

Optimisation Techniques for Finding Connected

Components in Large Graphs Using GraphX

MAHER TURIFI

University of Salford

School of Computing, Science and Engineering

Submitted in Partial Fulfilment of the Requirements of the Degree of

Doctor of Philosophy

2017

i

Chapter 1: Contents

LIST OF FIGURES .. IV

LIST OF TABLES .. VII

LIST OF ABBREVIATIONS ...VIII

ABSTRACT .. IX

CHAPTER 1: INTRODUCTION ... 1

1.1 Research Motivation, Aim, and Objectives: .. 3

1.2 Research Methodology: ... 5

1.3 Contributions:... 7

1.4 Outline of the Thesis .. 9

CHAPTER 2: BIG DATA BACKGROUND ... 10

2.1 Big Data: ... 10
2.1.1 Big Data definition ... 10
2.1.2 What is Big Data? .. 11
2.1.3 Components (Three Vs & +V) ... 12
2.1.4 Big Data Benefits ... 14
2.1.5 Associated Challenges with Big Data: ... 14

2.2 Big Data Technologies: .. 15
2.2.1 Hadoop & MapReduce: ... 16
2.2.2 Apache Spark ... 25

CHAPTER 3: LITERATURE REVIEW: ... 30

3.1 Graphs ... 30
3.1.1 Introduction to Network ... 30
3.1.2 Graph Theory: .. 31
3.1.3 Definition ... 32
3.1.4 Characteristics .. 32

3.2 Big Graph .. 34
3.2.1 Big graph History:.. 34
3.2.2 Big Graph Systems categorisation ... 37
3.2.3 Big graph system requirements: ... 37
3.2.4 Graph databases ... 39

3.3 Big Graph Processing Systems .. 41
3.3.1 Features of Big Graph Processing Systems: .. 41

ii

3.4 Approaches in the Developments of Big Graph Processing Systems ... 46

3.5 Summary ... 61

CHAPTER 4: FINDING CONNECTED COMPONENTS IN LARGE GRAPHS 62

4.1 What is finding connected components in graphs? ... 62

4.2 Why it is important to study Connected Components algorithms? ... 62

4.3 Application of Connected Components algorithms? ... 63

4.4 Models of study for finding Connected Components: ... 63
4.4.1 In Single machine systems ... 63
4.4.2 In distributed systems .. 64

4.5 Why CC algorithms may perform poorly in practice? ... 66

4.6 Why it is important to use MapReduce in Graph Processing? .. 67

4.7 Previous algorithms for Finding CC in MapReduce ... 68
4.7.1 Using zones to finding connected components .. 68
4.7.2 Pegasus HCC ... 69
4.7.3 Hash-to-Min ... 71
4.7.4 CC-MR .. 73
4.7.5 CCF .. 77
4.7.6 MemoryCC .. 78
4.7.7 CC-MR-mem ... 80
4.7.8 Two-Phase & ALT-OPT .. 84
4.7.9 Cracker ... 86

4.8 Summary ... 87

CHAPTER 5: PROPOSED ALGORITHM .. 90

5.1 Introduction .. 90

5.2 Proposed Improvements .. 91
5.2.1 Graph contraction based on node degree: .. 94
5.2.2 Dynamic evaluation of the degree in the graph: .. 95
5.2.3 Computing local CC in the map phase ... 95

5.3 Preliminaries: ... 97

5.4 The Framework Model: ... 97
i. Pre-Processing Stage .. 99
ii. Computing Stage .. 99

5.5 Computing Stage: ... 100
5.5.1 Seed Identification Phase: .. 102
5.5.2 Seed Propagation Phase: .. 116

5.6 Summary ... 118

CHAPTER 6: DESIGN & IMPLEMENTATION .. 119

iii

6.1 Intorduction: ... 119

6.2 Framework Implementation.. 121
6.2.1 Pre-Processing Stage .. 122
6.2.2 Computing Stage .. 127
6.2.3 Post-Processing Stage .. 133

CHAPTER 7: EXPERIMENTAL EVALUATION & RESULTS 134

7.1 Dataset description ... 134

7.2 Experimental Setup:... 136

7.3 Measuring Metrics: .. 137

7.4 Testing & Results ... 138
7.4.1 Effect of using the Degree Approach to find connected components .. 139
7.4.2 Effect of local Max Identification .. 149
7.4.3 Effect of local Seed Propagation .. 153
7.4.4 Performance of the DS-Pruning ... 154

