCB1 to play multiple k arms at the same time in one play time

and it is called MP-UCB1 (influenced by naming MP-TS). Instead of choosing the max arm

in Equation 4.7, the policy will choose the best m arms from the list of all K arms.

4.2.5. Bandits with Multiple Plays

4.2.5.1. Thompson Sampling and Multiple Play Algorithm

4.2.5.2. UCB1 and Multiple Play Algorithm

Chapter 4: Multi-Armed Bandit

60

This chapter has presented several multi-arm bandit algorithms. These algorithms were

categorised into five categories based the way of exploring. Table 4-1 summarises the main

algorithms and Their main characteristics are:

• Random exploration: This part includes some greedy, Softmax and WSLS MAB

algorithms. After introducing a greedy method, some methods achieving an

exploitation / exploration trade-off are presented and discussed.

• Optimistic: This section is devoted to the presentation of optimistic algorithms,

which proceed by maintaining a confidence region for each arm expected payoff.

• Bayesian algorithms include the Thompson Sampling algorithms, introduced by

Thompson [41] simultaneously to the Multi-Armed Bandit problem. They have since

been extensively studied [182].

• Adversarial bandit. When the reward over the arm is not stochastic and changed over

the time then this method works by maintaining a list of weights for each arm to

perform. Using these weights, it decides randomly which arm to take next and

increases/decreases the relevant weights when a payoff is good or bad. EXP3 and

Hedge algorithm were discussed to represent the adversarial bandit.

• Multi-Play. Instead of playing one arm at one trail, these algorithms play multiple

arms at one time in one trail. In this chapter, two algorithms were discussed.

Chapter 5,6,7 and 8 utilises these multi-armed bandits for developing algorithms for pruning

neural networks.

4.3. Summary

Chapter 4: Multi-Armed Bandit

61

Algorithm Environment Explore New Arm No. of ARMS Regret

ε greedy (Decay) Stochastic Random Single Bound
Softmax (Decay) Stochastic Probability Single Bound

WSLS Stochastic Probability Single Bound
UCB1 Stochastic Optimistic Single Bound

KL-UCB Stochastic Optimistic Single Bound
Bayesian UCB Stochastic Bayesian Single binary

Thompson Sampling Stochastic Bayesian Single binary
Hedge Adversarial Probability Single Normal
EXP3 Adversarial Random/ Probability Single Bound

MP-TS Stochastic Bayesian Multiple Binary
MP-UCB1 Stochastic Optimistic Multiple Bound

Table 4-1: A comparison between multi-armed bandit algorithms.

Chapter 5: Multi-Armed Bandit for Pruning Weights

62

This chapter introduces seven different MAB pruning algorithms to prune the weights of

trained neural networks. The algorithms are implemented and their performance compared

with the four existing algorithms: OBD, OBS, Random Pruning and Network Pruning. The

comparison is based on developing neural networks for a selection of data sets from the UCI

repository followed by application of the different pruning methods. The chapter is

organized as follows: Section 5.1 presents the new MAB based pruning algorithms together

with illustrative examples, Section 5.2 presents the results of an empirical evaluation, and

Section 5.3 summarizes the chapter.

Figure 5.1 illustrates the key idea behind using MABs for pruning deep networks. A deep

network is depicted at the top of the figure with numerous weights. Each weight is considered

as a single arm, and when an arm is pulled (weight set to zero), it results in a reward. The

reward is defined as the difference between the performance of the network before and after

removing the weight based on applying the network on a random sample of the data. The arm

(weight) selected together with the improvement become part of the history which is then

used to select the next weight and the process repeated for a fixed number of rounds.

5. Multi-Armed Bandit for Pruning

Weights

5.1. Architecture of MAB Pruning method

Chapter 5: Multi-Armed Bandit for Pruning Weights

63

The reward function used varies depending on the type of bandit algorithm used. For UCB1,

Epsilon-Greedy, KL-UCB and WSLS the reward is computed by first calculating the

difference in the loss function ∆𝐿𝐿 and then computing the reward, 𝑋𝑋𝑎𝑎𝑡𝑡,𝑡𝑡:

𝛿𝛿𝐿𝐿 = 𝐿𝐿(𝐷𝐷|𝑊𝑊) − 𝐿𝐿(𝐷𝐷|𝑊𝑊′)

𝑋𝑋𝑎𝑎𝑡𝑡,𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚 (0,𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜+𝛿𝛿𝛿𝛿)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (5.1)

Where L is the loss when the network is applied on example of the data D, W denotes the

weights, and 𝑊𝑊′ the weights after pruning. This definition of threshold determines how much

loss in the performance is allowed when pruning any weight. For example, suppose pruning

results in a slightly worse performance, resulting in 𝛿𝛿𝐿𝐿 = -0.05(say), then a threshold of 0.1,

would still result in a reward.

For example, if the performance of the model before and after pruning is the same then,

𝑚𝑚𝑚𝑚 𝑥𝑥(0, 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛿𝛿𝛿𝛿) = 𝑚𝑚𝑚𝑚 𝑥𝑥(0, 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜). That is, if the performance does not

change, and the Threshold is positive, the reward will be 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜.

The divisor Constant is defined in a way that ensures that the reward is bounded between

zero and one. One possible way for choosing it is

Constant = max 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − (𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

+ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

On the other hands, Thompson Sampling and BayesUCB algorithms assume Bernoulli

rewards11, and hence in this work the reward is 1 if δ𝐿𝐿 is larger than zero and zero otherwise.

11 Rewards 0 and 1 are referred to as a success and a failure, respectively

Chapter 5: Multi-Armed Bandit for Pruning Weights

64

Figure 5.1: Block diagram shows the MAB to prune the weights.

The MAB based pruning algorithm, reflecting the process outlined earlier, is presented inFig ure

5.2, where Step 3 would involve invoking the specific MAB algorithm, such as UCB, KL-

UCB, BayesUCB and Thompson Sampling that were described in Chapter 4 and will discuss

in this chapter.

Chapter 5: Multi-Armed Bandit for Pruning Weights

65

Algorithm 5.1 MAB Algorithm for pruning the weights
INPUT: Time horizon T, Trained network, Input layer l to be pruned.
OUTPUT: Pruned network
Let 𝑤𝑤𝑗𝑗𝑗𝑗 be the weight connection between two neurons j and i
Let 𝑋𝑋𝑗𝑗𝑗𝑗,𝑡𝑡 be the current reward of this arm/weight which equivalent to 𝑋𝑋𝑎𝑎𝑡𝑡,𝑡𝑡 where the arm a is
denoted by the connection between the neurons j and i.
Let 𝜇𝜇𝑗𝑗𝑗𝑗 be the cumulative average reward of this arm/weight, initialized to zero
Let D the random sample/example from training data set
Let 𝐿𝐿(𝐷𝐷|𝑊𝑊) The loss function before pruning the weight
Let 𝐿𝐿(𝐷𝐷|𝑊𝑊′) The loss function after pruning the weight
Let Threshold how much loss or gain in the performance is allowed
Let K is the number of weights in the chosen layer which equivalent to JI where J is the total
number of neurons in previous layer and I is the total number of neurons in the current layer.
Let 𝑛𝑛𝑗𝑗𝑗𝑗 is the total current play time for the 𝑤𝑤𝑗𝑗𝑗𝑗 .
Let 𝑆𝑆𝑗𝑗𝑗𝑗 is the success and 𝐹𝐹𝑗𝑗𝑗𝑗 is the failure, both initialized to zero

1. for t=1 to T do /* start playing */
2. D = random example of the training data

3.
 if any 𝑛𝑛𝑗𝑗𝑗𝑗 = 0 then choose the current index 𝑗𝑗, 𝑖𝑖 /* Pull each weight at least once */
 else Call the relevant MAB algorithm, returning the index of the selected weight:
 𝑗𝑗, 𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀(∗ 𝑎𝑎𝑎𝑎𝑎𝑎)

4. Perform forward propagation on D to compute 𝐿𝐿(𝐷𝐷|𝑊𝑊)
5. Hold the value of the selected weight, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑤𝑤𝑗𝑗𝑗𝑗
6. Set the weight to zero 𝑤𝑤𝑗𝑗𝑗𝑗 = 0
7. Perform forward propagation on D to compute 𝐿𝐿(𝐷𝐷|𝑊𝑊′)
8. Set the value of the weight to previous value, 𝑤𝑤𝑗𝑗𝑗𝑗 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
9. δ𝐿𝐿 = 𝐿𝐿(𝐷𝐷|𝑊𝑊) − 𝐿𝐿(𝐷𝐷|𝑊𝑊′)
10 𝑋𝑋𝑗𝑗𝑗𝑗,𝑡𝑡 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(δ𝐿𝐿)

11 Update the cumulative average reward of the current arm
 𝜇𝜇𝑗𝑗𝑗𝑗,𝑡𝑡+1 = (𝑛𝑛𝑗𝑗𝑗𝑗,𝑡𝑡 − 1)/𝑛𝑛𝑗𝑗𝑗𝑗 ∗ 𝜇𝜇𝑗𝑗𝑗𝑗,𝑡𝑡 + 1/𝑛𝑛𝑗𝑗𝑗𝑗 ∗ 𝑋𝑋𝑗𝑗𝑗𝑗,𝑡𝑡

12 end for
13 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝜇𝜇)
14 end main program

15 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

16 Set to zero the weights that have most rewards
17 return PrunedModel
18 end Function

19 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛿𝛿𝛿𝛿)

20 if (bounded reward) then /* For example, reward for UCB1, */
21 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+= 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝛿𝛿𝛿𝛿 + 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) /𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
22 else /* Reward for Thompson Sampling and BayesUCB */
23 if 𝛿𝛿𝛿𝛿 < 0 then reward=0, 𝐹𝐹𝑗𝑗𝑗𝑗,𝑡𝑡+1 = 𝐹𝐹𝑗𝑗𝑗𝑗,𝑡𝑡 + 1
24 else reward=1, 𝑆𝑆𝑗𝑗𝑗𝑗,𝑡𝑡+1 = 𝑆𝑆𝑗𝑗𝑗𝑗,𝑡𝑡 + 1
25 end if
26 end if
27 end Function

Figure 5.2: The generic algorithm of a MAB pruning the weighs.

Chapter 5: Multi-Armed Bandit for Pruning Weights

66

Example: To illustrate the idea behind different MAB algorithms for pruning weights, a

small neural network model with two inputs, one hidden layer with eight neurons, and two

outputs was created and trained using synthetic data12 consisting of the 1000 examples

shown in Figure 5.3. The network was trained with 100 epochs and logistic loss function to

get accuracy of 84% on training data set.

Figure 5.3: Synthetic data for purpose of explaining MAB pruning algorithms.

The following subsections describe the different MAB based pruning algorithms and use

this example to illustrate the different algorithms,

The direct method [111] works by removing weights one after the other and tests the pruned

network on all data sets. Based on the change of the loss function, a reward is given to each

weight on the current example. Table 5-1 shows the bounded rewards using Equation 5.1

and Table 5-2 shows the binary rewards, when the weights 𝑤𝑤𝑗𝑗𝑗𝑗 are removed one by one and

forward propagation used over first ten examples (from 1000 examples) of the data set.

12 https://github.com/SalemAmeen/synthesis-Dataset/blob/master/toy%20example%20direct%20method-

Second%20example.ipynb

5.1.1. Direct Method

Chapter 5: Multi-Armed Bandit for Pruning Weights

67

 Example1 Example2 Example3 Example4 Example5 Example6 Example7 Example8 Example9 Example10

w11 0 0 0 0 0 0 0 0 0 0
w12 0 0 0 0 0 0 0 0 0 0

w13 0 0 0 0 0 0 0 0 0 0

w14 0 0 0 0 0 0 0 0 0 0

w15 0.082 0 0.059 0 0 0 0 0 0 0

w16 0 0 0 0 0 0 0 0 0 0

w17 0 0 0 0 0 0.142 0 0 0 0

w18 0.073 0.043 0.078 0.004 0 0 0.028 0.033 0 0

w21 0 0 0 0 0 0 0 0 0 0

w22 0.005 0 0 0 0 0 0 0 0 0

w23 0 0 0 0 0 0.819 0 0 0.004 0.047

w24 8.94E-08 0 0 0 0.019 0 0 0 0 0

w25 0.071 0.006 0.061 0 0 0 0 0.001 0 0

w26 0 0 0 0 0 0 0 0 0 0

w27 0 0 0 0 0 0 0 0 0 0

w28 0.084 0.048 0.089 0.004 0 0 0.032 0.037 0 0

Table 5-1: Cumulative average reward for bounded rewards when pruning a weight.

 Example1 Example2 Example3 Example4 Example5 Example6 Example7 Example8 Example9 Example10

w11 0 0 0 0 0 0 0 0 0 0

w12 0 0 0 0 0 0 0 0 0 0

w13 0 0 0 0 0 0 0 0 0 0

w14 0 0 0 0 0 0 0 0 0 0

w15 1 0 1 0 0 0 0 0 0 0

w16 0 0 0 0 0 0 0 0 0 0

w17 0 0 0 0 0 1 0 0 0 0

w18 1 1 1 1 0 0 1 1 0 0

w21 0 0 0 0 0 0 0 0 0 0

w22 1 0 0 0 0 0 0 0 0 0

w23 0 0 0 0 0 1 0 0 1 1

w24 1 0 0 0 1 0 0 0 0 0

w25 1 1 1 0 0 0 0 1 0 0

w26 0 0 0 0 0 0 0 0 0 0

w27 0 0 0 0 0 0 0 0 0 0

w28 1 1 1 1 0 0 1 1 0 0

Table 5-2: Cumulative average reward for binary rewards when pruning a weight.

Chapter 5: Multi-Armed Bandit for Pruning Weights

68

For example, 𝑤𝑤15 gets 0.082 while in Table 5-2, it gets one when it is tested on the first

example since the performance of the model improves when this weight is removed. In the

second column, when the second example is tried, the performance does not improve and

the algorithm gets zero reward. The next step restores 𝑤𝑤15 and tests the following weights

one by one. Finally, the weights that have the most cumulative average rewards are removed.

The epsilon-greedy algorithm begins by randomly selecting a weight to remove and then

computing the performance on each example of the data followed by the cumulative average

reward using Equation 4.3. The weight is then restored, and in the following trails, the

algorithm will either choose the next weight randomly or the best weight to date depending

on the value of a random number (i.e. explore). Figure 5.4 shows the MAB function (step 3)

in Algorithm 5.1 where there are K weights, 𝜇𝜇𝑗𝑗𝑗𝑗 denotes the current average reward, Rnd is a

random number between zero and one.

Algorithm 5.2 Epsilon- Greedy for K arms
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀(𝜇𝜇)
 Required: Parameter epsilon (0,1)

 Select 𝑎𝑎𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇11, 𝜇𝜇12, … 𝜇𝜇𝑗𝑗𝑗𝑗 , … , 𝜇𝜇𝐽𝐽𝐽𝐽� , 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 {∀𝐾𝐾 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡}, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 return j,i
end Function

Figure 5.4: Function of Epsilon-Greedy algorithm to prune K weights.

At the end of playing time, there will be a matrix of cumulative average rewards according to

the performance of the model. The final step involves pruning the weights according to the

cumulative average rewards matrix by setting remove those weights that have most

cumulative average rewards.

As an example, consider the example in Table 5-1 with epsilon sets to 0.5. The algorithm

first explores and selects a weight randomly. Assume 𝑤𝑤22 is chosen and when tested on

Example1, it results in a reward of 0.005.

The algorithm will update the cumulative average reward and given this weight was

successful, it is kept for exploiting. The algorithm will generate a random number (𝑅𝑅𝑅𝑅𝑅𝑅)

between zero and one (0.95). The generated number is greater than epsilon (0.95>0.5) so the

5.1.2. Epsilon-Greedy Algorithm for Pruning the Weights

Chapter 5: Multi-Armed Bandit for Pruning Weights

69

algorithm will explore and suppose that weight 𝑤𝑤18 is chosen randomly and forward

propagation on a random example (Example3 is chosen randomly) results in a reward of

0.078. This is added to the cumulative average reward for 𝑤𝑤18 and its play time incremented.

The algorithm continues to explore and exploit the weights until the playing time is finished.

Figure 5.5 illustrates the Epsilon-Greedy algorithm while exploring and exploiting based on

the 𝑅𝑅𝑅𝑅𝑅𝑅 values.

In the first step (Figure 5.5 (i)), Epsilon greedy begins with selecting 𝑤𝑤27which results in a

reward of 0. In the second step, it selects 𝑤𝑤18. Steps 1 and 2 illustrates a situation where a

weight is chosen randomly and step 3 shows a situation where exploitation takes place and

it selects 𝑤𝑤17 which results in a reward of 1.18.

Finally, the algorithm prunes the weights that have most cumulative average rewards.

Chapter 5: Multi-Armed Bandit for Pruning Weights

70

Figure 5.5: Epsilon-Greedy for pruning 16 weights at different play times. The red dots
denote the chosen weight to playing. The top one played first and the bottom one played

the last.

Chapter 5: Multi-Armed Bandit for Pruning Weights

71

The WSLS algorithm selects the weight that has highest probability to win until it loses then

it explores another weight. If the data set is less noisy and the deep neural networks trained

well then, we expect the less important weights will be less important over all examples or

batches. However, data is often noisy in practice and the previous assumption might not work

but WSLS achieves good results in machine learning and decision making applications [178,

191]. Figure 5.6 presents the WSLS function based on pursuit method [192] which is called

from Step 3 of Algorithm 5.1.

Algorithm 5.3 WSLS based on pursuit method for K arms
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡, 𝜇𝜇)
 Required: Parameter 𝛽𝛽 ∈(0,1)
 Select 𝑤𝑤𝑗𝑗𝑗𝑗 based on the highest probability 𝑃𝑃𝑡𝑡

 Update the probabilities for all arms

𝑃𝑃𝑡𝑡+1(𝑎𝑎𝑗𝑗𝑗𝑗) = �
𝑃𝑃𝑡𝑡(𝑎𝑎𝑗𝑗𝑗𝑗) + 𝛽𝛽(1 − 𝑃𝑃𝑡𝑡�𝑎𝑎𝑗𝑗𝑗𝑗�), 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑃𝑃𝑡𝑡�𝑎𝑎𝑗𝑗𝑗𝑗� − 𝛽𝛽𝑃𝑃𝑡𝑡�𝑎𝑎𝑗𝑗𝑗𝑗�, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 return j,i
end Function

Figure 5.6: Function of WSLS based on pursuit algorithm to prune K weights.

To give more intuition about the algorithm we will use the example given in Table 5-1.

The algorithm starts with uniform probabilities assigned to each weight, 𝑃𝑃𝑖𝑖 = 1 𝐾𝐾 = 0.063⁄ .

At each turn t, the probabilities are re-computed based Equation 4.4 and is shown in Table

5-3. The algorithm will start by pruning a weight based on the highest probability, for

example 𝑤𝑤17 is chosen. Then, the algorithm will check the performance (on say, Example 2)

after pruning 𝑤𝑤17. According to Table 5-1; this will not result in a reward. The algorithm

will therefore shift and explore another arm with highest probability, 𝑤𝑤23, remove it and

compute the change in loss and get the reward after performing forward propagation on a

random example (Example3). As the reward is zero the algorithm will choose another arm

with the highest probability, say 𝑤𝑤17 in Example1 where the reward is 0. The process will

continue until the end of playing time.

5.1.3. Win-Stay, Lose-Shift Algorithm for Pruning the Weights

Chapter 5: Multi-Armed Bandit for Pruning Weights

72

t=1 to 16 Example6 t=17 Example 2 t=17 Example 3 t=17 Example 1

X P X P X P X P

w11 0.062 0 0.050 0.050 0.050 0.050
w12 0.062 0 0.050 0.050 0.050 0.050
w13 0.062 0 0.050 0.050 0.050 0.050
w14 0.062 0 0.050 0.050 0.050 0.050
w15 0.062 0 0.050 0.050 0.050 0.050
w16 0.062 0 0.050 0.050 0.050 0.050
w17 0.062 0.142 0.112 0 0.089 0.089 0.089
w18 0.062 0 0.050 0.050 0.050 0.050
w21 0.062 0 0.050 0.050 0.050 0.050
w22 0.062 0 0.050 0.050 0.050 0.050
w23 0.062 0.819 0.112 0.112 0 0.089 0 0.071
w24 0.062 0 0.050 0.050 0.050 0.050
w25 0.062 0 0.050 0.050 0.050 0.050
w26 0.062 0 0.050 0.050 0.050 0.050
w27 0.062 0 0.050 0.050 0.050 0.050
w28 0.062 0 0.050 0.050 0.050 0.050

Table 5-3: WSLS updated the probability P giving the reward X at each trail. The green
cell represents the weight with the highest probability which will be played at the next.

As described in Chapter 4, initially, the UCB family the algorithm will explore pruning all

the weights on the data at least once. Then, the UCB1 policy selects the weights to consider

based on the upper confidence bounds. Figure 5.7 presents the function that is called from

Step 3 of Algorithm 5.1.

Algorithm 5.4 UCB1 for K arms
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡, 𝜇𝜇, 𝑛𝑛 , 𝐾𝐾)

 Select arm 𝑎𝑎𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖∈{∀𝐾𝐾}

(𝜇𝜇𝑗𝑗𝑗𝑗 + �
2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑛𝑛𝑗𝑗𝑗𝑗
)

 return j,i
end Function

Figure 5.7: Function of UCB1 algorithm to prune K weights.

5.1.4. UCB1 Algorithm for Pruning the Weights

Chapter 5: Multi-Armed Bandit for Pruning Weights

73

As an illustration, consider the example given in Table 5-1. First the algorithm will play each

weight at least once and receive reward. Table 5-4 shows how UCB1 proceeds where it shows

each trail except the first four columns which represents the trail from 1 to 16. In each trail,

the payoff X, number of playing each weight n, the cumulative average reward (µ), the

padding (computed from �
2logt

nji
) and, the sum of padding and µ which is represented by wji .

Figure 5.8 illustrates the algorithm visually, with the lines showing the range of the rewards

for each weight and red lines highlighting the weights selected at each time step. For example,

at t=79 and 80 the algorithm chooses the same weight (𝑤𝑤17) to be pruned and t=81, 𝑤𝑤27 is

chosen. After the play time is finished, the weights with most cumulative average rewards

removed.

Chapter 5: Multi-Armed Bandit for Pruning Weights

74

Th

e
m

ea
n

an
d

un
ce

rta
in

ty

 Weights (Arms) at t=79

Th
e

m
ea

n
an

d
un

ce
rta

in
ty

 Weights (Arms) at t=80

Th
e

m
ea

n
an

d
un

ce
rta

in
ty

 Weights (Arms) at t=81

Figure 5.8: UCB1 for pruning 16 weights at different play times. Starting from the upper
left till the bottom at different time. The vertical lines represent the cumulative average

reward (bottom) and the padding function (top). The red line is chosen for playing.

Chapter 5: Multi-Armed Bandit for Pruning Weights

75

Weight
t=1 to 16/Exampl1 t=17/Example3 t=18/Example4

X n µji Pq Wji X n µji Pf Wji X n µji Pf Wji

w11 0 1 0 1.861 1.861 0 1 0 1.893 1.893 0 1 0 1.893 1.893

w12 0 1 0 1.861 1.861 0 1 0 1.893 1.893 0 1 0 1.893 1.893

w13 0 1 0 1.861 1.861 0 1 0 1.893 1.893 0 1 0 1.893 1.893

w14 0 1 0 1.861 1.861 0 1 0 1.893 1.893 0 1 0 1.893 1.893

w15 0.082 1 0.082 1.861 1.943 0.059 2 0.070 1.700 1.770 0 2 0.070 1.700 1.771

w16 0 1 0 1.861 1.861 0 1 0 1.893 1.893 0 1 0 1.893 1.893

w17 0 1 0 1.861 1.861 0 1 0 1.893 1.893 0 1 0 1.893 1.893

w18 0.073 1 0.073 1.861 1.935 0 1 0.073 1.893 1.966 0.004 2 0.985 1.700 2.686

w21 0 1 0 1.861 1.861 0 1 0 1.893 1.893 0 1 0 1.893 1.893

w22 0.005 1 0.005 1.861 1.867 0 1 0.005 1.893 1.898 0 1 0.005 1.893 1.899

w23 0 1 0 1.861 1.861 0 1 0 1.893 1.893 0 1 0 1.893 1.893

w24 8.94E-08 1 8.94E-08 1.861 1.861 0 1 8.94E-08 1.893 1.893 0 1 8.94E-08 1.893 1.893

w25 0.071 1 0.071 1.861 1.933 0 1 0.071 1.893 1.964 0 1 0.071 1.893 1.965

w26 0 1 0 1.861 1.861 0 1 0 1.893 1.893 0 1 0 1.893 1.893

w27 0 1 0 1.861 1.861 0 1 0 1.893 1.893 0 1 0 1.893 1.893

w28 0.084 1 0.084 0.084 0 1 0.084 0 0.084 0 1 0.084 1.893 1.978

Max 1.943 1.966 0.985 2.686

Table 5-4: UCB1 method where X is the reward, n number of plays, t is the total playing time so far, Pf is the padding function and Wji is the
weights (the algorithm will choose the value). µji is cumulative average reward and green colour cell is the arm will be played next.

Chapter 5: Multi-Armed Bandit for Pruning Weights

76

In KL-UCB, the padding is computed by going beyond the mean, 𝜇𝜇(𝑎𝑎) of an arm 𝑎𝑎 by a

certain distance based on the Kullback-Leibler measure (d). That, is KL-UCB seeks the

maximum q that satisfies the following:

𝑑𝑑�𝜇𝜇𝑗𝑗𝑗𝑗 , 𝑞𝑞� ≤
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑛𝑛𝑗𝑗𝑗𝑗

Where 𝑛𝑛𝑗𝑗𝑗𝑗 is the number of times weight has been pulled and t is the number of rounds and c

is constant (recommended to be zero [180, 181]).

