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Abstract

Deep learning has gained significant attention recently following their successful use for
applications such as computer vision, speech recognition, and natural language processing.
These deep learning models are based on very large neural networks, which can require a
significant amount of memory and hence limit the range of applications.

Hence, this study explores methods for pruning deep learning models as a way of reducing
their size, and computational time, but without sacrificing their accuracy.

A literature review was carried out, revealing existing approaches for pruning, their
strengths, and weaknesses. A key issue emerging from this review is that there is a trade-off
between removing a weight or neuron and the potential reduction in accuracy. Thus, this
study develops new algorithms for pruning that utilize a framework, known as a multi-armed
bandit, which has been successfully applied in applications where there is a need to learn
which option to select given the outcome of trials. There are several different multi-arm
bandit methods, and these have been used to develop new algorithms including those based
on the following types of multi-arm bandits: (i) Epsilon-Greedy (ii) Upper Confidence
Bounds (UCB) (iii) Thompson Sampling and (iv) Exponential Weight Algorithm for
Exploration and Exploitation (EXP3).

The algorithms were implemented in Python and a comprehensive empirical evaluation of
their performance was carried out in comparison to both the original neural network models
and existing algorithms for pruning. The existing methods that are compared include:
Random Pruning, Greedy Pruning, Optimal Brain Damage (OBD) and Optimal Brain
Surgeon (OBS). The thesis also includes an empirical comparison with a number of other
learning methods such as KNN, decision trees, SVM, Naive Bayes, LDA, QDA, logistic
regression, Gaussian process classifier, kernel ridge regression, LASSO regression, linear
regression, Bayesian Ridge regression, boosting, bagging and random forests. The results on
the data sets show that some of the new methods (i) generalize better than the original model
and most of the other methods such as KNN and decision trees (ii) outperform OBS and
OBD in terms of reduction in size, generalization, and computational time (iii) outperform

the greedy algorithm in terms of accuracy.

XVi
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1. Introduction

1.1. Motivation

Back propagation neural networks have a long history, dating back to the 1980s [1]. These
neural networks consist of a network of connected neurons typically organized in layers.
Layers are made up of many interconnected neurons which have a nonlinearity function
known as an activation. Patterns or examples are presented to the network via the first layer
which is known as the input layer, which communicates to one or more middle layer(s)
known as the hidden layers where the actual processing is done via a system of weighted
connections. The hidden layers then link to the last layer known as an output layer. The
decades since their first development has seen many applications [2] of neural networks
including in finance [3], a complete check reading system [4], in medical diagnosis [5-8],
and in engineering[9-11]. More recently, there has been significant interest in using deep
neural networks [12-18]. These deep neural networks consist of a sequence of feature
recognition maps, building one layer on top the previous layer and where each layer aims to
provide an abstraction of the previous layer, with the final layer performing classification
[19]. For example, to recognize objects in images, the first layer aims to learn to recognize
edges, the second layer combines edges to form motifs, the third learns to combine motifs
into parts, and the final layer learns to recognize objects from the parts identified in the

previous layer [20].
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Interest in these deep networks grew as a result of their success in the ImageNet Large Scale
Visual Recognition Competition (ILSVRC)?! [21]. In 2012, Krizhevsky et al. [22]

demonstrated significant performance improvements over the state of the art in the ImageNet

benchmark challenge [21] with their deep network system AlexNet [22]. This has been

followed by further advances with deep neural networks such as VGGNet [23], GoogLeNet
[24], ResNet [25] and DenseNet [26].

These deep learning networks can become very large; for example, AlexNet has 8 layers and

ResNet has 152 layers. Hence this thesis focuses on pruning their size. There are four aspects

that motivate the need to prune deep neural networks:

The first aspect is based on the view that neural networks should aim to mimic the
brain to solve problems where each neuron relates to many others. If one accepts this
view, which is expressed in most texts on the subject (E.g., Gurney [27]), then it is
worth noting how the brain is believed to develop. The number of synapses are very
large immediately after the human birth and this number increases sharply after a
year from birth. Then, this number is pruned and stabilizes to 500 Trillion at the age
of ten [28]. Hence if deep learning is to follow similar steps, they should adopt a
pruning step to remove redundant and unimportant weights after developing the large
networks [29].

The second aspect involves using deep neural networks in embedded systems [30].
Currently, most applications of deep learning, such as image detection, natural
language processing and speech recognition run on the cloud [31-33]. Running deep
neural networks on mobile platforms is difficult at present given the size of the
models [31-33].

The third aspect is that reducing the size of models can speed up the prediction
process [34]. This will be especially important for real time applications that use deep
learning models [34, 35].

The fourth aspect to note is that increasing the number of parameters (weights, biases,
and neurons) does not necessarily grow the robustness or richness of the learned

approximation, but might increase overfitting the data [36].

L http://www.image-net.org/challenges/LSVRC/2014/
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The primary solution pursued to address the above issues is based on Occam’s razor [37]:
“Assume that an occurrence may have two explanations. Out of these, the simpler
would generally be the better one”.

The problem addressed in this thesis is how best to do this in a way that reduces the size of

the network but does not sacrifice performance.

1.2. Research Problem

Research on neural networks dates to the middle of the 20th century[38] while back
propagation neural networks dates to the 1980s [1], and has thrived for many years, so not
surprisingly, several techniques have already been developed for pruning neural networks;
however, these techniques can be inefficient and very time consuming [39]. In this thesis,
the goal is to study and develop algorithms for pruning deep neural networks more

efficiently, leading to the following broad questions that need to be addressed:

1. How well do existing algorithms for pruning neural networks perform?

2. Can multi-armed bandit (MAB) best algorithms be developed for pruning and which
methods work best?

3. How does the performance of the MAB based pruning methods compare with other

methods?

1.3. Aim and Objectives

Having identified the broad questions, the initial phases of research involved surveying the
literature on deep learning, understanding existing methods and gaining practical experience
with some applications. Practical experience was gained by using various development tools,
such as the Torch scientific computing framework [40] to develop a deep network for
American Sign Language. This initial work developed a convolutional neural network
(ConvNets) aimed at classifying fingerspelling images using both image intensity and depth
data. The developed convolutional network was evaluated by applying it to the problem of
finger spelling recognition for American Sign Language. This initial work, in itself,
produced better results than other published work and led to a journal publication [17]. It

also led to a good understanding of deep learning architectures and a key observation that:
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pruning deep neural networks involves a trade-off between accuracy and the number of the
parameters pruned. That is, as we prune more and more neurons, feature maps or weights,
the accuracy may reduce to a point where the network is not useful.

One of the most successful methods for decision making with trade-offs is known as multi-
armed bandits [41-56]. Multi-armed bandits provide a framework for studying the
exploitation versus exploration dilemma. The scenario for multi-armed bandits involves
modelling a gambler who faces a collection of slot machines and needs to select the sequence
of machines to be played in order to maximize the rewards. The gambler pulls the arm of a
selected machine and receives a reward or not. The goal of the gambler is to maximize the
total rewards obtained during a period of playing time. A player needs to choose between an
arm that gives the best reward so far (exploitation) or discovering some other arms hoping

to find a better arm (exploration).

The aim of this study is to explore if multi-armed bandit algorithms can be used to decide
which neurons, feature maps or weights can be removed and lead to efficient neural network

models. Given this aim, the research objectives are:

1. Tosurvey and review existing methods for pruning neural networks.

2. To research different multi-armed bandit algorithms that can be adopted for pruning
deep neural networks.

3. To utilize multi-armed bandits to develop new methods for pruning deep learning
models.

4. To carry out an empirical evaluation of the new multi-armed bandits pruning

methods with respect to existing approaches for pruning.

1.4. Research Methodology

Kothari [57] categorises the different types of research based on whether is it descriptive or
analytical, applied or fundamental, quantitative or qualitative and conceptual or

experimental. These are summarized below based on the exposition in Kothari [57].
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Descriptive Research vs. Analytical Research

In descriptive research, the researcher often conducts surveys and enquiries of different kinds
for the collection of data. Descriptive research is mainly employed when existing issues need
to be addressed or described. This approach finds its application in the fields of social
sciences and business and management studies. This method can be differentiated from other
methods on the basis that the researcher cannot control the variables; as they are only
responsible for reporting events of the past or present. The research projects that undertake
this approach are used for the researcher to analyse the existing factors like how frequently
a population changes their wardrobe, what brands people prefer, which show has the most
viewers etc. All types of survey methods can be classified as descriptive research, including
comparative and correlation techniques. However, analytical research is completely
different from the former as the researcher has to critically evaluate the material through

analysis of given data.

Applied Research vs. Fundamental Research

Research can also be classified as either applied research or fundamental research. In the
former, the researcher aims to resolve an immediate problem faced by society or an
organization. While, in fundamental or pure research the researcher is dedicated to
formulating a theory. Fundamental research is often described as conducting a study with
the sole purpose of obtaining knowledge. To give a few examples: research in which human
behaviour is studied and related generalizations are made can be classified as fundamental
research. Applied research is effective in resolving practical problems at hand; whereas,
fundamental research works to formulate theories that will be used as a basis for further
studies and have applications at present as well as for the future, and contribute to the body

of scientific knowledge.

Quantitative vs. Qualitative

Quantitative research is used for studies that require quantitative analysis to produce the
results needed; whereas qualitative research is conducted to establish the existence and/or
rationale of a phenomenon. A researcher investigating the reasons for human behaviour,
must undertake qualitative research approach. Qualitative research finds its application most
commonly in the department of behavioural sciences where studies are done to study the

reasons behind human behaviour.
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Conceptual vs. Experimental (or Empirical)

Conceptual research is based on abstract ideas or theories. It is most popular among
philosophers and thinkers for developing new concepts or for finding new interpretations of
those that already exist. In contrast, experimental research is purely based on experiments
and/or observations and not much regard is given to a system and theory. Experimental
research is a data-based research, where hypotheses are formulated to be verified by
observation or experiment. Data must be collected from its source directly in this type of
research and standard experimentation for the simulation of desired information must be
performed. The researcher is required to have a working hypothesis or guess as to the
probable results for initiating this type of research. Their next responsibility is to gather data
in favour of or against their hypothesis. Then comes the experimental designs stage, where
the materials or subjects are manipulated to obtain the desired information that would prove
or disprove the hypothesis. In this type of research, the experimenter has control over the
variables being studied and the deliberate manipulation of these variables gives us the
results. When a correlation between variables has to be established, empirical research must
be used. It is thought that experiments or empirical studies provide the strongest evidence to

prove or disprove a given hypothesis.

How to Approach Research?

The above summary suggests that two basic approaches to research exist: namely a
quantitative approach and a qualitative approach. In the quantitative approach, the data
generated can be analysed to obtain results. There are three sub-categories of the quantitative
approach: inferential, experimental and simulation approach. In the inferential approach, a
data base is developed, which is then used for determining the features or associations of a
population. A sample population is analysed by questioning or merely on the basis of
observation for the determination of its characteristics, and these characteristics are then
generalized. In the experimental approach, the research environment can be controlled and
certain variables can be manipulated to study their relation with other variables, which
differentiates it from other types of research. In the simulation approach, an artificial
environment is created for fostering relevant information and data to help predict results on
the basis of an existing study, which allows the observer to study dynamic behaviour of a
system under controlled conditions. The initial conditions, parameters, and exogenous
variables, are used to run a simulation study for observing the behaviour of the process over

time. Another application of the simulation approach is found in developing models for
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predicting results under different conditions. In the qualitative approach the attitudes,

opinions and behaviours are analysed subjectively.

In the field of machine learning, where this thesis sits, researchers have mainly utilized
experimental and theoretical (fundamental) methods; quantitative approach; and analytical
research. Most studies involving algorithm development [58] involve an empirical
comparison with respect to other algorithms and utilize an experimental methodology, hence

in this study also utilizes this approach. The main steps of this approach are:

1. Carrying out an in-depth literature review on the present methods and techniques to
overcome the problem.

2. Design and implement a solution in mind of the problems, which involves devising novel
pruning methods that have the ability to prune deep neural networks

3. Empirical evaluation: This involves carrying out many experiments to test the proposed
methods.

4. Results analysis: Involves analysing and contrasting the results with similar works in the
same domain. A conclusion is established from the findings. The key objective of the
developed methods is achieved, with the results seen to outperform the existing works

in the same field.

To achieve the desired research goal, namely to develop new algorithms for pruning using
MAB:s that perform well, the following steps are used:

Dataset collection: Most of the modelling approaches in supervised learning fall under the
category of data-driven techniques, in which a model learns from human annotation data. It
is therefore important to highlight the public available data sets such as the data set from
UCI Machine Learning Repository and other different recourses.

Data preparation: For the purposes of this dissertation, the dataset is assumed to be made
up of a set of pairs (X, y), where x is an input example and y is a label. The dataset was
subsequently divided into three folds, usually a training, validation and test fold (usual
percentages could be 60%, 20%, and 20% respectively). However, if the datasets were small
then cross validation was used.

Data pre-processing: The convergence of neural networks can be improved by pre-
processing the data. For example, standardizing the data (taking off the mean and dividing

by the standard deviation individually for every input dimension of x) or subtracting the
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mean is amongst the common pre-processing techniques. Besides using the fixed statistics
to process the validation and test data, estimating these statistics on the training data is an
important activity, as this appropriately simulates the deployment of the final system into a
real-world application
Architecture design: For the small data sets, forward neural networks were used to build
the model. Image data sets were mostly used for convolutional neural networks and temporal
data sets were used with recurrent neural networks.
Optimization: The neural networks were trained and evaluated on a validation dataset.
During the training, we monitor the training and validation error. Then the model with the
best validation and training error was chosen.
Pruning the model: Once the model was trained then we pruned the model based on the
proposed methods and other pruning methods. A preliminary review of the existing work on
pruning methods, revealed the following types of methods which were used for comparison:

e Direct methods.

e Regularization and pruning based on magnitude.

e Activation methods.

e First and second order derivative pruning.
Evaluation: The pruned models were evaluated one time on the test set and the accuracy is
reported and compared to other pruning techniques. Non-parametric statistical methods are

used to validate differences in performance between the various algorithms.

1.5. Thesis Organization

Figure 1.1 presents the structure of the thesis.
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Chapter 1
Introduction

Chapter 5
MAB pruning the weights using
Epsilon greedy, WSLS, UCB1, KL-
UCB, BayesUCB and Thompson
sampling

Chapter 6
MAB pruning the neurons using Chapter3

Chapter 2
Deep Learning Background

Epsilon greedy, softmax, UCB1, Literature Review
Thompson sampling, Hedge and
EXP3

Chapter 7
MAB pruning the feature maps in
ConvNets using
UCB1 and Thompson sampling

Chapter 4
Multi Armed Bandit (MAB)
Epsilon greedy, Softmax, Win-stay; Lose Shift (WSLS), UCB1,
KL-UCB, BayesUCB, Thompson Sampling, Hedge, EXP3 MP-TS,
MP-UCB1

Chapter 8
MAB pruning multiple neurons at
the same time using MP-UCB1
and MP-TS

Chapter 9
Conclusion and Future works

Figure 1.1: Overview of the Thesis Structure.

The following summarizes each chapter of the thesis:

Chapter 2. Deep Learning Background: This chapter describes the background and state-
of-the-art deep learning models.

Chapter 3. Literature Review: This chapter begins with a brief introduction to the problem
of reducing the number of parameters in deep neural networks. After a brief history,
details of different kinds of pruning techniques that are identified in the literature
survey are reviewed and their strengths and weaknesses presented.

Chapter 4. Multi-Armed Bandits: The literature includes several multi-armed bandit
algorithms, each with different characteristics. Chapter 4 introduces the algorithms
that are utilized to design and develop the new algorithms for pruning.

Chapter 5. Multi-Armed Bandits for Pruning the Weights: The multi-armed bandits
described in Chapter 4 can be utilized either to develop algorithms for pruning
neurons, feature maps or weights of a neural network. Chapter 5 describes the use of
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MAB methods for pruning the weights. In addition, the chapter presents
implementation of MAB pruning algorithms. The implementation is used to evaluate
the performance of the MAB pruning algorithms in comparison to each other as well
as with existing algorithms.

Chapter 6. Multi-Armed Bandit Algorithms for Pruning the Neurons: This chapter
presents the MAB algorithms for pruning neurons and presents the results from
comparing the results with state of the art pruning methods.

Chapter 7. Multi-Armed Bandit Algorithms for Pruning Feature Maps: Chapter 7 presents
pruning algorithms based on two MAB methods, known as UCB1 and Thompson
Sampling, for pruning feature maps and their filter of convolutional layers in
ConvNets. The chapter presents the results of pruning the feature maps from
ConvNets and comparing the results with the well-known pruning algorithms.

Chapter 8. Multi Armed Bandit Algorithms for Pruning Multiple Neurons and Feature
Maps: The previous chapters discussed the use of MAB algorithms for pruning
individual weights, neurons or feature maps. This chapter studies the ability of
multiple play Thompson Sampling and UCB1 to prune multiple neurons and feature
maps at the same time.

Chapter 9. Conclusion and future work: This chapter draws the conclusion and suggests

some future work.



Chapter 2: Deep Learning Background 11

2. Deep Learning Background

This chapter presents the background and technical details of different types of neural
networks. First, we will begin with a conceptual overview of supervised learning which
includes the objective (loss) function and regularization methods. Then, the chapter gives an
introduction to optimization and back propagation. Finally, the chapter gives an introduction
to feed forward neural networks, convolutional neural networks, and recurrent neural
networks. The book by Goodfellow et al. [59] is recommended for a comprehensive and
slower-paced overview. In addition, Karpathy [60], Bishop [61] and Abu-Mostafa et al. [62]

are the main source for this chapter.

2.1. Supervised Learning

In artificial intelligent, computer programs can be used to map a function f between two
spaces for example /A X - Y, where X is called an input space and Y is known an output space.
For instance, in visual recognition, the space of images can be represented as the input X and
the interval [0, 1] represents the Y through which the possibility of an object (like a dog)
emerging somewhere in the image is indicated. As another example, in opinion mining, X
could be the sentence and Y could be the opinion of the sentence, such as liked, neutral or
disliked. Traditionally, specifying or programming the function f explicitly can be difficult
for tasks such as image recognition, natural language processing and automatic speech
recognition. Supervised learning offers an alternative in which examples (x,y) € XxY of
the desired mapping are used to learn the mapping. For our examples, this suggests collecting
a data set of images, wherein each may be marked with the absence or presence of a dog, as

the same is interpreted by human beings or collecting a data set of sentences from social
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media and where each sentence is labelled by carrying either positive or negative meaning
[60].

2.1.1. The Goal of Supervised Learning

More formally, a data set of n examples is given by {(x1,y1), ..., (X, ¥n)}, Where the
independent and identically distributed (i.i.d.) samples are utilized to produce these
examples from a data generating distribution D; i.e.(x;,y;)~D for all i [60, 62].
Subsequently, we think about learning the mapping f: X — Y by looking for a set of
candidate functions, where we attempt to identify the one, which is properly in line with the
training examples.

In particular, a class of functions F is taken into account. Then, to measure the disagreement
between a true label y; and a predicted label y; = f(x;) for some f € F, ascalar-valued loss
function L( ¥;, y) is chosen. Finding out f* € F that minimizes the expected loss is the goal

in learning and formally stated as [62]:
f*=arg min Eey)~pL(f(x),¥) (2.1)

Where argmin is argument of the minimum which the value of ffor which the expected loss
attains it is minimum. E(, .,y p is the expected loss over the data generating distribution D.~
means the input data is sampled (generated) from the D. Since all the possible elements of
D are not accessible, the optimization in Equation 2.1 is intractable. Hence, the possibility
cannot be evaluated or without making idealistically strong assumptions about the form of
L, D, or f, we cannot systematically streamline this process. Nonetheless, the expected loss
in Equation 2.1 can be estimated with the aid of sampling and can be determined by

averaging the loss over the available training data [60]:
fr o~ argmin iy L(f(x0), 1) (2.2)

More specifically, the loss over the available training examples is optimized; however, this
is hopefully a good proxy for the actual objective mentioned in Equation 2.1.
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2.1.2. Regularization

There can be problems where Equation 2.2 is optimized instead of Equation 2.1. For
example, suppose a function f where each x; in the training data is mapped to its
corresponding y;, however zero is returned everywhere else. We can present this as a
solution to Equation 2.2 (for any sensible loss function L, where a minimum value is attained
when y = ), but all other points in D that are not in the training set would receive a huge
loss. More specifically, this function would not be expected to be generalized to all
(x,y)~D. One approach to avoiding this is to introduce a regularization term R into the loss
function [60]:

f*= argmins ST L(F (), y0) + 5 R() (23)

Where A is positive number and there are many types of regularization [63-67], and two that

have been widely used are the L2 and L1 norms:

L2 norm: R(f) = %foz
Where L2 norm is known as weight decay and is the sum of the squares of all the weights in

the network

L1 norm: R(f) = XIf|.

L1 norm is the sum of the absolute values of the weights:

2.2. Optimization

In the previous section, it was observed that the task of learning a model for a supervised
learning problem can be reduced to solving an optimization problem having the form 6* =

arg meing(e), where 6 is a parameter vector and g normally amalgamates a regularization

penalty and the average loss of all examples. The following subsections present the most
widely used optimization techniques in neural networks [60].
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2.2.1. Gradient Descent

By making additional assumptions about g, the efficiency of the optimization can be
enhanced [60]. Specifically, if there is no other option to use except the differentiable
functions, a method known as back propagation (its details will be discussed in the next
section) would be employed to compute the gradient V7, g. A vector of partial derivatives is
referred to as the gradient, which offers the slope of g along every dimension of 4.
The gradient can be applied as a search direction. We can specifically improve 6 (in the
sense of attaining lower g), by adding a small amount of the negative gradient. In general,
the Gradient Descent (GD) [68, 69] algorithm iterates between the following two steps:

1. The gradient is evaluated.

2. A small step is made in the direction of the negative gradient, the parameters are

updated.

In general, the step size A (also called the learning rate) is a critical parameter in Gradient
Descent (GD). The optimization may not converge or even diverge, if the learning rate is too
high. Moreover, the learning would become a lengthy process, if it is specified very low
[60].

There are three kinds of GD based on how many samples we use to compute the gradient of
the loss function [60].
Batch Gradient Descent: Batch GD computes the gradient of the loss function with respect
the model’s parameters 8. The following steps summarise the batch GD algorithm [68, 69]:
e Estimate the gradient Vog(0) with back propagation over all training data set n
Vog(8) ~ Vo |~ Ziy L(fo (x), 90 + R(fo))]
e Compute the direction §6 = AVyg(0) where A € R* (positive real number) is
learning rate or step size
e Perform a parameter update 8,,, = 6; — §6;
One problem with batch GD occurs when there is a huge training data set (e.g. there are over

1 million training images in ImageNet). Then, these training data sets cannot fit into the

memory during the learning.
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Stochastic  Gradient Descent (SGD): Instead of computing Vgg(0) =
Vo E e  L(fo(x), yi) + R(fg)] over all the training data set, SGD [28] computes over one

single example in the training data set and is faster than batch GD. One problem with this
technique is that SGD performs frequent updates with a high variance that cause the loss

function to fluctuate heavily as shown in Figure 2.1.

Loss Function
-~
1

-0 1 1 1 1 1 1
a soo 1000 1500 2000 2500 3000 3500

Number of epochs

Figure 2.1: SGD fluctuation 2.

Mini-Batch Gradient Descent: In this method, the gradient is estimated through a small
mini-batch of examples (e.g. around 200) at a time. As a result, we are enabled to perform a
number of approximate updates rather than fewer exact updates. It is an approach, which has

excellent functionality / working in most practical applications [70].

2 https://upload.wikimedia.org/wikipedia/commons/f/f3/Stogra.png
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2.2.2. Gradient Descent with Momentum

The computation of the update direction (Step 2 in GD) can be adjusted and modified to
improve the rate of convergence. For example, a method, known as momentum [71], utilizes
a proportion of the previous gradients to help maintain a consistent direction thereby often
increasing the rate of convergence. The update Af is initially computed by updating an
intermediate variable v;,; = yv; + A1 Vo g(6) (initialized at zero). It is worth indicating that
an exponentially-decaying sum of previous gradient directions is encompassed in the
variable v. The following steps are the GD with momentum:
e Sample a minibatch of m examples from the training data set

e Estimate the gradient Vo g(68) with back propagation over m sampling of training
data setn Vg (0) ~ Vo |- X1, L(fo (), v1) + R(f3)]|
e Compute the update direction §6 = v where v;,; =yv; + AVgg(0) and y € R

(real number and practically set to 0.9) and is called momentum.

e Perform a parameter update 8,,, = 6; — §6;
Figure 2.2 shows the difference between GD with and without momentum. Figure 2.2(a)

shows the problem of GD which is that GD oscillates across the slopes of the ravine [72],

while Figure 2.2(b) shows how momentum helps accelerate GD in the relevant direction.

W—>)) (&=

(a) GD without momentum (b) GD with momentum

Figure 2.2: The effect of adding momentum to GD?.

3 http://ruder.io/optimizing-gradient-descent/index.html#fn:1
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2.2.3. Adagrad

Adagrad [73] adapts the learning to the parameters. Adagrad uses the estimate of the first
moment of the gradient (the mean). For instance, an intermediate variable r is used by
Adagrad update [73], where r;,; = 1; + Vo g(8)®OVyg(8) of sum of squared gradients (®

is element wise multiplication). Subsequently, the update is modulated by the second
moment (the uncentered variance) like this: 860 = #@V,;g(e), where § is a small

number (e.g. 1e~°), stopping division by zero [60]. The steps for Adagrad can be
summarized as following [36]:
e Sample a minibatch of m examples from the training data set
e Estimate the gradient Vo g(8) with back propagation over m sampling of training
data setn Vo g(6) ~ Vo |- X1, L(fo (), y1) + R(fo)|

A

e Compute the update direction 66 = ST

Vg (0)OVeg(0).
e Perform a parameter update 8,,, = 6; — §6;

OVeg(6) where 1, =1+

The main advantage of Adagrad is that it does not need to manually update the learning rate
throughout the training and in most practical implementations it is to 0.01 [74, 75]. The main
disadvantage of Adagrad is growth of the denominator because of accumulation of the

squared gradients r. This leads the learning rate to shrink over time [76].

2.2.4. RMSProp

A running mean of the second moment is used by the RMSProp update [77] here, 1;,; =
pri + (1 —p)Veg(0)OVeg(0), where p is often set to 0.99. The following steps summarize
the RMSProp algorithm [36]:

e Sample a minibatch of m examples from the training data set

e Estimate the gradient Vo g(8) with back propagation over m sampling of training

data setn Vog(8) ~ Vo [ 1L, L(fo (x), ¥) + R(fy)
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e Compute the update direction 5§60 = #@vgg(e) where 7, = pr; + (1 —

P)Veg(0)OVeg ().
e Perform a parameter update 6,,, = 6; — §6;

2.2.5. Adam

Adam adapts the estimation of both the first and second moments [78] and it can be seen as
a mix of RMSProp with momentum. The first moment of the gradients mg, (m, ;is m, at
time t or the current time) is computed by mg .,y = Bymg, + (1 — B1)Vgg(8) and the
second moment of the gradients v, (v, is yyat time t) is computed by vy 41 = Bovg: +

(1 = B2)(Veg(8))? where B,and S, are close to one and practically are set to 0.9 and 0.999

respectively [78]. Subsequently, the update is modulated by these first and second moments

Mg

~ v
and ¥ = <

thus: 66 = Lﬁz, where & is a small number (e.g. 1e~°) where m = :
) 1-p1 1-B>

+VD
The following steps summarizes the Adam algorithm [37]:

e Sample a minibatch of m examples from the training data set

e Estimate the gradient V4 g(68) with back propagation over m sampling of training

data setn Vog(8) ~ Vo [ 1L, L(fo (x), ¥) + R(fy)

e Compute the update direction 66 = %ﬁr’ﬁ, where § is a small number (e.g. 1e78)
= — Mg P
where m = g, and © =

e Perform a parameter update 8,,, = 6; — §6;

2.3. Back Propagation

The previous section shows that if the gradient of the loss function can be estimated, then
GD can be used to reduce it. Back propagation [1, 79-81] is a process where gradients of
scalar valued functions are efficiently computed based on their inputs. From calculus, a
recursive application of the chain rule is none other than the back propagation algorithm.
Remember that g is the main function to calculate the gradients. This function takes the

parameters @and the data set of examples (x;, y;) as input.
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To understand back propagation, we assume there is an input vector x,, which is converted
through a series of functions x; = f;(x;_1) where i =1,....k and the last x; is a scalar. Then
the following steps summarize the back propagation algorithm [60]:

e Compute forward propagation given the input x,. So x; = f;(xo), ..., x; = fi(x;_1),

ooy X = fr(xx-1) Where f; are activation functions.

e Using the chain rule, compute the gradient % that will include computing the
0

gradient of all intermediate transformations. These gradients are known as a Jacobian

matrix and each transform is given by dx;/0x;_;.
e Then, the final gradient is given by% = [1¥, dx;/0x;_;. This matrix product of
0

all the Jacobians is used by the GD algorithm as an estimate of the gradient V4 g(8).

Example: To understand back propagation and GD, consider this example: Assume we have
a data set that contains two features x, and x; and one output y as described in the Table
2-1.

XOXlT
0 1 1
2 1 4
1 0 2
101 1

Table 2-1: Example of a small data set where Xoand X; are features and y is the output.

Consider the graph in Figure 2.3 (a) which consists of three nodes, two of these nodes
connect to two external inputs and one node connects to the output. Each connection has an
edge as shown in Figure 2.3 where Figure 2.3 (b) represent the operations of the graph where

nodes represent the operations.
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Xo

W, =1
Xo 1
w, =1
@Output i “ Output f—-
W =2 >
X1 —> W =1 @
W1: -1
W, =2
(a) Graph with 3 nodes, external inputs, and outputs (b) The graph unfolded to explain the operation

Figure 2.3: Example of graph of multiple nodes.