7.5 Summary ... 156

CHAPTER 8: CONCLUSIONS ... 158

8.1 Introduction: ... 158

8.2 Summary ... 159

8.3 Contributions .. 160

8.4 Limitation .. 162

8.5 Future Works.. 163

REFERENCES: .. 165

APPENDIX A: CODE .. 173

iv

List of Figures

Figure 1-1: Example of LinkedIn knowledge graph .. 1

Figure 1-2:Overview of the research methodology followed in this thesis 6

Figure 2-1: A Mountain of Data represent by multiple of the unit byte[27]. 10

Figure 2-2: Big Data Components, the 3 Vs .. 12

Figure 2-3: Hadoop HDFS and MapReduce .. 18

Figure 2-4: Apache Hadoop with YARN. .. 19

Figure 2-5: MapReduce word count Example .. 20

Figure 2-6: Map task and Reduce task in Hadoop.. 21

Figure 2-7: MapReduce count word example pseudo code ... 21

Figure 2-8: Apache Spark. .. 25

Figure 2-9: RDD Operations .. 26

Figure 2-10:Spark System[69].. 26

Figure 2-11: RDD dependencies[69]. ... 28

Figure 3-1:GraphX Graph Class ... 58

Figure 3-2: Triplet View ... 58

Figure 3-3: Gelly Graph Class .. 60

Figure 4-1 Hash-to-Min Algorithm[22]. .. 72

Figure 4-2 Reducer of the CC-MR algorithm[13]. ... 75

Figure 4-3 CCF Algorithm[9]... 78

Figure 4-4 MemoryCC Algorithm[119]. .. 80

Figure 4-5 : CC-MR-mem Algorithm (Map Phase) [120]. .. 83

Figure 4-6 Large Start and Small Star operations[14] .. 84

Figure 4-7: The Cracker Algorithm[115] ... 87

Figure 4-8: Load Balancing[14] ... 88

https://testlivesalfordac-my.sharepoint.com/personal/m_turifi_edu_salford_ac_uk/Documents/Thesis/Final/Final%20Thesis%20with%20corrections%202.docx#_Toc503565282
https://testlivesalfordac-my.sharepoint.com/personal/m_turifi_edu_salford_ac_uk/Documents/Thesis/Final/Final%20Thesis%20with%20corrections%202.docx#_Toc503565284
https://testlivesalfordac-my.sharepoint.com/personal/m_turifi_edu_salford_ac_uk/Documents/Thesis/Final/Final%20Thesis%20with%20corrections%202.docx#_Toc503565291
https://testlivesalfordac-my.sharepoint.com/personal/m_turifi_edu_salford_ac_uk/Documents/Thesis/Final/Final%20Thesis%20with%20corrections%202.docx#_Toc503565293

v

Figure 5-1: Proposed improvements diagram .. 93

Figure 5-2:Framework Pipeline Model .. 97

Figure 5-3: Algorithm Framework Model .. 98

Figure 5-4: Computation Stage... 101

Figure 5-5: Cracker-Degree Algorithm .. 102

Figure 5-6: Local Max Identification Function ... 106

Figure 5-7: LocalMaxIdentification_Map .. 107

Figure 5-8: ClusterMaxIdentification Function .. 108

Figure 5-9: ClusterMaxIdentification_Map ... 109

Figure 5-10: Node Assorting Flowchart ... 113

Figure 5-11: Node Assorting .. 114

Figure 5-12: Degree Update ... 115

Figure 6-1: adjacencyListGenerator function ... 124

Figure 6-2: findMincCompInSet function ... 124

Figure 6-3: adjacencyListGeneratorDg function .. 126

Figure 6-4: findMaxCompInSet function ... 127

Figure 6-5: Class Diagram .. 128

Figure 6-6: Node Assorting Code ... 130

Figure 7-1: Run-Time for Pregel-Original vs Pregel-Degree ... 140

Figure 7-2: Number of Iterations for Pregel-Original vs Pregel-Degree................................ 141

Figure 7-3: Iteration vs Reducer Time for Pregel-Original vs Pregel-Degree 142

Figure 7-4: Run-Time for Alternating-Original vs Alternating -Degree 143

Figure 7-5: Number of Iterations for Alternating-Original vs alternating -Degree 143

Figure 7-6: Runtime for the Cracker-Original and Cracker-Degree 145

Figure 7-7: Runtime for the Cracker-Original and Cracker-Degree at each step 146

Figure 7-8: The number of active nodes at each iteration .. 147

https://testlivesalfordac-my.sharepoint.com/personal/m_turifi_edu_salford_ac_uk/Documents/Thesis/Final/Final%20Thesis%20with%20corrections%202.docx#_Toc503565296

vi

Figure 7-9: The number of active nodes at each iteration .. 148

Figure 7-10: Runtime for the Seed Identification Phase .. 150

Figure 7-11: Runtime for for the Seed Identification Phase ... 151

Figure 7-12: Runtime for for the Seed Identification Phase on different datasets 152

Figure 7-13: Runtime for the Seed Propagation Phase on different datasets 153

Figure 7-14: Runtime for the seed propagation (a) & (b)... 155

vii

List of Tables

Table 4-1: Finding Connected Component Algorithms using MapReduce (n is the number of

nodes, m is the number of edges, d is the diameter) ... 89

Table 7-1: Datasets used in the evaluation ... 135

Table 7-2: Amazon EC2 instances used for the cluster in the evaluation 136

Table 7-3: Evaluation Table .. 139

Table 7-4: The number of active nodes at each iteration for synthetic datasets 145

Table 7-5: The number of active nodes at each iteration for real-world datasets 145

Table 7-6: The number of active nodes after each iteration of seed identification phase. 149

viii

List of abbreviations

BFS Breadth First Search

BSP Bulk Synchronous Parallel

CC Connected Components

DFS Depth First Searches

DHT Distributed Hash-Table

GAS Gather-Sum-Apply-Scatter

HPC High Performance Computers

HDFS Hadoop Distributed File System

MPI Message-Passing Interface

PGM Property Graph Model

PRAM Parallel Random-Access Machine

RDD Resilient Distributed Dataset

RDF Resource Description Framework

TLAV Think Like A Vertex

ix

Abstract

The problem of finding connected components in undirected graphs has been well studied. It is

an essential pre-processing step to many graph computations, and a fundamental task in graph

analytics applications, such as social network analysis, web graph mining and image

processing. Recently, it has been a major area of interest within the field of large graph

processing. However, much of the research has focused on solving the problem using High

Performance Computers (HPC). In large distributed systems, the MapReduce framework

dominates the processing of big data, and has been used for finding connected components in

big graphs although iterative processing is not directly supported in MapReduce. Current big

data processing systems have developed into supporting iterative processing and providing

additional features other than MapReduce. Moreover, current connected component algorithms

in large distributed processing system only use the traditional approach to choosing the

component identifier based on the lexical ordering of the node ID value. This study investigates

how to enhance the performance of finding connected components algorithm for large graph in

distributed processing system. It uses the approach to considering the graph degree property in

choosing the component identifier, reviewing how this can affect the efficiency of the

algorithm. In the design of our proposed algorithm features provided by current new processing

systems such as moving the computation more toward the data partition in Spark are integrated.