For example, for weight 𝑤𝑤11 in Figure 5.10, KL-UCB seeks the largest q that meets:

𝑑𝑑(0.26, 𝑞𝑞) ≤ 64
4

= 1.04.

Figure 5.9 shows the function this is called from Algorithm 5.1.

Algorithm 5.5 KL-UCB for K arms
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡, 𝜇𝜇, 𝑛𝑛, 𝐾𝐾)
 Select 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗∈{∀𝐾𝐾}
(𝑑𝑑(𝜇𝜇𝑗𝑗𝑗𝑗 , 𝑞𝑞) ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑛𝑛𝑗𝑗𝑗𝑗
)

 return j,i
end Function

Figure 5.9: Function of KL-UCB algorithm for pruning the K weights.

Figure 5.10 represents determining the value of q based on 𝑑𝑑�𝜇𝜇𝑗𝑗𝑗𝑗, 𝑞𝑞� ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+𝑐𝑐 𝑙𝑙𝑜𝑜𝑔𝑔 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛𝑗𝑗𝑗𝑗

. The

horizontal (orange) line represents the value of 𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)
𝑛𝑛𝑗𝑗𝑗𝑗

 and the curve (blue) line represents the

𝑑𝑑�𝜇𝜇𝑗𝑗𝑗𝑗 , 𝑞𝑞�. For example, the weight 𝑤𝑤12 has tighter (𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)
𝑛𝑛12

) at trail 66 than at trails 64 and 65.

All the weights are considered and the one with the maximum q is selected.

5.1.5. KL-UCB Algorithm for Pruning the Weights

Chapter 5: Multi-Armed Bandit for Pruning Weights

77

Figure 5.10: compute q of the weight where the charts on the top represent the weights at the play time between (t=49 to t=64). Then, the charts
at the bottom represent computing the maximum q for the current chosen weight.

Chapter 5: Multi-Armed Bandit for Pruning Weights

78

Thompson Sampling [193] selects the next weight based on drawing a random sample from

a distribution representing the prior knowledge of the weights. This is then used to assign a

reward after evaluating the loss function.

Given 𝑆𝑆𝑎𝑎, the number of times the arm 𝑎𝑎 yields a positive reward and 𝐹𝐹𝑎𝑎, the number of

times an arm fails to yield a reward the probability of succeeding is drawn from a Beta

distribution, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑥𝑥; 𝑆𝑆𝑎𝑎 + 1, 𝐹𝐹𝑎𝑎 + 1) where

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑥𝑥; 𝛼𝛼, 𝛽𝛽) =
𝛤𝛤(𝛼𝛼 + 𝛽𝛽)
𝛤𝛤(𝛼𝛼)𝛤𝛤(𝛽𝛽)

𝑥𝑥𝛼𝛼−1(1 − 𝑥𝑥)𝛽𝛽−1

While 𝛤𝛤 is called Gamma function and the mean and variance are given by

𝜇𝜇 =
𝛼𝛼

𝛼𝛼 + 𝛽𝛽

𝜎𝜎2 =
𝛼𝛼𝛼𝛼

(𝛼𝛼 + 𝛽𝛽)2(𝛼𝛼 + 𝛽𝛽 + 1)

Figure 5.11 presents the function that is called from the algorithm in Algorithm 5.1 based on

Thompson Sampling with binary rewards for K arms. Giving the earlier example, the

algorithm first plays every weight once. Then, the success 𝑆𝑆𝑗𝑗𝑗𝑗 and the failure 𝐹𝐹𝑗𝑗𝑗𝑗 are updated

and the random sample is drawn from the Beta distribution of each weight.

Table 5-5 illustrates the algorithm. For example, at time t=16, the weight that has the highest

number is played the next which is weight 𝑤𝑤22.

Algorithm 5.6 Thompson Sampling for binary bandits for K arms
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡, 𝑆𝑆, 𝐹𝐹, 𝐾𝐾)
 Repeat for all weights (∀𝐾𝐾 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡)
 Sample 𝜃𝜃𝑗𝑗𝑗𝑗(𝑡𝑡) for 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑆𝑆𝑗𝑗𝑗𝑗 + 1, 𝐹𝐹𝑗𝑗𝑗𝑗 + 1) distribution
 end for
 Select 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗∈{∀𝐾𝐾}
𝜃𝜃𝑗𝑗𝑗𝑗(𝑡𝑡)

 return j,i
end Function

Figure 5.11: Thompson Sampling where there are K weights and 𝑤𝑤𝑖𝑖𝑖𝑖 is the weight
selected to play next.

At next trail t=17, weight 𝑤𝑤28 is chosen as it has the largest sample which is drawn from

Beta distribution based on total success and failure. At t=18, the weight 𝑤𝑤28 is chosen for

5.1.6. Thompson Sampling Algorithm for Pruning the Weights

Chapter 5: Multi-Armed Bandit for Pruning Weights

79

playing. Then, at t=19, 𝑤𝑤23 is chosen and so on. Figure 5.13 illustrates the kind of

distributions that can arise and examples of samples that are drawn.

Bayesian UCB (BayesUCB) is based on maintaining, updating and using a probability

distribution for each arm, where the probability distribution takes the form of the beta

distribution defined by the number of successes and failures of each arm 𝑆𝑆𝑎𝑎
𝑡𝑡−1, 𝐹𝐹𝑎𝑎

𝑡𝑡−1, where t

is the number of rounds. The upper bound used for each weight is determined by using the

quantile function:

Q(α,λ) such that P(X≤Q(α,λ)) = α

Where λ is the distribution and α is the level. BayesUCB uses increasingly tighter bounds

as the number of rounds increases with α set to 1 − 1
𝑡𝑡
 .

The algorithm prunes the weights depending on the rewards gained during the playing time

and returns the current weight for playing. Then, the algorithm returns the weight that has

the largest quantile. Figure 5.12 illustrates the function that replaced MAB function in Figure 5.2

based on BayesUCB.

Algorithm 5.7 BayesUCB for K arms
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡, 𝑆𝑆, 𝐹𝐹, 𝐾𝐾)
 Required: 𝜆𝜆𝑗𝑗𝑗𝑗

𝑡𝑡−1 which is define by S and F
 Repeat for all weights (∀𝐾𝐾 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡)
 Compute 𝑞𝑞𝑗𝑗𝑗𝑗(𝑡𝑡) = 𝑄𝑄(1 − 1

𝑡𝑡
, 𝜆𝜆𝑗𝑗𝑗𝑗

𝑡𝑡−1)
 end for
 Select 𝑎𝑎𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗∈{∀𝐾𝐾}
𝑞𝑞𝑗𝑗𝑗𝑗(𝑡𝑡)

 return j,i
end Function

Figure 5.12: Function of BayesUCB to prune K weights.

Table 5-6 shows the results of applying BayesUCB on the example in Table 5-2 at different

play times. At time t=16, the algorithm will choose 𝑤𝑤15 as it has the largest quantile. Then,

at t=17,18 and 19 the weights 𝑤𝑤18, 𝑤𝑤28 and 𝑤𝑤22 are chosen Figure 5.14 illustrates how the

quantile function is used to select between different weights.

5.1.7. BayesUCB Algorithm for Pruning the Weights

Chapter 5: Multi-Armed Bandit for Pruning Weights

80

Weight
t=1to16/Example1 t=17/Example3 t=18/Example10 t=19/Example8

X S F Sample (beta) X S F Sample (beta) X S F Sample (beta) X S F Sample (beta)
w11 0 0 1 0.335 0 0 1 0.156 0 0 1 0.546 0 0 1 0.299
w12 0 0 1 0.057 0 0 1 0.158 0 0 1 0.390 0 0 1 0.215
w13 0 0 1 0.011 0 0 1 0.250 0 0 1 0.011 0 0 1 0.551
w14 0 0 1 0.500 0 0 1 0.559 0 0 1 0.068 0 0 1 0.119
w15 1 1 0 0.621 0 1 0 0.831 0 1 0 0.912 0 1 0 0.446
w16 0 0 1 0.035 0 0 1 0.374 0 0 1 0.149 0 0 1 0.112
w17 0 0 1 0.535 0 0 1 0.368 0 0 1 0.681 0 0 1 0.020
w18 1 1 0 0.559 0 1 0 0.867 0 1 0 0.506 0 1 0 0.156
w21 0 0 1 0.527 0 0 1 0.555 0 0 1 0.238 0 0 1 0.566
w22 1 1 0 0.888 0 1 1 0.190 0 1 1 0.424 0 1 1 0.090
w23 0 0 1 0.152 0 0 1 0.130 0 0 1 0.352 0 0 1 0.869
w24 1 1 0 0.886 0 1 0 0.849 0 1 1 0.748 0 1 1 0.567
w25 1 1 0 0.767 0 1 0 0.474 0 1 0 0.703 0 1 0 0.070
w26 0 0 1 0.056 0 0 1 0.270 0 0 1 0.870 0 0 1 0.286
w27 0 0 1 0.000 0 0 1 0.149 0 0 1 0.132 0 0 1 0.097
w28 1 1 0 0.601 0 1 0 0.910 0 1 1 0.953 1 2 1 0.589

Max 0.888 0.910 0.953 0.869

Table 5-5: Results of Thompson Sampling where X is the current binary reward for each weight, t the total play time, S is the success, and F is
failure and Sample (beta) is drawn from the beta distribution for each weight. At each time step, the algorithm will choose the weight that has

the highest reward among the others which is shown in the green cell.

Chapter 5: Multi-Armed Bandit for Pruning Weights

81

Figure 5.13: Thompson Sampling for choosing the arm to play next based on the sample from beta distribution. The two arms on the top are
chosen from the first column in the previous table while the charts in the bottom are chosen from the last column of the same table. On the top,
the algorithm will choose the arm on the left as it has higher reward while on the bottom the algorithm will choose the arm on the right as it has

higher reward.

Chapter 5: Multi-Armed Bandit for Pruning Weights

82

Weight
t=1to16/Example1 t=17/Example5 t=18/Example6 t=19/Example10

X S F 1-(1/t) Quantile (beta) X S F 1-(1/t) Quantile (beta) X S F 1-(1/t) Quantile (beta) X S F 1-(1/t) Quantile (beta)

w11 0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771

w12 0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771

w13 0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771

w14 0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771

w15 1 1 0 0.9375 0.968 0 1 1 0.941 0.853 0 1 1 0.944 0.857 0 1 1 0.947 0.861

w16 0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771

w17 0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771

w18 1 1 0 0.9375 0.968 0 1 0 0.941 0.970 0 1 1 0.944 0.857 0 1 1 0.947 0.861

w21 0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771

w22 1 1 0 0.9375 0.968 0 1 0 0.941 0.970 0 1 0 0.944 0.972 0 1 0 0.947 0.973

w23 0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771

w24 1 1 0 0.9375 0.968 0 1 0 0.941 0.970 0 1 0 0.944 0.972 0 1 0 0.947 0.973

w25 1 1 0 0.9375 0.968 0 1 0 0.941 0.970 0 1 0 0.944 0.972 0 1 0 0.947 0.973

w26 0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771

w27 0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771

w28 1 1 0 0.9375 0.968 0 1 0 0.941 0.970 0 1 0 0.944 0.972 0 1 1 0.947 0.861

Max 0.750 0.970 0.972 0.973

Table 5-6: Results of BayesUCB on different play time where X is the current binary reward for each weight, t the total play time, S is the
success, and F is failure and Quantile is drawn from the beta distribution for each weight with probability 1-(1/t). At each time step, the

algorithm will choose the weight that has the highest quantile among the others which is shown in the green cell.

Chapter 5: Multi-Armed Bandit for Pruning Weights

83

Figure 5.14: BayesUCB for choosing the arm to play next based on the sample from the beta distribution. The two arms on the top are chosen
from the first column in Table 5-5 while the charts at the bottom are chosen from the last column of the same table. On the top, the algorithm

will choose the arm on the left as it has higher quintile while on the bottom the algorithm will choose the arm on the right as it has higher
quintile

Chapter 5: Multi-Armed Bandit for Pruning Weights

84

We train our models using stochastic gradient decent with a batch size of 10, momentum of

0.9, and weight decay is set to 0.005. The learning rate is initialized as 0.01. The Softmax

function is used as the activation function. The experiments were implemented on 12-core

Intel(R) Core i7-5820 3.30-GHz and 64 GB RAM. The methods developed and implemented

using TensorFlow and Python.

The experimental methodology involved carrying out two sets of experiments. In the first,

the NNSYSID13 package was used to build neural networks for 12 data sets from the UCI

machine learning repository as shown in Table 5-7. The inputs and outputs reflected the

features and classes of the data sets. For consistency, each network adopted two hidden layers,

with each hidden layer utilizing 20 neurons. The neural networks were then pruned using the

different methods and their performance analysed. In the second experiment, LeNet’s deep

learning model [83] with two convolutional layers and two fully connected layers was

adopted and trained on the MNIST data set. The model was then pruned using the different

methods and the methods compared.

The following subsections present the results from the two sets of experiments. The

methodology for the comparison is based on the recommendations by Demšar [194] who

advocate the use of a non-parametric test due to Friedman test [195] to determine if there is a

difference amongst the methods, and if so, to follow up with the use of the Nemenyi test [196]

to assess if one method is significantly better than another.

13 http://www.iau.dtu.dk/research/control/nnsysid.html

5.2. Evaluation

Chapter 5: Multi-Armed Bandit for Pruning Weights

85

Full name of the Data set No. of
examples

No. of
features

Number of
classes

Banknote Authentication 1,372 4 2
Blood Tra. Service Centre 748 4 2

Credit Approval 690 15 2
Haberman's Survival 306 3 2

Liver Disorders 345 6 2
MAGIC Gamma Tele. 19,020 10 2
Mammographic Mass 961 5 2

MONK's Problems 432 6 2
Connectionist Bench 208 59 2

Spambase 4,601 56 2
SPECTF Heart 267 44 2

Tic-Tac-Toe Endgame 958 9 2

Table 5-7: UCI data sets

The empirical evaluation on the UCI data is carried out in comparison with the recent and

most famous algorithms:

i. Random Pruning, which is the simplest algorithm, and involves random selection

of weights that are pruned, an evaluation of the pruned network and then a decision

on whether the removal of the weight had a positive or negative effect.

ii. A Network Pruning method [134] that removes weights that are below a user

specified threshold value.

iii. Optimal Brain Damage (OBD), a method developed by LeCun et al. [125], that

was one of the first methods for reducing the size of neural networks. OBD

removes the weights that if set to zero would have least effect on the training error.

To measure the effect of changing weights, LeCun et al. [125] used a Taylor series

approximation for the change in error that would occur if the weights were

perturbed (as described in Chapter 3). This analysis leads to the need to solve a

Hessian matrix which can be computationally expensive. To reduce this

computational cost, LeCun et al. [125] ignored the off-diagonal values.

5.2.1. Results from the Experiments on the UCI Data sets

Chapter 5: Multi-Armed Bandit for Pruning Weights

86

iv. Optimal Brain Surgeon (OBS), a method due to Hassibi et al. [126-128] in which

the Hessian matrix that results from the analysis for OBD is solved without making

the assumption that the off-diagonal elements can be ignored.

Table 5-8 presents the errors ∈ (where the accuracy is 100-∈) for each of the pruning

methods on data sets from the UCI repository. after pruning 20% of the weights using the

different methods.

Chapter 5: Multi-Armed Bandit for Pruning Weights

87

Data set Model E. Greedy WSLS UCB1 KL-UCB TS BayesUCB OBD OBS
Pruning
Network

Random

Banknote Authentication 0.86 0.86 0.89 0.86 0.86 0.86 0.86 0.89 0.87 4.08 5.98

Blood Tra. Service Centre 0.94 0.93 1.05 0.93 0.93 0.93 0.93 0.93 0.93 1.29 0.93

Credit Approval 0.97 0.95 0.93 0.93 0.96 1.63 0.96 1.98 9.47 3.4 23.04

Haberman's Survival 0.94 0.93 0.94 0.93 0.93 0.93 0.93 0.93 0.93 1.48 1.5

Liver Disorders 0.95 0.95 0.96 0.95 0.95 0.95 0.95 0.95 1.7 1.47 1

MAGIC Gamma Tele. 0.91 0.95 1.17 0.91 0.91 0.91 0.91 0.92 0.97 3.34 1.28

Mammographic Mass 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 3.44 0.98

MONK's Problems 0.95 0.97 1.14 0.95 0.95 0.95 0.95 0.95 6.13 1 0.98

Connectionist Bench 0.97 1.14 0.97 0.97 0.97 1.92 0.97 0.97 0.97 1.01 1.01

Spambase 0.93 0.95 0.94 0.94 0.94 0.94 0.94 0.95 5.22 2.52 5.86

SPECTF Heart 0.91 0.92 0.91 0.91 0.91 0.93 0.91 0.91 0.99 13.1 0.91

Tic-Tac-Toe Endgame 0.91 0.91 2.43 0.91 0.91 0.91 0.91 0.91 0.92 22.15 12.77

Table 5-8: Computed error on validation data set before and after pruned the model. The green cell shows the method with less error while red
cell shows the method with large error. The arrows point up if the error high, down if it is low or in right direction if it is in between.

Chapter 5: Multi-Armed Bandit for Pruning Weights

88

Table 5-9 presents the average rank of the 11 methods over the 12 data sets, with UCB1 being

ranked the most effective in terms of reducing the error rate and the Network Pruning method

the least effective. Applying the Friedman test results in a p-value of 6. 99×10−10 confirming

there is a significant difference amongst at least some of the methods.

Name of Method Mean Rank

UCB1 3.75
Bayesian UCB (BayesUCB) 4.00

KL-UCB 4.00
Model before pruning (Model) 4.62

Thompson Sampling (TS) 5.20
OBD 5.25

Epsilon-Greedy (E. Greedy) 5.62
Win-Stay, Loss-Shift (WSLS) 6.79

OBS 7.70
Random Pruning (random) 9.00

Network Pruning 10.04

Table 5-9: Results of the average rank of the methods on 12 different data sets.

Figure 5.15 depicts the results from the Nemnyi post-hoc test. The methods are plotted

according to their average rank, where the best ranked methods are to the left with the Critical

Difference (CD=4.33). For example, UCB1 has mean plus CD equal to nearly 8 which is

statistical better than Network Pruning with mean 10.

The CD for the Nemenyi test is calculated from:

𝑞𝑞𝛼𝛼,𝐾𝐾�𝐾𝐾(𝐾𝐾 + 1)
6𝑁𝑁

Where 𝛼𝛼 is the confidence which is set to 0.05, K is the number of models (or classifiers),

and N the number of measurements (data sets). To compute 𝑞𝑞𝛼𝛼,𝐾𝐾, the Studentized range

statistic for infinite degrees of freedom divided by squared root of two is used14.

The horizontal lines group the methods that are not significantly different when the Nemnyi

post-hoc test is used at the 0.05 level. These results show that:

• The UCB family of methods performed significantly better than Random Pruning

and Network Pruning method.

14 http://kourentzes.com/forecasting/wp-content/uploads/2014/05/nemenyi.csv

Chapter 5: Multi-Armed Bandit for Pruning Weights

89

• Use of Thompson Sampling for pruning also performed significantly better than

Network Pruning method.

• The performance of BayesUCB and KL-UCB is very similar, which is consistent

with the theoretical results due to Kaufmann et al. [197].

• Although the bandit based methods have a higher average rank, the Nemnyi test does

not distinguish these methods significantly from OBD or OBS in terms of minimizing

the error.

 mean + CD

Figure 5.15: Comparison of all classifiers against each other with the Nemenyi test. Lines
show the critical difference for each method any Groups of classifiers that are not

significantly different (at p = 0.05) are out of the lines. The blue dot shows the rank mean
while the line determine the CD which 4.33.

Chapter 5: Multi-Armed Bandit for Pruning Weights

90

Table 5-10 presents the run-time performance of these methods, showing that the UCB

family, WSLS, Epsilon-Greedy and Thompson Sampling have the best run-time performance

which is followed by OBD. OBD and OBS are more computationally intensive given the

need to compute Hessian matrix. Thus, given the ranking of the methods given in Figure 5.15,

UCB methods achieve better performance on average than OBD and OBS but in significantly

less time.

Table 5-10: Run-time performance in seconds for the different pruning methods on
different data sets. Green cell shows the methods that have less computation time while

the red cell shows the ones with the highest computation time.

The MNIST (Modified National Institute of Standards and Technology) data set is a well-

known collection of handwritten digits [83] that has been used in evaluating many

5.2.2. Results for the MNIST Data set

Chapter 5: Multi-Armed Bandit for Pruning Weights

91

handwriting recognition algorithms 15 . One of the most widely adopted deep learning

architectures for this data set and problem is the LeNet model [83]. In this model, the network

has two 5x5 convolutional layers with 20 and 50 filters respectively, and two fully connected

layers with 500 and 10 (output layer) neurons. Table 5-11 summarizes the number of

parameters including the weights and biases in each layer of this model. The activation and

pooling layers have no parameters.

Layer Parameters Weights
Layer1 Convolution (Conv) 520 500
Layer2 Convolution (Conv) 25,050 25,000
Layer3 Fully connected (FC) 2,500,500 2,500,000
Layer4 Fully connected (FC) 5,010 5,000

Total 2,531,080 2,530,500

Table 5-11: No of parameters in the LeNet’s model.

The base line accuracy of this model is 98.06%, so it provides a good example for assessing

which methods can best remove weights without adversely affecting the level of accuracy.

To assess this, we apply a selection of methods to prune 50% of the weights in the layers 2

and 3 which have the most weights. The methods we select include: one from the UCB1 given

their performance is similar, Thompson Sampling, Random Pruning, and the Network

Pruning Method. The OBD and OBS methods are not selected given that they are not

applicable, as they are needed to compute the Hessian matrix and invers Hessian matrix

respectively. In addition, the RELU activation function is used to train LeNet and the second

derivative of it is zero.

Table 5-12 presents the results, showing the use of the bandit algorithms maintains accuracy

although the use of Network Pruning and Random Pruning does result in a significant decline

in accuracy. The first column of the table has the model and five different pruning methods.

The second column has the first fully connected layer (layer3) in LeNet model while the last

column holds the second convolution layer (layer2) in the LeNet model.

15 http://yann.lecun.com/exdb/mnist/

Chapter 5: Multi-Armed Bandit for Pruning Weights

92

 FC Conv
Model 0.9806 0.9806

TS Prune 50% 0.9830 0.9810
EG Prune 50% 0.9808 0.9807

UCB1 Prune 50% 0.9840 0.9820
Random Pruning 50% 0.5330 0.4120
Network Pruning 50% 0.5920 0.4950

Table 5-12: Results of pruning 50% of two layers in the LeNet’s Model.

This chapter presented the six proposed methods for pruning the weights. These methods are

based on the idea of using MAB for optimizing between exploration and exploitation. The

experimental analysis and evaluation of the MAB pruning algorithms presented in this

chapter, was conducted using the UCI data sets and the MNIST data. The main findings from

the evaluation of the proposed methods indicated that:

• In general, the MAB pruning algorithm produced better results than the original

models. In Table 5-9 UCB1, BayesUCB and KL-UCB achieve better ranking than

the original model and in MNIST data set, there is slightly improve on accuracy over

the original unpruned model even though half of the model parameters is pruned.

• Some of the proposed methods outperformed the other pruning methods. That is,

UCB based methods performed best and WSLS based methods performed worst.

• The proposed methods had manageable time to prune the weights of the network in

contrast to other methods like OBS and OBD.

The next chapter extends the methods developed in this chapter so they can be used to prune

neurons.

5.3. Summary

Chapter 6: Multi-Armed Bandits for Pruning Neurons

93

When the number of parameters are very large, removing a weight at a time is time-

consuming. Instead, removing a neuron with all its weights one at a time could be more

effective. Hence, in this chapter, different MAB algorithms are tested and compared to state

of the art pruning techniques on many different data sets. The chapter is organized as the

follows. Section 6.1 presents the top-level algorithm form pruning neurons, Section 6.2

presents pruning the neurons based on the change in loss function. Section 6.3 presents an

evaluation of the pruning algorithms on different data sets and Section 6.4 presents a

summary of this chapter.

Figure 6.1 presents the top-level algorithm for pruning neurons. The basic idea for pruning

neurons is the same as that for pruning weights, except that a MAB algorithm is used to

select and remove neurons instead of weights.

The initial step of the algorithm, selects the layer to be pruned. Even though MAB pruning

algorithms can be used to prune all neurons together, we will use these algorithms to prune

the neurons in specific layers given the time and computation limitations, especially of deep

neural networks.

The following summarises the main steps of this algorithm:

1 and 2, iterate over all playing time and determine the random example respectively.

6. Multi-Armed Bandits for Pruning

Neurons

6.1. Summary of MAB Algorithm for Pruning Neurons

Chapter 6: Multi-Armed Bandits for Pruning Neurons

94

3 determines a neuron that needs to be removed according to a MAB.

4 and 5, computes the performance of the model based on a random example of the

data. That is, it computes the loss function based on an example of the data 𝐿𝐿(𝐷𝐷|𝑁𝑁)

where N is a non-zero neurons in the network and D is a random example from the

training data set. Hold the value of neuron.

6, 7 and 8, removes the determined neuron (from step 3) and tests the performance.

Computes 𝐿𝐿(𝐷𝐷|𝑁𝑁′) where 𝑁𝑁′ is the network without the neuron selected in step 3.

Then, restores the neuron for the next play.

9 and 10, computes the change in the loss function δ𝐿𝐿. If there is improvement then

there is a positive reward (+1 if binary rewards), otherwise there will be no reward

(zero). Then, the algorithm will update the cumulative average rewards for the

playing arm (removed neuron).

11 update the cumulative average reward.

12 and 13, compute the weights if the called function is EXP3 or Hedge function.

14 checks the playing time; if it has not ended, the process is repeated; otherwise,

stops playing.