The following steps represent the GD and back propagation in Figure 2.3:
The first step: For simplicity, we will use SGD which applies GD with one example from
the training data set that is shown in Table 2-1.

The second step: Compute forward propagation as following:

£ = xgw 6f1=w 6f1=x

1 0 O’dxo Olé‘WO 0

fo = xw 5f2=w 6f2=x

2 W o 1

_ Sfs Sfs

f3 _f1W2'6_f1_W2'6_Wz_f1
814 61,

fa :f2W3»6_;:W3'5_M;;:f2
6f 6f

f_f3+ﬁ*'6_f3_1'6_ﬁ}_1

Given the third example in the data set and after substituting the values from Table 2-1 and

Figure 2.3 we get the following:

fi=ixl1=1
f = 1x—1=—1
s =1x1=1

fo=—1x2= -2
f=1+(-2)=-1
Computing the least square error loss function (without regularization for purpose of

illustration):
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L= 2ol (c1)2=2
—E(y—f) —5( - (-D)* =

Computing the Jacobian matrix using chain role gives:

5L_ 2

S5f

6L 6L of
—— = =2x1=-2

0fs  Of Ofy

6L OL 6f
—=——==-2%1=-2

0fs O6f6fs

0L 6L 6fF 6
_:__f£:_2*1:_2

6fi 6f6f36f

oL OL 6f 6
_:__f£:_2*1:_2

dwy,  Of 8f3 0w,

oL OL &6f 6f; 6

dwo  8f 8f36f1 6wy

oL 6L S6fF 6

8f; Of6fudf;

oL oL 6f 6

dwz  Of 0f, 6w,

oL oL 6f 6f, 6

OL _OLofofabfe _ o, 01 4

Swy  Of 8f, 8f, 6w,
In this example, we assume the parameters of the graph only Ws then Vog(8) = V,,g(w):
oL OL ]

|5W0 dwy

Veg(0) =V,g(w) = s ﬂJI _ [—2 —4]

-2 2
ow, Ows

The next step, after computing Vyg(6) using back propagation involves updating the
parameters. However, as described in Section 2.2, there are different GD algorithms and the

following presents how each one of them updates the parameters.

Updates using SGD

First, we will start with vanilla SGD. The third step of the algorithm is as following:
60 = AV g(0) where the learning rate A = 0.1 then

Swip1 = 6641 = AV,,; g(0) = 0.1 % [Zﬁ _24] - [

The following is computing the update of the parameters

-0.2 —0.4]
-0.2 0.2
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Wit1 = 0;41 =0, —80; = w; — = [1 _1] [_ —0. 4] [1.2 -0.6

1.2 1.8
GD with momentum at this iteration will give the same result as GD because of v;,; =

yv; + AVpg(6) and at the beginning v = 0. Then the new v;,; = yv; + A Vgg(0) = 0 *
0.9 + A1 Vgeg(8) = A1 Vug(0) but after this iteration, v will affect the update.

Updates using Adagrad

The following GD is Adagrad, we compute the update direction §8 = ﬁ; OVeg(6) where

riy1 =1 + Vgg(0)OVeg(0) and r initializes at 0 then

-2 —] [— —4] [4 16

Tiar = Ti + Vog(0)OVeg(6) = 0+ |2

Then

60 =

6+\/—

. -2 - —0.025 —0.
I i R

0.00005+\/ 4

Then, perform a parameter update

O = 0= 52000 @ =1 5]~ [T505 T0025) = o5 o8]

Updates using RMSProp

The next GD is RMSProp, we compute the update direction §0 = #@V@Q(Q) where

Tig1 = pr; + (1 — p)Veg(6)OVyeg(6) and r; initializes at 0 then
Tiq1 =pri + (1 —p)Veg(6)OVeg(6) = 0.99 * 0 + (1 — 0.99) *

2 ol -2 519
00 = #@Vggw) B 0.00005+\(]§:81 g:(l)z [_2 _4] - [:ggig _002%603]

Then, perform a parameter update

—] [—0.249 —0.063]_[1.25 —0.94

~ N
Oir1 = 0 — 57 =OVpg(0) = [ 0249 02501 l125 175

6+«/_
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Updates using Adam

The last GD is Adam, we compute the update direction §0 = ﬁ?r’ﬁ, where § is a small

—ﬁ1 and ¥ = :‘221 Mgiv1 = P1Mg,; + (1 — B1)Veg(0) and vy ;41 =
B2vgi + (1 — B2)(Vog(6))?

-2 —4 -02 -04

number where m =

Vgi+1 = BaVgi + (1= B2)(Vog(6))* = 0.999 x 0 + (1 — 0.999)([:5 _24])2

_ [0.004 0.016
0.004 0.004
— —0 4
aoboz el 2 oy
1 - 0. 9
0.004 0.016]
5 — 10.004 0.004] _ [4 0.16 ]
1-0.999 4 0.0044
Then, computing the update direction §0 = 53\/57?1
A 0.1 -2 — — —
560 = 7= [ 2 4] =[ 0.025 —0.006
§+\D 0.00001 + [4 0.16 ] -2 2 —0.025 0.025
' 4 0.0044

Finally, perform a parameter update

—] [—0.025 —0.006]_[1.025 —0.994

0., =0, — =
1T —0.025 0.025 1.025 1.975

1
6+\/_G)V9g(9) - [

Finally, from the previous example, we can notice that SGD has less hyperparameters while

Adam has the most.

2.4. Neural Networks

In the previous sections, it was observed that arbitrary differentiable functions f can be
defined, which map the inputs x to predicted outputs y, and that a GD procedure can be used
to optimize a differentiable loss function. The function f, which has been left unspecified
until now, will now be discussed.

Figure 2.4 shows a neural network with one neuron. In this example, the neuron has three

inputs (x,,x,and x3) and one output. Each neuron is connected by weights to the other



Chapter 2: Deep Learning Background 24

neurons and these connections are called weights. The weight W]-(il) is the connection at layer

| and is connected between neuron j in the input and neuron i in the layer I. Each neuron has

an activation function which is denoted by f(x) notation.

Figure 2.4: Definition of a single neuron with inputs, activation function and outputs.

Such single neurons provide the building blocks for different architectures for neural
networks. There are several different types of neural networks, namely: feed forward
networks, which have been widely used for classification [82]; Convolutional networks
(ConvNets) [83] which have been utilized mainly for image processing tasks [22-25, 83-87]
and Recurrent networks that take account of previous states [88]. The following subsections
describe these in more detail. There are, of course many other types such as unsupervised
learning networks such as Kohonen networks [89], the Boltzmann machine networks [90],
deep belief networks [91], generative adversarial networks [92] and autoencoder networks
[93, 94] which are not the focus of this thesis. Readers interested in other types of networks
are therefore referred to [59].

2.4.1. Feed Forward Neural Networks

A feed forward network consists of layers of neurons, with each layer is connected to the
following layer of neurons. Figure 2.5 presents an example of a feed forward network which
has an input layer with three neurons x1, x2, x3, a hidden layer with three neurons and a

single output.
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1)
G Wi

Figure 2.5: Artificial neural network with one hidden layer where W is the weight, b is the
bias and f is a non-linear function.

In this network, W1 is a matrix of the weights between the input and hidden layer, and W- is
a matrix of weights between the hidden layer and the output neuron.

A 2-layer neural network like the one in this figure will have an output: f(x) = W, f(W;x),
Where f is an element-wise non-linearity (e.g. sigmoid) and W1,W2 are matrices. A three-
layered network will have an output: f(x) = W5 f (W, f(W;x)).

The entire neural network is shortened (in representational power) to a linear function, if the

1
1+e~x’

non-linearity is an identity function. The sigmoid function f(x) = tanh function

eX—e™*
eX+e™X

f(x) = tanh(x) = and the rectified linear neuron function (ReLU) f(x) =
max (0, x) are thought to be the common settings for the non-linearity. In addition, Leaky
ReLU function [95] adds a small negative slope to ReLU function as follows: f(x) =

{x ifx=0

_~ , where a is small constant and set to 0.01. Maxout networks function [96]
ax otherwise

is another generalization of ReLU as given by max(w!x + b;, wI'x + b,) where it doubles
the number of weights in every neuron. It is worth indicating that the non-linearity is not
usually included in the last layer of the neural network. Moreover, a simple linear

transformation is none other than a 1-layer neural network.

2.4.2. Convolutional Neural Networks
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Utilizing fully connected networks of the type illustrated in Figure 2.5, for applications such
as face recognition and speech understanding, is computationally intractable given the large
number of parameters. Convolutional Neural Networks (CNNs, or ConvNets) [83] were
developed specifically for these types of applications, where the data has some spatial
topology (e.g. videos, images, character sequences in text, sound spectrograms in speech
processing or 3D voxel data). A ConvNet typically takes a multi-dimensional array (i.e. a
tensor) as input and produces a classification as an output [60]. For instance:

e In an image processing application, the input could be images represented by a
32x32x3 tensor* (for 3 colour channels red, green, blue) or represented by 32x32x1
tensor (for 1 grey channel).

e In aspeech recognition system, an array of size 1000 x128 could be used for a sound
spectrogram, which depicts the amplitude of any one of 128 frequencies at any
interval/stage from t = 1 to t=1000.

Figure 2-1 gives an example of a ConvNets from Ameen & Vadera [17] which is described

below.

3x32x32 64x28x28 64x14x14 128x10x10 128x5x5 3200x1x1 128x1x1

Intensity

1x32x32

Depth

Output

Pooling

Convolution Pooling Convoelution Fully connected

<4—— Inputs ———— P4 FirstStage ————Pp&——— Second Stage ———P»4¢——  Classifier ——»

Figure 2.6: ConvNet model with two inputs (Intensity and Depth).

4 Tensor is a mathematical object that can be used to describe physical properties, just like scalars and vectors
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Convolutional Layer: The Convolutional Layer (or the CONV layer) is the core
computational building block of a Convolutional Neural Network, where an input tensor is
taken to deliver an output tensor. This is done through convolving the input with a set of
filters. In general, a convolutional layer is considered for images (i.e. assuming input tensors
with three spatial dimensions) as following [60]:
(@) The input is a tensor of size W; xXH; XC;.
(b) It needs four hyper-parameters, which are: the number of filters® C, their spatial
extent K, the amount of zero padding on the borders of the input P, and the stride
with which they are applied S.

(c) An output volume of size W, xH,xC,is generated by the convolutional layer, where

_ Wi—F+2p 1—F+2p

w, +1, H, = il + 1, and C, = C,, (number of filters equal
number of output feature maps).

(d) Total number of weights is (F * F = C; * C},) and total number of biases is C; while
(F = F = C,) represents the number of weights in each filter where there are C

filters.

Given below is the analysis of convolutional layer. The (pre-activation) output of one
neuron, which has connections to that particular chunk of the input array is represented by
the result of a dot product with one filter at one specific location. Moreover, a parameter
sharing scheme is introduced, where all the same weights are used by the neighbouring
Neurons in one activation map, since each filter is slid over the input besides using the same
weights at every location. In each convolutional layer, there is a considerable decrease in the
number of parameters, through which overfitting is addressed.

For the example in Figure 2.6, 32x32x3 and 32x32x1 inputs are processed with a
convolutional layer with 64 filters having size 5x5x3 and 5x5x1 respectively (parameters
that we want to learn), and they employ a stride of 1 and padding of 0. In this case, the output
would be 28x28x64 in both sides, which represents the firing of all filters at all spatial
locations. To appreciate the difference between a convolution layer and a fully connected
layer, it is worth computing the number of parameters required for Figure 2-6. For the

convolution layer, there are 5%5%3*64 weights and 64 biases in top first convolution layer

and 5*5%1*x64 weights and 64 biases in the bottom first convolution layer. Both, the top and

5 A filter and kernel are similar concepts, we therefore use them interchangeably throughout this thesis.
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the bottom convolution layer, produce 25,088 outputs. On the other hand, if the same number
of neurons in the hidden layer joins this fully connected layer, we would be using 25088 *
(28%28%3 4+ 1) =59,032,064 and 25088 * (28281 + 1) = 1,969,408
parameters (biases and weights) - a very huge number, and it is anticipated to deeply overfit

even if we assumed that the results could be computed or stored.

Pooling layers: Besides convolutional layers, use of pooling layers to control overfitting is
a common practice. Pooling reduces the size of the representation with a fixed down
sampling transformation Specifically, each channel (activation map or feature map)®
independently operates the pooling layers and they are then down sampled in a spatial
manner. For example, 2x2 filters with a stride of 2 can be applied, where the max operation
(i.e. over 4 numbers) is computed by each filter. As an outcome, a factor of 2 is used to
downscale an input tensor in both width and height. In addition, a factor of 4 is used to reduce
the representation size by losing some spatial data [60]. In Figure 2.6, both convolutional

layers are pooled from 28x28x64 to 14x14x64 by using max pooling with stride 2.

ConvNet architectures: To conclude, the convolutional layers are stacked to build a
convolutional network. Moreover, pooling layers are used to reduce the computational
complexity of the architecture [60]. For the example in Figure 2.6, 64 filters (feature maps)
are used, each with a 5x5 receptive field’, no zero padding and a stride of one which leads
to 64 planes each of dimension 28x28. In the second stage, 128 filters with the same receptive
field and stride are used, leading to an array of 128x10x10. Each single number in this
dimension is squashed using a Tanh as an activation function. In the first stage, a pooling
operation is applied to reduce the impact of translations and reduce the number of weights
that would be needed. In this example, the 64 filters are pooled by a 2x2 receptive field with
a stride of 2, leading to 64 planes each of dimension 14x14. In the second stage, the 128

filters are pooled by a 2x2 receptive field with stride of 2, leading to 128x5x5 planes.

LeNet model: This is considered to be the first ConvNet [83]. The first layer is the input

layer with width W; = 28 to make a size of 28x28. This is followed by a convolution layer,

¢ A channel and feature map are similar concepts, we therefore use them interchangeably throughout this thesis.
" The receptive field and filter size are similar concepts, we therefore use them interchangeably throughout this

thesis
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which is a 5x5 receptive field (kernel with F=5) with no zero padding (P=0) and stride (5=1)

Wy —F+2+P _ 28-5+2+0

+1

to give W, = +1=23+1= 24 with 24x24 output and four

feature maps. It utilises 2x2 average pooling and a stride of 2 to reduce the size to 242—_2 +

1=12.
INPUT feature maps feature maps  feature maps feature maps QUTPUT
28x28 4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

Figure 2.7: LeNet Model [83].

AlexNet model: AlexNet [22] is the first successful framework in the ImageNet Large Scale
Visual Recognition Competition (ILSVRC)® challenge. This is a modified version of the
LeNet model, which allows concatenation of two convolution layers followed with

nonlinearity without the need for pooling layers.

dense| [|dense
1000
128 Max LI

11
55
] 048
2284l Strid Max 128 Max pooling * 2048
Uof 4 pooling pooling
3 a8

Figure 2.8: AlexNet Model [22].

8 http://www.image-net.org/challenges/LSVRC/2014/

128 204t 2048 dense
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Other Models: There are many other popular architectures in the field of ConvNets like
ZFNet [84], which was the winner of ImageNet competition 2013. Another one is
GooglLeNet [24], which was the winner in that same competition in 2014. In addition,
VGGNet [23] was the second ranked in the same competition in 2014 and they showed that
the deeper a model the better its performance. Finally, ResNet [25] was the winner in the

same competition in 2015.

2.4.3. Recurrent Networks

Many applications have sequences of inputs. For instance, a sequence of words is often
displayed through sentences, where a one-hot vector (i.e. a vector of all zeros except for a
single 1 at the index of the word in a fixed vocabulary) is depicted by each word. A
connectivity pattern, which processes a sequence of vectors {x, ..., x;} using a recurrence
formula of the form h, = fy(h;—1, x;) is referred to as a recurrent neural network RNN [88],
where f is a function which will be explained later. Moreover, every time step uses the same
parameters &, through which we are able to process sequences with an arbitrary number of
vectors [60].

As given in Figure 2.9, mathematically, RNN can be represented by h; = f(Ux; + Wh;_,)
where h; is the hidden state at time step t, f is a function of the input x, weighted by the
weight matrix U with the hidden state of the previous time weighted by the weight matrix
and W. 0, = f(Vh,;) is the output state and weighted by matrix V while Y is the actual value.

Finally, L is the loss function, to compute the disagreement between Y and O.

VRN
[ )

—

¥ AW A

N

i A e < W

% >\x\ <@

Data

Figure 2.9: RNN architecture.
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The main limitation of RNN is a problem known the vanishing and exploding gradient
problem which can occur during the training [97-99]. Where the vanishing gradient problem
occurs when the gradient tends to get smaller as we move backward through the hidden
layers. This means that neurons in the earlier layers learn much more slowly than neurons in
later layers. While the exploding gradient problem occurs when the gradient gets much larger

in earlier layers.

Long Short-Term Memory: The limitations of the basic RNN can be addressed by
designing the LSTM [100]. Figure 2.10 shows the LSTM model.

output

% recurrent
; e N
block output v 24 i Legend
output gate ! Py
LSTM block Yy i ——— unweighted connection
V 7ol ghted connection
peepholes o o oo connection with timeag
- - inpat
- - - . .
recurrent Pid Y branching point
o e _’__....‘_"_,‘
N - d mutliplicaton

[ J
®
R f ¥y
¥ -
cell c "ss recurrent @ sum over all inputs
-~ i,
forget gate . E ;:e' gate acivation function
input & i o {always sigmoid)

zZ : input activation function

input gate %
put g o (usually tanh)

block input output activation function
(usually tanh)

-
LN

. .-
input Tecurrent

Figure 2.10: LSTM architecture [100].

The inputs x; and h,_, interact in a more computationally complex manner due to the nature
of its recurrence formula and multiplicative interactions are involved in this mechanism.
Moreover, additive interactions over time steps are used by the LSTM recurrence, which
efficiently propagate gradients backwards in time [100]. Besides a hidden state vector h;, a
memory vector c; is also maintained by the LSTM. By using explicit gating mechanisms,
the LSTM can perform the functions, such as: select, write to, read from, or reset the cell at
each time step. Figure 2.10 shows one neuron of a LSTM.

In Figure 2.10, the output can be given by yt = 0*Oh(ct) where t is the current time, o is
the output of the output gate, c is the output of the cell state and @ is the point-wise

multiplication of two vectors. The output of the output gate is given by ot = o(W,x* +
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R,y 1 + P,Oct + b,) where x* is the input at time t, y*~1is the previous output, R,is the
peephole weight and b is a bias. The cell state can be given by ¢t = i*Ozt + ftOct~1 where
it is the output of the input gate at time t, z¢is the output of the input to the neuron and f* is
the output of the forget gate. The forget gate can be given by f* = o(Wpx® + Rpy™™' +
PrOct™' + by). The input gate is given by i = o(W;x* + R;y*™' 4+ P,Oc*™! + b;) and
finally, the block input is given by zt = g(W,x* + R,y*~* + b,)[100].

End-To-End Memory Networks: The main goal of memory networks is offering memory
to read and write to it in the long term. The main use of this kind of RNN is that it can read
a story and then answer questions by extracting from the story. The other is as dialog agents.

Figure 2.11 shows an End-to-End memory network, as presented in [101].
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/ A
o||———— Z‘\’—" W Answer/ f"’} a
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1
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Figure 2.11: End-To-End Memory Networks. (a): A single layer. (b): A multiple layer.

In the Figure 2.11 (a), the single layer contains two parts, the memory module where the
story is read, then saved in memory; and the controller module used to address and read
between questions and the memory. Every input sentences x; is embedded twice m; and c;.
In a question and answering problem, the story will be embedded in the memory module and
the question will be embedded in the controller module. Assume the story has three sentences
followed by a question: John moved to garden, John went to kitchen, John drops apple.
Where is John?

The representation of this story will be as follows:

First: the input sentences will be embedded to memory vectors in the memory module and

the question in the story will be embedded to the controller as following
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John moved to garden = m: and c1 (» means embedded)
John went to kitchen = m and ¢,
John drops apple = mz and c3
So m1,m2 and m3 will be saved in memory module (Embedding A) and c1,c2
and cz (Embedding C).
where is John = u;
Second: Apply the dot product between the memory vectors mi,mz,ms and controller vector

followed by Softmax to get the attention weights such that:
p; = Softmax(u’m;) = exp(uTml-)/z exp(u’my)
j
Third: compute the weighted sum of the memory vectors using:
0= Z PiCi = P1C1 + P2C2 + P3C3
i

Finally: the output o adds it back to the controller where the actual output (W) is kitchen and

back propagation is used to learn weights.

Figure 2.11 (b) shows multiple layers where it extends the model to handle K hop operations.
In the previous example, the answer kitchen is found is the second sentence that means there
is two hop operations. If the answer is found in the fourth sentence, then there are four hop

operations.

2.4.4. Challenges of Training Neural Networks

Historically, neural networks have been considered to be hard to train, especially if the
networks have more than one layer [102] for many reasons. The first reason is underfitting,
in other words the networks cannot learn complex functions. The reason for this problem
could be that there is not enough data or a vanishing gradient problem. To avoid this problem,
researchers collect more data. The second reason, as aforementioned, is overfitting in the
deep learning field. The reason for overfitting is that the number of parameters is high so the
model learns the noise in the data, which leads to bad generalization. The following are the
most recent popular techniques applied for deep learning in general in addition to the old

techniques like regularization.
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Dropout parameters: There are two popular types of dropout used for training the models
to avoid overfitting.

Firstly, there is the dropout of the hidden neurons [103]. This type of dropout was introduced
by Hinton and his group, contributed to winning the ImageNet competition in 2012 [104].
The idea behind this dropout technique is to remove hidden neurons stochastically by some
probability. In other words, some hidden neurons are set randomly to zero by some
probability. First, some hidden neurons are randomly set to zero with a given probability.
Then, the same step is taken in the next layer and so on. Figure 2.12 (a) shows the neural
networks after applying random dropout regularization.

S~

Figure 2.12: Neural networks (a) after dropout (b) after DropConnection.

Secondly, there is dropout on the connections (weights) and this is called DropConnection
[105]. This uses the same idea as general dropout but instead of randomly setting some
neurons according to a given probability, some connections between layers are removed
randomly with given probability. Figure 2.12 (b) shows neural networks after

DropConnection regularization.

Batch Normalization: To overcome the problem of internal covariate shift®, a smaller
learning rate and vanishing gradient, batch normalization[106] is used. Batch normalization
is a transformation that is applied to the activation neuron over the mini batch input (m).
Batch normalization can be given by the following steps, as cited by loffe & Szegedy [106];

1. The first step is to compute the mean and the variance of the mini batch as:

® Change in the input distribution leads to change in the learning system
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1 1
Up < ;Zﬁl x; and o3 « ;Zﬁﬂxi — up)?
2. The second step involves normalizing the mini batch input as follows:
o Xi — Up
X & ——
Joi+e¢

3. Finally, the normalized mini batch is scaled using learnable parameters (v, B):

yi<vX+p

2.5. Summary

This chapter covered the main concepts behind deep neural networks, as well as the
principles relating supervised learning. Different learning optimization techniques and back
propagation presented in the chapter. In addition, ConvNets and RNNs have present along
with their architectures.
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3. Literature Review

The design of a neural network typically begins by defining its topology, namely the number
of layers, the number of neurons for each of the layers, and how the layers are connected.
The network is then trained which involves experimentation, including determining suitable
hyperparameters, such as the learning rate. As outlined in the introduction to this thesis, deep
learning networks can become huge, and hence several methods have been developed for
reducing their size. This chapter presents a survey of existing algorithms for pruning neural
networks and gives an overview of the other methods of designing efficient the neural

networks.

3.1. Background on Pruning Methods

There are many types of neural networks, such as feed forward neural networks (FNNSs),
convolution neural networks (ConvNets), recurrent neural networks (RNNSs) and recursive
neural networks (RecNN). An important practical question is: What is the size of a FNN,
ConvNets and RNN that leads to optimal performance?

Theoretically Montufar et al. [107] and empirically He et al. [25], Simonyan & Zisserman
[23], Szegedy et al. [24, 108] , Huang et al. [109] show that as a ConvNet gets deeper its
performance gets better even though there might be increased redundancy [29]. Most of the
networks are trained by leveraging high performance parallel architectures such as GPUs
[22, 110], or distributed clusters [74]. These models have a huge number of weights and

neurons, many of which might be unnecessary [29].
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There is an extensive Literature on pruning neural networks (Reed [111] and Augasta &

Kathirvalavakumar [112]). The literature can be divided in two periods:

¢ In late of 80s and 90s, the pruning methods focused on forward neural networks

e Inthe last three years, the pruning methods focus on pruning ConvNets.

The timeline of most related algorithms to our work are shown in Figure 3.1. The first mention

of the importance of pruning neural networks dates to Kruschke [113] until the current days

Wolfe et al [114].

5 988 , 1989 . :
* Local Bottlenecks * Skeletonization + OBS * lrerative Pruning * Channel Level * Pruning Feature * lterative Re-ranking
« OBD Acceleration Map in Transfer * Entropy-based Pruning
* Network Pruning Learning * Deep Face Model
* Pruning Smallest Compression Using
Filters Entropy-based Filter
* Network Trimming Selection

Figure 3.1: A timeline of related algorithms.

These algorithms can be classified based on the type of pruning that they perform which

pruning the weights, neurons, or feature maps (as shown in the first column) and based on the

approach of pruning (as shown in the first row) as be presented in Table 3-1.

Magnitude Activation First order Second order
Weights  Network pruning OBD, OBS
Neurons Local lterative Prunin Skeletonization, Iterative Re-

Bottlenecks g Iterative Re-ranking  ranking

Channel Level Acceleration,
Network Trimming,

Pruning Feature Map in TL,
Entropy-based Pruning,

Deep Face Model Compression
Using Entropy-based Filter
Selection

Feature  Pruning Smallest
maps Filters

Pruning Feature
Map in TL

Table 3-1: Summary of related work.

The following is the description of the methods based on the approach of pruning as they are

discussed in the literature:
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1. Direct methods [111] (also known as brute force pruning [114] or oracle pruning
[115]) where, one by one, a weight, neuron or feature map are set to zero, the
network’s performance measured and then a decision is made to retain or remove
the weight, neuron or feature map.

2. Regularization methods in which a regularization term R(W) is added to the loss

function:

1iL+/1RW
W2, ROV
i=

Where 4 > 0 is a regularization parameter that can be set to a value that reflects the
weight of the regularization. There are many types of regularization [63-67], and two that

have been widely used are the L2 and L1 norms:
L2 norm: R(W) = %ZW w?

Where L2 norm is known as weight decay and is the sum of the squares of all

the weights in the network
L1 norm: R(W) = Y., |w]|.

L1 norm is the sum of the absolute values of the weights:

3. Pruning based on magnitude [63, 116-118], pruning based on the magnitude of the
weights is perhaps the simplest method. The motivation of using this method is that
after training the deep neural networks with regularization, unimportant weights are
pushed to zero. Hanson & Pratt [116] and Chauvin [63] add bias terms to the loss
function to penalize the weights then the weights that are smaller than a predefined

threshold are removed.

4. Activation methods [36, 114, 115, 119-121], removing neurons or feature maps based
on their outputs.

5. First order pruning [122] exploiting information contained in the error gradient for
better adapting neural network structure to the data and for improving its
generalization. After computing back propagation, weights [122-124], neurons [36,
114] or feature maps [115] that have less impact on the error gradient are less
important. Recently, Taylor approximation of the error can be simplified by

eliminating second and higher order to estimate the pruned feature maps [115].
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6. Second order pruning [122]. Second order information in the error can be exploited
to prune insignificant weights [122]. Methods based on the second order partial
derivative for modelling the error by using the Taylor series expansion to estimate the
unimportant weights or neurons [125-128] where the third and higher order terms of

are eliminated.

These methods have been shown to have different merits. The direct methods are of O(NP3),
where P is the number weights, neurons or feature maps and N is the size of the training set,
and hence are considered to be intractable [111, 114, 115] . Collins & Kohli [129] show that
regularization (L1 or L2 norm) may not reduce the weights to zero in neural networks [130].
In addition, Gupta et al. [131] present that regularization method does not actually delete
weights from the network, nor does it typically produce weights that are exactly zero. Weights
that are not essential to the solution decay to zero and can be removed using pruning based
magnitude [131]. Hassibi et al. [126] show that pruning based on magnitude can lead to
pruning important weights. Srinivas & Babu [132] conclude that Taylor expansion methods
have difficulty in pruning deep neural networks and Wolfe et al. [114] have recently shown
that direct methods outperform the pruning method based on second order derivatives, which
in turn are known to be better than the pruning method based on first order derivatives [114].

3.2. Related Work

The following are the related work to the proposed methods classified based on their goal
which prune the weights, neurons, or feature maps. Followed by the other techniques which

use different techniques to make deep neural networks more efficient.

3.2.1. Pruning Weights

Setting one or more connections between two neurons to zero and three different methods

are related to the proposed methods:

3.2.1.1. Optimal Brain Damage

Optimal Brain Damage (OBD), a method developed by LeCun et al. [125], was one of the

oldest methods for reducing the size of neural networks. OBD removes the weights that if
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set to zero would have least effect on the training error. To measure the effect of changing
weights, LeCun et al. [125] used a Taylor series approximation for the change in loss that
would occur if the weights were perturbed. This analysis leads to the need to solve a Hessian
matrix which can be computationally expensive. To reduce this computational cost, LeCun
et al. [125] ignored the off-diagonal values.

For a loss function L(x), the Taylor expansion evaluated at the point a is defined by [115,
122, 125-128]:

1 1 1
L(x) = L(a) + EL’(a)(x —a)+ ZL”(a)(x —a)?+ iL’”(a)(x —a)d+ -

Given the weight w where w € RX and K is the total number of the weights in the model then
a small change on the weight vector w denoted by éw, will cause a change in the loss
function denoted by 8L

0L = L(w + éw) — L(w)

LeCun et al. [125] use the Taylor expansion to derive the following equation for the change
in loss when the weights are perturbed:

OL =Y, gi6w; + %Zihii5wi2 + %Zi;ﬁj hijéwisw; + 0(||6W]|) (31)
2
Where g; = % and h;j = ﬁ. The second order derivatives, h;; can be presented in
i i Jj

the form of a matrix H that is known as a Hessian matrix [125].