This study thus review how this has affected the performance. The degree approach to choosing

the component identifier is experimentally tested using different algorithms. The study then

applies the proposed approach on the fastest existing algorithm, and experimentally compare

the performance of the connected component algorithm using both the original and our

modified algorithm. The results show that using the degree approach has played a vital role in

the evolution of the graph size during the process, leading to a faster convergence and

significant performance improvement when case vertex pruning is applied in the algorithms.

Furthermore, they demonstrate that in many cases optimising the design of the algorithm with

local pre-processing of the data has resulted in performance enhancement.

1

Chapter 1: Introduction

Big Data was the buzzword of the year 2013[1]. Ever since, the trend towards adopting big

data processing system has increased and it is commonly seen in every aspect of life[2].

Therefore, it has become important for a wide range of scientific and industrial processes,

especially as the cost of storage is decreasing and the ability to capture different kind of data

is growing[3].

In view of the diversity of data acquired nowadays and the massive amount of data stored,

there is a need to find new ways to deal with data beyond the traditional database, such as

handling data that do not usually fit in a single machine memory or disk [4][5]. One approach

is to look at data as a network or a graph with edges connecting things together, those edges

can take different forms of relationships. This metaphor of graph is currently used in many

areas: computer science, economics, sociology, biology, and many more[6]. Almost

anything can be represented as a graph [7]. Figure 1-1 shows LinkedIn knowledge graph,

where “entities” on LinkedIn, such as members, jobs, titles, skills, companies, geographical

locations, schools, etc, and the relationships between them are represented using graph.

Figure 1-1: Example of LinkedIn knowledge graph 1

1 https://www.linkedin.com/pulse/machine-learning-linkedin-knowledge-graph-qi-he/

2

Graphs are considered to be a very flexible data model that can be used to express

relationships between entities, and to recognize local and global characteristics of the

system, and to analyse different features of the complex networks[8] [7] [9].

Extensive research has been carried out on graphs and graph processing, as graphs are one

of the most widely used data representations and have been extensively used to efficiently

process data and extract knowledge[10][7]. However, recent graphs are beyond the ability

of traditional systems to handle, either because the sizes of current graphs are very big, and

they usually do not fit in a machine’s memory, or because current algorithms cannot process

such graphs efficiently, particularly when using the current distributed systems[11].

Our focus in this research is on the problem for finding Connected Components (CC)

efficiently in an undirected graph. A component represents a graph (or subgraph) where any

two vertices inside that graph are connected via paths, and there is no edge that connects any

vertex outside the component[6]. This problem has been well studied, as it is an essential

pre-processing step to many graph computations, and is a building block in complex graph

analysis such as clustering[12][13][14]. It has been a major area of interest within the field

of large graph processing and much of the research so far has focused on solving the problem

using High Performance Computers (HPC), with high computation power and equipped with

very large memory capacity[15].

Large-scale graphs (or big graphs) are usually stored using a distributed file system, like

Hadoop, either in the cloud or locally[16]. Hadoop[17] is an open-source framework that

allows for the distributed storage and processing of large datasets across clusters of

commodity computers. The MapReduce[18][19] framework dominates the processing of

large-scale data on Hadoop, and it is commonly used for mining big graphs[20]. However,

iterative processing is not directly supported in MapReduce. Nonetheless, some recent

3

works[21][22] show that it is possible to outperform other processing models for finding

connected components using MapReduce. Yet, only a few studies have investigated this

problem in big data distributed system using MapReduce[14].

1.1 Research Motivation, Aim, and Objectives:

Our work builds on the knowledge that current big data processing systems have become

more advanced with features beyond MapReduce. For example, a processing system, like

Spark[23][24], supports iterative processing and provides additional features other than

MapReduce such as data partitioning and caching. Spark also supports graph processing

using GraphX[25], which is an open source Spark API for graph-parallel computation.

Moreover, current connected component algorithms in large distributed processing system

only use the traditional approach in choosing the component identifier for each connected

component based on the lexical ordering of the node ID value. Hence, the aim of this research

is to enhance and optimise the performance of finding connected components in large

undirected graphs using MapReduce.

This could be achieved by addressing the following questions:

 Based on the Graph Structure properties, how to increase the efficiency of the

algorithm by considering graph structure properties in choosing the component

identifier?

 Based on the Processing System properties, how to increase the efficiency of the

algorithm in modern processing systems using the new features provided beyond

MapReduce?

4

To achieve this research aim, the following objectives have been identified:

1. To adopt a new approach to enhance the performance of CC algorithms by

considering the graph structure in choosing the component identifier. In our case, we

use the degree property in choosing the component identifier for each connected

component.

2. To enhance the performance of the algorithm by using the features provided by the

new current processing systems. In our case, we based our optimisation on the

concept that moving the computation process towards where the data is stored could

help enhance the performance. This is essentially the concept behind MapReduce

also. However, we could benefit further from systems like Spark that provide extra

features by caching the data in memory and controlling the partitioning process

across the cluster.

3. To review current MapReduce algorithms for finding connected components and

choosing the most recent one that outperforms other algorithms to implement

proposed optimisations.

4. To use the best practices and design patterns that have been proven to be efficient in

implementing MapReduce algorithms.

5. To apply the new approach by developing an algorithm for finding connected

components in large-scale graphs and implementing it in the distributed processing

system (GraphX/Spark).

6. To evaluate the efficiency of the new algorithm by analysing its performance using

known tested graph datasets and experimentally compare the performance against

fastest existing algorithms.

5

1.2 Research Methodology:

Our approach for finding connected components in large scale graphs is based on the degree

of the nodes in the graph and not only the ID of nodes as it is commonly used. Development

and implementation would be applied using GraphX on Spark, an open source Spark API

for graph-parallel computation. The research will apply some of the best practices and design

patterns that have been proven to be efficient in implementing large-scale graph mining

algorithms in MapReduce. Spark’s ability to cache some parts of the data in memory for use

in later iterations will be used. This could help to decrease both the number of iterations and

the intermediate communication load between iterations, and eventually greatly enhance

performance. This could be achieved without losing the ability to expand a graph that does

not fit in memory where Spark can split the cache file on local disks with the need to compute

again.

