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Abstract 

The problem of finding connected components in undirected graphs has been well studied. It is 

an essential pre-processing step to many graph computations, and a fundamental task in graph 

analytics applications, such as social network analysis, web graph mining and image 

processing. Recently, it has been a major area of interest within the field of large graph 

processing. However, much of the research has focused on solving the problem using High 

Performance Computers (HPC). In large distributed systems, the MapReduce framework 

dominates the processing of big data, and has been used for finding connected components in 

big graphs although iterative processing is not directly supported in MapReduce. Current big 

data processing systems have developed into supporting iterative processing and providing 

additional features other than MapReduce. Moreover, current connected component algorithms 

in large distributed processing system only use the traditional approach to choosing the 

component identifier based on the lexical ordering of the node ID value. This study investigates 

how to enhance the performance of finding connected components algorithm for large graph in 

distributed processing system. It uses the approach to considering the graph degree property in 

choosing the component identifier, reviewing how this can affect the efficiency of the 

algorithm. In the design of our proposed algorithm features provided by current new processing 

systems such as moving the computation more toward the data partition in Spark are integrated. 

This study thus review how this has affected the performance. The degree approach to choosing 

the component identifier is experimentally tested using different algorithms. The study then 

applies the proposed approach on the fastest existing algorithm, and experimentally compare 

the performance of the connected component algorithm using both the original and our 

modified algorithm. The results show that using the degree approach has played a vital role in 

the evolution of the graph size during the process, leading to a faster convergence and 

significant performance improvement when case vertex pruning is applied in the algorithms. 

Furthermore, they demonstrate that in many cases optimising the design of the algorithm with 

local pre-processing of the data has resulted in performance enhancement. 
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Chapter 1: Introduction 

Big Data was the buzzword of the year 2013[1]. Ever since, the trend towards adopting big 

data processing system has increased and it is commonly seen in every aspect of life[2]. 

Therefore, it has become important for a wide range of scientific and industrial processes, 

especially as the cost of storage is decreasing and the ability to capture different kind of data 

is growing[3]. 

In view of the diversity of data acquired nowadays and the massive amount of data stored, 

there is a need to find new ways to deal with data beyond the traditional database, such as 

handling data that do not usually fit in a single machine memory or disk [4][5]. One approach 

is to look at data as a network or a graph with edges connecting things together, those edges 

can take different forms of relationships. This metaphor of graph is currently used in many 

areas: computer science, economics, sociology, biology, and many more[6]. Almost 

anything can be represented as a graph [7]. Figure 1-1 shows LinkedIn knowledge graph, 

where “entities” on LinkedIn, such as members, jobs, titles, skills, companies, geographical 

locations, schools, etc, and the relationships between them are represented using graph. 

 

Figure 1-1: Example of LinkedIn knowledge graph 1 

                                                 
1 https://www.linkedin.com/pulse/machine-learning-linkedin-knowledge-graph-qi-he/ 
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Graphs are considered to be a very flexible data model that can be used to express 

relationships between entities, and to recognize local and global characteristics of the 

system, and to analyse different features of the complex networks[8] [7] [9].  

Extensive research has been carried out on graphs and graph processing, as graphs are one 

of the most widely used data representations and have been extensively used to efficiently 

process data and extract knowledge[10][7]. However, recent graphs are beyond the ability 

of traditional systems to handle, either because the sizes of current graphs are very big, and 

they usually do not fit in a machine’s memory, or because current algorithms cannot process 

such graphs efficiently, particularly when using the current distributed systems[11]. 

Our focus in this research is on the problem for finding Connected Components (CC) 

efficiently in an undirected graph. A component represents a graph (or subgraph) where any 

two vertices inside that graph are connected via paths, and there is no edge that connects any 

vertex outside the component[6]. This problem has been well studied, as it is an essential 

pre-processing step to many graph computations, and is a building block in complex graph 

analysis such as clustering[12][13][14]. It has been a major area of interest within the field 

of large graph processing and much of the research so far has focused on solving the problem 

using High Performance Computers (HPC), with high computation power and equipped with 

very large memory capacity[15].  

Large-scale graphs (or big graphs) are usually stored using a distributed file system, like 

Hadoop, either in the cloud or locally[16]. Hadoop[17] is an open-source framework that 

allows for the distributed storage and processing of large datasets across clusters of 

commodity computers. The MapReduce[18][19] framework dominates the processing of 

large-scale data on Hadoop, and it is commonly used for mining big graphs[20]. However, 

iterative processing is not directly supported in MapReduce. Nonetheless, some recent 
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works[21][22] show that it is possible to outperform other processing models for finding 

connected components using MapReduce. Yet, only a few studies have investigated this 

problem in big data distributed system using MapReduce[14].  

1.1 Research Motivation, Aim, and Objectives: 

Our work builds on the knowledge that current big data processing systems have become 

more advanced with features beyond MapReduce. For example, a processing system, like 

Spark[23][24], supports iterative processing and provides additional features other than 

MapReduce such as data partitioning and caching. Spark also supports graph processing 

using GraphX[25], which is an open source Spark API for graph-parallel computation. 

Moreover, current connected component algorithms in large distributed processing system 

only use the traditional approach in choosing the component identifier for each connected 

component based on the lexical ordering of the node ID value. Hence, the aim of this research 

is to enhance and optimise the performance of finding connected components in large 

undirected graphs using MapReduce. 

This could be achieved by addressing the following questions: 

 Based on the Graph Structure properties, how to increase the efficiency of the 

algorithm by considering graph structure properties in choosing the component 

identifier? 

 Based on the Processing System properties, how to increase the efficiency of the 

algorithm in modern processing systems using the new features provided beyond 

MapReduce? 
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To achieve this research aim, the following objectives have been identified:  

1. To adopt a new approach to enhance the performance of CC algorithms by 

considering the graph structure in choosing the component identifier. In our case, we 

use the degree property in choosing the component identifier for each connected 

component. 

2. To enhance the performance of the algorithm by using the features provided by the 

new current processing systems. In our case, we based our optimisation on the 

concept that moving the computation process towards where the data is stored could 

help enhance the performance. This is essentially the concept behind MapReduce 

also. However, we could benefit further from systems like Spark that provide extra 

features by caching the data in memory and controlling the partitioning process 

across the cluster. 

3. To review current MapReduce algorithms for finding connected components and 

choosing the most recent one that outperforms other algorithms to implement 

proposed optimisations. 

4. To use the best practices and design patterns that have been proven to be efficient in 

implementing MapReduce algorithms. 

5.  To apply the new approach by developing an algorithm for finding connected 

components in large-scale graphs and implementing it in the distributed processing 

system (GraphX/Spark).  

6. To evaluate the efficiency of the new algorithm by analysing its performance using 

known tested graph datasets and experimentally compare the performance against 

fastest existing algorithms. 
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1.2 Research Methodology: 

Our approach for finding connected components in large scale graphs is based on the degree 

of the nodes in the graph and not only the ID of nodes as it is commonly used. Development 

and implementation would be applied using GraphX on Spark, an open source Spark API 

for graph-parallel computation. The research will apply some of the best practices and design 

patterns that have been proven to be efficient in implementing large-scale graph mining 

algorithms in MapReduce. Spark’s ability to cache some parts of the data in memory for use 

in later iterations will be used. This could help to decrease both the number of iterations and 

the intermediate communication load between iterations, and eventually greatly enhance 

performance. This could be achieved without losing the ability to expand a graph that does 

not fit in memory where Spark can split the cache file on local disks with the need to compute 

again. 

We adopt an empirical approach method in our research to estimate the effectiveness and 

the efficiency of all techniques applied to enhance the performance of finding connected 

components algorithm. The approach implemented is tested using large synthetic and real-

world datasets. An overview of our methodology is presented in figure 1-2, with the 

corresponding chapter in this thesis. 

Initially, we start by exploring Big Data and give overview of the main processing systems 

and techniques used with it (Chapter2). In particular, we focus on Apache Hadoop system 

and the MapReduce programming model and its limitations, in addition to Apache Spark as 

they dominate the big data processing systems currently used. Next, we review graphs and 

big graphs, and focus on big graph processing systems (Chapter 3). Our focus in this research 

is on the problem of finding connected components in large graphs, and more specifically 



6 

 

using a distributed processing system. Thus, we review available algorithms that use the 

MapReduce programming model (Chapter 4). 

Proposed Algorithm

Chapter-5

Big Data

Background

Chapter-2

Large Graph processing

Chapter-3

CC Algorithms in MapReduce

Chapter-4

Proposed Improvements

Graph 

Structure 

Property

Processing 

System Property

Testing

&

Evaluation

Chapter-7

Implementation

Chapter-6

Framework Design

 

Figure 1-2:Overview of the research methodology followed in this thesis 

 

Then, we introduce our proposed approach in trying to fulfil the objective of optimising and 

enhancing the performance of the connected components algorithm, and approach it from 

two angles; using graph structure degree property, and using properties of the processing 
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system, such as caching and partitioning in Spark. Afterwards, we design the framework 

model for our algorithm (Chapter 5). For implementation, we use the open source system 

Spark, namely its graph processing library GraphX, to implements each enhancement 

introduced in the designed framework (Chapter 6). Next, we test and evaluate our 

implementation using synthetic and real-world datasets and compare the results to the results 

of other algorithms. When evaluating the optimisation, we compare our implementation 

results with the results of the original unmodified algorithm. For choosing the datasets, we 

used open public datasets that often appear in the evaluation of similar algorithms from 

related researches. All our tests run in a cloud environment using a virtual cluster (Chapter 

7). Finally, we conclude and summarize the result of this study and describe some of the 

limitations faced in the process of conducting this research, and then we suggest future work 

to overcome some limitations or to further extend this research (Chapter 8).  

1.3 Contributions: 

The contribution in this thesis are as follows: 

(i). Using the node degree approach in finding connected components algorithm: 

using the degree approach in choosing the connected component identifier will 

always result in less number of iterations until convergence, however it adds some 

overload on the system due to the extra work required to calculate the degree for each 

node and the increased size of messages due to the attachment of the degree to the 

node. Nonetheless, this approach showed significant performance improvement 

when applied to algorithms which apply vertex pruning; where unuseful nodes for 

the computation are excluded from the process after each iteration. In this kind of 

algorithms (Cracker in our case) the number of iterations decreases and the size of 

graph shrinks faster when this approach is applied, leading to better runtime. 
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(ii). Using the local computation for connected components approach:  

Moving more computation towards where the data is stored, and trying to apply 

computation on a data partition before the need to do computation on the cluster can 

effectively improve the performance of the algorithm. In the case with the Cracker 

algorithm, despite the inconsistency in results, in general there is a noticeable 

performance improvement especially in the seed propagation phase for the larger 

datasets. This approach should to be wisely considered and implemented as it could 

increase the load on the system and lead to performance degradation. 

(iii). Considering different level of computation in the design of the algorithm. 

In big data processing system operations are applied at different level, by identifying 

the level of processing, and integrating them in the process of the algorithm design 

can help to increase the efficiency of the algorithm. For example, start by processing 

the data partition, then process the collective data of partitions inside a cluster worker 

node, and finally process all the data at the cluster driver node. Customising operation 

in the algorithm for each level could increase the performance of the algorithm. In 

this study, processing has been customised and applied on the data partitions in the 

cluster driver nodes. However, additional operations could be added to process the 

data inside a cluster worker node using multi-core structure of the cluster nodes. 

(iv). Guidelines to be implemented in different context  

It is worth noting that one of the major contribution of this work is to encourage 

active researcher in the field to consider features provided by the current new 

processing systems in the design of their algorithms using MapReduce. This could 

be considered as useful guidelines to be implemented in different context. 
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1.4  Outline of the Thesis  

The content of this thesis is structured as follow: Initially, explore big data processing 

systems and techniques (Chapter2). Next, review graphs and big graphs processing systems 

(Chapter 3). Review available algorithms for finding connected components using 

MapReduce (Chapter 4). Then proposed our approach to enhancing the performance of the 

connected components algorithm (Chapter 5). Describe the implementation process for the 

proposed enhancement on the fastest existing algorithm (Chapter 6). Next, experimentally 

test and evaluate the proposed approach using both the original and modified algorithm 

implementation on synthetic and real-world datasets (Chapter 7). Finally, present 

conclusions and some limitations and future works. 
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Chapter 2: Big Data Background 

2.1 Big Data:  

2.1.1 Big Data definition 

“Big Data” was described as the BUZZWORD for the year 2013-2014 [1], as the discussion 

about it is growing with the expectation that the digital universe of data would reach over 35 

Zettabytes in 2020 [3][26].  

 

Figure 2-1: A Mountain of Data represent by multiple of the unit byte[27]. 

 

In 2015, it was estimated that data reached close to 8 Zettabytes, with a network of 15 

billion connected devices.  This ocean of data could be imagined as 18 million libraries of 

Congress, which are 462 Terabytes each [28]. (See Figure2-1) 

For example in the field of social media, the daily generated data in 2011 by Facebook is 10 

Terabytes (TB) and by Twitter is 7 TB [3], and in 2012 it was reported that Facebook social 

graph contains over a billion nodes and more than 140 billion edges[26]. Multimedia places 

a huge load on the internet. Google alone has more than a million servers around the world.  

In 2013, Over 6 billion mobile subscribers in the world send 10 billion SMS every day[29]. 
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In 2016 there were 300 hours of video uploaded to YouTube every minute and more than 

1.3 billion unique visitors and over 3.25 billion hours of video watched each month. This is 

expected to increase in 2017[30]. In order to exploit the value of this huge amount of data, 

organizations must consider three things:  

1. Data usually has the characteristics of continuous flow.  

2. Analysing the data now is a job that requires significant skill. This is where a Data 

Scientist is needed, i.e. a professional in analytics and IT who has a deep understanding of 

the field being investigated and with the management skills and ability to effectively 

communicate with decision makers.  

3. Real and appropriate outcomes will need both business users and IT people to work 

together when analysing large-scale data[31]  [32].  

2.1.2 What is Big Data?  

Big Data is broadly defined as  data that is too big, fast, and hard to deal with  using 

conventional database tools [4][5]. 

A more technical view is provided by Katal et al.[33], Hunter[34], Kraska[1], Chaudhuri[35] 

who define Big Data as  data that requires new technologies and architectures. This is 

because the database management tools or traditional data processing applications are unable 

to process the data in a timely, cost effective way, because it is too large to be stored and 

processed and too complex and varied to be analysed and visualised[36]. However,  

Venkatram et al. argued that the definition of Big Data varies between organisations and 

people based on the data characteristics and the use cases of the data analysis[37]. The name 

“Big Data Analytics” is also given to the process of research into Big Data to disclose hidden 

and secret patterns [29]. 
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2.1.3 Components (Three Vs & +V) 

Early in 2001 Doug Laney presented the 3Vs concept in a published research note about the 

three challenges of increasing data: data Volume, Variety and Velocity [38].  

Later the Three V's became the main components or characteristics that are used to explain 

what Big data is [33][29][39][40] (figure 2-2). 

 

Figure 2-2: Big Data Components, the 3 Vs2 

 

 Volume: is the word associated with “BIG” in big data. It includes the increasing 

massive amount of data collected and produced and goes beyond the ability to hold and 

process easily.  

 Variety:  data come from many sources. These include, for example, web logs, sensor 

data, social media data, emails, images, documents and audio. Data in general comes in 

three types: structured, semi-structured and unstructured. Data Variety is probably the 

hardest to manage when processing a large amount of data.  

 Velocity: is concerned with the speed of the data coming from various sources. For 

example, streaming data and sensor data or data that is required to be handled in real-

time. 

                                                 
2 https://www.datameer.com/images/product/big_data_hadoop/img_bigdata.png 
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In addition to the main 3Vs some researchs [29][33][40] introduced extra Vs, that could 

relate to  specific business needs and which depend on how the data would be used  to 

facilitate business decision-making[37]: 

 Value: how useful is the data in finding useful insights that helps in making better 

decisions [33] [40] . 

 Verification: ensuring appropriate data security and that added value should be made to 

the organization [29] . 

 Components such as Veracity, Validity and Volatility were also introduced[37]. 

According to Madden [4] in this explosion of data and the process to adopt the Big Data’s 

three Vs, some commercial Relational Databases managed to handle the volume problem 

(e.g. Greenplum, Teradata, Vertica). On the other hand, open source systems such as MySQL 

and Postgres were unable to manage this problem. However, both commercial and open 

source traditional database systems struggle with the velocity and variety problems. 

Furthermore, they are not efficient when handling streaming data and lack statistics and 

modelling support adoption. 

As a result, many research projects attempted to fill the gap between data analysis and data 

processing. They usually adopted three approaches:   

1. Extending the relational model – for example projects by Oracle and Greenplum.   

2. Extending the MapReduce/Hadoop model for example projects like: Apache 

Mahout, Spark, HaLoop, Twister, and Daytona.   

3. Building new systems – for example projects like GraphLab and SciDB. 
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2.1.4 Big Data Benefits 

A huge amount of data will be provided to be investigated and analysed by applying big data 

analytics in different fields and many sectors. Therefore, rapid advances and discoveries in 

many disciplines are expected, in addition to the success and increasing profits for many 

enterprises [39]. Big data Analytics can be financially beneficial as well as helping an 

organization to have deeper insights into its data whilst enabling faster decision by 

processing the data in real time and moving the data processing to where it is stored. When 

data scientists and IT experts work closely with  business users  more efficient solutions to 

the problems being studied become possible[28] and this helps decision makers to make 

better-informed decisions and  develop better strategies[41]. 

Sagiroglu & Sinanc[29] listed some business benefits that arise when applying big data 

analytics. These include more focused marketing, more direct business insights, client based 

segmentation, discovery of market opportunities, and automated decision making. 

2.1.5 Associated Challenges with Big Data:  

Big Data promises beneficial opportunities. However, to be achieved many challenges must 

to be addressed. Kraska [1] divided big data issues into:  

1. Big Throughput, which concerns the problem associated with storing and 

manipulating a large amount of data.  

2. Big data analytics- which are those issues related to transforming data into 

knowledge. 

Bhatia & Vaswani [39] highlighted the following issues that appear during each phase of big 

data analytics: issues of scale, heterogeneity, lack of structure, error-handling, privacy, and 

visualization. 
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For a successful Big Data project, questions about data integration, volume, skill availability 

and solution costs  should be considered [42]. Katal et al. [33] brought into light various 

challenges and issues associated with adopting Big Data solutions. These are:  

(a) Technical challenges, which include issues like, fault tolerance, scalability, quality 

of data and heterogeneous data.  

(b) Storage and processing issues.  

(c) Analytical challenges.  

(d) Skill requirements.  

(e) Privacy, security, data access and sharing of information. 

Issues related to privacy, security, data access and sharing of information are very sensitive 

issues that all need to be well addressed [33][34] as Big Data Applications could be used for 

malevolent intent and will not be in an organization’s best interest. For example, by 

aggregating enough information about individuals from their environment with other 

information from different sources such as social media, an intrusive profile that has 

considerable personal information about an individual could be built [43].   

 

2.2 Big Data Technologies:  

Many projects have attempted to develop a distributed system that can handle large-scale 

data. For example:  

 Hadoop [17], is a project to develop  open-source software for reliable, scalable and 

distributed computing. 

 Naiad [44], is Microsoft system for data-parallel dataflow computation that focusses 

on low-latency streaming and cyclic computations. 
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 Apache Spark[23], [24], is an open source cluster computing system that has in-

memory nature and aims to make data analytics fast.  

 HPCC (High Performance Computing Cluster)[45], is an open source massively 

parallel-processing computing platform that solves Big Data problems. 

 Pregel [46], is a framework for processing large graphs in which nodes exchange 

messages between each other and update their own states in memory.  It has an 

efficient, scalable and fault-tolerant implementation on clusters of thousands of 

commodity computers. 

 Storm [47], is a free open source distributed real-time computation system. Storm 

makes it easy to reliably process unbounded streams of data and can be used with any 

programming language. 

 S4 [48], is a distributed, scalable and fault-tolerant system for processing continuous 

unbounded streams of data. 

There are other approaches available, which differ according to the problem area or the 

application they were designed to address. However, Hadoop is the most dominant platform 

for distributed processing and many other projects were built using of Hadoop's framework. 

Projects can also work side by side with it or use the Hadoop Distributed File System 

(HDFS).  

2.2.1 Hadoop & MapReduce:  

Therefore, this study will describe Hadoop and explain in more detail its programming 

model MapReduce with an example. It will then discuss some MapReduce limitations and 

detail some of the alternatives available. 

Dealing with massive amounts of data is a reality. New software has developed, starting with 

the development of a new file system that can handle large files [49].  MapReduce was 
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subsequently proposed by Google [18][19] as a programming model to deal with large 

datasets in scalable and distributed fashion [50]. 

Hadoop is an open-source framework that allows for the distributed processing of large data 

sets across clusters of computers using simple programming models. It is based on 

MapReduce. HDFS was developed for reliable, scalable, distributed computing [17]. It 

allows working with thousands of computers and dealing with petabytes of data [16].  

HDFS (Hadoop Distributed File System)  is based on the Google File System [49].  It 

operates on commodity computers to store data across hundreds of computers. Data nodes 

will host files, files are divided into chunks (usually 64 megabytes size), which are replicated 

on different disks (usually three times, one disk should be on a different rack). A Master 

node has a directory that records where each file is stored and replicated [51]. 

MapReduce gives the programmer the advantages of not needing to consider the details of 

data distribution, parallel executing, replication and load balancing. Its programming 

concept is familiar [52] and allows parallelised and distributed execution for jobs across 

clusters of computers. It requires two functions [51].:  

1. Map function, which is defined by the programmer to process Key-Value data. each 

chunk or more of a given data will be processed by the map function and gives output 

as key-value pairs. During the shuffling phase, pairs are collected by a master 

controller and sorted by their keys value.  They are then divided among reducers in 

such a way that each group with the same key goes to the same reducer.  

2. Reducer function, takes the key-value pairs and combines all the values associated 

with the same key and carries out any computation defined by the programmer. It 

then outputs the new value. The reducer output could be in key-value pairs to feed 

another mapper in an iterative way 
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The Hadoop cluster is at least one machine running the Hadoop software. In each cluster, 

there is a single master node with a varying number of slave nodes. Slave nodes can act as 

both the computing nodes for the MapReduce and as data nodes for the HDFS.  This is 

illustrated in figure 2-3. 

 

Figure 2-3: Hadoop HDFS and MapReduce3 

A client submits a job to the master node, which manages it with the slaves in the cluster. 

JobTracker controls the MapReduce job, reporting to TaskTracker. TaskTracker will process 

the map or reduce operations task. Once the map function has finished a task, the output is 

sorted and divided into several groups, which are distributed to the reduce functions. 

Reducers may be located on the same node as the mappers or on another node.  TaskTracker 

reports to JobTracker when it finishes a task. JobTracker then schedules a new task for  

TaskTracker [28] [53].  

Apache Hadoop is in continuous development and is used in both commercial and  research 

sectors[53]. Many packages have been developed to run on Apache Hadoop. These include: 

Ambri, Avrp, Cassandra, chukwa, Hbase, Hive, Pig, Spark, Tez, ZooKeeper and others. 

                                                 
3 https://blogs.oracle.com/financialservices/big-data:-from-hype-to-insight-part-2-infrastructure-and-
technology 
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Hbase is a column oriented, scalable, distributed database. Pig is  a high-level language and  

Mahout is a scalable data mining library [17]. 

Yarn[54] is a resource manager for managing distributed applications which separated 

cluster resource management capabilities from the original MapReduce. It gives Hadoop 

better reliability, availability and improved cluster utilization. It also supports programming 

paradigms besides MapReduce (figure 2-4). 

 

Figure 2-4: Apache Hadoop with YARN4. 

                                                 
4 https://hortonworks.com/webinar/yarn-code/  

https://hortonworks.com/webinar/yarn-code/
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i. Word Count Example: 

MapReduce will be explained using a word count example shown in figure 2-5. The 

example assumes a collection of documents files Doc1, Doc2, Doc3, and each document 

has a textual content v1, v2, v3, respectively.  

 

Figure 2-5: MapReduce word count Example 

 

Initially the file is stored in the HDFS file system in chunks, (see Figure 2-6), where in this 

case each chunk is one document “Doc”, and each chunk of data is passed to the Mapper.  

In the map phase the map function (mapper) will divide the content of each document into 

words and emit a key-value message that has the word as a key and number 1 as a value 

(indicating that this word appeared once). 
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Figure 2-6: Map task and Reduce task in Hadoop 

 

In the shuffling phase, the output from the mapper will be aggregated and sorted and all the 

messages that share the same key (which is the word here) will be sent to the same reducer. 

The intermediate results are stored locally (not in HDFS) as temporary files and then passed 

to the reducer.  

In the reduce phase, the reducer will receive messages that each has a pair of a words and a 

list of values. In this case the reducer will sum all the values for each word to count the 

words. The output is stored in the HDFS. The pseudocode for word count example is shown 

in figure 2-7. 

 

Figure 2-7: MapReduce count word example pseudo code 
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ii. MapReduce Alternatives 

a) MapReduce Limitations 

MapReduce is one of the most used paradigms for processing distributed file systems. 

MapReduce is very flexible as there is no schema or index, however this may give poor 

performance when compared to relational databases[55].  For low-latency processing 

systems it is not suitable as MapReduce computation uses batch processing  unlike the 

stream computation which has continuous jobs[55].  Furthermore, much development is 

addressing the way it is implemented, as it is not efficient when applications require repeated 

MapReduce iterations. This is because MapReduce has no memory since it assumes the input 

is too large to fit in memory, and at each iteration it writes to three replicas in the distributed 

file system which is an overhead, The map tasks for subsequent iterations cannot  begin until 

all the previous stages are complete [56]. Improving the performance of MapReduce and 

enhancing  large-scale data processing have become a very important area of research, with 

MapReduce parallel programming being applied to many data mining algorithms [57].  

b) MapReduce Evolution 

Rajaraman & Ullman [51] identified three approaches to improve  the performance of 

MapReduce: 

 Iterate MapReduce: enhance iterated MapReduce run-time and make it more efficient 

by avoiding the data copy between each iteration and pipelining the output of the reducer 

directly into the map phase of the next MapReduce iteration. This approach has been 

added to Hadoop as an extension to support iterative algorithms. For example: 

o Twister [58], is an iterative MapReduce framework that provides a long 

running Map and Reduce tasks the “do not terminate  after the execution of 

each iteration” capability It also differentiates between two types of data: 

variable data and static data which remain fixed throughout the computation 
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in each iteration (usually it is the larger of the two). The mapper in Twister 

will stream its output directly to the reducer[59]. 

o HaLoop [60], extends the Hadoop MapReduce framework by supporting 

iterative MapReduce applications, adding various data caching mechanisms 

and making the task scheduler loop-aware. 

o Tez [61] is a project is aimed at building an application framework which 

allows for a complex directed-acyclic-graph of tasks for processing data 

which allow for dynamic performance optimizations[61]. It enables a user to 

run interactive jobs on the top of YARN.  

 Generalize data-flow graph of MapReduce tasks.  This generalizes the MapReduce 

paradigm to a system that supports any acyclic collection of functions, where map and 

reduce are simply two types of operations, each one can be instantiated by many tasks. 

Each is responsible for executing that function on a portion  of the data. Examples of 

such data flow systems are: DryadLINQ[62],Naiad [44], Hyracks [63], Clustera [64]. 

o Spark [23], [24], is a framework that supports iterative applications, it 

focuses on caching the data between different MapReduce-like task 

executions by introducing resilient distributed datasets (RDDs) that can be 

explicitly kept in memory across the machines in the cluster. 

o Naiad[44], is a Microsoft system for data-parallel dataflow computation that 

focusses on low-latency streaming and cyclic computations. 

o Stratosphere[65], is an open-source software stack for analyzing Big Data. 

Stratosphere recently became an Apache project under the name Apache 

Flink[66]. it tries to bridge the gap and combine the flexibility of MapReduce 

and the efficiency of parallel DBMSs. It exploits in-memory data streaming 

and integrates iterative processing deeply into the system runtime, as it 
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introduces special kinds of iterations (delta-iterations) that can significantly 

reduce the amount of computation as iterations proceed. 

 Direct Implementation of recursion in MapReduce [56] to try to solve the problem of 

recovering from non-blocking tasks failing, without the need to restart failed tasks. There 

are two main models:  

o Graph based models such as Pregel [46] and Giraph[67], by using the Bulk 

Synchronous Parallel (BSP) paradigm, which is considered more efficient 

than MapReduce for graph processing. However, it places a restriction of 

needing to have a combined memory size of the machines processing the 

graph larger than the graph size.  

o Stream based models such as S4 [48] or Storm[47]. 
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2.2.2 Apache Spark 

Apache Spark [23], [24] is a fast and general-purpose cluster computing system which has 

in-memory nature, It provides similar scalability and fault tolerance properties to 

MapReduce using high-level APIs in Java, Scala, Python, and R that enable interactively 

querying big dataset on clusters. In addition, it supports a set of tools including Spark SQL 

for SQL and structured data processing, MLlib for machine learning, GraphX for graph 

processing, and Spark Streaming (shown in figure 2-8). 

 

Figure 2-8: Apache Spark5. 