15 finally, the last step removes unwanted neurons that have the most cumulative

average rewards, which in fact have least effect on the performance.

As described in Chapter 4, there are many MAB algorithms and a number of these were tried

for removing weights and the results presented in Chapter 5. The lessons learned from the

evaluations presented in Chapter 5 were used to select the MAB algorithms to evaluate:

• Epsilon-Greedy algorithm was chosen primarily because of its simplicity although it

also showed good performance.

• UCB1 and Thompson Sampling were chosen given that both resulted in good

accuracy and good run time performance.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

95

• KL-UCB and BayesUCB were not selected given they require significant

computational time.

• WSLS had the worst performance among MAB pruning algorithms so was not

selected.

• EXP3, Hedge and Softmax algorithm are used in this chapter. EXP3 and Hedge are

based on adversarial bandits [170, 175, 187, 188] where the reward is not stochastic.

When a neuron is pruned, the expected reward might change over the time with

giving same input.

The following subsections summarise the direct method, and the new three MAB based

pruning algorithms (softmax, Hedge and EXP3). In each case, an example is given to

illustrate the methods for pruning neurons. The examples use the synthetic data set given in

Figure 5.3.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

96

Algorithm MAB 6.1 Algorithm for pruning the neurons
INPUT: Time horizon T, Trained network, Input layer l to be pruned.
OUTPUT: Pruned network
Let 𝑋𝑋𝑖𝑖 be the current reward of this arm/neuron
Let 𝑤𝑤𝑖𝑖 is the weight for each arm (neuron) this is not the neural networks’ weights but it is the
parameter for Adversarial bandit algorithms and initialized to one, In addition, Parameter 𝜖𝜖 ∈ [0,1],
Parameter 𝛾𝛾 ∈ [0,1]
Let 𝜇𝜇𝑖𝑖 be the cumulative average reward of this arm/neuron, initialized to zero
Let D the random example from training data set
Let 𝑁𝑁𝑖𝑖 be the neuron i in layer l
Let 𝐿𝐿(𝐷𝐷|𝑁𝑁) The loss function before pruning the neuron
Let 𝐿𝐿(𝐷𝐷|𝑁𝑁′) The loss function after pruning the neuron
Let Threshold how much loss in the performance is allowed
Let K is the number of neurons in the chosen layer
Let 𝑛𝑛𝑖𝑖 is the total current play time for the 𝑁𝑁𝑖𝑖
Let 𝑆𝑆𝑖𝑖 is the success and 𝐹𝐹𝑖𝑖 is the failure, both initialized to zero

1. for t=1 to T do /* start playing */

2. D = random example of the training data
 if any 𝑛𝑛𝑖𝑖 = 0 then choose the current index 𝑖𝑖 /* Pull each neuron at least once */

3. else Call the relevant MAB algorithm, returning the index of the selected neuron:
 𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀(∗ 𝑎𝑎𝑎𝑎𝑎𝑎)

4. Perform forward propagation on D to compute 𝐿𝐿(𝐷𝐷|𝑁𝑁)
5. Hold the value of the selected neuron, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑁𝑁𝑖𝑖
6. Set the neuron to zero 𝑁𝑁𝑖𝑖 = 0
7. Perform forward propagation on D to compute 𝐿𝐿(𝐷𝐷|𝑁𝑁′)
8. Set the value of the neuron to previous value, 𝑁𝑁𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
9. 𝛿𝛿𝛿𝛿 = 𝐿𝐿(𝐷𝐷|𝑁𝑁) − 𝐿𝐿(𝐷𝐷|𝑁𝑁′)
10 𝑋𝑋𝑖𝑖,𝑡𝑡 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛿𝛿𝛿𝛿)

11 Update the cumulative average reward of the current arm
 𝜇𝜇𝑖𝑖,𝑡𝑡+1 = (𝑛𝑛𝑖𝑖 − 1)/𝑛𝑛𝑖𝑖 ∗ 𝜇𝜇𝑖𝑖,𝑡𝑡 + 1/𝑛𝑛𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖,𝑡𝑡

12 if 𝑀𝑀𝑀𝑀𝑀𝑀 is Hedge algorithm then 𝜌𝜌𝑖𝑖 = 𝑋𝑋𝑖𝑖,𝑡𝑡 , wi,t+1 = wi,t(1 + ϵ)ρi
13 if 𝑀𝑀𝑀𝑀𝑀𝑀 is EXP3 algorithm then 𝜌𝜌𝑖𝑖 = 𝑋𝑋𝑖𝑖,𝑡𝑡 , 𝑤𝑤𝑖𝑖,𝑡𝑡+1 = 𝑤𝑤𝑖𝑖,𝑡𝑡 . 𝑒𝑒

𝛾𝛾.
𝜌𝜌𝑖𝑖

𝑝𝑝𝑖𝑖.𝐾𝐾
14 end for
15 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑙𝑙 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝜇𝜇)
16 end main program

17 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

18 Set to zero the neurons that have most rewards
19 return PrunedModel
20 end Function

21 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛿𝛿𝛿𝛿)

22 if (bounded reward) then /* For example, reward for UCB1*/
23 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+= 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝛿𝛿𝛿𝛿 + 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) /𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
24 else /* Reward for Thompson Sampling */
25 if 𝛿𝛿𝛿𝛿 < 0 then reward=0, 𝐹𝐹𝑖𝑖,𝑡𝑡+1 = 𝐹𝐹𝑖𝑖,𝑡𝑡 + 1
26 else reward=1, 𝑆𝑆𝑖𝑖+𝑡𝑡+1 = 𝑆𝑆𝑖𝑖,𝑡𝑡 + 1
27 end if
28 end if
29 end Function

Figure 6.1: The generic algorithm of a MAB pruning neurons.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

97

The direct method also known as brute-force pruning [114] works by removing neurons one

after the other and then testing the pruned network on all the data set. Table 6-1 shows the

bounded rewards using Equation 5.1 when the neurons 𝑁𝑁 are removed one by one and

forward propagation is used over the first three examples (from 1000 examples) of the data

set.

Neuron Example1 Example2 Example3 Average Reward over three examples

N1 1.92 2.65 2.51 2.36

N2 0 1.2 0 0.4

N3 0 0 0 0

N4 0.91 2.01 1.74 1.55

Table 6-1: Cumulative average reward for the bounded rewards when pruning a neuron
on example of data at each forward propagation.

Once the rewards for the selected neurons have been computed, the neuron with the highest

average reward is removed. In the case of considering only theses three examples, 𝑁𝑁1 is

pruned.

The general steps of pruning the neurons using Softmax algorithm [174] are the same as that

is explained in Section 6.1 except for step 3 where Softmax algorithm will be used to

determine the neuron that needs to be removed as following:

1. Choose the arm based on probability 𝑃𝑃𝑖𝑖.

2. Update the probability for each arm using Equation 4.5.

Figure 6.2 shows the Softmax function that is called from Algorithm 6.1.

6.1.1. Direct Method

6.1.2. Softmax Algorithm for Pruning the Neurons

Chapter 6: Multi-Armed Bandits for Pruning Neurons

98

Algorithm 6.2 Softmax for K arms
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝐴𝐴𝐵𝐵(𝑡𝑡, 𝜇𝜇, 𝐾𝐾)
Required: Parameter 𝜏𝜏 ∈ ℝ
 Select neuron 𝑁𝑁𝑖𝑖 with highest probability 𝑒𝑒𝑒𝑒𝑒𝑒

𝜇𝜇𝑖𝑖
𝜏𝜏 ∑ 𝑒𝑒𝑒𝑒𝑝𝑝𝐾𝐾

𝑘𝑘=1� 𝜇𝜇𝑘𝑘
𝜏𝜏

 return i
end Function

Figure 6.2: Function of Softmax algorithm to prune K neurons.

To illustrate how the Softmax bandit prunes neurons, consider the example in Table 6-1.

First, we assume the algorithm will check to prune every neuron once and test the change in

the loss function by performing forward propagation on a random example. Table 6-2 shows

the steps of pruning the neurons based on Softmax bandit.

The table presents the state after round t=4, showing cumulative average reward (𝜇𝜇𝑖𝑖), the

number of attempts at pruning each neuron (n) and the probability of a reward (P). The next

neuron chosen is then based on the one with highest probability of a reward. For example,

𝑁𝑁1 is chosen as it has the highest reward (0.422).

Neuron
t=1 to 4 / Example1

X n 𝜇𝜇𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒
𝜇𝜇𝑖𝑖
𝜏𝜏 P

N1 1.92 1 1.92 2.611 0.422

N2 0 1 0 1 0.161

N3 0 1 0 1 0.161

N4 0.91 1 0.91 1.576 0.254

Table 6-2: Softmax function for pruning the neurons where 𝜇𝜇𝑖𝑖 is cumulative average
reward, X is given reward, 𝜏𝜏 = 2 and P is the probability.

Instead of computing the probability of the rewards in Softmax function, the Hedge algorithm

maintains weights for each neuron. These weights are similar to those found in algorithms

6.1.3. Hedge Algorithm for Pruning the Neurons

Chapter 6: Multi-Armed Bandits for Pruning Neurons

99

such as AdaBoost (and not the weights of a neural network). First, the weights initialized to

one and then later they are computed using Equation 4.12.

The probability of reward is then computed as proportion of the weight over the sum of the

weights of all the neurons.

Figure 6.3 shows the Hedge function that will replace the MAB function call in Algorithm

6.1. Notice that the weights are passed as an argument from Algorithm 6.1 and are also

updated in Algorithm 6.1.

Algorithm 6.3 Hedge Algorithm K arms
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝐴𝐴𝐴𝐴(𝑤𝑤, 𝐾𝐾)
 Select neuron 𝑁𝑁𝑖𝑖 with highest probability Pi = wi(t)

∑ wj(t)n
j=1

 return i
end Function

Figure 6.3: The Hedge function for pruning K neurons.

Table 6-3 gives an example of the Hedge algorithm in operation with ϵ sets to 0.05. First, the

algorithm will receive a reward ρ for the neuron that is played. Then the weights are updated

and the probability of getting a reward from each neuron are calculated. Finally, the algorithm

will choose the neuron based on the probability as shown in Figure 6.3, where neuron N1 is

chosen for time steps 4 to 6.

Weight
t=1to4/Sample1 t=5/Sample3 t=6/Sample2

ρ w P ρ w p ρ w P
N1 1.92 1 0.25 2.51 1.13 0.27 2.65 1.28 0.30
N2 0 1 0.25 1 0.24 1 0.23
N3 0 1 0.25 1 0.24 1 0.23
N4 0.91 1 0.25 1 0.24 1 0.23

sum 4 4.13 4.28

Table 6-3: The steps of choosing next neuron to prune based of Hedge algorithm. The
green cell is the probability of choosing the following neuron. ρ is the generated non-

stationary reward, w is the weight and P is the probability for choosing the next neuron.
ϵ = 0.05.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

100

The EXP3 algorithm is similar to the above adversarial algorithms except that the calculation

for the probabilities is different. That is, the weights (as used in Hedge) are updated using

Equation 4.13 and the probabilities are calculated using Equation 4.14. Figure 6.4 shows the

EXP3 function that will replace MAB function in the Algorithm 6.1. Notice that the weights

are passed as an argument from Algorithm 6.1 and are also updated in Algorithm 6.1

Algorithm 6.4 EXP3 Algorithm K arms
𝐹𝐹𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤, 𝛾𝛾 , 𝐾𝐾)
 Select neuron 𝑁𝑁𝑖𝑖 with highest probability 𝑝𝑝𝑖𝑖 = (1 − 𝛾𝛾) 𝑤𝑤𝑖𝑖

∑ 𝑤𝑤𝑗𝑗
𝐾𝐾
𝑖𝑖=0

+ 𝛾𝛾. 1
𝐾𝐾

 return i
end Function

Figure 6.4: EXP3 function to prune k neurons.

To illustrate EXP3, consider the example in Table 6-1 with γ=0.1. First, the algorithm will

assign one to the weight for each neuron and then update the probability of randomly choosing

the neuron to prune, as shown in fourth column in Table 6-4. Following that, the first neuron

(N1) is chosen to prune with probability 0.25. At step t=5 the algorithm will update the weight

for the chosen neuron and the weights for the other neurons will be the same as in the previous

play.

Weight
t=1to4/Sample1 t=5/Sample3 t=6/Sample2

ρ w P ρ w p ρ w P
N1 1.92 1 0.25 2.51 1.285 0.294 2.65 1.609 0.339

N2 0 1 0.25 1 0.235 1 0.220

N3 0 1 0.25 1 0.235 1 0.220

N4 0.91 1 0.25 1 0.235 1 0.220
sum 4 4.285 4.609

Table 6-4: EXP3 for pruning the neurons where ρ is the current non-stationary reward, w
is the weight and p is the probability for choosing the next neuron to play. γ=0.1. Green

cells are the neurons chosen to prune.

6.1.4. EXP3 Algorithm for Pruning the Neurons

Chapter 6: Multi-Armed Bandits for Pruning Neurons

101

This section presents the results of an empirical evaluation of the MAB based methods for

pruning neurons. All proposed MAB algorithms were implemented using the Python

programming language. All the reported experiments in this chapter were conducted using

NVIDIA TITAN X. The evaluation is carried out in two stages.

First, sixteen data sets from the UCI and Kaggle data were utilised and their characteristics

are summarised in in Table 6-5. The methodology for these data involved randomly splitting

the data into three folds: a training, validation and test fold (60%, 20%, 20% respectively).

The training fold is used for optimizing the parameters of the classifiers (models), the

validation fold for hyperparameter optimization, and the test fold for evaluation. When a

data set was small (less than 1000 examples), then it was randomly divided into 80% training

data, 20% testing. Ten-fold Cross Validation was used on 80% training data for building and

validating the models. The evaluation measures used were accuracy, f1 score, precision and

recall, providing a broader insight into the effectiveness of the individual classifiers. In

addition, AUC (Area Under the receiver operating Curve) and confusion matrices were also

used. For conciseness, the body of the thesis focuses presents the results in terms of accuracy

but the other measures, such as f1 score, precision, recall and AUC are included in

Appendix1. In these data sets, forward neural networks were trained.

The second set of experiment utilised data that had been used for developing deep learning

models. Eight different data sets (taken from the different resources that can be used for

benchmarking deep learning algorithms) were used and their characteristics are shown in

Table 6-6. Most of these data sets were already split in advance into training and testing

folds. The evaluation measure used for these experiments was accuracy. These data sets are

based on images or texts and as is common practice, ConvNets were used for pixel data and

RNNs were used for sequence data.

After obtaining the data set, some pre-processing was performed because this is known to

improve convergence when training [83]. Next, the architecture of a neural network was

designed and the number of parameters used was based on a rule of thumb that suggests that

6.2. Evaluation

Chapter 6: Multi-Armed Bandits for Pruning Neurons

102

a full model should have at least the same number of parameters as there are examples in the

training data set [198] for example, for the Reuters data, there are 8.982 examples so 558

neurons and weights were used 535,552.

As Chapter 2 describes, there are several methods for training neural networks. In this work,

the mini-batch gradient descent method was used. Following some initial experimentation,

the Adam method, as recommended by Kingma & Ba [63], was used with a learning rate of

1𝑒𝑒−3 for optimisation for most of the data sets unless better results were obtained by other

optimizers at validation. However, other methods were also tried and Table 6-7 lists the

optimisation method and hyperparameters used for each data set.

Once a model was trained, it was available for the experiments to compare the MAB pruning

algorithms. All the MAB based pruning algorithms developed need to decide the number of

plays. In the experiments below, the play time was set to at least as much as twice the number

of neurons (arms) in the played layer. Once a network was pruned, its accuracy was

measured on a test set.

Data set Full name of the Data set No. of
examples

No. of
features

Number of
classes

Pima Pima Indians Diabetes 768 9 2
Car Car Evaluation 1,728 6 4

Spambase Spambase 4,601 56 2
Adult Adult 48,842 14 2
Valley Hill-Valley 606 100 2
Titanic Titanic 1,309 11 2

Face Labelled Faces in the Wild 1,288 1,850 7
Wine Wine 178 12 3
Heart Heart Disease 303 13 2

Iris Iris 150 3 3
Abalone Abalone 4,177 8 3

Poker Poker Hand 1,015,010 8 3
Glass Glass Identification 214 10 7

Wine Quality Wine Quality 4,898 11 10

Chest Activity Recognition from Single
Chest-Mounted Accelerometer 50,000 3 7

Cancer Lung Cancer 569 32 2

Table 6-5: Small data set specification.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

103

Data set Full name of the Data set No. of
features

No. of
examples in

training

No. of
examples in

testing

Number
of classes

ImageNet ImageNet 256×256×3 1,200,000 150,000 1,000
IMDB Internet Movie Review 5,000 25,000 25,000 2

Reuters Reuters newswire topic
classification task 1,000 8,982 2,246 5

MNIST Mixed National Institute of
Standards and Technology 28×28×1 60,000 10,000 10

Cifar-10 Cifar-10 32×32×3 50,000 10,000 10
Cifar-100 Cifar-100 32×32×3 50,000 10,000 100

SVHN Street View House
Numbers 32×32×3 73,257 26,032 10

bAbI bAbI 20,000 10,000 1,000 2

Table 6-6: Data set specification for deep learning models.

Data set Optimizer Batch size Dropout Weight decay Neurons

Pima Adadelta 8 None None 35

Car Adam 6 None L2(0.001) 25

Spambase RMSProp 10 0.25 L2(0.01) 40

Adult Adadelta 100 None None 60

Valley Adam 100 0.5 L2(0.001) 40

Titanic Adam 9 None L2(0.001) 60

Face Adam 100 0.5 None 300

Wine Adam 13 0.5 L2(0.001) 35

Heart Adam 13 None None 35

Iris Adam 1 0.5 L2(0.001) 16

Abalone Adam 100 None L2(0.0001) 30

Poker Adam 20 0.5 L2(0.001) 25

Glass Adam 100 0.5 L2(0.001) 35

Wine Quality Adam 100 0.5 L2(0.001) 25

Chest Adam 13 None L2(0.001) 20

Cancer Adam 30 0.5 L2(0.001) 30

Table 6-7: Hyperparameters of neural networks trained on different data sets. In addition,
the learning rate for all of them is set to 0.001, the activation function is ReLU and the

number of epochs is 100.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

104

The data sets and methodology used are summarised above. The main objectives of the

evaluation are as follows:

1. To measure the effectiveness of the proposed pruning algorithms (pruning based on

Epsilon-Greedy, Softmax, UCB1, Thompson Sampling, Hedge and EXP3), we

compare the proposed methods against each other including the original unpruned

models.

2. To compare the classification effectiveness of the proposed methods and different

classifiers, the performance of the methods was compared with techniques like SVM,

Decision trees, KNN, LDA, Naïve Bayes, QDA, Gaussian process classifier and

Logistic regression. For completeness, the performance of the algorithms was also

compared with grouping and boosting algorithms like bagging, random forests,

Adaboost, LightGBM and Xgboost.

3. To compare the effectiveness of the proposed methods relative to other recent

techniques for pruning networks. This includes comparison with a greedy algorithm

presented in Polyak & Wolf [119] and an algorithm that prunes neurons based on

magnitude Kruschke [113] which has recently been shown to have good results [134,

146].

The results obtained are presented in the following subsections. These are organised as

follows. Subsection 6.2.1 presents the results obtained using MAB pruning algorithms to

prune forward neural networks developed for the UCI and Kaggle data. Subsection 6.2.2

presents the results obtained using pruning algorithms on the deep learning data.

This subsection presents the results of comparing the MAB pruning algorithms with each

other and the unpruned networks: The experimental methodology was described above and

the detailed steps taken are documented in Appendix 1 for completeness. Some of the MAB

6.2.1. Results from the Experiments on the UCI data sets

Chapter 6: Multi-Armed Bandits for Pruning Neurons

105

algorithms have user specified hyperparameters. After a few trials 16, these were set as

follows:

• The UCB1 and Thompson Sampling algorithms do not need hyperparameters except

the number of plays.

• We use the formula 1
log (𝑡𝑡+𝜑𝜑)

 [176] where 𝜑𝜑 = 0.00001 to decay epsilon in the

Epsilon-Greedy algorithm and also use it to decay the temperature in Softmax.

• Some MAB algorithms have constant hyperparameter like Epsilon-Greedy where we

set epsilon to 0.9, EXP3 where we set gamma to 0.2 and in Softmax, we set the

temperature to 0.9. These hyperparameter were selected after many experiments

which suggested that these settings worked well. Generally we find these are worked

good with many data sets. addition, the number of experiments are large so we will

let using other values of these parameters by annealing method.

Figure 6.5 shows a comparison between several MAB pruning algorithms on two data sets

as the number of neurons pruned increases (Appendix 3 and 4 includes all the other results).

In Figure 6.5, the behaviour of the algorithms is mostly the same on the different data sets.

In general, UCB1 shows the most stable algorithm among the others on most of the data sets.

At the beginning of pruning, all proposed algorithms outperform the original unpruned

model then the performance decreases over the time. On face data set, SVM, decision tree,

KNN and neural networks are only algorithms were being used as this data set suffer from

curse of dimensionality [199] compared to the other data set.

Table 6-8 shows the results of the accuracy on the different proposed methods and other

classifiers. In addition, Appendix 3 presents further details about accuracy, f1 score,

precision and recall results.

In general, the results show that pruning neuron networks with MAB methods can improve

performance (accuracy, f1 score, precision and recall) and can work better than some other

classifiers trained on the same training data set.

16 Experiment different hyperparameters on Face and Iris data sets.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

106

A
cc

ur
ac

y

No. of pruned neurons No. of pruned neurons

 Face data set Iris data set

Figure 6.5: Results of MAB pruning Algorithms.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

107

Table 6-8: Comparison of accuracy between pruning based on UCB1 and different classifiers. The results with respect to some classifiers are
not available in the case of the Face Data set because of the resource required. The green cells indicate that the method has good accuracy in

contrast of red cell. The arrows point up if the error high, down if it is low or in right direction if it is in between.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

108

We utilised all the major statistical comparison measures to confirm the performance of the

results. These include the accuracy, f1 score, precision and recall measures. Eight proposed

methods were tested against the unpruned model and the other classifiers. The p value

obtained from applying the Friedman test on the accuracy, f1 score, precision and recall

results was 4.49×10−15 , 2.07×10−08, 3.98×10−08 and 1.25×10−06 respectively. All p

values are less than 0.05, indicating that there is significant difference between the methods.

Table 6-9 shows the results in rank order of performance according to accuracy.

Table 6-9: Results of ranked accuracy, f1 score, precision and recall results based on
Nemenyi test, which is used to compare the different models on 16 different data sets. In

this table, the highest is the better and the table is sorted on the accuracy column.

In general, Table 6-9 demonstrates that SVM outperforms the other classifiers and that

neural networks are second-best compared to other classifiers. Pruned neural networks,

Name of Method
Mean Rank

Accuracy F1 score Precision Recall
SVM 20.218 18.844 20.156 18.656
UCB1 19.063 18.625 16.500 18.063

Trained Model (NN) 18.531 17.843 15.593 17.219
Gaussian Process (GP Class.) 16.906 17.344 16.781 17.219

Tomp. Sampling 16.313 16.031 13.781 15.531
Decay ε Greedy (Decay E Gr.) 15.719 14.531 15.094 14.313

ε Greedy (E Greedy) 15.625 15.063 14.188 14.625
Softmax 15.156 13.969 14.625 13.719

Decay Softmax (Decay SM) 14.969 14.531 16.625 12.719
Random Forest 14.500 14.031 16.594 12.750

Hedge 14.406 13.531 13.938 13.031
Knn 14.156 14.438 13.125 14.312

LightGBM 14.094 12.250 12.063 10.906
Xgboost 13.813 12.469 15.188 11.938

Bagging Knn 13.188 11.500 13.000 11.031
EXP3 12.281 12.344 12.094 11.563

Decision Tree (DT_entorpy) 11.156 13.563 10.906 14.469
Bagging DT 10.407 9.719 11.906 8.125

Decision Tree Gini (DT_gini) 9.875 13.656 10.781 16.063
QDA 8.844 12.250 9.281 13.031

Logistic Regression (Log. Reg.) 8.781 7.594 10.781 8.406
LDA 8.313 8.656 9.813 8.313

Linear SVM (LSVM) 7.594 7.438 8.594 8.875
Ada Boost 6.907 8.031 8.094 10.406

Naïve Bayes (NB) 4.188 7.594 5.406 9.719

Chapter 6: Multi-Armed Bandits for Pruning Neurons

109

based on UCB1 outperform the original unpruned models on these data sets. Other pruning

methods like Thompson Sampling, Epsilon-Greedy and Softmax pruned the original model

with some loss in the performance. The pruning algorithms based on adversarial bandits,

like EXP3, perform poorly.

Given the performance of the algorithms is different, the next step is to apply the Nemenyi

test between all the methods. These results are shown in Figure 6.6, Figure 6.7, Figure 6.8

and Figure 6.9 for the accuracy, f1 score, precision and recall respectively. In Figure 6.6 and

Figure 6.7, it is clear that pruning the networks made the performance in terms of both the

accuracy and f1 score statistically better than bagging decision trees. In terms of precision,

Figure 6.8, shows that pruning using UCB1 outperformed Adaboost. Finally, in terms of the

recall, Figure 6.9 shows that pruning statistically improved the network to become better

than Naïve Bayes.

The results for these tests and the implementation are available online17.