We adopt an empirical approach method in our research to estimate the effectiveness and

the efficiency of all techniques applied to enhance the performance of finding connected

components algorithm. The approach implemented is tested using large synthetic and real-

world datasets. An overview of our methodology is presented in figure 1-2, with the

corresponding chapter in this thesis.

Initially, we start by exploring Big Data and give overview of the main processing systems

and techniques used with it (Chapter2). In particular, we focus on Apache Hadoop system

and the MapReduce programming model and its limitations, in addition to Apache Spark as

they dominate the big data processing systems currently used. Next, we review graphs and

big graphs, and focus on big graph processing systems (Chapter 3). Our focus in this research

is on the problem of finding connected components in large graphs, and more specifically

6

using a distributed processing system. Thus, we review available algorithms that use the

MapReduce programming model (Chapter 4).

Proposed Algorithm

Chapter-5

Big Data

Background

Chapter-2

Large Graph processing

Chapter-3

CC Algorithms in MapReduce

Chapter-4

Proposed Improvements

Graph

Structure

Property

Processing

System Property

Testing

&

Evaluation

Chapter-7

Implementation

Chapter-6

Framework Design

Figure 1-2:Overview of the research methodology followed in this thesis

Then, we introduce our proposed approach in trying to fulfil the objective of optimising and

enhancing the performance of the connected components algorithm, and approach it from

two angles; using graph structure degree property, and using properties of the processing

7

system, such as caching and partitioning in Spark. Afterwards, we design the framework

model for our algorithm (Chapter 5). For implementation, we use the open source system

Spark, namely its graph processing library GraphX, to implements each enhancement

introduced in the designed framework (Chapter 6). Next, we test and evaluate our

implementation using synthetic and real-world datasets and compare the results to the results

of other algorithms. When evaluating the optimisation, we compare our implementation

results with the results of the original unmodified algorithm. For choosing the datasets, we

used open public datasets that often appear in the evaluation of similar algorithms from

related researches. All our tests run in a cloud environment using a virtual cluster (Chapter

7). Finally, we conclude and summarize the result of this study and describe some of the

limitations faced in the process of conducting this research, and then we suggest future work

to overcome some limitations or to further extend this research (Chapter 8).

1.3 Contributions:

The contribution in this thesis are as follows:

(i). Using the node degree approach in finding connected components algorithm:

using the degree approach in choosing the connected component identifier will

always result in less number of iterations until convergence, however it adds some

overload on the system due to the extra work required to calculate the degree for each

node and the increased size of messages due to the attachment of the degree to the

node. Nonetheless, this approach showed significant performance improvement

when applied to algorithms which apply vertex pruning; where unuseful nodes for

the computation are excluded from the process after each iteration. In this kind of

algorithms (Cracker in our case) the number of iterations decreases and the size of

graph shrinks faster when this approach is applied, leading to better runtime.

8

(ii). Using the local computation for connected components approach:

Moving more computation towards where the data is stored, and trying to apply

computation on a data partition before the need to do computation on the cluster can

effectively improve the performance of the algorithm. In the case with the Cracker

algorithm, despite the inconsistency in results, in general there is a noticeable

performance improvement especially in the seed propagation phase for the larger

datasets. This approach should to be wisely considered and implemented as it could

increase the load on the system and lead to performance degradation.

(iii). Considering different level of computation in the design of the algorithm.

In big data processing system operations are applied at different level, by identifying

the level of processing, and integrating them in the process of the algorithm design

can help to increase the efficiency of the algorithm. For example, start by processing

the data partition, then process the collective data of partitions inside a cluster worker

node, and finally process all the data at the cluster driver node. Customising operation

in the algorithm for each level could increase the performance of the algorithm. In

this study, processing has been customised and applied on the data partitions in the

cluster driver nodes. However, additional operations could be added to process the

data inside a cluster worker node using multi-core structure of the cluster nodes.

(iv). Guidelines to be implemented in different context

It is worth noting that one of the major contribution of this work is to encourage

active researcher in the field to consider features provided by the current new

processing systems in the design of their algorithms using MapReduce. This could

be considered as useful guidelines to be implemented in different context.

9

1.4 Outline of the Thesis

The content of this thesis is structured as follow: Initially, explore big data processing

systems and techniques (Chapter2). Next, review graphs and big graphs processing systems

(Chapter 3). Review available algorithms for finding connected components using

MapReduce (Chapter 4). Then proposed our approach to enhancing the performance of the

connected components algorithm (Chapter 5). Describe the implementation process for the

proposed enhancement on the fastest existing algorithm (Chapter 6). Next, experimentally

test and evaluate the proposed approach using both the original and modified algorithm

implementation on synthetic and real-world datasets (Chapter 7). Finally, present

conclusions and some limitations and future works.

10

Chapter 2: Big Data Background

2.1 Big Data:

2.1.1 Big Data definition

“Big Data” was described as the BUZZWORD for the year 2013-2014 [1], as the discussion

about it is growing with the expectation that the digital universe of data would reach over 35

Zettabytes in 2020 [3][26].

Figure 2-1: A Mountain of Data represent by multiple of the unit byte[27].

In 2015, it was estimated that data reached close to 8 Zettabytes, with a network of 15

billion connected devices. This ocean of data could be imagined as 18 million libraries of

Congress, which are 462 Terabytes each [28]. (See Figure2-1)

For example in the field of social media, the daily generated data in 2011 by Facebook is 10

Terabytes (TB) and by Twitter is 7 TB [3], and in 2012 it was reported that Facebook social

graph contains over a billion nodes and more than 140 billion edges[26]. Multimedia places

a huge load on the internet. Google alone has more than a million servers around the world.

In 2013, Over 6 billion mobile subscribers in the world send 10 billion SMS every day[29].