OBD makes some assumptions to the Equation 3.1.

First, computing the optimal H is computationally expensive [125, 132, 133] as it needs to
calculate the second derivative of all the weights. Hence, they introduce diagonal
approximation, which means there are no cross correlations between the perturbations of
multiple weights. The off-diagonal terms in Equation 3.1 will set to zero (which is the third
term in the Equation 3.1). In other words, OBD assumes that the change in loss, 6L, is caused
only by each weight individually.

Second, it assumes that the loss L is approximately quadratic and can be safely approximated

by a second order Taylor Series. That is, the last term in Equation 3.1 is assumed to be zero.
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Finally, OBD’s equation assumes that the first term in Equation 3.1 can be set to zero given
the network can be expected to be trained to reach a local minimum. After these assumptions

Equation 3.1 is approximated by:
8L =2 %; hySw? (3.2)

In Equation 3.2, §L shows how the loss changes with respect to perturbations of the weight
vector. The §L relies on the diagonal terms of the Hessian matrix, given by:

B 0L 0°L
= ow;; = da;

Where x; is the state of neuron i, a; its total input (weighted sum).
Thus, based on Equation 3.2, the extent to which a weight effects the loss (i.e., the saliency)
IS given by:
Sk = hywit /2
Where s, is the saliency of the weights w,
Finally, the weights are put in order and those with the lowest saliency are removed and the

network retrained.

3.2.1.2. Optimal Brain Surgeon

Optimal Brain Surgeon (OBS) is a method due to Hassibi et al. [126-128] in which the
Hessian matrix that results from the analysis for OBD is solved without making the
assumption that the off-diagonal elements can be ignored. The other assumptions, such as
ignoring higher order terms and the first term of Equation 3.1 are also assumed in OBS. That
is, Equation 3.1 is rewritten to:

8L =-5w".H.6w (3.3)

2
Where H = 2 LZ

aw?
Equation 3.3 leads to the following measure of saliency for a weight w, [126-128] that is

analogous to the one used for OBD:
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Both OBD and OBS are known to be very slow as they are based on computing the Hessian
matrix [132].

3.2.1.3. Network Pruning

Network Pruning methods [134] remove weights that are below a user specified threshold
value and then retrain the network. Before retraining, they improve dropout (as pruning
already reduced the networks capacity, the retraining dropout ratio needs to be smaller [134,
135] giving the same training data set) by a ratio of the square root of the number of

connections after pruning to the number of connections before pruning as given by:

Where D, and D, is dropout after and before pruning respectively, C;,- and C;, are the
number of links in layers after and before retraining respectively. To find the unnecessary
weights, greedy method is used.

This approach to pruning is adopted for a number of different types of neural networks. For
instance See et al. [136] and Narang et al. [137] also use thresholds to prune RNN and Han
et al. [138, 139] use this method to compress ConvNets and LSTM respectively.

Network Pruning using thresholds is a simple to adopt, however, Srinivas & Babu [132]
have found that it can result in the removal of weights that are important.

3.2.2. Pruning Neurons

Pruning neurons includes pruning all the connection from and into the neurons which is more
efficient than pruning weights. There are four different methods for pruning neurons that are
related to the proposed methods in the thesis.

3.2.2.1. Local Bottlenecks

Local Bottlenecks is a method in which the hidden neurons compete with each other to
survive [113]. Magnitudes of vectors determine the degree to which a neuron affects

the loss function. The gain is a new parameter inside the activation of a neuron to
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indicate how much a neuron participates in representing the input. It needs special
back propagation which is called back propagation with adaptive gains [113].

When the gain of a neuron is zero, it contributes only a bias term to upcoming layers and
no error to back propagate and it is safe to be removed. In case two neurons have parallel or
anti-parallel weight vectors, they are redundant and can be removed as well. The gain for

neuron i from a neuron j (in the same layer) can be obtained from Equation 3.4 as:
897 = =y Lj=iW, WY g} (3.4)

Where y is a small positive constant such as 0.001, w/is the unit vector in the direction w;},
the operation (., .) represents the inner product, and the superscript p is the pattern. If neuron
I has weights parallel to those of neuron j, then the gain of each will decline in ratio to the
gain of the other and the one with the lesser gain will be directed to zero faster. Since the

gains should not be negative, this regulation can only decline them [111].

3.2.2.2. Skeletonization

Skeletonization is a method for pruning networks that was proposed by Mozer & Smolensky
[36]. As with the other methods, they seek to assess the relevance, p;, of a neuron by
considering what happens if the neuron is removed:

They introduce a new concept, which is called attentional strength o, which is responsible
for determining whether a neuron should be removed. When «;, the attentional strength at
neuron i, is equal to zero then neuron i has no effect on the rest of the model and when it is
equal to 1 it works like a conventional neuron. That is the output of a neuron j is defined by
oj = f(X;wj;a;0;) Where wy; is the weight between neurons i and j, f is a nonlinear function,
«; are not actual parameters of the system but represent attentional strength.

The relevance of a neuron, p;, is computed using:

oL

pi = Lai=0 - LO_’L'=1 ~ = aa IO_’L'=1

L

where L - is the loss when a; = 0 (i.e., the same setting the neuron to zero) and Lg,—4 is

the loss when the a; = 1 (i.e., the neuron behaves normally).
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Mozer & Smolensky [36] compute the derivative p; during the training process with a
procedure similar to back propagation but observed that the measure can change
dramatically from one training cycle (t) to the next (t+1), and they therefore introduce the

following weighted measure, p, which produces better estimates as:

OL(t
p,(t+ 1) =0.8p,(t) + 0.2 L
aai

It is worth observing that this method is based on first order derivatives and that other
methods based on first-order derivatives have some limitations when compared to second

order derivatives and the direct method [114].

3.2.2.3. Iterative Pruning

The lIterative Pruning algorithm, developed by Castellano et al. [140], removes a hidden
neuron and then adjusts the weights of the network using a method known as the conjugate
gradient preconditioned normal equation (CGPCNE) [141].
Castellano et al. [92] define two groups of neurons which they term as the projection and
receptive fields. Given, a neural network N = (V, E,w) where V is set of neurons, which is
divided into V,, Vy, V,, for input neurons, hidden neurons, and output neurons respectively,
and E < VXV is the set of connections where each connection (i,j) is associated with weight
w;; € R ; foreach neuron i € V, they define the projection field P; and receptive field R; by:
P =1[j € V|(j,i) € E]
Ri =1[j €VI|(i)) € E]
In other words, they group the neurons that are connected to the removed neuron into two
fields. First, the projection field which has the neurons that their output connect as input to
the removed neuron. Second, the receptive field which holds the neurons that have one of
their input’s connections is the removed neuron’s output.
The network is assumed to be trained on M training examples such that:

Given these definitions, the iterative pruning algorithm, selects a hidden neuron h as follows:
h = argminpey, Liep, Wiil|Vnl13 (3.5)

¥» change in the output and p, is projection hidden field. Then remove the neuron and adjust
its weights in P; and R; using CGPCNE.
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Castellano & Fanelli [142] use the same method for feature selection by applying the method
to prune the input neurons instead of the hidden neurons. Fangju [143] uses the Generalized
Inverse Matrix [144] algorithm instead of the CGPCNE algorithm for updating the

remaining weights.

3.2.2.4. Iterative Re-ranking

Wolfe et al. [114] investigate two different methods for pruning neurons from neural
networks with two hidden layers that are trained on the MNIST data. The methods are based
on the change of the error using the Taylor series expansion up to the second order as given
in 3.1, but the parameters here are neurons instead on weights. The change in the error of k™"
neuron from Equation 3.1 given by:

oL 0%L
'%|0k+0'5'0£'ﬁ|0k (3.6)

512 = -0,
Where L is the loss and Oy, is the output at neuron k.
The first method is based on computing 8LZ using second order back propagation, then
ranking this change and selecting all those below a fixed threshold.
The second method is based on a greedy algorithm. It computes SLi. for each neuron and
then prunes the one that has the least value. It then performs forward and back propagation
to compute SLZ to remove another neuron with the least value and repeats the process until
some stopping criterion is met (such as the maximum number of neurons to remove,
percentage scaling needed or maximum allowable accuracy [114]). This method is
computationally more expensive but considers the dependencies the neurons might have on
one another which would lead to a change in error contribution every time a dependent
neuron is removed.
However, this method shows that the brute force pruning is the optimal method for pruning
neural network and we believe pruning based MAB is the best to mimic the brute force
pruning. This method is limited to special nonlinearity functions like sigmoid and tanh where
the second order derivative can be computed. However, modern deep learning frameworks
use the ReLU activation function which has approximately zero value at second order

derivative.
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3.2.3. Pruning Feature Maps

In ConvNets, pruning the feature map improves the inference time and reduces the size of

the model. This section describes five methods for pruning feature maps.

3.2.3.1. Channel Level Acceleration

Polyak & Wolf [119] propose an activation-based feature map pruning method which
removes the feature maps with weak activation patterns and their corresponding filters. The
key idea in this approach is to consider the low variance in the outputs of feature maps as an
indication that a feature map is weak. A feature map X;,,; € RWi+1%hi+1 s generated by
applying a filter F; ; € R"***¥ to feature maps of the previous layer X; € R"*Wi*hi | for
instance, X;,1; = F; jxXX;. Given N randomly selected images {x7' N_, from the training
data set, the statistics of each feature map can be estimated with one epoch forward pass of
the N sampled data [119].

N
Guar-t,(Xis1) = var ({Ix2all,} ) (37)

Ovar—1, (Xl-+1,j) is the contribution variance of channel criterion, which is motivated by the
intuition that an unimportant feature map has almost similar outputs for the whole training
data set and acts like an added bias [119]. Then this feature map (weak feature map) is

pruned.

3.2.3.2. Network Trimming

Hu et al. [120] prune weak feature maps based on the mean zero activation instead of the
variance in Polyak & Wolf [119] method. Hu et al. [96] define Average Percentage of Zeros
(APoZ) to measure the percentage of zero activations of a neuron after the ReLU mapping.

The APoZ of the ¢ neuron in i*" layer is defined as:

N ®
@\ _ Zk Xjf(0;(k)=0)
Apoz(0{") ===l (3.8)
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OS) denotes the output of ¢ channel in i layer. A given filter is drawn across the entire
previous layer, moved one or more pixel(s) at a time. Each position results in an activation

of the neuron and the output is collected in the feature map. Then, OS]) will be tested across

the dimension of output feature map of OED where the function fis 1 or 0 and N denotes the
total number of examples. In their experiments, the number of examples is chosen to be

50,000 images from ImageNet.

3.2.3.3. Entropy-Based Pruning

Instead of determing a weak feature map based on the mean [120] or the variacne [119] of
its output, Luo & Wu [121] propose an entropy-based metric to evaluate the importance of
each filter. In their filter pruning scenario, if a feature map contains less information, its
corresponding filter is less important, thus could be pruned. To compute the entropy value
of a particular feature map, Luo & Wu [121] first divide it into m different bins, and calculate

the probability of each bin. Finally, the entropy can be calculated as follows:
Hj = — X%, pilog p; (3.9)

Where, p; is the probability of bin i, H; is the entropy of feature map j. Han et al. [145]

experiment the same method to prune networks given more data sets.

3.2.3.4. Pruning Feature Map in Transfer Learning

Molchanov et al. [115] introduce a method for pruning filters from ConvNets that relies on
the first order Taylor expansion of the absolute change in the loss function. In every pruning
iteration, one feature map is removed then the model’s parameters are adjusted given one
training example. More precisely:

|6L(hy)| = |L(D, h; = 0) — L(D, hy)|
Where 8L (h;) is the change of loss function, L(D, h;) the loss function before removing the
feature map (set the output to zero) and L(D, h; = 0) the loss function when the output is set
to zero (h; = 0).
According to the Taylor polynomial near h; = 0:
oL

l

hi + Rl(hi = O)
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The higher order (R,) is eliminated as the widely-used ReL U activation function has almost
zero output in second order partial derivative. Finally, Molchanov et al. [115] obtain the

following measure for deciding which feature map, h; should be removed:
]
18L(ho) = |5 (3.10)

A potential weakness of this method is that pruning a feature map based on one example

(greedy method) is not resistant to noise.

3.2.3.5. Pruning Smallest Filters

Hao Li et al. [146] remove the filters that have the smallest absolute sum among the filters
in a convolution layer in ConvNet to reduce FLOPS (floating-point operations). Let n;denote
the number of input feature maps for the i convolutional layer, h; is the height of the input
feature maps and w; is the width. x; € R™>"*Wi gre the input feature maps and x;,; €
R"+1%hi+1XWits js the output. This is achieved by applying n;.,3D filters F; ; € R™***¥ on
n; 2D kernels K € R¥*%_ All filters together, constitute a matrix F; € R%*"i+1XkxXk  The
operations of the convolutional layer are n;,; Xn;xk?Xh;.;xXw;,,. Finally, remove filter

F; j and its corresponding feature map x;,, ; [146].

Finally, pruning based on magnitude where this method laid down is simple but has
drawback of eliminated effective weighs [115, 126-128].

3.3.  Summary of other Methods for Pruning

There are many other methods that aim to reduce the size of deep neural networks or speed
up the inference time. This subsection presents some bibliographic remarks about these other

methods.

Srinivas & Babu [132] propose a method that prunes a neuron if it has similar weights with
another neuron in the same layer and then adjusts the remaining weights. In addition, the
following methods are orthogonal with the methods proposed in the thesis and can be used
with the proposed methods [138]. Collins & Kohli [129] develop a method that investigates
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the use of sparsity inducing regularizes to reduce the number of non-zero weights during
training of Convolution Neural Networks. Chen et al. [147] introduce HashedNets to
compress the deep model. HashedNets uses a hash function to reduce model size by
randomly grouping network connections into hash buckets uniformly, such that connections
in a hash bucket use a single parameter value. Chen et al. [148] develop FreshNets that
converts weights to the frequency domain then use HashedNets to randomly group frequency
parameters into hash buckets. Sainath et al. [149] use a low rank approximation to fully
connect layers at training mode to reduce the number of parameters. They replace the fully
connected layer with a linear layer that has a small number of hidden neurons. Xue et al.
[150] use low-rank factorizations with singular value decomposition after training the model.

Gong et al. [151] use vector quantization to compress the network.

Denton et al. [152] use singular value decomposition to reduce the size of pretrained
ConvNets. landola et al. [153] develop SqueezeNet, which aims to achieve the same
performance as AlexNet but with a smaller model to reduce the training time in the ImageNet

data set.

To speed up the deployment time for the ConvNets, Denton et al. [152] exploit the linear
structure of ConvNets and compress each layer individually by slightly deteriorating the
performance of the original model. Jaderberg et al. [154] introduce exploiting low-rank
decompositions of convolutional tensors to speed up the evaluation of ConvNets. Zhang et
al. [155] develop networks with a set of low-rank filters in each layer. This was built after
training a network without this constraint, where the simpler network was selected to

approximate the original full rank network.

To reduce the time of training ConvNets, Hongsheng et al. [156] develop an algorithm using
the sparse convolution method to perform learning of ConvNets for pixel wise classification
of images. Lebedev et al. [157] decrease deployment time by using cp decomposition to
compress a 4d convolution filter and decomposing it to many layers of low complexity.
Vincent et al. [158] present a linear algebraic trick for computing both the value and the
gradient update for a loss function that compares a very high-dimensional target with a
(dense) output prediction. Mathieu et al. [159], Highlander & Rodriguez [160], Rippel et al.
[161] and Pratt et al. [162] use Fourier transform for reducing the training computation time

on ConvNets. This result can be used to quickly compute convolutions in the Fourier
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domain, since an elementwise product is much less computationally intensive than a

convolution [159].

3.4.

Summary

This chapter has presented several pruning methods. These methods were categorised into

several groups based the way of pruning.

1.

Direct methods where, one by one, a weight, neuron or feature map are set to zero,
the network’s performance measured and then a decision is made to retain or remove
the weight, neuron or feature map.

Regularization methods in which a regularization term is added to the loss function.
Pruning based on magnitude, which is based on the magnitude of the weights and is
perhaps the simplest method. The motivation of using this method is that after training
the deep neural networks with regularization, unimportant weights are pushed towards

zero.
Activation methods, which remove neurons or feature maps based on their outputs.

First and second order pruning, which exploit information contained in the error
gradient for better adapting neural network structure to the data and for improving

generalization.

Pruning can be applied to reduce the number of weights, neurons or feature maps. Chapter

5,6 and 7 uses some of these methods to compare the results relative to the new MAB based

methods developed in this thesis.
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4. Multi-Armed Bandit

As motivated in the previous chapters, pruning neural networks involves a trade-off between
the amount of pruning and the accuracy. Historically, Arrow et al. [163] was among the first
to recognize the importance of developing a theory that supported decision making for the
important trade-off between exploration and exploitation. This was followed by the seminal
work of Lai & Robbins, [43, 164] in which they proved a lower bound for the regret of the
finite-armed, multi-armed bandit problem. Since then, there has been significant research on

developing algorithms that aim to achieve the lower bound.

The term multi-armed bandits refer to a framework that is based on modelling a gambler
who faces a collection of slot machines and needs to select which machines to play in order
to maximize the returns. Prior to each pull, the gambler will know the expected return or
payoff, based on the previous history of pulls and will be able to use this to decide whether

to exploit the best arm or explore other arms with the hope of gaining a greater reward.

This chapter summarises multi-arm bandit algorithms. Section 4.1 introduces the notation,
Section 4.2 describes the algorithms and readers are referred to [165-167] for more complete
and comprehensive accounts of the theory associated with the convergence properties of
multi-arm bandits [165].

4.1. Notation

This section introduces the notation which will be used with multi-armed bandit in the rest
of the thesis. The notation used is based on Burtini et al.[165] and Galichet [168]:
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e K denotes the number of arms, machines, or options K € N* in other word K =
{2,3,..};

e v, denotes the (unknown) bounded reward distribution associated with the it arm;

e u; denotes the expectation of v; (u; = E[v;]);

e u* is the maximum expectation taken over all arms (u* = max Ui);
1=1...

e &, is the optimality gap of the " arm (8; = u* — w;);

e T denotes the time horizon (T € N*), which might be finite or infinite;

e tdenotes the current time step;

e a, isthe arm selected at time ¢;

e X, is the t" selected reward drawn from distribution v;;

* X, isthe reward obtained at time t. Every arm has its own unknown reward at time
t so when the arm is selected, for example arm a, then X; ; = X,  but we do not
know the reward for the other arms;

e n; is the number of times the i arm has been selected up to time t (n; = Y%, Ig,_.)
where I,,_. = 1when a; is chosen otherwise is zero (it counts the number of times

arm a, is chosen during the time t).

The goal of multi-armed bandits is to maximise the reward over the time horizon. The
maximum cumulative reward (gain or payoff) gathered along time H is defined by

YL, Xq,t- Maximizing the agent’s total reward is equivalent to minimizing its total regret

compared to the oracle (optimal) strategy which define by ,;n{laalc(} Y X; Then, cumulative
l

regret R of the agent at time t is defined by

R = l,gn{lCll“?IC{}Z?ﬂ Xit — Z?=1 Xat,t (41)

where the goal is minimizing the regret.

There are three broad categories of multi-armed bandits: (i) problems where the aim is to
pull one arm at a time and maximize the total reward given a number of pulls and the world
is stationary; (ii) adversarial problems where the goal is to play one arm at a time and
maximize the total reward given a number of pulls and given the world is not stationary (iii)

multi-play problems where the aim is to pull multiple arms at a time and maximize the total
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reward given a number of pulls and the world is stationary. The following subsections
describe algorithms in these categories.

4.2. Sequential Multi-Armed Bandits

There are five types of multi-armed bandit algorithms that have been proposed: random
explorations [169], optimistic explorations [170], and Bayesian algorithms [171, 172]. The

following subsections describe and present the algorithms that are utilized in this thesis.

4.2.1. Random Explorations

In random explorations [169], arms are pulled randomly, expected returns calculated and a
strategy for deciding when to exploit the best arm or explore other arms is employed.

4.21.1. Random Selection Algorithm

In this technique, the next arm a;, is chosen randomly from the arms space. The main
drawback of this method is that there is no guarantee the arm being chosen is the right arm

that needs to be play.

4.2.1.2. Greedy Algorithm

The simplest approach to the MAB problem is to select arms randomly for a number of times
(exploration), compute the average rewards and then select the best arm repeatedly
(exploitation):

Qryy = arg, gn{lq;;(}[ui] (42)
Where p; is the empirical mean reward of i arm and time t.
One drawback of this method is it could lead to a suboptimal arm being selected. In other

words, there might be a better arm if the initial random exploration has not been long enough.
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4.2.1.3. Epsilon-Greedy Algorithm

One common random exploration algorithm, known as e-greedy [173-175] pulls (i.e.
exploits) the current best arm with a probability 7/—¢, and otherwise pull another arm
randomly (i.e., explore). More formally, the Epsilon-greedy algorithm selects the next arm

at+1 as follows:

arg max[u: (1), u:(2), ..., us (k)] , with probability 1 — ¢
select an arm randomly from {1..k}, with probability &

(4.3)

A1 = {

Where there are k arms, and p, (i) denotes the current average reward.
Selecting a suitable ¢ for this algorithm can be challenging. where if ¢ is large then, the
algorithm will waste many playing pulling random arms without gaining much while if ¢ is

too small, then the learning will be slow [165]. Hence some authors have proposed a strategy

1

of decaying ¢ over time [175]. For example, White [176] proposes decaying ¢ by Toe o)

where ¢ is very small number and t is the round or number of plays to date.

4.2.1.4. Win-Stay, Lose-Shift Algorithm

Another technique, known as the Win-Stay, Lose-Shift (WSLS) heuristic is recognized as
one of the most simplified models with which bandit problem decision-making can be done
[177, 178]. The WSLS algorithm is based on pursuit methods [55] and changes the
probability of the choosing an arm over time depending on whether it is selected or not in
the current round. If the current arm is selected (i.e., wins), then it makes the probability
stronger otherwise makes it weaker. More formally, let P, (a) be the probability of choosing

arm a at time t, then the update equations are:

_ (P(@) + (1 — Pr(a)), if ais winning
Freala) = { Pi(a) — BP(a), otherwise (+4)

Where f is a scaling parameter for rewarding the winner or penalizing the loser.
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4.2.1.5. Softmax Algorithm

The Softmax algorithm [174] uses the Gibbs (Boltzmann) distribution to estimate the
probability for each arm based on the rewards for each arm. Arms that have a higher expected

payoff will have a higher probability to be selected and P; is given by:

Ki
P, =expt /Y- expt (4.5)

Where T € R* is temperature and experiments are carried out to discover the value of 7.
When T is large, the model works like random selection and when it is small, it gives greater
priority to those arms that have a higher mean value. Like, Epsilon-greedy, T can be constant

or decay over time.

4.2.2. Optimistic Explorations

As mentioned above, prior to pulling the next arm, the gambler will know the expected
reward for each arm based on its history of previous lever pulls. A simple approach to
selecting the next arm is to use the arm with the largest reward. However, this ignores the
fact that the early estimates of the reward may be inaccurate. Thus, the main idea for
optimistic exploration is to maintain confidence bounds on the expected rewards and to
select the arm with the largest upper bound, ensuring there is sufficient exploration at the
start, but also maximize exploitation given that the bounds tighten as the number of lever
pulls increase. Multi-armed bandit methods that adopt this optimistic approach are known
as Upper Confidence Bound (UCB) algorithms [164, 175], More formally, UCB algorithms

aim to select the next arm, a; as follows:

aryq = argmax(y; + Pr,) (4.6)
ie{1..K}

Where y; is the expected reward for arm a; and Py is a padding function that is used to

provide an upper bound for the reward for the arm.
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4.2.2.1. UCBL1 Algorithm

One of the earliest and most widely cited UCB algorithm is known as UCB1, which uses the

following selection function:

Geer = argmax (u + |00 (4.7)
ie{1..K} i

Where n; is the number of times arm a has been chosen and t is the total number of rounds.
UCB1 begins by playing each arm once to create an initial estimate. Then, for each iteration
t, arm a is selected using Equation 4.7. Initially, when arms have only been pulled a few
times, the padding function in Equation 4.7 allows exploration, but as the number of rounds,
t, increases and the number of times arms are played increases, the padding function reduces,

leading to greater exploitation of the arm that returns the largest reward

4.2.2.2. KL-UCB Algorithm

KL-UCB [179] presents an alternative approach where the padding function is derived from
the Kullback-Leibler (KL) divergence measure, leading to a selection function where the next

arm to pull is given by:

aryq = argmax (Q (1))
ie{1..K}

Q) = max{q € [, 1]+ d(u;, q) < 2L relostios)) (48)
q

ng

Where d is the Kullback-Leibler divergence measure and c is constant. Kullback & Leibler
[180], Garivier & Cappé [181] defines the Kullback-Leibler divergence with the Bernoulli
distribution d(p, q) as:

d(p,q) = plog %+ (1 ~ p)log (=) (4.9)

Where, 0log0 = 0, Olog% = 0 and xlog% = 400 for x>0.
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4.2.3. Bayesian Bandits

In the Bayesian approach, the reward from each arm is represented by a probability
distribution that is updated in a Bayesian fashion. If P(R) is the prior probability of a reward,
then the goal is to compute a posterior distribution P(R|h;) where h; is the history of
rewards and actions. Two different Bayesian bandit algorithms, namely Thompson Sampling

and BayesUCB are described below.

4.2.3.1. Thompson Sampling Algorithm

One of the first algorithms that adopted a Bayesian approach was Thompson Sampling [41].
Given s,, the number of times an arm results in a reward and, f;, the number of times an
arm fails to deliver a reward, the probability distribution for the arm is defined by the beta
distribution [171, 172]:

(1- x)ﬁ_lx“‘l

PO =5 wp

Where a is set to s, + 1 and Bis setto f, + 1.

4.2.3.2. BayesUCB Algorithm

In a more recent development that uses a Bayesian approach, Kaufmann et al. [182] propose
an algorithm BayesUCB, in which the quantiles of a distribution are estimated to

increasingly tight bounds and used to determine the next step:

Ger = argmax qi(t) = QUL — 3,4 (410)

Where Q is a quantile function for a distribution A at the « level and is defined by:

Q(o,A) such that P(X<Q(a,1)) =«
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4.2.4. Adversarial Bandits

Another form of the multi-armed bandit problem is called the adversarial bandit. In this form,
at each iteration an agent chooses an arm and an adversary simultaneously chooses the
reward structure for each arm. This is one of the strongest generalizations of the bandit
problem [165] as it removes all assumptions of the distribution and a solution to the
adversarial bandit problem is a generalized solution to the more specific bandit problems
[165]%°. There are two kinds of adversarial bandit algorithms studied in the thesis and they

are explained in the following subsections.

4.24.1. Hedge Algorithm

There are different variations of the Hedge algorithm [183] in the literature [184-186] and
the version used in this thesis focuses on maximising rewards, and hence is presented in this

section.

. wi®
P, = Toowi® (4.11)
wi(t + 1) = w;(t)(1 + €)Pi® (4.12)

The arm is chosen with probability proportional to the weights P;, p;(t) is the current reward

of the chosen arm and e is very small number.

4.2.4.2. EXP3 Algorithm

The EXP3 (the exponential-weight algorithm for exploration and exploitation) algorithm
[170, 175, 187, 188] is based on the Hedge algorithm.
The parameter v is called the exploration rate and sets how much the algorithm will explore

the action space. Where y & [0, 1] but the standard setting is y = 0.1 [170, 189] which means

10 https://en.wikipedia.org/wiki/Multi-armed_bandit#cite_ref-40
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10% of exploration. After the arm a is played and the reward p, is given to the arm, its

weight is updated using:

Pa

Y.
War = Wgi—q.e PatX (4.13)

In this expression, the w, , is known as the arm a with particular weight and t is the time and

P is the selection criteria. In each iteration, the probability of each specific arm to play next

is given by:
_ _ Wit 1
Par = A =Yg —+¥-5 (414
4.2.5. Bandits with Multiple Plays

A new kind of problems is bandits with multiple plays where at each time t the policy
chooses m arms. Examples applications where multiple play bandits can be useful include
recommender systems and online advertising environments where several options need to
be presented at the same time such as showing numerous advertisements on a single page or

offering multiple product suggestions.

4.25.1. Thompson Sampling and Multiple Play Algorithm

An extended version of Thompson Sampling with binary rewards known as MP-TS
(multiple play Thompson Sampling) is introduced by Komiyama et al. [190]. The adopt
Thompson Sampling in which the sampling process provides the top m arms in each iteration
instead of top 1.

An example application of multiple play bandits is presented by Burtini et al. [165], who use

it to decide which products to display in an online advertising environment.

4.25.2. UCB1 and Multiple Play Algorithm

We extend the version of UCB1 to play multiple k arms at the same time in one play time
and it is called MP-UCB1 (influenced by naming MP-TS). Instead of choosing the max arm
in Equation 4.7, the policy will choose the best m arms from the list of all K arms.
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4.3. Summary

This chapter has presented several multi-arm bandit algorithms. These algorithms were
categorised into five categories based the way of exploring. Table 4-1 summarises the main
algorithms and Their main characteristics are:

e Random exploration: This part includes some greedy, Softmax and WSLS MAB
algorithms. After introducing a greedy method, some methods achieving an
exploitation / exploration trade-off are presented and discussed.

e Optimistic: This section is devoted to the presentation of optimistic algorithms,
which proceed by maintaining a confidence region for each arm expected payoff.

e Bayesian algorithms include the Thompson Sampling algorithms, introduced by
Thompson [41] simultaneously to the Multi-Armed Bandit problem. They have since
been extensively studied [182].

e Adversarial bandit. When the reward over the arm is not stochastic and changed over
the time then this method works by maintaining a list of weights for each arm to
perform. Using these weights, it decides randomly which arm to take next and
increases/decreases the relevant weights when a payoff is good or bad. EXP3 and
Hedge algorithm were discussed to represent the adversarial bandit.

e Multi-Play. Instead of playing one arm at one trail, these algorithms play multiple

arms at one time in one trail. In this chapter, two algorithms were discussed.