17 https://github.com/SalemAmeen/testing_python_friedman/blob/master/prune_neurons/classification/friedm

an.ipynb

Chapter 6: Multi-Armed Bandits for Pruning Neurons

110

 mean - CD

Figure 6.6: Comparison of the accuracy of all classifiers against each other with the
Nemenyi test. Horizontal lines show the critical difference away from proposed pruning
methods and any other methods. Groups of classifiers that are not significantly different

(p = 0.0.5) are out of the lines from proposed methods. CD=8.066.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

111

 mean - CD

Figure 6.7: Comparison of the f1 score of all classifiers against each other with the
Nemenyi test. Horizontal lines show the critical difference away from proposed pruning
methods and any other methods. Groups of classifiers that are not significantly different

(p = 0.0.5) are out of the lines from proposed methods

Chapter 6: Multi-Armed Bandits for Pruning Neurons

112

 mean - CD

Figure 6.8: Comparison of the precision of all classifiers against each other with the
Nemenyi test. Horizontal lines show the critical difference away from proposed pruning
methods and any other methods. Groups of classifiers that are not significantly different

(p = 0.0.5) are out of the lines from proposed methods.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

113

 mean - CD

Figure 6.9: Comparison of the recall of all classifiers against each other with the Nemenyi
test. Horizontal lines show the critical difference away from proposed pruning methods

and any other methods. Groups of classifiers that are not significantly different (p = 0.0.5)
are out of the lines from proposed methods.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

114

As described in Chapter 2, there are different architectures for deep learning which can be

broadly categorised as feed forward networks, convolutional neural networks (ConvNets),

recurrent neural networks (RNN). Several experiments were carried out within these

categories with different data sets. The pruning algorithms described in Section 6.1 were

used on the data sets as well as the following two methods which were adapted so they could

be applied to removing neurons:

• A greedy algorithm, which is a generalised version of an algorithm presented in

Polyak & Wolf [119], Hu et al. [120] and Luo & Wu [121] which we have adapted

to prune neurons instead of feature maps. In this algorithm, compute the variance

over the output of each neuron giving samples (four examples) of training data set

then the neurons with the weak activation (activation has less variation) will be

pruned.

• An algorithm that prunes based on magnitude (weights vector) [113] which was

published recently and showed good results [134, 146]. The absolute magnitude of

the weights vector for each neuron is computed. Then, neurons with the sum

magnitude less than threshold is removed. The threshold value is specified by the

user.

Table 6-10 summarises the results obtained, listing the algorithms applied, layer selected,

number of neurons available for pruning, the methods used and the proportion pruned. The

implementation code along with results are also available online18.

.

18 https://github.com/SalemAmeen/pruning_deep

6.2.2. Testing MAB Based Pruning on Deep Learning Networks

Chapter 6: Multi-Armed Bandits for Pruning Neurons

115

Model/ Aproxi. Neuron

Data set Pruned

MLP (Reuters) 2 512 0.786 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.75 0.74 50%

LeNet (MNIST) 3 128 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.95 62%

AlexNet (ImageNet) 6 4096 0.56 0.57 0.57 0.55 0.55 0.58 0.58 0.53 0.54 0.53 0.57 50%

AlexNet (ImageNet) 7 4096 0.56 0.58 0.58 0.56 0.56 0.57 0.57 0.56 0.56 0.55 0.54 50%

Conv (Cifar10) 5 512 0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.81 0.8 21%

Conv (Cifar100) 5 512 0.43 0.45 0.45 0.44 0.45 0.45 0.45 0.44 0.44 0.43 0.41 20%

Conv (IMDB) 4 250 0.87 0.89 0.89 0.88 0.89 0.89 0.89 0.89 0.88 0.83 0.84 20%

Conv (SVHN) 5 512 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.9 0.92 39%

Siamese Graph
(MNIST) 2 128 0.99 1 0.99 0.99 0.99 1 1 0.99 0.99 0.93 0.93 50%

LSTM (IMDB) 2 128 0.8 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.79 0.78 23%

Bi. LSTM_1 (IMDB) 2 64 0.82 0.84 0.83 0.83 0.83 0.84 0.84 0.83 0.8 0.8 0.81 78%

Bi. LSTM_2 (IMDB) 3 64 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.8 0.8 0.8 78%

EtoE Mem (bAbI) 4 32 0.86 0.87 0.88 0.87 0.87 0.88 0.87 0.87 0.88 0.81 0.83 40%

Hierar. RNN
(MNIST) 2 128 0.96 0.97 0.95 0.98 0.97 0.98 0.97 0.98 0.98 0.9 0.92 15%

Decay E
Greedy

Layer Model
No. of

Neurons
E Greedy Magnitude G. PruneSoftmax Decay Softmax UCB1 TS Hedge EXP3

Table 6-10: The result based on the accuracy of pruning deep neural networks on different data sets using different architectures. The table
shows the pruned layer, number of neurons in pruned layer and the percentages of removed neurons in the layer. The green cells indicate that

the method has good accuracy in contrast of red cell. The arrows point up if the error high, down if it is low or in right direction if it is in
between.

Chapter 6: Multi-Armed Bandits for Pruning Neurons

116

The remainder of this section elaborates upon the results presented in Table 6-10:

• Subsection 6.2.2.1 summarises how the results from applying the pruning methods

MLP were obtained.

• Subsection 6.2.2.2 summarises how the results from applying the pruning methods

on ConvNets were obtained.

• Subsection 6.2.2.3 summarises how the results from applying the pruning methods

on RNN were obtained.

• Subsection 6.2.2.4 presents the results of applying the Friedman and Nemenyi test to

compare the performance of the methods.

Each of the subsections is structured so that it presents: (i) the data set used, (ii)

hyperparameters that used for the methods (iii) MAB algorithms applied (iv) comparison

with other methods.

Data set. The data set used contains structured information about newswire articles that can

be assigned to five classes and is known as the Reuters newswire topic classification task

[200]. The main reason for using this collection is that it is one of the most classic collections

for benchmarking text classification and allows comparison with previous studies. This data

set includes 8,982 documents for training and 2,246 for testing.

Hyperparameters. A MLP (feed forward neural networks) with 512 neurons in one hidden

layer is used. We found that the model was prone to overfitting, and we therefore

experimented with introducing a dropout layer (with 0.5 probability of dropping neurons)

after the hidden layer. The initial learning rate for Adam was 0.0001, and we found that the

performance was much less sensitive to the learning rate with Adam than with other GD

optimizations. Adam’s parameters were set to 0.9 and to 0.99 for 𝛼𝛼 and 𝛽𝛽 respectively. The

maximum number of words was set to 1,000 and the batch size19 was set to 32. We trained

the model for 50 epochs.

19 In the neural network terminology: one epoch = one forward pass and one backward pass of all the training
examples. batch size = the number of training examples in one forward/backward pass.

6.2.2.1. Pruning Multilayer Perceptron (MLP)

Chapter 6: Multi-Armed Bandits for Pruning Neurons

117

MAB algorithm. After the model was trained, we started applying the MAB pruning. We

pruned the first fully connected layer that has 512 neurons. The proposed algorithms prune

150 neurons out of 512.

Comparison to other work. From Table 6-10, we draw two conclusions:

• All proposed algorithms can prune 50% of the model without any loss in performance.

In contrast, greedy pruning and pruning based on magnitude show a decrease in

performance when the same number of neurons have been pruned as the MAB based

algorithms.

• Pruning based on magnitude has the least computation time but the computation time

of the greedy prune algorithm is O(4*512F) while the computation time20 of MAB is

O(1200F) where F is the time for forward propagation. Forward propagation can vary

between two algorithms and we ignored the other computation like assigning the

rewards and updating other parameters, which can work in parallel with forward

propagation. In addition, F can be represented by two forward propagations, one to

compute the loss before pruning and the other after pruning.

The ConvNets architecture has been widely used and this section presents, describes the

experiments using many of the existing models starting from LeNet model trained on the

MNIST data to AlexNet trained on ImageNet [21].

Data set. The MNIST [83] data set was used and is a collection of handwritten digits which

contains 60,000 examples of training data and 10,000 examples of test data. The digits have

been size-normalized and cantered in 28 by 28 pixel grey scale images.

Hyperparameters. LeNet (Lenet-5) [83] is a convolutional network with two convolutional

layers and one dense layer. The network achieves 98% accuracy on MNIST [83]. We found

that the model is prone to overfitting, and experimented with introducing a dropout layer

20 Does not include playing each neuron once

6.2.2.2. Pruning ConvNets model

6.2.2.2.1. LeNet model

Chapter 6: Multi-Armed Bandits for Pruning Neurons

118

(with 0.5 probability of dropping neurons) after each fully connected hidden layer. The

learning rate for adadelta [201] was 0.01, ρ=0.95 and epsilon=0.00000001. The model trained

with a batch size of 128 and with number of epochs set to 12.

MAB algorithm. After the model was trained, we started applying the MAB pruning

algorithms to prune the first fully connected layer, as it has the most neurons (128 neurons).

with play time set to 500.

Comparison to other work. From Table 6-10, all the proposed algorithm can prune 62% of

the model without any loss in the performance. Our proposed algorithms outperform the

original unpruned model and outperform the greedy and pruning based on magnitude

algorithms.

Data set and Hyperparameters. The ImageNet ILSVRC-2012 data set [21, 22] was used,

which has 1.2M training examples and 50k validation examples. We use a pre-trained

AlexNet Caffe model [110], which has 61 million parameters across 5 convolutional layers

and 3 fully connected layers. The AlexNet Caffe model achieved a top-121 accuracy of 56%

and this model took 75 hours to train on an NVIDIA Titan X GPU [134].

MAB algorithm. We used pruning based MAB algorithms to prune 50% of both FC6 (layer

6) and FC7 (layer 7). These layers were chosen because they have the most neurons. The

play time was set to 9,000.

Comparison to other work. Table 6-10 shows the results and we notice the following:

• FC6: MAB pruning based on UCB1 and Thompson Sampling improves the result by

0.03% and Epsilon-Greedy and decay Epsilon-Greedy improve it by 0.02. Pruning

based Softmax, Hedge and EXP3 show some decline in the performance over the

original model. Greedy pruning shows an improvement in this layer as much as

Epsilon-Greedy does while pruning neurons based on magnitude has the worst

performance.

21 In ImageNet Challenge, the accuracy computed based on the top-1 prediction and top-5 where: Top-1

number is how many times the correct label has the highest probability predicted by the network. Top-5 number

is how many times the correct label is within the top 5 classes predicted by the network.

6.2.2.2.2. AlexNet Model

Chapter 6: Multi-Armed Bandits for Pruning Neurons

119

• FC7: MAB pruning based on Epsilon-Greedy and decay Epsilon-Greedy show better

results than the others with an improvement on the original model by 0.03%. UCB1

and Thompson Sampling show good results and improvement over the original

unpruned model. In contrast to greedy pruning, pruning based on the magnitude does

not perform well.

Data set. The cifar-10 data set [202] is used and is composed of 10 classes of natural images

with 50,000 training images, and 10,000 testing images. Each image is an RGB image of

size 32x32. For this data set, we pre-process the data using global contrast normalization and

ZCA whitening as was used by Goodfellow et al. [96]. We use the last 10,000 images of the

training set as validation data.

Hyperparameters: This ConvNet has four convolutional layers and two fully connected

layers trained on cifar-10 [202]. The network achieves 81% accuracy on cifar-10. We find

that the model is prone to overfitting, and we experimented with introducing a dropout layer

with 0.5 probability of dropping neurons after each fully connected layer and with 0.25

probability of dropping neurons after every convolution hidden layer. The learning rate of

GD was 0.01, momentum was 0.9 and decay was 0.000001. In addition, the batch size was

set to 32. We trained the model for 200 epochs.

MAB algorithm. After the model was trained, we started applying MAB pruning algorithms

to prune the first fully connected layer, as it has the most neurons. The play time was set to

1200.

Comparison to other work. From Table 6-10, all proposed algorithm can prune 21% of the

model without any loss in the performance. Our proposed algorithms outperform the original

unpruned model and outperform the greedy and pruning based on magnitude algorithms.

This experiment used the cifar-100 [203] data set, which is the same size and format as the

cifar-10 data set, but contains 100 classes, with only one tenth as many labelled examples per

class. We use the same hyperparameters on cifar-100 that same we found to work well on

cifar-10 in the previous subsection. We obtained a test set accuracy of 43%. The algorithm

6.2.2.2.3. ConvNet on cifar-10 data set

6.2.2.2.4. ConvNets on cifar100 data set

Chapter 6: Multi-Armed Bandits for Pruning Neurons

120

could prune 103 neurons until the performance started to decrease. All the MAB algorithms

show better results over the original unpruned networks and other pruning techniques.

Data set. The SVHN data set [204] is a collection of 32x32 colour images. The data set is

acquired from house numbers in Google Street View images. There are 73,257 digits in the

training set and 26,032 digits in the test set. The task of this data set is to classify the digit

located at the centre of each image. Pre-processing of the data set follows Goodfellow et al.

[96], who used local contrast normalization.

Hyperparameters: We followed the same approach as on cifar-10 [202], where the model

has four convolutional layers and two fully connected layers, to achieve 96% accuracy. The

only difference is that we used a batch size of 128 and 20 epochs to speed up the training

time.

MAB algorithm. After the model was trained, we applied the MAB pruning algorithms to

prune the first fully connected layer, as it has the most neurons. With a play time of 1,200,

the proposed algorithms can prune nearly 205 neurons as shown in Table 6-10.

Comparison to other work. From Table 6-10, all proposed algorithm can prune 39% of the

model without any loss in the performance. Our proposed algorithms outperform the original

unpruned model and outperform the greedy and pruning based on magnitude algorithms.

Data set. This experiment used the IMDB (Internet Movie Database) data set [205], which is

a movie reviews data set classifying positive or negative sentiments about reviews. It consists

of 50,000 labelled movie reviews. The 100,000 movie reviews are divided into two data sets.

25,000 labelled training instances, and 25,000 labelled test instances. There are two types of

labels: Positive and Negative. These labels are balanced in both the training and the test set.

Several authors have used this data [78, 206, 207] to classify positive or negative sentiments

about reviews.

Hyperparameters. We used ConvNet with the following architecture:

• Embedding layer is the first layer of ConvNets to map the vocabulary indices to

vectors [208] (map the words to vectors). This is a technique where words are encoded

6.2.2.2.5. ConvNets on SVHN data set

6.2.2.2.6. ConvNets on IMDB data set

Chapter 6: Multi-Armed Bandits for Pruning Neurons

121

as real-valued vectors in a high dimensional space, where the similarity between

words in terms of meaning translates to closeness in the vector space

• The first layer is followed by 1D convolution layer and fully connected layer with 250

neurons.

We found that the model is prone to overfitting, and therefore experimented with introducing

a dropout layer with 0.2 probability of dropping neurons after the embedding layer and fully

connected layer but not the convolution layer. The learning rate for Adam was 0.01 with 𝛼𝛼 =

0.9 and 𝛽𝛽 = 0.99. The maximum number of features is 5,000, maximum lengths is 400, batch

size is 32, embedding dimension is 50, number of filters is 250, filter length is 3 and hidden

dimension is 250.

MAB algorithm. After the model was trained, the MAB pruning algorithms were applied

with play time set to 800 and with the same hyperparameters given in subsection 6.2.1. The

MAB pruning algorithms were used to prune the first fully connected layer, as it has the most

neurons. The results improved when approximately 50 neurons were pruned Table 6-10.

Using 1D convolution layer which has less weights than 2D make the neurons in the following

layer more important.

Comparison to other work. From Table 6-10, we draw two conclusions:

• All proposed algorithm can prune 20% of the model without any loss in the

performance. In contrast, the performance of the greedy pruning algorithm begins to

decrease earlier than the MAB based algorithms.

• Pruning based on magnitude has improved the performance as well.

Data set. The MNIST [83] data set which is described above is also used for this experiment.

Hyperparameters. To train the Siamese graph [209], we followed Hadsell et al. [209] by

computing the Euclidean distance on the output of the shared network and optimizing the loss

function. We experimented with using dropout with a 0.1 probability of dropping neurons

after each fully connected hidden layer. The learning rate for RMSProp was 0.01, ρ=0.95 and

epsilon=0.00000001. The model was trained with a batch size of 128 and with 20 epochs.

6.2.2.2.7. Siamese Graph

Chapter 6: Multi-Armed Bandits for Pruning Neurons

122

MAB algorithm. After the model was trained, we started applying the MAB pruning

algorithms to prune 128 neurons with 133,504 shared parameters between two branches, as

it has the most neurons (128 neurons). The play time was set to 500 and the proposed

algorithms can prune 50% neurons as shown in Table 6-10.

Comparison to other work. From Table 6-10, when half of the model is pruned, pruning

based on MABs have not decrease the accuracy in contrast to the other pruning algorithms.

We also applied the MAB pruning algorithms to the RNN family of networks. Instead of

pruning neurons in a fully connected layer as in the previous subsections, here we prune

neurons in recurrent layers. The following subsections describe the experiments with four

well-known architectures of RNN.

Data set and Hyperparameters. First, we trained LSTM [100] on the IMDB data set [205]

explained in subsection 6.2.2.2.6. The model contains an embedding layer as the first layer

and then followed by an LSTM layer and then a fully connected layer. The experiments used

20000 features, the maximum length of texts is 80 and the batch size is 32. We also used

dropout with a 0.2 probability of dropping neurons after first and second layer. The learning

rate used for Adam was 0.001.

MAB algorithm and Comparison to other work. We applied MAB pruning algorithms

with a play time of 400 to prune the LSTM layer. The performance of the pruned networks

improved by around 2% when the MAB pruning algorithms pruned 30 neurons out of 128 as

shown in Table 6-10.

Data set and Hyperparameters. We trained a bidirectional LSTM [210] on IMDB data set.

The embedding layer in the model has maximum features of 20000, maximum length is 100,

batch size is 32 and number of epoch is 20. The model has an embedding layer, two LSTM

layers and a fully connected layer. We used dropout with a 0.5 probability of dropping

neurons. The learning rate used for Adam was 0.001.

6.2.2.3. Pruning RNN

6.2.2.3.1. LSTM Model

6.2.2.3.2. Bidirectional LSTM

Chapter 6: Multi-Armed Bandits for Pruning Neurons

123

MAB algorithm and Comparison to other work. The MAB pruning algorithms were

applied with play time set to 180 to prune two LSTM layers. The performance in both layers

increased until it pruned nearly 50 neurons out of 64, except when using EXP3 and two other

pruning methods as shown in Table 6-10.

Data set. The Facebook bAbI data set [211] is a synthetic data set for testing a model’s ability

to retrieve facts and reason over them. In this data set, a given (question-answer) QA task

consists of a set of statements, followed by a question whose answer is typically a single word

(in a few tasks, answers are a set of words). The data set consists of 20 different tasks with

various emphases on different forms of reasoning. For each question, only certain subsets of

the statements contain the information needed for the answer, and the rest are essentially

irrelevant distractors.

Hyperparameters. We trained End-To-End Memory Networks [101] on bAbI data set [211]

with the specifications of 20000 maximum features, maximum length is 80 and the batch size

is set to 32. The model has three embedding layers followed by an LSTM layer and a fully

connected layer. We use dropout with 0.5 probability of dropping neurons after each layer

except the output. The learning rate used for RMSProp was 0.0001.

MAB algorithm and Comparison to other work. We pruned the LSTM layer using

different MAB pruning algorithms with a play time of 400. However, there are lots of extra

neurons in this layer and only a few neurons can do the same work as the full neurons where

40% out of total 32 neurons. MAB pruning algorithms show good results compared to the

original pruned model and the other two pruning algorithms as shown in Table 6-10.

Data set and Hyperparameters. We used the hierarchical RNN (HRNN) [212, 213] to train

a model for the MNIST data set. The model has a time distributed layer, two LSTM layers,

and a fully connected layer. At the first LSTM layer, every 28 by 1 column is encoded to

128 vectors, while at the second LSTM layer, all the 28 columns are encoded in 28 x 128 to

represent the whole image. Then, the fully connected layer is used to make a prediction. The

RMSProp optimizer was used to train the model with a batch size of 32, 10 classes and 10

epochs.

6.2.2.3.3. End-To-End Memory Networks

6.2.2.3.4. Hierarchical RNN

Chapter 6: Multi-Armed Bandits for Pruning Neurons

124

MAB algorithm and Comparison to other work There was some improvement in the

model after pruning except for annealing Softmax where the performance declined compared

to the original model when 15% of the model is pruned as shown in Table 6-10.

To compare the results from the different algorithms, the Friedman test has been applied

between the eight different proposed algorithms, the original unpruned model and the other

two pruning algorithms. The p value is 5.597×10−17, which is less than 0.05 and indicates

there is a significant difference between the different algorithms. Table 6-11 shows the

average difference between the algorithms where the higher numbers are better because the

results are based on the accuracy. Table 6-11 shows that all the proposed MAB pruning

algorithms are better than the original model. Pruning based on UCB1 and Thompson

Sampling are the best. To assess whether there is significant difference between all pruning

algorithms and the original unpruned model, the Nemenyi test is used and the results from

the test are presented in the Figure 6.10. Pruning based on UCB1, Thompson Sampling,

Epsilon-Greedy and decay Epsilon-Greedy statistically improve the model and these

improvements are not based on chance, as shown in the Figure 6.10. In addition, pruning

based on decay Softmax, Hedge and Softmax statistically improved over pruning based on

greedy pruning and the pruning based on magnitude. Full details of all tests are available

online22.

Name of Method Mean Rank

UCB1 8.679
Thompson Sampling 8.142

Epsilon-Greedy 8.107
Decay Epsilon-Greedy 7.607

Decay SM 6.964
Hedge 6.714

Softmax 6.643
EXP3 6.036
Model 3.321

Greedy Prune 2.034
Less Magnitude 1.750

Table 6-11: Results of ranked accuracy results based on Nemenyi test, which is used to
compare the different models on six different data sets.

22 https://github.com/SalemAmeen/testing_python_friedman/blob/master/prune_neurons/DL/friedman.ipynb

6.2.2.4. Comparison using the Friedman and Nemenyi Tests

Chapter 6: Multi-Armed Bandits for Pruning Neurons

125

 Mean - CD

Figure 6.10: Comparison of all pruning algorithms against each other with the Nemenyi
test. Horizontal lines show the critical difference away from proposed pruning algorithms,
the orginal unpruned model and two other algorithms that are not significantly different (p

= 0.0.5) are out of the lines from proposed algorithms. CD=3.218.

The evaluation results presented in the previous sections indicate that the proposed pruning

algorithms performed well on several data sets. Different sets of experiments were conducted

6.3. Discussion

Chapter 6: Multi-Armed Bandits for Pruning Neurons

126

from which the main findings can be summarised as follows:

• In general, UCB1 and Thompson Sampling pruning algorithms show the best results

among the proposed algorithms, especially when the play time is long enough. In

general, UCB1, which is based on upper bound rewards, converge faster than the

algorithm that samples the rewards from a Bernoulli distribution (Thompson

Sampling). The bounded rewards reflect the unimportance of the model faster than

the binary rewards.

• The adversarial bandit algorithms did not perform as well as the other MAB

algorithms. One potential explanation for this is that adversarial bandits are developed

primarily for situations where the reward is dynamic and changes with time while the

other bandits assume stationary rewards.

This chapter has described applying MAB algorithms to prune neurons. The main algorithm

was presented and three new bandit functions softmax, Hedge and EXP3 were used with

some others explained in the previous chapter. The operation of these algorithms was

illustrated using an example. The chapter presented an empirical evaluation in comparison

to classification and regression methods using 16 data sets from UCI and Kaggle, showing

that the MAB based methods were able to reduce the size of neural networks without

reducing accuracy. An empirical evaluation on deep learning models trained on eight well

known data sets also showed good results.

6.4. Summary

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

127

This chapter, introduces a way to remove the least important feature maps from a

convolutional layer of ConvNets to speed up inference time.

In ConvNets, while the fully connected layer has the most parameters, the convolutional

layer is responsible for the most floating-point operations (FLOPS23) [115, 214]. To reduce

the size of a ConvNets, the ideal way is to remove many neurons, as shown in the previous

chapter, while removing feature maps will lead to speeding up the inference time of

ConvNets.

Figure 7.1 shows a ConvNet before and after removing a filter 𝐹𝐹𝑖𝑖,𝑗𝑗 and its corresponding

feature map 𝑋𝑋𝑖𝑖+1,𝑗𝑗. Molchanov et al. [115] have shown that the number of FLOPS for a

ConvNet can be computed by:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2×𝐻𝐻𝑖𝑖×𝑊𝑊𝑖𝑖×(𝐶𝐶𝑖𝑖𝑛𝑛×𝐾𝐾2 + 1)×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

Where 𝐶𝐶𝑖𝑖𝑖𝑖and 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 are the number of inputs and outputs of feature maps (channels), 𝐻𝐻𝑖𝑖 and

𝑊𝑊𝑖𝑖 are the height and the width of the input feature map and K is the width or the length

(assumed to be symmetric) of the kernel.

For example, in third layer in Table 2-1, the kernel is 3×3 (K=3), the number of input feature

maps are 32 (𝐶𝐶𝑖𝑖𝑖𝑖 = 32), the number of the output is 64 (𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 64), and the height and

width are both 15. The number of FLOPS is:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2×15×15×(32×(3)2 + 1)×64 = 8,323,200

23 FLOPS is the commonly used measure to compare computation complexities of ConvNets

7. Multi-Armed Bandits for Pruning

Feature Maps

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

128

Removing one feature map in this layer leads to reducing 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 by 1 which leads to

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2×15×15×(32×(3)2 + 1)×63 = 8,193,150

In addition, 𝐶𝐶𝑜𝑜𝑢𝑢𝑢𝑢 will be 𝐶𝐶𝑖𝑖𝑖𝑖 for the next layer which leads to improving the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 in the

following layer. The FLOPS of all convolutional layers in this model and some other models

on different data sets are shown in Table 7-1. As this illustrates, the ability to prune feature

maps, can also help improve the speed of inference of ConvNets without reduction in

accuracy.

Figure 7.1 Removing the filter ℱi,j and corresponding feature map in Xi+1 in ConvNets.
The top diagram shows the two layers before pruning while the bottom diagram shows

the two layers after pruning the filter and feature map.