11

In 2016 there were 300 hours of video uploaded to YouTube every minute and more than

1.3 billion unique visitors and over 3.25 billion hours of video watched each month. This is

expected to increase in 2017[30]. In order to exploit the value of this huge amount of data,

organizations must consider three things:

1. Data usually has the characteristics of continuous flow.

2. Analysing the data now is a job that requires significant skill. This is where a Data

Scientist is needed, i.e. a professional in analytics and IT who has a deep understanding of

the field being investigated and with the management skills and ability to effectively

communicate with decision makers.

3. Real and appropriate outcomes will need both business users and IT people to work

together when analysing large-scale data[31] [32].

2.1.2 What is Big Data?

Big Data is broadly defined as data that is too big, fast, and hard to deal with using

conventional database tools [4][5].

A more technical view is provided by Katal et al.[33], Hunter[34], Kraska[1], Chaudhuri[35]

who define Big Data as data that requires new technologies and architectures. This is

because the database management tools or traditional data processing applications are unable

to process the data in a timely, cost effective way, because it is too large to be stored and

processed and too complex and varied to be analysed and visualised[36]. However,

Venkatram et al. argued that the definition of Big Data varies between organisations and

people based on the data characteristics and the use cases of the data analysis[37]. The name

“Big Data Analytics” is also given to the process of research into Big Data to disclose hidden

and secret patterns [29].

12

2.1.3 Components (Three Vs & +V)

Early in 2001 Doug Laney presented the 3Vs concept in a published research note about the

three challenges of increasing data: data Volume, Variety and Velocity [38].

Later the Three V's became the main components or characteristics that are used to explain

what Big data is [33][29][39][40] (figure 2-2).

Figure 2-2: Big Data Components, the 3 Vs2

 Volume: is the word associated with “BIG” in big data. It includes the increasing

massive amount of data collected and produced and goes beyond the ability to hold and

process easily.

 Variety: data come from many sources. These include, for example, web logs, sensor

data, social media data, emails, images, documents and audio. Data in general comes in

three types: structured, semi-structured and unstructured. Data Variety is probably the

hardest to manage when processing a large amount of data.

 Velocity: is concerned with the speed of the data coming from various sources. For

example, streaming data and sensor data or data that is required to be handled in real-

time.

2 https://www.datameer.com/images/product/big_data_hadoop/img_bigdata.png

13

In addition to the main 3Vs some researchs [29][33][40] introduced extra Vs, that could

relate to specific business needs and which depend on how the data would be used to

facilitate business decision-making[37]:

 Value: how useful is the data in finding useful insights that helps in making better

decisions [33] [40] .

 Verification: ensuring appropriate data security and that added value should be made to

the organization [29] .

 Components such as Veracity, Validity and Volatility were also introduced[37].

According to Madden [4] in this explosion of data and the process to adopt the Big Data’s

three Vs, some commercial Relational Databases managed to handle the volume problem

(e.g. Greenplum, Teradata, Vertica). On the other hand, open source systems such as MySQL

and Postgres were unable to manage this problem. However, both commercial and open

source traditional database systems struggle with the velocity and variety problems.

Furthermore, they are not efficient when handling streaming data and lack statistics and

modelling support adoption.

As a result, many research projects attempted to fill the gap between data analysis and data

processing. They usually adopted three approaches:

1. Extending the relational model – for example projects by Oracle and Greenplum.

2. Extending the MapReduce/Hadoop model for example projects like: Apache

Mahout, Spark, HaLoop, Twister, and Daytona.

3. Building new systems – for example projects like GraphLab and SciDB.

14

2.1.4 Big Data Benefits

A huge amount of data will be provided to be investigated and analysed by applying big data

analytics in different fields and many sectors. Therefore, rapid advances and discoveries in

many disciplines are expected, in addition to the success and increasing profits for many

enterprises [39]. Big data Analytics can be financially beneficial as well as helping an

organization to have deeper insights into its data whilst enabling faster decision by

processing the data in real time and moving the data processing to where it is stored. When

data scientists and IT experts work closely with business users more efficient solutions to

the problems being studied become possible[28] and this helps decision makers to make

better-informed decisions and develop better strategies[41].

Sagiroglu & Sinanc[29] listed some business benefits that arise when applying big data

analytics. These include more focused marketing, more direct business insights, client based

segmentation, discovery of market opportunities, and automated decision making.

2.1.5 Associated Challenges with Big Data:

Big Data promises beneficial opportunities. However, to be achieved many challenges must

to be addressed. Kraska [1] divided big data issues into:

1. Big Throughput, which concerns the problem associated with storing and

manipulating a large amount of data.

2. Big data analytics- which are those issues related to transforming data into

knowledge.

Bhatia & Vaswani [39] highlighted the following issues that appear during each phase of big

data analytics: issues of scale, heterogeneity, lack of structure, error-handling, privacy, and

visualization.

15

For a successful Big Data project, questions about data integration, volume, skill availability

and solution costs should be considered [42]. Katal et al. [33] brought into light various

challenges and issues associated with adopting Big Data solutions. These are:

(a) Technical challenges, which include issues like, fault tolerance, scalability, quality

of data and heterogeneous data.

(b) Storage and processing issues.

(c) Analytical challenges.

(d) Skill requirements.

(e) Privacy, security, data access and sharing of information.

Issues related to privacy, security, data access and sharing of information are very sensitive

issues that all need to be well addressed [33][34] as Big Data Applications could be used for

malevolent intent and will not be in an organization’s best interest. For example, by

aggregating enough information about individuals from their environment with other

information from different sources such as social media, an intrusive profile that has

considerable personal information about an individual could be built [43].

2.2 Big Data Technologies:

Many projects have attempted to develop a distributed system that can handle large-scale

data. For example:

 Hadoop [17], is a project to develop open-source software for reliable, scalable and

distributed computing.

 Naiad [44], is Microsoft system for data-parallel dataflow computation that focusses

on low-latency streaming and cyclic computations.

16

 Apache Spark[23], [24], is an open source cluster computing system that has in-

memory nature and aims to make data analytics fast.