 

Spark evaluation shows a performance which is up to 20 times faster than Hadoop for 

iterative applications, speeds up a real-world data analytics report by 40 times, and can be 

used interactively to scan a 1 TB dataset with 5–7 seconds latency[68]. 

The main abstraction Spark provides, is a Resilient Distributed Dataset (RDD)[69], which 

is a read only collection of elements partitioned across the nodes of the cluster that can be 

operated on in parallel and can be rebuilt if a node is lost. In addition, it provides two shared 

variables:  

(1) Broadcast variables, which only copied to each worker once and cache values in 

memory,  

                                                 
5 https://spark.apache.org/ 
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(2) Accumulators, in which workers can only add to using an associative operation such 

as counters and sums. 

In Spark, developer writes a driver program that connects to a cluster of workers. In the 

driver program one or more RDDs are defined through transformations (e.g., map and filter) 

which are lazy operations create a new dataset from an existing one, then action operations 

are invoked (e.g., count, collect, save) to run the computation on the dataset and return a 

value to the driver (figure 2-9). 

Figure 2-9: RDD Operations6 

This design increases the efficiency of Spark as transformations are lazy and are only 

computed when the first time an action is used to return a value to the driver program. In 

addition, Spark can persist an RDD in memory and keep the elements around on the cluster 

for much faster access the next time it will be needed. Persisting can be on disk in case we 

want to save memory and we don’t want a heavy processing operation to be recomputed.  

Figure 2-10:Spark System[69] 

                                                 
6 https://spark.apache.org/docs/latest/rdd-programming-guide.html 
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Which could be significantly efficient in applications that need iterative algorithms and 

interactive data mining tools (figure 2-10). 

As mentioned before RDDs [69] [23] is the main abstraction Spark used to perform in-

memory computations on large clusters where RDD’s elements are partitioned. RDDs 

created in transformation operation in four ways: 

 From a file in a shared file system 

 By “parallelizing” a Scala collection 

 By transforming an existing RDD. 

 By changing the persistence of an existing RDD, either by keeping it in memory or 

writing it to a disk. 

When an action operation is invoked (e.g., count, collect, save) on RDD, Spark will build a 

directed acyclic graph (DAG) of stages to execute based on RDD’s lineage graph. RDD has 

enough information about how to compute its partitions from data in stable storage it does 

not need to exist on a physical storage and achieves fault tolerance using a notion of lineage 

rather than the actual data, thus when data on a partition is lost it will automatically recovered 

just on that partition using the transformations that originally created it. In addition, RDD 

can be cached or persisted on the cluster for later reuse.  

There are three options for storage of persistent RDDs: 

 in-memory storage as deserialized Java objects, 

 in-memory storage as serialized data,  

 On-disk storage. 
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Internally, RDD interface are represented using five pieces: a list of partitions; preferred 

location of a partition; dependencies on parent RDDs; a function to compute based on its 

parents; metadata about how the RDD is partitioned. Two kinds of dependencies are 

distinguished between RDDs: narrow dependencies, where parent RDD is transformed to 

only on child RDD; wide dependencies, where multiple child partitions may depend on it. 

Knowing the type of dependencies in RDD helps to make efficient decision to recover a 

node failure, as with a narrow dependency only the lost parent partitions need to be 

recomputed (figure 2-11). 

 

join with inputs not 
co-partitioned 

union 

groupByKey 

join with 
inputs co-

partitioned 

map, filter 

“Narrow” dependencies: “Wide” (shuffle) dependencies: 

Figure 2-11: RDD dependencies[69]. 
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Spark use RDDs to perform in-memory computations on large clusters, similarly to what 

Distributed Shared Memory (DSM ) do. However, RDD has many advantage over DSM 

such as: DSMs use checkpoint to roll back the whole program upon failure. On the other 

hand, RDDs can be recomputed in parallel on different nodes using lineage. Spark can detect 

slow nodes and use RDDs to run backup copies on different nodes. When RDDs does not fit 

in memory can be stored on disk in a similar way to MapReduce. 

RDDs evaluated and used to express a number of other cluster programming frameworks 

and help to optimise performance by caching wanted data in memory, partitioning it to 

minimize communication, and providing efficient fault tolerance. For example, Spark can 

express MapReduce model using flatMap and groupByKey operations, or reduceByKey if 

there is a combiner. Furthermore, RDDs can be persisted in memory to simply and efficiently 

implement Iterative MapReduce model such as HaLoop[60] and Twister[58] through a 

series of MapReduce jobs to loop[69]. 

Currently Spark is one of the most widely used open source processing engines for big data. 

It provides rich language-integrated APIs with a wide range of libraries, and both the 

usability and performance of Spark are continuing to improved[70]. 



30 

 

Chapter 3: Literature Review:  

3.1 Graphs 

3.1.1 Introduction to Network 

Over the past decade the way we live and work has enormously changed due to the boost 

advances in technologies and the increase in complexity of the communication systems 

available, this has been reflected mainly in how we become dependent on such technologies 

and systems. Moreover, it was predicted that this trend will continue according to the 

Gartner’s report “Top 10 strategy technology trends for 2015”[2], which shows that there 

has been an increase in adoption and investment in new concepts such as Internet of Things 

(IoT), where billions of everyday devices or equipment will be connected to the Internet 

using smart machines where smart technologies and devices are evolving rapidly. In another 

word, our real world is merging with the virtual world by going beyond many of the 

geographic limitations and especially with the increased interactions with social network 

systems. In addition, our environment is becoming more intelligent, with the mass volume 

of data generated; analytics is now deeply embedded everywhere seeking for a better and 

smarter understanding.  

With the huge amount of data collected, there is an urgent need to efficiently deal with it and 

extract knowledge that no one has discovered before. One approach is to look at this data as 

a network with links connecting things together, those links can take different kind of forms 

of relationships. This metaphor of networks is currently used in many areas: computer 

science, economics, sociology, biology, and many more. It can effectively address many of 

the challenges in each area by understanding the “connectedness” of these complex systems.  

By “connectedness” two aspects are considered, (1) Graph Theory: the study of the network 
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structure - who is connected to whom, and (2) Game Theory:  the study of strategic behaviour 

in the network - by understanding each individual action in correlation with everyone in the 

systems and how the system will react to this action [6]. 

3.1.2 Graph Theory: 

Modelling the relationship in a network by graphs helps to generate a natural human 

interpretation and simple mechanical analysis [10]. This concept is not new, back few 

centuries in 1736 Leonhard Euler in his paper on the Seven Bridges of Königsberg laid the 

foundation of graph theory. Since then mathematicians extensively studied graph and its 

properties [71]. 

Almost anything can be represented as a graph [7], if a system contains many single units 

interacting  with each other through a certain kind of relationship, each node of the graph 

stands for one of the units of the system and  relationships between different units are 

indicated by edges[72]. Graph are considered to be a very flexible data model that can be 

used to express relationships between entities, and to recognize local and global 

characteristics of the system, and to analyse different features of the complex networks 

[8][7][9]. 

Graphs have been used to understand complex human and natural phenomena [73]. In 

general, graph is used in any domain when there is a need to find a network representation 

of logical or physical links between entities. Its applications spread on wide variety of 

domains such as: linguistics, economics, sociology, biology, chemistry, and pharmacology 

(e.g. graphs model the complicated structure of chemical compounds and protein structures), 

and computer science (e.g. Worldwide Web, workflows, XML documents, computer 

networks, physical connections, computer vision, video indexing, text retrieval and social 
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networks) and many more, where graph algorithms have been developed to solve different 

kinds of problems [7] [8] [74] [75]. 

3.1.3 Definition 

With the diversity of data acquired nowadays, a need to find a way to deal with data beyond 

the multi-dimensional model used in traditional database. Graph is way to represent 

structured and heterogeneous data as set of objects that are linked to each other in different 

ways. A Graph G = (V, E) is consists of set of nodes V (Vertices) that are connected with 

each other by links called edges E. Usually Graph represented as directed, undirected graphs, 

with weighted edges and nodes, tree graphs, and in many variants. It's used to help studying 

the relationship between objects such as paths, positions, associations, sequences and 

structures[8] [6] [11]. 

3.1.4 Characteristics 

According to the survey conducted by IBM [8], many graph techniques and algorithms has 

been developed showing how data is represented, interoperated and analysed. Usually graph 

algorithms categorised as follow:  

1. Structural algorithms (network analysis algorithms), that try to understand the 

structure of the network and analyse the relationships between network entities and 

explore topological properties of a graph, such properties as:  

a) Order and Size: the number of nodes and edges.  

b) Degree: the number of edges incident for the node, in-degree which is the number 

of incident on the node, out-degree which is the number of incident from the 

node. 

c) Distance: the number of edges in the shortest path between two nodes.  
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d) Diameter: the longest of all shortest paths between two nodes. 

e) Girth: the length of the shortest cycle. 

f) Connectivity coefficients: the minimum number of nodes that when removed the 

graph will be disconnected. 

g) Clustering coefficients: a measure to show how nodes cluster together. 

h) Centrality: which determines the importance of a node in a graph. The four main 

measures of centrality are:  

1) Degree Centrality: the degree for that node normalized with the total 

number of edges. 

2) Closeness Centrality: is a measure for distance between a node and all 

other nodes in the graph. 

3) Betweenness Centrality: is a measure for the number of shortest paths go 

through a node divided by the number of shortest path in the graph. 

4) Eigenvector Centrality: is a measure for the importance of a node in the 

graph. 

2. Traversal algorithms, which navigate paths in a graph to solve problems such as:  (a) 

route problems by trying to optimize path lengths under certain conditions. (b) Flow 

problems, for example, investigate flow of oil or gas over a directed graph. (c) 

Coloring problems as partition the graph by labelling its entities. (d) Searching 

problems by traversing nodes to answer query or find a problem stated. 

3. Pattern-matching algorithms, by finding different graph patterns (e.g., cliques, 

cycles, sub-graphs, network motifs) in a graph. Interesting application for this type 

of algorithms include: social analytics, organizational analytics, epidemiology, 

financial network modelling, pharmacology, and neuroscience.  
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Applying the mining algorithms on graph data is a challenge, as the graph miners need to 

adapt or redesign their algorithms to be able to handle the new measures and properties of 

graphs and be able to store, query and explore graphs in a similar way as in traditional 

databases. Because of the fact that the structure of data is different, it hard to defined graph 

measures and properties using classical data mining algorithms. In addition to the fact that 

usually recent graphs are very big and does not fit in memory to be handled using traditional 

mining algorithms[11] . 

3.2 Big Graph 

According to Skhiri [11], nowadays there is an urgent need to deal with structured, 

unstructured, and heterogeneous data instead of the traditional one. Thus, graphs are now 

widely used because of its expressive power and the ability to connected object in different 

way. However, mining is hard to implement because of the structure of the data, and size of 

the data as the real-world graphs are very big, and usually does not fit in a machine memory. 

Adding to that, there is no single model that efficiently fits all the types of graph algorithms 

and application, nonetheless many have been developed to solve specific problems or to 

meet some special classes of applications. 

3.2.1 Big graph History: 

Graph processing is not new, it is a well-investigated area of research, in addition big graph 

has been always a problem. However, the perception of defining how large is big graph has 

been evolving.  

Usually the big graph problem was dealt with by adding more power to the system (Scaling 

up); increase the processing power, adding more core and more memory. Thus, the move 
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was toward using High-performance computing (HPC) using shared memory parallel 

systems, which is an active area of research and development.  

Nowadays, a rising trend to capture and store any data available, especially as the cost of 

storage decreasing and ability to capture different kind of data increase. Pushed by the world 

getting more connected; more connected devices and embedded sensors and expanding 

networks and others all contribute to found the area of the Internet of Things (IoT); in 

addition, people life is more digital nowadays than ever before, and there is increasing 

presence of social media in our life (Facebook, Twitter, Snapchat, Instagram, and many 

more). 

The existing real-world dataset is getting large enormously, these datasets reflect different 

kind of relationships and can be generally efficiently represented using graph structures. 

However, as the graph grow larger their size and complexity go beyond single processing 

machine ability and make processing it with HPC systems a challenging task which is not 

always suitable for it[14]. 

Appearance of the MapReduce concept and its implementation in Hadoop equipped 

researchers with a powerful tool to process large graphs, and a new trend toward processing 

large graphs in cluster using distributed systems with commodity hardware raised (Scaling 

out). 

It is challenging to ensure the traditional set of properties ACID (Atomicity, Consistency, 

Isolation, Durability) in graph database because of the different data structure, as a result, 

new tools and data models were developed to adapt to the new data structure. For example, 

new querying languages proposed like, Datalog, Xpath, Gremlin, Cypher, SPARQL to 

provide graph support and give richer queries[76]. 
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Likewise, new techniques for handling large graph processing developed, Skhiri[11] 

introduce three categories: (1) high-performance graph DB such as DEX or Titan, (2) in-

memory and HPC/MPI graph processing such as SNAP, and (3) distributed approach based 

on Bulk Synchronous Processing (BSP) such as Pregel. Hence Graph Management Systems 

(GMS) solutions developed could be categorised as[56], [77]:  

a) Transactional GMS such as: Neo4j (centralized graph database), Jena, 

HyperGraphDB, RDF3x. 

b) Analytic GDM such as Pregel (open source implementation Giraph) 

c) Both such as Trinity, Horton, Titan (distributed graph database).  
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3.2.2 Big Graph Systems categorisation 

The development in graph processing has recently flourish especially with unprecedented 

amount of data acquired and captured, in addition it is motivated and inspired by the latest 

advances in big data processing. Pushed by the big data processing move, many systems 

have been developed to process, manage and analyse graph data. 

We could identify two main categories in the big graph systems: 

 Graph Databases systems: which is a database founded on the graph structure 

(vertices and edges with their properties) to represent the graph data and store it, and 

provide the means to query and retrieve data efficiently. 

 Distributed graph processing systems: which provide the ability to do graph 

analytics using iterative processing algorithms in distributed manner on cluster more 

efficiently and reliably than the graph database systems can do. 

3.2.3 Big graph system requirements: 

Junghanns  and Guerrieri [76] [78]  both indicate that in order to have systems that can 

flexibly manage big graphs and can efficiently analyze them the following requirement 

should be met: 

1. The graph systems should be adaptable with powerful graph model that is not 

restricted to fixed schema, but it would be able to process graph with heterogeneous 

vertices and edges with different kinds of data and provide tools to process and 

analyze it. 

2. Provide a powerful query language to retrieve and analyze graph data, and support 

processing complex graph analysis jobs. 
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3. High performance and scalability in graph systems should be offered, to achieve that 

in graph databases the emphasis is on how to support query optimization, indexing 

and efficient graph storage that can expand as the size of the graph increase. On the 

other hand, with distributed graph processing systems, the main focus is on how to 

efficiently implement graph operator and partition the large graph in a distributed 

cluster, in addition offer expanding processing power when needed by expanding the 

cluster by increasing the number of nodes. 

4. Providing persistent graph storage and offering support for ACID compliant 

transactions on persistent data, reading it, analyze it, and storing it back in distributed 

systems.  

5. Graph processing system should not offer the user hard and complex experience 

when analyzing the data, instead it should offer powerful tool to query the data, in 

addition the ability to interactively explore the data and visualize it. 

6. Failure is most likely to happen in big clusters and it is very important for the system 

to be resilient to failure so the computation will continue even when a node or process 

fail.  
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3.2.4 Graph databases  

Graph databases are used to store data that is based on graph structure with Create, Read, 

Update, and Delete (CRUD) methods, they provide graph operators which are designed to 

enhance the performance on graph transformation and computation. They are generally 

designed to be used with online transactional processing (OLTP) systems, where special 

optimizations for performance, integrity, and availability are considered[79]. 

Usually one or more graph data model is supported in Graph Databases. A graph data model 

is the conceptual representation that is used to model the real world entities and the relations 

among these entities as a graph[79], [80]. 

 Majority of graph databases support the Property Graph Model (PGM), in which a 

set of key-value pairs can be associated with any vertex or edge in a directed 

multigraph, however only edges with one start vertex and end vertex are permitted.  

 From the Semantic Web movement comes another graph model Resource 

Description Framework (RDF), it has in its structure collections of triples (subject-

predicate-object), where vertices are (subjects, objects) and edges are (predicates). 

These triples form a directed labelled multigraph [76].  

 Only a few graph database systems use the Generic Graph Model called Hypergraph 

in which it supports arbitrary user-defined data structures to be attached to vertices 

and edges. In contrary to PGM, in hypergraph It is permitted to have edges with any 

number of vertices at each end similar to many-to-many relationships in traditional 

databases[79]. Such systems provide flexibility to model another graph models, but 

also restrict the ability to provide optimized operators for graph transformation and 

computation  [76].   
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In a recent work by Junghanns  [76], he reviewed some of the most recent graph database in 

term of their data model, application scope, and storage technique for graph in large scale. 

Mainly they support either PGM or RDF but some like IBM SYSTEM G7, Stardog8, and 

Blazegraph9 support both of them, the last two store PGM using RDF. Only few support the 

Generic graph model such as IBM System G and HypergraphDB10. In term of application 

scope, many focus on providing transaction and querying functionality where only small part 

of the data is accessed. However only few provide support for graph analytics where whole 

data need to be processed; such systems either provide built-in algorithms for graph analytics 

or provide the ability to run custom graph algorithms on the database such as Blazegraph.  

Apache Tinkerpop11 gives both the functionalities of graph databases (OLTP) system and 

graph analytic system for the user in one system by virtually integrating graph-processing 

system in graph database. Furthermore, Tinkerpop also offer Gremlin12 graph traversal query 

language. In term of storage, some use the native approach where data is stored in graph-

optimised form such as adjacency list. In non-native approach, the graph database is 

implement on the top of other systems such as relational or document-oriented database, 

OrientDB13 is an example. Other systems such as IBM SYSTEM G  and Titan14 offer choice 

of different kind of storage options[78].  

  

                                                 
7 http://systemg.research.ibm.com/ 
8 http://docs.stardog.com/ 
9 https://www.blazegraph.com/ 
10 http://hypergraphdb.org/ 
11 https://tinkerpop.apache.org/ 
12 http://tinkerpop.apache.org/gremlin.html 
13 http://orientdb.com/orientdb/ 
14 http://titan.thinkaurelius.com/ 
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3.3 Big Graph Processing Systems 

 

Big graph processing is very new growing trend, nonetheless it is very active research area 

in academia with leading companies (Google, Facebook, Microsoft, IBM, and many others) 

investing and pioneering in its development. However, the development move is not in one 

direction, one direction is to manage large scale graphs using single machine, the other is 

efficiently process graph algorithms on parallel systems, and the last one is inspired by the 

big data move and based on processing big graph in a distributed system, which our main 

focus here. 

Development of distributed big graph systems impose extra challenges other than those 

inherited from big data processing, as a consequence of to the irregular structure of graphs 

and its algorithms. For example, it involves extensive communication and message passing 

between vertices due to its iterative processing nature, adding to that graph algorithms are 

most likely to be explorative where whole data need to be processed. Furthermore, 

computation performance can be seriously affected by different partitioning strategies 

because of the problem of load balancing and increased communications between nodes in 

cluster[81]. 

3.3.1 Features of Big Graph Processing Systems: 

We can possibly categorize the big graph systems along multiple dimensions, as a 

consequence of the existence of many features that play rules in defining system 

performance and its application domain. Based on the work done by [82][83], the key 

features can be discussed under the following headings, which are: 
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i. Graph Programming Model: 

A graph programming model is a way to abstractly specify the underlying computing 

infrastructure components like interface, methods, events that helps in describing graph data 

structures and algorithms. Kalavri[82], [84] distinguished between two levels of graph 

programming model: 

 High-level programming model: in which the programmer can mainly focus on the 

logic of the algorithm rather than computing environment where graph partitioning 

and communication mechanisms are hidden. however, he will have less degree of 

control and limited ability to do customisation [82]. 

 Low-level programming model: in which programmer have more flexibility on the 

control of computing environment and more degree to customisation than the 

previous model, however at the price of losing simplicity and user-friendly 

programming interface provided in high-level programming model. Usually this 

programming model is used to address a specific class of graph problems, and 

generally can handle arbitrary graph computations[83]. 

ii. Expressiveness: 

Here, expressiveness means the clarity in identifying system performance advantages and 

recognizing good example of its application classes, in addition to clarifying any problematic 

example cases or hidden costs or presumed conditions. 

iii. Timing Execution model:  

Generally, in big graph systems, graph algorithms run in iterations until convergence or they 

reach a termination condition. Yan et al [83] described two modes: synchronous and 

asynchronous. 
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 In synchronous execution model, a global barrier separates between iterations, 

where vertices can only have access to information from the previous iteration, in 

another word, all updates and outgoing messages are only available in the next 

iteration after the barrier. This model is also known as the Bulk Synchronous Parallel 

(BSP) model and was introduced by Valiant[85]. 

 In asynchronous execution model, vertices have direct access to the last updates 

happened during the same iteration, in another word, view of the most recent state of 

the graph. This model could effectively improve the performance for algorithms in 

the case where some vertices could converge very much faster than other, as in the 

case of PageRank algorithm. Though, this come at the cost that an approximate result 

is produced instead of the exact result produces in synchronous model, which is in 

many cases considered as good results as in PageRank. However, asynchronous 

model is not applicable in many algorithms where approximate results are not 

accepted. Furthermore, more work should be done to assure data consistency issues 

such as ‘Race condition’ where different attempts to update vertex’s value at the 

same time could happen. 

Kalavri [82] discussed two extra models furthermore. Hybrid execution model, where the 

previous two models exist in the same system. Incremental execution model, where system 

can apply updates as it arrived and change the current state of the graph without the need to 

do recomputing of the whole process. 

Inspired by BSP model, Pregel system [46] can process big graph using synchronous 

execution model, GraphLab[21] adopts the asynchronous execution model, while 

Giraph++[86] use the hybrid model by using synchronous model with the computation and 

communication inside partition and asynchronous model for computation and 

communication between partitions. Another example for hybrid execution model (Hsync) is 
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PowerSwitch[87] that switches between the two models according to predictions for future 

optimal performance, it constantly collects execution statistics to help in predicting the when 

a model switch could be profitable. 

iv. Communication mechanism 

According to Kalavri [82] the following models are distinguished: 

 Message-Passing model: a vertex updates to other vertices’ local states (data values) 

can only happen by sending and receiving messages. Additionally, Yan [83] talked 

about to two modes of the message-passing communication model for a vertex: 

a. Edge-based communication: where a vertex can only communicate with its 

neighbours via the edges connecting them, so one hop at a time. 

b. ID-based communication: where a vertex can communicate with other 

vertices via the vertices’ ID even if it is not directly connected to them, the 

sender here needs to know the ID of the receiver. 

 Shared memory mechanism: by shared memory here it does not mean a shared 

memory maintained across machines (like in PRAM), however it means vertices can 

have a direct access to the state of other vertices and edges by keeping data in main 

memory and access it asynchronously [83]. Therefore, vertex only has access to its 

neighbours’ values. Here, more work should be done to assure data consistency and 

consider issues such as ‘Race condition’. This abstraction is adopted in two kind of 

distributed systems as in systems GraphLab and PowerGraph, and in single machine 

for processing big graph as in GraphChi, X-Stream & Chaos, and GridGraph. 

 Dataflow model:  

The data flows in graph from a stage to another using stateless operators where no 

state is maintained and processing is done one by one (such as using filter and map 

functions) over a cluster of distributed compute nodes. Thus it is usually difficult to 
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implement graph algorithms and achieve good performance, yet systems such as 

Apache Spark and Apache Flink try to overcome this issue by efficiently 

implementing cashing mechanisms[82].  

v. Other features: 

To further evaluate distributed big graph systems and its application domain, the algorithm 

used in testing should be chosen to efficiently represent performance efficiency and its 

implementation issues. Kalavri [82] surveyed some of the most recent applications in 

distributed graph processing systems papers (34 examined systems), and grouped graph 

algorithms and their most commonly used applications and sorted them by appearance 

frequency. Moreover, according to Yan [83] identifying the Execution environment of a 

system and what processing power it has and all resources available will help to evaluate its 

performance in compared to other systems and identify its ideal application domain. Such 

an environment could be distributed, as in a cluster of machines, or a single machine 

environment using a commodity PC machine or high-performance computer 

(Supercomputer). For example, in commodity PC machine where the memory is limited, big 

graph processing is done by reading the graph piece by piece from the storage in streaming 

manner, whereas for supercomputer the graph could be loaded in memory. Similar to single-

machine PC systems where there is limited memory and the graph is kept on disk, some 

distributed system processes the graph on disk where the graph size is larger than the 

collective size of memory on the cluster, such as Pregelix[88], GraphD[89]. 

It is important to understand that in general, considering all these features in big graph 

systems makes evaluating and comparing between systems a very complex task. An open 

research question is, what combination of these feature can best enhance the performance 

related to a specific algorithm? 
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Our main objective for now is to review the current programming model at high level of 

abstraction. Although low-level abstraction gives programmer more flexibility in controlling 

the computing environment and more degree to do customisation, however the high-level 

abstraction provides simplicity and user-friendly programming interface that helps to 

represent algorithms and to some extent without the need to worry about data partitioning 

techniques and communication mechanisms used in the background. So programmer can 

easily implement graph algorithms, which is sometimes considered a more important feature 

than pure performance [83]. In addition, it allows system developer to implement some 

automatic optimisation when applicable. 

3.4 Approaches in the Developments of Big Graph Processing 

Systems 

With graphs getting bigger in size, systems have to deal with the problem of limited memory 

capacity within a single machine, and even with solutions such as partitioning the graph and 

processing it from storage disk or from a distributed memory, scalability and parallelization 

are hard to implement. Due to graph algorithms’ nature such as iterative processing and 

explorative random-access patterns and extensive communication cause extra overhead and 

complexity to the system to process and analyze such graphs[90].  

There are many systems developed to solve the problem of big graph processing in a single 

machine. Which requires high-performance machine with large memory capacity to fit the 

graph, but this solution is expensive and not always efficiently scalable, the other solution is 

to store the graph or part of it on disk which also result in a lot of reading from the disk and 

therefore negatively affect the performance.  
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In this study, our focus is on graph systems that are built in a distributed environment. The 

following is a brief overview of the most common distributed graph programming models 

at high level of abstraction.  

Distributed Graph Systems could be categorized in two main categories[76]:  

 Dedicated Distributed graph processing systems: include vertex-centric approaches 

such as Google Pregel and its variations and extensions including Apache Giraph, 

GPS, GraphLab, Giraph++ etc.  

 Distributed graph dataflow systems: are graph-specific extensions (e.g., GraphX and 

Gelly) of general-purpose distributed dataflow systems such as Apache Spark and 

Apache Flink. 

i. Dedicated Distributed graph processing systems: 

Here systems are specially designed for distributed graph processing, it is built around the 

graph data structure and optimized to easily represent and implement graph algorithms. In 

the following we describe high-level programming models for the distributed graph 

processing system based on the categorization made by  Kalavri et al.[82], these are: vertex-

centric, scatter-gather, gather-sum-apply-scatter, subgraph-centric, filter-process, graph 

traversals model. We will go into details talking about vertex-centric, as it is the dominant 

model used for graph processing. 

a) Vertex-centric (Think like a vertex): 

Vertex centric was developed to deal with the issue of iterative nature of a board set of graph 

algorithms, in addition to make graph analysis programs easier to develop and more 

efficiently perform[78]. The main concept is to express computation from a vertex point of 

view where a user-defined program (vertex function) is iteratively executed on graph 

vertices, where the programmer only need to define the behaviour of only one vertex. 
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Therefore, it is also known as “Think Like A Vertex” approach (TLAV). The vertex-centric 

model shows that it is a good fit to represent a wide set of graph algorithms, especially when 

the algorithm computation is mainly related to a vertex and its adjacent neighbours, such as 

iterative value propagation algorithms and fixed-point methods algorithms[82]. TLAV was 

first introduced by Google in a Pregel paper[46], which is based on Bulk Synchronous 

Parallel (BSP) parallel programming model[85]. 

Bulk Synchronous Parallel (BSP)[85] 

BSP was developed as conceptual model that address scalability challenges to efficiently 

execute parallel program and algorithms across nodes. It was introduced as “a bridging 

model for parallel computation” to facilitate the design of software for parallel hardware. 

BSP uses message-passing interface (MPI) to address challenges such as high latency reads, 

deadlocks, and race conditions[91]. 

Conceptually, there are three main phases they need to execute iteratively[78]: 

 Components Parallel Computation: where each component executes specific tasks 

on its local data. 

 Communication phase: where components exchange messages among themselves, 

using to the results from the components parallel computation phase. 

 Synchronisation barrier phase (superstep barriers): this phase makes sure that all 

components have finished the previous two phases, only then do synchronization 

between the components participating at the superstep barriers. 

The first two phases (Components Parallel Computation / Communication phase) together 

called a superstep, each superstep is followed by a synchronization of the parallel tasks 

reaching at the superstep barriers. 
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BSP model is not new concept, but only recently BSP model gained a lot of attention as a 

graph framework, and has been implemented on almost the majority of recent distributed 

frameworks to define graph algorithms[92], [93]. 