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

129

As described in Chapter 4, there are many MAB algorithms and a number of these were tried

for removing weights and neurons and results presented in Chapters 5 and 6 respectively.

The lessons learned from the evaluations presented in Chapters 5 and 6 were used to select

the MAB algorithms to evaluate for removing feature maps, and UCB1 and Thompson

Sampling were chosen, given that both showed good performance and good running time.

Model Name Layer Hi Wi K 𝑪𝑪𝒊𝒊𝒊𝒊 𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 FLOPS

LeNet (MNIST)
1 26 26 3 3 32 1211392
2 24 24 3 32 32 10653696

Conv (Cifar10)

1 32 32 3 3 32 1835008
2 30 30 3 32 32 16646400
3 15 15 3 32 64 8323200
4 13 13 3 64 64 12481664

Conv (Cifar100)

1 32 32 3 3 32 1835008
2 30 30 3 32 32 16646400
3 15 15 3 32 64 8323200
4 13 13 3 64 64 12481664

Conv (SVHN)

1 32 32 3 3 32 1835008
2 30 30 3 32 32 16646400
3 15 15 3 32 64 8323200
4 13 13 3 64 64 12481664

Table 7-1: Examples of computing FLOPS.

The rest of this chapter is organized as follows. The direct method is presented in Section

7.1. Experimental evaluations and analysis are presented in Section 7.2. The results are

discussed in Section 7.3 and the chapter concludes with a brief summary in Section 7.4.

Molchanov et al. [115] define the direct method (oracle prune) as the optimal criterion to

prune feature maps and its corresponding filters. It would be an exact empirical evaluation

of each feature map, accomplished by removing each filter in turn and recording the

difference of loss function. While the oracle is optimal for this greedy procedure [115], as

7.1. Direct Method

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

130

described in Chapter 3, it is prohibitively costly to compute [115]. Since the estimate of

parameter importance is key to both the accuracy and the efficiency of this pruning approach,

we evaluate two proposed pruning methods based on UCB1 and Thompson Sampling.

This section reports on the evaluation of two proposed MAB pruning algorithms, namely

UCB1 and Thompson Sampling, when they are used to prune feature maps.

The objectives of the evaluation are the same as in Chapter 6 except that there is a

comparison in relation to the direct method which is possible here because there are only a

few feature maps compared to the number of weights and neurons.

This section is organised in two parts. First, Subsection 7.2.2 presents an initial experiment

that aims to explore the extent to which the MAB methods produce results that are consistent

with the direct method which is the oracle. This is done on just the MNIST data and LeNet.

Subsection 7.2.3 presents the results obtained using MAB pruning algorithms with respect

to the two pruning algorithms (greedy pruning and pruning neurons based on the magnitude).

Both the proposed MAB algorithms were implemented using the Python programming

language. All the reported experiments in this chapter were conducted using NVIDIA

TITAN X.

The algorithms were evaluate using six data sets, which include four data sets described in

Chapter 6, namely MNIST, Cifar10, Cifar100, SVHN and the following two additional data

sets:

• Caltech-UCSD Birds 200-2011 data set: This data set [215] consists of nearly 6,000

training images and 5,700 test images, covering 200 species. Branson et al. [216]

show that training ConvNets from scratch on the Birds-200 data set achieves test

accuracy of only 10.9% and it gets improved by using transfer learning. The

following steps are used to train AlexNet to get 71% accuracy on this data set:

7.2. Evaluation

7.2.1. Data sets

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

131

1. First, AlexNet (that was described in chapter 6) is pre-trained on the 1.2 million

images from the ImageNet data set and used as a feature extractor. 

2. Then, the final 1,000-class AlexNet output layer is chopped off and replaced by

a 200-class CUB-200-2011 output layer. The weights of the new layer are

initialized randomly, and stochastic gradient descent (SGD) with 0.9 momentum,

batch size 64, and back propagation are used to learn the weights of the new 200-

class output layer while the weights of the old AlexNet are fixed. We use the

learning rate of 0.001, weight decay 0.0001 and trained until 90 epochs.

3. Finally, the model is fine-tuned by training the entire network jointly with a small

learning rate 0.0001 for 10 epochs.

• Oxford Flowers 102 data set: This data set [217] consists of nearly 2,040 training

images and 6,129 test images from 102 species of flowers. The training procedure is

the same as for Birds-200, except that AlexNet was fine tuned using 40 epochs with

a learning rate 0.00001 to achieve a test accuracy of 80%.

Figure 7.2 shows the results when the direct, UCB1, and Thompson Sampling methods are

applied to prune feature maps from the LeNet model trained on the MNIST data. In addition,

the cumulative rewards are bounded between [-1,1] to show the relation between learnt

rewards and the real change of the loss computed by direct method.

7.2.2. Intial Comparison with the Direct Method

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

132

C
ha

ng
e

in
 L

os
s

 Feature Map Index Feature Map Index

B
ou

nd
ed

 C
um

ul
at

iv
e

re
w

ar
d

 Feature Map Index Feature Map Index

B
ou

nd
ed

 C
um

ul
at

iv
e

re
w

ar
d

 Feature Map Index Feature Map Index

Figure 7.2: Change in training loss as a function of the removal of a single feature map
from the LeNet model. The first convolutional layer is on the left and the second

convolutional layer is on the right. The top row shows the results for brute force pruning,
the middle is for UCB1 pruning and the bottom is for Thompson Sampling.

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

133

Figure 7.2 shows that both proposed algorithms result in high rewards for the feature maps

that need to be pruned and low rewards for the ones that do not need to be pruned. There are

some feature maps where the rewards are close to zero and where there is a difference from

the direct method. For example, the direct method has a positive reward for the third feature

map while UCB1 results in a negative reward. However, in practice, this is not significant

given that the other feature maps have larger rewards.

The Pearson correlation coefficients between the direct method and the two MAB methods

are:

• Correlation between direct method and UCB1 = 0.83

• Correlation between direct and Thompson Sampling = 0.80

As a further initial comparison, the regret of the algorithms was compared to a greedy

algorithm. The greedy algorithm involved removing each feature map and evaluating the

reward after presenting each example and comparing the selected feature map with the one

selected by the direct method. This was repeated for 4,800 times and the cumulative regret

computed, where for each play, a regret of one is allocated if the wrong (i.e., different from

the direct method) feature map is selected and otherwise a zero is allocated if the correct

feature map is selected. In the direct method, the horizon time was set to 60,000 examples

for every feature map, which several authors have regarded as adequate to ensure optimality

[111, 114, 115]. For the MAB algorithms, 20,000 random examples were used and unlike

the other algorithms, not all the features are evaluated for each example given the nature of

MAB algorithms. Figure 7.3 presents the results when the algorithms are applied on the two

convolutional layers of the LeNet model.

These initial experiments on just the LeNet model trained on the MNIST data show

promising results.

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

134

10000 20000

Time Horizon T

Bo
un

de
d

Cu
m

ul
at

iv
e

Re
gr

et
 R

0.5

Greedy
Thompson Sampling
UCB1

1.0

10000 20000

Time Horizon T

Bo
un

de
d

Cu
m

ul
at

iv
e

Re
gr

et
 R

0.5

Greedy
Thompson Sampling
UCB1

1.0

(a) The first convolution layer (b) The second convolution layer

Figure 7.3: Cumulative regret incurred on LeNet model trained on MNIST data set
compared to direct method.

The previous subsection explored the extent to which MAB algorithms are able to identify

the feature maps that should be deleted, where the direct method is used as the oracle. This

was, however, limited to pruning the feature maps of the LeNet model after it had been

trained on the MNIST data. This subsection presents the results of applying the algorithms

on additional data sets.

Table 7-2 shows the results from applying the two MAB algorithms, a greedy pruning

algorithm [119] and an algorithm that removes the filter that has the smallest absolute sum

magnitude among the filters [146]. The first column in the table shows the model and the

data set used to build the model. The second column shows which layer(s) have been pruned.

For example, if the number is 2 then we prune the second layer. The term “all” in the second

column means that all convolutional layers are considered. In other words, the number of

arms is equal to the total number of feature maps in the ConvNets model. The remaining

columns show the results before after pruning, including the approximate number of FLOPS

before pruning (which is based on [108]) and the percentage reduction in the number of

feature maps after pruning.

7.2.3. Pruning Feature Maps using UCB1 and Thompson Sampling

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

135

In all the experiments, the playing time is set to five times the number of feature maps (arms).

For example, for pruning the convolutional layer in AlexNet trained on Bird-200, the total

playing time is 5×256 = 1,280.

The results in Table 7-2, show that, in general, the UCB1 and Thompson Sampling pruning

algorithms maintain the accuracy of the original unpruned models.

In addition, as the results in Table 7-2 show, the MAB methods outperform the other pruning

techniques. The experiments were carried out layer by layer, starting with the first

convolutional layer followed by the next layer and so on. We make two observations based

on these results:

• First, that we expected a pattern where the later convolutional layers were more

likely to be pruned than the earlier convolutional layers. We believed this would

happen for two reasons for this. First, to recognize objects in images, the first layer

aims to learn to recognize edges, the second layer combines edges to form motifs,

the third learns to combine motifs into parts, and the next layer learns to recognize

objects from the parts identified in the previous layer and so on [20]. From this

sequence, the first layers will be for general feature detection while the later layers

will aim to detect specific objects. Thus, it was expected that it would be easier for a

pruning algorithm to determine which feature map does not belong to any classes in

the later layers while that is difficult to remove the earlier feature maps given these

layers extract the edges which relate to all classes. The second reason, is that in

ConvNets, the later layers have a larger number of feature maps than the previous

layers which makes it more likely to have feature map that are not important.

However, the experiments show that this was true for only three of the four

experiments with convolutional networks but not for AlexNet. Although further

experimentation is needed, one reason for this might be that AlexNet was pre-trained

on the ImageNet data and hence one would expect the need for pruning the earlier

layers which may be too generic.

• Pruning all the convolutional layers together is better than pruning each layer

separately. For example, when pruning the LeNet model based on all layers together

the algorithm prunes nearly 22% from the total number of feature maps. We think

the reason is that pruning each layer separately, we enforce each layer to prune some

of the feature map while pruning feature maps in all layer, the pruning algorithm will

determine the unimportant feature maps across the layers which is expected will be

in later layers.

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

136

Table 7-2: Result of pruning convolutional layers. The green cells indicate that the
method has good accuracy in contrast of red cell. The arrows point up if the error high,

down if it is low or in right direction if it is in between.

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

137

To assess if the differences between the algorithms are significant, the Friedman test was

applied. The results indicated that there was a significant difference between the algorithms

as the p values of Friedman test is 4.25×10−23. Table 7-3 presents the average rank of the

algorithms for pruning feature maps.

Name of Method Mean Rank
UCB1 4.28

Thompson Sampling 4.10
Model before pruning 3.55

Greedy Pruning 2.03
Based on the Magnitude 1.03

Table 7-3: Average rank of the algorithms for pruning feature maps based on accuracy,
where a higher rank is better.

Table 7-3 indicates that pruning feature maps with UCB1 has the best mean rank over the

other algorithms followed by Thompson Sampling, while pruning filters based on the

magnitude has the worst rank followed by greedy pruning of the weights.

Since the Friedman test shows a significant difference between the different methods, a post

hoc test was used to find which algorithm(s) performed significantly better than the others.

For this, we used the Nemenyi post hoc test and the result is shown in Figure 7.4 where the

lines from the proposed algorithms with length of critical difference CD is plotted to show

the significant difference to the proposed algorithms. The x-axis in the diagram is the axis

on which we plot the average ranks of algorithms, where the rank increases from left to right.

In Figure 7.4, the results indicate that the proposed algorithms performed statistically better

than the greedy pruning and pruning filters based on the magnitude algorithms, as the

difference between them is greater than the CD=1.133. However, these results do not allow

us to reject the null hypothesis between the proposed pruning algorithms and the original

unpruned model. The results and implementation of these tests are available online24.

24 https://github.com/SalemAmeen/testing_python_friedman/tree/master/pruning_fearturemap/Inbound

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

138

 Mean - CD

Figure 7.4: Comparison of all classifiers against each other with the Nemenyi test.
Horizontal lines show the critical difference away from proposed pruning algorithms and

any algorithms. CD=1.133.

The evaluation results presented in the previous sections indicate that the two proposed

pruning algorithms performed well on several data sets. Different sets of experiments were

conducted from which conclusions can be drawn, as follows:

• MAB algorithms offer a useful way of pruning feature maps and corresponding filters

7.3. Discussion

Chapter 7: Multi-Armed Bandits for Pruning Feature Maps

139

in ConvNets.

• Pruning based on UCB1 and Thompson Sampling mimic the direct method of pruning

feature maps on the LeNet model and therefore have potential for being as effective

as the direct method but without the computational overheads of the direct method.

• Pruning all convolutional layers together is better than pruning every layer separately.

The pruning algorithm can determine which layer has the most unimportant feature

maps.

We have developed two pruning algorithms that can prune convolutional layers in trained

ConvNets model. The proposed pruning algorithms are based on UCB1 and Thompson

Sampling. Our evaluation shows strong performance compared to the baseline approaches

of greedy pruning or pruning based on the magnitude. One of the limitations of the proposed

algorithms is pruning and testing one feature map at each play time, which makes the

proposed algorithms slower than some baseline algorithm. In Chapter 8, we describe another

pruning algorithms that include pruning multiple feature maps at the same time, reducing

the total play time.

7.4. Summary

Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs

140

When a neural network is built with several neurons in its hidden layers, ideally each neuron

should operate as an independent feature detector [103]. If two or more neurons begin to

detect the same feature repeatedly (known as co-adaptation), the network is not utilising its

full capacity efficiently given that it computes the activations for redundant neurons. Hinton

et al. [103] provide one approach to counter the negative effects of such neurons by using a

technique known as dropout [135]25, which essentially omits a random bunch of neurons

during training to prevent co-adaptation [103]. Reed [111] and Wolfe et al. [114] show that

this problem of neurons that interact or cancel each other can happen even after training the

neural networks with dropout [114].

In this chapter, we introduce two pruning algorithms based on MABs to prune multiple

neurons or feature maps at the same time. Each algorithm computes the cumulative average

reward based on the change in the loss function after pruning multiple neurons or feature

maps. The cumulative reward is then used to prune the neurons or feature maps after the

playing time is finished.

The rest of this chapter is organized as follows. The expected advantage of pruning multiple

neurons over one neuron at a time is present in Section 8.1. The proposed algorithms are

presented in Section 8.2. Experimental evaluations and analysis are presented in Section 8.3

and Section 8.4 summarises the chapter.

25 In addition, it is a way to prevent neural networks from overfitting.

8. Pruning Multiple Neurons and

Feature Maps using MABs

Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs

141

In term of co-adaptation, the main drawback of pruning one neuron, either based on a

specific layer or throughout the layers, is that the pruning algorithm will prune the neuron

that affects the change of loss. In other words, this algorithm assumes that any neuron effects

the output without any interconnections with other neurons, which is the optimal case where

the co-adaption is removed during training. However, the optimal case is hard to achieve

and there is no guarantee that a model will be optimal Hinton et al. [103]. That is, algorithms

that focus on removing single neurons, do not address the problem of detecting neurons that

cancel each other out or interact in a way that has a negative impact on performance [111,

114]. However, the literature review in this study identified only the one method, namely

OBS, that addressed this problem once a model has been trained. However, as described in

Section 3.2.1.2, OBS is computationally demanding, as it needs to invert a Hessian matrix.

Hence, the next section presents algorithms that aim to prune multiple neurons which may

be in the same layer or across different layers.

The basic idea for pruning multiple neurons and feature maps is similar to that described in

Chapters 6 and 7 except that there are two main differences. First, a multi play MAB

algorithm is used to select and remove multiple neurons or feature maps instead of one

neuron or feature map. Secondly, the reward from removing a set of neurons (or feature

maps) needs attributing to individual neurons (feature maps). This is done as follows.

Assume that 𝑥𝑥𝑖𝑖 is the output of neuron i before it is pruned and 𝛿𝛿𝛿𝛿𝑔𝑔 is the change of the

output after pruning multiple neurons (including neuron i) then, the reward for the neuron i

will be given by,

𝑟𝑟𝑖𝑖 = 𝑥𝑥𝑖𝑖 ∗ 𝑋𝑋𝑔𝑔, (8.1)

Where 𝑋𝑋𝑔𝑔 is the reward as a result of removing the neurons. Here, we also assume the neural

networks use the ReLU function, which has been widely used in deep learning [218], where

its output is positive.

8.1. The Advantage of Pruning Multiple Neurons over Pruning One

8.2. MAB Algorithms for Pruning Multiple Neurons and Featue Maps

Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs

142

Equation 8.1 has several properties that make it suitable a measure of reward:

• When there is no improvement from removing neurons or feature maps then the

reward is zero.

• If the new model results in an improvement, then an overall reward Xg for the group

of chosen neurons or feature maps will be generated. The extent to which a neuron

contributes to the output (and hence the reward Xg) is dependent on the output of the

neuron [120]. That is, the larger the output from a neuron, the more it will contribute

to the output of the network. Hence the above measure allocates the reward in

proportion to the output of a neuron.

Figure 8.1 presents the top-level algorithm for pruning multiple neurons in which the key

step is to identify the multiple neurons to be considered:

I = MAB(* args)

Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs

143

Algorithm MAB 8.1 Algorithm for pruning multiple neurons or feature maps at one trail
INPUT: Time horizon T, Trained network, Input layers to be pruned.
OUTPUT: Pruned network
Let M is the number of neurons or feature maps that are played at one trail
Let I be the set of M indexes while i is a single index
Let 𝑋𝑋𝐼𝐼 be the current reward of these neurons/feature maps
Let 𝜇𝜇𝐼𝐼 be the cumulative average reward of this arms/neurons/feature maps, initialized to zero
Let D be the random sample from training data set
Let 𝑁𝑁𝐼𝐼 be set of M neurons or feature maps
Let 𝐿𝐿(𝐷𝐷|𝑁𝑁) The loss function before pruning the M neurons or feature maps
Let 𝐿𝐿(𝐷𝐷|𝑁𝑁′) The loss function after pruning the M neurons or feature maps
Let Threshold be the loss in the performance that is allowed
Let K be the number of neurons in the chosen layer
Let 𝑛𝑛𝑖𝑖 be the total current play time for neuron 𝑁𝑁𝑖𝑖
Let 𝑆𝑆𝑖𝑖 be the number of successes and 𝐹𝐹𝑖𝑖 the number of failures, both initialized to zero

1. for t=1 to T do /* start playing */
2. D = random example of the training data

3. Call the relevant MAB algorithm, returning the index of the selected neurons:
 𝐼𝐼 = 𝑀𝑀𝐴𝐴𝐴𝐴(∗ 𝑎𝑎𝑎𝑎𝑎𝑎)

4. Perform forward propagation on D to compute 𝐿𝐿(𝐷𝐷|𝑁𝑁)
5. Get the output of 𝑁𝑁𝐼𝐼
6. Hold the value of the selected neurons of feature maps, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑁𝑁𝐼𝐼
7. Set the neurons or feature maps to zero 𝑁𝑁𝐼𝐼 = 0
8. Perform forward propagation on D to compute 𝐿𝐿(𝐷𝐷|𝑁𝑁′)
9. Set the value of the neurons or feature maps to previous value, 𝑁𝑁𝐼𝐼 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
10 𝛿𝛿𝛿𝛿 = 𝐿𝐿(𝐷𝐷|𝑁𝑁) − 𝐿𝐿(𝐷𝐷|𝑁𝑁′)
11 𝑋𝑋𝑖𝑖,𝑡𝑡

𝑔𝑔 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛿𝛿𝛿𝛿)
12 Compute 𝑟𝑟𝑖𝑖 for each arm such that 𝑟𝑟𝑖𝑖 = 𝑥𝑥𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖,𝑡𝑡

𝑔𝑔

13
 Update the cumulative average reward of the current arms
 𝜇𝜇𝐼𝐼,𝑡𝑡+1 = (𝑛𝑛𝐼𝐼 − 1)/𝑛𝑛𝐼𝐼 ∗ 𝜇𝜇𝐼𝐼,𝑡𝑡 + 1/𝑛𝑛𝐼𝐼 ∗ 𝑋𝑋𝐼𝐼,𝑡𝑡

𝑔𝑔
14 end for
15 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟)
16 end main program

17 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

18 Set to zero the weights that have most rewards
19 return PrunedModel
20 end Function

21 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛿𝛿𝛿𝛿)

22 if (bounded reward) then
23 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+= 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝛿𝛿𝛿𝛿 + 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) /𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
24 else /* Reward for Thompson Sampling */
25 if 𝛿𝛿𝛿𝛿 < 0 then reward=0, 𝐹𝐹𝐼𝐼,𝑡𝑡+1 = 𝐹𝐹𝐼𝐼,𝑡𝑡 + 1
26 else reward=1, 𝑆𝑆𝐼𝐼,𝑡𝑡+1 = 𝑆𝑆𝐼𝐼,𝑡𝑡 + 1
27 end if
28 end if
29 end Function

Figure 8.1: Pruning algorithm based on MP-MAB.

Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs

144

Two different multi-play multi-arm bandits are explored, namely one based on Thompson

Sampling and the second based on UCB1, both of which are described below.

As described in Chapters 5, Thompson Sampling involves sampling the next arm to play

based on drawing a random sample of the prior knowledge of the arms and then assign a

reward. The main difference here, is that instead of selecting one neuron, the top L neurons

are selected. Likewise, when adopting UCB1, the main difference is the selection of the top

L neurons. The MAB functions for these two MAB based algorithms are presented in Figure

8.2 and Figure 8.3.

Algorithm 8.2 Multiple play Thompson Sampling for binary bandits for K arms
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡, 𝑆𝑆, 𝐹𝐹, 𝐾𝐾)
Let 𝑖𝑖 ∈ {1 … 𝐾𝐾}
Let 𝐴𝐴𝑡𝑡 contain the sub of arms at time t
 for i=1 to M do
 Sample 𝜃𝜃𝑖𝑖(𝑡𝑡) for 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑆𝑆𝑖𝑖 + 1, 𝐹𝐹𝑖𝑖 + 1) distribution for all 𝑖𝑖 ∈ {1 … 𝐾𝐾}
 end for
 Select 𝐴𝐴𝐼𝐼 = top L arms ranked by 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖∈{1…𝐾𝐾}
𝜃𝜃𝑖𝑖(𝑡𝑡)

 return I
end Function

Figure 8.2: MP-TS function where there are K neurons or feature maps.

Algorithm 8.3 Multiple play UCB1 for K arms
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡, 𝜇𝜇, 𝐾𝐾)
Let 𝑖𝑖 ∈ {1 … 𝐾𝐾}
Let 𝐴𝐴𝑡𝑡 contain the sub of arms at time t

 Select arm 𝐴𝐴𝑰𝑰 = 𝑡𝑡𝑡𝑡𝑡𝑡 𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈{1…𝑲𝑲}

 (𝜇𝜇𝑖𝑖,𝑡𝑡 + �2𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛𝑖𝑖

)

 return I
end Function

Figure 8.3: MP-UCB1 function where there are K neurons or feature maps.

This section presents the results of pruning multiple neurons and feature maps using the

algorithms developed above. Both the proposed MAB algorithms were implemented using

the Python programming language. All the reported experiments in this chapter were

conducted using NVIDIA TITAN X.

8.3. Evaluation

Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs

145

Section 8.3.1 presents the results when the algorithms are used to prune neural networks

trained on some UCI data sets and Section 8.3.2 presents the results when the algorithms are

used to prune neural networks trained on deep learning data sets. Section 8.3.3 compares the

performance of algorithms that prune multiple neurons (or feature maps) relative to those

that prune a single neuron (or feature map) at a time. All the code used for these experiments

is available online26.

The proposed algorithms were tested on four widely used data sets from the UCI repository:

Cancer, Iris, Valley, and Wine data sets. The methodology for training, pruning and testing

the networks was explained in Section 6.2 and Table 6-5.

Figure 8.4 shows the accuracy of the models as the number of neurons (two neurons pruned

at on play time) removed increases. The main conclusions that can be drawn from these

results are:

• In general, pruning neurons on these data sets results in some improvement over the

unpruned networks up to a point, after which performance decreases.

• Nearly 50% of the networks are prune until the performance sharply decreased.

The proposed algorithms were tested on three widely used data sets from the deep learning

benchmarks: Reuters, SVHN, and MNIST data sets. The methodology for training, pruning

and testing the networks was explained in Section 6.2 and Table 6-6.

Table 8-1 shows the accuracy of the models as the number of neurons removed increases.

The first column of the table shows the data set, the model, and the accuracy. The second

column stand for the pruned layer or layers. The third column shows the number of neurons

or feature maps that are pruned in one trail. The following two columns show the accuracy

of the proposed algorithms. The final column shows the percentage of pruning relative to

the original networks.

26 https://github.com/SalemAmeen/banditsbook_Prune_many_one_play_based_on_loss_output

8.3.1. Testing on UCI Data sets

8.3.2. Testing on Deep Learning Data sets

Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs

146

Ac
cu

ra
cy

No. of Pruned Neurons No. of Pruned Neurons

 Cancer Data set Iris Dataset

Ac
cu

ra
cy

 No. of Pruned Neurons No. of Pruned Neurons
 Valley Dataset Wine Dataset

Figure 8.4: Pruning multiple neurons at one time.

The main conclusions that can be drawn from these results are:

• Pruning neurons and feature maps can be within a layer or across layers.

• In general, pruning neurons and feature maps on these data sets results in some

improvement over the unpruned networks.

• Nearly 8-20% of the networks are pruned after which the performance decreases.

• Using two neurons that might cancel each other is more accurate when pruning the

neurons or feature maps at the same layer. However, across the networks’ layers

using a higher number of feature maps or neurons leads to improvements in the

performance

Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs

147

Table 8-1: Pruning using MP-TS and MP-UCB1. The green cells indicate that the method
has good accuracy in contrast of red cell. The arrows point up if the error high, down if it

is low or in right direction if it is in between.

Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs

148

Finally, we compare the proposed algorithms with pruning single neurons and feature maps

in one trail. The experiments use the same maximum number of trials and unpruned

networks.

Table 8-2 shows the results, where the first column shows the data sets, the networks model,

and the accuracy. The second column is the pruned layer which can be either a single layer

or several layers. Then, each proposed algorithm has five columns. The first and second

column in the proposed algorithm column shows whether neurons or feature maps are

pruned. This is followed by the accuracy and the number of neurons or feature maps pruned.

The last two columns show the percentage reduction in the size of the model as a result of

pruning.

Table 8-2: Summary of results based on accuracy from three common data sets that were
used in pruning based on single or multiple neurons or feature maps. Cells shaded black
indicate there is no result. Cells shaded green has best accuracy while red has the worse.

The main conclusion that can be drawn from these results is that in general, pruning single

neurons and feature maps results in a greater proportion of neurons being pruned than

pruning multiple neurons. This was a surprising outcome given our expectations that pruning

multiple neurons would detect neurons that cancel each other as suggested in the work of

Hinton et al. [103] and Reed [111]. The experiments here are limited to seven data sets, and

8.3.3. Comparing with Pruning Single Neurons or Feature Maps

Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs

149

further work in this area is needed to fully understand why the effects expected have not

materialised. One possible direction of work could be to review the measure used in Equation

8.1.

This chapter was motivated by a view that removing multiple neurons at the same time would

lead to detection of correlated neurons that were unnecessary or even had a negative effect

on the accuracy of a network (e.g. Reed [111], Hinton et al. [103]). Hence, this chapter

developed two pruning algorithms that prune multiple neurons and feature maps at the same

time.

The empirical evaluation on seven data sets shows that pruning multiple neurons can reduce

the size of the models without affecting the accuracy of the model. However, contrary to

our expectations (based on the view of other authors [111]), an empirical comparison also

showed that pruning single neurons or feature maps at a time results in greater pruning.

Further work and experimentation is therefore needed to understand why pruning multiple

neurons using MAB methods was not as effective as pruning single neurons at a time.

8.4. Summary

Chapter 9: Conclusion and Future Work

150

Pruning mechanisms are an important part of practical learning algorithms for deep neural

networks [134, 159, 219, 220]. This thesis explore the use of multi-armed bandits for

improving the process of pruning neural networks. This chapter offers a summary of the

research work described in this thesis, the main findings, and some directions for future

work. The rest of this chapter is organised as follows: Section 9.2 gives a summary of the

work presented. Section 9.3 shows the main findings in the context of the research questions

identified in Chapter 1. Finally, Section 9.4 recommends directions for future work.

The first stages of the study involved surveying the literature on deep learning and pruning

methods. This identified a range of pruning methods including OBD, OBS, Network

Pruning, Local Bottlenecks, Skeletonization, Iterative Pruning, Channel Level Acceleration,

Network Trimming, Entropy Based Pruning and Pruning Smallest Filters which are

described in Chapter 3. Although OBD and OBS have good theoretical foundations, they

require the inversion of a Hessian matrix that makes these methods computationally

expensive. Chapter 4 surveyed multi-arm bandit (MAB) methods including UCB based

methods, Epsilon-Greedy, Win-Stay; Lose-Shift (WSLS), Softmax, Hedge, EXP3 and

Thompson Sampling.

9. Conclusion and Future Work

9.1. Introduction

9.2. Summary

Chapter 9: Conclusion and Future Work

151

Deep learning neural networks are organised in layers of neurons that are connected by

weights. Pruning can therefore occur at several layers of granularity: individual weights can

be pruned, neurons can be pruned, feature maps can be pruned, and multiple neurons and

feature maps can also be pruned. The study explored the use of MABs for each of these

possibilities:

• Chapter 5 presented six new algorithms for pruning weights based on: Epsilon-

Greedy, Win-Stay; Lose-Shift, UCB1, KL-UCB, Thompson Sampling and

BayesUCB. An empirical evaluation of these algorithms indicated that:

o The MAB pruning algorithms produced better results than the original

models.

o Some of the proposed MAB methods outperformed the other pruning

methods.

o The proposed methods had manageable time to prune the weights of a

network in contrast to other methods like OBS and OBD.

• Chapter 6 presented algorithms that remove neurons, thereby removing all the

weights that are associated with the neuron that is removed. Multiple pruning

algorithms based on MAB are introduced. An empirical evaluation of these

algorithms shows that:

o UCB1 and Thompson Sampling pruning show the best results among the

proposed algorithms.

o Adversarial bandits are not as effective as the other MAB pruning algorithms.

• Chapter 7 discussed the development of pruning algorithms based on Thompson

Sampling and UCB1 to prune feature maps with a view to speeding up ConvNets.

An empirical evaluation of these algorithms, presented in Table 7-2, shows that:

o MAB based pruning can be an effective way of pruning feature maps and can

reduce the number feature maps significantly. For example, in the LeNet

model trained on the MNIST data, there was a reduction of over 21% in the

number of feature maps

o The use of UCB1 and Thompson Sampling for pruning feature maps produced

results that were ranked higher than both the greedy and magnitude based

approaches to pruning feature maps.

o Applying MAB based on all the layers produced better results than applying

them layer by layer.

Chapter 9: Conclusion and Future Work

152

• Chapter 8 extends two MAB algorithms to play with many arms instead of one which

has the potential to remove neurons and feature maps that cancel each other.

However, the results of an empirical evaluation are not as good as the other MAB

methods. One likely reason for this is that the training process adopted may have

already led to minimisation of neurons that interact in a negative manner.

A statistical analysis of the outcomes was first conducted using the Friedman test and then

followed up with the Nemenyi post-hoc test for comparing different methods. Interesting

outcomes were obtained and these are discussed more in the following section.

This section presents the main findings from the research work described in the thesis. As

initially presented in Chapter 1, the three main research questions to be addressed in this

study were:

a) How well do existing algorithms for pruning neural networks perform?

b) Can MAB algorithms be developed for pruning and which MAB methods work

best?

c) How does the performance of the MAB based pruning methods compare with

other methods?

The thesis aimed to answer these questions, and the main findings are summarised below.

a) How well do existing algorithms for pruning neural networks perform?

The study carried out a comprehensive review of the literature, implemented a selection

of the algorithms and applied them on several data sets. The main conclusions with

respect to this question are:

• The performance of existing techniques is proportional to the size and depth of deep

neural networks. As the networks becomes bigger and deeper, the pruning techniques

perform better, unless these algorithms have very slow computation time (e.g., OBD

and OBS) in which case they cannot be used in practice [132].

• Most of the existing pruning algorithms need to retrain the pruned network after

pruning to maintain the performance of the network [36, 114].

9.3. Contribution and Main Findings

Chapter 9: Conclusion and Future Work

153

b) Can MAB algorithms be developed for pruning and which methods work best?

• Different MAB pruning algorithms were developed to prune weights, neurons, and

feature maps. The methods developed and implemented using TensorFlow and

Python include UCB1, KL-UCB, BayesUCB, WSLS, Softmax, Hedge, EXP3 and

Thompson Sampling.

• The algorithms were evaluated on 23 data sets from the UCI and Kaggle repositories,

and using eight deep learning data sets implemented using ConvNets, MLP and

RNNs.

• The results show that in general, pruning based on UCB1 and Thompson Sampling

showed the best performance among the MAB pruning algorithms. The evaluation

also showed that the WSLS does not perform well.

c) How does the performance of the MAB based pruning methods compare with other

methods?

• The MAB based algorithms were compared with several existing methods, including

OBD, OBS, Network pruning, random pruning, magnitude based pruning and

pruning based on activation.

• As expected, OBS was very slow given the need to invert a Hessian matrix. For

example, it was 512 times slower than the UCB1 on the SPECTF Heart data set.

• Pruning based on MAB presented the best results for pruning the weights, neurons,

and feature maps.

The research presented in this thesis has shown promising results, and there are a number of

directions for future work, such as:

• The literature includes some uses of UCB1 based on bounded rewards that have

resulted in good performance over the other proposed algorithms [221, 222]. In

addition, Thompson Sampling, which uses binary rewards, produced the second-best

results. Therefore, using Thompson Sampling with bounded rewards might give

better results over binary rewards and would be worth exploring in the future.

9.4. Future Work

Chapter 9: Conclusion and Future Work

154

• Instead of computing the saliency based on forward propagation [113, 114, 119-121,

140], back propagation can be used to compute the change of the gradient for

particular neuron of feature [115]

• One of the biggest successes in deep learning is using GPUs and parallel computing

to train deep learning. It is therefore worth implementing the MAB pruning

algorithms to take advantage of parallel computing to speed up the process of pruning

[223, 224].

• The thesis also considered the use of multi-play bandits for identifying several

neurons that can be deleted. Apart from OBS, and as far as the author is aware, there

is no other method that aims to remove multiple neurons. The evaluations show that

selecting multiple neurons does not necessarily produce better results than selecting

single neurons which was a little surprising given that the literature suggests that

there are problems with neurons cancelling each other out [103, 111]. This

unexpected outcome might be because the training process employed avoided such

neurons, but needs further exploration.

Chapter 10: References

155

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by

back-propagating errors," Nature, vol. 323, pp. 533-536, 1986.

[2] G. P. Zhang, "Neural networks for classification: a survey," IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 30, pp. 451-

462, 2000.

[3] A. Vellido, P. J. Lisboa, and J. Vaughan, "Neural networks in business: a survey of

applications (1992–1998)," Expert Systems with applications, vol. 17, pp. 51-70,

1999.

[4] Y. Le Cun, L. Bottou, and Y. Bengio, "Reading checks with multilayer graph

transformer networks," in Acoustics, Speech, and Signal Processing, 1997. ICASSP-

97., 1997 IEEE International Conference on, 1997, pp. 151-154.

[5] B. Šter and A. Dobnikar, "Neural networks in medical diagnosis: Comparison with

other methods," in International Conference on Engineering Applications of Neural

Networks, 1996, pp. 427-30.

[6] F. Amato, A. López, E. M. Peña-Méndez, P. Vaňhara, A. Hampl, and J. Havel,

"Artificial neural networks in medical diagnosis," ed: Elsevier, 2013.

[7] J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, et al.,

"Classification and diagnostic prediction of cancers using gene expression profiling

and artificial neural networks," Nature medicine, vol. 7, p. 673, 2001.

[8] W. G. Baxt, "Application of artificial neural networks to clinical medicine," The

lancet, vol. 346, pp. 1135-1138, 1995.

[9] W. T. Miller, P. J. Werbos, and R. S. Sutton, Neural networks for control: MIT press,

1995.

10. References

Chapter 10: References

156

[10] D. Pham and X. Liu, "NEURAL NETIWORKS FOR IDENTIFICATION,

PREDICTION AND CONTROL," 1995.

[11] F. Lewis, S. Jagannathan, and A. Yesildirak, Neural network control of robot

manipulators and non-linear systems: CRC Press, 1998.

[12] G. Hinton, S. Osindero, and Y. Teh, "A Fast Learning Algorithm for Deep Belief

Nets," Neural Computation, vol. 18, pp. 1527-1554, 2006.

[13] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with

neural networks," Science, vol. 313, pp. 504-507, 2006.

[14] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, "Convolutional

neural networks for diabetic retinopathy," Procedia Computer Science, vol. 90, pp.

200-205, 2016.

[15] R. Qian, Y. Yue, F. Coenen, and B. Zhang, "Visual attribute classification using

feature selection and convolutional neural network," in Signal Processing (ICSP),

2016 IEEE 13th International Conference on, 2016, pp. 649-653.

[16] Y. Xia, B. Zhang, and F. Coenen, "Face Occlusion Detection Using Deep

Convolutional Neural Networks," International Journal of Pattern Recognition and

Artificial Intelligence, vol. 30, p. 1660010, 2016.

[17] S. Ameen and S. Vadera, "A convolutional neural network to classify American Sign

Language fingerspelling from depth and colour images," Expert Systems, 2017.

[18] R. Qian, Y. Yue, F. Coenen, and B. Zhang, "Traffic sign recognition with

convolutional neural network based on max pooling positions," in Natural

Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2016 12th

International Conference on, 2016, pp. 578-582.

[19] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How transferable are features in

deep neural networks?," in Advances in Neural Information Processing Systems,

2014, pp. 3320-3328.

[20] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-

444, 05/28/print 2015.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F. Li, "Imagenet: A large-scale

hierarchical image database," in Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on, 2009, pp. 248-255.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," in Advances in neural information processing

systems, 2012, pp. 1097-1105.

Chapter 10: References

157

[23] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale

image recognition," arXiv preprint arXiv:1409.1556, 2014.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., "Going deeper

with convolutions," arXiv preprint arXiv:1409.4842, 2014.

[25] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image

Recognition," arXiv preprint arXiv:1512.03385, 2015.

[26] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, "Densely connected

convolutional networks," arXiv preprint arXiv:1608.06993, 2016.

[27] K. Gurney, An introduction to neural networks: CRC press, 1997.

[28] C. A. Walsh, "Peter Huttenlocher (1931-2013)," Nature, vol. 502, pp. 172-172, 2013.

[29] M. Denil, B. Shakibi, L. Dinh, and N. de Freitas, "Predicting parameters in deep

learning," in Advances in Neural Information Processing Systems, 2013, pp. 2148-

2156.

[30] V. Sze, T.-J. Yang, and Y.-H. Chen, "Designing Energy-Efficient Convolutional

Neural Networks using Energy-Aware Pruning," 2017.

[31] N. D. Lane and P. Georgiev, "Can deep learning revolutionize mobile sensing?," in

Proceedings of the 16th International Workshop on Mobile Computing Systems and

Applications, 2015, pp. 117-122.

[32] M. A. Alsheikh, D. Niyato, S. Lin, H.-P. Tan, and Z. Han, "Mobile big data analytics

using deep learning and apache spark," IEEE network, vol. 30, pp. 22-29, 2016.

[33] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, et al.,

"Deepx: A software accelerator for low-power deep learning inference on mobile

devices," in Information Processing in Sensor Networks (IPSN), 2016 15th

ACM/IEEE International Conference on, 2016, pp. 1-12.

[34] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, et al., "EIE: efficient

inference engine on compressed deep neural network," arXiv preprint

arXiv:1602.01528, 2016.

[35] A. Angelova, A. Krizhevsky, V. Vanhoucke, A. S. Ogale, and D. Ferguson, "Real-

Time Pedestrian Detection with Deep Network Cascades," in BMVC, 2015, p. 4.

[36] M. C. Mozer and P. Smolensky, "Skeletonization: A Technique for Trimming the

Fat from a Network via Relevance Assessment; CU-CS-421-89," 1989.

[37] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, "Occam’s razor,"

Readings in machine learning, pp. 201-204, 1990.

Chapter 10: References

158

[38] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous

activity," The bulletin of mathematical biophysics, vol. 5, pp. 115-133, 1943.

[39] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, "Incremental network quantization:

Towards lossless cnns with low-precision weights," arXiv preprint

arXiv:1702.03044, 2017.

[40] R. Collobert, K. Kavukcuoglu, and C. Farabet, "Implementing neural networks

efficiently," in Neural Networks: Tricks of the Trade, ed: Springer, 2012, pp. 537-

557.

[41] W. R. Thompson, "On the likelihood that one unknown probability exceeds another

in view of the evidence of two samples," Biometrika, vol. 25, pp. 285-294, 1933.

[42] W. R. Thompson, "On the theory of apportionment," American Journal of

Mathematics, vol. 57, pp. 450-456, 1935.

[43] H. Robbins, "Some aspects of the sequential design of experiments," Bulletin of the

American Mathematical Society, vol. 58, pp. 527-535, 1952.

[44] M. Babaioff, Y. Sharma, and A. Slivkins, "Characterizing truthful multi-armed

bandit mechanisms," in Proceedings of the 10th ACM conference on Electronic

commerce, 2009, pp. 79-88.

[45] N. R. Devanur and S. M. Kakade, "The price of truthfulness for pay-per-click

auctions," in Proceedings of the 10th ACM conference on Electronic commerce,

2009, pp. 99-106.

[46] S. N. Durlauf and L. Blume, The new Palgrave dictionary of economics vol. 6:

Palgrave Macmillan Basingstoke, 2008.

[47] D. Lamberton, G. Pagès, and P. Tarrès, "When can the two-armed bandit algorithm

be trusted?," Annals of Applied Probability, pp. 1424-1454, 2004.

[48] S. Gelly and Y. Wang, "Exploration exploitation in go: UCT for Monte-Carlo go,"

in NIPS: Neural Information Processing Systems Conference On-line trading of

Exploration and Exploitation Workshop, 2006.

[49] R. D. Kleinberg, "Nearly tight bounds for the continuum-armed bandit problem," in

Advances in Neural Information Processing Systems, 2004, pp. 697-704.

[50] P.-A. Coquelin and R. Munos, "Bandit algorithms for tree search," arXiv preprint

cs/0703062, 2007.

[51] R. Kleinberg, A. Slivkins, and E. Upfal, "Multi-armed bandits in metric spaces," in

Proceedings of the fortieth annual ACM symposium on Theory of computing, 2008,

pp. 681-690.

Chapter 10: References

159

[52] S. Bubeck, G. Stoltz, C. Szepesvári, and R. Munos, "Online optimization in X-armed

bandits," in Advances in Neural Information Processing Systems, 2009, pp. 201-208.

[53] V. Mnih, C. Szepesvári, and J.-Y. Audibert, "Empirical bernstein stopping," in

Proceedings of the 25th international conference on Machine learning, 2008, pp.

672-679.

[54] R. Busa-Fekete and B. Kégl, "Fast boosting using adversarial bandits," in 27th

International Conference on Machine Learning (ICML 2010), 2010, pp. 143-150.

[55] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction vol. 1: MIT

press Cambridge, 1998.

[56] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, et al.,

"Playing atari with deep reinforcement learning," arXiv preprint arXiv:1312.5602,

2013.

[57] C. R. Kothari, Research methodology: Methods and techniques: New Age

International, 2004.

[58] T. M. Mitchell, The discipline of machine learning vol. 3: Carnegie Mellon

University, School of Computer Science, Machine Learning Department, 2006.

[59] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning: MIT press, 2016.

[60] A. Karpathy, "Connecting Images and Natural Language," Stanford University,

2016.

[61] C. M. Bishop, Pattern recognition and machine learning: springer, 2006.

[62] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data vol. 4:

AMLBook New York, NY, USA:, 2012.

[63] Y. Chauvin, "A back-propagation algorithm with optimal use of hidden units," in

Advances in neural information processing systems, 1989, pp. 519-526.

[64] D. Weigend, "Back-propagation, weight-elimination and time series prediction," in

Proceedings 1990 Connectionist Models Summer School, 1990, pp. 105-116.

[65] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, "Generalization by weight-

elimination applied to currency exchange rate prediction," in Neural Networks,

1991., IJCNN-91-Seattle International Joint Conference on, 1991, pp. 837-841.

[66] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, "Generalization by weight-

elimination with application to forecasting," in Advances in neural information

processing systems, 1991, pp. 875-882.

[67] C. Ji, R. R. Snapp, and D. Psaltis, "Generalizing smoothness constraints from discrete

samples," Neural Computation, vol. 2, pp. 188-197, 1990.

Chapter 10: References

160

[68] M. Avriel, Nonlinear programming: analysis and methods: Courier Corporation,

2003.

[69] A. Cauchy, "Méthode générale pour la résolution des systemes d’équations

simultanées," Comp. Rend. Sci. Paris, vol. 25, pp. 536-538, 1847.

[70] M. Li, T. Zhang, Y. Chen, and A. J. Smola, "Efficient mini-batch training for

stochastic optimization," in Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, 2014, pp. 661-670.

[71] N. Qian, "On the momentum term in gradient descent learning algorithms," Neural

networks, vol. 12, pp. 145-151, 1999.

[72] R. S. Sutton, "Two problems with backpropagation and other steepest-descent

learning procedures for networks," in Proc. 8th annual conf. cognitive science

society, 1986, pp. 823-831.

[73] J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning

and stochastic optimization," Journal of Machine Learning Research, vol. 12, pp.

2121-2159, 2011.

[74] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, et al., "Large Scale

Distributed Deep Networks," Google Inc, 2012.

[75] J. Pennington, R. Socher, and C. D. Manning, "Glove: Global vectors for word

representation," in EMNLP, 2014, pp. 1532-1543.

[76] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv preprint

arXiv:1609.04747, 2016.

[77] T. Tieleman and G. Hinton, "Rmsprop: Divide the gradient by a running average of

its recent magnitude. COURSERA: Neural Networks for Machine Learning,"

Technical report, 2012. 31.

[78] D. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint

arXiv:1412.6980, 2014.

[79] A. E. Bryson, W. F. Denham, and S. E. Dreyfus, "Optimal programming problems

with inequality constraints," AIAA journal, vol. 1, pp. 2544-2550, 1963.

[80] A. G. Baydin, B. A. Pearlmutter, and A. A. Radul, "Automatic differentiation in

machine learning: a survey," arXiv preprint arXiv:1502.05767, 2015.

[81] Werbos, "Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Science," PhD thesis, Harvard University, 1974.

[82] F. Rosenblatt, "The perceptron: A probabilistic model for information storage and

organization in the brain," Psychological review, vol. 65, p. 386, 1958.

Chapter 10: References

161

[83] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied

to document recognition," Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998.

[84] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional

networks," in Computer Vision–ECCV 2014, ed: Springer, 2014, pp. 818-833.

[85] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional

networks," in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on, 2010, pp. 2528-2535.

[86] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, "Deep convolutional

inverse graphics network," in Advances in Neural Information Processing Systems,

2015, pp. 2539-2547.

[87] J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," arXiv preprint

arXiv:1612.08242, 2016.

[88] J. L. Elman, "Finding structure in time," Cognitive science, vol. 14, pp. 179-211,

1990.

[89] T. Kohonen, "Self-organized formation of topologically correct feature maps,"

Biological cybernetics, vol. 43, pp. 59-69, 1982.

[90] G. E. Hinton and T. J. Sejnowski, "Learning and releaming in Boltzmann machines,"

Parallel Distrilmted Processing, vol. 1, 1986.

[91] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training

of deep networks," Advances in neural information processing systems, vol. 19, p.

153, 2007.

[92] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al.,

"Generative adversarial nets," in Advances in Neural Information Processing

Systems, 2014, pp. 2672-2680.

[93] H. Bourlard and Y. Kamp, "Auto-association by multilayer perceptrons and singular

value decomposition," Biological Cybernetics, vol. 59, pp. 291-294, 1988/09/01

1988.

[94] C. P. Marc’Aurelio Ranzato, S. Chopra, and Y. LeCun, "Efficient learning of sparse

representations with an energy-based model," in Proceedings of NIPS, 2007.

[95] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification," in Proceedings of the IEEE

International Conference on Computer Vision, 2015, pp. 1026-1034.

[96] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio,

"Maxout networks," ICML (3), vol. 28, pp. 1319-1327, 2013.

Chapter 10: References

162

[97] I. Sutskever, J. Martens, and G. E. Hinton, "Generating text with recurrent neural

networks," in Proceedings of the 28th International Conference on Machine

Learning (ICML-11), 2011, pp. 1017-1024.

[98] Y. Wu, S. Zhang, Y. Zhang, Y. Bengio, and R. R. Salakhutdinov, "On multiplicative

integration with recurrent neural networks," in Advances In Neural Information

Processing Systems, 2016, pp. 2856-2864.

[99] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hockenmaier, and S.

Lazebnik, "Flickr30k entities: Collecting region-to-phrase correspondences for

richer image-to-sentence models," in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 2641-2649.

[100] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation,

vol. 9, pp. 1735-1780, 1997.

[101] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, "End-To-End Memory

Networks," in Advances in Neural Information Processing Systems, 2015, pp. 2431-

2439.

[102] H. Larochelle, Y. Bengio, m. Louradour, and P. Lamblin, "Exploring Strategies for

Training Deep Neural Networks," J. Mach. Learn. Res., vol. 10, pp. 1-40, 2009.

[103] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,

"Improving neural networks by preventing co-adaptation of feature detectors," arXiv

preprint arXiv:1207.0580, 2012.

[104] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al., "Imagenet

large scale visual recognition challenge," arXiv preprint arXiv:1409.0575, 2014.

[105] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, "Regularization of neural

networks using dropconnect," in Proceedings of the 30th International Conference

on Machine Learning (ICML-13), 2013, pp. 1058-1066.

[106] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training

by reducing internal covariate shift," arXiv preprint arXiv:1502.03167, 2015.

[107] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, "On the number of linear regions

of deep neural networks," in Advances in neural information processing systems,

2014, pp. 2924-2932.

[108] C. Szegedy, S. Ioffe, and V. Vanhoucke, "Inception-v4, inception-resnet and the

impact of residual connections on learning," arXiv preprint arXiv:1602.07261, 2016.

[109] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, "Deep networks with

stochastic depth," in European Conference on Computer Vision, 2016, pp. 646-661.

Chapter 10: References

163

[110] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, et al., "Caffe:

Convolutional architecture for fast feature embedding," in Proceedings of the ACM

International Conference on Multimedia, 2014, pp. 675-678.

[111] R. Reed, "Pruning algorithms-a survey," Neural Networks, IEEE Transactions on,

vol. 4, pp. 740-747, 1993.

[112] M. G. Augasta and T. Kathirvalavakumar, "Pruning algorithms of neural networks—

a comparative study," Central European Journal of Computer Science, vol. 3, pp.

105-115, 2013.

[113] J. Kruschke, "Creating local and distributed bottlenecks in hidden layers of back-

propagation networks," Proceedings 1998 Connectionist Models Summer School, pp.

120-126, 1988.