 HPCC (High Performance Computing Cluster)[45], is an open source massively

parallel-processing computing platform that solves Big Data problems.

 Pregel [46], is a framework for processing large graphs in which nodes exchange

messages between each other and update their own states in memory. It has an

efficient, scalable and fault-tolerant implementation on clusters of thousands of

commodity computers.

 Storm [47], is a free open source distributed real-time computation system. Storm

makes it easy to reliably process unbounded streams of data and can be used with any

programming language.

 S4 [48], is a distributed, scalable and fault-tolerant system for processing continuous

unbounded streams of data.

There are other approaches available, which differ according to the problem area or the

application they were designed to address. However, Hadoop is the most dominant platform

for distributed processing and many other projects were built using of Hadoop's framework.

Projects can also work side by side with it or use the Hadoop Distributed File System

(HDFS).

2.2.1 Hadoop & MapReduce:

Therefore, this study will describe Hadoop and explain in more detail its programming

model MapReduce with an example. It will then discuss some MapReduce limitations and

detail some of the alternatives available.

Dealing with massive amounts of data is a reality. New software has developed, starting with

the development of a new file system that can handle large files [49]. MapReduce was

17

subsequently proposed by Google [18][19] as a programming model to deal with large

datasets in scalable and distributed fashion [50].

Hadoop is an open-source framework that allows for the distributed processing of large data

sets across clusters of computers using simple programming models. It is based on

MapReduce. HDFS was developed for reliable, scalable, distributed computing [17]. It

allows working with thousands of computers and dealing with petabytes of data [16].

HDFS (Hadoop Distributed File System) is based on the Google File System [49]. It

operates on commodity computers to store data across hundreds of computers. Data nodes

will host files, files are divided into chunks (usually 64 megabytes size), which are replicated

on different disks (usually three times, one disk should be on a different rack). A Master

node has a directory that records where each file is stored and replicated [51].

MapReduce gives the programmer the advantages of not needing to consider the details of

data distribution, parallel executing, replication and load balancing. Its programming

concept is familiar [52] and allows parallelised and distributed execution for jobs across

clusters of computers. It requires two functions [51].:

1. Map function, which is defined by the programmer to process Key-Value data. each

chunk or more of a given data will be processed by the map function and gives output

as key-value pairs. During the shuffling phase, pairs are collected by a master

controller and sorted by their keys value. They are then divided among reducers in

such a way that each group with the same key goes to the same reducer.

2. Reducer function, takes the key-value pairs and combines all the values associated

with the same key and carries out any computation defined by the programmer. It

then outputs the new value. The reducer output could be in key-value pairs to feed

another mapper in an iterative way

18

The Hadoop cluster is at least one machine running the Hadoop software. In each cluster,

there is a single master node with a varying number of slave nodes. Slave nodes can act as

both the computing nodes for the MapReduce and as data nodes for the HDFS. This is

illustrated in figure 2-3.

Figure 2-3: Hadoop HDFS and MapReduce3

A client submits a job to the master node, which manages it with the slaves in the cluster.

JobTracker controls the MapReduce job, reporting to TaskTracker. TaskTracker will process

the map or reduce operations task. Once the map function has finished a task, the output is

sorted and divided into several groups, which are distributed to the reduce functions.

Reducers may be located on the same node as the mappers or on another node. TaskTracker

reports to JobTracker when it finishes a task. JobTracker then schedules a new task for

TaskTracker [28] [53].

Apache Hadoop is in continuous development and is used in both commercial and research

sectors[53]. Many packages have been developed to run on Apache Hadoop. These include:

Ambri, Avrp, Cassandra, chukwa, Hbase, Hive, Pig, Spark, Tez, ZooKeeper and others.

3 https://blogs.oracle.com/financialservices/big-data:-from-hype-to-insight-part-2-infrastructure-and-
technology

19

Hbase is a column oriented, scalable, distributed database. Pig is a high-level language and

Mahout is a scalable data mining library [17].

Yarn[54] is a resource manager for managing distributed applications which separated

cluster resource management capabilities from the original MapReduce. It gives Hadoop

better reliability, availability and improved cluster utilization. It also supports programming

paradigms besides MapReduce (figure 2-4).

Figure 2-4: Apache Hadoop with YARN4.

4 https://hortonworks.com/webinar/yarn-code/

https://hortonworks.com/webinar/yarn-code/

20

i. Word Count Example:

MapReduce will be explained using a word count example shown in figure 2-5. The

example assumes a collection of documents files Doc1, Doc2, Doc3, and each document

has a textual content v1, v2, v3, respectively.

Figure 2-5: MapReduce word count Example

Initially the file is stored in the HDFS file system in chunks, (see Figure 2-6), where in this

case each chunk is one document “Doc”, and each chunk of data is passed to the Mapper.

In the map phase the map function (mapper) will divide the content of each document into

words and emit a key-value message that has the word as a key and number 1 as a value

(indicating that this word appeared once).

21

Figure 2-6: Map task and Reduce task in Hadoop

In the shuffling phase, the output from the mapper will be aggregated and sorted and all the

messages that share the same key (which is the word here) will be sent to the same reducer.

The intermediate results are stored locally (not in HDFS) as temporary files and then passed

to the reducer.

In the reduce phase, the reducer will receive messages that each has a pair of a words and a

list of values. In this case the reducer will sum all the values for each word to count the

words. The output is stored in the HDFS. The pseudocode for word count example is shown

in figure 2-7.

Figure 2-7: MapReduce count word example pseudo code

22

ii. MapReduce Alternatives

a) MapReduce Limitations

MapReduce is one of the most used paradigms for processing distributed file systems.