Furthermore, considering the communication mechanism, the systems based on vertex-

centric model can be divided into two categories:  

 Vertex-Centric Message Passing Systems: 

 Vertex-Centric Systems with Shared Memory Abstraction: 

Vertex-Centric Message Passing Systems: 

Where vertices communicate with each other by sending messages. Pregel is the most 

known system based on vertex-centric and use message passing for communication 

between vertices: 

Pregel 

Based on MapReduce[18][94][19] Google started developing a new system with the aim to 

efficiently process large graphs and do graph analysis. inspired by the BSP model they 

created Pregel[46] in C++. Which provided a native API for programmer to develop 

algorithms based on the TLAV model while hiding the complexity of communication and 

data distribution.  

In Pregel, the graph is partitioned and the vertices are distributed on the cluster where each 

vertex and its neighbours are located on the same node, to preserve data locality 

(computation is done locally).  

By analogy, each vertex is a component in BSP model that has a state (value) and initially 

all vertices are active. Each vertex will exchange messages with its set of neighbours and 

update its value according to a user-defined function (vertex function). Pregel computation 

proceeds in iterations (supersteps), in each superstep, each vertex executes the vertex 
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function vf(msg) which take a message input msg which is the incoming messages from the 

previous superstep. During the executing of the vertex function each vertex may do any of 

the following: 

 Update its value. 

 Send a message to other vertices 

 Deactivate itself (vote to halt) when no messages are received, so it will not run the 

next superstep unless it was reactivated by receiving a message. 

In Pregel supersteps are synchronous, as each superstep will end with synchronisation 

barrier, that grantees that all the active vertices in that iteration have finished computation 

and all the message exchange between them has finished. If an active vertex did not receive 

any message, it will be deactivated and if an inactive one received a message it will be 

activated. In the next superstep only the active vertices will run the vertex function. When 

all the vertices are inactive the process will terminate. 

Based on Master/Worker architecture in distributed system, where the graph is partitioned 

across the cluster nodes (workers) and each node will load its graph portion in memory or 

processing. The master node responsibility is to do the synchronisation process at each 

superstep barrier[81]. 

Pregel Like Systems 

Pregel system was developed and used by Google and it is not open source project, it is not 

available outside Google. Thus, a lot of alternative were developed to fill that gap in big 
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graph processing area based on the Pregel system and inspired by the “Think Like A Vertex” 

model, such as: Apache Hama15, Apache Giraph16, GPS17, Pregel+18, Pregelix, and Mizan. 

The vertex-centric with message passing computing model allows programmer to design and 

implement scalable distributed algorithms easily and debug their code, while the system 

handles all the low-level details. However, systems based on this model, usually comes with 

few limitations in performance[82][83]: 

 For Non-iterative and asynchronous graph algorithms, it challenging to express using 

vertex-centric model, in addition algorithms such as Graph transformations and 

single-pass graph algorithms do not fit for this model, such as Triangle counting. 

 For algorithms where some vertices converge faster than others (asymmetrically), 

there is no priority given for specific vertices over others, in addition no priority also 

given for local message over remote messages and superstep will only finish when 

the slowest worker has finished, therefore communication can be often encountered 

in the vertex-centric message-passing model.  

 Concurrency is limited by the global barriers and could cause unnecessary 

synchronization that will slow down the process. 

Yan et al [83] discuss how some systems such as Maiter, GiraphUC have been developed in 

order to avoid some of the limitations mentioned before. 

Vertex-Centric Systems with Shared Memory Abstraction: 

 Where vertices communicate with each other using shared memory programming 

abstraction, which does not mean a shared memory maintained across machines (like in 

PRAM), however it means vertices can have a direct access to the state of other vertices and 

                                                 
15 https://hama.apache.org/ 
16 http://giraph.apache.org/ 
17 infolab.stanford.edu/gps/ 
18 http://www.cse.cuhk.edu.hk/pregelplus/ 
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edges by keeping data in main memory and access it asynchronously[83]. Therefore, vertex 

only has access to its neighbours’ values. Here, more work should be done to assure data 

consistency and consider issues such as ‘Race condition’. This abstraction is adopted in two 

ways: as in distributed systems such as in GraphLab and PowerGraph, and when a single 

machine is used for processing big graph as in GraphChi, X-Stream & Chaos, and 

GridGraph. 

b) Scatter-Gather 

Also known as Signal/Collection model [95]. It shares the same philosophy a “Think Like 

A Vertex” and uses the message-passing for communications. It provides an elegant and 

concise abstraction for describing some graph algorithms, such as value-propagation 

algorithms. Vertices interact with each other by means of signals messages that go through 

edges. Vertices then collect signals and update the vertex state according to the old state and 

all signals received. Here, the superstep is divided into two phases, which are scatter and 

gather. In scatter, a user-specified function will produce the messages, and in gather, a user-

specified function will update its value using the received messages[76]. One of the 

limitations is that, in scatter phase, there is no access to the received message on gather phase 

unless all messages received are stored in the vertex value during the gather phase, which 

will often require more memory and increase the complexity of the implementation [82]. 

c) Gather-Sum-Apply-Scatter (GAS) 

It was proposed in PowerGraph[96] as a solution to efficiently process power-low graphs. 

Usually in vertex-centric model, when only a few vertices have high degrees, most of the 

computation work will be on those vertices, which cause bottlenecks and slow the execution 

time. GAS model addresses this issue by distributing the computation more efficiently across 

the cluster. It divides the vertex program into four separate phases, each will execute a user-

specified function. During the gather phase, user function is applied on each edge. The output 



53 

 

is aggregated for each vertex using an associative and commutative user-defined function in 

the sum phase. The result from the sum phase together with the current value of the vertex 

are passed to the apply function, which will define the new value for the vertex. In the scatter 

phase, a function is applied on the updated values for each vertex and new messages 

generated on each edge, which will be processed in next iteration. The last phase in this 

model (scatter phase) is optional, where a variant model is introduced and called Gather-

Sum-Apply (GSA). The GAS model help to balance the computation workload and reduce 

the amount of network traffic[76]. However, it requires high memory and communication 

overhead during the computation on low-degree vertices. To solve this problem, the 

differentiated vertex computation model  is introduced, where high-degree vertices can be 

processed using the GAS model, and low-degree vertices can be processed using one of the 

vertex-centric models (such as using GraphLab) [82][83]. 

d) Subgraph centric (or Block-centric) 

It is also known as “Think Like A Graph”[86].  It was developed to deal with the issue high 

communication overhead with fine-grained abstraction such as TLAV [82], [84]. It is a 

coarse-grained abstraction for distributed graph programming, which is considered a 

subgraph as a computation block. Blocks can internally process vertices, update their values, 

and exchange messages between them internally. In addition, blocks can externally interact 

with other blocks through messages exchange. It can help reduce the number of messages 

between cluster nodes and decrease the number of iterations for vertex-centric algorithms 

[97]. In vertex-centric model, the user-specified function run on each vertex independently 

from the others. However, in subgraph- centric model, the user-specified function takes as 

an input all the vertices inside the subgraph and processes all of them together [76]. Two 

distributed graph processing models could be categorised based on the subgraph centric 

model: 
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 Partition-Centric Model  

When graph is stored on a distributed system it is partitioned across the cluster into small 

partitions. This approach consider stored graph partitions as subgraphs of the input 

graph[86]. Where vertices can interact freely with each other inside the same partition, which 

can reduce the communication and help to achieve a faster convergence[78]. Performance 

in this model is highly determined by the quality of the partitions[82]. An example of such 

processing model is GIRAPH++[86], it was developed as an extension to GIRAPH19[67]. 

This work was further optimised in BLOGEL[98]. 

Neighborhood-Centric Model 

In this approach, custom subgraphs of the input graph are defined. Usually, the subgraph is 

determined based on vertices and their multi-hop neighbourhoods. A partition could contain 

more than one subgraph. This model is preferred for analysis that requires multi-hop local 

neighbourhoods in large graphs, such as the analysing ego networks [99]. However, 

determining the subgraphs in this model is an expensive process in term of both execution 

time and memory [82]. 

e) Filter-Process Mode 

It is also called “think like an embedding”. It was introduced in ARABESQUE[100].  An 

embedding is a subgraph instance of the input graph that is dynamically generated during 

the process that matches a user-specified pattern. Computations proceed through a sequence 

of exploration steps. At each step, two main functions are executed: (1) Filter function to 

determine if an embedding subgraph should be processed. (2) Process function which apply 

some action of the embedding. During each exploration step, subgraphs are explored and 

passed to the application, which will compute outputs and decide whether the subgraph 

                                                 
19 http://giraph.apache.org/ 
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should be further extended. This model is preferable in graph mining problems such as: 

frequent subgraph mining, counting motifs, and finding cliques [82] [100]. 

f) Graph Traversals Model 

It was introduced in the Apache Tinkerpop project20, a graph computing framework for both 

graph databases (OLTP) and graph analytic systems (OLAP). Tinkerpop uses the Gremlin 

[101] graph traversal language to help users model their domain as a graph and analyse that 

graph.  In graph traversal model, the traversers walk through the input graph following the 

instructions specified in the traversal, traversal are distributed using BSP model. When a 

vertex receives a traverser, it executes its traversal step, and either generates other traversers 

to be sent as messages to other vertices, or store halted traverser in the vertex attribute. When 

all traverser are halted and no more traversal are sent the process terminate and returns the 

location of the halted traversers[82]. 

ii. Distributed graph dataflow systems: 

General-purpose distributed systems can also support graph processing by providing graph 

processing libraries on top on them. These libraries enable integration of the graph 

processing operation in the generation data processing without the need to change the 

system. This is the common scenario in real-world data processing, where the graph 

processing could be only one step of a pipeline of data processing operations[102]. In the 

following we review some of those graph processing libraries: 

a) Pegasus21 

Pegasus (Peta-scale graph mining library)[20] is an open source package and a few years 

ago became very popular in both academia and industry [103] [22]. It was tested using 

                                                 
20 http://tinkerpop.apache.org/ 
21 http://www.cs.cmu.edu/~pegasus/index.htm 
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Graphs with billions of nodes and edges, and provides important large-scale graph mining 

algorithms on Hadoop.  

The main idea in Pegasus is built on the basis that many of the algorithms used in graph 

mining use repeated matrix-vector multiplication in computation. In another word, message 

exchanges in a graph can be represented by multiplication between adjacency matrices and 

vectors of the current states of nodes. Pegasus introduced Generalized Iterative Matrix-

Vector multiplication (GIM-V), which generalise the three internal operations of general 

iterative matrix-vector multiplication (multiply, sum, assign). 

Let 𝑚𝑖,𝑗 denote the (i, j)-th element of 𝑀. Then the usual matrix-vector multiplication is  

𝑀 × 𝑣 =  𝑣′ 𝑤ℎ𝑒𝑟𝑒  𝑣𝑖
′ = ∑ 𝑚𝑖,𝑗  𝑣𝑖

𝑛

𝑗=1

 

The algorithm is applied in two stages [20]. Stage1 performs combine2() function to combine 

the columns of the matrix with the rows of the vectors (𝑚𝑖,𝑗  ×  𝑣𝑖).  The output then becomes 

the input to stage2, which combines the results from stage1 and applies the combineAll() 

function  ∑  𝑛
𝑗=1  and assign() functions. 

Throughout the process two files are used:  

(1) edge file which is an immutable file that describes the graph where each record 

corresponds to a non-zero element in the adjacency matrix 𝑀 With each record is an 

edge e:(𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡 , 𝑚𝑣𝑎𝑙) where vsrc connect to vdst,  

(2) vector file which is a mutable file where each record is an edge (𝑣, 𝑣𝑣𝑎𝑙) where each 

v corresponds to an element in the vector 𝑉. 

This is implemented in two steps: 

 Stage 1: one MapReduce job 
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o It takes an input which is Matrix 𝑀 = {(𝑣𝑠𝑟𝑐 , (𝑣𝑑𝑠𝑡 , 𝑚𝑣𝑎𝑙))} and Vector 𝑉 = 

{ (𝑣, 𝑣𝑣𝑎𝑙) } and performs combine2() function on columns of matrix 

(𝑣𝑑𝑠𝑡  of 𝑀) with rows of vector (𝑣 of  𝑉 ). The output is a (key, value) pairs 

vector 𝑉′  = {(𝑣𝑠𝑟𝑐 , combine2 (𝑚𝑣𝑎𝑙, 𝑣𝑣𝑎𝑙))}. 

 Stage 2: one MapReduce job is required: 

o It takes the output of Stage1 and combines all partial results using the 

combineAll() function and assigns the new vector values to the old vector.  

Stage 1 and 2 run iteratively until convergence is met, resulting in the new vector file. 

In Pegasus, GIM-V was used to define different algorithms such as PageRank, Random 

Walk with Restart, diameter estimation, and connected components [20], [50], [52]. 

b) GraphX 

GraphX is a Spark API for graphs and graph-parallel computation[25], [104], [105] it offers 

a graph abstraction that is implemented using Spark, which combines both specialized graph 

system optimizations together with the partitioning, lineage, and effective fault tolerance in 

distributed dataflow frameworks.  GraphX also adopt the GAS model (Gather, Apply, 

Scatter) to efficiently distribute computations across the cluster[105]. 

GraphX API gives the user the ability to construct a graph and express it either as a graph or 

as a collection, which gives the flexibility in applying a wider range of operations and 

optimisations without data movement or duplication. 

It introduces Resilient Distributed Property Graph based on Spark RDD, which is a directed 

graph that has a pair of collections (RDDs) for vertex and edge with some additional 

operations and specific optimizations for graph computation (figure 2-12)[104]. 
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class Graph [VD, ED] {  //VD, ED are types for vertex and edge  

       val vertices: VertexRDD[VD] 
       val edges: EdgeRDD[ED] 
}  

Figure 3-1:GraphX Graph Class 

 

In vertex collection (VertexRDD), vertices keyed by a unique 64-bit long identifier 

(VertexID) with constraint that each VertexID occurs only once and stored in a reusable 

hash-map data-structure. In edge collection (EdgeRDD), edge properties keyed by the 

source and destination VertexID. As explained earlier Spark RDDs are immutable, 

distributed, and fault-tolerant, similarly graphs GraphX. When change is made on a graph a 

new graph is created from the original one, but the new graph inherits the original graph 

indices, attributes, and structure (if it was unaffected) and reuse them. 

GraphX also introduce a new RDD called triplet view, a logical representation that joins 

the source and destination vertex properties with the edge properties (figure 2-13). 

22 

As a graph processing framework embedded within Spark the distributed dataflow system, 

GraphX Includes the operators available in Spark on RDDs (e.g. map, filter, and 

reduceByKey) in addition to some specialized graph operators[106]: 

 Property Operators, in which new graph generated with vertex or edge properties 

modified but the structure is unaffected (mapVertices, mapEdges, mapTriplets) 

 Structural Operators, in which new graph generated with a modified structure 

(reverse, subgraph, mask, groupEdges) 

                                                 
22 https://spark.apache.org/docs/latest/graphx-programming-guide.html 

Figure 3-2: Triplet View 
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 Join Operators, in which RDD is joined with the graph(joinVertices, 

outerJoinVertices) 

 Graph Builders, provides several ways of building a graph(fromEdges, 

fromEdgeTuples, edgeListFile) and to repartitions the graph’s edges use(partitionBy) 

 Neighbourhood Aggregation, in which information about adjacent triplets are 

aggregated ) aggregateMessages, mapReduceTriplets) 

 Collecting Neighbours, to collect neighbouring vertices and their attributes at each 

vertex (collectNeighborIds, collectNeighbors) 

 Computing Degree Information (inDegrees, outDegrees, degrees) 

 Caching and Uncaching operators, for caching graphs in memory or removing it 

from memory (persist, cache, unpersistVertices) 

In addition, Pregel (pregel)operator is available based on bulk-synchronous parallel 

messaging abstraction, which is also used to implement a set of graph algorithms that 

can be used directly in GraphX for analytics tasks (pageRank, connectedComponents, 

triangleCount, stronglyConnectedComponents) 

Optimisation in GraphX 

On the top of Spark distributed dataflow framework with GraphX operators, graph specific 

optimisation techniques are implemented, vertex-cut partitioning approach is used to 

minimizes communication and storage overhead, however another range of built-in 

partitioning strategies are included to choose. Because GraphX treats graphs as a joined 

collection of RDDs and when an operator derived a new graph without modifying the 

structure (e.g., subgraph) or create a new RDD without changing indices of the original 

graph (e.g., mapVertices). Index reuse increases the efficiency by enabling faster joins and 

reducing memory overhead[105][25]. 
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In term of Triplet view, which is a three join operations between vertices and edge properties, 

to do these join efficiently and improving system performance, some optimisation 

techniques applied such as: Vertex Mirroring, Multicast Join, Partial Materialization, 

Incremental View Maintenance[104] . 

c) Gelly 

Gelly is a graph processing library on top of Apache Flink [107], and it is implemented on 

top of its dataset API [66]. It supports the implementation of different graph processing 

models, such as vertex-centric, gather-sum-apply, and scatter-gather[84]. In Gelly, graph is 

represented by a dataset of vertices and a dataset of edges (figure3-3): 

 

class Graph [K, VV, EV] {      // K represents the vertex id type 
       DataSet <Vertex <K, VV >> vertices     // VV the vertex value type and  

          DataSet <Edge <K, EV>> edges             //EV the edge value type 

}  

Figure 3-3: Gelly Graph Class 

 

A Gelly graph provides operations for creating graphs and performs simple graph metrics 

operations to retrieve graph properties. In addition to transformation operations, which 

return a new, possibly modified graph from the input graph, it also provides neighbourhood 

operations, which allow vertices to perform an aggregation on their direct neighbour 

vertices. 

Gelly provides similar functionality to GraphX and it benefits in its iterative methods from 

the native efficient delta iteration operators in Apache Flink. However, GraphX offers more 

optimizations for graph processing such as graph partitioning and more efficient join 

operations by reducing network traffic between workers through vertex mirroring and 

multicast joins[76], [102]. 
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3.5 Summary 

This chapter provided an overview of the graph concept in modelling relationships in 

datasets. The concept of graph has been used to understand complex human and natural 

phenomena through the algorithms developed to solve different kind of problems. Followed 

by reviewing graph processing systems focusing on big graphs. It is very active research 

area and its development is moving in different directions. However, the interest of this study 

is the processing of big graphs in distributed systems. The Key features of big graph 

processing was briefly discussed. In addition, a description of the two main approaches used 

in the developing of big graph processing systems was given at high level of abstraction. 

The first approach is the dedicated distributed graph processing. The second approach is the 

general-purpose distributed graph processing. Both approaches will be used in this study. 

Although the main focus of this study is on the connected component algorithms, it is 

important to understand the different environments and processing systems where these 

algorithms were developed and applied. Different systems provide different features with 

different kind of limitations which might affect the way algorithms are designed. 
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Chapter 4: Finding Connected Components in Large 

Graphs 

In this thesis, we focus on the algorithms for finding connected components in an undirected 

graph, which is one of the main concepts that has been studied in Graph Theory[10]. In the 

following, we defined finding connected components algorithm and its application, then 

review its models of study, and explain its importance, and finally review available 

algorithms that were implemented using MapReduce.  

4.1 What is finding connected components in graphs? 

A component represents a graph (or subgraph) where any two vertices inside that graph are 

connected via paths, and there is no edge that connects any vertex outside the component. 

Isolated vertices are considered connected components themselves and a component could 

include all the vertices in a graph, in which the whole graph will be a single component[6]. 

4.2 Why it is important to study Connected Components 

algorithms? 

The problem of finding disjoint subgraphs (connected components) has been well studied, 

as it is an essential pre-processing step to extract knowledge about the graph[10]. It is also a 

fundamental operation for some graph computations such as pattern recognition, 

reachability, graph compression, graph partition, and random walk[12].  It also makes an 

essential first step in some sophisticated graph techniques [14], and is a  building block in  

complex graph analysis such as clustering[13]. 
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4.3 Application of Connected Components algorithms? 

Finding connected components has uses on a broad range of applications that include e 

calculation of betweenness centrality, community detection,  image processing[108], 

complex graph analysis like clustering [22], analysis of Coherent cliques in social media, 

image segmentation[13][9][109] and many more.  

4.4 Models of study for finding Connected Components: 

The problem of finding connected components in an undirected graph has been well studied 

for several years. Different solutions and results have been produced based on the 

environment settings and graph types in which the problem was investigated. However, our 

focus here is on large graph processing, and the problem of finding connected components 

in big graph whose size exceeds the memory capacity of a single machine. Different ways 

have been used to study the problem of finding connected components in big graph. At a 

high level, we could group them into three groups: 

4.4.1 In Single machine systems 

i. Traditional 

There are well known effective solutions to find connected components in small to medium 

size graph, usually using graph traversal algorithms such as Depth First Searches (DFS) and 

Breadth First Search (BFS). However, efficiency decreases as a graph’s size increases, given 

the limited memory available on single machines. Another memory-based approach is 

proposed by [110] to increase the speed by exploiting  the multi-core architecture available 

in recent computers. This approach is based on the use of the disjoint-set data structure, 

where each component is a set and connected components are unified in an algorithm based 
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on Union-Find algorithm. However, this approach is limited by graph size that cannot exceed 

available memory capacity[12]. 

ii. Disk-based Systems 

To overcome the problems with finding connected components for large graphs on a single 

machine with limited memory size, new disk-based systems were used. To some extent, this 

approach can efficiently manage large graphs by utilising both SSDs and rotational hard 

desks and by using I/O efficient algorithms. 

GraphChi, uses label- propagation to iteratively propagate the node with the minimum label 

to its neighbours until it reaches all the nodes in the same components. Another work by 

Kim et al. [111] proposed  a DSP-CC algorithm to find connected components for billion-

scale graphs in a single PC based on a union-find algorithm[12].  

Such systems benefit from the ability to perform graph mining on large graphs and avoid 

tricky and expensive tasks such as cluster management or high-performance computer 

configuration. However, they offer limited scalability when processing graphs with hundreds 

of billions of edges. Moreover, for such big graphs with billions of edges their size will 

become extremely large and it is not always practical or possible to store them on the hard 

disks of one single machine[14].  

4.4.2 In distributed systems 

Many algorithms were developed to implement finding connected components algorithms 

in parallel using Depth First Searches (DFS), Breadth First Search (BFS), propagation, or 

contraction. However, they are unable to handle large-scale graphs [112] [20].  

For example, an optimised parallel BFS is not efficient when there are components with 

large diameters or a large number of components with small diameters [15]. 
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i. PRAM 

The Parallel Random-Access Machine (PRAM) model is a shared-memory abstract machine 

where processors compute in parallel using a common shared memory. It is commonly the 

classical model used in to analyse the performance of parallel algorithms.  

The classic Shiloach-Vishkin (SV) algorithm is widely used for finding connected 

components in the PRAM model, requires the PRAM model to handle concurrent reads, and 

writes to the shared memory (CRCW PRAM). The algorithm will begin with single trees 

corresponding to each vertex and maintain a forest of trees of connected components. It then 

iteratively applies pointer chasing operations (change the pointer of a vertex from pointing 

to its parent to pointing to it grandparent in the tree), or hooking (merging two different trees 

into one larger tree) at each iteration. The algorithm bounds the number of iterations to O 

(log n) where each iteration requires O (n+m) processors (n is the number of vertices and m 

is the number of edges). Many improvements and optimisations have been introduced to the 

SV algorithm and PARM model such as the recent work  by Jain et al.[15]. Generally, this 

approach assumes computing processors have access to shared memory and can perform 

concurrent writes.  However, this may not always be efficiently implemented in large-scale 

distributed processing paradigms such as  MapReduce [22]. 

ii. Bulk Synchronous Parallel (BSP) 

Implementations for finding connected components can be found in almost all dedicated 

large graph processing systems which are based on the Bulk Synchronous Parallel (BSP) 

paradigm[82]. For example, systems such as Pregel, GraphLab, PowerGraph use a vertex-

centric programming model (explained earlier in section 3.4.i.a ) to implement the algorithm 

based on a label propagation. The approach benefits from the reduced overheads between 

iterations compared to MapReduce. This model could be very efficient for finding connected 

components in a large graph.  
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iii. MapReduce 

MapReduce has been the dominant programming model used for processing large-scale data 

in recent years, because of its ease of use, fault-tolerance, and scalability. Therefore, much 

work has been carried out which attempts to migrate many previous algorithms and 

implement them using the new paradigm[113], this includes algorithms for finding 

connected components in graphs. However, it is not always an easy or efficient step for large 

graphs. For example, to find connected components using a breadth-first search[114] will 

require a number of iteration equal to the sum of the diameters of each connected component 

which is not acceptable for medium or large graphs. Work in Pegasus[20] and zone[10] 

reduce the number of iterations to O(d), where d is the diameter of the largest component, 

but it is not efficiently scalable to large graphs[14]. Moreover, a problem of prohibitive 

communications load per iteration could occur in some other implementation of connected 

components algorithm[14]. Later in this thesis most of the work carried out to find the 

connected components of a large graph using MapReduce will be reviewed. 

4.5 Why CC algorithms may perform poorly in practice? 

Due to the huge size of many current graphs, tackling the problem of connected components 

has become a challenge and traditional processing solutions are not feasible especially when 

the graph size does not fit within the collective memory of a parallel computing cluster. 

Furthermore, highly scalable parallelized algorithms that can adapt to different types of real-

life graphs are very complex to develop,  and  hard to maintain and have limited portability 

[115], [116], [117].  

Adopting the new MapReduce paradigm is promising, but requires care when designing 

graph algorithms using MapReduce. This is because: 
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 Graph algorithms usually require multiple iterations which is an inefficient process 

in MapReduce because of the I/O overhead during each iteration. Therefore, it is very 

useful to reduce the number of iterations to the minimum.  

 Some algorithms could increase the graph size with newly generated edges, which   

will increase the communication cost during each iteration. Therefore, minimising 

the volume of message passing during each iteration could help increase the 

performance.  

 Many real-life graphs have a degree of skew which could lead to an unbalanced 

workload resulting in few reducers in the cluster taking almost all the workload and 

slowing the whole process as the other reducers need to wait. 

4.6 Why it is important to use MapReduce in Graph 

Processing? 

The most common choice nowadays is to store large-scale data in a distributed format using 

distributed file systems such as HDFS. This includes large-scale graph data, which makes it 

very suitable to process using MapReduce. MapReduce might not be ideal for cases like 

iterative graph algorithms, but the huge popularity of Apache Hadoop make it important to 

find an adequate implementation for graph algorithms based on MapReduce. 

The BSP model could be very efficient in large graph processing. However, some recent 

works[21][22] show that it is possible to outperform BSP model algorithms for finding 

connected components in MapReduce. MapReduce can have  better latency than BSP in 

congested cluster situations [14] and when the graph size is more than the collective shared 

memory of the system[12]. Therefore, there is a need to design efficient graph algorithms 
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using MapReduce that could give both good performance and better integration with general 

distributed processing systems. 

4.7 Previous algorithms for Finding CC in MapReduce 

4.7.1 Using zones to finding connected components 

One of the earliest algorithms to find CC in a large graph was introduced by Cohen [10]. His 

algorithm uses zones to find connected components based on MapReduce. The main concept 

is by forming “zones” each of which includes a set of vertices that belong to the same 

component. As the algorithm proceeds, the zones merge to form larger zones.  

Throughout the process two files are used:  

(1) edge file which is an immutable file where each record is an edge e:(v1,v2) and v1 

connects to v2. 

(2) zone file which is a mutable file where each record is an edge (v, z) and each vertex 

v is assigned to a so-called zone z. Initially the zone file is constructed with each 

vertex assigned to itself as its own zone (v, v). 

The basic idea is that the algorithm iterates testing to determine if each edge connects two 

vertices from different zones so that zones will be merged forming larger zones. The 

algorithm will iterate until no further expansion is possible. Finally, each zone will  

correspond to a component.  

This is implemented in two steps: 

 Step 1 requires two MapReduce jobs: 

o MapReduce 1 merges records from the edge and zone files and associates 

edges with zones, each output record connects an edge to a zone (e, z). 
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o MapReduce 2 reads all the zones for the same edge Z, to find the minimum 

zone zm ∈Z such that 𝑧𝑚    ≤  𝑧, ∀ 𝑧 ∈ 𝑍, for each z∈Z - {zm}. The output 

records then each connect one zone to a better one (z, zm). 

 Step 2 requires only one MapReduce job to update the zone file: 

o MapReduce 3 updates the old zone file by merging the output from Step1 in 

mapper (z, zm) with the old zone file records (v, z). The result would be 

(z, {V ∪  Z}) where V is all the vertices pointing to the old zone, and Z is the 

new better zones for the old zone (which could be zero). The reducer then 

finds the best new zone for this vertex: 𝑍𝑏 =  min { t | t ∈ Z ∪  z } and 

outputs a record (v, zb) for each v∈V assigning each vertex to the new zone.  

Steps 1 and 2 alternate until the first step produces no records, at which time the result is in 

the zone file. 

The main drawback of this algorithm is that all edges need to be processed at each iteration 

and each iteration requires execution of three MapReduce jobs. Each MapReduce job could 

move every graph record across the cluster, which could inefficiently increase the bandwidth 

used. This algorithm requires 𝑂(𝑑) iterations where d is the diameter, and 𝑂(𝑚 + 𝑛) number 

of messages per iteration. In addition, Cohen [10] suggested a further improvement on 

MapReduce3 in step2 to create load balancing on the output of map 3 when there are very 

large zones. 