Chapter 5,6,7 and 8 utilises these multi-armed bandits for developing algorithms for pruning

neural networks.
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Algorithm Environment  Explore New Arm  No. of ARMS Regret
¢ greedy (Decay) Stochastic Random Single Bound
Softmax (Decay) Stochastic Probability Single Bound

WSLS Stochastic Probability Single Bound

UCB1 Stochastic Optimistic Single Bound
KL-UCB Stochastic Optimistic Single Bound
Bayesian UCB Stochastic Bayesian Single binary
Thompson Sampling Stochastic Bayesian Single binary
Hedge Adversarial Probability Single Normal

EXP3 Adversarial  Random/ Probability Single Bound
MP-TS Stochastic Bayesian Multiple Binary
MP-UCB1 Stochastic Optimistic Multiple Bound

Table 4-1: A comparison between multi-armed bandit algorithms.

61



Chapter 5: Multi-Armed Bandit for Pruning Weights 62

5. Multi-Armed Bandit for Pruning
Weights

This chapter introduces seven different MAB pruning algorithms to prune the weights of
trained neural networks. The algorithms are implemented and their performance compared
with the four existing algorithms: OBD, OBS, Random Pruning and Network Pruning. The
comparison is based on developing neural networks for a selection of data sets from the UCI
repository followed by application of the different pruning methods. The chapter is
organized as follows: Section 5.1 presents the new MAB based pruning algorithms together
with illustrative examples, Section 5.2 presents the results of an empirical evaluation, and

Section 5.3 summarizes the chapter.

5.1. Architecture of MAB Pruning method

Figure 5.1 illustrates the key idea behind using MABs for pruning deep networks. A deep
network is depicted at the top of the figure with numerous weights. Each weight is considered
as a single arm, and when an arm is pulled (weight set to zero), it results in a reward. The
reward is defined as the difference between the performance of the network before and after
removing the weight based on applying the network on a random sample of the data. The arm
(weight) selected together with the improvement become part of the history which is then

used to select the next weight and the process repeated for a fixed number of rounds.
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The reward function used varies depending on the type of bandit algorithm used. For UCB1,
Epsilon-Greedy, KL-UCB and WSLS the reward is computed by first calculating the

difference in the loss function AL and then computing the reward, X, ;:

SL = L(D|W) — L(D|W")

max(0,Threshold+65L)
Xat,t =

constant (51)
Where L is the loss when the network is applied on example of the data D, W denotes the
weights, and W' the weights after pruning. This definition of threshold determines how much
loss in the performance is allowed when pruning any weight. For example, suppose pruning
results in a slightly worse performance, resulting in §L = -0.05(say), then a threshold of 0.1,

would still result in a reward.

For example, if the performance of the model before and after pruning is the same then,
ma x(0, Threshold + §L) = ma x(0, Threshold). That is, if the performance does not

change, and the Threshold is positive, the reward will be Threshold.

The divisor Constant is defined in a way that ensures that the reward is bounded between

zero and one. One possible way for choosing it is

Constant = max expected per formance — (The cunrrent performance

+ Threshold)

On the other hands, Thompson Sampling and BayesUCB algorithms assume Bernoulli

rewards?, and hence in this work the reward is 1 if SL is larger than zero and zero otherwise.

11 Rewards 0 and 1 are referred to as a success and a failure, respectively
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Pull on Arm at the time

Remove the weights with higher
Reward

Figure 5.1: Block diagram shows the MAB to prune the weights.

The MAB based pruning algorithm, reflecting the process outlined earlier, is presented in.
5.2, where Step 3 would involve invoking the specific MAB algorithm, such as UCB, KL-

UCB, BayesUCB and Thompson Sampling that were described in Chapter 4 and will discuss
in this chapter.
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Algorithm 5.1 MAB Algorithm for pruning the weights

INPUT: Time horizon T, Trained network, Input layer 1 to be pruned.
OUTPUT: Pruned network
Let  wj; be the weight connection between two neurons j and i
Let Xji,c be the current reward of this arm/weight which equivalent to X, . where the arm a is
denoted by the connection between the neurons j and i.
Let j; be the cumulative average reward of this arm/weight, initialized to zero
Let D the random sample/example from training data set
Let L(D|W) The loss function before pruning the weight
Let L(D|W") The loss function after pruning the weight
Let Threshold how much loss or gain in the performance is allowed
Let K is the number of weights in the chosen layer which equivalent to JI where ] is the total
number of neurons in previous layer and I is the total number of neurons in the current layer.
Let ny; is the total current play time for the wy;.
Let S;; is the success and Fj; is the failure, both initialized to zero
fort=1to T do /* start playing */
2. D = random example of the training data

if anymn; =0 then choose the current index j,i /* Pull each weight at least once */
3. else Call the relevant MAB algorithm, returning the index of the selected weight:

j,i = MAB(* arg)

=

4, Perform forward propagation on D to compute L(D|W)
5. Hold the value of the selected weight, temp = wy;
6. Set the weight to zero w;; = 0
7. Perform forward propagation on D to compute L(D|W")
8. Set the value of the weight to previous value, w;; = temp
9. SL =L(D|W) - L(D|W")
10 Xji+ = REWARD(SL)

Update the cumulative average reward of the current arm
11 _

Kjierr = (Mjie — V) /my > pjie + 1/ny; * Xy

12 end for

13 PrunedModel = PrunedFunction(model, 1)
14 end main program

15 Function PrunedFunction(model, rewards)

16 Set to zero the weights that have most rewards
17 return PrunedModel
18 end Function

19 Function REWARD(SL)

20 if (bounded reward) then /* For example, reward for UCB1, */
21 Reward+= max(0, 5L + Threshold) /Constant
22 else /* Reward for Thompson Sampling and BayesUCB */

23 if 6L < 0 then reward=0, Fj; ;11 = Fje +1

24 elsereward=1, Sj; ;1 = Sj; + 1

25 end if

26 end if

27 end Function

Figure 5.2: The generic algorithm of a MAB pruning the weighs.
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Example: To illustrate the idea behind different MAB algorithms for pruning weights, a
small neural network model with two inputs, one hidden layer with eight neurons, and two
outputs was created and trained using synthetic data’? consisting of the 1000 examples
shown in Figure 5.3. The network was trained with 100 epochs and logistic loss function to
get accuracy of 84% on training data set.
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Figure 5.3: Synthetic data for purpose of explaining MAB pruning algorithms.

The following subsections describe the different MAB based pruning algorithms and use

this example to illustrate the different algorithms,

5.1.1. Direct Method

The direct method [111] works by removing weights one after the other and tests the pruned
network on all data sets. Based on the change of the loss function, a reward is given to each
weight on the current example. Table 5-1 shows the bounded rewards using Equation 5.1

and Table 5-2 shows the binary rewards, when the weights w;; are removed one by one and

forward propagation used over first ten examples (from 1000 examples) of the data set.

12 https://github.com/SalemAmeen/synthesis-Dataset/blob/master/toy%20example%20direct%20method-
Second%20example.ipynb
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Examplel | Example2 | Example3 | Example4 | Example5 | Example6 | Example7 | Example8 | Example9 | Examplel0
Wi1 0 0 0 0 0 0 0 0 0 0
W12 0 0 0 0 0 0 0 0 0 0
W13 0 0 0 0 0 0 0 0 0 0
W14 0 0 0 0 0 0 0 0 0 0
Wis 0.082 0 0.059 0 0 0 0 0 0 0
W16 0 0 0 0 0 0 0 0 0 0
W17 0 0 0 0 0 0.142 0 0 0 0
Wis 0.073 0.043 0.078 0.004 0 0 0.028 0.033 0 0
W21 0 0 0 0 0 0 0 0 0 0
W22 0.005 0 0 0 0 0 0 0 0 0
W23 0 0 0 0 0 0.819 0 0 0.004 0.047
W24 | 8.94E-08 0 0 0 0.019 0 0 0 0 0
W25 0.071 0.006 0.061 0 0 0 0 0.001 0 0
W26 0 0 0 0 0 0 0 0 0 0
W27 0 0 0 0 0 0 0 0 0 0
Wog 0.084 0.048 0.089 0.004 0 0 0.032 0.037 0 0
Table 5-1: Cumulative average reward for bounded rewards when pruning a weight.
Examplel | Example2 | Example3 | Example4 | Example5 | Example6 | Example7 | Example8 | Example9 | Examplel0
W11 0 0 0 0 0 0 0 0 0 0
W12 0 0 0 0 0 0 0 0 0 0
W13 0 0 0 0 0 0 0 0 0 0
W14 0 0 0 0 0 0 0 0 0 0
Wi1s 1 0 1 0 0 0 0 0 0 0
W16 0 0 0 0 0 0 0 0 0 0
W17 0 0 0 0 0 1 0 0 0 0
Wi1s 1 1 1 1 0 0 1 1 0 0
W21 0 0 0 0 0 0 0 0 0 0
W22 1 0 0 0 0 0 0 0 0 0
W23 0 0 0 0 0 1 0 0 1 1
W24 1 0 0 0 1 0 0 0 0 0
W25 1 1 1 0 0 0 0 1 0 0
W26 0 0 0 0 0 0 0 0 0 0
W27 0 0 0 0 0 0 0 0 0 0
W2s 1 1 1 1 0 0 1 1 0 0

Table 5-2: Cumulative average reward for binary rewards when pruning a weight.
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For example, w, gets 0.082 while in Table 5-2, it gets one when it is tested on the first
example since the performance of the model improves when this weight is removed. In the
second column, when the second example is tried, the performance does not improve and
the algorithm gets zero reward. The next step restores w; s and tests the following weights

one by one. Finally, the weights that have the most cumulative average rewards are removed.

5.1.2. Epsilon-Greedy Algorithm for Pruning the Weights

The epsilon-greedy algorithm begins by randomly selecting a weight to remove and then
computing the performance on each example of the data followed by the cumulative average
reward using Equation 4.3. The weight is then restored, and in the following trails, the
algorithm will either choose the next weight randomly or the best weight to date depending
on the value of a random number (i.e. explore). Figure 5.4 shows the MAB function (step 3)

in Algorithm 5.1 where there are K weights, u; denotes the current average reward, Rnd is a

random number between zero and one.

Algorithm 5.2 Epsilon- Greedy for K arms
Function MAB (1)
Required: Parameter epsilon (0,1)
arg max[,ull,,ulz, o iy ...,,u],] , epsilon < Rnd

Select aj; = ) . .
select an weight randomly from {VK weights}, otherwise

return j,i
end Function

Figure 5.4: Function of Epsilon-Greedy algorithm to prune K weights.

At the end of playing time, there will be a matrix of cumulative average rewards according to
the performance of the model. The final step involves pruning the weights according to the
cumulative average rewards matrix by setting remove those weights that have most

cumulative average rewards.

As an example, consider the example in Table 5-1 with epsilon sets to 0.5. The algorithm
first explores and selects a weight randomly. Assume w,, is chosen and when tested on
Examplel, it results in a reward of 0.005.

The algorithm will update the cumulative average reward and given this weight was
successful, it is kept for exploiting. The algorithm will generate a random number (Rnd)

between zero and one (0.95). The generated number is greater than epsilon (0.95>0.5) so the
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algorithm will explore and suppose that weight w;gis chosen randomly and forward
propagation on a random example (Example3 is chosen randomly) results in a reward of
0.078. This is added to the cumulative average reward for w;g and its play time incremented.
The algorithm continues to explore and exploit the weights until the playing time is finished.
Figure 5.5 illustrates the Epsilon-Greedy algorithm while exploring and exploiting based on
the Rnd values.

In the first step (Figure 5.5 (i)), Epsilon greedy begins with selecting w,,which results in a
reward of 0. In the second step, it selects w;g. Steps 1 and 2 illustrates a situation where a
weight is chosen randomly and step 3 shows a situation where exploitation takes place and
it selects w;, which results in a reward of 1.18.

Finally, the algorithm prunes the weights that have most cumulative average rewards.
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Figure 5.5: Epsilon-Greedy for pruning 16 weights at different play times. The red dots
denote the chosen weight to playing. The top one played first and the bottom one played
the last.
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5.1.3. Win-Stay, Lose-Shift Algorithm for Pruning the Weights

The WSLS algorithm selects the weight that has highest probability to win until it loses then
it explores another weight. If the data set is less noisy and the deep neural networks trained
well then, we expect the less important weights will be less important over all examples or
batches. However, data is often noisy in practice and the previous assumption might not work
but WSLS achieves good results in machine learning and decision making applications [178,
191]. Figure 5.6 presents the WSLS function based on pursuit method [192] which is called
from Step 3 of Algorithm 5.1.

Algorithm 5.3 WSLS based on pursuit method for K arms
Function MAB(t, i)
Required: Parameter § €(0,1)
Select wj; based on the highest probability P,
Update the probabilities for all arms
P(a;) + (1 — Pt(aﬁ)), if ais winning
Peq(a;) = {

P(a;;) — BP:(a;), otherwise
return j,i

end Function

Figure 5.6: Function of WSLS based on pursuit algorithm to prune K weights.

To give more intuition about the algorithm we will use the example given in Table 5-1.

The algorithm starts with uniform probabilities assigned to each weight, P, = 1/K = 0.063.
At each turn t, the probabilities are re-computed based Equation 4.4 and is shown in Table
5-3. The algorithm will start by pruning a weight based on the highest probability, for
example w; - is chosen. Then, the algorithm will check the performance (on say, Example 2)
after pruning wy,. According to Table 5-1; this will not result in a reward. The algorithm
will therefore shift and explore another arm with highest probability, w,5, remove it and
compute the change in loss and get the reward after performing forward propagation on a
random example (Example3). As the reward is zero the algorithm will choose another arm
with the highest probability, say w,, in Examplel where the reward is 0. The process will

continue until the end of playing time.
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t=1 to 16 Example6 t=17 Example 2 t=17 Example 3 t=17 Example 1
X P X P X P X P
W11 0.062 0 0.050 0.050 0.050 0.050
W12 0.062 0 0.050 0.050 0.050 0.050
W13 0.062 0 0.050 0.050 0.050 0.050
W14 0.062 0 0.050 0.050 0.050 0.050
W15 0.062 0 0.050 0.050 0.050 0.050
W16 0.062 0 0.050 0.050 0.050 0.050
W17 0.062 0.142 0112 0 0.089 0.089 0.089
Wi 0.062 0 0.050 0.050 0.050 0.050
W21 0.062 0 0.050 0.050 0.050 0.050
W22 0.062 0 0.050 0.050 0.050 0.050
W23 0.062 0.819 0.112 0.112 0 0.089 0 0.071
W24 0.062 0 0.050 0.050 0.050 0.050
W25 0.062 0 0.050 0.050 0.050 0.050
W26 0.062 0 0.050 0.050 0.050 0.050
Wa7 0.062 0 0.050 0.050 0.050 0.050
Wa2g 0.062 0 0.050 0.050 0.050 0.050

Table 5-3: WSLS updated the probability P giving the reward X at each trail. The green
cell represents the weight with the highest probability which will be played at the next.

5.14. UCB1 Algorithm for Pruning the Weights

As described in Chapter 4, initially, the UCB family the algorithm will explore pruning all
the weights on the data at least once. Then, the UCB1 policy selects the weights to consider
based on the upper confidence bounds. Figure 5.7 presents the function that is called from
Step 3 of Algorithm 5.1.

Algorithm 5.4 UCB1 for K arms
Function MAB(t,u,n,K)

Selectarm a;; = arg max (uj; +

ije{vK}

2logt
lel' )

return j,i
end Function

Figure 5.7: Function of UCBL algorithm to prune K weights.
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As an illustration, consider the example given in Table 5-1. First the algorithm will play each
weight at least once and receive reward. Table 5-4 shows how UCB1 proceeds where it shows
each trail except the first four columns which represents the trail from 1 to 16. In each trail,
the payoff X, number of playing each weight n, the cumulative average reward (u), the

2logt

padding (computed from ) and, the sum of padding and p which is represented by wj;.

l’lji

Figure 5.8 illustrates the algorithm visually, with the lines showing the range of the rewards
for each weight and red lines highlighting the weights selected at each time step. For example,
at t=79 and 80 the algorithm chooses the same weight (w;,) to be pruned and t=81, w, is
chosen. After the play time is finished, the weights with most cumulative average rewards

removed.
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t=1to 16/Exampl1 t=17/Example3 t=18/Exampled
Weight
X Wi Pq Wi X Wi Pt Wi X Wi Pt Wi
W11 0 0 1.861 1.861 0 0 1.893 1.893 0 0 1.893 1.893
Wi2 0 0 1.861 1.861 0 0 1.893 1.893 0 0 1.893 1.893
Wis 0 0 1.861 1.861 0 0 1.893 1.893 0 0 1.893 1.893
W14 0 0 1.861 1.861 0 0 1.893 1.893 0 0 1.893 1.893
Wis 0.082 0.082 1.861 1.943 0.059 0.070 1.700 1.770 0 0.070 1.700 1.771
Wie 0 0 1.861 1.861 0 0 1.893 1.893 0 0 1.893 1.893
W17 0 0 1.861 1.861 0 0 1.893 1.893 0 0 1.893 1.893
Wig 0.073 0.073 1.861 1.935 0 0.073 1.893 1.966 0.004 0.985 1.700 2.686
W21 0 0 1.861 1.861 0 0 1.893 1.893 0 0 1.893 1.893
w22 0.005 0.005 1.861 1.867 0 0.005 1.893 1.898 0 0.005 1.893 1.899
w23 0 0 1.861 1.861 0 0 1.893 1.893 0 0 1.893 1.893
W24 8.94E-08 8.94E-08 1.861 1.861 0 8.94E-08 1.893 1.893 0 8.94E-08 1.893 1.893
W25 0.071 0.071 1.861 1.933 0 0.071 1.893 1.964 0 0.071 1.893 1.965
W26 0 0 1.861 1.861 0 0 1.893 1.893 0 0 1.893 1.893
w27 0 0 1.861 1.861 0 0 1.893 1.893 0 0 1.893 1.893
wW2s 0.084 0.084 0.084 0 0.084 0 0.084 0 0.084 1.893 1.978
Max 1.943 1.966 0.985 2.686

Table 5-4: UCB1 method where X is the reward, n number of plays, t is the total playing time so far, Ps is the padding function and w; is the

weights (the algorithm will choose the value). y;; is cumulative average reward and green colour cell is the arm will be played next.
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5.1.5. KL-UCB Algorithm for Pruning the Weights

In KL-UCB, the padding is computed by going beyond the mean, u(a) of an arm a by a
certain distance based on the Kullback-Leibler measure (d). That, is KL-UCB seeks the

maximum ¢ that satisfies the following:

logt + c log logt

d(ujiq) < -

Where n;; is the number of times weight has been pulled and t is the number of rounds and ¢

is constant (recommended to be zero [180, 181]).

For example, for weight wy, in Figure 5.10, KL-UCB seeks the largest q that meets:
d(0.26,9) <> = 1.04.

Figure 5.9 shows the function this is called from Algorithm 5.1.

Algorithm 5.5 KL-UCB for K arms
Function MAB(t,u,n, K)

Selecta;; = arg Zg&x (dwji,q) < p

logt+clog logt)

return j,i
end Function

Figure 5.9: Function of KL-UCB algorithm for pruning the K weights.

Figure 5.10 represents determining the value of g based on d(uﬁ, q) < logttclog1ogt g

lel'
log(t)

horizontal (orange) line represents the value of —
]l

and the curve (blue) line represents the

0g(t)

d(uji, q)- For example, the weight w;, has tighter ( ) at trail 66 than at trails 64 and 65.

All the weights are considered and the one with the maximum q is selected.
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Figure 5.10: compute q of the weight where the charts on the top represent the weights at the play time between (t=49 to t=64). Then, the charts

at the bottom represent computing the maximum ¢ for the current chosen weight.
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5.1.6. Thompson Sampling Algorithm for Pruning the Weights

Thompson Sampling [193] selects the next weight based on drawing a random sample from

a distribution representing the prior knowledge of the weights. This is then used to assign a

reward after evaluating the loss function.

Given S,, the number of times the arm a yields a positive reward and F,, the number of

times an arm fails to yield a reward the probability of succeeding is drawn from a Beta

distribution, Beta(x; S, + 1, F, + 1) where
I'a+p)

Beta(x; a, B) = mx“ 11 —x)ft
While I" is called Gamma function and the mean and variance are given by
_ (04
#= a+pf
2 _ ap
(@+p)@+p+1)

Figure 5.11 presents the function that is called from the algorithm in Algorithm 5.1 based on
Thompson Sampling with binary rewards for K arms. Giving the earlier example, the
algorithm first plays every weight once. Then, the success S;; and the failure F;; are updated
and the random sample is drawn from the Beta distribution of each weight.

Table 5-5 illustrates the algorithm. For example, at time t=16, the weight that has the highest

number is played the next which is weight w,,.

Algorithm 5.6 Thompson Sampling for binary bandits for K arms
Function MAB(t,S,F,K)
Repeat for all weights (VK weights)
Sample 6;;(t) for Beta(S;; + 1, F;; + 1) distribution

end for
Select a;; = arg inax, 0;:(t)
return j,i

end Function

Figure 5.11: Thompson Sampling where there are K weights and w;; is the weight
selected to play next.

At next trail t=17, weight w,g is chosen as it has the largest sample which is drawn from

Beta distribution based on total success and failure. At t=18, the weight w,g is chosen for
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playing. Then, at t=19, w,; is chosen and so on. Figure 5.13 illustrates the kind of

distributions that can arise and examples of samples that are drawn.

5.1.7. BayesUCB Algorithm for Pruning the Weights

Bayesian UCB (BayesUCB) is based on maintaining, updating and using a probability
distribution for each arm, where the probability distribution takes the form of the beta
distribution defined by the number of successes and failures of each arm S.~1, Ef~1, where t
is the number of rounds. The upper bound used for each weight is determined by using the

quantile function:
Q(aA) such that P( X<Q(a 1)) = a

Where A is the distribution and a is the level. BayesUCB uses increasingly tighter bounds

as the number of rounds increases with o setto 1 — % )

The algorithm prunes the weights depending on the rewards gained during the playing time
and returns the current weight for playing. Then, the algorithm returns the weight that has
the largest quantile. Figure 5.12 illustrates the function that replaced MAB function in - 5.2
based on BayesUCB.

Algorithm 5.7 BayesUCB for K arms
Function MAB(t,S,F,K)
Required: A;; ! which is define by S and F
Repeat for all weights (VK weights)
1 o
Compute q;;(t) = Q(1 — 7, 4j; 1

end for
Selecta;; = arg j{fel{ﬂ\%} q;i(t)
return j,i

end Function

Figure 5.12: Function of BayesUCB to prune K weights.

Table 5-6 shows the results of applying BayesUCB on the example in Table 5-2 at different
play times. At time t=16, the algorithm will choose w; s as it has the largest quantile. Then,
at t=17,18 and 19 the weights wyg, w,g and w,, are chosen Figure 5.14 illustrates how the

quantile function is used to select between different weights.
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Weight t=1to16/Examplel t=17/Example3 t=18/Examplel0 t=19/Example8
X | S|F|Sample (beta) | X | S | F | Sample (beta) | X | S | F | Sample (beta) | X | S | F | Sample (beta)
wnp [0[0]1 0.335 001 0.156 001 0.546 0(0]1 0.299
Wiz 0|01 0.057 001 0.158 0(0]1 0.390 0|01 0.215
Wi3 0|01 0.011 0|01 0.250 0|01 0.011 0|01 0.551
Wiq 0|01 0.500 0|01 0.559 0|01 0.068 0|01 0.119
Wis 1(11]0 0.621 0]1]0 0.831 010 0.912 0[1]0 0.446
Wie 0|01 0.035 001 0.374 0(0]1 0.149 0|01 0.112
W17 0|01 0.535 0|01 0.368 0|01 0.681 0|01 0.020
Wisg 1|1]|0 0.559 0|1|0 0.867 0|11|0 0.506 0|10 0.156
wa |[0[0]1 0.527 001 0.555 001 0.238 0(0]1 0.566
W22 11110 0.888 0111 0.190 011 0.424 0|11 0.090
W23 0|01 0.152 0|01 0.130 0|01 0.352 0|01 0.869
W24 11110 0.886 0110 0.849 011 0.748 0|11 0.567
Wos 1(1]0 0.767 0]1]0 0.474 010 0.703 0[1]0 0.070
Wag 0|01 0.056 001 0.270 0(0]1 0.870 0|01 0.286
Wa7 0|01 0.000 0|01 0.149 0|01 0.132 0|01 0.097
Was 1|1]|0 0.601 0|1|0 0.910 0|11 0.953 1121 0.589
Max 0.888 0.910 0.953 0.869

80

Table 5-5: Results of Thompson Sampling where X is the current binary reward for each weight, t the total play time, S is the success, and F is

failure and Sample (beta) is drawn from the beta distribution for each weight. At each time step, the algorithm will choose the weight that has
the highest reward among the others which is shown in the green cell.
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Figure 5.13: Thompson Sampling for choosing the arm to play next based on the sample from beta distribution. The two arms on the top are
chosen from the first column in the previous table while the charts in the bottom are chosen from the last column of the same table. On the top,
the algorithm will choose the arm on the left as it has higher reward while on the bottom the algorithm will choose the arm on the right as it has

higher reward.
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t=1to16/Examplel

t=17/Example5

t=18/Example6

t=19/Example10

Wetant XS |F]| 1-(n Quantile (beta) | X | S | F 1-(1/t) Quantile (beta) | X | S | F 1-(1/t) Quantile (beta) | X | S | F 1-(1/t) Quantile (beta)
wau |0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771
we |0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771
wi |0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771
wu |0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771
Wis 1 1 0 0.9375 0.968 0 1 1 0.941 0.853 0 1 1 0.944 0.857 0 1 1 0.947 0.861
we |0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771
wrz |0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771
Wig 1 1 0 0.9375 0.968 01 0 0.941 0.970 0 1 1 0.944 0.857 0 1 1 0.947 0.861
wa |0 O 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771
W22 1 1 0 0.9375 0.968 01 0 0.941 0.970 0 1 0 0.944 0.972 0 1 0 0.947 0.973
was |0 O 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771
W24 1 1 0 0.9375 0.968 01 0 0.941 0.970 0 1 0 0.944 0.972 0 1 0 0.947 0.973
W2s 1 1 0 0.9375 0.968 01 0 0.941 0.970 0 1 0 0.944 0.972 0 1 0 0.947 0.973
we |0 O 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771
wz |0 0 1 0.9375 0.750 0 0 1 0.941 0.757 0 0 1 0.944 0.764 0 0 1 0.947 0.771
Wag 1 1 0 0.9375 0.968 01 0 0.941 0.970 0 1 0 0.944 0.972 0 1 1 0.947 0.861
Max 0.750 0.970 0.972 0.973

Table 5-6: Results of BayesUCB on different play time where X is the current binary reward for each weight, t the total play time, S is the
success, and F is failure and Quantile is drawn from the beta distribution for each weight with probability 1-(1/t). At each time step, the
algorithm will choose the weight that has the highest quantile among the others which is shown in the green cell.
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Figure 5.14: BayesUCB for choosing the arm to play next based on the sample from the beta distribution. The two arms on the top are chosen
from the first column in Table 5-5 while the charts at the bottom are chosen from the last column of the same table. On the top, the algorithm
will choose the arm on the left as it has higher quintile while on the bottom the algorithm will choose the arm on the right as it has higher
quintile
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5.2. Evaluation

We train our models using stochastic gradient decent with a batch size of 10, momentum of
0.9, and weight decay is set to 0.005. The learning rate is initialized as 0.01. The Softmax
function is used as the activation function. The experiments were implemented on 12-core
Intel(R) Core i7-5820 3.30-GHz and 64 GB RAM. The methods developed and implemented

using TensorFlow and Python.

The experimental methodology involved carrying out two sets of experiments. In the first,
the NNSYSID? package was used to build neural networks for 12 data sets from the UCI
machine learning repository as shown in Table 5-7. The inputs and outputs reflected the
features and classes of the data sets. For consistency, each network adopted two hidden layers,
with each hidden layer utilizing 20 neurons. The neural networks were then pruned using the
different methods and their performance analysed. In the second experiment, LeNet’s deep
learning model [83] with two convolutional layers and two fully connected layers was
adopted and trained on the MNIST data set. The model was then pruned using the different

methods and the methods compared.

The following subsections present the results from the two sets of experiments. The
methodology for the comparison is based on the recommendations by DemS3ar [194] who
advocate the use of a non-parametric test due to Friedman test [195] to determine if there is a
difference amongst the methods, and if so, to follow up with the use of the Nemenyi test [196]

to assess if one method is significantly better than another.

13 http://www.iau.dtu.dk/research/control/nnsysid.html
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5.2.1.

Full name of the Data set ex':(r)ﬁglf es f;ct)ﬁggs N%?;E:ersof
Banknote Authentication 1,372 4 2
Blood Tra. Service Centre 748 4 2
Credit Approval 690 15 2
Haberman's Survival 306 2
Liver Disorders 345 6 2
MAGIC Gamma Tele. 19,020 10 2
Mammographic Mass 961 2
MONK's Problems 432 2
Connectionist Bench 208 59 2
Spambase 4,601 56 2
SPECTF Heart 267 44 2
Tic-Tac-Toe Endgame 958 9 2

Table 5-7: UCI data sets

Results from the Experiments on the UCI Data sets

The empirical evaluation on the UCI data is carried out in comparison with the recent and

most famous algorithms:

Random Pruning, which is the simplest algorithm, and involves random selection
of weights that are pruned, an evaluation of the pruned network and then a decision

on whether the removal of the weight had a positive or negative effect.