MapReduce is very flexible as there is no schema or index, however this may give poor

performance when compared to relational databases[55]. For low-latency processing

systems it is not suitable as MapReduce computation uses batch processing unlike the

stream computation which has continuous jobs[55]. Furthermore, much development is

addressing the way it is implemented, as it is not efficient when applications require repeated

MapReduce iterations. This is because MapReduce has no memory since it assumes the input

is too large to fit in memory, and at each iteration it writes to three replicas in the distributed

file system which is an overhead, The map tasks for subsequent iterations cannot begin until

all the previous stages are complete [56]. Improving the performance of MapReduce and

enhancing large-scale data processing have become a very important area of research, with

MapReduce parallel programming being applied to many data mining algorithms [57].

b) MapReduce Evolution

Rajaraman & Ullman [51] identified three approaches to improve the performance of

MapReduce:

 Iterate MapReduce: enhance iterated MapReduce run-time and make it more efficient

by avoiding the data copy between each iteration and pipelining the output of the reducer

directly into the map phase of the next MapReduce iteration. This approach has been

added to Hadoop as an extension to support iterative algorithms. For example:

o Twister [58], is an iterative MapReduce framework that provides a long

running Map and Reduce tasks the “do not terminate after the execution of

each iteration” capability It also differentiates between two types of data:

variable data and static data which remain fixed throughout the computation

23

in each iteration (usually it is the larger of the two). The mapper in Twister

will stream its output directly to the reducer[59].

o HaLoop [60], extends the Hadoop MapReduce framework by supporting

iterative MapReduce applications, adding various data caching mechanisms

and making the task scheduler loop-aware.

o Tez [61] is a project is aimed at building an application framework which

allows for a complex directed-acyclic-graph of tasks for processing data

which allow for dynamic performance optimizations[61]. It enables a user to

run interactive jobs on the top of YARN.

 Generalize data-flow graph of MapReduce tasks. This generalizes the MapReduce

paradigm to a system that supports any acyclic collection of functions, where map and

reduce are simply two types of operations, each one can be instantiated by many tasks.

Each is responsible for executing that function on a portion of the data. Examples of

such data flow systems are: DryadLINQ[62],Naiad [44], Hyracks [63], Clustera [64].

o Spark [23], [24], is a framework that supports iterative applications, it

focuses on caching the data between different MapReduce-like task

executions by introducing resilient distributed datasets (RDDs) that can be

explicitly kept in memory across the machines in the cluster.

o Naiad[44], is a Microsoft system for data-parallel dataflow computation that

focusses on low-latency streaming and cyclic computations.

o Stratosphere[65], is an open-source software stack for analyzing Big Data.

Stratosphere recently became an Apache project under the name Apache

Flink[66]. it tries to bridge the gap and combine the flexibility of MapReduce

and the efficiency of parallel DBMSs. It exploits in-memory data streaming

and integrates iterative processing deeply into the system runtime, as it

24

introduces special kinds of iterations (delta-iterations) that can significantly

reduce the amount of computation as iterations proceed.

 Direct Implementation of recursion in MapReduce [56] to try to solve the problem of

recovering from non-blocking tasks failing, without the need to restart failed tasks. There

are two main models:

o Graph based models such as Pregel [46] and Giraph[67], by using the Bulk

Synchronous Parallel (BSP) paradigm, which is considered more efficient

than MapReduce for graph processing. However, it places a restriction of

needing to have a combined memory size of the machines processing the

graph larger than the graph size.

o Stream based models such as S4 [48] or Storm[47].

25

2.2.2 Apache Spark

Apache Spark [23], [24] is a fast and general-purpose cluster computing system which has

in-memory nature, It provides similar scalability and fault tolerance properties to

MapReduce using high-level APIs in Java, Scala, Python, and R that enable interactively

querying big dataset on clusters. In addition, it supports a set of tools including Spark SQL

for SQL and structured data processing, MLlib for machine learning, GraphX for graph

processing, and Spark Streaming (shown in figure 2-8).

Figure 2-8: Apache Spark5.

Spark evaluation shows a performance which is up to 20 times faster than Hadoop for

iterative applications, speeds up a real-world data analytics report by 40 times, and can be

used interactively to scan a 1 TB dataset with 5–7 seconds latency[68].

The main abstraction Spark provides, is a Resilient Distributed Dataset (RDD)[69], which

is a read only collection of elements partitioned across the nodes of the cluster that can be

operated on in parallel and can be rebuilt if a node is lost. In addition, it provides two shared

variables:

(1) Broadcast variables, which only copied to each worker once and cache values in

memory,

5 https://spark.apache.org/

26

(2) Accumulators, in which workers can only add to using an associative operation such

as counters and sums.

In Spark, developer writes a driver program that connects to a cluster of workers. In the

driver program one or more RDDs are defined through transformations (e.g., map and filter)

which are lazy operations create a new dataset from an existing one, then action operations

are invoked (e.g., count, collect, save) to run the computation on the dataset and return a

value to the driver (figure 2-9).

Figure 2-9: RDD Operations6

This design increases the efficiency of Spark as transformations are lazy and are only

computed when the first time an action is used to return a value to the driver program. In

addition, Spark can persist an RDD in memory and keep the elements around on the cluster

for much faster access the next time it will be needed. Persisting can be on disk in case we

want to save memory and we don’t want a heavy processing operation to be recomputed.

Figure 2-10:Spark System[69]

6 https://spark.apache.org/docs/latest/rdd-programming-guide.html

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver
Tasks

Results
Cache 1

Cache 2

Cache 3

27

Which could be significantly efficient in applications that need iterative algorithms and

interactive data mining tools (figure 2-10).

As mentioned before RDDs [69] [23] is the main abstraction Spark used to perform in-

memory computations on large clusters where RDD’s elements are partitioned. RDDs

created in transformation operation in four ways:

 From a file in a shared file system

 By “parallelizing” a Scala collection

 By transforming an existing RDD.

 By changing the persistence of an existing RDD, either by keeping it in memory or

writing it to a disk.