4.7.2 Pegasus HCC 

HCC is the proposed algorithm in Pegasus (explained in section 3.4.ii.a) for finding 

connected Components in large graphs[20], [50], [52]. It uses Pegasus Generalized Iterated 
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Matrix-Vector (GIM-V) primitive, to apply a generalized of iterative Matrix-Vector 

multiplication using MapReduce.  

The following steps illustrate the execution of the algorithm in GIM-V: 

(1) First, initialize the component ID of each vertex a by initiating a component vector 

𝐶 =  { (𝑣, 𝑐𝑣𝑎𝑙)} , where 𝑐𝑣𝑎𝑙 represent the component id for vertex 𝑣. Initially 

𝑐𝑣𝑎𝑙 = 𝑣. 

(2) Second, each node sends its component ID to its neighbours. This is done in Stage1 

in a MapReduce job by performing the function: 

 𝑐𝑜𝑚𝑏𝑖𝑛𝑒2(𝑚𝑖,𝑗 , 𝐶𝑗) =  𝑚𝑖,𝑗 × 𝐶𝑗 

(3) Third, in Stage2 in the second MapReduce job, each node updates its component ID 

by the smallest component ID received. This is achieved by performing the function 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝐴𝐿𝐿𝑖(𝑥1, … . , 𝑥𝑛  ) = 𝑚𝑖𝑛 { 𝑥𝑗  | 𝑗 = 1 . .  𝑛 } 

Find for each vertex the minimum value among the current component id and all the 

received component ids from its neighbours and then update the component id in the 

component vector 𝐶 using the function: 

𝑎𝑠𝑠𝑖𝑔𝑛(𝐶𝑖, 𝐶𝑛𝑒𝑤) = 𝑚𝑖𝑛 (𝐶𝑖, 𝐶𝑛𝑒𝑤) 

(4) Finally, iterate until no change is required. 

The main drawback of this algorithm is that each vertex sends its component id to only its 

direct neighbours and updates each adjacent one hop at each iteration. This means the upper 

bound of iterations requires a maximum of d iterations where d is the diameter of the graph, 

in addition, two MapReduce jobs are required for each iteration, and each MapReduce job 

requires disk I/O and shuffling which decreases running time. 
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Both this algorithm, Pegasus HCC and the previous Zones algorithm do not scale well for a 

graph with a large diameter according to Rastogi[22]. 

Time Complexity of GIM-V: One iteration of GIM-V takes O (
𝑚+𝑛

𝑀
 𝑙𝑜𝑔

𝑚+𝑛

𝑀
) time, where 

𝑀 is the number of machines. Space Complexity: GIM-V requires O (𝑚 + 𝑛) space, and 

requires 𝑂(𝑑) iterations, with 𝑂(𝑚 + 𝑛)  number of message per iteration. 

 

4.7.3 Hash-to-Min  

Hash-to-Min [22][22] was developed and tested to compare with Pegasus HCC and showed 

a better performance regarding runtime. The algorithm tries to enhance performance by 

minimizing the number of iterations and communication per step.  

The main idea is to maintain a cluster file where each vertex points to its cluster, and 

iteratively merge overlapping clusters to compute connected components. 

Hash-To-Min is the proposed algorithm for finding connected components:  

(1) First, a Cluster file is created as a mutable file where each record is an edge (𝑣, 𝐶𝑣) 

where each  𝑣  corresponds to a vertex of the graph 𝐺, and 𝐶𝑣 is a cluster of vertices. 

Initially, the algorithm assumes that each vertex and its neighbours constitute a 

connected component.  𝐶𝑣 = {𝑣} ∪  𝑛𝑏𝑟𝑠(𝑣)  

(2) Second, the map stage, where the mapper applies Hash-to-Min function to (𝑣, 𝐶𝑣)  

where it: 

a. Finds  𝑣𝑚𝑖𝑛  which is the smallest vertex in the cluster  𝐶𝑣 . 

b. Sends the entire cluster 𝐶𝑣  to reduce vertex  𝑣𝑚𝑖𝑛 . 

c. Sends {𝑣𝑚𝑖𝑛 } to all reducers of all vertices  𝑢 ∈  𝐶𝑣 .   
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(3) Third, the reduce stage, where each reducer for a key 𝑣  aggregates tuples emitted by 

different mappers (𝐶𝑣
(1)

, … , 𝐶𝑣
(𝑘)

). The reducer applies the merging function over 𝐶𝑣
(𝑖)

  

to compute a new value 𝐶𝑣  by taking the union of all vertices received. 

(4) Repeat from step (2) until no change is made  to any in cluster 𝐶𝑣 . 

(5) Finally, export connected components 𝐶 from the final clusters 𝐶𝑣 using one 

MapReduce iteration. 

Input: An undirected graph G = (V, E), 

 Hashing function h, 

 Merging function m, 

 Exporting function EXPORT. 

Output: A set of connected components C ⊂ 2V  

1. Initialize Cv = {v}∪ nbrs(v)   

2. repeat 

3.       mapper for node v: 

4.           Compute h (Cv), which is a collection of key-value pairs (u, Cu) for u ∈ Cu . 

5.           Emit (vmin, Cv), and (u, {vmin}) for all nodes u ∈ Cv. 

6.       reducer for node v: 

7.           Let {Cv
(1)

, .... , Cv
(K)

 } denote set of values received from different mappers. 

8.           Set  Cv ← m({Cv
(1)

, .... , Cv
(K)

 }). 

9. until  Cv  does not change for all v. 

10. return C = EXPORT (∪v { Cv }) 
  

Figure 4-1 Hash-to-Min Algorithm[22]. 

 

The main drawback of this algorithm is that it requires the largest connected components to 

fit in the memory of a single reducer, which is not usually the case in large-scale graphs. 

This is especially for graphs with degree skew. In addition, there will be a heavy load on that 

reducer, which could cause a communication bottleneck and decreases the performance. 

Some later modifications to this algorithm  enhanced performance and scalability by using 
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secondary sorting in MapReduce and load balancing.  However, it is still does not have good 

load balancing properties[103]. 

For the worst-case scenario as in path graph, Hash-to-Min can be shown to complete in 

𝑂 log (𝑙) number of MapReduce iterations with communication 𝑂(log 𝑙  |𝑚|   + |𝑛|), where  

𝑙 is the size of the largest connected component. However, Rastogi et al[22] claim that in 

practice the algorithm completes in at most 2 log (𝑑) iterations and 3(|𝑚|   + |𝑛|) 

communications per iteration where 𝑑 is the diameter of the graph. 

4.7.4 CC-MR 

A similar approach to Hash-to-Min appeared the same year by Seidl et al [13]. The CC-MR 

algorithm outperforms Pegasus-HCC and zones Algorithms in terms of the number of 

iterations, communication costs, and execution runtime. 

The basic idea is based on the zones algorithm. However, it improves it by adding additional 

edges on the graph as a shortcut to reduce the number of iterations needed to converge. In 

each iteration, edges are added and deleted in such a way that vertices with larger IDs are 

connected to the vertices with a smaller ID. Each component has one of two states, operating 

either in locally maximal state where no further steps need to be performed or in merge state 

where it should be merged with another sub-component. CC-MR is the proposed algorithm 

for finding connected Components[13]:  

The input file contains the graph itself, where each record represents an edge ( 𝑣source, 𝑣dest) 

in a graph 𝐺 = (𝑉, 𝐸) where 𝑉 is a set of vertices and  𝐸 is a set of edges. 

Initially, a MapReduce job is required to create a representation of the graph based on the 

adjacency list of all vertices ( 𝑣, 𝑎𝑑𝑗(𝑣)), where 𝑎𝑑𝑗(𝑣) is a list of neighbours of vertex 𝑣.  
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 In the map stage, the mapper used is called identity mapper, which only forwards the 

data to the reducer without performing any changes.  

 In the reduce stage, each reducer for a key 𝑣  aggregates tuples emitted by different 

mappers(𝑢1 , 𝑢2 , . ., 𝑢𝑘 )which represent 𝑎𝑑𝑗(𝑣). Here Hadoop secondary sorting is 

used, which means the reducer will receive values in order (first value 𝑢1 is the minimum 

in 𝑎𝑑𝑗(𝑣) ). 

Check for vertex 𝑣 and its adjacent neighbour vertices in 𝑎𝑑𝑗(𝑣)  if 𝑣 has the smallest 

id or not ( 𝑣 > 𝑢𝑓𝑖𝑟𝑠𝑡): 

a) If no (locallyMaxState), assign all 𝑢 ∈  𝑎𝑑𝑗(𝑣) to 𝑣 by sending (𝑣, 𝑢). 

b) Else (mergeState), there is a vertex 𝑢 ∈ 𝑎𝑑𝑗(𝑣) in which 𝑢 < 𝑣, in this case 

it is 𝑢𝑓𝑖𝑟𝑠𝑡, assign  𝑣 and 𝑎𝑑𝑗(𝑣) to 𝑢𝑓𝑖𝑟𝑠𝑡 by sending (𝑣, 𝑢𝑓𝑖𝑟𝑠𝑡) and sending 

(𝑢𝑓𝑖𝑟𝑠𝑡 , 𝑢) 𝑎𝑛𝑑 (𝑢 ,  𝑢𝑓𝑖𝑟𝑠𝑡). This will merge the components of 𝑣 with the 

components of 𝑢. 

The process will iterate until the merge State situation does not occur anymore. The graph 

will transform into star-like subgraphs, where each one represents a component and the 

centre vertex is the component ID.  



75 

 

 

1. newIterationNeeded = false    // global variable 

2. void reduce (Int vsource , Iterator<Int>  values) 

3.      isLocMaxState = false 

4.      vfirst = values.next();     // take first element 

5.      if ( vsource < vfirst ) 

6.           isLocMaxState = true 

7.           emit(vsource, vfirst) 

8. vdest-old = vfirst 

9. while ( values.hasNext() { 

10.      vdest = values.next() 

11.      if ( vdest == vdestold ) continue  // remove duplicates 

12.      if ( isLocMaxState )   // locMaxCase 

13.            emit( vsource, vdest)    // only fwd. edge 

14.      else     // cases stdMergeCase, optimizedMergeCase 

15.           emit( vfirst, vdest)    // fwd. edge and 

16.           emit( vdest, vfirst)    // backwd. edge 

17.           newIterationNeeded = true 

18.      vdest-old = vdest 

19. } 

20. // stdMergeCase 

21. if ( vsource < vdest  &&  !isLocMaxState ) 

22.      emit( vsource, vfirst)    // backwd. Edge 
 

Figure 4-2 Reducer of the CC-MR algorithm[13].  

 

Similar to Hash-to-Min, the main drawbacks for this algorithm are that it requires the largest 

component in the graph to fit in the memory of a single reducer.  In, a very large component 

will put a heavy load on one reducer. When this happens, we have skew degree graph with 

a very large component. This situation is also called ‘the curse of the last reducer’, when a 

connected component is very large and all the vertices of this component need to be sent to 

and processed by the same reducer. This may then cause computation problems and place a 

large communication load on one reducer.  CC-MR also lacks any analytical guarantees.  
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Both Hash-to-Min and CC-MR algorithms address the “curse of last reducer” problem and 

provide solutions to carry out load balancing: 

 in Hash-to-Min, for a vertex (𝑣, 𝐶𝑣) when its cluster 𝐶𝑣 gets larger than a specified 

threshold. In the cluster 𝐶𝑣, for all the vertices 𝑢,  𝑤ℎ𝑒𝑟𝑒 𝑢 ∈  𝐶𝑣 𝑎𝑛𝑑  𝑢  ≤ 𝑣 send 

𝑢  to  𝑣𝑚𝑖𝑛 reducer and send 𝑣𝑚𝑖𝑛 to  𝑢 reducer. For all vertices 𝑢,  𝑤ℎ𝑒𝑟𝑒 𝑢 ∈

 𝐶𝑣 𝑎𝑛𝑑  𝑢 > 𝑣 , send 𝑢 to 𝑣 reducer, and send { 𝑣 } to 𝑢 reducer.  To ensure that 

𝑣𝑚𝑖𝑛  does not receive more than the threshold.  

 in CC-MR the solution for the problem is by augmenting hash values in the map 

phase to vertex which has adjacent list larger than a specified threshold which is then 

sent to different reducers. 
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4.7.5 CCF 

Later, Kardes & Agrawal [9] presented their Connected Component Finder (CCF)algorithm 

that they had been using regularly for two years on massive graphs.. The main idea is similar 

to Hash-to-Min but the algorithm will run iteratively using a chain of two MapReduce jobs 

in each iteration called CCF-Iterate, and CCF-Dedup. 

Initially, the input file contains the graph itself, where each record represents an edge 

( 𝑣1, 𝑣2) where 𝑣1 connects to 𝑣2 in a graph 𝐺 = (𝑉, 𝐸) and 𝑉 is a set of vertices and  𝐸 is a 

set of edges. 

 CCF-Iterate stage: 

o The mapper will send values so that an adjacency list will be generated in reducer 

like the initial step in CC-MR. 

o The reducer will receive the data (𝑢1 , 𝑢2 , . ., 𝑢𝑛 )  sorted as the MapReduce 

secondary sort approach is used It will take the first value which should be the 

minimum (as the values are sorted (𝑚𝑖𝑛 = 𝑢𝑓𝑖𝑟𝑠𝑡)  ) and compare it with the 

vertex id  𝑣 : 

If   (𝑣 >  𝑚𝑖𝑛)  then 𝑣 is not the minimum: 

 Send  (𝑣 , 𝑚𝑖𝑛). 

 Send  (𝑢𝑖 , 𝑚𝑖𝑛) for each node 𝑢𝑖  in the adjacency list.   

 Increase a global counter which is used to indicate if a new component is 

found. 

 CCF-Dedup stage which only reproduces CCF-Iterate output with no duplication to 

increase efficiency in term of speed and I/O overhead. 

Iterate until the counter is zero, which means that no new component has been found. 
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According to the author CCF outperformed PEGASUS in terms of total runtime and was 

slightly behind CC-MR, unless the diameter is very large. It finishes with 𝑑 + 1 iterations in 

a worst-case scenario where d is the diameter of the graph. 

 

Figure 4-3 CCF Algorithm[9]. 

 

4.7.6 MemoryCC 

In MapReduce inputs are in the form (key, value) pairs. Map and reduce jobs will process 

each input record one by one. Lin and Schatz  [118] proposed a set of enhanced design 

patterns that can be used to accelerate a large class of graph algorithms. One of the “rules” 

mentioned is building a hash table that contains the graph structure for the graph partition 

processed in the mapper, and perform messages passing from source to destination locally 

between vertices that are included in the Hashtable. Therefore, reducing the data traffic on 

the network will increase the speed of the algorithm as network traffic dominates the 

execution time of MapReduce algorithms. This concept was adopted by Varamesh & Akbari 

[119] in their algorithm for finding connected components. Initially each map job loads all 

its input records to a hash table that could be accessed during the map job lifetime. 
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MemoryCC is the proposed algorithm for finding connected components in large graph:  

Firstly, for a graph 𝐺 = (𝑉, 𝐸) a mutable Graph file is generated in a similar way to the 

initiation step in the previous algorithm. Each record represents a vertex and its component 

id and adjacency list (𝑣, (𝑐𝑜𝑚𝐼𝐷, 𝑎𝑑𝑗(𝑣))) where 𝑐𝑜𝑚𝑝𝐼𝐷 is the component ID for vertex 

𝑣, and 𝑎𝑑𝑗(𝑣) is its list of neighbours. Initially, it assumes that each vertex is a connected 

component itself and set 𝑐𝑜𝑚𝐼𝐷 = 𝑣.   

 In the Map stage, the mapper takes the input in a <key, value> format and then loads the 

entire partition assigned to it and generates a HashTable that has the graph structure of 

this partition. By doing so the mapper will have access to the structure data of its part of 

the graph during its lifetime by using the hash table generated previously: 

a. In the map stage, before emitting any message, it updates the component ID with 

the minimum for each vertex that has internal neighbours in the hash table and 

this process will repeat until no internal updates occur. This will reduce the 

number of Component ID updates that need to be sent to the reducer. 

b. If a connected component is split over more than one mapper, each mapper will 

process the partial connected component internally and define the smallest 

Component ID and emit it, which will to converge faster and reduce the number 

of iterations. 

 In the reduce stage, each reducer for a key 𝑣  aggregates tuples emitted by different 

mappers (𝐶𝑣
(1)

, … , 𝐶𝑣
(𝑘)

) in sorted order using secondary sorting in Hadoop MapReduce 

and takes the smallest one as the new Component ID. 

Repeat the MapReduce iteration until no change is made to any in cluster 𝐶𝑜𝑚𝐼𝐷 . 

According to the author, the MemoryCC algorithm communication complexity is O(n) 

where n is the number of vertices and runtime should be in direct relation to the number of 
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vertices. The algorithm helps in reducing both the intermediate data communications and 

number of iterations and  in practice it performs up to ten times faster than PEGASUS and 

CC-MR  However further analysis of time and space complexity is needed to prove 

this[119].  

 

1. Map 

2. Hashmap subgraph<key,value> 

3.  Input <Key, Value> : <(node n, Comp_IDn), adjacency list of n>  

4.      subgraph.put(node n, <Comp_IDn , adjacency list of n>) 

5.      while (any component ID updates) do 

6.           for each node n in subgraph do  

7.                for each node i which is neighbor of n do  

8.                     if i is in subgraph & Comp_IDi is smaller than Comp_IDn do 

9.                           replace Comp_IDi with Comp_IDn 

10. for each node i in subgraph do 

11.       emit <i, Comp_IDi >  

12.       emit <i, adjacency list of i > 

13. for each node i not in subgraph   

14.                            & has at least a neighbor in subgraph do  

15.       emit <i, smallest Comp_ID of i’s neighbours in subgraph > 

16. Reduce 

17. Input<Key, Value> = <node n, received IDs and adjacency list of n > 

18.      component_IDn = smallest id received  

19.      emit < (n, component_IDn) , adjacency list of n > 

 
 

Figure 4-4 MemoryCC Algorithm[119]. 

 

4.7.7 CC-MR-mem 

Kolb et al.[120] proposed CC-MR-mem which is an algorithm for finding connected 

Components in large graphs. It is an optimized version of MR_CC[13]. One of the major 
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improvements achieved by CC-MR-Mem is memory-based connection of subgraphs in the 

map phase and is similar to the approach adopted in MemoryCC by Varamesh & Akbari 

[119]. In addition has the capability to identify stable components that do not grow more to 

avoid increased processing times and   this will enhance performance by reducing the amount 

of intermediate data communicated and the number of iterations.  

Initially, the input file contains the graph itself, where each record represents an edge 

( 𝑣source, 𝑣dest), where 𝑣source connects to 𝑣dest in a graph 𝐺 = (𝑉, 𝐸), 𝑉 is a set of vertices 

and  𝐸 is a set of edges. 

  Unlike the map job in MR_CC, the map stage inputs records of the entire partition 

assigned to the mapper which will be buffered in memory and where a HashMap Table 

will be generated. Accordingly, the map output will be generated in the following two 

steps: 

a. Generate Hash Table: The hash table is constructed with each vertex mapped to 

a set of vertices connected to it,  𝐻𝑎𝑠ℎ𝑀𝑎𝑝 ( 𝑣 , 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑆𝑒𝑡). As new edges 

are added, component sets for their vertices are created, updated, or merged with 

each other. 

b. Generate map Output: Depending on the hash table the mapper will defined the 

minimal vertex (smallest ID) for each component set, and accordingly generate 

an output that connects each vertex to the minimal vertex and vice versa. This 

reduces the amount of processing required in the reduce job This will also reduce 

the amount of intermediate data communicated and the number of iterations at 

an extra cost of using more memory and processing in the map phase.  

The reduce stage is the same as the reduce job in MR_CC, where each reducer for a key 𝑣  

aggregates tuples emitted by different mappers (𝑢1, 𝑢2 , . . , 𝑢𝑘 )which represent 𝑎𝑑𝑗(𝑣). Here 
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Hadoop secondary sorting is used, which means the reducer will receive values in order (first 

value 𝑢1 is the minimum in 𝑎𝑑𝑗(𝑣) ). 

Check for vertex 𝑣 and its adjacent neighbour vertices in 𝑎𝑑𝑗(𝑣)  if 𝑣 has the smallest 

id or not ( 𝑣 > 𝑢𝑓𝑖𝑟𝑠𝑡): 

c) If yes (locallyMaxState), assign all 𝑢 ∈  𝑎𝑑𝑗(𝑣) to 𝑣 by sending (𝑣, 𝑢). 

d) Else (mergeState), there is a vertex 𝑢 ∈ 𝑎𝑑𝑗(𝑣) in which 𝑢 < 𝑣, in this case 

it is 𝑢𝑓𝑖𝑟𝑠𝑡, unlink CC-MR here we only need to send (𝑢𝑓𝑖𝑟𝑠𝑡 , 𝑢), 𝑢 ∈ 𝑎𝑑𝑗(𝑣).  

Repeat the MapReduce iteration until the mergeState situation does not occur anymore. The 

graph will transform to star-like subgraphs where each one represents a component and the 

centre vertex is the component id. 

Performance is also enhanced by identifying stable components that need no more 

processing. Stable components will be augmented by a stable flag so that they will be 

separated in the following iteration when they will be written to a different file and will not 

be read by mapper in the later iterations. This enhancement is achieved with virtually no 

additional overhead in terms of data volume and memory requirements. 

A further modification tested by the author was to consider the vertex degree instead of the 

minimum vertex id in defining the component id. However, this approach required more 

iterations to identify the degree for each vertex, and increased the data transferred between 

the mapper and reducer. This was in addition to the overhead of reading each vertex degree 

from the distributed cache during this first iteration.   
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Figure 4-5 : CC-MR-mem Algorithm (Map Phase) [120]. 
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4.7.8 Two-Phase & ALT-OPT 

Kiveris [14] introduced two MapReduce CC algorithms, which  can easily scale to large 

graph  with hundreds of billions of edges. These algorithms also outperform Hash-to-Min 

algorithm by an order of magnitude. Both algorithms make use of the small-star and large-

star operations, where they perform both operations until convergence is reached. 

 Small-star: for edges to neighbours with smaller or equal ids, replace each edge 

with an edge to the minimum vertex. 

𝑁 = { 𝑢 ∈  Γ(𝑣) , ∀ 𝑙𝑢 ≤  𝑙𝑣 }, replace the edge (𝑢 , 𝑣) with (𝑢, 𝑚(𝑣)) 

 Large-star: for edges to neighbours with greater ids, replace each edge with an 

edge to the minimum vertex. 

𝑁 = { 𝑢 ∈  Γ(𝑣) , ∀ 𝑙𝑢 >  𝑙𝑣 }, replace the edge (𝑢 , 𝑣) with (𝑢, 𝑚(𝑣)) 

The algorithms will transform the graph into a collection of star graphs where each represents 

a connected component. They will proceed in a way that guarantees the number of edges 

never increases, instead it does decrease. Both operations can be easily implemented in 

MapReduce: 

 

Small Star Operation 

Map < 𝑣, 𝑢 > 

 If   (𝑙𝑢 ≤  𝑙𝑣) then: 

  Emit  (𝑣 , 𝑢) 

 Else:  

Emit (𝑢, 𝑣) 

Reduce <  𝑣, 𝑁 ⊆   𝛤(𝑣) > 

 Let 𝑚 = arg  𝑚𝑖𝑛𝑢∈ N ∪{v} 𝑙𝑢 

 Emit (𝑢, 𝑚) , 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑢 ∈ 𝑁 

Large Star Operation 

Map < 𝑣, 𝑢 > 

      Emit  (𝑣 , 𝑢) 

      Emit  (𝑢 , 𝑣) 

Reduce < 𝑣, 𝛤(𝑣) > 

       Let  m = arg  minu∈  Γ++(v) lu 

       Emit (𝑢, 𝑚) , 𝑓𝑜𝑟 𝑎𝑙𝑙   𝑢 , ∀ 𝑙𝑢 >  𝑙𝑣 

Figure 4-6 Large Start and Small Star operations[14] 
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The difference between the Two-Phase and the alternating algorithms is the order in which 

they run large-star and small-star operations:  

o In the Alternating algorithm, the large-star and small-star operations run sequentially 

until convergence. 

o In the Two-Phase algorithm in each iteration, large-star is repeated until convergence 

which then performs the one small-star operation. 

Further optimisations have been proposed for both algorithms: 

 Similar to CC-MR-mem and MemoryCC this algorithm uses a distributed hash table 

(DHT) to improve the runtime by reducing the total number of iterations of MapReduce.  

For the large-star in the Two-Phase algorithm, the DHT creates a table for mapping each 

vertex to its smallest neighbour, with vertices initially pointing to themselves. Then each 

vertex repeatedly updates its smallest neighbour in the DHT until convergence. Then 

only one MapReduce iteration is required to finish.  The algorithm will finish in 

𝑂(𝑙𝑜𝑔𝑛  𝑙𝑜𝑔𝑙𝑜𝑔𝑛) MapReduce iterations using a DHT of size 𝑂 (
𝑛

𝑙𝑜𝑔  𝑛
). 

 The other optimisation is to solve the problem of “the curse of the last reducer” in skew 

degree graphs and carry out load balancing. The proposed optimised algorithm is called 

Optimized Alternating (Opt-Alt) It ensures that the reducer for a vertex 𝑣 will not take 

all neighbours of v when their number exceeds the threshold defined 𝜏.  When the 

number of neighbours of a vertex exceeds 𝜏, create 𝜏 copies of that vertex and attach to 

the vertex label of each copy an infinitesimally small number and connect the main 

vertex to each of the newly created copies and distribute the neighbours to the copies 

created.  
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4.7.9 Cracker  

Lulli [115], [116] introduce the Cracker algorithm, an efficient iterative MapReduce-Like 

algorithm to find connected component in large graph. Cracker build a spanning tree of 

connected components in the graph by adding nodes to the tree with each node has its 

component identifier as it root in the tree. It also provides node-pruning mechanism, which 

effectively reduce the number of active vertices after each iteration; each node added to the 

spanning tree is discarded from the computation in the following iterations. 

It is organized in two main phases, shown in Figure 4.7:  

1. Seeds identification phase, where seed nodes for each component are identified, 

during this process at each iteration non-seed node will be added to the spanning tree 

and excluded from the processing graph. This is achieved in two steps: 

a. Min Selection Step: where nodes that are guaranteed not to be a seed node 

for any component is identified. 

b. Pruning Step: where identified nodes from the previous step are excluded 

from computation and added to the spanning tree 

This process will iterate the two steps until only the seed nodes for each component 

are left, where they will be added to spanning tree as the main root node for the 

component. 

2. Seeds Propagation, in which the all seed nodes will propagate their ids to their child 

nodes until all nodes belonging to the same component will share the same root node 

id as their component identifier. The result will be a spanning tree of connected 

components with the root node for each tree as the component identifier.   

The algorithm will finish in 𝑂(𝑙𝑜𝑔𝑛) iterations with number of message 𝑂 (
𝑛 𝑚

𝑙𝑜𝑔  𝑛
) per 

iteration. Thus, the Cracker algorithm outperforms its competitor algorithms, such as 
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Hash-to-Min, PEGASUS, CC-MR, CCF with best competitor being 9% to 75% slower, 

also it achieves the least message volume among all its competitors. 

 

Input: an undirected graph G = (V,E) 

Output: a graph where every vertex is labelled with the seed of its CC 

1. u.Active = True ∀u ∈ G 

2. T ←(V, ∅) 

3. t←1 

4. Gt ←G  

5. repeat 

6.       Ht ← Min_Selection_Step(u) ∀u ∈ Gt 

7.       Gt+1 ← Pruning_Step(u,T) ∀u ∈ Ht 

8.       t←t+1 

9. until Gt = ∅ 

10. G∗ ← Seed_Propagation(T)  

11. return G∗  

Figure 4-7: The Cracker Algorithm[115] 

4.8 Summary 

Previously mentioned algorithms are presented in table 4-1 with some information about the 

complexity analysis and features used in each one such as using Distributed Hash-Table 

(DHT), if load balancing is considered in the algorithm design, how is the component 

identifier is selected, and if the algorithm provide vertex pruning. In addition to, what 

processing system has been used for testing the algorithm. The table also reports the other 

algorithms used in the performance comparison for each algorithm. Different criteria were 

used for measuring the performance of each algorithm, mainly the runtime, and the number 

of iteration, and the intermediate data has been reported for most algorithms.  

The Cracker algorithm is the only algorithm that fully use the vertex pruning, where non-

active nodes are removed from the processing graph. Thus, it tracks how the size of the graph 

changes after each iteration by reporting the number of active nodes. Other algorithms also 
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use load balancing to avoid the problem of ’the curse of the last reducer’, when a connected 

component is very large and all the vertices of this component need to be sent to and 

processed by the same reducer. Therefore, the computation assigned for the reducer of high 

degree node are distributed to copies of that nodes across the cluster as presented in figure 

4-8. 

 

 

The component identifier for all the algorithms are selected based on the lexical ordering of 

the node id values. Although, Kolb et.al [120] mentioned using the degree of node for 

selecting the component identifier, he did not adopt this approach as it requires pre-

computing of the degree which would add computation overhead. 