[114] N. Wolfe, A. Sharma, L. Drude, and B. Raj, "The Incredible Shrinking Neural

Network: New Perspectives on Learning Representations Through The Lens of

Pruning," arXiv preprint arXiv:1701.04465, 2017.

[115] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, "Pruning Convolutional

Neural Networks for Resource Efficient Transfer Learning," arXiv preprint

arXiv:1611.06440, 2016.

[116] S. J. Hanson and L. Y. Pratt, "Comparing biases for minimal network construction

with back-propagation," in Advances in neural information processing systems,

1989, pp. 177-185.

[117] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the theory of neural

computation vol. 1: Basic Books, 1991.

[118] M. A. Arbib, "The handbook of brain theory and neural networks," 1995.

[119] A. Polyak and L. Wolf, "Channel-level acceleration of deep face representations,"

IEEE Access, vol. 3, pp. 2163-2175, 2015.

[120] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, "Network Trimming: A data-driven

neuron pruning approach towards efficient deep architectures," arXiv preprint

arXiv:1607.03250, 2016.

[121] J.-H. Luo and J. Wu, "An Entropy-based Pruning Method for CNN Compression,"

arXiv preprint arXiv:1706.05791, 2017.

[122] N. Nikolaev and H. Iba, Adaptive learning of polynomial networks: genetic

programming, backpropagation and Bayesian methods: Springer Science &

Business Media, 2006.

Chapter 10: References

164

[123] W. Finnoff, F. Hergert, and H. G. Zimmermann, "Improving model selection by

nonconvergent methods," Neural Networks, vol. 6, pp. 771-783, 1993.

[124] R. Neuneier and H. Zimmermann, "How to train neural networks," Neural networks:

tricks of the trade, pp. 550-550, 1998.

[125] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel, "Optimal brain

damage," in NIPs, 1989.

[126] B. Hassibi, D. G. Stork, and G. J. Wolff, "Optimal brain surgeon and general network

pruning," in Neural Networks, 1993., IEEE International Conference on, 1993, pp.

293-299.

[127] B. Hassibi, D. G. Stork, G. Wolff, and T. Watanabe, "Optimal Brain Surgeon:

Extensions and performance comparison," 1994.

[128] B. Hassibi and D. G. Stork, Second order derivatives for network pruning: Optimal

brain surgeon: Morgan Kaufmann, 1993.

[129] M. D. Collins and P. Kohli, "Memory bounded deep convolutional networks," arXiv

preprint arXiv:1412.1442, 2014.

[130] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical

learning: Springer, 2013.

[131] M. Gupta, L. Jin, and N. Homma, Static and dynamic neural networks: from

fundamentals to advanced theory: John Wiley & Sons, 2004.

[132] S. Srinivas and R. V. Babu, "Data-free parameter pruning for Deep Neural

Networks," arXiv preprint arXiv:1507.06149, 2015.

[133] A. U. Levin, T. K. Leen, and J. E. Moody, "Fast pruning using principal

components," in Advances in neural information processing systems, 1994, pp. 35-

42.

[134] S. Han, J. Pool, J. Tran, and W. J. Dally, "Learning both weights and connections for

efficient neural networks," arXiv preprint arXiv:1506.02626, 2015.

[135] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

"Dropout: A simple way to prevent neural networks from overfitting," The Journal

of Machine Learning Research, vol. 15, pp. 1929-1958, 2014.

[136] A. See, M.-T. Luong, and C. D. Manning, "Compression of Neural Machine

Translation Models via Pruning," arXiv preprint arXiv:1606.09274, 2016.

[137] S. Narang, G. Diamos, S. Sengupta, and E. Elsen, "Exploring Sparsity in Recurrent

Neural Networks," arXiv preprint arXiv:1704.05119, 2017.

Chapter 10: References

165

[138] S. Han, H. Mao, and W. J. Dally, "Deep Compression: Compressing Deep Neural

Network with Pruning, Trained Quantization and Huffman Coding," 2015.

[139] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, et al., "ESE: Efficient Speech

Recognition Engine with Sparse LSTM on FPGA," in FPGA, 2017, pp. 75-84.

[140] G. Castellano, A. M. Fanelli, and M. Pelillo, "An iterative pruning algorithm for

feedforward neural networks," IEEE transactions on Neural networks, vol. 8, pp.

519-531, 1997.

[141] Å. Björck and T. Elfving, "Accelerated projection methods for computing

pseudoinverse solutions of systems of linear equations," BIT Numerical

Mathematics, vol. 19, pp. 145-163, 1979.

[142] G. Castellano and A. M. Fanelli, "Variable selection using neural-network models,"

Neurocomputing, vol. 31, pp. 1-13, 2000.

[143] A. Fangju, "A new pruning algorithm for Feedforward Neural Networks," in

Advanced Computational Intelligence (IWACI), 2011 Fourth International

Workshop on, 2011, pp. 286-289.

[144] A. Ben-Israel and T. N. Greville, Generalized inverses: theory and applications vol.

15: Springer Science & Business Media, 2003.

[145] B. Han, Z. Zhang, C. Xu, B. Wang, G. Hu, L. Bai, et al., "Deep Face Model

Compression Using Entropy-based Filter Selection," in Proceedings ICIAP 2017:

Lecture Notes in Computer Science, 2017.

[146] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, "Pruning Filters for

Efficient ConvNets," arXiv preprint arXiv:1608.08710, 2016.

[147] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, "Compressing

Neural Networks with the Hashing Trick," arXiv preprint arXiv:1504.04788, 2015.

[148] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, "Compressing

Convolutional Neural Networks," arXiv preprint arXiv:1506.04449, 2015.

[149] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, "Low-

rank matrix factorization for deep neural network training with high-dimensional

output targets," in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE

International Conference on, 2013, pp. 6655-6659.

[150] J. Xue, J. Li, and Y. Gong, "Restructuring of deep neural network acoustic models

with singular value decomposition," in INTERSPEECH, 2013, pp. 2365-2369.

[151] Y. Gong, L. Liu, M. Yang, and L. Bourdev, "Compressing Deep Convolutional

Networks using Vector Quantization," arXiv preprint arXiv:1412.6115, 2014.

Chapter 10: References

166

[152] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, "Exploiting linear

structure within convolutional networks for efficient evaluation," in Advances in

Neural Information Processing Systems, 2014, pp. 1269-1277.

[153] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer,

"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model

size," arXiv preprint arXiv:1602.07360, 2016.

[154] M. Jaderberg, A. Vedaldi, and A. Zisserman, "Speeding up convolutional neural

networks with low rank expansions," arXiv preprint arXiv:1405.3866, 2014.

[155] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun, "Efficient and accurate approximations

of nonlinear convolutional networks," arXiv preprint arXiv:1411.4229, 2014.

[156] H. Li, R. Zhao, and X. Wang, "Highly efficient forward and backward propagation

of convolutional neural networks for pixelwise classification," arXiv preprint

arXiv:1412.4526, 2014.

[157] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, "Speeding-up

convolutional neural networks using fine-tuned cp-decomposition," arXiv preprint

arXiv:1412.6553, 2014.

[158] P. Vincent, A. de Brébisson, and X. Bouthillier, "Efficient exact gradient update for

training deep networks with very large sparse targets," in Advances in Neural

Information Processing Systems, 2015, pp. 1108-1116.

[159] M. Mathieu, M. Henaff, and Y. LeCun, "Fast training of convolutional networks

through ffts," arXiv preprint arXiv:1312.5851, 2013.

[160] T. Highlander and A. Rodriguez, "Very Efficient Training of Convolutional Neural

Networks using Fast Fourier Transform and Overlap-and-Add," arXiv preprint

arXiv:1601.06815, 2016.

[161] O. Rippel, J. Snoek, and R. P. Adams, "Spectral representations for convolutional

neural networks," in Advances in Neural Information Processing Systems, 2015, pp.

2449-2457.

[162] H. Pratt, B. Williams, F. Coenen, and Y. Zheng, "FCNN: Fourier Convolutional

Neural Networks."

[163] K. J. Arrow, D. Blackwell, and M. A. Girshick, "Bayes and minimax solutions of

sequential decision problems," Econometrica, Journal of the Econometric Society,

pp. 213-244, 1949.

[164] T. L. Lai and H. Robbins, "Asymptotically efficient adaptive allocation rules,"

Advances in applied mathematics, vol. 6, pp. 4-22, 1985.

Chapter 10: References

167

[165] G. Burtini, J. Loeppky, and R. Lawrence, "A Survey of Online Experiment Design

with the Stochastic Multi-Armed Bandit," arXiv preprint arXiv:1510.00757, 2015.

[166] L. Zhou, "A survey on contextual multi-armed bandits," arXiv preprint

arXiv:1508.03326, 2015.

[167] J. Gittins, K. Glazebrook, and R. Weber, Multi-armed bandit allocation indices: John

Wiley & Sons, 2011.

[168] N. Galichet, "Contributions to Multi-Armed Bandits: Risk-Awareness and Sub-

Sampling for Linear Contextual Bandits," Université Paris Sud-Paris XI, 2016.

[169] R. Agrawal, "Sample mean based index policies by O (log n) regret for the multi-

armed bandit problem," Advances in Applied Probability, vol. 27, pp. 1054-1078,

1995.

[170] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, "The nonstochastic

multiarmed bandit problem," SIAM Journal on Computing, vol. 32, pp. 48-77, 2002.

[171] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, "Gaussian process

optimization in the bandit setting: No regret and experimental design," arXiv preprint

arXiv:0912.3995, 2009.

[172] E. Kaufmann, N. Korda, and R. Munos, "Thompson sampling: An asymptotically

optimal finite-time analysis," in International Conference on Algorithmic Learning

Theory, 2012, pp. 199-213.

[173] C. J. C. H. Watkins, "Learning from delayed rewards," University of Cambridge

England, 1989.

[174] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction: MIT press,

1998.

[175] P. Auer, N. Cesa-Bianchi, and P. Fischer, "Finite-time analysis of the multiarmed

bandit problem," Machine learning, vol. 47, pp. 235-256, 2002.

[176] J. White, Bandit algorithms for website optimization: " O'Reilly Media, Inc.", 2012.

[177] H. Robbins, "Some aspects of the sequential design of experiments," in Herbert

Robbins Selected Papers, ed: Springer, 1985, pp. 169-177.

[178] M. Nowak and K. Sigmund, "A strategy of win-stay, lose-shift that outperforms tit-

for-tat in the Prisoner's Dilemma game," Nature, vol. 364, pp. 56-58, 1993.

[179] O.-A. Maillard, R. Munos, and G. Stoltz, "A Finite-Time Analysis of Multi-armed

Bandits Problems with Kullback-Leibler Divergences," in COLT, 2011, pp. 497-514.

[180] S. Kullback and R. A. Leibler, "On information and sufficiency," The annals of

mathematical statistics, vol. 22, pp. 79-86, 1951.

Chapter 10: References

168

[181] A. Garivier and O. Cappé, "The KL-UCB algorithm for bounded stochastic bandits

and beyond," arXiv preprint arXiv:1102.2490, 2011.

[182] E. Kaufmann, O. Cappé, and A. Garivier, "On Bayesian upper confidence bounds

for bandit problems," in International Conference on Artificial Intelligence and

Statistics, 2012, pp. 592-600.

[183] Y. Freund and R. E. Schapire, "A decision-theoretic generalization of online learning

and an application to boosting," in European Conference on Computational Learning

Theory, 1995.

[184] V. Dani, S. M. Kakade, and T. P. Hayes, "The price of bandit information for online

optimization," in Advances in Neural Information Processing Systems, 2008, pp.

345-352.

[185] S. Kale, L. Reyzin, and R. E. Schapire, "Non-stochastic bandit slate problems," in

Advances in Neural Information Processing Systems, 2010, pp. 1054-1062.

[186] N. Cesa-Bianchi and G. Lugosi, "Combinatorial bandits," Journal of Computer and

System Sciences, vol. 78, pp. 1404-1422, 2012.

[187] P. Auer and N. Cesa-Bianchi, "On-line learning with malicious noise and the closure

algorithm," Annals of mathematics and artificial intelligence, vol. 23, pp. 83-99,

1998.

[188] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games: Cambridge

university press, 2006.

[189] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, "Gambling in a rigged

casino: The adversarial multi-armed bandit problem," in Foundations of Computer

Science, 1995. Proceedings., 36th Annual Symposium on, 1995, pp. 322-331.

[190] J. Komiyama, J. Honda, and H. Nakagawa, "Optimal regret analysis of thompson

sampling in stochastic multi-armed bandit problem with multiple plays," arXiv

preprint arXiv:1506.00779, 2015.

[191] Z. Wang, B. Xu, and H.-J. Zhou, "Social cycling and conditional responses in the

Rock-Paper-Scissors game," Scientific reports, vol. 4, 2014.

[192] M. Posch, "Win Stay---Lose Shift: An Elementary Learning Rule for Normal Form

Games," Santa Fe Institute1997.

[193] S. Agrawal and N. Goyal, "Analysis of Thompson Sampling for the Multi-armed

Bandit Problem," in COLT, 2012, pp. 39.1-39.26.

[194] J. Demšar, "Statistical comparisons of classifiers over multiple data sets," Journal of

Machine learning research, vol. 7, pp. 1-30, 2006.

Chapter 10: References

169

[195] M. Friedman, "The use of ranks to avoid the assumption of normality implicit in the

analysis of variance," Journal of the american statistical association, vol. 32, pp.

675-701, 1937.

[196] P. Nemenyi, "Distribution-free multiple comparisons," in Biometrics, 1962, pp. 263-

&.

[197] E. Kaufmann, O. Cappé, and A. Garivier, "On the efficiency of Bayesian bandit

algorithms from a frequentist point of view," in Neural Information Processing

Systems (NIPS), 2011.

[198] E. D. Sontag, "VC dimension of neural networks," NATO ASI Series F Computer

and Systems Sciences, vol. 168, pp. 69-96, 1998.

[199] E. Keogh and A. Mueen, "Curse of dimensionality," in Encyclopedia of Machine

Learning, ed: Springer, 2011, pp. 257-258.

[200] T. Joachims, "Text categorization with support vector machines: Learning with many

relevant features," Machine learning: ECML-98, pp. 137-142, 1998.

[201] M. D. Zeiler, "ADADELTA: An adaptive learning rate method," arXiv preprint

arXiv:1212.5701, 2012.

[202] A. Krizhevsky, V. Nair, and G. Hinton, "The CIFAR-10 dataset," online:

http://www.cs.toronto.edu/kriz/cifar.html, 2014.

[203] A. Krizhevsky, "Learning multiple layers of features from tiny images," 2009.

[204] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, "Reading digits

in natural images with unsupervised feature learning," in NIPS workshop on deep

learning and unsupervised feature learning, 2011, p. 5.

[205] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, "Learning

word vectors for sentiment analysis," in Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies-

Volume 1, 2011, pp. 142-150.

[206] A. M. Dai and Q. V. Le, "Semi-supervised sequence learning," in Advances in Neural

Information Processing Systems, 2015, pp. 3079-3087.

[207] O. M. Parkhi, A. Vedaldi, and A. Zisserman, "Deep Face Recognition," in BMVC,

2015, p. 6.

[208] Y. Gal, "A theoretically grounded application of dropout in recurrent neural

networks," arXiv preprint arXiv:1512.05287, 2015.

http://www.cs.toronto.edu/kriz/cifar.html

Chapter 10: References

170

[209] R. Hadsell, S. Chopra, and Y. LeCun, "Dimensionality reduction by learning an

invariant mapping," in 2006 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR'06), 2006, pp. 1735-1742.

[210] A. Graves and J. Schmidhuber, "Framewise phoneme classification with

bidirectional LSTM and other neural network architectures," Neural Networks, vol.

18, pp. 602-610, 2005.

[211] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer, A. Joulin, et al.,

"Towards ai-complete question answering: A set of prerequisite toy tasks," arXiv

preprint arXiv:1502.05698, 2015.

[212] J. Li, M.-T. Luong, and D. Jurafsky, "A hierarchical neural autoencoder for

paragraphs and documents," arXiv preprint arXiv:1506.01057, 2015.

[213] Y. Du, W. Wang, and L. Wang, "Hierarchical recurrent neural network for skeleton

based action recognition," in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 1110-1118.

[214] A. Lavin, "maxDNN: an efficient convolution kernel for deep learning with maxwell

gpus," arXiv preprint arXiv:1501.06633, 2015.

[215] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, et al., "Caltech-

UCSD birds 200," 2010.

[216] S. Branson, G. Van Horn, S. Belongie, and P. Perona, "Bird species categorization

using pose normalized deep convolutional nets," arXiv preprint arXiv:1406.2952,

2014.

[217] M.-E. Nilsback and A. Zisserman, "Automated flower classification over a large

number of classes," in Computer Vision, Graphics & Image Processing, 2008.

ICVGIP'08. Sixth Indian Conference on, 2008, pp. 722-729.

[218] D. Mishkin, N. Sergievskiy, and J. Matas, "Systematic evaluation of CNN advances

on the ImageNet," arXiv preprint arXiv:1606.02228, 2016.

[219] D. Yu, F. Seide, G. Li, and L. Deng, "Exploiting sparseness in deep neural networks

for large vocabulary speech recognition," in Acoustics, Speech and Signal Processing

(ICASSP), 2012 IEEE International Conference on, 2012, pp. 4409-4412.

[220] S. Han, H. Mao, and W. J. Dally, "A deep neural network compression pipeline:

Pruning, quantization, huffman encoding," arXiv preprint arXiv:1510.00149, vol.

10, 2015.

Chapter 10: References

171

[221] F. Trovo, S. Paladino, M. Restelli, and N. Gatti, "Multi–armed bandit for pricing,"

in Proceedings of the European Workshop on Reinforcement Learning (EWRL),

2015.

[222] N. Muralidhar. (2016). Bandito, a Multi-Armed Bandit Tool for Content Testing.

Available: https://developer.washingtonpost.com/pb/blog/post/2016/02/08/bandito-

a-multi-armed-bandit-tool-for-content-testing/

[223] T. Desautels, A. Krause, and J. W. Burdick, "Parallelizing exploration-exploitation

tradeoffs in Gaussian process bandit optimization," Journal of Machine Learning

Research, vol. 15, pp. 3873-3923, 2014.

[224] E. Hillel, Z. S. Karnin, T. Koren, R. Lempel, and O. Somekh, "Distributed

exploration in multi-armed bandits," in Advances in Neural Information Processing

Systems, 2013, pp. 854-862.

https://developer.washingtonpost.com/pb/blog/post/2016/02/08/bandito-a-multi-armed-bandit-tool-for-content-testing/
https://developer.washingtonpost.com/pb/blog/post/2016/02/08/bandito-a-multi-armed-bandit-tool-for-content-testing/

Chapter 11: Appendices

172

APPENDIX 1 DETAILS OF THE DATA SETS AND EVALUATION .. 173

APPENDIX 2 VISUALIZATION ON TESTING UCI DATA SETS ... 199

APPENDIX 3 VISUALIZATION ON TESTING DIFFERENT DATA SETS 207

APPENDIX 4 TESTING MAB PRUNING ALGORITHMS IN REGRESSION DATA SETS 214

11. Appendices

Chapter 11: Appendices

173

Appendix 1 Details of the Data sets and Evaluation

1. Evaluation data sets

1.1 Data sets for deep learning

1.1.1 ImageNet data set

ImageNet [104] is a big data set that contains millions of images based to the WordNet

hierarchy, where synset (synonym set) (aka node) is the meaningful concept in WordNet that

describes by words. Many images represent each node27. The following is the one summary

of statistics of high level (main) categories28.

27 http://image-net.org/about-overview
28 http://image-net.org/about-stats

Chapter 11: Appendices

174

1.1.2 Internet Movie Review Database (IMDB) data set

The data set serves as a benchmark for sentiment classification and contains 50,000 reviews

from IMDB[205] along with their associated binary sentiment polarity labels. The data set

has an even number of positive and negative reviews and split into 25k for training and 25k

for testing sets. There are 50k additional unlabelled reviews for unsupervised learning. The

maximum reviews for each movie is no more than 30 reviews to avoid correlated rating. Out

of 10, the negative review has score less than or equal four and positive review if the score

is higher than seven. Then reviews with neural rating is not included in both training and

testing sets. In contrast of that unlabelled data is included positive, negative, and neural

reviews29.

1.1.3 Reuters newswire topic classification task

This data set made by Reuters Ltd for research. The data set contains large of news stories.

In this thesis, we use 8982 for training (9083 train, 899 validate) and 2246 for testing30.

1.1.4 Mixed National Institute of Standards and Technology (MNIST) data set

The MNIST data set is a collection of handwritten digits which contains 60,000 examples of

training set and 10,000 examples for test set. The digits have been size-normalized and

cantered in 28 by 28 image 31. The following diagram shows the sample of this data set

where it shows the numbers 5, 0, 4 and 1. However, the first digit is confused between 3 and

5.

29 http://ai.stanford.edu/~amaas/data/sentiment/
30 http://trec.nist.gov/data/reuters/reuters.html
31 http://yann.lecun.com/exdb/mnist/

Chapter 11: Appendices

175

1.1.5 The Cifar-10 data set

CIFAR-10 data set is a collection of 32x32 colour images in 10 different classes. The data

set splits into two sets. The first set is 50,000 images for training and the other is 10,000 for

testing 32. The following diagram shows the classes in the data set, as well as 10 random

images from each class32.

1.1.6 The Cifar-100 data set

Cifar-100 is the same as cifar-10 data set with different of the number of classes where here

there is 100 classes. Each class has 600 images where splits to two groups, the first group is

500 images for training and the rest for testing. As shown in the following table, the data set

is divided to 20 super classes and each class has five class.32.

32 https://www.cs.toronto.edu/~kriz/cifar.html

Chapter 11: Appendices

176

1.1.7 The Street View House Numbers (SVHN) Data set

The SVHN data set [204] is a collection of 32x32 read world over 600,000 digit images. The

data set is acquired from house numbers in Google Street View images. The following

diagram shows the sample of cropped digits33.

33 http://ufldl.stanford.edu/housenumbers/

Chapter 11: Appendices

177

1.1.8 The bAbI Data set

The bAbI data set [101, 211] contains 20 different tasks where each task provides the training

and testing data set. Task 6 has been used in this thesis34. The following diagram shows

sample of this task as cited by Weston et al.

1.1.8 102 flower Data set

The data set [217] contain 102 classes of common flower in the UK. Each class contain from

40 to 258 images. The following is sample of the data set.

34 https://research.facebook.com/research/babi/

Chapter 11: Appendices

178

1.1.9 Birds 200 Data set

The data set [215] contain 200 bird categories and 6,033 images mostly from North America

and the following is sample of the data set.

1.2 Data sets for shallow neural networks in classification task
1.2.1 banknote authentication Data Set

The data set contains 1372 examples of four continues feature (variance of wavelet,

skewness of wavelet, kurtosis of wavelet and entropy of images) and binary class. However,

the data set is extracted from images that were taken from genuine and forged banknote-like

specimens 35.

1.2.2 Blood Transfusion Service Centre Data Set

“The database of Blood Transfusion Service Centre in Hsin-Chu City in Taiwan.” 36. The

data set contains 748 examples, four features (R, F, M and T) and binary classes.

1.2.3 Credit Approval Data Set

This data concerns 690 examples of credit card applications 37 and contains 15 features and

binary classes.

35 https://archive.ics.uci.edu/ml/data sets/banknote+authentication
36 https://archive.ics.uci.edu/ml/data sets/Blood+Transfusion+Service+Center
37 https://archive.ics.uci.edu/ml/data sets/Credit+Approval

Chapter 11: Appendices

179

1.2.4 Haberman's Survival Data Set

The data set contains 306 examples of cases from a study that was conducted between 1958

and 1970 at the University of Chicago's Billings Hospital on the survival of patients who had

undergone surgery for breast cancer38. The data set has three features and binary class.

1.2.5 Liver Disorders Data Set

The data set contains 345 examples from BUPA Medical Research Ltd. Database39. The data

set has six features and binary class.

1.2.6 MAGIC Gamma Telescope Data Set

The data set contains 19020 examples of MC generated to simulate registration of high

energy gamma particles in a ground-based atmospheric Cherenkov gamma telescope using

the imaging technique40. The data set has 10 features and binary class.

1.2.7 Mammographic Mass Data Set

This data set contains 961 examples of a mammographic mass lesion from BI-RADS

attributes and the patient's age. The data set has five features and binary class 41.

1.2.8 MONK's Problems Data Set

 The data set contains 432 examples of MONK's problem. The data set has six features and

binary class42.

1.2.9 Connectionist Bench (Sonar, Mines vs. Rocks) Data Set

The data contains 208 examples to discriminate between sonar signals bounced off a metal

cylinder and those bounced off a roughly cylindrical rock. The data set has 59 features and

binary class43.

38 https://archive.ics.uci.edu/ml/data sets/Haberman's+Survival
39 https://archive.ics.uci.edu/ml/data sets/Liver+Disorders
40 https://archive.ics.uci.edu/ml/data sets/MAGIC+Gamma+Telescope
41 https://archive.ics.uci.edu/ml/data sets/Mammographic+Mass
42 https://archive.ics.uci.edu/ml/data sets/MONK's+Problems
43 https://archive.ics.uci.edu/ml/data sets/Connectionist+Bench+%28Sonar,+Mines+vs.+Rocks%29

Chapter 11: Appendices

180

1.2.10 Spambase Data Set

This data set contains 4601 examples to detect an email either it is spam or not. The data set

has 56 features and binary class44.

1.2.11 SPECTF Heart Data Set

The data set contains 267 examples to describes diagnosing of cardiac Single Proton

Emission Computed Tomography (SPECT) images. The data set contains 44 features and

binary class45.

1.2.12 Tic-Tac-Toe Endgame Data Set

This database contains 958 examples to encodes the complete set of possible board

configurations at the end of tic-tac-toe games. The data set has nine feature and binary

class46.