A Network Pruning method [134] that removes weights that are below a user

specified threshold value.

Optimal Brain Damage (OBD), a method developed by LeCun et al. [125], that
was one of the first methods for reducing the size of neural networks. OBD
removes the weights that if set to zero would have least effect on the training error.
To measure the effect of changing weights, LeCun et al. [125] used a Taylor series
approximation for the change in error that would occur if the weights were
perturbed (as described in Chapter 3). This analysis leads to the need to solve a
Hessian matrix which can be computationally expensive. To reduce this

computational cost, LeCun et al. [125] ignored the off-diagonal values.
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Optimal Brain Surgeon (OBS), a method due to Hassibi et al. [126-128] in which
the Hessian matrix that results from the analysis for OBD is solved without making

the assumption that the off-diagonal elements can be ignored.

Table 5-8 presents the errors e (where the accuracy is 100-<) for each of the pruning

methods on data sets from the UCI repository. after pruning 20% of the weights using the

different methods.
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Prunin
Data set Model E. Greedy WSLS UCB1 KL-UCB TS BayesUCB (@]210) OBS d Random
Network
Blood Tra. Service Centre * 0.94
Credit Approval W 0097 il 0.95

Haberman's Survival -
--

MAGIC Gamma Tele. -

---
e -
o
-
e -
T o - o

Table 5-8: Computed error on validation data set before and after pruned the model. The green cell shows the method with less error while red
cell shows the method with large error. The arrows point up if the error high, down if it is low or in right direction if it is in between.
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Table 5-9 presents the average rank of the 11 methods over the 12 data sets, with UCB1 being
ranked the most effective in terms of reducing the error rate and the Network Pruning method
the least effective. Applying the Friedman test results in a p-value of 6.99x10~1° confirming

there is a significant difference amongst at least some of the methods.

Name of Method Mean Rank
UCB1 3.75
Bayesian UCB (BayesUCB) 4.00
KL-UCB 4.00
Model before pruning (Model) 4,62
Thompson Sampling (TS) 5.20
OBD 5.25
Epsilon-Greedy (E. Greedy) 5.62
Win-Stay, Loss-Shift (WSLS) 6.79
OBS 7.70
Random Pruning (random) 9.00
Network Pruning 10.04

Table 5-9: Results of the average rank of the methods on 12 different data sets.

Figure 5.15 depicts the results from the Nemnyi post-hoc test. The methods are plotted
according to their average rank, where the best ranked methods are to the left with the Critical
Difference (CD=4.33). For example, UCB1 has mean plus CD equal to nearly 8 which is
statistical better than Network Pruning with mean 10.

The CD for the Nemenyi test is calculated from:

K(K+1)
qa,K 6N

Where « is the confidence which is set to 0.05, K is the number of models (or classifiers),
and N the number of measurements (data sets). To compute g, x, the Studentized range

statistic for infinite degrees of freedom divided by squared root of two is used**.

The horizontal lines group the methods that are not significantly different when the Nemnyi
post-hoc test is used at the 0.05 level. These results show that:

e The UCB family of methods performed significantly better than Random Pruning
and Network Pruning method.

14 http://kourentzes.com/forecasting/wp-content/uploads/2014/05/nemenyi.csv
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e Use of Thompson Sampling for pruning also performed significantly better than

Network Pruning method.

e The performance of BayesUCB and KL-UCB is very similar, which is consistent
with the theoretical results due to Kaufmann et al. [197].

¢ Although the bandit based methods have a higher average rank, the Nemnyi test does
not distinguish these methods significantly from OBD or OBS in terms of minimizing
the error.

WSLS - & I

UCB1- @ {

Thompson Sampling - & |

Random Pruning - @ |

OBS - @ !

OBD - @ {

Network Pruning - & |

Model - o |

KL-UCB- @ {

Epsilon-Greedy - L

BayesUCB- @ {

2 5 6 7 8 9 10 11 12 13 14

mean + CD

Figure 5.15: Comparison of all classifiers against each other with the Nemenyi test. Lines
show the critical difference for each method any Groups of classifiers that are not
significantly different (at p = 0.05) are out of the lines. The blue dot shows the rank mean
while the line determine the CD which 4.33.



Chapter 5: Multi-Armed Bandit for Pruning Weights 90

Table 5-10 presents the run-time performance of these methods, showing that the UCB
family, WSLS, Epsilon-Greedy and Thompson Sampling have the best run-time performance
which is followed by OBD. OBD and OBS are more computationally intensive given the
need to compute Hessian matrix. Thus, given the ranking of the methods given in Figure 5.15,
UCB methods achieve better performance on average than OBD and OBS but in significantly

less time.

| PerSecond | os | oep | EG | wsis | ucl | 15 |BayesucB| KL-UCB |

Table 5-10: Run-time performance in seconds for the different pruning methods on
different data sets. Green cell shows the methods that have less computation time while
the red cell shows the ones with the highest computation time.

o1

2.2. Results for the MNIST Data set

The MNIST (Modified National Institute of Standards and Technology) data set is a well-
known collection of handwritten digits [83] that has been used in evaluating many
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handwriting recognition algorithms¥>. One of the most widely adopted deep learning
architectures for this data set and problem is the LeNet model [83]. In this model, the network
has two 5x5 convolutional layers with 20 and 50 filters respectively, and two fully connected
layers with 500 and 10 (output layer) neurons. Table 5-11 summarizes the number of
parameters including the weights and biases in each layer of this model. The activation and
pooling layers have no parameters.

Layer Parameters Weights
Layerl Convolution (Conv) 520 500
Layer2 Convolution (Conv) 25,050 25,000
Layer3 Fully connected (FC) 2,500,500 2,500,000
Layer4 Fully connected (FC) 5,010 5,000

Total 2,531,080 2,530,500

Table 5-11: No of parameters in the LeNet’s model.

The base line accuracy of this model is 98.06%, so it provides a good example for assessing
which methods can best remove weights without adversely affecting the level of accuracy.
To assess this, we apply a selection of methods to prune 50% of the weights in the layers 2
and 3 which have the most weights. The methods we select include: one from the UCBL given
their performance is similar, Thompson Sampling, Random Pruning, and the Network
Pruning Method. The OBD and OBS methods are not selected given that they are not
applicable, as they are needed to compute the Hessian matrix and invers Hessian matrix
respectively. In addition, the RELU activation function is used to train LeNet and the second

derivative of it is zero.

Table 5-12 presents the results, showing the use of the bandit algorithms maintains accuracy
although the use of Network Pruning and Random Pruning does result in a significant decline
in accuracy. The first column of the table has the model and five different pruning methods.
The second column has the first fully connected layer (layer3) in LeNet model while the last

column holds the second convolution layer (layer2) in the LeNet model.

15 http:/fyann.lecun.com/exdb/mnist/
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FC Conv

Model 0.9806 0.9806

TS Prune 50% 0.9830 0.9810
EG Prune 50% 0.9808 0.9807
UCBL1 Prune 50% 0.9840 0.9820
Random Pruning 50% 0.5330 0.4120
Network Pruning 50% 0.5920 0.4950

Table 5-12: Results of pruning 50% of two layers in the LeNet’s Model.

5.3. Summary

This chapter presented the six proposed methods for pruning the weights. These methods are
based on the idea of using MAB for optimizing between exploration and exploitation. The
experimental analysis and evaluation of the MAB pruning algorithms presented in this
chapter, was conducted using the UCI data sets and the MNIST data. The main findings from
the evaluation of the proposed methods indicated that:

e In general, the MAB pruning algorithm produced better results than the original
models. In Table 5-9 UCB1, BayesUCB and KL-UCB achieve better ranking than
the original model and in MNIST data set, there is slightly improve on accuracy over
the original unpruned model even though half of the model parameters is pruned.

e Some of the proposed methods outperformed the other pruning methods. That is,
UCB based methods performed best and WSLS based methods performed worst.

e The proposed methods had manageable time to prune the weights of the network in
contrast to other methods like OBS and OBD.

The next chapter extends the methods developed in this chapter so they can be used to prune

neurons.
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6. Multi-Armed Bandits for Pruning

Neurons

When the number of parameters are very large, removing a weight at a time is time-
consuming. Instead, removing a neuron with all its weights one at a time could be more
effective. Hence, in this chapter, different MAB algorithms are tested and compared to state
of the art pruning techniques on many different data sets. The chapter is organized as the
follows. Section 6.1 presents the top-level algorithm form pruning neurons, Section 6.2
presents pruning the neurons based on the change in loss function. Section 6.3 presents an
evaluation of the pruning algorithms on different data sets and Section 6.4 presents a

summary of this chapter.

6.1. Summary of MAB Algorithm for Pruning Neurons

Figure 6.1 presents the top-level algorithm for pruning neurons. The basic idea for pruning
neurons is the same as that for pruning weights, except that a MAB algorithm is used to
select and remove neurons instead of weights.

The initial step of the algorithm, selects the layer to be pruned. Even though MAB pruning
algorithms can be used to prune all neurons together, we will use these algorithms to prune
the neurons in specific layers given the time and computation limitations, especially of deep

neural networks.

The following summarises the main steps of this algorithm:

1 and 2, iterate over all playing time and determine the random example respectively.
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3 determines a neuron that needs to be removed according to a MAB.

4 and 5, computes the performance of the model based on a random example of the
data. That is, it computes the loss function based on an example of the data L(D|N)
where N is a non-zero neurons in the network and D is a random example from the
training data set. Hold the value of neuron.

6, 7 and 8, removes the determined neuron (from step 3) and tests the performance.
Computes L(D|N") where N’ is the network without the neuron selected in step 3.
Then, restores the neuron for the next play.

9 and 10, computes the change in the loss function L. If there is improvement then
there is a positive reward (+1 if binary rewards), otherwise there will be no reward
(zero). Then, the algorithm will update the cumulative average rewards for the
playing arm (removed neuron).

11 update the cumulative average reward.

12 and 13, compute the weights if the called function is EXP3 or Hedge function.
14 checks the playing time; if it has not ended, the process is repeated; otherwise,
stops playing.

15 finally, the last step removes unwanted neurons that have the most cumulative

average rewards, which in fact have least effect on the performance.

As described in Chapter 4, there are many MAB algorithms and a number of these were tried

for removing weights and the results presented in Chapter 5. The lessons learned from the

evaluations presented in Chapter 5 were used to select the MAB algorithms to evaluate:

Epsilon-Greedy algorithm was chosen primarily because of its simplicity although it
also showed good performance.
UCB1 and Thompson Sampling were chosen given that both resulted in good

accuracy and good run time performance.
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e KL-UCB and BayesUCB were not selected given they require significant
computational time.

e WSLS had the worst performance among MAB pruning algorithms so was not
selected.

e EXP3, Hedge and Softmax algorithm are used in this chapter. EXP3 and Hedge are
based on adversarial bandits [170, 175, 187, 188] where the reward is not stochastic.
When a neuron is pruned, the expected reward might change over the time with

giving same input.

The following subsections summarise the direct method, and the new three MAB based
pruning algorithms (softmax, Hedge and EXP3). In each case, an example is given to
illustrate the methods for pruning neurons. The examples use the synthetic data set given in
Figure 5.3.
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Algorithm MAB 6.1 Algorithm for pruning the neurons

INPUT:

Time horizon T, Trained network, Input layer 1 to be pruned.

OUTPUT: Pruned network

Let
Let

Let
Let
Let
Let
Let
Let
Let
Let
Let

N

HPOONO A W

0
11

12
13

14
15
16

17

18
19
20

21

22
23
24
25
26
27
28
29

X; be the current reward of this arm/neuron

w; is the weight for each arm (neuron) this is not the neural networks’ weights but it is the
parameter for Adversarial bandit algorithms and initialized to one, In addition, Parameter € € [0,1],
Parameter y € [0,1]

u; be the cumulative average reward of this arm/neuron, initialized to zero
D the random example from training data set
N; be the neuroniin layer ]
L(D|N) The loss function before pruning the neuron
L(D|N") The loss function after pruning the neuron
Threshold how much loss in the performance is allowed
K is the number of neurons in the chosen layer
n; is the total current play time for the N;
S; is the success and F; is the failure, both initialized to zero
fort=1to T do /* start playing */
D = random example of the training data
if anyn; =0 then choose the current index i /* Pull each neuron at least once */
else Call the relevant MAB algorithm, returning the index of the selected neuron:
i = MAB(*arg)
Perform forward propagation on D to compute L(D|N)
Hold the value of the selected neuron, temp = N;
Set the neuron to zero N; = 0
Perform forward propagation on D to compute L(D|N")
Set the value of the neuron to previous value, N; = temp
6L = L(D|N) —L(DIN")
X;+ = REWARD(SL)
Update the cumulative average reward of the current arm
Piger = (g = 1) /my * pye + 1/0; % Xy
if MAB is Hedge algorithm then p; = X;,, w11 = wi (1 + €)Pi
pi
if MAB is EXP3 algorithm then p; = X;;, W; 141 = Wyy. e/ Pk
end for
PrunedModel = PrunedFunction(model, u)
end main program

Function PrunedFunction(model, rewards)

Set to zero the neurons that have most rewards
return PrunedModel
end Function

Function REWARD(SL)

if (bounded reward) then /* For example, reward for UCB1*/
Reward+= max(0, 5L + Threshold) /Constant

else /* Reward for Thompson Sampling */

if 6L < 0 thenreward=0, F;;,; = F;; +1

elsereward=1, S;; ;41 = S;; +1
end if
end if
end Function

Figure 6.1: The generic algorithm of a MAB pruning neurons.
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6.1.1. Direct Method

The direct method also known as brute-force pruning [114] works by removing neurons one
after the other and then testing the pruned network on all the data set. Table 6-1 shows the
bounded rewards using Equation 5.1 when the neurons N are removed one by one and
forward propagation is used over the first three examples (from 1000 examples) of the data

set.

Neuron Examplel Example2 Example3 Average Reward over three examples

N1 1.92 2.65 251 2.36
N2 0 1.2 0 0.4
N3 0 0 0 0

N4 0.91 2.01 1.74 1.55

Table 6-1: Cumulative average reward for the bounded rewards when pruning a neuron
on example of data at each forward propagation.

Once the rewards for the selected neurons have been computed, the neuron with the highest
average reward is removed. In the case of considering only theses three examples, N, is

pruned.

6.1.2. Softmax Algorithm for Pruning the Neurons

The general steps of pruning the neurons using Softmax algorithm [174] are the same as that
is explained in Section 6.1 except for step 3 where Softmax algorithm will be used to

determine the neuron that needs to be removed as following:
1. Choose the arm based on probability P;.

2. Update the probability for each arm using Equation 4.5.

Figure 6.2 shows the Softmax function that is called from Algorithm 6.1.
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Algorithm 6.2 Softmax for K arms
Function MAB(t,u, K)
Required: Parameter 7 € R

Hi
Select neuron N; with highest probability exp = /¥X_; exp %

return i
end Function

Figure 6.2: Function of Softmax algorithm to prune K neurons.

To illustrate how the Softmax bandit prunes neurons, consider the example in Table 6-1.
First, we assume the algorithm will check to prune every neuron once and test the change in
the loss function by performing forward propagation on a random example. Table 6-2 shows
the steps of pruning the neurons based on Softmax bandit.

The table presents the state after round t=4, showing cumulative average reward (y;), the
number of attempts at pruning each neuron (n) and the probability of a reward (P). The next
neuron chosen is then based on the one with highest probability of a reward. For example,
N, is chosen as it has the highest reward (0.422).

t=1to 4 / Examplel

Neuron m
X n Hi expt P
N; 1.92 1 1.92 2.611 0.422
N; 0 1 0 1 0.161
N; 0 1 0 1 0.161
Ny 0.91 1 0.91 1.576 0.254

Table 6-2: Softmax function for pruning the neurons where y; is cumulative average
reward, X is given reward, T = 2 and P is the probability.

6.1.3. Hedge Algorithm for Pruning the Neurons

Instead of computing the probability of the rewards in Softmax function, the Hedge algorithm

maintains weights for each neuron. These weights are similar to those found in algorithms
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such as AdaBoost (and not the weights of a neural network). First, the weights initialized to
one and then later they are computed using Equation 4.12.

The probability of reward is then computed as proportion of the weight over the sum of the

weights of all the neurons.

Figure 6.3 shows the Hedge function that will replace the MAB function call in Algorithm
6.1. Notice that the weights are passed as an argument from Algorithm 6.1 and are also
updated in Algorithm 6.1.

Algorithm 6.3 Hedge Algorithm K arms
Function MAB(w,K)

Select neuron N; with highest probability P, =

wi(t)
S wi ()

return i
end Function

Figure 6.3: The Hedge function for pruning K neurons.

Table 6-3 gives an example of the Hedge algorithm in operation with e sets to 0.05. First, the
algorithm will receive a reward p for the neuron that is played. Then the weights are updated
and the probability of getting a reward from each neuron are calculated. Finally, the algorithm
will choose the neuron based on the probability as shown in Figure 6.3, where neuron Ny is

chosen for time steps 4 to 6.

. t=1to4/Samplel t=5/Sample3 t=6/Sample2
Weight
p W P p w p p w P

N, 192 1 0.25 2.51 1.13 0.27 2.65 1.28 0.30
N2 0 1 0.25 1 0.24 1 0.23
Ns 0 1 0.25 1 0.24 1 0.23
Na 091 1 0.25 1 0.24 1 0.23
sum 4 4.13 4.28

Table 6-3: The steps of choosing next neuron to prune based of Hedge algorithm. The
green cell is the probability of choosing the following neuron. p is the generated non-

stationary reward, w is the weight and P is the probability for choosing the next neuron.
€ = 0.05.
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6.1.4. EXP3 Algorithm for Pruning the Neurons

The EXP3 algorithm is similar to the above adversarial algorithms except that the calculation
for the probabilities is different. That is, the weights (as used in Hedge) are updated using
Equation 4.13 and the probabilities are calculated using Equation 4.14. Figure 6.4 shows the
EXP3 function that will replace MAB function in the Algorithm 6.1. Notice that the weights

are passed as an argument from Algorithm 6.1 and are also updated in Algorithm 6.1

Algorithm 6.4 EXP3 Algorithm K arms
Function MAB(w,y ,K)

Select neuron N; with highest probability p; = (1 — y)

wi 1
+v.-

K
LimoWj K

return i
end Function

Figure 6.4: EXP3 function to prune k neurons.

To illustrate EXP3, consider the example in Table 6-1 with y=0.1. First, the algorithm will
assign one to the weight for each neuron and then update the probability of randomly choosing
the neuron to prune, as shown in fourth column in Table 6-4. Following that, the first neuron
(N1) is chosen to prune with probability 0.25. At step t=5 the algorithm will update the weight

for the chosen neuron and the weights for the other neurons will be the same as in the previous

play.

. t=1to4/Samplel t=5/Sample3 t=6/Sample2
Weight
w P p w P p w P
N1 1.92 1 0.25 2.51 1.285 0.294  2.65 1.609 0.339
N2 1 0.25 1 0.235 1 0.220
N3 0 1 0.25 1 0.235 1 0.220
Na 0.91 1 0.25 1 0.235 1 0.220
sum 4 4.285 4.609

Table 6-4: EXP3 for pruning the neurons where p is the current non-stationary reward, w
is the weight and p is the probability for choosing the next neuron to play. y=0.1. Green
cells are the neurons chosen to prune.
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6.2. Evaluation

This section presents the results of an empirical evaluation of the MAB based methods for
pruning neurons. All proposed MAB algorithms were implemented using the Python
programming language. All the reported experiments in this chapter were conducted using
NVIDIA TITAN X. The evaluation is carried out in two stages.

First, sixteen data sets from the UCI and Kaggle data were utilised and their characteristics
are summarised in in Table 6-5. The methodology for these data involved randomly splitting
the data into three folds: a training, validation and test fold (60%, 20%, 20% respectively).
The training fold is used for optimizing the parameters of the classifiers (models), the
validation fold for hyperparameter optimization, and the test fold for evaluation. When a
data set was small (less than 1000 examples), then it was randomly divided into 80% training
data, 20% testing. Ten-fold Cross Validation was used on 80% training data for building and
validating the models. The evaluation measures used were accuracy, f1 score, precision and
recall, providing a broader insight into the effectiveness of the individual classifiers. In
addition, AUC (Area Under the receiver operating Curve) and confusion matrices were also
used. For conciseness, the body of the thesis focuses presents the results in terms of accuracy
but the other measures, such as fl score, precision, recall and AUC are included in

Appendix1. In these data sets, forward neural networks were trained.

The second set of experiment utilised data that had been used for developing deep learning
models. Eight different data sets (taken from the different resources that can be used for
benchmarking deep learning algorithms) were used and their characteristics are shown in
Table 6-6. Most of these data sets were already split in advance into training and testing
folds. The evaluation measure used for these experiments was accuracy. These data sets are
based on images or texts and as is common practice, ConvNets were used for pixel data and

RNNs were used for sequence data.

After obtaining the data set, some pre-processing was performed because this is known to
improve convergence when training [83]. Next, the architecture of a neural network was

designed and the number of parameters used was based on a rule of thumb that suggests that
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a full model should have at least the same number of parameters as there are examples in the
training data set [198] for example, for the Reuters data, there are 8.982 examples so 558

neurons and weights were used 535,552.

As Chapter 2 describes, there are several methods for training neural networks. In this work,
the mini-batch gradient descent method was used. Following some initial experimentation,
the Adam method, as recommended by Kingma & Ba [63], was used with a learning rate of
1e~3 for optimisation for most of the data sets unless better results were obtained by other
optimizers at validation. However, other methods were also tried and Table 6-7 lists the

optimisation method and hyperparameters used for each data set.

Once a model was trained, it was available for the experiments to compare the MAB pruning
algorithms. All the MAB based pruning algorithms developed need to decide the number of
plays. In the experiments below, the play time was set to at least as much as twice the number
of neurons (arms) in the played layer. Once a network was pruned, its accuracy was

measured on a test set.

Data set Full name of the Data set exNaﬁ%r(J)lfes f(:\(z.u?(fes Nlé:gg:eg()f
Pima Pima Indians Diabetes 768 9 2
Car Car Evaluation 1,728 6 4

Spambase Spambase 4,601 56 2
Adult Adult 48,842 14 2
Valley Hill-Valley 606 100 2

Titanic Titanic 1,309 11 2
Face Labelled Faces in the Wild 1,288 1,850 7
Wine Wine 178 12 3

Heart Heart Disease 303 13 2
Iris Iris 150 3 3
Abalone Abalone 4,177 8 3
Poker Poker Hand 1,015,010 8 3
Glass Glass Identification 214 10 7
Wine Quality Wine Quality 4,898 11 10
crex Pt smow g 7
Cancer Lung Cancer 569 32 2

Table 6-5: Small data set specification.
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No. of —— —— Number
Dataset  Full name of the Data set ' examples in examples in
features i . of classes
training testing
ImageNet ImageNet 256x256x3 1,200,000 150,000 1,000
IMDB Internet Movie Review 5,000 25,000 25,000 2
Reuters Reuters newswire topic 1,000 8,982 2,246 5
classification task
Mixed National Institute of
MNIST Standards and Technology 28x28x1 60,000 10,000 10
Cifar-10 Cifar-10 32x32x3 50,000 10,000 10
Cifar-100 Cifar-100 32x32x3 50,000 10,000 100
Street View House
SVHN NUmbers 32x32x3 73,257 26,032 10
bADbI bAbI 20,000 10,000 1,000 2

Table 6-6: Data set specification for deep learning models.

Data set Optimizer Batchsize Dropout Weight decay Neurons
Pima Adadelta 8 None None 35
Car Adam 6 None L2(0.001) 25
Spambase RMSProp 10 0.25 L2(0.01) 40
Adult Adadelta 100 None None 60
Valley Adam 100 0.5 L2(0.001) 40
Titanic Adam 9 None L2(0.001) 60
Face Adam 100 0.5 None 300
Wine Adam 13 0.5 L2(0.001) 35
Heart Adam 13 None None 35
Iris Adam 1 0.5 L2(0.001) 16
Abalone Adam 100 None L2(0.0001) 30
Poker Adam 20 0.5 L2(0.001) 25
Glass Adam 100 0.5 L2(0.001) 35
Wine Quality Adam 100 0.5 L2(0.001) 25
Chest Adam 13 None L2(0.001) 20
Cancer Adam 30 0.5 L2(0.001) 30

Table 6-7: Hyperparameters of neural networks trained on different data sets. In addition,
the learning rate for all of them is set to 0.001, the activation function is ReLU and the
number of epochs is 100.
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The data sets and methodology used are summarised above. The main objectives of the
evaluation are as follows:

1. To measure the effectiveness of the proposed pruning algorithms (pruning based on
Epsilon-Greedy, Softmax, UCB1, Thompson Sampling, Hedge and EXP3), we
compare the proposed methods against each other including the original unpruned
models.

2. To compare the classification effectiveness of the proposed methods and different
classifiers, the performance of the methods was compared with techniques like SVM,
Decision trees, KNN, LDA, Naive Bayes, QDA, Gaussian process classifier and
Logistic regression. For completeness, the performance of the algorithms was also
compared with grouping and boosting algorithms like bagging, random forests,
Adaboost, LightGBM and Xgboost.

3. To compare the effectiveness of the proposed methods relative to other recent
techniques for pruning networks. This includes comparison with a greedy algorithm
presented in Polyak & Wolf [119] and an algorithm that prunes neurons based on
magnitude Kruschke [113] which has recently been shown to have good results [134,
146].

The results obtained are presented in the following subsections. These are organised as
follows. Subsection 6.2.1 presents the results obtained using MAB pruning algorithms to
prune forward neural networks developed for the UCI and Kaggle data. Subsection 6.2.2

presents the results obtained using pruning algorithms on the deep learning data.

6.2.1. Results from the Experiments on the UCI data sets

This subsection presents the results of comparing the MAB pruning algorithms with each
other and the unpruned networks: The experimental methodology was described above and

the detailed steps taken are documented in Appendix 1 for completeness. Some of the MAB
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algorithms have user specified hyperparameters. After a few trials!®, these were set as

follows:

e The UCBL1 and Thompson Sampling algorithms do not need hyperparameters except

the number of plays.

1
log(t+¢)

e We use the formula [176] where ¢ = 0.00001 to decay epsilon in the

Epsilon-Greedy algorithm and also use it to decay the temperature in Softmax.

e Some MAB algorithms have constant hyperparameter like Epsilon-Greedy where we
set epsilon to 0.9, EXP3 where we set gamma to 0.2 and in Softmax, we set the
temperature to 0.9. These hyperparameter were selected after many experiments
which suggested that these settings worked well. Generally we find these are worked
good with many data sets. addition, the number of experiments are large so we will

let using other values of these parameters by annealing method.

Figure 6.5 shows a comparison between several MAB pruning algorithms on two data sets
as the number of neurons pruned increases (Appendix 3 and 4 includes all the other results).
In Figure 6.5, the behaviour of the algorithms is mostly the same on the different data sets.
In general, UCB1 shows the most stable algorithm among the others on most of the data sets.
At the beginning of pruning, all proposed algorithms outperform the original unpruned
model then the performance decreases over the time. On face data set, SVM, decision tree,
KNN and neural networks are only algorithms were being used as this data set suffer from
curse of dimensionality [199] compared to the other data set.

Table 6-8 shows the results of the accuracy on the different proposed methods and other
classifiers. In addition, Appendix 3 presents further details about accuracy, f1 score,
precision and recall results.

In general, the results show that pruning neuron networks with MAB methods can improve
performance (accuracy, f1 score, precision and recall) and can work better than some other

classifiers trained on the same training data set.

16 Experiment different hyperparameters on Face and Iris data sets.
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We utilised all the major statistical comparison measures to confirm the performance of the
results. These include the accuracy, f1 score, precision and recall measures. Eight proposed
methods were tested against the unpruned model and the other classifiers. The p value
obtained from applying the Friedman test on the accuracy, f1 score, precision and recall
results was 4.49x1071°, 2.07x107°, 3.98x107°8 and 1.25x107°¢ respectively. All p
values are less than 0.05, indicating that there is significant difference between the methods.

Table 6-9 shows the results in rank order of performance according to accuracy.

Mean Rank
Name of Method Accuracy F1 score Precision Recall
SVM 20.218 18.844 20.156 18.656
ucsl 19.063 18.625 16.500 18.063
Trained Model (NN) 18.531 17.843 15.593 17.219
Gaussian Process (GP Class.) 16.906 17.344 16.781 17.219
Tomp. Sampling 16.313 16.031 13.781 15.531
Decay € Greedy (Decay E Gr.) 15.719 14.531 15.094 14.313
€ Greedy (E Greedy) 15.625 15.063 14.188 14.625
Softmax 15.156 13.969 14.625 13.719
Decay Softmax (Decay SM) 14.969 14.531 16.625 12.719
Random Forest 14.500 14.031 16.594 12.750
Hedge 14.406 13.531 13.938 13.031
Knn 14.156 14.438 13.125 14.312
LightGBM 14.094 12.250 12.063 10.906
Xgboost 13.813 12.469 15.188 11.938
Bagging Knn 13.188 11.500 13.000 11.031
EXP3 12.281 12.344 12.094 11.563
Decision Tree (DT_entorpy) 11.156 13.563 10.906 14.469
Bagging DT 10.407 9.719 11.906 8.125
Decision Tree Gini (DT_gini) 9.875 13.656 10.781 16.063
QDA 8.844 12.250 9.281 13.031
Logistic Regression (Log. Reg.) 8.781 7.594 10.781 8.406
LDA 8.313 8.656 9.813 8.313
Linear SVM (LSVM) 7.594 7.438 8.594 8.875
Ada Boost 6.907 8.031 8.094 10.406
Naive Bayes (NB) 4.188 7.594 5.406 9.719

Table 6-9: Results of ranked accuracy, f1 score, precision and recall results based on
Nemenyi test, which is used to compare the different models on 16 different data sets. In
this table, the highest is the better and the table is sorted on the accuracy column.