Different environment setups were reported in the experimental evaluation for each 

algorithm. Hadoop processing system is the mainly processing system used except in the 

Cracker algorithm which used more recent and advance processing system such as Spark. 

However, there is a variety in the environment setup even when Hadoop is used, different 

number of the worker nodes and different nodes’ specification were used. In addition, 

different type and size of datasets reported for experiment. Thus, there is a need used 

common benchmarked datasets and experiments’ setups to efficiently compare and evaluate 

the performance of each algorithm.  

Figure 4-8: Load Balancing[14] 
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g
 Experiment 

environment 

Zones 
N/A O(d)3 O( n + m )3 N/A No No ID No Hadoop Cluster 

Pegasus 

HCC 

N/A O(d)3 O( n + m )3 - Runtime No No ID No Hadoop Cluster 

9 nodes  

Hash-to- 

Min 

- HCC O(log(d))4 2 ( n + m ) - # of iterations 
- Intermediate data 

- Runtime 

No Limi
ted 

ID No Hadoop Cluster 

CC-MR 

- HCC 

- zones 

N/A N/A - Runtime 

- # of iterations 
- # of edges remaining 

No Yes ID No Hadoop Cluster 

14 nodes  
 

CCF 

- HCC 

- CC-MR 

O(d) 

 

N/A - Runtime 

- # of iterations 

No No ID Limi

ted 

Hadoop Cluster 

80 nodes 

 

MemoryCC 

- HCC 

- CC-MR 
- Hash-

to-Min 

N/A 

 

O(n) - Intermediate data 

- # of iterations 
- Runtime 

Yes No ID No Hadoop cluster  

8 nodes  
 

CC-MR-

mem 

- CC-MR N/A N/A - # of iterations 

- Runtime 
- Intermediate data 

- overall data volume 

No Yes ID/ 

VD 

No Hadoop Cluster 

(on Amazon EC2) 
+ 20 worker nodes 

+ 40 worker nodes 

- 100 worker nodes 

Alternating 

Optimized 

(Alt-Opt) 

- Hash-

to-Min 

O(log n)5 O(m) - # of iterations 

- Runtime- 

- # of edges remaining 

Yes Yes ID No N/A 

Cracker 

- Alt-Opt 

- CCF 

O (log n)2 O (
𝑛 𝑚

log n
 ) - # of edges remaining 

- Runtime 

- Active nodes 
 

No No ID Yes Spark Cluster 

5 nodes 

Table 4-1: Finding Connected Component Algorithms using MapReduce (n is the number 

of nodes, m is the number of edges, d is the diameter) 

 

The Cracker algorithm outperforms all its competitors in practice, and theoretically it could 

achieve the best results. Thus, this algorithm was chosen to be studied in more details. In the 

next chapter, the Cracker algorithm is selected as the foundation used to implement our 

proposed enhancement and extend optimisations. In addition, we mainly compare the 

performance of our proposed approach to the performance of the original Cracker algorithm. 
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Chapter 5: Proposed Algorithm 

5.1 Introduction 

All the algorithms previously described in Chapter 4, are design based on the MapReduce 

programming model. However, current large distributed systems provide more flexibility 

and further features beyond the MapReduce paradigm, such as the ability to cache and 

partition the data. In addition, all those algorithms choose the component identifier based 

only on the lexical ordering of the node id values, ignoring the existing structure of the graph. 

Hence, to enhance and optimise the performance of the connected components algorithms, 

we use two types of properties: 

 Graph Structure properties: where we consider the graphs structure properties in 

choosing the best candidate as component identifier, instead of blindly choosing it 

based on its lexical ordering. 

 Processing System properties: where we consider features and functionality provided 

by new processing systems to improve the design of the MapReduce implementation 

of the algorithm in order to increase efficiency or improve the performance of the 

algorithm. 

 

Lin and Schatzand [118] proposed a set of enhanced design patterns that can be used to 

improve the performance of  a large class of graph algorithms based on message passing. In 

the process of design and implementation of our new algorithms, we try to follow some of 

those patterns such as:  
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 Role(1): Using the Range Partitioning technique to partition the graph into multiple 

blocks and allowing different mappers to execute in parallel on stored portions of the 

graph.  

 Role(2): Building a hash table that contains the graph structure for the graph partition 

processed in the mapper, and passing messages from source to destination locally 

between nodes that are included in the Hashtable. Thereby, reducing the data traffic 

on the network, which in turn increases the speed of a MapReduce algorithm, as the 

network traffic dominates the execution time.   

 Role(3): Ensuring the mapper outputs the node structure (< Node ID, 

{Adjacency_List} >) to the reduce phase to perform multiple iterations.    

In the approach we introduce, we will consider the properties from the graphs structure and 

from the processing system, whilst using some of the MapReduce best practices in the design 

and implementation of our algorithm for finding connected components in a large-scale 

graph using GraphX in Spark.  

5.2 Proposed Improvements 

Finding connected components in large graphs requires iterative processing, however 

iterative processing is not directly supported in MapReduce. Our aim is to enhance the 

performance of finding connected component algorithm for undirected graphs in big data 

processing systems using MapReduce, this could be achieved by addressing the following 

questions: 

 How to reduce the number of iterations while minimising the communication load in 

the shuffling phase between iterations. 
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 How to increase the efficiency of the algorithm in modern processing system using 

the new features provided. 

In the Objectives of this study, we follow best practices used in designing MapReduce 

algorithms and apply it on the algorithm for finding connected components in a graph. 

Furthermore, in the design of the algorithm, we consider both the properties of the graph 

structure, and the advanced features supported in current large distributed graph processing 

systems 

We approach our objectives from two angles:  

 First, adopted a new approach to enhance the performance of CC algorithms in 

general. In our case, instead of choosing the component identifier for each connected 

component based only on the lexical ordering of the node id values, we integrated 

graph structure degree property and use it in chosen the component identifier.  

 Second, we reviewed current algorithms and choose the most recent one that 

outperforms other algorithms. Then using the properties provided by the processing 

system, we apply few modifications that could boost the performance of the 

algorithm. In our case, we based our modifications on the concept of moving the 

computation process toward where the data is stored could help enhance the 

performance. This is essentially the concept behind MapReduce also, however, we 

could benefit here from systems like Spark that provides extra features by caching 

the data in memory and controlling the partitioning process across the cluster. The 

algorithm we choose to introduce our improvements is the Cracker algorithm[115], 

[116], it was selected based on its performance, as it provides the best performance 

among its competitors (all the algorithms described in chapter 4), in addition it has 

the feature of graph contraction, where the graph size shrink after each iteration. 
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With respect to our objective, we design and implement improvements for the Cracker 

algorithm using Spark, a general-purpose data processing system that provides support for 

iterative processing. In addition, we use its graph-processing library GraphX, which provides 

a distributed graph representation with many optimisations implemented that can 

significantly enhance processing performance. Our work is inspired by the Cracker 

algorithm, in which a graph is iteratively transformed into a set of trees, each representing a 

connected component. During each iteration, the graph size is reduced by identifying nodes 

that do not have impact on other connected components. These nodes are excluded from 

computation in the next iteration and are added to the trees. The result will be a spanning 

tree of connected components with the root node for each tree is its component identifier. 
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Figure 5-1: Proposed improvements diagram 
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The key improvements proposed in this research are presented in figure 5-1 , in which base 

on the graph structure properties and the processing system properties we introduce our 

improvements and apply them on the original Cracker algorithm, these can be listed as 

follows: 

5.2.1 Graph contraction based on node degree: 

Graph contraction is the process in which a node id is selected as a component identifier, 

then all the other nodes belonging to the same component are contracted into it[121]. In 

all the algorithms previously reviewed in Chapter 4, the graph contracts to the nodes with 

the smallest id, based on their lexical ordering, ignoring the existing structure of the 

graph. However, real-world graphs are usually scale-free graphs and follow the power-

law degree distribution, whilst the majority of nodes have a small number of edges only 

a few have a large number of edges. Existing algorithms use label propagation to 

propagate the node with the smallest id regardless of any other properties of the node 

such as degree. This could eventually cause additional iterations by not choosing the 

node with the highest degree, such nodes help the algorithm to propagate and converge 

faster. 

In the approach we present, we attached the degree to each node and based on that 

information we choose the component id identifier. When the two nodes have the same 

degree, we compare the node ids and choose the node with largest id as the component 

identifier. Therefore, we introduce “node assorting step” to the Cracker algorithm, as 

shown in figure 5-1, which will be further explained in details later in this chapter. 
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5.2.2 Dynamic evaluation of the degree in the graph: 

Usually, graph contraction based on the smallest id is a straightforward approach, as the 

node id never changes even if the structure of the graph changes. Change only happens 

to the node label that indicates its component id or to the adjacency list of the node. 

However, when using contraction based on degree, the degree of each node might 

change. This is because, after each iteration the graph structure changes usually by 

updating the adjacency list for the node. Therefore, updating nodes degree after each 

iteration could help the algorithm to converge faster following the previous suggested 

improvement. 

5.2.3 Computing local CC in the map phase 

In the proposed sets of enhanced design patterns for MapReduce and based on the 

Role(2)[103](section 5.1). We could reduce the data traffic and increase the speed of a 

MapReduce algorithm, by building a distributed hash table (DHT) that contains the graph 

structure for the graph partition processed in the mapper and performing operations locally 

before emitting messages between nodes in the cluster. This approach was implemented and 

followed in different algorithms to improve processing time, as in [88], [104], [105]. The 

main idea is to take nodes in each partition of data and load them with their components’ ids 

in a hash table data structure, and then identifying the local components in each partition. In 

the hash table, each node is mapped to the components it belongs to. The approach then 

repeatedly scans and updates the component id for each node until no further updates are 

needed. At this stage, some components would merge locally, which comes at some cost as 

it requires more memory and processing. It also places additional overheads on the system 

during the map phase. However, this step would affect the performance of the algorithm in 

different ways. For example, the number of emitted messages would be reduced and as a 
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result less network traffic. Likewise, a number of computations carried out in the reduce 

phase would also reduce and fewer iteration would be required. With reference to the 

objectives of this work, we implement this type of improvement on the Cracker algorithm, 

thus, we introduce two further steps in the algorithm, which are, (a) local max identification 

step, and (b) local seed propagation step, as shown in figure 5-1 , which will be explained in 

detail later in this chapter. 

Throughout this thesis, the term ‘Cracker-Degree’ is used to refer to the Cracker algorithm 

after applying nodes’ degree approach in finding connected components, and the term 

‘Cracker-Degree-Opt’ is used to refer to the algorithm after apply the improvements based 

on the local CC computation in the map phase.  
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5.3 Preliminaries: 

Let G = (V, E) be an undirected graph which consists of a set of nodes V (Vertices) uniquely 

identified by values in ℤ. Nodes that are connected to each other by links called edges E.  

Let n = |V| be the number of nodes and m = |E| is the number of edges. For a node v, we 

denote by Γ(v) = {u | (v , u) ∈ E} the neighbours of v  and Γ+ (v) = Γ(v)∪{v} denotes a set 

that contains the node v itself and its neighbour nodes.  

5.4 The Framework Model: 

We use features in GraphX to develop and optimised the algorithm for finding connected 

components in a large graph. Using GraphX helps to achieve a significant impact on 

performance by providing features such as indices reuse, in memory processing, and 

controlling partitioning strategies. To better understand the approach we follow, we put the 

proposed approach into a simple framework pipeline model, shown in figure 5-2.  

 

Figure 5-2:Framework Pipeline Model 

The framework uses features and operations available in GraphX to enhance data flow in the 

algorithm.  To have a better understanding the data processing is divided into three main 

stages: (i) Pre-processing stage takes input data in its raw format and prepare it with the 

format required for processing. (ii) Computing stage, where we apply the improvements we 
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introduced to the algorithm. (iii) Post-processing stage, where we present the results for 

evaluation. 

In the following, we expand the pipeline framework model and give a more detailed 

description about each data processing stages, as illustrated in figure 5-3.  

 

Figure 5-3: Algorithm Framework Model 
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i. Pre-Processing Stage: 

 At this stage, we take the raw data and prepare the initial graph needed in the Computing 

stage. Using GraphX, we build the graph from the raw data in datasets, which could be 

structured or unstructured. The graph used in our algorithm is built based on the adjacency 

list graph representation, where each node is aware of all the neighbours it is connected to. 

Here, each node stores in its property field a set of all its adjacent nodes <u → adjSet > ∀u 

∈ G = (V,E). Furthermore, to use the degree of the node as the main criteria for choosing the 

component identifier, we attach the node degree to the node id u= (uid, udegree). Therefore, 

this stage will process the raw data and build a graph based on the adjacency list 

representation with each node aware of its degree and the degree of all other adjacent nodes. 

ii. Computing Stage: 

 In a similar way to the Cracker algorithm, we divide this stage into two main phases: Seed 

identification and seed propagation.  

In the first, we try to identify seed nodes, which are the nodes that will become the 

component identifier for the component it belongs to. This could be achieved by iteratively 

excluding non-seed nodes, which are nodes that are guaranteed not to be seed nodes, and 

they do not have any effect on chosen seed nodes. During this phase, a seed propagation tree 

is iteratively built, by adding the non-seeds nodes. Each identified node is rooted to a 

potential seed node in the propagation tree and deactivated in the processing graph. This 

phase finishes when all nodes are added to the tree, and there are no active nodes in the 

processing graph. Initially, computation in this phase is performed locally on each graph 

partitions across the cluster, as suggested in the proposed improvements. Then, computation 

is performed on cluster levels, similar to the original Cracker algorithm. 
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In the second phase, the seed nodes in propagation tree start to propagate their components’ 

id to all their children nodes, and every node that receives a new components id will in turn 

propagate it to its children. This processes is performed iteratively until all the nodes belong 

to the same component are propagated with the same identifier, forming a tree rooted to a 

node represents the components identifier. Computation here is initially carried out locally 

similar to the previous step, and then across the cluster nodes. Further detailed explanation 

will follow in this chapter. 

iii. Post-Processing Stage: 

In this stage, we take the output graph from the previous stage, count the number of nodes 

in each component, and return the number of connected components with top largest 10 

components, to check the accuracy of the algorithm.  

5.5 Computing Stage: 

The focus in this chapter is on explaining the proposed approach in finding connected 

components in large graphs. Thus, we only describe the computation stage here. A detailed 

description of the implementation of all stages is documented in the next chapter. 

 In this stage, we only work on the VertexRDD of the graph, which is an extended RDD that 

represent vertices (nodes) in GraphX to ensure there is only one entry for each node, and to 

pre-index the entries for fast and efficient join operations, where two VertexRDD with the 

same index can be joined efficiently. In VertexRDD each node is stored with its properties, 

such properties could be a set of adjacent neighbours or the degree property for each node. 

As mentioned before, Resilient Distributed Datasets (RDDs) is used to perform in-memory 

computations on large clusters where RDD’s elements are partitioned across a cluster of 

nodes, so they can be operated on in parallel. Spark will control this process. Moreover, it 
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provides operators that help in implementing user specific optimisation as required, which 

fulfil the Role (1) described in the section 5-1. 

In the computation stage finding CCs could be achieved using two phases (shown in figure 

5-4), each phase contains multiple steps. Similar to Cracker algorithm[115] the two main 

phases are seed identification and seed propagation as presented in figure 5-5.  
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Figure 5-4: Computation Stage 
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Input: an undirected graph G = (V,E) 

Output: a graph where every vertex is labelled with the seed of its CC 

1. u.Active = True ∀u ∈ G 

2. T ←(V, ∅) 

3. t←1 

4. Gt ←G  

5. repeat 

6.       Gt
update← Local_Max_identification(u) ∀u ∈ Gt 

7.       HCt ← Cluster_Max_identification(u) ∀u ∈ Gt
update 

8.       Gt+1 ← Pruning(u,T) ∀u ∈ HCt 

9.       t←t+1 

10. until Gt = ∅ 

11. G∗ ← Local_Seed_Propagation(T)  

12. G∗ ← Cluster_Seed_Propagation(T)  

13. return G∗  

Figure 5-5: Cracker-Degree Algorithm 

The following is a detailed description of the two phases: 

5.5.1  Seed Identification Phase: 

In this phase, we scan the graph looking for connected components identifier ids (seed 

nodes), while excluding nodes that have no effect on chosen seed nodes and add them to the 

propagation tree. This reduces the graph size and saves the processing time in later iterations. 

The main idea is that each node interacts with its set of adjacent neighbours in to choose its 

potential connected component identifier. When a node is not recognised as a potential CC 

identifier for any of its neighbours and it is guaranteed that it will not become one in later 

iterations, this node will be deactivated in the main processing graph and excluded from 

being computed in later iterations. It will then be added to the propagation tree rooted to a 

seed node which is the potential CC identifier recognised among its neighbours. This phase 

finishes when all nodes are added to the tree, and there are no active nodes in the processing 

graph. 
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As shown in the Figure 5-4, this phase starts by taking the output graph of the pre-processing 

stage as its initial input graph and only works on the VertexRDD of the graph using the 

GraphX operator graph.vertices, where each node has a set of adjacent neighbours as its 

property. In the initial graph, all the nodes are in the active state, and therefore are all nodes 

are involved in the first computation. The computation in this phase is achieved by iteratively 

executing two main steps: (i) Max identification step, helps to identify non-seed node in the 

processing graph. (ii) Pruning step, where identified nodes are excluded from the processing 

graph and added to propagation tree. The following is a detailed description for the two steps. 

i. Max Identification Step 

The computation in this step is performed at two levels - local and cluster level. Initially, in 

local computation, each data partition is processed locally, with no need to shuffling any 

output data between partitions. In cluster computation, the output result requires data from 

all partitions and hence requires data shuffling between cluster nodes. Details of these two 

levels are presented in the following two sub-steps: 

a) Local Max Identification Step: 

In this step, data is partitioned across the cluster and is processed on the node where it is 

stored. Each node in the cluster could host more than one partition. Computation is therefore, 

carried out on each data partition a locally on the cluster node and no information is shuffled 

across the cluster. Each partition is therefore, considered to be an independent part of the 

graph, where we seek to identify the connected components in this partial graph. The purpose 

of this step is to find the local CC identifier for each group of vertices, which are connected 

in the data partition to which they belong. This will help to reduce the amount of processing 

required in later operations that could involve shuffling data across the cluster, as well as   

reducing the amount of shuffled data itself. This concept was recommended by Lin and 
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Schatzand [118] as in rule (2)  in section 5-1, and was implemented in different ways as in  

[14], [119], [120].  

For example Kiveris in his paper [14] used distributed hash table (DHT), where in map phase 

all nodes are loaded in a hash-table data structure and stored, each node is mapped to a its 

component identifier, initially the node itself. The process then repeatedly scans the table 

and updates the component identifier for each node with the minimum component identifier 

among neighbours until convergence. At this point, all the nodes will be mapped to their 

component identifier, which is represented by the minimum node id in that component. 

In our work, we use the same approach; however, instead of using hash table, our approach 

is based on the Disjoint-Set data structure (also called union-find data structure) with path-

compression so that the sets have a self-adjusting structure. The data is partitioned into non-

overlapping dynamic sets with no intersection among them, each set has one of its members 

as the representative element of this set. This data structure was chosen as in order to increase 

the speed updates required for the component identifier for each node.  

Generally, generating these updates in the hash table require depth-first-search algorithm 

(DFS) to do the job, DFS has the time complexity of O (𝑉 +  𝐸). On the other hand, Disjoint-

Set (DS) has time complexity of O (𝛼(𝑉) +  𝐸). Optimised DS provides near-constant-time 

operations with amortised time 𝑂(𝛼(𝑉)) (bounded by 𝛼(𝑉) the inverse Ackermann function 

where V is the number of nodes, which is a very slowly growing function that is less than 5 

for any practical value), and turns out to be just barely more than O(1). Which make the time 

complexity of DS close to O (𝑉 +  𝐸) , which is very much close in performance to DFS. 

However, DS is preferred for situation where edges are continuously being added, and 

incremental computation for connected component is required. [122] 
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In our case, in the disjoint-set data structure, each set represents a connected component with 

the component id identifier as its representative node. We implement the sets as a rooted tree 

with each element as a node, and where each node points to its parent in the tree. The root 

of each tree is the representative node of that tree which in our case is the connected 

component identifier. To use disjoint-set, we need to define three main functions: 

1. a function to initiate any new node as a new set (tree) with a pointer to the root node 

(parent). Initially, each node is rooted to itself by default. 

2. A root function, that for each node returns the root of the tree this node belongs to. 

In this function path compression is recursively applied, which means that at any call 

for this function all the nodes on the same path between the requested node and the 

root node will update their parent to point directly to the root node (all nodes will 

become direct children of the root node), which will make subsequent similar 

operations much more efficient. 

3. A union function, which will unify any two tree sets into one by pointing the root of 

one of them to the root node of the other. In this way, the two trees will be merged 

with one of the original root nodes becoming the new root. The new root node is 

chosen based on the degree of that node on the original graph, the node with the 

higher degree will become the new root node.  If both root nodes of the trees have 

the same degree, the node with the larger id will be chosen. This operation is very 

much based on the root function defined earlier to check the root node for any given 

node. It will also use path-compression to adjust the tree structure with each call of 

the root function, and eventually lead to a more efficient performance in later calls. 

In the local max identification step, we process each data partition alone on the local machine 

where it is stored. The aim is to try to accomplish part of the computation locally on small 

partitions of the data before the need to process the whole data across the cluster.  
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We use the disjoint-set data structure to help us find the local connected component identifier 

for each node in the partition it is stored on. Using the mapPartition function in Spark, each 

partition will be processed individually using our LocalMaxIdentification function to prepare 

the data for later processing, see figure 5-6 for the pseudo code of this function. 

Input: a partition of the graph Gp = (V,E) 

Output: Gupdate updated partition 

1. u ←(u id ,u degree,u comp, u adjSet) ∀u ∈ Gp 

2. ds = new DisjointSet()  

3. for (u in  Gp){ 

4.       if (ds not contains(u id) )){ 

5.             ds+= u 

6.     } 

7.     if (u adjSet  not empty)  { 

8.         for (node  in  u adjSet){ 

9.             if (ds not contains(node.id))){ 

10.            ds+= node 

11.             } 

12.             union(item ,node) 

13.         } 

14.     } 

15. } 

16. Gupdate ← Gp  

17. for (u in  Gupdate){ 

18.       ucomp = ds.root(u id)   ∀u ∈ Gupdate 

19. } 

20. return Gupdate   

Figure 5-6: Local Max Identification  Function 

 

Each data partition Gp will be passed to the LocalMaxIdentification function where for each 

node u in that partition, the node will be added to build the disjoint-set ds in case it was 

missing, then add all adjacent neighbours of u (in uadjSet) to ds. The union operation will then 

unify the node u with each of its neighbours to be in the same tree. As consequence, the root 

of that tree will be updated to be the node with the max degree. After all the nodes in the 

partition are added to build the ds disjoint-Set data structure, we will have in ds a forest of 
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trees, each representing connected components in that partition with the component 

identifier as the root of each tree. Finally, each node in the data partition Gp will updates its 

component identifiers according to the root of the tree it belongs to in ds. The flowchart for 

this function is shown in figure 5-7. 
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Figure 5-7: LocalMaxIdentification_Map 
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b) Cluster Max Identification 

The main objective to be achieved in this step is to identify seed nodes in the graph.  We 

achieve that by initially identify nodes that have no effect on the process of choosing the 

connected component identifiers (seed nodes) and exclude those nodes from being processed 

in later operations. This, in turn, will help to reduce both the size of data processed and the 

volume of transfer between cluster nodes. The outcome will lead to faster convergence.  

Using the data received from the previous step, each node will be processed as follows: 

1.  For each node u ∈ Gt that has the adjacent set of neighbours Γ(u), we defined Γ+ (u) as 

a set of the adjacent nodes of node u including the node u itself, Γ+ (u) = Γ(u) ∪  {u}. 

2. Compute vmax, which is the node that has the maximum degree and largest id in Γ+(u) 

using the function findMaxCompInSet, which will be explained in details in section 6.2.1. 

3. For each node v in Γ+(u) add an edge (v → vmax) to HCt, which is a directed graph that 

has the output of this step for each node.  

These pseudocode for this step is represented in figure 5-8. 

Input: a node u ∈ Gt = (V,E) 

1. Γ (u) = { v: (u↔v) ∈ Gt }  

2. Γ+ (u) = Γ(u) ∪  {u} 

3. vmax =  findMaxCompInSet ( Γ+(u) ) 

4. for (v ∈ Γ+ (u) ){ 

5.       add  (v → vmax) to HCt  

6. }  

Figure 5-8: ClusterMaxIdentification Function 

 

This step is implemented using one MapReduce job, where the map function processes all 

nodes in each partition of the graph using the function map_ClusterMaxIdentification. This 

will send vmax of Γ+(u) for each node u to all the nodes in Γ+(u). The flowchart for the map 

function is shown in figure 5-9. 
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Figure 5-9: ClusterMaxIdentification_Map 

 

The messages from the output of the map function are grouped for each node and then 

reduced using the function reduce_ClusterMaxIdentification. which will process each node 

as follows: 

1. Aggregate the nodes notified by map functions and group them as the new adjacent set 

of the outgoing edges for the processed node.  
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2. Identify and assign the node with the max degree as the new component identifier (seed 

node) for the processed node. 

Because non-seed nodes could be characterised by not being the local component identifier 

for any of their neighbours, they will not have any incoming edge in the output graph of the 

Max Identification Step (HCt). This will help in identifying those non-seed nodes in next step 

(Pruning Step). In the following we explain the pruning step, in which non-seed nodes are 

excluding from computation in this phase and added to the propagation tree to be processed 

in next phase. 

ii. Pruning Step 

The output from the Max Identification Step is a directed graph with a collection of edges 

that represents the relationship between each node and its neighbours, we call it HCt. This 

output graph (HCt) is used to isolate nodes that are guaranteed not to be seeds anymore and 

exclude them from taking part in later computations in this phase. Excluded nodes added to 

the seed propagation tree T, where each node is rooted to its local component identifier which 

is represented by the neighbour node with the maximum degree. Detailed explanation of the 

pruning step is further presented in the following three sub-steps: 

a) Node assorting 

This step will use HCt as input and process all the nodes to produce two outputs:  

1) A new set of edges that form the new graph Gt+1 after excluding all the guaranteed non-

seed nodes.  

2) A set of edges to update the seed propagation tree T. These updates consist of excluded 

non-seed nodes with each one rooted to its local components identifier (seed node) in 

HCt. 
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 Using the data received from the previous step, each node will be processed as the 

following: 

1. For each node u ∈ HCt that has the adjacent set of neighbours Γ(u), we defined Γ+ (u) 

which is a set of the adjacent nodes of node u including the node u itself  Γ+ (u) = Γ(u) 

∪  {u}. 

2. Compute vmax, which is the node that has the maximum degree and largest id in Γ+(u) 

using the function findMaxCompInSet will be explained in detail in section 6.2.2. 

3. For all the neighbours of u in Γ+(u), generate an undirected edge to vmax. This will 

preserve connectivity in the graph in case node u needs to be excluded from Gt+1. 

4. Check if node u is guaranteed not to be a seed node in order to exclude it from Gt+1 and 

add it to T. As mentioned before, nodes which are not potential local component 

identifiers to any of their neighbours will not have any incoming edge from the others. 

In the previous step in the Cluster Max Identification, when a node is identified as a 

potential component identifier vmax, a collection of edges will be generated from all the 

nodes of Γ+ (u) to vmax (see line 5 in figure 5-11). This will also include an edge from 

this node to itself (vmax → vmax) in HCt.  Self-loop edge for a node u means that this was 

identified as a potential component identifier in the previous step and accordingly, 

nodes which have no existence in its neighbours set (self-loop) u ∉ ΓH
t (u)), are 

guaranteed not to be seed node and therefore could be safely excluded. These nodes are 

inserted in the seed propagation tree T where each will be rooted to its local component 

identifier (vmax →u) (see line 11 in Figure 5-11).  

5.  Seed nodes also identified in this step. The main purpose of this step is to reduce the 

size of the graph after each iteration by excluding non-seed nodes. Eventually, for each 

component, the last active node processed is the seed node, which is the component 

identifier for all neighbour nodes that belong to the same components, which has been 
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previously excluded. As mentioned before, self-loop edge for a node indicates that it 

was identified as a local seed node in the previous step. However, when the node has 

no other edge, other than the one to itself, means it is either the end root node for other 

nodes in the propagation tree or a single component node where its component 

identifier is itself. Identified seed nodes are then deactivated and inserted in the seed 

propagation tree T where each will be rooted to itself (u →u) (see line 15 in Figure 5-

11).  