1.2.13 Pima Indians Diabetes Data Set

This data set contains 768 examples of females’ patients at least 21 years old of Pima Indian

heritage. The data set has nine features and binary class47.

1.2.14 Breast Cancer Wisconsin Data Set

This data set contains 569 examples to diagnostic Wisconsin breast cancer. The data set has

32 features and binary class48.

1.2.15 Adult Data Set

This data set contains 48842 examples to predict whether income exceeds $50K/yr. based

on census data. The data set has 14 features and binary class49.

44 https://archive.ics.uci.edu/ml/data sets/Spambase
45 https://archive.ics.uci.edu/ml/data sets/SPECTF+Heart
46 https://archive.ics.uci.edu/ml/data sets/Tic-Tac-Toe+Endgame
47 https://archive.ics.uci.edu/ml/data sets/Pima+Indians+Diabetes
48 https://archive.ics.uci.edu/ml/data sets/Breast+Cancer+Wisconsin+%28Diagnostic%29
49 https://archive.ics.uci.edu/ml/data sets/Adult

Chapter 11: Appendices

181

1.2.16 Hill-Valley Data Set

This data set contains 606 examples of Hill Valley data set. The data set has 100 features

and binary class50.

1.2.17 Titanic data set

This data set contains 1309 examples with 11 features and binary class. The data set

represents the sinking of the RMS51.

1.2.18 Wine data set

This data set contains 178 examples of a chemical analysis of wines grown in the same

region in Italy. It has 12 features and three classes52.

1.2.19 Heart Disease Data Set

The data set contains 303 examples of the presence of heart disease in the patient. It has 13

features and binary class53.

1.2.20 Iris Data Set

This popular data set contains 150 examples of types of iris plant. It has three features and

three classes54.

1.2.21 Car Evaluation Data Set

This data set has 1728 examples with six features and four classes55.

50 https://archive.ics.uci.edu/ml/data sets/Hill-Valley
51 https://www.kaggle.com/c/titanic
52 https://archive.ics.uci.edu/ml/data sets/Wine
53 https://archive.ics.uci.edu/ml/data sets/Heart+Disease
54 http://archive.ics.uci.edu/ml/data sets/Iris
55 https://archive.ics.uci.edu/ml/data sets/Car+Evaluation

Chapter 11: Appendices

182

1.2.22 Abalone Data Set

 This data set contains 4177 examples for predicting the age of abalone from physical

measurements. It has eight features and three classes56.

1.2.23 Poker Hand Data Set

This data set contains 1015010 examples of a hand consisting of five playing cards drawn

from a standard deck of 52. It has 10 features and 10 classes of poker hand57.

1.2.24 Glass Identification Data Set

This data set contains 214 examples of glass types. It has 10 features with seven classes

“class types”58.

1.2.25 Wine Quality Data Set

This data set contains 4898 examples of the quality of wine. It has 11 features with 10 types

of classes59.

1.2.26 Face data set

The data set contains over 13,000 images of faces (examples) collected from the web where

each face has been labelled with the name of the person pictured60. In this thesis, we use the

top 5 most represented people in the data set which make the samples contains 1288

examples, 1850 features and seven classes.

56 https://archive.ics.uci.edu/ml/data sets/Abalone
57 https://archive.ics.uci.edu/ml/data sets/Poker+Hand
58 https://archive.ics.uci.edu/ml/data sets/Glass+Identification
59 https://archive.ics.uci.edu/ml/data sets/Wine+Quality
60 http://vis-www.cs.umass.edu/lfw/

Chapter 11: Appendices

183

1.3 Data sets for shallow neural networks in regression task

1.3.1 Housing data set

The data set contains 506 examples of concerns housing values in suburbs of Boston. It has

13 features61.

1.3.2 Airfoil Self-Noise Data Set

The data set contains 1503 examples of a series of aerodynamic and acoustic tests from

NASA. It has five features62.

1.3.3 Auto MPG Data Set

This data set contains 398 examples and it has eights features63.

1.3.4 Computer Hardware Data Set

The data set contains 209 examples of computer’s hardware and nine features64.

1.3.5 Concrete Compressive Strength Data Set

The data set contains 1030 of concrete and it has eight features65.

1.3.6 Parkinsons Telemonitoring Data Set

This data set contains 5875 examples of Parkinson's disease. It has 21 features.66.

61 https://archive.ics.uci.edu/ml/data sets/Housing
62 https://archive.ics.uci.edu/ml/data sets/Airfoil+Self-Noise
63 https://archive.ics.uci.edu/ml/data sets/Auto+MPG
64 https://archive.ics.uci.edu/ml/data sets/Computer+Hardware
65 https://archive.ics.uci.edu/ml/data sets/Concrete+Compressive+Strength
66 https://archive.ics.uci.edu/ml/data sets/Parkinsons+Telemonitoring

Chapter 11: Appendices

184

2. List of classifiers (estimators) used to compare with MAB pruning

algorithms
Two kinds of models have been built to compare with MAB pruning algorithms either

models for classification or regression. First, the following list is the well-known algorithms

used to build different classifiers so we compare their results with our pruned methods.

• K nearest neighbour (KNN) classifier.

• Support vector machines (SVM) classifier, here we used linear SVM and rbf kernel.

• Decision tree (DT) classifier, we used two different decision trees which is CART

(classification and regression trees) with gini impurity and C5.0 with entropy

impurity.

• Bagging method, we used bagging with both decision trees and KNNs.

• Random forest (RF), again we used with both decision trees and KNNs.

• Adaptive Boosting (AdaBoost) with only decision trees.

• Naïve Bayes

• Linear discriminant analysis (LDA) classifier.

• Quadratic discriminant analysis (QDA) classifier.

• Gaussian process classifier

• LightGBM

• Logistic regression

• Xgboost

• Neural network (NN), which the original model we pruned it. We used one of

nonlinearity activations function according the results in cross validation.

While the following list is the well-known regression’s algorithms that compare our results

against them.

• Ordinary least square

• Linear regression

• Lasso regression

• Bayesian Ridge regression

• Kernel ridge regression

• Decision tree (DT) regressor, decision tree with mean squared error.

• Gradient Boosting (Xgboost), with decision tress.

Chapter 11: Appendices

185

• Neural network (NN), which the original model we pruned it. We used mean square

error activation loss function.

• Bagging method, we used bagging with decision trees.

• Adaptive Boosting (AdaBoost) with only decision trees.

• Support vector machines (SVM) regression.

1. Building the models
Mostly, there is no pretrained models available for small data sets so we need to build a

neural network model then we can prune it later. We want to make sure that the model we

have built is one of the best model on the data set. So, many steps of recipe we need to follow

to guarantee we prune one of the best model and our pruned models can work better or at

least there is no big loss in the performance where retraining the pruned models are needed.

We applied this scenario to finding best neural network models and we did the same on the

rest of machine learning algorithms. So, many steps of building best models have been tested

to guarantee that we have the best model of each machine learning model. The following

steps of recipe we follow to guarantee that we have the best for all models.

1.1 Visualize the data
The first step is visualizing the data and understand it. The goal of visualization is that

checking if there is missing data, to know the important features to each model, to find if

there is correlation between features then later can cope of the features’ correlations and

many others. Pandas package67 (Python Data Analysis Library) has been used to do the

visualization with some other Python’s packages (matplotlib68, ggplot 69, seaborn 70 and

Bokeh71). Figure 11.1 shows an example of the plotting data set to see the relation between

the features and the rest is shown in thesis online code 72.

67 http://pandas.pydata.org/
68 http://matplotlib.org/
69 http://ggplot.yhathq.com/
70 https://stanford.edu/~mwaskom/software/seaborn/
71 http://bokeh.pydata.org/en/latest/
72 https://github.com/SalemAmeen/chapter-five

Chapter 11: Appendices

186

Figure 11.1: Visualization of abalone data.

We use many techniques to find the important features like decision tree, p-value, and

correlation to the target. Figure 11.2 shows some plots of important features where decision

tree used in some data sets and the rest is available on the thesis online code 72.

Chapter 11: Appendices

187

Figure 11.2: Important Features: on the top Wine quality data set and on the bottom glass
data set.

The main goal to see if the feature important or not. In some cases, we add many features

and use PCA to get smaller dimensions.

Chapter 11: Appendices

188

Finally, to see the correlation (Pearson, Kendall, and Spearman) between features or the

performance of adding new features to the model three kind of correlation have been checked

all data set (except that for deep learning). Figure 11.3 shows some plots of those correlation

and the rest available on the thesis online code 72.

Pearson correlation is firstly used to find the linear correlation between variables to avoid

collinearity between variables then if the data is qualitative other correlation is used to extract

the correlation between variables.

Chapter 11: Appendices

189

Figure 11.3: The correlation between variables from left to right, Pearson correlation,
Spearman correlation Kendall correlation.

Chapter 11: Appendices

190

1.2 Operations on Data set
There are many operations that apply to the data set before start building the models. The

first step is dividing the data to groups. The first group is the training data which contains

60% of the data for building the models and 20% for validation. The 20% rest is for testing,

this data set kept unseen until we finish prune the models and compare the results with the

original neural network and with other machine learning models. While if the data is small,

we use cross validation to build the models. However, in data set like ImageNet, MNIST

and some others, we just divide it into two groups, one for training and the other for the

validate the results. Whilst in most small data sets, we use 10 cross validations to build the

models. Appendix 1 shows the all data sets that used in this thesis. Scikit-learn (sklearn)

machine learning library 73 is used to split the data, clean the data, adding new features to

the data and other pre-processing to the small data. All those operations are done to the

training data set then the needed transformations like computing the mean and standard

deviation when normalize the training data are saved to use them on validation and testing

time. Transforming non-numerical features to numerical or filling missing data either by

computing mean, median or predict it using regression or decision trees is done on training

data set. However, we guarantee that all the models use the same training and testing data

set to avoid any bias to specific algorithm. However, most the data sets that made for deep

learning are already split into training and validation/testing.

1.3 Feature selection
Two methods used to select the features to build all models. The first method is selecting the

best important features that effect the output of the model. The second method, we use

principle competent analysis (PCA) to reduce the dimension when the data has high

dimension features such as face data set. Figure 11.4 shows the projected data from PCA on

face data set. However, sometimes we used both methods specially when new features are

generated or transforming the object features to numerical features. The transformation

introduces many new features and sometimes lead to cruse of dimensionality. First, we apply

PCA to all the features then choose the best some principles. Second, we choose the best

features from the original features of the data. Finally, we concatenate them together to get

the new features. Nevertheless, cross validation is used to choose which method is preferred

73 http://scikit-learn.org/stable/#

Chapter 11: Appendices

191

and the number of features that are suitable for the model. Finally, those extracted features

applied to all classifier.

Figure 11.4: PCA on face data set. The 12 photos on the left show samples from the data
while the 12 on the right show images after applying PCA.

1.4 Validation curve
Using Sklearn library we plot the influence of a single hyperparameter on the training score

and the validation score for two reasons. The first reason, some hyperparameter have

continuous and unlimited (like k in KNN) space so finding the best combination with other

hyperparameters is extremely expensive. Then, we use this method to bound the single

hyperparameter then later we can use this bounded range with other hyperparameters to find

the best combination of hyperparameters to the model. If the hyperparameter has small

options (like the type of algorithm in KNN (‘auto,’ ‘ball_tree,’ ‘kd_tree,’ ‘brute’), we did

not use this method. The second reason, to find out whether the model is suffering from

overfitting or underfitting for some hyperparameter values. Figure 11.5 shows some plot of

some parameters in a model and the rest can be find in the thesis online code 72.

Chapter 11: Appendices

192

Figure 11.5: Hyperparameters of the decision tree on Boston house data set.

Chapter 11: Appendices

193

From Figure 11.5, the diagram on the top shows that the max depth of the tree is preferable

greater than 10 while the diagram on the middle shows the minimum samples split is less

than 3 and finally the diagram on the bottom shows that minimum sample leaf is less than 2.

2. Searching in parameters space
After bounded the continues parameters and the parameters that have many values, two

different searching methods used to find the best combination of hyperparameters. First one,

we use the random searching where we set a range (according to validation curve method)

for each hyperparameter and let the algorithm find the best combination. The second method,

we set the combinations of some expected good values (where we expected the optimal

combination) of parameters then grid search used to find the best combination.

Finally, we print the list of combinations of hyperparameters where we think the optimal

combination will be one of them. Generally, the top on the list will be best combination but

we tried many of them using cross validation. Figure 11.6 shows the example of using

searching of the parameters and the rest can be found on the thesis online code 72.

Chapter 11: Appendices

194

Figure 11.6: Finding best combination of parameters for Adaboost.

Chapter 11: Appendices

195

From the Figure 11.6, the parameters generated using random search has better results.

However, we are trying all the configurations on the data set.

3. Learning curve
The main goal of learning curve is to balance the bias and variation trade-off of the models.

In other words, it is a tool that is used to find out how much we benefit from adding more

training data and whether the model suffers more from a variance error or a bias error.

However, in those experiments we cannot add more data to the models as the data is limited

by the resources and the goal is to build the best model on those data sets. Therefore, we

used learning curve to find the best ranked combinations of hyperparameters that are found

using searching on parameters space in the previous section. Figure 11.7 shows validation

curve of a model while the rest can be found on the thesis online code 72.

Figure 11.7: Adaboost on Boston house data set.

Chapter 11: Appendices

196

In the Figure 11.7, the score of the validation data increase as the training data set increase

in contrast of that the training score is decrease when the training data is increase. In general,

the model can learn the function.

4. Training the models
After we make sure there is no bias and various on the models by using validation curve, we

start training the models one by one on training data and monitoring the performance using

cross validation. However, if the validation performance is not good we retrain them on other

combination until we find the best validation performance. We used various metrics like

accuracy, f1 score, recall, precision, support, confusion matrix, ROC and others are used to

see the performance of validation data. After trained neural network model and other

machine learning models, we save the trained models to test them with our pruning models

and see the performance of our pruned models comparing to original neural networks model

before prune and the other machine learning models. On the thesis, online code 72, there are

many metrics on training and validation data sets.

With the binary data sets, we compute and plot the receiver operating characterize (ROC) in

each model. Figure 11.8 shows sample of the plotting of ROC in adult data set and the rest

is available on the thesis online code 72.

Chapter 11: Appendices

197

Figure 11.8: ROC on adult data set.

Finally, we plot the confusion matrix on all testing data sets. Figure 11.9 shows sample the

confusion matrix on pima data set. We can see an improvement of the performance of the

pruned models over the original neural networks models.

Chapter 11: Appendices

198

Linear SVM

SVM

Decision Tree (CART)

Decision Tree (C5.0)

Figure 11.9: Some confusion matrices for the pima data set

Chapter 11: Appendices

199

Appendix 2 Visualization on testing UCI Data sets

Abalone data set

Adult data set

Chapter 11: Appendices

200

Cancer data set

Car data set

Chapter 11: Appendices

201

Chest data set

Face data set

Chapter 11: Appendices

202

Glass data set

Heart data set

Chapter 11: Appendices

203

Iris data set

Pima data set

Chapter 11: Appendices

204

Spam data set

Titanic data set

Chapter 11: Appendices

205

Wine quality data set

Wine data set

Chapter 11: Appendices

206

Valley data set

Chapter 11: Appendices

207

Appendix 3 Visualization on Testing Different Data sets

Spambase Data set Abalone Data set

Chapter 11: Appendices

208

Adult Data set Cancer Data set

Chapter 11: Appendices

209

Car Data set Wine Quality Data set

Chapter 11: Appendices

210

Glass Data set Heart Data set

Chapter 11: Appendices

211

Chest Data set Pima Data set

Chapter 11: Appendices

212

Poker Data set Titanic Data set

Chapter 11: Appendices

213

Valley Data set Wine Data set

Chapter 11: Appendices

214

Appendix 4 Testing MAB Pruning Algorithms in
Regression Data sets

Likewise, the classification data set, we compared MAB pruning algorithms between each

other to see which pruning technique was the best and then we compared with the other

classifiers. The comparison includes the original neural network models and the other

machine learning models. In addition, the code of the implementation and complete results

are available online74.

Comparing the results of MAB pruning algorithms among each other and with the

original unpruned networks:

R-squared is used to test the performance between the models in the regression data sets.

Figure 11.10 shows the r-squared between different MAB algorithms over a number of

pruned neurons. In Figure 11.10, the behaviour of all MAB pruning algorithms is nearly the

same and in general UCB1 is mostly more stable than the others.

74 https://github.com/SalemAmeen/regression

Chapter 11: Appendices

215

 Boston House data set Airfoil Self-Noise Data Set

Auto MPG Data Set Computer Hardware Data Set

Concrete Compressive Strength Parkinsons Telemonitoring Data Set

Figure 11.10: R-squared on different MAB pruned models on x-axis shows the number of
pruned neurons and in y-axis shows the accuracy.

Figure 11.11 shows that all proposed algorithms compared to the original networks when

20% of the original unpruned networks are pruned. Although these networks are small,

Chapter 11: Appendices

216

pruning them using MAB (specially algorithms based on UCB1 and Thompson Sampling)

leads to good new models and sometimes better than the original.

Figure 11.11: R-squared of MAB algorithms and the original unpruned model tested on
regression testing data sets

Comparing MAB pruning algorithms with other models:

We compare proposed pruned models with the other regression models, as shown in Figure

11.12. From the Figure 11.12, we can see that the performance has been improved when the

models are pruned. In many cases, the UCB1pruning algorithm achieves the best results

among the all models.

The p value of applying Friedman test on the r squared to these six data sets and 19 different

algorithms is 7. 45×10−07, which is less than 0.05. It indicates that there is significant

difference between the mean of the different algorithms. Table 11-1 shows the average

Chapter 11: Appendices

217

difference between the algorithms where the higher numbers have better results based on the

r squared.

Table 11-1 shows proposed algorithms based on UCB1, Hedge, Softmax and Decay Epsilon-

Greedy pruned the original model and the results are improved even by pruning nearly 20%

of the original models. The next step is to prove whether this improvement is significantly

different or not by using Nemenyi test between all the algorithms and the results as shown

in the Figure 11.13.

Figure 11.13 shows that there is a large improvement when using UCB1. Pruning based on

UCB1 made the neural networks model even better than linear regression (Ordi. Least Sq),

LASSO, Bayesian Ridge and SVM. Hedge pruning algorithm improves the original model

and makes it statistically better than the regression model and LASSO. Softmax and Decay

Epsilon-Greedy pruning algorithm statistically improved the original unpruned model to get

better results than SVM regression.

Chapter 11: Appendices

218

Figure 11.12: R-squared between MAB pruning algorithms pruned 25% of the original model and other regression models

Chapter 11: Appendices

219

Name of Method Mean Rank
UCB1 15.500

Xgboost 15.0
Hedge 14.083

Kernel Ridge 13.0
bagging 12.833
Softmax 12.833

Decay E Gr. 12.750
NN 12.167

Decay SM 12.083
EXP3 11.750

E Greedy 11.667
Tomp. Sampling 10.667

DT 9.500
KNN 7.500

Ada boost 5.500
Ordi. Least Sq 4.0

LASSO 3.500
Bayesian Ridge 3.167

SVM 2.500

Table 11-1: Results of ranked R squared results based on Nemenyi test, which is used to
compare the different models on six different data sets.

Chapter 11: Appendices

220

Figure 11.13: Comparison of all classifiers against each other with the Nemenyi test.
Horizontal lines show the critical difference away from proposed pruning methods and
any other methods. Groups of regressions that are not significantly different (p = 0.0.5)

are out of the lines from proposed methods. CD=10.07

	Salem Abdussalam Ameen
	School of Computing, Science and Engineering
	College of Science and Technology
	University of Salford, Manchester, UK
	Submitted in Partial Fulfilment of the Requirements of the Degree of Doctor of Philosophy
	December 2017
	Contents
	List of Tables
	List of Figures
	Dedication
	Acknowledgements
	Declaration
	List of Abbreviations and Acronyms
	Abstract
	1. Introduction
	1.1. Motivation
	1.2. Research Problem
	1.3. Aim and Objectives
	1.4. Research Methodology
	1.5. Thesis Organization

	2. Deep Learning Background
	2.1. Supervised Learning
	2.1.1. The Goal of Supervised Learning
	2.1.2. Regularization

	2.2. Optimization
	2.2.1. Gradient Descent
	2.2.2. Gradient Descent with Momentum
	2.2.3. Adagrad
	2.2.4. RMSProp
	2.2.5. Adam

	2.3. Back Propagation
	2.4. Neural Networks
	2.4.1. Feed Forward Neural Networks
	2.4.2. Convolutional Neural Networks
	2.4.3. Recurrent Networks
	2.4.4. Challenges of Training Neural Networks

	2.5. Summary

	3. Literature Review
	3.1. Background on Pruning Methods
	3.2. Related Work
	3.2.1. Pruning Weights
	3.2.1.1. Optimal Brain Damage
	3.2.1.2. Optimal Brain Surgeon
	3.2.1.3. Network Pruning

	3.2.2. Pruning Neurons
	3.2.2.1. Local Bottlenecks
	3.2.2.2. Skeletonization
	3.2.2.3. Iterative Pruning
	3.2.2.4. Iterative Re-ranking

	3.2.3. Pruning Feature Maps
	3.2.3.1. Channel Level Acceleration
	3.2.3.2. Network Trimming
	3.2.3.3. Entropy-Based Pruning
	3.2.3.4. Pruning Feature Map in Transfer Learning
	3.2.3.5. Pruning Smallest Filters

	3.3. Summary of other Methods for Pruning
	3.4. Summary

	4. Multi-Armed Bandit
	4.1. Notation
	4.2. Sequential Multi-Armed Bandits
	4.2.1. Random Explorations
	4.2.1.1. Random Selection Algorithm
	4.2.1.2. Greedy Algorithm
	4.2.1.3. Epsilon-Greedy Algorithm
	4.2.1.4. Win-Stay, Lose-Shift Algorithm
	4.2.1.5. Softmax Algorithm

	4.2.2. Optimistic Explorations
	4.2.2.1. UCB1 Algorithm
	4.2.2.2. KL-UCB Algorithm

	4.2.3. Bayesian Bandits
	4.2.3.1. Thompson Sampling Algorithm
	4.2.3.2. BayesUCB Algorithm

	4.2.4. Adversarial Bandits
	4.2.4.1. Hedge Algorithm
	4.2.4.2. EXP3 Algorithm

	4.2.5. Bandits with Multiple Plays
	4.2.5.1. Thompson Sampling and Multiple Play Algorithm
	4.2.5.2. UCB1 and Multiple Play Algorithm

	4.3. Summary

	5. Multi-Armed Bandit for Pruning Weights
	5.1. Architecture of MAB Pruning method
	5.1.1. Direct Method
	5.1.2. Epsilon-Greedy Algorithm for Pruning the Weights
	5.1.3. Win-Stay, Lose-Shift Algorithm for Pruning the Weights
	5.1.4. UCB1 Algorithm for Pruning the Weights
	5.1.5. KL-UCB Algorithm for Pruning the Weights
	5.1.6. Thompson Sampling Algorithm for Pruning the Weights
	5.1.7. BayesUCB Algorithm for Pruning the Weights

	5.2. Evaluation
	5.2.1. Results from the Experiments on the UCI Data sets
	5.2.2. Results for the MNIST Data set

	5.3. Summary

	6. Multi-Armed Bandits for Pruning Neurons
	6.1. Summary of MAB Algorithm for Pruning Neurons
	6.1.1. Direct Method
	6.1.2. Softmax Algorithm for Pruning the Neurons
	6.1.3. Hedge Algorithm for Pruning the Neurons
	6.1.4. EXP3 Algorithm for Pruning the Neurons

	6.2. Evaluation
	6.2.1. Results from the Experiments on the UCI data sets
	6.2.2. Testing MAB Based Pruning on Deep Learning Networks
	6.2.2.1. Pruning Multilayer Perceptron (MLP)
	6.2.2.2. Pruning ConvNets model
	6.2.2.2.1. LeNet model
	6.2.2.2.2. AlexNet Model
	6.2.2.2.3. ConvNet on cifar-10 data set
	6.2.2.2.4. ConvNets on cifar100 data set
	6.2.2.2.5. ConvNets on SVHN data set
	6.2.2.2.6. ConvNets on IMDB data set
	6.2.2.2.7. Siamese Graph

	6.2.2.3. Pruning RNN
	6.2.2.3.1. LSTM Model
	6.2.2.3.2. Bidirectional LSTM
	6.2.2.3.3. End-To-End Memory Networks
	6.2.2.3.4. Hierarchical RNN

	6.2.2.4. Comparison using the Friedman and Nemenyi Tests

	6.3. Discussion
	6.4. Summary

	7. Multi-Armed Bandits for Pruning Feature Maps
	7.1. Direct Method
	7.2. Evaluation
	7.2.1. Data sets
	7.2.2. Intial Comparison with the Direct Method
	7.2.3. Pruning Feature Maps using UCB1 and Thompson Sampling

	7.3. Discussion
	7.4. Summary

	8. Pruning Multiple Neurons and Feature Maps using MABs
	8.1. The Advantage of Pruning Multiple Neurons over Pruning One
	8.2. MAB Algorithms for Pruning Multiple Neurons and Featue Maps
	8.3. Evaluation
	8.3.1. Testing on UCI Data sets
	8.3.2. Testing on Deep Learning Data sets
	8.3.3. Comparing with Pruning Single Neurons or Feature Maps

	8.4. Summary

	9. Conclusion and Future Work
	9.1. Introduction
	9.2. Summary
	9.3. Contribution and Main Findings
	9.4. Future Work

	10. References
	11. Appendices
	Appendix 1 Details of the Data sets and Evaluation
	Appendix 2 Visualization on testing UCI Data sets
	Appendix 3 Visualization on Testing Different Data sets
	Appendix 4 Testing MAB Pruning Algorithms in Regression Data sets