In general, Table 6-9 demonstrates that SVM outperforms the other classifiers and that

neural networks are second-best compared to other classifiers. Pruned neural networks,
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based on UCBL1 outperform the original unpruned models on these data sets. Other pruning
methods like Thompson Sampling, Epsilon-Greedy and Softmax pruned the original model
with some loss in the performance. The pruning algorithms based on adversarial bandits,
like EXP3, perform poorly.

Given the performance of the algorithms is different, the next step is to apply the Nemenyi
test between all the methods. These results are shown in Figure 6.6, Figure 6.7, Figure 6.8
and Figure 6.9 for the accuracy, f1 score, precision and recall respectively. In Figure 6.6 and
Figure 6.7, it is clear that pruning the networks made the performance in terms of both the
accuracy and f1 score statistically better than bagging decision trees. In terms of precision,
Figure 6.8, shows that pruning using UCB1 outperformed Adaboost. Finally, in terms of the
recall, Figure 6.9 shows that pruning statistically improved the network to become better
than Naive Bayes.

The results for these tests and the implementation are available online?’.

17 https://github.com/SalemAmeen/testing_python_friedman/blob/master/prune_neurons/classification/friedm

an.ipynb
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Figure 6.6: Comparison of the accuracy of all classifiers against each other with the
Nemenyi test. Horizontal lines show the critical difference away from proposed pruning
methods and any other methods. Groups of classifiers that are not significantly different

(p = 0.0.5) are out of the lines from proposed methods. CD=8.066.
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Figure 6.7: Comparison of the f1 score of all classifiers against each other with the
Nemenyi test. Horizontal lines show the critical difference away from proposed pruning
methods and any other methods. Groups of classifiers that are not significantly different

(p = 0.0.5) are out of the lines from proposed methods
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Figure 6.8: Comparison of the precision of all classifiers against each other with the
Nemenyi test. Horizontal lines show the critical difference away from proposed pruning
methods and any other methods. Groups of classifiers that are not significantly different

(p = 0.0.5) are out of the lines from proposed methods.
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Figure 6.9: Comparison of the recall of all classifiers against each other with the Nemenyi
test. Horizontal lines show the critical difference away from proposed pruning methods
and any other methods. Groups of classifiers that are not significantly different (p = 0.0.5)
are out of the lines from proposed methods.
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6.2.2. Testing MAB Based Pruning on Deep Learning Networks

As described in Chapter 2, there are different architectures for deep learning which can be
broadly categorised as feed forward networks, convolutional neural networks (ConvNets),
recurrent neural networks (RNN). Several experiments were carried out within these
categories with different data sets. The pruning algorithms described in Section 6.1 were
used on the data sets as well as the following two methods which were adapted so they could

be applied to removing neurons:

e A greedy algorithm, which is a generalised version of an algorithm presented in
Polyak & Wolf [119], Hu et al. [120] and Luo & Wu [121] which we have adapted
to prune neurons instead of feature maps. In this algorithm, compute the variance
over the output of each neuron giving samples (four examples) of training data set
then the neurons with the weak activation (activation has less variation) will be
pruned.

e An algorithm that prunes based on magnitude (weights vector) [113] which was
published recently and showed good results [134, 146]. The absolute magnitude of
the weights vector for each neuron is computed. Then, neurons with the sum
magnitude less than threshold is removed. The threshold value is specified by the

user.

Table 6-10 summarises the results obtained, listing the algorithms applied, layer selected,
number of neurons available for pruning, the methods used and the proportion pruned. The

implementation code along with results are also available online!®,

18 https://github.com/SalemAmeen/pruning_deep
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The remainder of this section elaborates upon the results presented in Table 6-10:

e Subsection 6.2.2.1 summarises how the results from applying the pruning methods
MLP were obtained.

e Subsection 6.2.2.2 summarises how the results from applying the pruning methods
on ConvNets were obtained.

e Subsection 6.2.2.3 summarises how the results from applying the pruning methods
on RNN were obtained.

e Subsection 6.2.2.4 presents the results of applying the Friedman and Nemenyi test to

compare the performance of the methods.

Each of the subsections is structured so that it presents: (i) the data set used, (ii)
hyperparameters that used for the methods (iii) MAB algorithms applied (iv) comparison

with other methods.

6.2.2.1. Pruning Multilayer Perceptron (MLP)

Data set. The data set used contains structured information about newswire articles that can
be assigned to five classes and is known as the Reuters newswire topic classification task
[200]. The main reason for using this collection is that it is one of the most classic collections
for benchmarking text classification and allows comparison with previous studies. This data
set includes 8,982 documents for training and 2,246 for testing.

Hyperparameters. A MLP (feed forward neural networks) with 512 neurons in one hidden
layer is used. We found that the model was prone to overfitting, and we therefore
experimented with introducing a dropout layer (with 0.5 probability of dropping neurons)
after the hidden layer. The initial learning rate for Adam was 0.0001, and we found that the
performance was much less sensitive to the learning rate with Adam than with other GD
optimizations. Adam’s parameters were set to 0.9 and to 0.99 for « and g respectively. The
maximum number of words was set to 1,000 and the batch size!® was set to 32. We trained

the model for 50 epochs.

19 In the neural network terminology: one epoch = one forward pass and one backward pass of all the training
examples. batch size = the number of training examples in one forward/backward pass.
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MAB algorithm. After the model was trained, we started applying the MAB pruning. We
pruned the first fully connected layer that has 512 neurons. The proposed algorithms prune
150 neurons out of 512.

Comparison to other work. From Table 6-10, we draw two conclusions:

e All proposed algorithms can prune 50% of the model without any loss in performance.
In contrast, greedy pruning and pruning based on magnitude show a decrease in
performance when the same number of neurons have been pruned as the MAB based

algorithms.

e Pruning based on magnitude has the least computation time but the computation time
of the greedy prune algorithm is O(4*512F) while the computation time?° of MAB is
O(1200F) where F is the time for forward propagation. Forward propagation can vary
between two algorithms and we ignored the other computation like assigning the
rewards and updating other parameters, which can work in parallel with forward
propagation. In addition, F can be represented by two forward propagations, one to

compute the loss before pruning and the other after pruning.

6.2.2.2. Pruning ConvNets model

The ConvNets architecture has been widely used and this section presents, describes the
experiments using many of the existing models starting from LeNet model trained on the
MNIST data to AlexNet trained on ImageNet [21].

6.2.2.2.1. LeNet model

Data set. The MNIST [83] data set was used and is a collection of handwritten digits which
contains 60,000 examples of training data and 10,000 examples of test data. The digits have

been size-normalized and cantered in 28 by 28 pixel grey scale images.

Hyperparameters. LeNet (Lenet-5) [83] is a convolutional network with two convolutional
layers and one dense layer. The network achieves 98% accuracy on MNIST [83]. We found

that the model is prone to overfitting, and experimented with introducing a dropout layer

20 Does not include playing each neuron once
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(with 0.5 probability of dropping neurons) after each fully connected hidden layer. The
learning rate for adadelta [201] was 0.01, p=0.95 and epsilon=0.00000001. The model trained

with a batch size of 128 and with number of epochs set to 12.

MAB algorithm. After the model was trained, we started applying the MAB pruning
algorithms to prune the first fully connected layer, as it has the most neurons (128 neurons).
with play time set to 500.

Comparison to other work. From Table 6-10, all the proposed algorithm can prune 62% of
the model without any loss in the performance. Our proposed algorithms outperform the
original unpruned model and outperform the greedy and pruning based on magnitude
algorithms.

6.2.2.2.2. AlexNet Model
Data set and Hyperparameters. The ImageNet ILSVRC-2012 data set [21, 22] was used,

which has 1.2M training examples and 50k validation examples. We use a pre-trained
AlexNet Caffe model [110], which has 61 million parameters across 5 convolutional layers
and 3 fully connected layers. The AlexNet Caffe model achieved a top-12 accuracy of 56%
and this model took 75 hours to train on an NVIDIA Titan X GPU [134].

MAB algorithm. We used pruning based MAB algorithms to prune 50% of both FC6 (layer
6) and FC7 (layer 7). These layers were chosen because they have the most neurons. The
play time was set to 9,000.

Comparison to other work. Table 6-10 shows the results and we notice the following:

e FC6: MAB pruning based on UCB1 and Thompson Sampling improves the result by
0.03% and Epsilon-Greedy and decay Epsilon-Greedy improve it by 0.02. Pruning
based Softmax, Hedge and EXP3 show some decline in the performance over the
original model. Greedy pruning shows an improvement in this layer as much as
Epsilon-Greedy does while pruning neurons based on magnitude has the worst

performance.

2L In ImageNet Challenge, the accuracy computed based on the top-1 prediction and top-5 where: Top-1
number is how many times the correct label has the highest probability predicted by the network. Top-5 number

is how many times the correct label is within the top 5 classes predicted by the network.
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e FC7: MAB pruning based on Epsilon-Greedy and decay Epsilon-Greedy show better
results than the others with an improvement on the original model by 0.03%. UCB1
and Thompson Sampling show good results and improvement over the original
unpruned model. In contrast to greedy pruning, pruning based on the magnitude does

not perform well.

6.2.2.2.3. ConvNet on cifar-10 data set

Data set. The cifar-10 data set [202] is used and is composed of 10 classes of natural images
with 50,000 training images, and 10,000 testing images. Each image is an RGB image of
size 32x32. For this data set, we pre-process the data using global contrast normalization and
ZCA whitening as was used by Goodfellow et al. [96]. We use the last 10,000 images of the
training set as validation data.

Hyperparameters: This ConvNet has four convolutional layers and two fully connected
layers trained on cifar-10 [202]. The network achieves 81% accuracy on cifar-10. We find
that the model is prone to overfitting, and we experimented with introducing a dropout layer
with 0.5 probability of dropping neurons after each fully connected layer and with 0.25
probability of dropping neurons after every convolution hidden layer. The learning rate of
GD was 0.01, momentum was 0.9 and decay was 0.000001. In addition, the batch size was
set to 32. We trained the model for 200 epochs.

MAB algorithm. After the model was trained, we started applying MAB pruning algorithms
to prune the first fully connected layer, as it has the most neurons. The play time was set to
1200.

Comparison to other work. From Table 6-10, all proposed algorithm can prune 21% of the
model without any loss in the performance. Our proposed algorithms outperform the original
unpruned model and outperform the greedy and pruning based on magnitude algorithms.

6.2.2.2.4. ConvNets on cifar100 data set

This experiment used the cifar-100 [203] data set, which is the same size and format as the
cifar-10 data set, but contains 100 classes, with only one tenth as many labelled examples per
class. We use the same hyperparameters on cifar-100 that same we found to work well on
cifar-10 in the previous subsection. We obtained a test set accuracy of 43%. The algorithm
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could prune 103 neurons until the performance started to decrease. All the MAB algorithms

show better results over the original unpruned networks and other pruning techniques.

6.2.2.2.5. ConvNets on SVHN data set

Data set. The SVHN data set [204] is a collection of 32x32 colour images. The data set is
acquired from house numbers in Google Street View images. There are 73,257 digits in the
training set and 26,032 digits in the test set. The task of this data set is to classify the digit
located at the centre of each image. Pre-processing of the data set follows Goodfellow et al.

[96], who used local contrast normalization.

Hyperparameters: We followed the same approach as on cifar-10 [202], where the model
has four convolutional layers and two fully connected layers, to achieve 96% accuracy. The
only difference is that we used a batch size of 128 and 20 epochs to speed up the training

time.

MAB algorithm. After the model was trained, we applied the MAB pruning algorithms to
prune the first fully connected layer, as it has the most neurons. With a play time of 1,200,
the proposed algorithms can prune nearly 205 neurons as shown in Table 6-10.

Comparison to other work. From Table 6-10, all proposed algorithm can prune 39% of the
model without any loss in the performance. Our proposed algorithms outperform the original

unpruned model and outperform the greedy and pruning based on magnitude algorithms.

6.2.2.2.6. ConvNets on IMDB data set

Data set. This experiment used the IMDB (Internet Movie Database) data set [205], which is
amovie reviews data set classifying positive or negative sentiments about reviews. It consists
of 50,000 labelled movie reviews. The 100,000 movie reviews are divided into two data sets.
25,000 labelled training instances, and 25,000 labelled test instances. There are two types of
labels: Positive and Negative. These labels are balanced in both the training and the test set.
Several authors have used this data [78, 206, 207] to classify positive or negative sentiments

about reviews.
Hyperparameters. We used ConvNet with the following architecture:

e Embedding layer is the first layer of ConvNets to map the vocabulary indices to

vectors [208] (map the words to vectors). This is a technique where words are encoded
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as real-valued vectors in a high dimensional space, where the similarity between

words in terms of meaning translates to closeness in the vector space

e The first layer is followed by 1D convolution layer and fully connected layer with 250

neurons.

We found that the model is prone to overfitting, and therefore experimented with introducing
a dropout layer with 0.2 probability of dropping neurons after the embedding layer and fully
connected layer but not the convolution layer. The learning rate for Adam was 0.01 with ¢ =
0.9 and = 0.99. The maximum number of features is 5,000, maximum lengths is 400, batch
size is 32, embedding dimension is 50, number of filters is 250, filter length is 3 and hidden

dimension is 250.

MAB algorithm. After the model was trained, the MAB pruning algorithms were applied
with play time set to 800 and with the same hyperparameters given in subsection 6.2.1. The
MAB pruning algorithms were used to prune the first fully connected layer, as it has the most
neurons. The results improved when approximately 50 neurons were pruned Table 6-10.
Using 1D convolution layer which has less weights than 2D make the neurons in the following

layer more important.
Comparison to other work. From Table 6-10, we draw two conclusions:

e All proposed algorithm can prune 20% of the model without any loss in the
performance. In contrast, the performance of the greedy pruning algorithm begins to

decrease earlier than the MAB based algorithms.

e Pruning based on magnitude has improved the performance as well.

6.2.2.2.7. Siamese Graph

Data set. The MNIST [83] data set which is described above is also used for this experiment.
Hyperparameters. To train the Siamese graph [209], we followed Hadsell et al. [209] by
computing the Euclidean distance on the output of the shared network and optimizing the loss
function. We experimented with using dropout with a 0.1 probability of dropping neurons
after each fully connected hidden layer. The learning rate for RMSProp was 0.01, p=0.95 and
epsilon=0.00000001. The model was trained with a batch size of 128 and with 20 epochs.
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MAB algorithm. After the model was trained, we started applying the MAB pruning
algorithms to prune 128 neurons with 133,504 shared parameters between two branches, as
it has the most neurons (128 neurons). The play time was set to 500 and the proposed
algorithms can prune 50% neurons as shown in Table 6-10.

Comparison to other work. From Table 6-10, when half of the model is pruned, pruning

based on MABs have not decrease the accuracy in contrast to the other pruning algorithms.

6.2.2.3. Pruning RNN

We also applied the MAB pruning algorithms to the RNN family of networks. Instead of
pruning neurons in a fully connected layer as in the previous subsections, here we prune
neurons in recurrent layers. The following subsections describe the experiments with four

well-known architectures of RNN.

6.2.2.3.1. LSTM Model
Data set and Hyperparameters. First, we trained LSTM [100] on the IMDB data set [205]

explained in subsection 6.2.2.2.6. The model contains an embedding layer as the first layer
and then followed by an LSTM layer and then a fully connected layer. The experiments used
20000 features, the maximum length of texts is 80 and the batch size is 32. We also used
dropout with a 0.2 probability of dropping neurons after first and second layer. The learning

rate used for Adam was 0.001.

MAB algorithm and Comparison to other work. We applied MAB pruning algorithms
with a play time of 400 to prune the LSTM layer. The performance of the pruned networks
improved by around 2% when the MAB pruning algorithms pruned 30 neurons out of 128 as
shown in Table 6-10.

6.2.2.3.2. Bidirectional LSTM
Data set and Hyperparameters. We trained a bidirectional LSTM [210] on IMDB data set.

The embedding layer in the model has maximum features of 20000, maximum length is 100,
batch size is 32 and number of epoch is 20. The model has an embedding layer, two LSTM
layers and a fully connected layer. We used dropout with a 0.5 probability of dropping

neurons. The learning rate used for Adam was 0.001.
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MAB algorithm and Comparison to other work. The MAB pruning algorithms were
applied with play time set to 180 to prune two LSTM layers. The performance in both layers
increased until it pruned nearly 50 neurons out of 64, except when using EXP3 and two other
pruning methods as shown in Table 6-10.

6.2.2.3.3. End-To-End Memory Networks

Data set. The Facebook bAbl data set [211] is a synthetic data set for testing a model’s ability
to retrieve facts and reason over them. In this data set, a given (question-answer) QA task
consists of a set of statements, followed by a question whose answer is typically a single word
(in a few tasks, answers are a set of words). The data set consists of 20 different tasks with
various emphases on different forms of reasoning. For each question, only certain subsets of
the statements contain the information needed for the answer, and the rest are essentially
irrelevant distractors.

Hyperparameters. We trained End-To-End Memory Networks [101] on bAbl data set [211]
with the specifications of 20000 maximum features, maximum length is 80 and the batch size
is set to 32. The model has three embedding layers followed by an LSTM layer and a fully
connected layer. We use dropout with 0.5 probability of dropping neurons after each layer

except the output. The learning rate used for RMSProp was 0.0001.

MAB algorithm and Comparison to other work. We pruned the LSTM layer using
different MAB pruning algorithms with a play time of 400. However, there are lots of extra
neurons in this layer and only a few neurons can do the same work as the full neurons where
40% out of total 32 neurons. MAB pruning algorithms show good results compared to the
original pruned model and the other two pruning algorithms as shown in Table 6-10.

6.2.2.3.4. Hierarchical RNN

Data set and Hyperparameters. We used the hierarchical RNN (HRNN) [212, 213] to train
a model for the MNIST data set. The model has a time distributed layer, two LSTM layers,
and a fully connected layer. At the first LSTM layer, every 28 by 1 column is encoded to
128 vectors, while at the second LSTM layer, all the 28 columns are encoded in 28 x 128 to
represent the whole image. Then, the fully connected layer is used to make a prediction. The
RMSProp optimizer was used to train the model with a batch size of 32, 10 classes and 10

epochs.
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MAB algorithm and Comparison to other work There was some improvement in the
model after pruning except for annealing Softmax where the performance declined compared

to the original model when 15% of the model is pruned as shown in Table 6-10.

6.2.2.4. Comparison using the Friedman and Nemenyi Tests

To compare the results from the different algorithms, the Friedman test has been applied
between the eight different proposed algorithms, the original unpruned model and the other
two pruning algorithms. The p value is 5.597x10~17, which is less than 0.05 and indicates
there is a significant difference between the different algorithms. Table 6-11 shows the
average difference between the algorithms where the higher numbers are better because the
results are based on the accuracy. Table 6-11 shows that all the proposed MAB pruning
algorithms are better than the original model. Pruning based on UCB1 and Thompson
Sampling are the best. To assess whether there is significant difference between all pruning
algorithms and the original unpruned model, the Nemenyi test is used and the results from
the test are presented in the Figure 6.10. Pruning based on UCB1, Thompson Sampling,
Epsilon-Greedy and decay Epsilon-Greedy statistically improve the model and these
improvements are not based on chance, as shown in the Figure 6.10. In addition, pruning
based on decay Softmax, Hedge and Softmax statistically improved over pruning based on
greedy pruning and the pruning based on magnitude. Full details of all tests are available

online?.

Name of Method Mean Rank

ucCB1 8.679
Thompson Sampling 8.142
Epsilon-Greedy 8.107
Decay Epsilon-Greedy 7.607
Decay SM 6.964
Hedge 6.714
Softmax 6.643
EXP3 6.036

Model 3.321
Greedy Prune 2.034
Less Magnitude 1.750

Table 6-11: Results of ranked accuracy results based on Nemenyi test, which is used to
compare the different models on six different data sets.

22 https://github.com/SalemAmeen/testing_python_friedman/blob/master/prune_neurons/DL/friedman.ipynb
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Figure 6.10: Comparison of all pruning algorithms against each other with the Nemenyi
test. Horizontal lines show the critical difference away from proposed pruning algorithms,
the orginal unpruned model and two other algorithms that are not significantly different (p

= 0.0.5) are out of the lines from proposed algorithms. CD=3.218.

6.3. Discussion

The evaluation results presented in the previous sections indicate that the proposed pruning

algorithms performed well on several data sets. Different sets of experiments were conducted
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from which the main findings can be summarised as follows:

e In general, UCB1 and Thompson Sampling pruning algorithms show the best results
among the proposed algorithms, especially when the play time is long enough. In
general, UCBL1, which is based on upper bound rewards, converge faster than the
algorithm that samples the rewards from a Bernoulli distribution (Thompson
Sampling). The bounded rewards reflect the unimportance of the model faster than
the binary rewards.

e The adversarial bandit algorithms did not perform as well as the other MAB
algorithms. One potential explanation for this is that adversarial bandits are developed
primarily for situations where the reward is dynamic and changes with time while the

other bandits assume stationary rewards.

6.4. Summary

This chapter has described applying MAB algorithms to prune neurons. The main algorithm
was presented and three new bandit functions softmax, Hedge and EXP3 were used with
some others explained in the previous chapter. The operation of these algorithms was
illustrated using an example. The chapter presented an empirical evaluation in comparison
to classification and regression methods using 16 data sets from UCI and Kaggle, showing
that the MAB based methods were able to reduce the size of neural networks without
reducing accuracy. An empirical evaluation on deep learning models trained on eight well

known data sets also showed good results.
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7. Multi-Armed Bandits for Pruning

Feature Maps

This chapter, introduces a way to remove the least important feature maps from a
convolutional layer of ConvNets to speed up inference time.
In ConvNets, while the fully connected layer has the most parameters, the convolutional
layer is responsible for the most floating-point operations (FLOPS?) [115, 214]. To reduce
the size of a ConvNets, the ideal way is to remove many neurons, as shown in the previous
chapter, while removing feature maps will lead to speeding up the inference time of
ConvNets.
Figure 7.1 shows a ConvNet before and after removing a filter F; ; and its corresponding
feature map X;,, ;. Molchanov et al. [115] have shown that the number of FLOPS for a
ConvNet can be computed by:
FLOPS = 2xH;XW;X(CinxK? + 1)XCpys

Where C;,and C,,,; are the number of inputs and outputs of feature maps (channels), H; and
W; are the height and the width of the input feature map and K is the width or the length
(assumed to be symmetric) of the kernel.
For example, in third layer in Table 2-1, the kernel is 3x3 (K=3), the number of input feature
maps are 32 (C;,, = 32), the number of the output is 64 (C,,: = 64), and the height and
width are both 15. The number of FLOPS is:

FLOPS = 2x15x15x(32x(3)2 4+ 1)x64 = 8,323,200

23 FLOPS is the commonly used measure to compare computation complexities of ConvNets
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Removing one feature map in this layer leads to reducing C,,; by 1 which leads to

FLOPs = 2x15x15%(32x(3)% + 1)x63 = 8,193,150
In addition, C,,,; will be C;,, for the next layer which leads to improving the FLOPs in the
following layer. The FLOPS of all convolutional layers in this model and some other models
on different data sets are shown in Table 7-1. As this illustrates, the ability to prune feature
maps, can also help improve the speed of inference of ConvNets without reduction in

accuracy.
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Figure 7.1 Removing the filter F;; and corresponding feature map in X;, in ConvNets.

The top diagram shows the two layers before pruning while the bottom diagram shows
the two layers after pruning the filter and feature map.
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As described in Chapter 4, there are many MAB algorithms and a number of these were tried
for removing weights and neurons and results presented in Chapters 5 and 6 respectively.
The lessons learned from the evaluations presented in Chapters 5 and 6 were used to select
the MAB algorithms to evaluate for removing feature maps, and UCB1 and Thompson

Sampling were chosen, given that both showed good performance and good running time.

Model Name Layer Hi Wi K Cin Gz FLOPS
1 26 26 3 3 32 1211392
LeNet (MNIST)
2 24 24 3 32 32 10653696
1 32 32 3 3 32 1835008
2 30 30 3 32 32 16646400
Conv (Cifar10)
3 15 15 3 32 64 8323200
4 13 13 3 64 64 12481664
1 32 32 3 3 32 1835008
2 30 30 3 32 32 16646400
Conv (Cifar100)
3 15 15 3 32 64 8323200
4 13 13 3 64 64 12481664
1 32 32 3 3 32 1835008
2 30 30 3 32 32 16646400
Conv (SVHN)
3 15 15 3 32 64 8323200
4 13 13 3 64 64 12481664

Table 7-1: Examples of computing FLOPS.

The rest of this chapter is organized as follows. The direct method is presented in Section
7.1. Experimental evaluations and analysis are presented in Section 7.2. The results are

discussed in Section 7.3 and the chapter concludes with a brief summary in Section 7.4.

7.1. Direct Method

Molchanov et al. [115] define the direct method (oracle prune) as the optimal criterion to
prune feature maps and its corresponding filters. It would be an exact empirical evaluation
of each feature map, accomplished by removing each filter in turn and recording the

difference of loss function. While the oracle is optimal for this greedy procedure [115], as
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described in Chapter 3, it is prohibitively costly to compute [115]. Since the estimate of
parameter importance is key to both the accuracy and the efficiency of this pruning approach,

we evaluate two proposed pruning methods based on UCB1 and Thompson Sampling.

7.2. Evaluation

This section reports on the evaluation of two proposed MAB pruning algorithms, namely
UCBL1 and Thompson Sampling, when they are used to prune feature maps.

The objectives of the evaluation are the same as in Chapter 6 except that there is a
comparison in relation to the direct method which is possible here because there are only a
few feature maps compared to the number of weights and neurons.

This section is organised in two parts. First, Subsection 7.2.2 presents an initial experiment
that aims to explore the extent to which the MAB methods produce results that are consistent
with the direct method which is the oracle. This is done on just the MNIST data and LeNet.
Subsection 7.2.3 presents the results obtained using MAB pruning algorithms with respect
to the two pruning algorithms (greedy pruning and pruning neurons based on the magnitude).
Both the proposed MAB algorithms were implemented using the Python programming
language. All the reported experiments in this chapter were conducted using NVIDIA
TITAN X.

7.2.1. Data sets

The algorithms were evaluate using six data sets, which include four data sets described in
Chapter 6, namely MNIST, Cifar10, Cifar100, SVHN and the following two additional data
sets:

e Caltech-UCSD Birds 200-2011 data set: This data set [215] consists of nearly 6,000
training images and 5,700 test images, covering 200 species. Branson et al. [216]
show that training ConvNets from scratch on the Birds-200 data set achieves test
accuracy of only 10.9% and it gets improved by using transfer learning. The

following steps are used to train AlexNet to get 71% accuracy on this data set:
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1. First, AlexNet (that was described in chapter 6) is pre-trained on the 1.2 million
images from the ImageNet data set and used as a feature extractor.

2. Then, the final 1,000-class AlexNet output layer is chopped off and replaced by
a 200-class CUB-200-2011 output layer. The weights of the new layer are
initialized randomly, and stochastic gradient descent (SGD) with 0.9 momentum,
batch size 64, and back propagation are used to learn the weights of the new 200-
class output layer while the weights of the old AlexNet are fixed. We use the
learning rate of 0.001, weight decay 0.0001 and trained until 90 epochs.

3. Finally, the model is fine-tuned by training the entire network jointly with a small
learning rate 0.0001 for 10 epochs.

e Oxford Flowers 102 data set: This data set [217] consists of nearly 2,040 training
images and 6,129 test images from 102 species of flowers. The training procedure is
the same as for Birds-200, except that AlexNet was fine tuned using 40 epochs with
a learning rate 0.00001 to achieve a test accuracy of 80%.

1.2.2. Intial Comparison with the Direct Method

Figure 7.2 shows the results when the direct, UCB1, and Thompson Sampling methods are
applied to prune feature maps from the LeNet model trained on the MNIST data. In addition,
the cumulative rewards are bounded between [-1,1] to show the relation between learnt
rewards and the real change of the loss computed by direct method.
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Figure 7.2: Change in training loss as a function of the removal of a single feature map
from the LeNet model. The first convolutional layer is on the left and the second
convolutional layer is on the right. The top row shows the results for brute force pruning,
the middle is for UCBL1 pruning and the bottom is for Thompson Sampling.
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Figure 7.2 shows that both proposed algorithms result in high rewards for the feature maps
that need to be pruned and low rewards for the ones that do not need to be pruned. There are
some feature maps where the rewards are close to zero and where there is a difference from
the direct method. For example, the direct method has a positive reward for the third feature
map while UCBL1 results in a negative reward. However, in practice, this is not significant
given that the other feature maps have larger rewards.

The Pearson correlation coefficients between the direct method and the two MAB methods
are:
e Correlation between direct method and UCB1 = 0.83

e Correlation between direct and Thompson Sampling = 0.80

As a further initial comparison, the regret of the algorithms was compared to a greedy
algorithm. The greedy algorithm involved removing each feature map and evaluating the
reward after presenting each example and comparing the selected feature map with the one
selected by the direct method. This was repeated for 4,800 times and the cumulative regret
computed, where for each play, a regret of one is allocated if the wrong (i.e., different from
the direct method) feature map is selected and otherwise a zero is allocated if the correct
feature map is selected. In the direct method, the horizon time was set to 60,000 examples
for every feature map, which several authors have regarded as adequate to ensure optimality
[111, 114, 115]. For the MAB algorithms, 20,000 random examples were used and unlike
the other algorithms, not all the features are evaluated for each example given the nature of
MAB algorithms. Figure 7.3 presents the results when the algorithms are applied on the two

convolutional layers of the LeNet model.

These initial experiments on just the LeNet model trained on the MNIST data show

promising results.
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Figure 7.3: Cumulative regret incurred on LeNet model trained on MNIST data set
compared to direct method.