The flowchart of node assorting is presented in figure 5-10 and figure 5-11 for pseudocode. 
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Figure 5-10: Node Assorting Flowchart 
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Input:   node u , ∀u ∈ HCt 

   seed propagation tree T 

Output: Gt+1 

    update T 

1. ΓH
t (u) = { v: (u →v) ∈ HCt }                         # neighbour of node u  in HCt 

2. vmax =  findMaxCompInSet ( ΓH
t (u))             # max node in u neighbours  ΓH

t (u) 

3. if (|ΓH
t (u)| > 1) { 

4.       for (v ∈ ΓH
t (u) \ vmax) { 

5.             Add (v → vmax) to Gt+1 

6.             Add (vmax → v) to Gt+1 

7.       } 

8. } 

9. if (u ∉ ΓH
t (u)) { 

10.          u.Active = False 

11.           Add (vmax →u) to T 

12. } 

13. If (IsSeed (u)) { 

14.             u.Active = False  

15.           Add (u →u) to T 

16.  }  

Figure 5-11: Node Assorting 

 

b) Degree Update 

The main concept in our approach is to use the degree as the primary criteria for selecting 

the connected component identifier. However, new edges are created, and nodes are 

excluded in each step, thus the structure of the graph changes with each iteration.  

The Graph structure changes as its size shrinks due to nodes both being deactivated and 

added to the seed propagation tree. Thus, nodes’ degrees continuously changes, especially 

for active nodes that act as potential seeds. This is because non-seed nodes are removed from 

their neighbourhood or when components merge. The graph degree was evaluated during 

the first step in the pre-processing stage. However, as the graph structure changes the node 

degrees need to be updated to reflect the actual graph structure after each iteration. To 
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address this problem, we add a lightweight MapReduce job to evaluate the new degree values 

for each node (shown in Figure 5-12). From each node, a message will be sent to each of its 

neighbours, and count the number of messages received from its adjacent neighbours. 

This information gathered will then be used to update the degree for all nodes in Gt+1. The 

updates will be sent to each cluster node, then using the mapPartition operator in Spark 

(which process data locally with no data shuffling required), in each partition the degree for 

each node will be updated in addition to both its component identifier degree and the degree 

for each of its neighbours (see Appendix1, Update Degree section). 

Map: a node u ∈ Gt+1 

1. Γ(u) = { v: (u↔v) ∈ Gt+1 \ u }  

2. for (v ∈ Γ(u) ){ 

3.       emit (v → 1) 

4.       emit (u → 1) 

5. } 

Reduce: u, Γ(u) 

6. Emit (u, Γ(u).sum)  

Figure 5-12: Degree Update 

 

c) Propagation Tree Update 

In the Node Assorting step, the aim is to exclude non-seed nodes which make no difference 

on the process of choosing the component identifier for any other node.  The excluded nodes 

will be sent as updates to the propagation tree T after each iteration, where they are merged 

into T. The updated format will be a set of directed edges, each root the identified non-seed 

node to it local seed node (vmax → u), where u is the non-seed node and vmax is the root of 

that node u. At the beginning of the step, the propagation tree T is an RDD (we call it 

PropTreeRDD) initialized with each node rooted to itself (each node is an independent tree 

itself with the root node the same as the node itself). However, as updates arrive following 

each iteration of the Max Identification Step, the new updates are added to PropTreeRDD. 
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The Seed Identification Phase will repeat as long as there are nodes to process in Gt. Nodes 

will continue to migrate from G to T at each iteration until there are no more active nodes Gt 

= ∅ (see Figure 5-11, Line 10). This is confirmed by counting the output of the Cluster Max 

Identification Step.  When it is zero, this phase will terminate (See appendix A). 

5.5.2 Seed Propagation Phase:  

When all the nodes have been added to the seed propagation tree T, the process of seed 

propagation starts. 

Seed propagation Tree T has the following characteristics: 

 Non-seeds nodes are rooted to their local seed nodes. 

 Local seed nodes are rooted to other seed nodes with a higher degree. 

 The seed node, which is the root of the tree, is rooted to itself. 

We could use two methods for the seed propagation process, either by processing the 

propagation tree after the seed identification phase has finished, or by updating the 

propagation tree during the process of seed identification phase. The two methods are 

described in the following: 

i. Seed Propagation. 

In this phase, seed nodes start to iteratively propagate their component ids to all their children 

nodes, and every node that receives a new components id will propagate it to its children. In 

the end, all nodes belonging to the same component will be propagated with the same 

identifier, forming a tree rooted to the components id node. Computation is initially 

performed locally and then across cluster nodes. Further details of the two computation 

levels in this step are presented in the following: 
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a) Local Seed Propagation. 

The computation in this step is carried out locally on each data partition on the cluster node 

and no information is shuffled across the cluster. The root nodes will send its component 

identifier to the child nodes on the same partition using the map function mapPropagate (see 

Appendix A.2).   Messages for each node in the same partition are grouped locally.  Its 

component identifier is accordingly updated using the reduce function reducePropagate. 

This operation iterates until no further updates are generated.  Each partition is considered 

as an independent part of the graph, and here we seek to identify the connected components 

in this partial graph. The purpose of this step is to find the local CC identifier for each group 

of vertices, which are connected in the data partition they belong to. This will help to reduce 

the processing required in later operations that could involve shuffling data across the 

cluster. It will also reduce the number of shuffled messages. 

b) Cluster Seed Propagation 

After the nodes in each partition have updated its component identifiers according to the 

other root nodes in the same partition, the same process is repeated across cluster nodes. 

Here for each connected nodes’ tree the updates are generated from the root to the child 

nodes, and each node notifies its child nodes with its component identifier, which is the id 

of its root node. This step reaches convergence when the component identifier for the leaf 

nodes in the tree are the same as the main root node. 

In the end, we will have a forest of trees where each tree represents a connected component 

with the root node as the component identifier. 

ii. DisjointSet Seed Propagation 

As indicated previously, all steps suggest the implementation of the seed propagation step 

after the Seed Identification Phase has finished, where all nodes would be added to the 
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propagation tree T. However, here we suggest building the propagation tree and caching it 

in the memory of the driver node in the cluster. Because at the end of each iteration of the 

Seed Identification Phase all the information will be gathered on the driver node to generate 

the output, there is no need to wait until the end to gather propagation tree update and process 

them. Therefore, such updates could be merged into the propagation tree dynamically as they 

are generated using the disjoint-Set data structure (explained before). This could 

significantly increase the load on the driver node, however, usually driver nodes in clusters 

are chosen with the highest specification compared to other worker nodes. Thus, the overload 

caused by implementing this step could be handled by increasing the specification of the 

driver node only. 

5.6 Summary 

This chapter began by describing the general pattern used in MapReduce algorithm for 

finding connected components, then identify two kind of properties that could be targeted to 

apply improvements, which are Graph Structure properties and Processing System 

properties. Next, in respect to these properties the proposed approach to enhance the 

performance of CC algorithm was introduced. First, it adopted the degree property in graph 

as the main criteria for choosing the component identifier. Second, it introduced 

optimisations based on properties provided by the processing system. It went on to suggest 

the use of Cracker algorithm to apply the proposed approach, and gave a detailed description 

of framework design to integrate suggested improvements in the Cracker algorithm. The 

next chapter describes the procedures and methods used in the design and implementation 

of the proposed approach. 
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Chapter 6: Design & Implementation 

6.1 Introduction: 

Large graph distributed processing is very fast-moving research and development area, in 

which new systems and new paradigms regularly appear. Hadoop is considered the most 

common tool used for big data. Thus, the initial plan was to use Hadoop in our algorithm 

implementation and MapReduce as our programming framework with Python. However, as 

we investigated the area in more detail and started to develop a better understanding of the 

field, we found an excellent opportunity to change our plan and use Spark instead. Spark is 

considered the new alternative for MapReduce. It provides the ability to cache some parts of 

the data in memory, allowing it to be used it in later iterations. This capability could help to 

reduce the number of iterations and decrease the intermediate communication load between 

iterations, leading to potential performance enhancement. This performance enhancement 

could be achieved without losing the ability to expand the size of the data beyond the size of 

the memory resources available. If the cache files grow and no longer fit in memory, Spark 

can distribute the cache files on local disks and recompute them later when needed. As a 

result, Spark could run programs up to 100 times faster than Hadoop MapReduce in memory, 

or 10 times faster on disk.[68] 

For the graph processing, GraphX on top of Spark was a good candidate, and was chosen for 

several reasons: 

1. Apache Spark is a very active project, more so than Hadoop. More than 100 

developers from over 200 companies have contributed to Spark. 19 organisations are 

committed to the project. This is very promising as Spark has recently started to 

replace the MapReduce paradigm.[68] 
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2. GraphX is Spark's API for graphs and graph-parallel computation. It has a growing 

library of graph algorithms, which provide seamless interfaces and operations with 

both graphs and collections while its performance competes with the fastest graph 

processing currently available. 

3. Its high-level Scala API provides the ability to efficiently use the wide range of 

operations and optimisations available for use in our implementation. 

4. The storage abstraction Resilient Distributed Datasets (RDDs) capability used in 

Spark achieves efficient fault tolerance using the notion of lineage, which enables 

automatic recreation lost data partitions. 

5. GraphX can retain graphs or any RDD in memory for later use. This is essential for 

iterative graph algorithms, and even when RDD does not fit in available memory, it 

can be stored on disk in a way similar to MapReduce. 

6. Using the operators provided in GraphX, can optimise communication in finding 

connected components algorithm implementation by controlling the partitioning of 

the RDDs. 

Spark 1.0.0 was released in 2014. Since then it has received numerous updates and additions. 

In our implementation, we have upgraded to the latest stable version when a new update is 

available. We used Spark 2.0.0 in 2016 for development and testing on a single machine 

However for the evaluation of our work on a cluster; we used the latest available version as 

we will describe in next chapter. GraphX is a part of the Apache Spark project, so it is tested 

and updated with each Spark release. GraphX is built using Scala, running on a Java VM. It 

is a general-purpose programming language providing support for functional and object-

oriented programming. 
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For local implementation and testing Spark was downloaded to a single Windows PC 

machine (not a cluster) and built using sbt. We used also IntelliJ IDEA, an open source 

integrated development environment (IDE) tool. 

For our initial implementation and testing, Spark was set up to work in a simple standalone 

deploy mode with all implementations developed using the Scala language. In the initial 

local testing, we were able to launch a standalone cluster, which is established, by manually 

starting a master and workers together on one single machine, then run our program, or by 

using one of the launch scripts to launch a Spark standalone cluster with each run of the 

program [123].  

6.2 Framework Implementation 

The framework design presented in the previous chapter (section 5-4 ), is based on the work 

of Lulli and his Cracker algorithm for finding connected components in large graphs[115], 

[116]. It extends his work to optimises the performance by using a different approach for 

choosing the component identifier (the degree property in our case), then uses features and 

operators available in GraphX to optimise and enhance the data flow in the algorithm by 

processing the data locally when applicable to reduce both the time for convergence and the 

number of shuffled message between iterations. 

This framework starts by taking input data in its raw format, preparing it and transforming 

it into the format required in the processing stage which is where we apply our approach to 

finding the connected components. It completes by accessing and arranging the output in a 

presentable format ready for evaluation.  

 In the following, we review each stage in the framework and provide a detailed explanation 

of the implementation process. 

http://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts
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6.2.1 Pre-Processing Stage  

In this stage, we take the dataset and prepare the data to build the initial graph for later 

processing. As explained previously, the initial graph for processing should be built using 

the adjacency list representation, where each node has a list of its neighbours. 

< 𝑢 →  adjSet >  ∀𝑢 ∈  G =  (V, E) 

We developed two functions. The first was used to test other algorithms, on the graph with 

an adjacency list generated, where each node is attached to its list of neighbour nodes. The 

second function is used to create a graph with an adjacency list similar to the previous one, 

but with the addition that each node is aware of its degree and the degree of all other nodes 

with which it interacts.  

For the adjacency list graph the following steps are followed: 

1. Use raw data it to create a graph in GraphX using the GraphX operators 

provided. 

2. Compute the adjacency list for each node in the graph and add it to its 

property, to create the Adjacent List Graph. 

3. We could assign the component identifier for each node compID, from each 

node’s adjacency list take the minimum and compare it with the node ID and 

assign the minimum to compID. At completion, Initial Graph is created, in 

which each row of the VertexRDD has the form <id, (compID, adjSet))> 

with the compID set to the minimum ID. 

To create the adjacency list graph with degree awareness the following steps are followed: 

a. Use the raw data it to create a graph in GraphX using the GraphX operators 

provided. 
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b. Compute the degree of each node and add it as its property. 

c. Compute the adjacency list for each node in the graph to create a new graph, 

the Adjacent List Graph, where each node has its degree, and a set of the 

adjacent nodes attach to it. 

d. Output the graph for the next stage with each node having its degree and a set 

of pairs of adjacent nodes and their degrees <nodeId, (nodeDegree, 

Set(adjacent nodes))>. 

In this stage, we process the raw data available on the cluster, usually on a distributed file 

system like HDFS or Amazon S3.  Next, we generate the graph in GraphX using graph 

builder operators. The raw Data could be structured or unstructured. For example, data could 

be in a text file in a format like <source_id, destination_id>, or an XML web content format 

that needs some cleaning and preparation to be in the right format for processing.   

After creating the graph, the adjacency list for each vertex needs to be generated. For this 

purpose, we created a function called adjacencyListGenerator(), which takes a graph as 

input and returns an output graph with each vertex with its adjacent list. In the VertexRDD 

of the output graph, the property field for each vertex has a set of adjacent neighbour 

vertices.  

The adjacencyListGenerator() function performs the following steps (see figure 6-1): The 

function starts by initializing each vertex (node) property with its own VertexID. 

1) Then we call GraphX operator collectNeighborIds() on the graph, which will 

Collect the neighbour vertex IDs for each vertex and return it in a 

VertexRDD. 

2) We convert the array of vertices into an mutable HashSet. A mutable HashSet 

type in Scala is considered here as it is iterable and contains no duplicate 
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elements. Here operations such as lookup, add, and remove, can take 

effectively a constant time depending on some assumptions such as the 

maximum length of a vector or the distribution of hash keys[124]. 

3) Finally, take the VertexRDD adjGraph created and generate a new graph 

using the same EdgeRDD from the original graph, and return the new graph.  

def adjacencyListGeneratorOpt[VD:ClassTag, ED:ClassTag](graph: Graph[VD, ED]): Graph[Set[VertexId], ED] = 

{ 

    val WorkGraph = graph.mapVertices { case (vid, _) => (vid) } 

    val nbrs = WorkGraph.collectNeighborIds(EdgeDirection.Either).cache() 

    val nbrsVerts: VertexRDD[Set[VertexId]] = nbrs.mapValues ( (vid, nbrs) => Set(nbrs.toSet.toArray: _*))      

    val adjGraph: Graph[Set[VertexId], ED] = Graph(nbrsVerts, graph.edges) 

    adjGraph 

} 
 

Figure 6-1: adjacencyListGenerator function 

 

Using the new graph generated in the previous step, we apply .mapVertices() operator, 

which will take the property for each vertex (compID, adjSet) and apply the function 

findMaCompInSet(). The function will find the vertex that has the minimum ID in the 

adjSet, compare it to the compID and return the minimum (see figure 6-2).  

 

   def findMincCompInSet(compID: VertexId, set: Set[Long]): VertexId = { 
      var setMin = compID 
      if (!set.isEmpty) { 
        setMin = set.min 
        if (setMin > compID) setMin = compID 
      } 
      setMin 
      }  

Figure 6-2:  findMincCompInSet function 
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The output of this step is a graph (we call it the Initial Graph) with the compID set to 

minimum ID. We will use the Initial Graph later in testing CC algorithms and comparing it 

with the proposed approach of using the degree in CC algorithms. 

For the proposed approach, we will use a graph which has degree awareness. This means all 

vertices in the graph, know their degrees and the degree of all the other nodes they directly 

interact with. To create the adjacency list graph with degree awareness, we created a function 

called adjacencyListGeneratorDgOpt() that takes a graph as input and returns an output 

graph. 

In the VertexRDD of the output graph, the property field for each vertex has the vertex 

degree and a set of adjacent neighbour vertices with their degrees. 

 The adjacencyListGeneratorDgOpt() function performs the following steps (figure 6-3): 

1. The function starts by computing the degree of each vertex using a built-in 

operators in graphX. This is achieved using a Pregel-like (bulk-synchronous 

message-passing) implementation inside GraphX. Then the degree is added 

as the vertex property in the graph. 

2. We call the operator aggregateMessages() on the graph, to aggregate values 

from the neighbouring edges and vertices of each vertex and return it in a 

VertexRDD as the vertex property. As a result, we will have with an array of 

neighbouring vertices. 

3. We convert the array of vertices into a set of neighbouring vertices each 

stored with its ID and degree.  

4. Finally, we take the VertexRDD neighboursWithDegree graph created and 

used it to generate a new graph using the same EdgeRDD from the original 
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graph, and return the new graph as the initial graph. This is achieved using 

outerJoinVertices operator.  

 

def adjacencyListGeneratorDgOpt[VD:ClassTag, ED:ClassTag](graph:Graph[VD,ED]): Graph[(Int, 
Set[(VertexId,Int)]), ED] = { 

    val degrees = graph.degrees 

    val graphWithDegrees = graph.outerJoinVertices(degrees){(_, _, optDegree) => optDegree.getOrElse(1)} 

    val WorkGraph = graphWithDegrees.mapVertices { case (vid, degree) => (vid,degree) } 

    val neighboursWithDegree = WorkGraph.aggregateMessages[Set[(VertexId, Int)]]( 

        sendMsg = triplet => { 

            val srcWithDegree = triplet.srcAttr 

            val dstWithDegree = triplet.dstAttr 

            triplet.sendToDst(Set(srcWithDegree)) 

            triplet.sendToSrc(Set(dstWithDegree)) 

        }, 

        mergeMsg = (x, y) => x ++ y 

        ).mapValues(x=>(x.size,x)) 

    val emptySet:(Int,scala.collection.immutable.Set[(VertexId,Int)])= ( 0, scala.collection.immutable.Set()) 

    val adjGraph = graph.outerJoinVertices(neighboursWithDegree){(_, _, optDegree) =>  

                                                                              optDegree.getOrElse(emptySet) } 

   adjGraph 

} 
 

Figure 6-3: adjacencyListGeneratorDg function 

 

From the new graph generated in the previous step, we apply the .mapVertices() operator 

that will take the property for each vertex (compID, adjSet) and apply the function 

findMaxCompInSet (compID,adjSetDg). The function will find the vertex that has the max 

degree in the adjSetDg using maxDg() function, which will identify the node that has the 

max degree. If both nodes have the same degree, it will choose the one with the higher ID.  

At completion, it will compare it to the compID and return the max using the same function 

(See figure 6-4). 
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def findMaxCompInSet (compID: (VertexId,Int), setDg: Set[(VertexId, Int)]): (VertexId,Int) = { 

   def maxDg(ver1:  (VertexId,Int), ver2:(VertexId,Int)):(VertexId,Int) ={ 

   if (ver1._2 > ver2._2) { ver1 

  } else if (ver1._2 == ver2._2){ 

    if (ver1._1 > ver2._1) ver1 

    else ver2 

  } else ver2 

   } 

  var setMaxDg = compID 

  if (!setDg.isEmpty)   setMaxDg = setDg.reduceLeft(maxDg)  

  maxDg(setMaxDg , compID) 

} 
 

Figure 6-4: findMaxCompInSet function 

The operation of generating the adjacency list graph with degree awareness is more 

expensive that one generates the adjacency list without considering the degree. However, 

this operation is executed only once to prepare the graph for processing in the next stage. 

6.2.2 Computing Stage  

In this section, we review the implementation process and code structure for the computing 

stage documented in section 5.5. It is worth noting that in respect with the objectives of this 

research, we experimentally apply all the proposed improvements on the fastest existing CC 

algorithm, which is the Cracker algorithm in our case. Hence, the coding structure in many 

parts of this work is based on the original implementation of the Cracker algorithm23, with 

further implementation of our extensions that were proposed in section 5.2.  

The output from the pre-processing stage is a vertexRDD, which is representation of each 

node and its properties. The vertexRDD holds in the property field for each node, the node 

                                                 
23 https://github.com/hpclab/cracker 
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degree and all its adjacent nodes with their degrees. Processing is carried out by exchanging 

messages between nodes and accordingly each node use the receive messages to update its 

properties such as: its degree, its component identifier, or its adjacent set of neighbours. 

Therefore, the code structure uses different kinds of message-classes. In each phase, different 

node properties need to be exchanged and for each we have different class of message (see 

Appendix A- Classes). For example, message_Identification class used for message used in 

the max identification & pruning steps.  message_Tree class used for generate update 

messages for seed propagation tree T. message_Propagation used in the Seed Propagation 

Phase to hold the updates are generated from the root to the child nodes, where each node 

notifies its child nodes with its component identifier. Figure 6-6 presents the class diagram 

of the classes used for exchanging messages between nodes. 

 

Figure 6-5: Class Diagram 

The two main phases of the algorithm (described in the framework model figure 5-3 and 

explained section 5-5) are seed identification and seed propagation.  
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i. Seed Identification Phase 

In which two main steps are performed:  

a) The Max identification Step 

The aim of this step is to update the node properties in such a way that it will be possible 

to exclude non-seed nodes from the computation and add them to the propagation tree in 

next step. This step is implemented in two levels: 

o Local Max Identification, in which we try to accomplish part of the 

computation locally on small partitions of the data before the need to process 

the whole data. Therefore, we developed the function LocalMaxIdentification 

described in section 5.5.i.a (data flowchart in figure 5-7). We apply the 

function using the mapPartition operator in GraphX.The function will use the 

disjoint-set data structure to find the local component identifier for all nodes 

in the same partition and update their component identifiers accordingly. 

(appendix A.2.i.a and Appendix A.Classes for code) 

o Cluster Max Identification, in which we try to identify non-seed nodes.  We 

achieve this using one MapReduce job. The map function used to generate the 

messages is called map_ClusterMaxIdentification (described in section 5.4.b).  

The output is reduced by using the function reduce_ClusterMaxIdentification, 

which will aggregate the nodes notified by the map functions and group them as 

the new adjacent set of outgoing edges for the processed node, then identify and 

assign the node with the max degree as the new component identifier. As a result, 

any node that is smaller than all its neighbour nodes in term of degree and id (not 

the local component identifier for any adjacent nodes), this node will not receive 

any incoming edges. (appendix A.2.i.b for code) 
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b) The Pruning Step 

In which three further operations are required: 

o Node assorting, where identified non-seed nodes are separated from the rest of the 

nodes. These will be added to the propagation tree later and the rest of nodes will 

be processed again using max identification step. Node assorting requires one 

MapReduce job. For the map phase, nodes are assorted by into two groups of 

nodes, which are (a) potential seed nodes and (b) non-seed nodes.  

A function called map_Pruning  was created for purpose (described in section 

5.5.1.i.a, data flowchart in figure 5-10, code in appendix A.2.i.c). The 

map_Pruning will process each node and it adjacent nodes and generate new 

messages, as either IdentificationMessages or TreeMessages. The former are 

messages that identified as potential seed nodes and they will be processed again 

in the next iteration of the seed identification phase. The latter are the non-seed 

nodes and they will be added to the propagation tree T and processed later in the 

seed propagation phase.  

For the reduce phase, a reduce function called reduce_Pruning function was 

created to merge and reduce messages for each node. Next, these messages are 

filtered into separate groups of nodes; nodes that need to be added to the 

propagation tree and the rest of nodes. Code structure is shown in figure 6-6. 

val tmp = ret.flatMap(item => map_Pruning(item))                                               \\ apply the map function 

val tmpReduced = tmp.reduceByKey(reduce_Pruning).cache                               \\ apply the reduce function  

val tmpReduced_MsgIdentification= tmpReduced.filter(t => t._2._2.MsgIdentification.isDefined)                                                                           

.map(t => (t._1, (t._2._1,t._2._2.MsgIdentification.get)))                                      \\ filter the potential seed 

nodes  

val tmpReduced_MsgTree  =tmpReduced.filter(t => t._2._2.MsgTree.isDefined)                                                                   

.map(t => (t._1, t._2._2.MsgTree.get))                                                                     \\ filter the non-seed nodes 

Figure 6-6: Node Assorting Code 
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o Update Propagation Tree 

Initially, all nodes in the propagation tree RDD all are rooted to themselves, in 

another word, the component identifier refers to the node itself. In the 

implementation the component identifier is set to (-1) to denote this. 

propagationTreeRDD = Option.apply(ret.map(t => (t._1, new DgCracker_MsgTree(-1, Set())))) 

Nodes gathered in the tmpReduced_MsgTree (which represent the non-seed nodes), 

are used to update the propagation tree T. This is achieved by simply merging the 

two RDDs (propagationTreeRDD, tmpReduced_MsgTree) using the union operator 

in GraphX (detailed code is presented in appendix A.2.i.c). 

propagationTreeRDD = propagationTreeRDD.get.union( tmpReduced_MsgTree) 

 

o Update Degree 

The graph structure changes as its size shrinks due to some nodes being added to the 

seed propagation tree T and some excluded from the processing graph G. Thus, the 

nodes’ degree continuously changes. To reflect those changes, we add the 

MapReduce job to evaluate the new values of degree for each node. Each node will 

send a message for each of its neighbours and count the number of messages received 

from its adjacent neighbours, which will return the new degree. These values are 

collected in a HashMap structure and then broadcasted to each node in the cluster. 

A mapPartition operation will then run to update the degree for each node within 

each partition from the hash map which exist on the same machine without the need 

to shuffle the whole data between cluster nodes (see appendix A.2.i.c for code). 
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ii. Seed Propagation Phase 

When all the nodes has been added to the propagation tree T, and there is no more nodes for 

further processing in G, the seed propagation phase starts.  

Initially, the data is an RDD with a collection of entries made by the union operation between 

the propagationTree RDD and the updates generated after each iteration in the seed 

identification phase. Each entry is a node connected to its root (vmax →u) (section 5.4.c). 

First, we need to prepare the data for processing by applying a reduce operation using the 

reducePrepareDataForPropagation function that will aggregate for each root node all its 

child nodes. Afterwards, we run an iterative MapReduce job to propagate the component 

identifier from each node to all its children. This operation runs on two levels:  

Local Seed Propagation, using the mapPartition operator, the root nodes will send 

its component identifier to the child nodes on the same partition by applying the 

map function mapPropagate, and then the output will be grouped and reduced 

inside the same partition. Each partition is considered as an independent part of 

the graph, and the function will try to identify the connected components in this 

partial graph. (appendix A.2.ii (a) for code). 

o Cluster Seed Propagation, a MapReduce job runs on all the data in the cluster, in 

which update are generated from the root to the child nodes, and each node notifies 

its child nodes with its component identifier, which is the id of its root node. The 

map function mapPropagate will generate update from the root node to its child 

node, and the reduce function reducePropagate will update the component 

identifier for each node (see appendix A.2.ii (b) for code). 
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6.2.3 Post-Processing Stage  

This stage is only to verify the work and show the results to check their correctness. We do 

not include its runtime in the evaluations. 

The input of this stage is the updated propagationTreeRDD, where each node is rooted to 

the max components identifier (VertexID→CompID) 

The input for this stage is the output graph from the computing phase. Where in the 

VertexRDD, each node and its components identifier are in the form <VertexID,CompID>, 

(CompID refers to the ID of the connected components they belong to). 

To show the largest 10 components, we run a basic MapReduce job, which is the same as 

the word count example (explained in 2.1.7): 

 In the map phase, for each node generate an output to the component identifier  

<VertexID, CompID > => < CompID, 1>. 

 In the reduce phase we sum all the (1)s for each CompID. 

Then we use .sortBy() to sort the output, and  .take(10)  to only take the first 10, and  print 

the largest 10 components with number of nodes in each one (see appendix A.3 for code). 

All the information about the number of components and size for each one are known for 

each dataset used. Therefore, this step will help in verifying the accuracy of the algorithm 

on dataset when results are compared with previously known information about the dataset.  
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Chapter 7: Experimental Evaluation & Results 

To validate and fairly evaluate the proposed enhancements suggested in our approach with 

respect to other existing approaches we applied the same methodology and used matching 

technologies running in an identical environment.  

Spark was built using the Scala programming language. It supports many languages to 

enable parallel applications to be developed and interactively used. However, its graph 

processing library, GraphX, only uses the Scala language. Therefore, all the coding for 

developing the proposed approach and the implementation of other approaches was carried 

out using the Scala language on Spark. All our tests used the same installation of Spark with 

the same configuration and the same computational resources. Details about the datasets 

used and the experimental setup are presented in the following sections. 

7.1 Dataset description 

To test the performance of proposed approach different types and sizes of datasets were 

selected, in order to generalise the result of the evaluation in the experiment. All tests ran on 

two categories of graphs:  

 Real-world Datasets:  a collection of commonly used datasets for large graph testing 

such as. 

o Web-google: It was released in 2002 by Google, with edges represented by 

hyperlinks between pages. 

o Patent citation: The graph includes all citations made by patents over 37 

years. 
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o KGS: It is a real-time server that enables two online players to simultaneously 

play against each other in real time. The graph represents edges between 

players. 

o Dota-league: The graph represents friendship between players in the DotA 

gaming platform in Europe. 

o LiveJournal: It is a free online community. Members maintain journals, 

individual and group blogs, and friendship between each other. 

 Synthetic datasets (Graph500 graphs24). A collection of benchmark graphs which 

focus on graph analysis. They were developed t to help evaluate systems for data 

intensive applications[125]. Graph500 graphs are generated using the Kronecker 

generator, which will produce power-law graphs (also called scale-free graphs) and 

are similar to Recursive MATrix (R-MAT) scale-free graphs [126]. 

 Dataset name # of nodes # of edges 

Real-World 

Datasets 

Google web 875713 5105039 

Patent citation 3774768 16518948 

KGS 832247 17891698 

Dota-league 61170 50870313 

LiveJournal 3997962 34681189 

Synthetic 

Datasets 

graph500-22 2396657 64155735 

graph500-23 4610222 129333677 

graph500-24 8870942 260379520 

graph500-25 17062472 523602831 

graph500-26 32804978 1051922853 

Table 7-1: Datasets used in the evaluation 

All the selected datasets contain a large connected component that includes most nodes or 

in some all the nodes. They are publicly available to give a fair opportunity for re-evaluation 

                                                 
24 http://graph500.org/ 



136 

 

of this work25 26.  Datasets used are shown in table 7.1 with information about the number 

of nodes and edges in each one. 

7.2 Experimental Setup: 

For testing jobs, we ran all our experiments on a shared production cluster using spot 

Amazon EC2 (Amazon Elastic Compute Cloud) instances. The driver node (Type: 

r4.4xlarge) has 16 Cores CPU and 122 GB of memory, each of the 8 worker nodes (Type: 

r4.2xlarge) has 8 Cores CPU and 61 GB of memory. All nodes run Spark version 2.1 (built 

with Scala 2.10). 

Spark 2.1 ( Scala 2.10) EC2 instance Nodes Processor Memory 

Driver:  r4.2xlarge 8 8CPU 61G 

Workers: r4.4xlarge 1 16CPU 122G 

Table 7-2: Amazon EC2 instances used for the cluster in the evaluation 

 

For cluster management, we used the Databricks Cloud Platform powered by Apache 

Spark27, which makes it straightforward to manage big data complex infrastructures, systems 

and tools. Databricks also provides its collaborative workspace Notebooks to run interactive 

queries with Spark-powered dashboards.  We used Notebooks to run our Scala code and 

publish the Notebook for public availability (appendix A). All our datasets were hosted on 

Amazon Simple Storage Service (Amazon S3) and connected to the Databricks platform to 

allow data transfer to EC2 instances for processing. 

It should be noted that, Cloud Computing Environments such as the Amazon EC2, have 

some overheads posed on communication and computation because of virtualization on 

                                                 
25 https://atlarge.ewi.tudelft.nl/graphalytics/# 
26 https://snap.stanford.edu/data/index.html 
27 https://databricks.com/unified-analytics-platform 
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Amazon's instances. These affect the performance evaluation[127].   Furthermore, using the 

Databricks services could also introduce some extra overheads with their configuration of 

the cluster and the cluster load at testing time. However, due to the limited resources and 

non-availability of an in-house cluster to evaluate our work in an optimal configurable 

environment, we used all services previously mentioned. To overcome any unexpected lags 

in performance, we ran all our tests three times on the cluster and report the median value of 

the results after removing any anomalies. 

7.3 Measuring Metrics: 

To evaluate our approach in comparison with other algorithms, several metric measures can 

be used to indicate the algorithm’s performance. These include running time, communication 

cost, number of iterations, evolution of the graph size, scalability, sensitivity to diameter, 

memory usage, and other resource usage. However, in this study, we only consider the 

following three measures: 

i. Running time 

The performance of algorithms could be indicated by reporting the running time to show the 

improved processing speed of each algorithm compared to others. In this study, for running 

times we reported only the actual times by omitting the time needed for transferring data to 

the cluster. We also omitted pre-processing stage timings, which include building and 

preparing the graph 

ii. Evolution of the graph size 

This indicates how the structure of graph is changing and whether it is growing or shrinking. 

Many algorithms change the graph structure during the process, as in the graph contraction 

scheme, and this change could have a significant impact on how the algorithm performs. 
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Several algorithms try to reduce to size of the graph after each iteration by removing or 

deactivating nodes. This can help to reduce the amount of computation, the cost of memory 

access and disk I/O. This could also reduce the amount of network transferred information 

due to fewer messages being generated. 

iii. Number of Iterations 

The total number of iterations the algorithm takes until it finishes, could be a useful indicator 

of how fast the algorithm achieves convergence. However, it is not a precise measure of how 

well the algorithm performs.  

7.4 Testing & Results 

This section reports the results following testing of each of our algorithm extensions.  Each 

extension is tested in one experiment and its results are compared with the results from the 

original implementation without the extension. Table 7-3 shows   the extensions evaluated, 

the algorithms used in the evaluation, which part of the algorithm was measured, and the 

criteria measures used in the evaluation. 

  



139 

 

 

Extension 

Evaluated 

Algorithm Algorithm part evaluated Criteria measured 

Runtime Number 

of 

Iterations 

Evolution 

of graph 

Size 

Degree approach Pregel-

Original 
All Yes Yes No 

Pregel- 

Degree 
All Yes Yes No 

Alternating 

-Original 
All Yes Yes No 

Alternating 

- Degree 
All Yes Yes No 

Cracker-

Original 

Min-

Selection 

step 

Pruning 

step 

Propagation 

step 
Yes Yes Yes 

Cracker- 

Degree 

Max 

Identification 

step 

Pruning 

step 

Propagation 

step 
Yes Yes Yes 

Local-Max 

Identification 

Cracker- 

Degree 
Seed Identification phase Yes Yes Yes 

Cracker- 

Degree-Opt 
Yes Yes Yes 

Local-Seed 

propagation 

Cracker- 

Degree 
Propagation phase Yes   

Cracker- 

Degree-Opt 
Yes   

DS-Pruning Cracker- 

Degree 
All Yes   

Cracker- 

Degree-DS 
Yes 

Table 7-3:  Evaluation Table 

 

7.4.1 Effect of using the Degree Approach to find connected components 

Here, we evaluate the approach of using the vertex degree in finding connected components. 

Usually, algorithms used for that purpose, selects the identifier for each component based 

on the lexical ordering of nodes and ignores the existing graph’s structure. However, in this 

experiment, both the general approach of selecting the component identifier based on the 

minimum id node, and the approach of selecting the identifier based on the degree of node. 

Where node that has the highest degree is selected, and in case more than one node share the 

same highest degree, the node with the maximum ID is selected. 
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i. Performance of the Degree Approach in BSP Paradigm 

In the first experiment, we compared the performance of two implementations of Pregel to 

find connected components in the datasets presented in Table 7-1. Pregel, described 

previously in the literature review, is considered a more efficient framework for distributed 

graph processing than MapReduce. However, it does not provide fault tolerance and does 

not perform well for very large datasets with a skewed degree distribution[14].  

The first implementation used the traditional way that identified the node with the minimum 

ID. The second is our approach of using the node degree. Our results are presented in figure 

7-1 for runtime and figure 7-2 for number of iterations until convergence. 

 

Figure 7-1: Run-Time for Pregel-Original vs Pregel-Degree 
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Figure 7-2: Number of Iterations for Pregel-Original vs Pregel-Degree 

 

These results show an increase in runtime for the algorithm to finish. This because of the 

increase in message size between nodes and the need for more computation to choose 

component identifiers in each iteration.  However, we also noticed a decrease in the number 

of iterations needed to converge in most tests.  

Figure 7.3 shows that, in the initial few iterations, processing takes more time when using 

the degree approach compared to the original approach. However, this margin rapidly 

decreases and in some cases, runtime is less than the original approach for the corresponding 

iteration, and in almost every case there are fewer iterations. 
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Figure 7-3: Iteration vs Reducer Time for Pregel-Original vs Pregel-Degree 
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ii. Performance of the Degree Approach in Alternating algorithm 

The second experiment is very similar to the previous one. However, here we compare the 

performance of two implementations of the Alternating algorithm[14] to finding connected 

components in some of the datasets presented in Table 7.1. The first implementation is based 

on the original algorithm using the minimum ID as the component identifier. The second 

implementation uses the node degree approach. The results presented in Figure 7-4 and 7-5 

show similar performance, where the runtime increases when the degree is used, and the 

number of iterations decreases in most of cases.  

 

Figure 7-4: Run-Time for Alternating-Original vs Alternating -Degree 

 

Figure 7-5: Number of Iterations for Alternating-Original vs alternating -Degree 
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iii. Performance of the Degree Approach in Cracker algorithm 

In this experiment, our objective was to determine the node degree approach for finding 

connected components on the performance of the Cracker algorithm, which was explained 

in section 4.7.8. According to Lulli[115] the Cracker algorithm outperforms its competitor 

algorithms for finding connected components in large graphs in terms of both time and 

volume of messages between iterations. 

The first implementation used the original source code28 provided by the developer of the 

algorithm. In the second implementation, we integrated the degree in the Cracker algorithm 

and modified it to choose the component identifier based on node degree instead of the node 

ID. Our source code is shown in Appendix A. We did not introduce any optimisation to the 

modified algorithm other than using the degree.  

Figure 7.6 presents the results for the runtime taken by both the original Cracker algorithm 

and our modified version, which we call Cracker-Degree to indicate our implementation 

using the degree approach discussed previously. In figure 7-7, runtime is shown separately 

for each of the main three steps in the Cracker algorithm to evaluate the effect of our 

modifications in each step.   

The graph shows that there has been an insignificant difference with some slight increase for 

runtime in some real-world datasets. This can be result from the extra node degree 

information included in the messages transferred between cluster nodes. However, for the 

synthetic datasets (Graph500~) the graphs show a marked decrease in runtime of almost 

every step when using the degree approach. This could be explained from Tables 7-4 and 7-

5 that show the number of active nodes after each iteration. Table 7-4 indicates that there 

has been a sharp drop in the number of active nodes after the first iteration in synthetic 

                                                 
28 https://github.com/hpclab/cracker 
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datasets.  This results from using the degree approach in identifying non-seed nodes in the 

seed identification step and excluding them for the computation process in later iterations. 

Figures 7-8 and 7-9 show the results where more non-seed nodes identified in Cracker-

Degree were compared to the original algorithm. This also helped to reduce the number of 

iterations.  Therefore, it appears that using the degree approach results in faster convergence 

and can lead to a significant performance improvement. 

Table 7-4: The number of active nodes at each iteration for synthetic datasets 

Table 7-5: The number of active nodes at each iteration for real-world datasets 

 

  

Figure 7-6: Runtime for the Cracker-Original and Cracker-Degree 
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  Graph500-22 Graph500-23 Graph500-24 Graph500-25 

Iter Cracker_Org Cracker_Degree Cracker_Org Cracker_Degree Cracker_Org Cracker_Degree Cracker_Org Cracker_Degree 

1 2396657 2396657 4610222 4610222 8870942 8870942 17062472 17062472 

2 748509 220282 1440366 412988 2797920 777933 5412675 1457768 

3 878 167 1443 252 2661 427 4670 786 

4 2 0 2 0 2 2 3 0 

5 0  0  0 0 0  

Iter dota-league kgs cit-Patents web-Google soc-LiveJournal 
1 61170 61170 832247 832247 3774768 3774768 875713 875713 4846609 4847571 

2 4302 1945 146900 136740 2023363 940837 280757 107648 1228095 1125190 

3 0 0 3561 1920 229472 90203 17305 8237 79398 61598 

4     50 41 11850 5330 1010 472 3903 1825 

5     2 0 395 230 91 70 214 29 

6     0   18 4 6 2 9 2 

7         0 0 0 0 0 0 
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Figure 7-7: Runtime for the Cracker-Original and Cracker-Degree at each step 
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Figure 7-8: The number of active nodes at each iteration 
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Figure 7-9: The number of active nodes at each iteration 
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7.4.2 Effect of local Max Identification 

In the Seed Identification phase, the main objective is to exclude non-seed nodes from the 

computation and add them to the propagation tree. In the original Cracker algorithm, it is 

implemented in two steps, max identification and pruning step. The first step will identify 

those nodes which will be excluded in the pruning step. However, we try to break the first 

step in two further steps: local max identification and cluster max identification. In the local 

max identification step, which we described in section 5.5.1, we process each partition 

separately to find the local component identifier for all nodes in that partition and for each 

node update its component identifier accordingly. A disjoint data structure is used to 

implement this step as described in section 5.5.1. The results from the experiment of 

evaluating the efficiency of this step are presented in Table 7-6.  The number of active nodes 

after each iteration is reported for both the modified implementation (where the local max 

identification is added), and the original algorithm implementation (where only the cluster 

max identification is performed). 

Table 7-6: The number of active nodes after each iteration of seed identification phase. 

Optimised Seed ident (Seed-Iden-Opt) vs Original Seed ident (Seed-Iden- Org) 

Iter 
cit-Patents kgs dota-league 

  
Seed-Iden- 

Org Seed-Iden- Opt Seed-Iden- Org Seed-Iden- Opt Seed-Iden- Org Seed-Iden- Opt 

1 2396657 2396657 832247 832247 61170 61170 

2 220282 17757 136740 15062 1945 0 

3 2 14 1920 52 0   

4 0 0 41 3     

5     0 2     

6       0     

Iter Graph500-22 Graph500-23 Graph500-24 Graph500-25 
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Figure 7-10: Runtime for the Seed Identification Phase 

 Optimised Seed ident (Seed-Iden-Opt) vs Original Seed ident (Seed-Iden- Org) 
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Figure 7-11: Runtime for the Seed Identification Phase 

 Optimised Seed ident (Seed-Iden-Opt) vs Original Seed ident (Seed-Iden- Org) 
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The results of this experiment show a further drop in the number of active nodes and the 

number of iterations when local max identification is used. These results agree with and 

support the objectives introduced from the implementation of this step. However, contrary 

to expectations, the runtime results shown in figures 7-10, 7-11, and 7-12 indicate some 

inconsistencies. Although for some real-world datasets the runtime was promising as it 

decreased, for the synthetic datasets the runtime increased. This inconsistency may be due 

to the difference in the type of graph structure, as real-world graphs tend to be more sparse. 

Furthermore, not all tests on real-world datasets have finished in our implementation, as in 

case of the web-google and soc-liveJournal datasets. This indicates the need for further 

optimisation of our implementation. In addition, further research should be undertaken to 

investigate the cause of some contradicting results. 

 

 

Figure 7-12: Runtime for the Seed Identification Phase on different datasets 
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7.4.3 Effect of local Seed Propagation 

Nodes are added to the propagation tree T in the Seed Identification phase, where each node 

is rooted to its local component identifier. In the Seed Propagation Phase, each node then 

propagates its component identifier to its children until all nodes belonging to the same 

component are propagated with the same identifier. To enhance this operation a Local Seed 

Propagation Step was proposed as described in section 5.5.2.  

In the experiment presented in figure 7-13, the runtime results for the Seed Propagation 

Phase, for both the enhanced implementation (where the local seed propagation is added), 

and the original algorithm implementation (where only the cluster seed propagation is 

performed) are shown. For the real-world datasets, no significant differences are noted. 

However, when the size of the synthetic dataset increase there is a marked decrease in the 

runtime. 

 

Figure 7-13: Runtime for the Seed Propagation Phase on different datasets 

Optimised Seed Propagation (Seed-Prop-Opt) vs Original Seed Propagation (Seed-Prop-
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The results of this experiment indicate that there is an interesting runtime improvement on 

the synthetic datasets tests, where the runtime improves as the size of the tested dataset 

becomes larger. 

7.4.4 Performance of the DS-Pruning 

In this experiment, we tested the implementation of building the propagation tree and 

caching it in the memory of the driver node in the cluster. Updates at the end of each iteration 

of the Seed Identification Phase are gathered and merged into the propagation tree 

dynamically as they are generated using the disjoint-Set data structure described in section 

5.4.ii. 

Although, Spark does not support such operations where data could be cached only in the 

driver node memory, we tried implementing this on Spark using its available operators. we 

collected the propagation updates and forced a dynamic merge operation between the 

updates and the propagation tree. However, we couldn’t cache the propagation tree in the 

memory of the driver node, which caused to some overhead on the system (our code is shown 

in Appendix A).  

Results are presented in figure 7-14. These results were not very encouraging as the runtime 

increased significantly compared to the original algorithm implementation. This is most 

likely caused by the unexpected issue of the vastly increased amount of data shuffling. 

Nonetheless, we managed to get accurate results and the algorithm coverage as expected.  

In the results of this experiment, only the runtime has been reported because the number of 

iterations and the size of graph evolution are the same in both the original and optimised 

algorithms. Nonetheless, the need to proceed into the Seed Propagation Phase was avoided, 
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and consequently this could help to improve the performance in case the issue of the 

enormous amount of data shuffling was resolved. There is significant room for further 

progress if this could be optimised in Spark, or implemented using a different distributed 

graph processing framework. 

  

 

Figure 7-14: Runtime for the seed propagation (a) & (b) 

Cracker-Degree vs Cracker-Degree using disjoint-set for Propagation (Cracker-Degree-

DS)  
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7.5 Summary 

The results in this chapter with respect to the proposed improvements indicate the 

following: 

(i). Using the node degree approach: 

 In finding connected components algorithms using the node-degree for choosing the 

component identifier can significantly affect the performance of the algorithm. 

 In all case, it helps to reach converge faster by reducing the number of 

iterations. However, it increases the size of the graph as the node degree is 

attached to each node, in addition this increases the communication load due 

to the increased size in messages. Therefore, this approach can increase the 

runtime of the algorithm in spite of decreasing the number of iterations 

needed. 

 For algorithms which provide vertex pruning, where the algorithm has the 

ability of excluding unusual vertices for the computation from the process, 

which shrink the size of the graph after each iteration. In this case, using the 

node degree approach appears to be very efficient and results in faster 

convergence which lead to a significant performance improvement. Both the 

runtime and number of iteration has decreased, especially after the first 

iteration where there has been a sharp drop in the number of active nodes in 

compare to the approach where the node ID is used. 

(ii). Using the local computation for connected components approach: by moving 

more computation toward where the data is stored on the worker nodes and finding 

connected component in the data partition 

 In case of local max identification 
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o The runtime on the synthetic dataset has increased, while for the real-world 

dataset runtime decreased with more effect on reducing the number of node 

after each iteration when this approach is used. 

o This inconsistency may be due to the difference in the type of graph structure, 

as real-world graphs tend to be more sparse. Also, the increase of the runtime 

could be explained due to the overhead caused by the computation for each 

partition is done by only CPU core (spark configuration).  

 In case of local propagation 

o The runtime for the real-world datasets showed no significant differences are 

noted. However, when the size of the synthetic dataset increases there is a 

marked decrease in the runtime, which indicates that, when the graph size 

increases, and consequently the number of partitions increases, performance 

of local seed identification becomes more efficient.  

 Performance of the DS-Pruning 

These results were not very encouraging as the runtime significantly increased most 

likely due to the vastly increased amount of data shuffling. However, final results 

were accurate and the algorithm coverage and the need to proceed into the Seed 

Propagation Phase was avoided, which could consequently improve the 

performance in case the issue of the enormous amount of data shuffling could be 

resolved. 

In summary, it has been shown from the results that these experiments have confirmed that 

using the degree approach resulted in faster convergence and can lead to significant 

performance improvement. In many cases, optimising the design of the algorithm with local 

pre-processing of the data using processing system features can also result in performance 

enhancement. 
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Chapter 8: Conclusions 

8.1 Introduction: 

The aim of this research has been to examine the processing of large-scale graphs and more 

specifically, enhance the performance of finding connected components algorithms in large 

graphs. Finding connected components is an essential pre-processing step to extract 

knowledge about the graph. It is also a fundamental operation for some graph computations 

such as pattern recognition, reachability, graph compression, graph partition, and random 

walk[12]. The MapReduce[18] framework dominates the processing of large-scale data on 

Hadoop, and it is commonly used for mining big graphs[128]. However, iterative processing 

is not directly supported in MapReduce. Nonetheless, some recent works[21][22] show that 

it is possible to outperform other models for finding connected components using 

MapReduce. Yet, only a few studies have investigated this problem in big data distributed 

system using MapReduce[14]. 

Current big data processing systems have become more advanced with features beyond 

MapReduce, such as Spark[23], which supports iterative processing. In addition, current 

MapReduce algorithm for finding connected component only use the traditional approach to 

selecting the component identifier for each component based on the lexical ordering of the 

node ID value. These issues have been addressed by implementing a new algorithm for 

finding connected components following best practices and design patterns recommended 

when using MapReduce paradigm. In the new algorithm, graph structure property is 

considered. More specifically, the node degree has been used as the main criteria for 

choosing the component identifier. In addition, features beyond MapReduce provided by the 

processing system have also been considered, such as the ability to move more computation 
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toward where the data is stored. For the local computation for the connected components, 

disjoint-set data structure has been used.  

8.2 Summary 

This thesis has reviewed current big data processing systems, focusing on large-scale graph 

processing systems. The study has started by defining what big data is, the technologies used, 

and how MapReduce operates. It has discussed graphs and big graph processing systems and 

the approach used in the developments of big graph processing systems with a brief overview 

of the most common distributed graph programming models. The main focus of this study 

has been on the algorithm of finding Connected Components in an undirected graph, which 

is one of the main concepts that have been studied in Graph Theory[6]. Most of the known 

algorithms for CC in MapReduce have been reviewed in depth, and a few improvements in 

our approach has been introduced. The improvements implemented have included graph 

contraction based on node degree, dynamic evaluation of the degree after each iteration, and 

computing local CC in the map phase based on Disjoint-Set data structures. The study has 

applied the proposed improvements on the latest algorithm for finding connected 

components, carrying out extensive experimental evaluations of the implementations using 

large real world and synthetic graph datasets on computing clusters. 

One of the key issues in the design of current CC algorithms for large graphs is that they do 

not consider the structure of the graph processed. Moreover, they do not benefit from new 

features available in the current advance distributed processing systems. Instead, they follow 

the traditional MapReduce programming model using its original Hadoop system 

implementation. This study has addressed these issues in the proposed approach. It has 

initially experimentally investigated using the node degree for choosing the component 

identifier instead of just using the node ID. Furthermore, it has proposed moving more 
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computation to where the data is stored on the worker nodes and used a disjoint-set data 

structure to help find connected components locally on one node.  

The results of these experiments confirm that using the degree approach resulted in faster 

convergence and can lead to significant performance improvement. In many cases, 

optimising the design of the algorithm with local pre-processing of the data can also result 

in performance enhancement. However, this step should be considered wisely as it could 

cause some system overhead and a drop-in performance.  Many factors can affect this, such 

as graph size, structure, and density.  

8.3 Contributions 

This study contributes to the field of knowledge as follows: 

(v). Using the node degree approach in finding connected components algorithm: 

using the degree approach in choosing the connected component identifier will 

always result in less number of iteration until convergence, however it adds some 

overload on the system due to the extra work required to calculate the degree for each 

node and the increased size of messages due to the attachment of the degree to the 

node. Nonetheless, this approach showed significant performance improvement 

when applied to algorithms which apply vertex pruning; where unuseful nodes for 

the computation are excluded from the process after each iteration. In this kind of 

algorithms (Cracker in our case) the number of iterations decreases and the size of 

graph shrinks faster when this approach is applied, leading to better runtime. 

(vi). Using the local computation for connected components approach:  

Moving more computation towards where the data is stored, and trying to apply 

computation on a data partition before the need to do computation on the cluster can 
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effectively improve the performance of the algorithm. In the case with the Cracker 

algorithm, despite the inconsistency in results, in general there is a noticeable 

performance improvement especially in the seed propagation phase for the larger 

datasets. This approach should to be wisely considered and implemented as it could 

increase the load on the system and lead to performance degradation. 

(vii). Considering different level of computation in the design of the algorithm. 

In big data processing system operations are applied at different level, by identifying 

the level of processing, and integrating them in the process of the algorithm design 

can help to increase the efficiency of the algorithm. For example, start by processing 

the data partition, then process the collective data of partitions inside a cluster worker 

node, and finally process all the data at the cluster driver node. Customising operation 

in the algorithm for each level could increase the performance of the algorithm. In 

this study, processing has been customised and applied on the data partitions in the 

cluster driver nodes. However, additional operations could be added to process the 

data inside a cluster worker node using multi-core structure of the cluster nodes. 

(viii). Guidelines to be implemented in different context  

It is worth noting that one of the major contribution of this work is to encourage 

active researcher in the field to consider features provided by the current new 

processing systems in the design of their algorithms. This could be considered as 

useful guidelines to be implemented in different context. 
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8.4 Limitation 

During the process of conducting this research, we faced many issues. The most important 

limitation being that of resources and the non-availability of a suitably configured in-house 

processing cluster to evaluate our work in an optimal configurable environment. This study 

was therefore, carried out using the Amazon Cloud Computing Environment. However, this 

also had some limitations, it is not obvious wither there is other application running on the 

same cluster nodes at the same time and what is the impact of their jobs. So not all the 

allocated resources could be available at that time. In addition, some overheads could impact 

communication and computation caused by the virtualization used by Amazon, which affects 

the performance evaluation.  During the testing, we encountered inconsistency in readings 

for the algorithm runtime. We attempted to overcome any unexpected lags in performance 

by running all our tests three times on the cluster and reporting the median value of the 

results after removing any anomalies. However, this did not guarantee the right results. We 

restarted the cluster before each test run to ensure there would be no impact from running 

the previous tests, as we noticed that Spark keeps some unnecessary RDD files in memory 

even after asking it to un-cache them.. However, we had no control on communications and 

other processes that could be running on other shared resources in the virtual system. An 

additional uncontrolled factor was controlling the configuration of the cluster. We used the 

Databricks cloud platform to manage the cluster and its Spark-powered dashboards to run 

our code.  This also could introduce some extra overheads with their configuration of the 

cluster and the cluster load at the testing time. Again, this also limited our ability to change 

the configuration of cluster, and therefore restricted the options in trying larger datasets and 

using larger clusters.  
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An issue that was not addressed in this study was the fast-moving pace of technology in this 

area, as most of the algorithms and technologies mentioned were created during the process 

of conducting this study.  

8.5 Future Works 

Findings from this research offer the following insights and recommendations for future 

research: 

 Future research should concentrate on the investigation of the previous issues addressed 

in the limitations section 8.4. For example, using a dedicated cluster with a controlled 

configuration could achieve very reliable results and help to understand them. 

 A further study could assess the scalability of the improvements implemented to 

determine how they perform on larger datasets or on different type of graphs.  

 A more straightforward future evaluation would be to implement the new algorithm 

using serverless service in Databricks, which could automatically allocate the optimal 

resources as needed. However, this service is not available yet. 

 More research is also required to determine the efficacy of using the degree of node 

approach on another algorithm. This could prove to be particularly valuable especially 

for algorithms that use the graph contraction scheme. 

 Another possible area of future research would be to investigate the use of parallel 

disjoint-set for finding connected component locally. This could benefit from the multi-

core structure available in the processing node. 

 Further studies regarding designing the algorithm to use local pre-processing is strongly 

recommended, as most new big data processing systems support it. 
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 Spark is a very active developing project. Therefore, it is always recommended to revisit 

this study and apply updated features and best practices to help tune and troubleshoot 

Spark implementation of the algorithm. 