7.2.3. Pruning Feature Maps using UCB1 and Thompson Sampling

The previous subsection explored the extent to which MAB algorithms are able to identify
the feature maps that should be deleted, where the direct method is used as the oracle. This
was, however, limited to pruning the feature maps of the LeNet model after it had been
trained on the MNIST data. This subsection presents the results of applying the algorithms
on additional data sets.

Table 7-2 shows the results from applying the two MAB algorithms, a greedy pruning
algorithm [119] and an algorithm that removes the filter that has the smallest absolute sum
magnitude among the filters [146]. The first column in the table shows the model and the
data set used to build the model. The second column shows which layer(s) have been pruned.
For example, if the number is 2 then we prune the second layer. The term “all” in the second
column means that all convolutional layers are considered. In other words, the number of
arms is equal to the total number of feature maps in the ConvNets model. The remaining
columns show the results before after pruning, including the approximate number of FLOPS
before pruning (which is based on [108]) and the percentage reduction in the number of

feature maps after pruning.
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In all the experiments, the playing time is set to five times the number of feature maps (arms).
For example, for pruning the convolutional layer in AlexNet trained on Bird-200, the total
playing time is 5x256 = 1,280.

The results in Table 7-2, show that, in general, the UCB1 and Thompson Sampling pruning
algorithms maintain the accuracy of the original unpruned models.

In addition, as the results in Table 7-2 show, the MAB methods outperform the other pruning
techniques. The experiments were carried out layer by layer, starting with the first
convolutional layer followed by the next layer and so on. We make two observations based
on these results:

e First, that we expected a pattern where the later convolutional layers were more
likely to be pruned than the earlier convolutional layers. We believed this would
happen for two reasons for this. First, to recognize objects in images, the first layer
aims to learn to recognize edges, the second layer combines edges to form motifs,
the third learns to combine motifs into parts, and the next layer learns to recognize
objects from the parts identified in the previous layer and so on [20]. From this
sequence, the first layers will be for general feature detection while the later layers
will aim to detect specific objects. Thus, it was expected that it would be easier for a
pruning algorithm to determine which feature map does not belong to any classes in
the later layers while that is difficult to remove the earlier feature maps given these
layers extract the edges which relate to all classes. The second reason, is that in
ConvNets, the later layers have a larger number of feature maps than the previous
layers which makes it more likely to have feature map that are not important.
However, the experiments show that this was true for only three of the four
experiments with convolutional networks but not for AlexNet. Although further
experimentation is needed, one reason for this might be that AlexNet was pre-trained
on the ImageNet data and hence one would expect the need for pruning the earlier
layers which may be too generic.

e Pruning all the convolutional layers together is better than pruning each layer
separately. For example, when pruning the LeNet model based on all layers together
the algorithm prunes nearly 22% from the total number of feature maps. We think
the reason is that pruning each layer separately, we enforce each layer to prune some
of the feature map while pruning feature maps in all layer, the pruning algorithm will
determine the unimportant feature maps across the layers which is expected will be

in later layers.
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Model/ Before Pruning After Pruning
Dataset No. :
No.Channels Approx. FLOPS Greedy Prune Based Magn Thompson Sampling R
Channels 2
2

w8 om ¢ on GEIGGE DGR »

194D
PPoW
1920

LeNet (MNIST) 2 32 1M 0.97 --_ 26 18.75
all 64 12m  4F 098 i o0.98 50 21.88

1 32 M 0.8 28 12.5

2 32 17M 0.8 24 25

Conv (Citar10) 3 64 8M 0.8 52 18.75
4 84 12M 0.8 50 21.88

all 192 39M 0.8 140 27.08

1 32 2M 0.4 30 6.25

2 32 17M 28 12.5

Conv (Cifar100) 3 &4 8M 56 125
4 64 12M 54 15.63

all 192 39M 148 22.92

1 32 2M 28 12.5

2 32 17M 28 12.5

Conv (SVHN) 3 84 8M 54 15.63
4 64 12M 50 21.88

all 192 39M 140 27.08

1 96 105M 90 6.25

2 256 223M 220 14.06

3 384 149M 340 11.44

4 384 112M 338 11.98

5 256 74M 0.78 228 10.94

all 1376 563M 0.78 980 28.78

1 96 105M 0.68 90 6.25

2 256 223M 0.68 222 13.28

e 3 384 149M 0.69 344 10.42
0 4 384 1nmzm A o7 % o7 334 13.02

5 256 74M & 071 | 07 226 11.72

Table 7-2: Result of pruning convolutional layers. The green cells indicate that the
method has good accuracy in contrast of red cell. The arrows point up if the error high,
down if it is low or in right direction if it is in between.
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To assess if the differences between the algorithms are significant, the Friedman test was
applied. The results indicated that there was a significant difference between the algorithms
as the p values of Friedman test is 4.25x10723. Table 7-3 presents the average rank of the

algorithms for pruning feature maps.

Name of Method Mean Rank

uUCB1 4.28
Thompson Sampling 4.10
Model before pruning 3.55

Greedy Pruning 2.03

Based on the Magnitude 1.03

Table 7-3: Average rank of the algorithms for pruning feature maps based on accuracy,
where a higher rank is better.

Table 7-3 indicates that pruning feature maps with UCB1 has the best mean rank over the
other algorithms followed by Thompson Sampling, while pruning filters based on the
magnitude has the worst rank followed by greedy pruning of the weights.

Since the Friedman test shows a significant difference between the different methods, a post
hoc test was used to find which algorithm(s) performed significantly better than the others.
For this, we used the Nemenyi post hoc test and the result is shown in Figure 7.4 where the
lines from the proposed algorithms with length of critical difference CD is plotted to show
the significant difference to the proposed algorithms. The x-axis in the diagram is the axis
on which we plot the average ranks of algorithms, where the rank increases from left to right.
In Figure 7.4, the results indicate that the proposed algorithms performed statistically better
than the greedy pruning and pruning filters based on the magnitude algorithms, as the
difference between them is greater than the CD=1.133. However, these results do not allow
us to reject the null hypothesis between the proposed pruning algorithms and the original

unpruned model. The results and implementation of these tests are available online?.

24 https://github.com/SalemAmeen/testing_python_friedman/tree/master/pruning_fearturemap/Inbound
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Figure 7.4: Comparison of all classifiers against each other with the Nemenyi test.
Horizontal lines show the critical difference away from proposed pruning algorithms and
any algorithms. CD=1.133.

7.3. Discussion

The evaluation results presented in the previous sections indicate that the two proposed
pruning algorithms performed well on several data sets. Different sets of experiments were

conducted from which conclusions can be drawn, as follows:

e MAB algorithms offer a useful way of pruning feature maps and corresponding filters
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in ConvNets.

e Pruning based on UCB1 and Thompson Sampling mimic the direct method of pruning
feature maps on the LeNet model and therefore have potential for being as effective
as the direct method but without the computational overheads of the direct method.

¢ Pruning all convolutional layers together is better than pruning every layer separately.
The pruning algorithm can determine which layer has the most unimportant feature

maps.

7.4. Summary

We have developed two pruning algorithms that can prune convolutional layers in trained
ConvNets model. The proposed pruning algorithms are based on UCB1 and Thompson
Sampling. Our evaluation shows strong performance compared to the baseline approaches
of greedy pruning or pruning based on the magnitude. One of the limitations of the proposed
algorithms is pruning and testing one feature map at each play time, which makes the
proposed algorithms slower than some baseline algorithm. In Chapter 8, we describe another
pruning algorithms that include pruning multiple feature maps at the same time, reducing
the total play time.
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8. Pruning Multiple Neurons and

Feature Maps using MABs

When a neural network is built with several neurons in its hidden layers, ideally each neuron
should operate as an independent feature detector [103]. If two or more neurons begin to
detect the same feature repeatedly (known as co-adaptation), the network is not utilising its
full capacity efficiently given that it computes the activations for redundant neurons. Hinton
et al. [103] provide one approach to counter the negative effects of such neurons by using a
technique known as dropout [135]=, which essentially omits a random bunch of neurons
during training to prevent co-adaptation [103]. Reed [111] and Wolfe et al. [114] show that
this problem of neurons that interact or cancel each other can happen even after training the
neural networks with dropout [114].

In this chapter, we introduce two pruning algorithms based on MABs to prune multiple
neurons or feature maps at the same time. Each algorithm computes the cumulative average
reward based on the change in the loss function after pruning multiple neurons or feature
maps. The cumulative reward is then used to prune the neurons or feature maps after the
playing time is finished.

The rest of this chapter is organized as follows. The expected advantage of pruning multiple
neurons over one neuron at a time is present in Section 8.1. The proposed algorithms are
presented in Section 8.2. Experimental evaluations and analysis are presented in Section 8.3

and Section 8.4 summarises the chapter.

%5 |n addition, it is a way to prevent neural networks from overfitting.
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8.1. The Advantage of Pruning Multiple Neurons over Pruning One

In term of co-adaptation, the main drawback of pruning one neuron, either based on a
specific layer or throughout the layers, is that the pruning algorithm will prune the neuron
that affects the change of loss. In other words, this algorithm assumes that any neuron effects
the output without any interconnections with other neurons, which is the optimal case where
the co-adaption is removed during training. However, the optimal case is hard to achieve
and there is no guarantee that a model will be optimal Hinton et al. [103]. That is, algorithms
that focus on removing single neurons, do not address the problem of detecting neurons that
cancel each other out or interact in a way that has a negative impact on performance [111,
114]. However, the literature review in this study identified only the one method, namely
OBS, that addressed this problem once a model has been trained. However, as described in
Section 3.2.1.2, OBS is computationally demanding, as it needs to invert a Hessian matrix.
Hence, the next section presents algorithms that aim to prune multiple neurons which may

be in the same layer or across different layers.

8.2. MAB Algorithms for Pruning Multiple Neurons and Featue Maps

The basic idea for pruning multiple neurons and feature maps is similar to that described in
Chapters 6 and 7 except that there are two main differences. First, a multi play MAB
algorithm is used to select and remove multiple neurons or feature maps instead of one
neuron or feature map. Secondly, the reward from removing a set of neurons (or feature
maps) needs attributing to individual neurons (feature maps). This is done as follows.

Assume that x; is the output of neuron i before it is pruned and 6L, is the change of the

output after pruning multiple neurons (including neuron i) then, the reward for the neuron i

will be given by,
r=x; * X9, (8.1)

Where X9 isthe reward as a result of removing the neurons. Here, we also assume the neural
networks use the ReLU function, which has been widely used in deep learning [218], where

its output is positive.
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Equation 8.1 has several properties that make it suitable a measure of reward:

e When there is no improvement from removing neurons or feature maps then the
reward is zero.

o If the new model results in an improvement, then an overall reward X8 for the group
of chosen neurons or feature maps will be generated. The extent to which a neuron
contributes to the output (and hence the reward X8) is dependent on the output of the
neuron [120]. That is, the larger the output from a neuron, the more it will contribute
to the output of the network. Hence the above measure allocates the reward in

proportion to the output of a neuron.

Figure 8.1 presents the top-level algorithm for pruning multiple neurons in which the key
step is to identify the multiple neurons to be considered:
| = MAB(* args)
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Algorithm MAB 8.1 Algorithm for pruning multiple neurons or feature maps at one trail

INPUT: Time horizon T, Trained network, Input layers to be pruned.
OUTPUT: Pruned network

Let M is the number of neurons or feature maps that are played at one trail
Let I be the set of M indexes while i is a single index

Let X; be the current reward of these neurons/feature maps

Let U; be the cumulative average reward of this arms/neurons/feature maps, initialized to zero
Let D be the random sample from training data set

Let N; be set of M neurons or feature maps

Let L(D|N) The loss function before pruning the M neurons or feature maps
Let L(D|N") The loss function after pruning the M neurons or feature maps
Let Threshold be the loss in the performance that is allowed

Let K be the number of neurons in the chosen layer

Let n; be the total current play time for neuron N;
Let S; be the number of successes and F; the number of failures, both initialized to zero
fort=1to T do /* start playing */
D = random example of the training data
Call the relevant MAB algorithm, returning the index of the selected neurons:
I = MAB(* arg)
Perform forward propagation on D to compute L(D|N)
Get the output of N,
Hold the value of the selected neurons of feature maps, temp = N;
Set the neurons or feature maps to zero N; = 0
Perform forward propagation on D to compute L(D|N")
Set the value of the neurons or feature maps to previous value, N; = temp
0 6L = L(D|N) —L(DIN")
11 X/, = REWARD(5L)
12 Compute r; for each arm such that r; = x; * Xft
Update the cumulative average reward of the current arms

Preer = (= D)/« py e + 1/ * Xﬁt

PO NUE W N

14 end for
15 PrunedModel = PrunedFunction(model,r)
16 end main program

17 Function PrunedFunction(model, rewards)
18 Set to zero the weights that have most rewards
19 return PrunedModel

20 end Function

21 Function REWARD(6L)

22 if (bounded reward) then

23 Reward+= max(0, 5L + Threshold) /Constant
24 else /* Reward for Thompson Sampling */

25 if 6L < 0 thenreward=0, F;;.1 = F;, +1

26 elsereward=1, 5;,., = S;; +1

27 end if

28 end if

29 end Function

Figure 8.1: Pruning algorithm based on MP-MAB.
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Two different multi-play multi-arm bandits are explored, namely one based on Thompson
Sampling and the second based on UCB1, both of which are described below.

As described in Chapters 5, Thompson Sampling involves sampling the next arm to play
based on drawing a random sample of the prior knowledge of the arms and then assign a
reward. The main difference here, is that instead of selecting one neuron, the top L neurons
are selected. Likewise, when adopting UCBL, the main difference is the selection of the top
L neurons. The MAB functions for these two MAB based algorithms are presented in Figure
8.2 and Figure 8.3.

Algorithm 8.2 Multiple play Thompson Sampling for binary bandits for K arms
Function MAB(t,S,F,K)
Let ie{l..K}
Let A; contain the sub of arms at time t

fori=1to M do

Sample 6;(t) for Beta(S; + 1, F; + 1) distribution forall i € {1...K}
end for
Select A; = top L arms ranked by arg ign{laalc(} 6;(t)

return |
end Function

Figure 8.2: MP-TS function where there are K neurons or feature maps.

Algorithm 8.3 Multiple play UCB1 for K arms
Function MAB(t,u,K)

Let ie{l1..K}

Let A; contain the sub of arms at time t

Selectarm A; = top L arms ranked by arg max (p;¢ + @)
€1k} " n

return |
end Function

Figure 8.3: MP-UCBL1 function where there are K neurons or feature maps.

8.3. Evaluation

This section presents the results of pruning multiple neurons and feature maps using the
algorithms developed above. Both the proposed MAB algorithms were implemented using
the Python programming language. All the reported experiments in this chapter were
conducted using NVIDIA TITAN X.
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Section 8.3.1 presents the results when the algorithms are used to prune neural networks
trained on some UCI data sets and Section 8.3.2 presents the results when the algorithms are
used to prune neural networks trained on deep learning data sets. Section 8.3.3 compares the
performance of algorithms that prune multiple neurons (or feature maps) relative to those
that prune a single neuron (or feature map) at a time. All the code used for these experiments

is available online?®.

8.3.1. Testing on UCI Data sets

The proposed algorithms were tested on four widely used data sets from the UCI repository:
Cancer, Iris, Valley, and Wine data sets. The methodology for training, pruning and testing

the networks was explained in Section 6.2 and Table 6-5.

Figure 8.4 shows the accuracy of the models as the number of neurons (two neurons pruned
at on play time) removed increases. The main conclusions that can be drawn from these
results are:
e In general, pruning neurons on these data sets results in some improvement over the
unpruned networks up to a point, after which performance decreases.

e Nearly 50% of the networks are prune until the performance sharply decreased.

8.3.2. Testing on Deep Learning Data sets

The proposed algorithms were tested on three widely used data sets from the deep learning
benchmarks: Reuters, SVHN, and MNIST data sets. The methodology for training, pruning
and testing the networks was explained in Section 6.2 and Table 6-6.

Table 8-1 shows the accuracy of the models as the number of neurons removed increases.
The first column of the table shows the data set, the model, and the accuracy. The second
column stand for the pruned layer or layers. The third column shows the number of neurons
or feature maps that are pruned in one trail. The following two columns show the accuracy
of the proposed algorithms. The final column shows the percentage of pruning relative to

the original networks.

% https://github.com/SalemAmeen/banditsbook_Prune_many_one_play based_on_loss_output
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Figure 8.4: Pruning multiple neurons at one time.

The main conclusions that can be drawn from these results are:

Pruning neurons and feature maps can be within a layer or across layers.

In general, pruning neurons and feature maps on these data sets results in some

improvement over the unpruned networks.

Nearly 8-20% of the networks are pruned after which the performance decreases.

Using two neurons that might cancel each other is more accurate when pruning the

neurons or feature maps at the same layer. However, across the networks’ layers

using a higher number of feature maps or neurons leads to improvements in the

performance
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Table 8-1: Pruning using MP-TS and MP-UCBL. The green cells indicate that the method
has good accuracy in contrast of red cell. The arrows point up if the error high, down if it
is low or in right direction if it is in between.



Chapter 8: Pruning Multiple Neurons and Feature Maps using MABs 148

8.3.3. Comparing with Pruning Single Neurons or Feature Maps

Finally, we compare the proposed algorithms with pruning single neurons and feature maps
in one trail. The experiments use the same maximum number of trials and unpruned
networks.

Table 8-2 shows the results, where the first column shows the data sets, the networks model,
and the accuracy. The second column is the pruned layer which can be either a single layer
or several layers. Then, each proposed algorithm has five columns. The first and second
column in the proposed algorithm column shows whether neurons or feature maps are
pruned. This is followed by the accuracy and the number of neurons or feature maps pruned.
The last two columns show the percentage reduction in the size of the model as a result of

pruning.

UcB1 Thompson Sampling
Multiple Prune Multiple Prune
Neuron Feature Map Neuron Feature Map
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Table 8-2: Summary of results based on accuracy from three common data sets that were
used in pruning based on single or multiple neurons or feature maps. Cells shaded black
indicate there is no result. Cells shaded green has best accuracy while red has the worse.

The main conclusion that can be drawn from these results is that in general, pruning single
neurons and feature maps results in a greater proportion of neurons being pruned than
pruning multiple neurons. This was a surprising outcome given our expectations that pruning
multiple neurons would detect neurons that cancel each other as suggested in the work of
Hinton et al. [103] and Reed [111]. The experiments here are limited to seven data sets, and
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further work in this area is needed to fully understand why the effects expected have not
materialised. One possible direction of work could be to review the measure used in Equation
8.1

8.4. Summary

This chapter was motivated by a view that removing multiple neurons at the same time would
lead to detection of correlated neurons that were unnecessary or even had a negative effect
on the accuracy of a network (e.g. Reed [111], Hinton et al. [103]). Hence, this chapter
developed two pruning algorithms that prune multiple neurons and feature maps at the same
time.

The empirical evaluation on seven data sets shows that pruning multiple neurons can reduce
the size of the models without affecting the accuracy of the model. However, contrary to
our expectations (based on the view of other authors [111]), an empirical comparison also
showed that pruning single neurons or feature maps at a time results in greater pruning.
Further work and experimentation is therefore needed to understand why pruning multiple

neurons using MAB methods was not as effective as pruning single neurons at a time.
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9. Conclusion and Future Work

9.1. Introduction

Pruning mechanisms are an important part of practical learning algorithms for deep neural
networks [134, 159, 219, 220]. This thesis explore the use of multi-armed bandits for
improving the process of pruning neural networks. This chapter offers a summary of the
research work described in this thesis, the main findings, and some directions for future
work. The rest of this chapter is organised as follows: Section 9.2 gives a summary of the
work presented. Section 9.3 shows the main findings in the context of the research questions

identified in Chapter 1. Finally, Section 9.4 recommends directions for future work.

9.2. Summary

The first stages of the study involved surveying the literature on deep learning and pruning
methods. This identified a range of pruning methods including OBD, OBS, Network
Pruning, Local Bottlenecks, Skeletonization, Iterative Pruning, Channel Level Acceleration,
Network Trimming, Entropy Based Pruning and Pruning Smallest Filters which are
described in Chapter 3. Although OBD and OBS have good theoretical foundations, they
require the inversion of a Hessian matrix that makes these methods computationally
expensive. Chapter 4 surveyed multi-arm bandit (MAB) methods including UCB based
methods, Epsilon-Greedy, Win-Stay; Lose-Shift (WSLS), Softmax, Hedge, EXP3 and

Thompson Sampling.
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Deep learning neural networks are organised in layers of neurons that are connected by
weights. Pruning can therefore occur at several layers of granularity: individual weights can
be pruned, neurons can be pruned, feature maps can be pruned, and multiple neurons and
feature maps can also be pruned. The study explored the use of MABs for each of these
possibilities:

e Chapter 5 presented six new algorithms for pruning weights based on: Epsilon-
Greedy, Win-Stay; Lose-Shift, UCB1, KL-UCB, Thompson Sampling and
BayesUCB. An empirical evaluation of these algorithms indicated that:

o The MAB pruning algorithms produced better results than the original
models.

o Some of the proposed MAB methods outperformed the other pruning
methods.

0 The proposed methods had manageable time to prune the weights of a
network in contrast to other methods like OBS and OBD.

e Chapter 6 presented algorithms that remove neurons, thereby removing all the
weights that are associated with the neuron that is removed. Multiple pruning
algorithms based on MAB are introduced. An empirical evaluation of these
algorithms shows that:

o UCB1 and Thompson Sampling pruning show the best results among the
proposed algorithms.

o0 Adversarial bandits are not as effective as the other MAB pruning algorithms.

e Chapter 7 discussed the development of pruning algorithms based on Thompson
Sampling and UCBL1 to prune feature maps with a view to speeding up ConvNets.
An empirical evaluation of these algorithms, presented in Table 7-2, shows that:

o0 MAB based pruning can be an effective way of pruning feature maps and can
reduce the number feature maps significantly. For example, in the LeNet
model trained on the MNIST data, there was a reduction of over 21% in the
number of feature maps

0 Theuse of UCB1 and Thompson Sampling for pruning feature maps produced
results that were ranked higher than both the greedy and magnitude based
approaches to pruning feature maps.

o0 Applying MAB based on all the layers produced better results than applying
them layer by layer.
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e Chapter 8 extends two MAB algorithms to play with many arms instead of one which
has the potential to remove neurons and feature maps that cancel each other.
However, the results of an empirical evaluation are not as good as the other MAB
methods. One likely reason for this is that the training process adopted may have

already led to minimisation of neurons that interact in a negative manner.

A statistical analysis of the outcomes was first conducted using the Friedman test and then
followed up with the Nemenyi post-hoc test for comparing different methods. Interesting

outcomes were obtained and these are discussed more in the following section.

9.3. Contribution and Main Findings

This section presents the main findings from the research work described in the thesis. As
initially presented in Chapter 1, the three main research questions to be addressed in this
study were:
a) How well do existing algorithms for pruning neural networks perform?
b) Can MAB algorithms be developed for pruning and which MAB methods work
best?
¢) How does the performance of the MAB based pruning methods compare with

other methods?
The thesis aimed to answer these questions, and the main findings are summarised below.

a) How well do existing algorithms for pruning neural networks perform?

The study carried out a comprehensive review of the literature, implemented a selection

of the algorithms and applied them on several data sets. The main conclusions with

respect to this question are:

e The performance of existing techniques is proportional to the size and depth of deep
neural networks. As the networks becomes bigger and deeper, the pruning techniques
perform better, unless these algorithms have very slow computation time (e.g., OBD
and OBS) in which case they cannot be used in practice [132].

e Most of the existing pruning algorithms need to retrain the pruned network after

pruning to maintain the performance of the network [36, 114].
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b) Can MAB algorithms be developed for pruning and which methods work best?

Different MAB pruning algorithms were developed to prune weights, neurons, and
feature maps. The methods developed and implemented using TensorFlow and
Python include UCB1, KL-UCB, BayesUCB, WSLS, Softmax, Hedge, EXP3 and
Thompson Sampling.

The algorithms were evaluated on 23 data sets from the UCI and Kaggle repositories,
and using eight deep learning data sets implemented using ConvNets, MLP and
RNNs.

The results show that in general, pruning based on UCB1 and Thompson Sampling
showed the best performance among the MAB pruning algorithms. The evaluation

also showed that the WSLS does not perform well.

¢) How does the performance of the MAB based pruning methods compare with other

methods?

94.

The MAB based algorithms were compared with several existing methods, including
OBD, OBS, Network pruning, random pruning, magnitude based pruning and
pruning based on activation.

As expected, OBS was very slow given the need to invert a Hessian matrix. For
example, it was 512 times slower than the UCB1 on the SPECTF Heart data set.
Pruning based on MAB presented the best results for pruning the weights, neurons,

and feature maps.

Future Work

The research presented in this thesis has shown promising results, and there are a number of

directions for future work, such as:

The literature includes some uses of UCB1 based on bounded rewards that have
resulted in good performance over the other proposed algorithms [221, 222]. In
addition, Thompson Sampling, which uses binary rewards, produced the second-best
results. Therefore, using Thompson Sampling with bounded rewards might give

better results over binary rewards and would be worth exploring in the future.
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Instead of computing the saliency based on forward propagation [113, 114, 119-121,
140], back propagation can be used to compute the change of the gradient for
particular neuron of feature [115]

One of the biggest successes in deep learning is using GPUs and parallel computing
to train deep learning. It is therefore worth implementing the MAB pruning
algorithms to take advantage of parallel computing to speed up the process of pruning
[223, 224].

The thesis also considered the use of multi-play bandits for identifying several
neurons that can be deleted. Apart from OBS, and as far as the author is aware, there
is no other method that aims to remove multiple neurons. The evaluations show that
selecting multiple neurons does not necessarily produce better results than selecting
single neurons which was a little surprising given that the literature suggests that
there are problems with neurons cancelling each other out [103, 111]. This
unexpected outcome might be because the training process employed avoided such

neurons, but needs further exploration.
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Appendix 1 Details of the Data sets and Evaluation

1. Evaluation data sets

1.1 Data sets for deep learning

1.1.1 ImageNet data set

ImageNet [104] is a big data set that contains millions of images based to the WordNet
hierarchy, where synset (synonym set) (aka node) is the meaningful concept in WordNet that
describes by words. Many images represent each node?’. The following is the one summary

of statistics of high level (main) categories?.

Ma*‘l category Mumber of synset Ave. images per synset Total num. of images
amphibian 94 591 56K
anima 3822 732 2795K
appliance 51 1164 59K
bird 856 949 B12K
covering 945 B19 T74K
device 2385 575 1610K
fabric 262 590 181K
fish 111 494 280K
flower 462 735 339K
food 1495 &70 1001K
fruit 305 &07 188K
fungus 303 453 137K
furniture 187 1043 195K
geological formation 151 B38 127K
invertebrate 728 573 417K
mammal 1138 B21 934K
musical instrument 157 891 140K
plant 1666 &00 999K
reptile 268 707 190K
sport 166 1207 200K
structure 1239 763 546K
tool 316 551 174K
tree 983 568 554K
utensil 86 912 78K
vegetable 176 764 135K
wvehicle 481 778 374K
person 2035 468 952K

27 http://image-net.org/about-overview

28 http://image-net.org/about-stats
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1.1.2 Internet Movie Review Database (IMDB) data set

The data set serves as a benchmark for sentiment classification and contains 50,000 reviews
from IMDBJ[205] along with their associated binary sentiment polarity labels. The data set
has an even number of positive and negative reviews and split into 25k for training and 25k
for testing sets. There are 50k additional unlabelled reviews for unsupervised learning. The
maximum reviews for each movie is no more than 30 reviews to avoid correlated rating. Out
of 10, the negative review has score less than or equal four and positive review if the score
is higher than seven. Then reviews with neural rating is not included in both training and
testing sets. In contrast of that unlabelled data is included positive, negative, and neural

reviews??,

1.1.3 Reuters newswire topic classification task

This data set made by Reuters Ltd for research. The data set contains large of news stories.
In this thesis, we use 8982 for training (9083 train, 899 validate) and 2246 for testing®°.

1.1.4 Mixed National Institute of Standards and Technology (MNIST) data set

The MNIST data set is a collection of handwritten digits which contains 60,000 examples of
training set and 10,000 examples for test set. The digits have been size-normalized and
cantered in 28 by 28 image 3. The following diagram shows the sample of this data set
where it shows the numbers 5, 0, 4 and 1. However, the first digit is confused between 3 and
5.

29 http://ai.stanford.edu/~amaas/data/sentiment/
30 http://trec.nist.gov/data/reuters/reuters.html

31 http:/fyann.lecun.com/exdb/mnist/
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1.1.5 The Cifar-10 data set

CIFAR-10 data set is a collection of 32x32 colour images in 10 different classes. The data
set splits into two sets. The first set is 50,000 images for training and the other is 10,000 for
testing 32. The following diagram shows the classes in the data set, as well as 10 random

images from each class®.
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1.1.6 The Cifar-100 data set

Cifar-100 is the same as cifar-10 data set with different of the number of classes where here
there is 100 classes. Each class has 600 images where splits to two groups, the first group is
500 images for training and the rest for testing. As shown in the following table, the data set

is divided to 20 super classes and each class has five class.*.