 Apply the approach of using the degree in finding connected components in dynamic 

graphs. In addition, test the approach of local computation of connected components 

using disjoint-Set data structure, as it is more efficient in situation where edges are 

continuously being added and incremental computation of connected components is 

required.   
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Appendix A: Code 

// import the library needed for the execution 

import org.apache.spark.rdd.RDD 

import org.apache.spark.SparkContext 

import org.apache.spark.graphx._ 

import scala.reflect.ClassTag 

import scala.collection.immutable.HashMap 

import scala.collection.mutable.HashSet 

import scala.collection.mutable.ListBuffer 

import scala.collection.mutable.Set 

8.6 Pre-Processing Stage 

// defined a function to restructure the graph in adjacency list representation:  

def adjacencyListGeneratorOpt[VD:ClassTag, ED:ClassTag](graph: Graph[VD, ED]): Graph[Set[VertexId], 

ED] = { 

    val WorkGraph = graph.mapVertices { case (vid, _) => (vid) } 

    val nbrs = WorkGraph.collectNeighborIds(EdgeDirection.Either).cache() 

    val nbrsVerts: VertexRDD[Set[VertexId]] = nbrs.mapValues ( (vid, nbrs) => Set(nbrs.toSet.toArray: _*))      

    val adjGraph: Graph[Set[VertexId], ED] = Graph(nbrsVerts, graph.edges) 

    adjGraph 

} 

// defined a function to restructure the graph in adjacency list representation: 

def adjacencyListGeneratorDgOpt[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]): 

Graph[(Int,scala.collection.immutable.Set[(VertexId,Int)]), ED] = { 

    val degrees = graph.degrees 

    val graphWithDegrees = graph.outerJoinVertices(degrees) { (_, _, optDegree) => 

        optDegree.getOrElse(1)     

    } 

    val WorkGraph = graphWithDegrees.mapVertices { case (vid, degree) => (vid,degree) } 
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    val neighboursWithDegree = WorkGraph.aggregateMessages[scala.collection.immutable.Set[(VertexId, 

Int)]]( 

        sendMsg = triplet => { 

            val srcWithDegree = triplet.srcAttr 

            val dstWithDegree = triplet.dstAttr 

            triplet.sendToDst(scala.collection.immutable.Set(srcWithDegree)) 

            triplet.sendToSrc(scala.collection.immutable.Set(dstWithDegree)) 

        }, 

        mergeMsg = (x, y) => x ++ y 

    ).mapValues(x=>(x.size,x)) 

    val emptySet:(Int,scala.collection.immutable.Set[(VertexId,Int)])= ( 0, scala.collection.immutable.Set()) 

    val adjGraph = graph.outerJoinVertices(neighboursWithDegree) { (_, _, optDegree) => 

            optDegree.getOrElse(emptySet) 

        } 

    adjGraph 

} 

// apply the adjacencylistGenerator function on the graph 

val adjGraphDg = adjacencyListGeneratorDgOpt(graph) 

// create the initial graph and add the component identifier for each node using the 

findMaxCompInSet function: 

val ret_Initial = adjGraphDg.vertices.map(t => 

                             (t._1, (t._2._1,new DgCracker_MsgIdentification(  

                             findMaxCompInSet_Dg((t._1,t._2._1),t._2._2),t._2._2 )))) 

                             .cache 

var ret= ret_Initial 
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8.7 Processing Stage 

Chapter 9: Seed Identification Phase 

a) Local Max Identification Step 

// Defined the map function for the Local Max Identification Step 

def map_LocalMaxIdentification_DisjointSet(items :  Iterator[(VertexId,(Int, 

DgCracker_MsgIdentification))], forceLoadBalancing : Boolean) = { 

  val ds =  new DisjointSetModified() 

  var cache =scala.collection.mutable.HashMap.empty[VertexId,(Int,DgCracker_MsgIdentification)]   

  while (items.hasNext) { 

    val cur = items.next 

    val id = cur._1 

    val dg = cur._2._1 

    val idDg= (id,dg) 

    val max = cur._2._2.max 

    val adjSet = cur._2._2.neigh 

     if (!(cache contains id)){ 

      cache.put(id, (dg,new DgCracker_MsgIdentification(max, adjSet))) 

    }  

    if (!(cache contains max._1)){ 

      cache.put(max._1, (max._2,new DgCracker_MsgIdentification(max,  scala.collection.immutable.Set()))) 

    }   

      if (!(ds contains(id))){ 

      ds+= idDg 

    } 

    if (!(ds contains(max._1))){ 

      ds+= max 

    } 

    ds union(idDg,max) 
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    if (adjSet.size >0)  { 

      for (node<- adjSet){ 

        if (!(cache contains node._1)){ 

//           cache.put(node._1, (node._2,new DgCracker_MsgIdentification(max, 

scala.collection.immutable.Set()))) 

        } 

        if (!(ds contains(node._1))){ 

          ds+= node 

        } 

        ds union(idDg,(ds(node),node._2)) 

      } 

    } 

  } 

    cache.foreach{ cur =>  

        val id = cur._1 

        val dg = cur._2._1 

        val idDg= (id,dg) 

        val max = cur._2._2.max 

        val adjSet = cur._2._2.neigh 

        val maxNew= ds(idDg) 

        val maxNewDg= (maxNew,cache(maxNew)._1) 

        cache(id)= (dg,new DgCracker_MsgIdentification(maxNewDg, adjSet))  

  } 

  cache.iterator 

  } 

// Apply using the mapPartition function  

val ret_LocalMax = ret.mapPartitions { ItrInp => { 

map_LocalMaxIdentification_DisjointSetModified(ItrInp)}} 

ret =ret_LocalMax 
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b) Cluster Max Identification Step 

// defined the map function for the Cluster Max Identification Step 

def map_ClusterMaxIdentification(item : (VertexId,(Int, DgCracker_MsgIdentification)), 

forceLoadBalancing : Boolean, edgePruning : Boolean = true) : Iterable[(VertexId, (Int, 

DgCracker_MsgIdentification))] =    { 

        var outputList : ListBuffer[(VertexId, (Int, DgCracker_MsgIdentification))] = new ListBuffer 

        if (item._2._2.max._1 == item._1 && (item._2._2.neigh.isEmpty || (item._2._2.neigh.size == 1 && 

item._2._2.neigh.contains((item._1,item._2._1))))) {  //this will deactivate  single nodes or root nodes 

        } else { 

            val max = item._2._2.max 

            if (item._2._2.neigh.isEmpty) { 

                outputList.prepend((item._1,(item._2._1, new DgCracker_MsgIdentification(max, 

scala.collection.immutable.Set())))) 

            } else { 

                outputList.prepend((item._1,(item._2._1, new DgCracker_MsgIdentification(max, 

scala.collection.immutable.Set(max))))) 

            } 

            if (max._2 > item._2._1 || !forceLoadBalancing || !edgePruning) { 

                val it = item._2._2.neigh.iterator 

                while (it.hasNext) { 

                    val next = it.next 

                    outputList.prepend((next._1,(next._2, new DgCracker_MsgIdentification(max, 

scala.collection.immutable.Set(max))))) 

                } 

            } 

        } 

        outputList.toIterable 

    } 

// Apply the map function  

val map_ClusterMax= ret.flatMap(item => map_ClusterMaxIdentification(item, false)) 

// defined the Reduce function for the Cluster Max Identification Step 

def reduce_ClusterMaxIdentification(item1 : (Int, DgCracker_MsgIdentification), item2 : (Int, 

DgCracker_MsgIdentification)) : (Int, DgCracker_MsgIdentification) = { 
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    val ret = item1._2.neigh ++ item2._2.neigh 

    val max = maxDg(item1._2.max,item2._2.max) 

    val dg  = if(item1._1> item2._1) item1._1 else  item2._1 

    (dg,new DgCracker_MsgIdentification(max, ret)) 

} 

// Apply the reduce function  

val reduce_ClusterMax =  map_ClusterMax.reduceByKey(reduce_ClusterMaxIdentification)//.dependencies 

c)  Pruning Step 

c) Node Assorting 

//mapper for the node assorting step 

def map_Pruning(item : (VertexId,(Int, DgCracker_MsgIdentification))) : Iterable[(VertexId,(Int, 

DgCracker_GeneralMsg))] = { 

    map_Pruning(item, false) 

} 

def map_Pruning(item : (VertexId,(Int, DgCracker_MsgIdentification)), forceLoadBalancing : Boolean, 

obliviousSeed : Boolean = true) : Iterable[(VertexId,(Int, DgCracker_GeneralMsg))] = { 

    var outputList : ListBuffer[(VertexId,(Int, DgCracker_GeneralMsg))] = new ListBuffer 

    val maxSet : scala.collection.immutable.Set[(VertexId,Int)] = item._2._2.neigh 

      if (maxSet.size > 1) { 

        if( forceLoadBalancing || obliviousSeed)   { 

            outputList.prepend((item._2._2.max._1,(item._2._2.max._2, DgCracker_GeneralMsg.apply(new 

DgCracker_MsgIdentification(item._2._2.max, scala.collection.immutable.Set(item._2._2.max)))))) 

        } 

        else { 

            outputList.prepend((item._2._2.max._1,(item._2._2.max._2, DgCracker_GeneralMsg.apply(new 

DgCracker_MsgIdentification(item._2._2.max, maxSet))))) 

        }  

        var it = maxSet.iterator 

        while (it.hasNext) { 

            val value : (VertexId,Int) = it.next 

            if (value != item._2._2.max) 
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                outputList.prepend((value._1,(value._2, DgCracker_GeneralMsg.apply(new 

DgCracker_MsgIdentification(item._2._2.max, scala.collection.immutable.Set(item._2._2.max)))))) 

        }  

    } else if (maxSet.size == 1 && maxSet.contains((item._1,item._2._1))) { 

        outputList.prepend((item._1, (item._2._1,DgCracker_GeneralMsg.apply(new 

DgCracker_MsgIdentification((item._1,item._2._1), scala.collection.immutable.Set()))))) 

    } 

    if (!item._2._2.neigh.contains((item._1,item._2._1))) { 

        outputList.prepend((item._2._2.max._1,(item._2._2.max._2, DgCracker_GeneralMsg.apply(new 

DgCracker_MsgTree(-1, scala.collection.immutable.Set(item._1)))))) 

        outputList.prepend((item._1,(item._2._1, DgCracker_GeneralMsg.apply(new 

DgCracker_MsgTree(item._2._2.max._1, scala.collection.immutable.Set()))))) 

    } 

    outputList.toIterable 

} 

// the merge function for message that update the Graph Gt+1 

def merge_MsgTree(first : Option[DgCracker_MsgTree], second : Option[DgCracker_MsgTree]) : 

Option[DgCracker_MsgTree] = { 

    if (first.isDefined) { 

        first.get.merge(second) 

    } else { 

        second 

    } 

} 

//The merge function for messages that update the propagation tree T 

def merge_MsgIdentification(first : Option[DgCracker_MsgIdentification], second : 

Option[DgCracker_MsgIdentification]) : Option[DgCracker_MsgIdentification] = { 

    if (first.isDefined) { 

        first.get.merge(second) 

    } else { 

        second 

    } 

} 
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// reducer for the node assorting step 

def reduce_Pruning(item1 : (Int, DgCracker_GeneralMsg), item2 : (Int, DgCracker_GeneralMsg)) : (Int, 

DgCracker_GeneralMsg)= { 

  val dg = if(item1._1< item2._1) item1._1  else item2._1 

   (dg, new DgCracker_GeneralMsg(merge_MsgIdentification(item1._2.MsgIdentification, 

item2._2.MsgIdentification), merge_MsgTree(item1._2.MsgTree, item2._2.MsgTree))) 

} 

// Initialise variables to check active nodes after Seed node assorting step 

val active = ret.count 

val control = active == 0 

d) Update Degree 

// the mapper function to generate the updates 

def DgMap(item: (VertexId,(Int, scala.collection.immutable.Set[(VertexId, Int)]))) : Iterable[(VertexId,Int)] 

={ 

    var outputList : ListBuffer[(VertexId,Int)] = new ListBuffer 

    val it = item._2._2.iterator 

    while(it.hasNext)    {   

      val next = it.next 

      if (next._1!= item._1) { 

        outputList.prepend((next._1, 1)) 

        outputList.prepend((item._1, 1)) 

      } 

    } 

    outputList.toIterable 

} 

//calculate the new degree using Mapreduce 

val degreePair=tmpReduced_MsgIdentification 

                                     .flatMap(x=>DgMap((x._1,(x._2._1,(x._2._2.neigh)))) ) 

                                     .reduceByKey(_+_) 

// save the updates in HashMap table 

val degreeMap= degreePair.collectAsMap  
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val degreeBroadcast= sc.broadcast(degreeMap) 

 

 

// the update function 

def updateDegree(item: (VertexId, (Int, DgCracker_MsgIdentification)))  = { 

  val id = item._1 

  val dg_old=item._2._1 

  val max = item._2._2.max  

  val neigh = item._2._2.neigh 

  var dg_new= degreeBroadcast.value.get(id).getOrElse(dg_old) 

  if (dg_new== -1) dg_new=dg_old 

  val it = neigh.iterator 

  var max_new= (max._1,degreeBroadcast.value.get(max._1).getOrElse(max._2)) 

  var neigh_new = scala.collection.immutable.Set[(VertexId, Int)]() 

    while(it.hasNext) 

    {   

      val next = it.next 

      neigh_new +=((next._1,degreeBroadcast.value.get(next._1).getOrElse(next._2))) 

      } 

 (id,(dg_new, new DgCracker_MsgIdentification(max_new,neigh_new))) 

} 

// merge the updates 

val retUpdated = tmpReduced_MsgIdentification.mapPartitions((it =>  

                                         it.map{case (id, attr)=> updateDegree(id,attr)}), 

                                         preservesPartitioning = true) 
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e) Update Propagation Tree 

//Initialise the propagationTree as empty 

var propagationTreeRDD : Option[RDD[(VertexId, DgCracker_MsgTree)]] = Option.empty 

// add each node and initialize the component identifier as -1 

// If not done, CC of size 1 are not recognized 

propagationTreeRDD = Option.apply(ret.map(t => (t._1, new DgCracker_MsgTree(-1, 

scala.collection.immutable.Set())))) 

// merging function 

def mergePropagationTree(start : Option[RDD[(VertexId, DgCracker_MsgTree)]], add : RDD[(VertexId, 

DgCracker_MsgTree)]) : Option[RDD[(VertexId, DgCracker_MsgTree)]] = 

  { 

      if (start.isDefined) { 

              Option.apply(start.get.union(add)) 

      } else { 

          Option.apply(add) 

      } 

  } 

 

// merge the tree 

propagationTreeRDD = mergePropagationTree(propagationTreeRDD, tmpReduced_MsgTree) 
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Implementation 

// implement Seed Identification Phase iteratively in while loop 

 

// configuration initialising 

cracker_Skip_LocalMaxIdentification  = true  

cracker_Skip_PruningUpdateDegree = false 

cracker_Skip_PruningUpdateTree   = false 

var numIter = 0 

ret= ret_Initial 

propagationTreeRDD = Option.apply(ret.map(t => (t._1, new DgCracker_MsgTree(-1, 

scala.collection.immutable.Set())))) 

val active =ret.count 

control= active==0  

// Run everything in while loop (iterate until convergance) 

while (!control) { 

  // 2. Seed Identification  

    numIter+=1 

 

  // 2.1. Local Max Identification 

    if (!cracker_Skip_LocalMaxIdentification){ 

    val ret_LocalMax = ret.mapPartitions { ItrInp => { 

map_LocalMaxIdentification_DisjointSetModified(ItrInp,false)} } 

    ret =ret_LocalMax 

    } 

 

  // 2.2 Cluster Max Identification 

    val map_ClusterMax= ret.flatMap(item => map_ClusterMaxIdentification(item, false)) 

    val reduce_ClusterMax = map_ClusterMax.reduceByKey(reduce_ClusterMaxIdentification) 

    val active = ret.count 

    control = active == 0 
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    // 2.3 Purning Step        

    if (!control) { 

      // Node Assorting 

      val tmp = ret.flatMap(item => map_Pruning(item)) 

      val tmpReduced = tmp.reduceByKey(reduce_Pruning).cache 

      val tmpReduced_MsgIdentification=tmpReduced.filter(t => t._2._2.MsgIdentification.isDefined).map(t 

=> (t._1, (t._2._1,t._2._2.MsgIdentification.get))) 

      val tmpReduced_MsgTree =tmpReduced.filter(t => t._2._2.MsgTree.isDefined).map(t => (t._1, 

t._2._2.MsgTree.get)) 

         // Update Degree 

      if(!cracker_Skip_PruningUpdateDegree){ 

        val degreePair=tmpReduced_MsgIdentification 

                                     .flatMap(x=>DgMap((x._1,(x._2._1,(x._2._2.neigh)))) ) 

                                     .reduceByKey(_+_) 

        val degreeMap= degreePair.collectAsMap  

        val degreeBroadcast= sc.broadcast(degreeMap) 

        val retUpdated = tmpReduced_MsgIdentification.mapPartitions((it =>  

                                         it.map{case (id, attr)=> updateDegree(id,attr)}), preservesPartitioning = true) 

//         degreeBroadcast.destroy 

        ret = retUpdated 

      }else{ 

        ret= tmpReduced_MsgIdentification      

      } 

       //update Propagation Tree 

      if(!cracker_Skip_PruningUpdateTree){ 

       propagationTreeRDD = mergePropagationTree(propagationTreeRDD, tmpReduced_MsgTree) 

      }else{ 

        propagationTreeRDD= propagationTreeRDD      

      } 

    } 

} 
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Chapter 10: Seed Propagation Phase:  

// get the data from the previous phase 

var propagationTreeRDD_tmp = propagationTreeRDD.get 

// reduce function to prepare the data for processing 

def reducePrepareDataForPropagation(a : DgCracker_MsgTree, b : DgCracker_MsgTree) : 

DgCracker_MsgTree = { 

    var parent = a.parent 

    if (parent == -1) parent = b.parent 

    new DgCracker_MsgTree(parent, a.child ++ b.child) 

} 

// prepare the data for processing 

var propagationTreeRDD_clean = propagationTreeRDD_tmp 

                                  .reduceByKey(reducePrepareDataForPropagation) 

                                  .map(t => (t._1, t._2.getMessagePropagation(t._1))).cache 

// flag to skip running local seed propagation 

val cracker_Skip_PartitionMapPropagate= false 

a) Local Seed Propagation. 

def mapPropagatePart_par(items :  Iterator[(Long, DgCracker_MsgPropagation)]) = //: Iterable[(Long, 

CrackerTreeMessagePropagation)] = { 

          var outputList : ListBuffer[(Long, DgCracker_MsgPropagation)] = new ListBuffer 

            var update: Boolean = true 

            control = false 

            numIter = 0 

             var  treeRDDPropagationPar=   items.flatMap(mapPropagate(_)).toList.groupBy(t => t._1).map { 

case (group, traversable) => (group, traversable.map(t=> t._2).reduce(reducePropagate)) } 

          control =   treeRDDPropagationPar.map(t => t._2.max != -1).reduce {  (a:Boolean, b:Boolean) => a 

&& b }           

            while (!control && numIter<20) { 

               treeRDDPropagationPar=   treeRDDPropagationPar.toList.flatMap(mapPropagate(_)).groupBy(t => 

t._1) 

                                                                    .map { case (group, traversable) => (group, traversable.map(t=> 

t._2).reduce(reducePropagate)) } 
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               control =   treeRDDPropagationPar.map(t => t._2.max != -1).reduce {  (a:Boolean, b:Boolean) => a 

&& b } 

               numIter+=1 

            } 

          treeRDDPropagationPar.toIterator 

} 

b) Cluster Seed Propagation 

// Map function to propagate the component identifier 

def mapPropagate(item : (VertexId, DgCracker_MsgPropagation)) : Iterable[(VertexId, 

DgCracker_MsgPropagation)] = { 

 var outputList : ListBuffer[(Long, DgCracker_MsgPropagation)] = new ListBuffer 

 if (item._2.max != -1) { 

  outputList.prepend((item._1, new DgCracker_MsgPropagation(item._2.max, Set()))) 

  val it = item._2.child.iterator 

  while (it.hasNext) { 

   val next = it.next 

   outputList.prepend((next, new DgCracker_MsgPropagation(item._2.max, Set()))) 

  } 

 } else { outputList.prepend(item) } 

 outputList 

} 

// Reduce function to propagate the component identifier 

 

def reducePropagate(item1 : DgCracker_MsgPropagation, item2 : DgCracker_MsgPropagation) : 

DgCracker_MsgPropagation =    { 

        var maxEnd = item1.max 

        if (maxEnd == -1) maxEnd = item2.max 

        new DgCracker_MsgPropagation(maxEnd, item1.child ++ item2.child) 

    } 

// Run everything in while loop (iterate until convergance) 

while (!control) { 



187 

 

  if(cracker_Skip_PartitionMapPropagate){ 

    propagationTreeRDD_clean = propagationTreeRDD_clean 

//                       .mapPartitionsWithIndex { (idx, ItrInp) => { mapPropagatePart3(ItrInp)} } 

                        .mapPartitionsWithIndex { (idx, ItrInp) => { mapPropagatePart_par(ItrInp)} } 

  } 

    propagationTreeRDD_clean = propagationTreeRDD_clean.flatMap(item => mapPropagate(item)) 

    propagationTreeRDD_clean = propagationTreeRDD_clean.reduceByKey(reducePropagate).cache 

    control = propagationTreeRDD_clean.map(t => t._2.max != -1).reduce { case (a, b) => a && b } 

//     step = step + 1 

  numIter+=1 

} 

 

 

10.1 Post-Processing Stage 

// found out the number of nodes in each component 

val Final =propagationTreeRDD_clean.map(t => (t._2.max, 1)).reduceByKey { case (a, b) => a + b } 

// take the top 10 components with the highest number of nodes 

Final.sortBy(x => x._2, false).take(10).foreach(println(_)) 
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10.2 Implementation Using Disjoint-Set Pruning 

// initialise the Disjoint-Set Tree 

val treeDS =  new DisjointSetModified() 

ret.map(t => (t._1,t._2)).foreach(t => if (!(treeDS contains(t._1))){treeDS+= (t._1,t._2._1)}) 

 

// update the treeDS in each iteration of the Seed Identification phase 

 

while (!control) { 

    numIter1srPhase+=1 

    // simplification step 

    ret = ret.flatMap(item => emitBlue(item, false)) 

 

    ret = ret.reduceByKey(reduceBlue).cache 

 

    val active = ret.count 

    control = active == 0 

    stat_1srPhase+=((numIter1srPhase,active)) 

 

    if (!control) { 

        // reduction step 

        val tmp = ret.flatMap(item => emitRed(item)) 

 

        val tmpReduced = tmp.reduceByKey(reduceRed) 

 

        val tmpReduced_MsgIdentification= tmpReduced.filter(t => t._2._2.first.isDefined).map(t => (t._1, 

(t._2._1,t._2._2.first.get))) 

        val tmpReduced_MsgTree =tmpReduced.filter(t => t._2._2.second.isDefined).map(t => (t._1, 

(t._2._1,t._2._2.second.get))) 

       

        treeRDD = mergeTree(treeRDD,tmpReduced_MsgTree , crackerUseUnionInsteadOfJoin, 

crackerForceEvaluation) 

 

//       tmpReduced_MsgIdentification.map(t => t).collect.map(node=> { 

        tmpReduced_MsgTree.map(t => t).collect.map(node=> { 

           val nodeDg= (node._1,node._2._1) 

//            val max = node._2._2.max 

           val max = node._2._2.parent 

           if (!(treeDS contains(node._1))){ 

              treeDS+= nodeDg 

           } 

           if (!(treeDS contains(max._1))){ 

              treeDS+= max 

           } 

           treeDS union(nodeDg,(treeDS(max),max._2)) 

        }) 

       

        ret= tmpReduced_MsgIdentification 

        step = step + 2 

    } else { 

        step = step + 1 

    } 

}   
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Classes 

// Class Diagram structure 

 

// DisjointSet Class 

class DisjointSetModified extends Serializable  { 

 

//https://github.com/pathikrit/scalgos/blob/master/src/main/scala/com/github/pathikrit/scalgos/DisjointSet.sca

la 

  import scala.collection.mutable 

  import DisjointSetModified.Node 

  val parentMap = mutable.Map.empty[VertexId, Node] 

  private var numComponents  =0 

  private[this] implicit def toNode(x: (VertexId,Int)) = { 

    if(contains(x._1)){ 

          } 

    parentMap(x._1) 

  } 
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//  @return true iff x is known 

  def contains(x: VertexId) = parentMap contains x 

 

// Add a new singleton set with only x in it (assuming x is not already known) 

  def +=(x: (VertexId,Int)) = { 

    if(!contains(x._1)){ 

      parentMap(x._1) = new Node(x._1,x._2) 

      numComponents+=1 

    } 

  } 

  override def toString = parentMap.toString 

 

//  Union the sets containing x and y 

   def union(x: (VertexId,Int), y: (VertexId,Int)) = { 

     

    val (xRoot, yRoot) = (x.root, y.root) 

    if (xRoot != yRoot) { 

      if (xRoot.dg < yRoot.dg) {   

        xRoot.parent = yRoot 

      } else if (xRoot.dg > yRoot.dg) { 

        yRoot.parent = xRoot 

      } else { 

        if(xRoot.id > yRoot.id){ 

          yRoot.parent = xRoot 

        }else{ 

          xRoot.parent = yRoot 

        } 

      } 

      numComponents-=1 

    } 

  } 

  //   @return the root (or the canonical element that contains x) 

      def apply(x: (VertexId,Int)) = x.root.id 

  //   @return Iterator over groups of items in same set 

    def sets = parentMap groupBy {_._2.root.id} values 

   //   @return number of components 

     def components: Int = numComponents 

  } 

object DisjointSetModified { 

// Each internal node in DisjointSet 

  class Node(val id: VertexId,val dg:Int=0){ 

    /** 

     * parent - the pointer to root node (by default itself) 

     * rank - depth if we did not do path compression in find - else its upper bound on the distance from node 

to parent 

     */ 

    var parent= this 

    def get={ 

      (id,dg) 

    } 

    var rank  = 0 

    def root: Node = { 

      if (parent != this) { 

        parent = parent.root     // path compression 

      } 

      parent 

    } 

    override def toString = "{("+id.toString+","+dg.toString+")-> parent:("+parent.id+","+parent.dg+")}" 

   

  } 
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//  @return empty disjoint set 

  def empty[VertexId,Int] = new DisjointSetModified 

 

//  @return a disjoint set with each element in its own set 

  def apply[A,T](elements: (VertexId,Int)*) = { 

    val d = empty[VertexId,Int] 

    elements foreach {e => d += e} 

    d 

  } 

} 

// defind function used in Classes 

// function to find the the max between two nodes based on the degree then the ID: 

def maxDg(ver1:  (VertexId,Int), ver2:(VertexId,Int)):(VertexId,Int) ={ 

  if (ver1._2 > ver2._2) ver1 

  else if (ver1._2 == ver2._2){ 

    if (ver1._1 > ver2._1) ver1 

    else ver2 

  } 

  else ver2 

} 

// function to find the the max in a set of nodes based on the degree then the ID: 

def findMaxCompInSet_Dg(compID: (VertexId,Int), setDg:scala.collection.immutable.Set[(VertexId, Int)]): 

(VertexId,Int) = { 

  var setMaxDg = compID 

  if (!setDg.isEmpty) { 

    setMaxDg = setDg.reduceLeft(maxDg) 

  } 

  maxDg(setMaxDg , compID) 

} 

// a function to give Boolean if first node is less than the second 

def lessThan(left:(VertexId,Int),right:(VertexId,Int)):Boolean ={ 

    if (left._2<right._2) true 

    else if (left._2==right._2){ 

      if(left._1< right._1) true else false 

    }else false 

} 
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// Message abstract class 

trait CrackerMessageSize extends Serializable{ 

def getMessageSize : Long 

} 

// Message Identification Class 

class DgCracker_MsgIdentification (val max: (VertexId,Int), val neigh:  

scala.collection.immutable.Set[(VertexId,Int)]) extends CrackerMessageSize { 

 def voteToHalt = neigh.isEmpty 

 def getMessageSize = neigh.size + 1 

 def merge(other : Option[DgCracker_MsgIdentification]) : Option[DgCracker_MsgIdentification] = 

 { 

  if(other.isDefined) 

  { 

   Option.apply(new DgCracker_MsgIdentification(maxDg(max, other.get.max), 

                                                      neigh ++ other.get.neigh)) 

  } else 

  { 

   Option.apply(DgCracker_MsgIdentification.this) 

  } 

 } 

 override def toString = "(max:"+max.toString+",neigh:"+neigh.toString+")" 

} 

object DgCracker_MsgIdentification { 

 def empty = new DgCracker_MsgIdentification((-1,0), scala.collection.immutable.Set()) 

} 

// Message Propagation Class 

class DgCracker_MsgPropagation (val max : VertexId, val child : scala.collection.immutable.Set[VertexId]) 

extends CrackerMessageSize { 

    def getMessageSize = child.size + 1 

    override def toString = "{"+max.toString+","+child.toString+"}" 

} 
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// Message Tree Class 

class DgCracker_MsgTree (val parent : VertexId, val child : scala.collection.immutable.Set[VertexId]) 

extends CrackerMessageSize 

{ 

 def getMessageSize = child.size + 1 

  

 def merge(other : Option[DgCracker_MsgTree]) : Option[DgCracker_MsgTree] = 

 { 

  if(other.isDefined) 

  { 

   var parentNew = parent 

    

   if(parentNew == -1) 

   { 

    parentNew = other.get.parent 

   } 

    

   Option.apply(new DgCracker_MsgTree(parentNew, child ++ other.get.child)) 

  } else 

  { 

   Option.apply(DgCracker_MsgTree.this) 

  } 

 } 

  

 def merge(other : DgCracker_MsgTree) : DgCracker_MsgTree = 

 { 

  var parentNew = parent 

   

  if(parentNew == -1) 

  { 

   parentNew = other.parent 

  } 

   

  new DgCracker_MsgTree(parentNew, child ++ other.child) 

 } 

 def getMessagePropagation(id : VertexId) =  

 { 

  if(parent == -1) 

  { 

   new DgCracker_MsgPropagation(id, child) 
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  } else 

  { 

   new DgCracker_MsgPropagation(-1, child) 

  } 

 } 

   override def toString = "{"+parent.toString+","+child.toString+"}" 

} 

object DgCracker_MsgTree 

{ 

 def empty = new DgCracker_MsgTree(-1, scala.collection.immutable.Set()) 

} 

// General Message Class 

class DgCracker_GeneralMsg (val MsgIdentification : Option[DgCracker_MsgIdentification], val MsgTree : 

Option[DgCracker_MsgTree]) extends CrackerMessageSize 

{ 

 def getMessageSize = 

MsgIdentification.getOrElse(DgCracker_MsgIdentification.empty).getMessageSize + 

MsgTree.getOrElse(DgCracker_MsgTree.empty).getMessageSize  

    override def toString = 

"MsgIdentification:("+MsgIdentification.getOrElse("").toString+"),(MsgTree:("+MsgTree.getOrElse("").toSt

ring+")" 

} 

 

object DgCracker_GeneralMsg 

{ 

 def apply(MsgIdentification : DgCracker_MsgIdentification) = new 

DgCracker_GeneralMsg(Option.apply(MsgIdentification), Option.empty) 

 def apply(MsgTree : DgCracker_MsgTree) = new DgCracker_GeneralMsg(Option.empty, 

Option.apply(MsgTree)) 

} 

 

 