32 https://www.cs.toronto.edu/~kriz/cifar.html
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Superclass

Classes

aguatic mammals

beaver, dolphin, otter, seal, whale

fish

aquarium fish, flatfish, ray, shark, trout

flowers

orchids, poppies, roses, sunflowers, tulips

food containers

bottles, bowls, cans, cups, plates

fruit and vegetables

apples, mushrooms, oranges, pears, sweet peppers

household electrical devices

clock, computer keyboard, lamp, telephone, television

household furniture

bed, chair, couch, table, wardrobe

insects

bee, beetle, butterfly, caterpillar, cockroach

large carnivores

bear, leopard, lion, tiger, wolf

large man-made outdoor things

bridge, castle, house, road, skyscraper

large natural outdoor scenes

cloud, forest, mountain, plain, sea

large omnivores and herbivores

camel, cattle, chimpanzee, elephant, kangaroo

medium-sized mammals

fox, porcupine, possum, raccoon, skunk

non-insect invertebrates

crab, lobster, snail, spider, worm

people

baby, boy, girl, man, woman

reptiles

crocodile, dinosaur, lizard, snake, turtle

small mammals

hamster, mouse, rabbit, shrew, squirrel

trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

1.1.7 The Street View House Numbers (SVHN) Data set

The SVHN data set [204] is a collection of 32x32 read world over 600,000 digit images. The
data set is acquired from house numbers in Google Street View images. The following

diagram shows the sample of cropped digits®?
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3 http://ufldl.stanford.edu/housenumbers/
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1.1.8 The bAbl Data set

The bAbl data set [101, 211] contains 20 different tasks where each task provides the training

and testing data set. Task 6 has been used in this thesis®*. The following diagram shows

sample of this task as cited by Weston et al.

Task 6: Yes/No Questions
John moved to the playground.
Daniel went to the bathroom.
John went back to the hallway.
Is John in the playground? A:no
Is Daniel in the bathroom? A:yes

1.1.8 102 flower Data set

The data set [217] contain 102 classes of common flower in the UK. Each class contain from

40 to 258 images. The following is sample of the data s

et.

71

102

91

Category #ims Category #ims
e i llflill;e sea 43 D buttercup
anthurium 105 californian poppy
. ‘ * artichoke 78 v ;\\“-‘i. camellia
A\
azalea 96 canna lily
ball moss 46 canterbury bells

balloon flower 49 cape flower

=4 barbeton daisy 127 carnation

34 https://research.facebook.com/research/babi/

40

108

Category

fire lily

foxglove

frangipant
- ﬁltlllm-
-

garden phlox
gaura

gazania

#ims

40

162

166

91

67

78
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1.1.9 Birds 200 Data set
The data set [215] contain 200 bird categories and 6,033 images mostly from North America

and the following is sample of the data set.

1.2 Data sets for shallow neural networks in classification task

1.2.1 banknote authentication Data Set

The data set contains 1372 examples of four continues feature (variance of wavelet,
skewness of wavelet, kurtosis of wavelet and entropy of images) and binary class. However,
the data set is extracted from images that were taken from genuine and forged banknote-like

specimens %,
1.2.2 Blood Transfusion Service Centre Data Set

“The database of Blood Transfusion Service Centre in Hsin-Chu City in Taiwan.” 3. The

data set contains 748 examples, four features (R, F, M and T) and binary classes.

1.2.3 Credit Approval Data Set
This data concerns 690 examples of credit card applications " and contains 15 features and

binary classes.

% https://archive.ics.uci.edu/ml/data sets/banknote+authentication
% https://archive.ics.uci.edu/ml/data sets/Blood+Transfusion+Service+Center

37 https://archive.ics.uci.edu/ml/data sets/Credit+Approval
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1.2.4 Haberman's Survival Data Set

The data set contains 306 examples of cases from a study that was conducted between 1958
and 1970 at the University of Chicago's Billings Hospital on the survival of patients who had

undergone surgery for breast cancer®. The data set has three features and binary class.

1.2.5 Liver Disorders Data Set
The data set contains 345 examples from BUPA Medical Research Ltd. Database®®. The data

set has six features and binary class.

1.2.6 MAGIC Gamma Telescope Data Set
The data set contains 19020 examples of MC generated to simulate registration of high
energy gamma particles in a ground-based atmospheric Cherenkov gamma telescope using

the imaging technique®. The data set has 10 features and binary class.

1.2.7 Mammographic Mass Data Set
This data set contains 961 examples of a mammographic mass lesion from BI-RADS
attributes and the patient's age. The data set has five features and binary class **.

1.2.8 MONK's Problems Data Set
The data set contains 432 examples of MONK's problem. The data set has six features and

binary class*?.

1.2.9 Connectionist Bench (Sonar, Mines vs. Rocks) Data Set
The data contains 208 examples to discriminate between sonar signals bounced off a metal
cylinder and those bounced off a roughly cylindrical rock. The data set has 59 features and

binary class*.

38 https://archive.ics.uci.edu/ml/data sets/Haberman's+Survival

39 https://archive.ics.uci.edu/ml/data sets/Liver+Disorders

40 https://archive.ics.uci.edu/ml/data sets/MAGIC+Gamma+Telescope
4L https://archive.ics.uci.edu/ml/data sets/Mammographic+Mass

42 https://archive.ics.uci.edu/ml/data sets/MONK 's+Problems

4 https://archive.ics.uci.edu/ml/data sets/Connectionist+Bench+%28Sonar,+Mines+vs.+Rocks%29
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1.2.10 Spambase Data Set
This data set contains 4601 examples to detect an email either it is spam or not. The data set

has 56 features and binary class**.

1.2.11 SPECTF Heart Data Set
The data set contains 267 examples to describes diagnosing of cardiac Single Proton
Emission Computed Tomography (SPECT) images. The data set contains 44 features and

binary class®.

1.2.12 Tic-Tac-Toe Endgame Data Set
This database contains 958 examples to encodes the complete set of possible board
configurations at the end of tic-tac-toe games. The data set has nine feature and binary

class?®.

1.2.13 Pima Indians Diabetes Data Set
This data set contains 768 examples of females’ patients at least 21 years old of Pima Indian

heritage. The data set has nine features and binary class®’.

1.2.14 Breast Cancer Wisconsin Data Set
This data set contains 569 examples to diagnostic Wisconsin breast cancer. The data set has

32 features and binary class*®.

1.2.15 Adult Data Set
This data set contains 48842 examples to predict whether income exceeds $50K/yr. based

on census data. The data set has 14 features and binary class*.

4 https://archive.ics.uci.edu/ml/data sets/Spambase

4 https://archive.ics.uci.edu/ml/data sets/SPECTF+Heart

4 https://archive.ics.uci.edu/ml/data sets/Tic-Tac-Toe+Endgame

47 https://archive.ics.uci.edu/ml/data sets/Pima+Indians+Diabetes

8 https://archive.ics.uci.edu/ml/data sets/Breast+Cancer+Wisconsin+%28Diagnostic%29

49 https://archive.ics.uci.edu/ml/data sets/Adult
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1.2.16 Hill-Valley Data Set
This data set contains 606 examples of Hill Valley data set. The data set has 100 features

and binary class®°.

1.2.17 Titanic data set
This data set contains 1309 examples with 11 features and binary class. The data set

represents the sinking of the RMS®?,

1.2.18 Wine data set
This data set contains 178 examples of a chemical analysis of wines grown in the same

region in Italy. It has 12 features and three classes®?.

1.2.19 Heart Disease Data Set
The data set contains 303 examples of the presence of heart disease in the patient. It has 13

features and binary class®3.

1.2.20 Iris Data Set
This popular data set contains 150 examples of types of iris plant. It has three features and

three classes®”.

1.2.21 Car Evaluation Data Set
This data set has 1728 examples with six features and four classes®®.

%0 https://archive.ics.uci.edu/ml/data sets/Hill-Valley

51 https://www.kaggle.com/c/titanic

52 https://archive.ics.uci.edu/ml/data sets/Wine

53 https://archive.ics.uci.edu/ml/data sets/Heart+Disease
54 http://archive.ics.uci.edu/ml/data sets/Iris

55 https://archive.ics.uci.edu/ml/data sets/Car+Evaluation
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1.2.22 Abalone Data Set
This data set contains 4177 examples for predicting the age of abalone from physical

measurements. It has eight features and three classes®®.

1.2.23 Poker Hand Data Set
This data set contains 1015010 examples of a hand consisting of five playing cards drawn

from a standard deck of 52. It has 10 features and 10 classes of poker hand®’.

1.2.24 Glass ldentification Data Set
This data set contains 214 examples of glass types. It has 10 features with seven classes

“class types”®.

1.2.25 Wine Quality Data Set
This data set contains 4898 examples of the quality of wine. It has 11 features with 10 types

of classes®.

1.2.26 Face data set

The data set contains over 13,000 images of faces (examples) collected from the web where
each face has been labelled with the name of the person pictured®. In this thesis, we use the
top 5 most represented people in the data set which make the samples contains 1288

examples, 1850 features and seven classes.

%6 https://archive.ics.uci.edu/ml/data sets/Abalone

57 https://archive.ics.uci.edu/ml/data sets/Poker+Hand

58 https://archive.ics.uci.edu/ml/data sets/Glass+Identification
59 https://archive.ics.uci.edu/ml/data sets/Wine+Quality

80 http://vis-www.cs.umass.edu/Ifw/
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1.3 Data sets for shallow neural networks in regression task

1.3.1 Housing data set
The data set contains 506 examples of concerns housing values in suburbs of Boston. It has

13 features®?.

1.3.2 Airfoil Self-Noise Data Set
The data set contains 1503 examples of a series of aerodynamic and acoustic tests from
NASA. It has five features®?,

1.3.3 Auto MPG Data Set

This data set contains 398 examples and it has eights features®?.

1.3.4 Computer Hardware Data Set

The data set contains 209 examples of computer’s hardware and nine features®.

1.3.5 Concrete Compressive Strength Data Set
The data set contains 1030 of concrete and it has eight features®,

1.3.6 Parkinsons Telemonitoring Data Set

This data set contains 5875 examples of Parkinson's disease. It has 21 features. .

81 https://archive.ics.uci.edu/ml/data sets/Housing

62 https://archive.ics.uci.edu/ml/data sets/Airfoil+Self-Noise

83 https://archive.ics.uci.edu/ml/data sets/Auto+MPG

64 https://archive.ics.uci.edu/ml/data sets/Computer+Hardware

8 https://archive.ics.uci.edu/ml/data sets/Concrete+Compressive+Strength

% https://archive.ics.uci.edu/ml/data sets/Parkinsons+Telemonitoring
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2. List of classifiers (estimators) used to compare with MAB pruning

algorithms

Two kinds of models have been built to compare with MAB pruning algorithms either

models for classification or regression. First, the following list is the well-known algorithms

used to build different classifiers so we compare their results with our pruned methods.

K nearest neighbour (KNN) classifier.

Support vector machines (SVM) classifier, here we used linear SVM and rbf kernel.
Decision tree (DT) classifier, we used two different decision trees which is CART
(classification and regression trees) with gini impurity and C5.0 with entropy
impurity.

Bagging method, we used bagging with both decision trees and KNNs.

Random forest (RF), again we used with both decision trees and KNNs.

Adaptive Boosting (AdaBoost) with only decision trees.

Naive Bayes

Linear discriminant analysis (LDA) classifier.

Quadratic discriminant analysis (QDA) classifier.

Gaussian process classifier

LightGBM

Logistic regression

Xgboost

Neural network (NN), which the original model we pruned it. We used one of

nonlinearity activations function according the results in cross validation.

While the following list is the well-known regression’s algorithms that compare our results

against them.

Ordinary least square

Linear regression

Lasso regression

Bayesian Ridge regression

Kernel ridge regression

Decision tree (DT) regressor, decision tree with mean squared error.

Gradient Boosting (Xgboost), with decision tress.



Chapter 11: Appendices 185

e Neural network (NN), which the original model we pruned it. We used mean square
error activation loss function.

e Bagging method, we used bagging with decision trees.

e Adaptive Boosting (AdaBoost) with only decision trees.

e Support vector machines (SVM) regression.

1. Building the models
Mostly, there is no pretrained models available for small data sets so we need to build a
neural network model then we can prune it later. We want to make sure that the model we
have built is one of the best model on the data set. So, many steps of recipe we need to follow
to guarantee we prune one of the best model and our pruned models can work better or at
least there is no big loss in the performance where retraining the pruned models are needed.
We applied this scenario to finding best neural network models and we did the same on the
rest of machine learning algorithms. So, many steps of building best models have been tested
to guarantee that we have the best model of each machine learning model. The following

steps of recipe we follow to guarantee that we have the best for all models.

1.1 Visualize the data
The first step is visualizing the data and understand it. The goal of visualization is that
checking if there is missing data, to know the important features to each model, to find if
there is correlation between features then later can cope of the features’ correlations and
many others. Pandas package®’ (Python Data Analysis Library) has been used to do the
visualization with some other Python’s packages (matplotlib®, ggplot®®, seaborn’ and
Bokeh'). Figure 11.1 shows an example of the plotting data set to see the relation between

the features and the rest is shown in thesis online code 2.

¢ http://pandas.pydata.org/

% http://matplotlib.org/

% http://ggplot.yhathg.com/

" https://stanford.edu/~mwaskom/software/seaborn/
™ http://bokeh.pydata.org/en/latest/

72 https://github.com/SalemAmeen/chapter-five
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Figure 11.1: Visualization of abalone data.

We use many techniques to find the important features like decision tree, p-value, and
correlation to the target. Figure 11.2 shows some plots of important features where decision

tree used in some data sets and the rest is available on the thesis online code 7.
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Figure 11.2: Important Features: on the top Wine quality data set and on the bottom glass
data set.

The main goal to see if the feature important or not. In some cases, we add many features

and use PCA to get smaller dimensions.
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Finally, to see the correlation (Pearson, Kendall, and Spearman) between features or the
performance of adding new features to the model three kind of correlation have been checked
all data set (except that for deep learning). Figure 11.3 shows some plots of those correlation

and the rest available on the thesis online code 2.

Pearson correlation is firstly used to find the linear correlation between variables to avoid
collinearity between variables then if the data is qualitative other correlation is used to extract

the correlation between variables.
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1.2 Operations on Data set
There are many operations that apply to the data set before start building the models. The
first step is dividing the data to groups. The first group is the training data which contains
60% of the data for building the models and 20% for validation. The 20% rest is for testing,
this data set kept unseen until we finish prune the models and compare the results with the
original neural network and with other machine learning models. While if the data is small,
we use cross validation to build the models. However, in data set like ImageNet, MNIST
and some others, we just divide it into two groups, one for training and the other for the
validate the results. Whilst in most small data sets, we use 10 cross validations to build the
models. Appendix 1 shows the all data sets that used in this thesis. Scikit-learn (sklearn)
machine learning library "3 is used to split the data, clean the data, adding new features to
the data and other pre-processing to the small data. All those operations are done to the
training data set then the needed transformations like computing the mean and standard
deviation when normalize the training data are saved to use them on validation and testing
time. Transforming non-numerical features to numerical or filling missing data either by
computing mean, median or predict it using regression or decision trees is done on training
data set. However, we guarantee that all the models use the same training and testing data
set to avoid any bias to specific algorithm. However, most the data sets that made for deep

learning are already split into training and validation/testing.

1.3 Feature selection
Two methods used to select the features to build all models. The first method is selecting the
best important features that effect the output of the model. The second method, we use
principle competent analysis (PCA) to reduce the dimension when the data has high
dimension features such as face data set. Figure 11.4 shows the projected data from PCA on
face data set. However, sometimes we used both methods specially when new features are
generated or transforming the object features to numerical features. The transformation
introduces many new features and sometimes lead to cruse of dimensionality. First, we apply
PCA to all the features then choose the best some principles. Second, we choose the best
features from the original features of the data. Finally, we concatenate them together to get

the new features. Nevertheless, cross validation is used to choose which method is preferred

73 http://scikit-learn.org/stable/#
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and the number of features that are suitable for the model. Finally, those extracted features

applied to all classifier.

eigenface 0 eigenface 1 eigenface 2 eigenface 3

R WE

eigenface 4 eigenface 5 eigenface 6 eigenface 7

eigenface 8 eigenface 9 eigenface 10

Figure 11.4: PCA on face data set. The 12 photos on the left show samples from the data
while the 12 on the right show images after applying PCA.

1.4 Validation curve

Using Sklearn library we plot the influence of a single hyperparameter on the training score
and the validation score for two reasons. The first reason, some hyperparameter have
continuous and unlimited (like k in KNN) space so finding the best combination with other
hyperparameters is extremely expensive. Then, we use this method to bound the single
hyperparameter then later we can use this bounded range with other hyperparameters to find
the best combination of hyperparameters to the model. If the hyperparameter has small
options (like the type of algorithm in KNN (‘auto,” *ball_tree,” ‘kd_tree,” *brute’), we did
not use this method. The second reason, to find out whether the model is suffering from
overfitting or underfitting for some hyperparameter values. Figure 11.5 shows some plot of
some parameters in a model and the rest can be find in the thesis online code "2,



Chapter 11: Appendices

192

10

o9

08 |

Scare
=]
-
:

oG |

Bl

Validation Curve with DecisionTreeRegressor

— Training score
— Cross-validation score

J

10 T

20 30
max_depth

validation Curve with DecisionTreeRegressor

0.8

07 -

Score

06 |

—  Training score
—— Cross-validation score

04 X

e ———

—_— e ]

1 2

10

3 4 5 &
min_samples_split

Validation Curve with DecisionTreeRegressor

——

09

08 |

0.7 |

Score

06 |

—  Training score
—— Cross-validation score

o4

1 2

Figure 11.5: Hyperparameters of the decision tree on Boston house data set.

3 4 5 &
min_samples_leaf



Chapter 11: Appendices 193

From Figure 11.5, the diagram on the top shows that the max depth of the tree is preferable
greater than 10 while the diagram on the middle shows the minimum samples split is less

than 3 and finally the diagram on the bottom shows that minimum sample leaf is less than 2.

2. Searching in parameters space
After bounded the continues parameters and the parameters that have many values, two
different searching methods used to find the best combination of hyperparameters. First one,
we use the random searching where we set a range (according to validation curve method)
for each hyperparameter and let the algorithm find the best combination. The second method,
we set the combinations of some expected good values (where we expected the optimal

combination) of parameters then grid search used to find the best combination.

Finally, we print the list of combinations of hyperparameters where we think the optimal
combination will be one of them. Generally, the top on the list will be best combination but
we tried many of them using cross validation. Figure 11.6 shows the example of using
searching of the parameters and the rest can be found on the thesis online code 2.
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Hyperparameter optimization using GridSearchCWV __.
Parameters with rank: 1

Mean validation score: 0.8227 (std: 0.1063)
Parameters: {'n_estimators': 8, 'loss': 'linear'}
Parameters with rank: 2

Mean validation score: 0.8202 (std: 0.1180)
Parameters: {'n_estimators': 8, 'loss’: 'square'}
Parameters with rank: 3

Mean validation score: 0.8178 (std: 0.1108)
Parameters: {'n_estimators': 9, 'loss': 'linear'}
Parameters with rank: 4

Mean validation score: 0.8103 (std: 0.0909)
Parameters: {'m_estimators': 8, 'loss'": 'exponential'}
Parameters with rank: 5

Mean validation score: 0.8052 (std: 0.0935)
Parameters: {'m_estimators': 7, 'loss': 'square'}
-
Hyperparameter optimization using RandomizedSearchCWV
Parameters with rank: 1

Mean validation score: 0.8468 (std: 0.0957)
Parameters: {'n_estimators': 100, 'loss': 'square'}
Parameters with rank: 2

Mean validation score: 0.8435 (std: 0.0935)
Parameters: {'n_estimators': 20, 'loss': 'square'}
Parameters with rank: 3

Mean validation score: 0.8162 (std: 0.1297)
Parameters: {'n_estimators': 10, 'loss': 'linear'}
Parameters with rank: 4

Mean validation score: 0.7018 (std: 0.0992)
Parameters: {'n_estimators': 1, 'loss’: 'linear'}
Parameters with rank: 5

Mean validation score: 0.6801 (std: 0.1947)

Parameters: {'n_estimators': 1, 'loss': 'square'}

Figure 11.6: Finding best combination of parameters for Adaboost.
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From the Figure 11.6, the parameters generated using random search has better results.
However, we are trying all the configurations on the data set.

3. Learning curve
The main goal of learning curve is to balance the bias and variation trade-off of the models.
In other words, it is a tool that is used to find out how much we benefit from adding more
training data and whether the model suffers more from a variance error or a bias error.
However, in those experiments we cannot add more data to the models as the data is limited
by the resources and the goal is to build the best model on those data sets. Therefore, we
used learning curve to find the best ranked combinations of hyperparameters that are found
using searching on parameters space in the previous section. Figure 11.7 shows validation

curve of a model while the rest can be found on the thesis online code 2.

Learning Curves {Ada DecisionTreeRegressor Refression)
1 |:| - T T T T T T ]

Score
[ ]
[=)]

1
|

05 : .

0.4 | §

03| e Training score

&—a Cross-validation score

|::| 2 1 1 1 i i
o 50 100 150 200 250 300 350

Training examples

Figure 11.7: Adaboost on Boston house data set.
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In the Figure 11.7, the score of the validation data increase as the training data set increase
in contrast of that the training score is decrease when the training data is increase. In general,

the model can learn the function.

4. Training the models
After we make sure there is no bias and various on the models by using validation curve, we
start training the models one by one on training data and monitoring the performance using
cross validation. However, if the validation performance is not good we retrain them on other
combination until we find the best validation performance. We used various metrics like
accuracy, f1 score, recall, precision, support, confusion matrix, ROC and others are used to
see the performance of validation data. After trained neural network model and other
machine learning models, we save the trained models to test them with our pruning models
and see the performance of our pruned models comparing to original neural networks model
before prune and the other machine learning models. On the thesis, online code "2, there are

many metrics on training and validation data sets.

With the binary data sets, we compute and plot the receiver operating characterize (ROC) in
each model. Figure 11.8 shows sample of the plotting of ROC in adult data set and the rest
is available on the thesis online code 2.
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Figure 11.8: ROC on adult data set.

Finally, we plot the confusion matrix on all testing data sets. Figure 11.9 shows sample the
confusion matrix on pima data set. We can see an improvement of the performance of the

pruned models over the original neural networks models.
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Appendix 2 Visualization on testing UCI Data sets
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Scores of different Models
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Scores of different Models
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Appendix 3 Visualization on Testing Different Data sets

The Performance over the number of neurons' pruned The Performance over the number of neurons' pruned
0.7
ucb1 i ucb1
— Epsilon Greedy | — Epsilon Greedy

0.95 = /_}, o — Annealing Epsilon Greedy 4 — Annealing Epsilon Greedy

= :“E I — Softmax 065 - — Softmax

) — Annealing Softmax ) — Annealing Softmax

1 N~ ‘_'<\»\ — Exp3 | — Exp3

1 Hedge 4 Hedge
097 \ Thompson Sampling 0.6 1 Thompson Sampling

Accuracy

\ Accuracy

—

\ 0.55
0.85
\
\ 0.5
0.8 1 .
] y ]
1 0.45
0.75 . \
L e e e e e e e e L N B B B N B B B E B B B By E R B e B IIV|IYIV[IIIITII\II'[IIII'[IIII'[II
5 10 15 20 25 30 35 40 5 10 15 20 25 30

Spambase Data set Abalone Data set



Chapter 11: Appendices

208

1.1

0.9

0.8 1

0.7

0.6

The Performance over the number of neurons' pruned

ucb1
— Epsilon Greedy
— Annealing Epsilon Greedy
— Softmax
— Annealing Softmax
— Exp3

Hedge
Thompson Sampling
Accuracy

Adult Data set

1.05

0.95

0.9

0.85

0.8

The Performance over the number of neurons' pruned

%%Tﬁ’\{

ucb1
— Epsilon Greedy

— Annealing Epsilon Greedy

— Softmax
— Annealing Softmax
— Exp3

Hedge

Thompson Sampling

Accuracy

Cancer Data set



Chapter 11:

Appendices

209

1.2

114

The Performance over the number of neurons' pruned

ucb1
— Epsilon Greedy
— Annealing Epsilon Greedy
— Softmax
— Annealing Softmax
— Exp3
Hedge
Thompson Sampling

Accuracy

Car Data set

The Performance over the number of neurons' pruned

0.56
ucb1
] — Epsilon Greedy
1 — Annealing Epsilon Greedy
-;\ /\/\ — Softmax
— Annealing Softmax
0.54 — Exp3
1 A Hedge
E Thompson Sampling
g \ Accuracy
0.52
\
0.5
0.48 A I
5 10 15 20 25

Wine Quality Data set



Chapter 11: Appendices 210

The Performance over the number of neurons' pruned The Performance over the number of neurons' pruned
ucbi ucb1
09 — Epsilon Greedy | — Epsilon Greedy
— Annealing Epsilon Greedy 1 — Annealing Epsilon Greedy
— Softmax 09 — Softmax
— Annealing Softmax J — Annealing Softmax
0.8 — Exp3 4 — Exp3
Hedge 1 Hedge
Thompson Sampling 1 Thompson Sampling
Accuracy 08 Accuracy
0.7
J \/\ 0.7
0.6 | \ / \ \/\ i
;\ AV N /\)Q(\ _
0.5 \/ M4
S S VA ;..‘.\m..\. LA W

25 30 35

Glass Data set Heart Data set



Chapter 11: Appendices

211

0.44

0.42

0.4

The Performance over the number of neurons' pruned

|

\/1

ucb1
— Epsilon Greedy
— Annealing Epsilon Greedy
— Softmax
— Annealing Softmax

— Exp3
Hedge
Thompson Sampling
Accuracy
15 20

Chest Data set

0.74

0.72

0.7

0.68

0.66

0.64

0.62 -

The Performance over the number of neurons' pruned

ucb1

— Epsilon Greedy

— Annealing Epsilon Greedy

— Softmax

— Annealing Softmax

— Exp3

Hedge

Thompson Sampling

Accuracy

5

10 15

Pima Data set

20



Chapter 11: Appendices 212

The Performance over the number of neurons' pruned The Performance over the number of neurons' pruned
0.6 - ]
1 ucb1 i ucb1
] — Epsilon Greedy J — Epsilon Greedy
055 1 — Annealing Epsilon Greedy | — Annealing Epsilon Greedy
1 — Softmax 09 - — Softmax
] — Annealing Softmax | — Annealing Softmax
1 — Exp3 l — Exp3
05 Hedge Hedge
1 Thompson Sampling | Thompson Sampling
] Accuracy | Accuracy
0.45
0.4

0.35 =%

0.3

Poker Data set Titanic Data set



Chapter 11: Appendices

213

0.65

0.6

0.55

0.5

The Performance over the number of neurons' pruned

ucbi
— Epsilon Greedy
— Annealing Epsilon Greedy
— Softmax
— Annealing Softmax
— Exp3
Hedge
Thompson Sampling
Accuracy

My
i

Valley Data set

0.9

The Performance over the number of neurons' pruned

ucb1
— Epsilon Greedy
— Annealing Epsilon Greedy
— Softmax
— Annealing Softmax
— Exp3
Hedge
Thompson Sampling
Accuracy

Wine Data set



Chapter 11: Appendices 214

Appendix 4 Testing MAB Pruning Algorithms in
Regression Data sets

Likewise, the classification data set, we compared MAB pruning algorithms between each
other to see which pruning technique was the best and then we compared with the other
classifiers. The comparison includes the original neural network models and the other
machine learning models. In addition, the code of the implementation and complete results

are available online™.

Comparing the results of MAB pruning algorithms among each other and with the
original unpruned networks:

R-squared is used to test the performance between the models in the regression data sets.
Figure 11.10 shows the r-squared between different MAB algorithms over a number of
pruned neurons. In Figure 11.10, the behaviour of all MAB pruning algorithms is nearly the

same and in general UCBL is mostly more stable than the others.

4 https://github.com/SalemAmeen/regression
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Figure 11.10: R-squared on different MAB pruned models on x-axis shows the number of
pruned neurons and in y-axis shows the accuracy.

Figure 11.11 shows that all proposed algorithms compared to the original networks when

20% of the original unpruned networks are pruned. Although these networks are small,
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pruning them using MAB (specially algorithms based on UCB1 and Thompson Sampling)
leads to good new models and sometimes better than the original.
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Figure 11.11: R-squared of MAB algorithms and the original unpruned model tested on
regression testing data sets

Comparing MAB pruning algorithms with other models:

We compare proposed pruned models with the other regression models, as shown in Figure
11.12. From the Figure 11.12, we can see that the performance has been improved when the
models are pruned. In many cases, the UCB1pruning algorithm achieves the best results

among the all models.

The p value of applying Friedman test on the r squared to these six data sets and 19 different
algorithms is 7.45x107°7, which is less than 0.05. It indicates that there is significant

difference between the mean of the different algorithms. Table 11-1 shows the average
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difference between the algorithms where the higher numbers have better results based on the
r squared.

Table 11-1 shows proposed algorithms based on UCBL1, Hedge, Softmax and Decay Epsilon-
Greedy pruned the original model and the results are improved even by pruning nearly 20%
of the original models. The next step is to prove whether this improvement is significantly
different or not by using Nemenyi test between all the algorithms and the results as shown
in the Figure 11.13.

Figure 11.13 shows that there is a large improvement when using UCB1. Pruning based on
UCBL1 made the neural networks model even better than linear regression (Ordi. Least Sq),
LASSO, Bayesian Ridge and SVM. Hedge pruning algorithm improves the original model
and makes it statistically better than the regression model and LASSO. Softmax and Decay
Epsilon-Greedy pruning algorithm statistically improved the original unpruned model to get

better results than SVM regression.
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Name of Method Mean Rank
ucCB1 15.500
Xgboost 15.0
Hedge 14.083
Kernel Ridge 13.0
bagging 12.833
Softmax 12.833
Decay E Gr. 12.750
NN 12.167
Decay SM 12.083
EXP3 11.750
E Greedy 11.667
Tomp. Sampling 10.667
DT 9.500
KNN 7.500
Ada boost 5.500
Ordi. Least Sq 4.0
LASSO 3.500
Bayesian Ridge 3.167
SVM 2.500

Table 11-1: Results of ranked R squared results based on Nemenyi test, which is used to

compare the different models on six different data sets.
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Figure 11.13: Comparison of all classifiers against each other with the Nemenyi test.

Horizontal lines show the critical difference away from proposed pruning methods and
any other methods. Groups of regressions that are not significantly different (p = 0.0.5)

are out of the lines from proposed methods. CD=10.07
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