When an action operation is invoked (e.g., count, collect, save) on RDD, Spark will build a

directed acyclic graph (DAG) of stages to execute based on RDD’s lineage graph. RDD has

enough information about how to compute its partitions from data in stable storage it does

not need to exist on a physical storage and achieves fault tolerance using a notion of lineage

rather than the actual data, thus when data on a partition is lost it will automatically recovered

just on that partition using the transformations that originally created it. In addition, RDD

can be cached or persisted on the cluster for later reuse.

There are three options for storage of persistent RDDs:

 in-memory storage as deserialized Java objects,

 in-memory storage as serialized data,

 On-disk storage.

28

Internally, RDD interface are represented using five pieces: a list of partitions; preferred

location of a partition; dependencies on parent RDDs; a function to compute based on its

parents; metadata about how the RDD is partitioned. Two kinds of dependencies are

distinguished between RDDs: narrow dependencies, where parent RDD is transformed to

only on child RDD; wide dependencies, where multiple child partitions may depend on it.

Knowing the type of dependencies in RDD helps to make efficient decision to recover a

node failure, as with a narrow dependency only the lost parent partitions need to be

recomputed (figure 2-11).

join with inputs not
co-partitioned

union

groupByKey

join with
inputs co-

partitioned

map, filter

“Narrow” dependencies: “Wide” (shuffle) dependencies:

Figure 2-11: RDD dependencies[69].

29

Spark use RDDs to perform in-memory computations on large clusters, similarly to what

Distributed Shared Memory (DSM) do. However, RDD has many advantage over DSM

such as: DSMs use checkpoint to roll back the whole program upon failure. On the other

hand, RDDs can be recomputed in parallel on different nodes using lineage. Spark can detect

slow nodes and use RDDs to run backup copies on different nodes. When RDDs does not fit

in memory can be stored on disk in a similar way to MapReduce.

RDDs evaluated and used to express a number of other cluster programming frameworks

and help to optimise performance by caching wanted data in memory, partitioning it to

minimize communication, and providing efficient fault tolerance. For example, Spark can

express MapReduce model using flatMap and groupByKey operations, or reduceByKey if

there is a combiner. Furthermore, RDDs can be persisted in memory to simply and efficiently

implement Iterative MapReduce model such as HaLoop[60] and Twister[58] through a

series of MapReduce jobs to loop[69].

Currently Spark is one of the most widely used open source processing engines for big data.

It provides rich language-integrated APIs with a wide range of libraries, and both the

usability and performance of Spark are continuing to improved[70].

30

Chapter 3: Literature Review:

3.1 Graphs

3.1.1 Introduction to Network

Over the past decade the way we live and work has enormously changed due to the boost

advances in technologies and the increase in complexity of the communication systems

available, this has been reflected mainly in how we become dependent on such technologies

and systems. Moreover, it was predicted that this trend will continue according to the

Gartner’s report “Top 10 strategy technology trends for 2015”[2], which shows that there

has been an increase in adoption and investment in new concepts such as Internet of Things

(IoT), where billions of everyday devices or equipment will be connected to the Internet

using smart machines where smart technologies and devices are evolving rapidly. In another

word, our real world is merging with the virtual world by going beyond many of the

geographic limitations and especially with the increased interactions with social network

systems. In addition, our environment is becoming more intelligent, with the mass volume

of data generated; analytics is now deeply embedded everywhere seeking for a better and

smarter understanding.

With the huge amount of data collected, there is an urgent need to efficiently deal with it and

extract knowledge that no one has discovered before. One approach is to look at this data as

a network with links connecting things together, those links can take different kind of forms

of relationships. This metaphor of networks is currently used in many areas: computer

science, economics, sociology, biology, and many more. It can effectively address many of

the challenges in each area by understanding the “connectedness” of these complex systems.

By “connectedness” two aspects are considered, (1) Graph Theory: the study of the network

31

structure - who is connected to whom, and (2) Game Theory: the study of strategic behaviour

in the network - by understanding each individual action in correlation with everyone in the

systems and how the system will react to this action [6].

3.1.2 Graph Theory:

Modelling the relationship in a network by graphs helps to generate a natural human

interpretation and simple mechanical analysis [10]. This concept is not new, back few

centuries in 1736 Leonhard Euler in his paper on the Seven Bridges of Königsberg laid the

foundation of graph theory. Since then mathematicians extensively studied graph and its

properties [71].

Almost anything can be represented as a graph [7], if a system contains many single units

interacting with each other through a certain kind of relationship, each node of the graph

stands for one of the units of the system and relationships between different units are

indicated by edges[72]. Graph are considered to be a very flexible data model that can be

used to express relationships between entities, and to recognize local and global

characteristics of the system, and to analyse different features of the complex networks

[8][7][9].

Graphs have been used to understand complex human and natural phenomena [73]. In

general, graph is used in any domain when there is a need to find a network representation

of logical or physical links between entities. Its applications spread on wide variety of

domains such as: linguistics, economics, sociology, biology, chemistry, and pharmacology

(e.g. graphs model the complicated structure of chemical compounds and protein structures),

and computer science (e.g. Worldwide Web, workflows, XML documents, computer

networks, physical connections, computer vision, video indexing, text retrieval and social

32

networks) and many more, where graph algorithms have been developed to solve different

kinds of problems [7] [8] [74] [75].

3.1.3 Definition

With the diversity of data acquired nowadays, a need to find a way to deal with data beyond

the multi-dimensional model used in traditional database. Graph is way to represent

structured and heterogeneous data as set of objects that are linked to each other in different

ways. A Graph G = (V, E) is consists of set of nodes V (Vertices) that are connected with

each other by links called edges E. Usually Graph represented as directed, undirected graphs,

with weighted edges and nodes, tree graphs, and in many variants. It's used to help studying

the relationship between objects such as paths, positions, associations, sequences and

structures[8] [6] [11].

3.1.4 Characteristics

According to the survey conducted by IBM [8], many graph techniques and algorithms has

been developed showing how data is represented, interoperated and analysed. Usually graph

algorithms categorised as follow:

1. Structural algorithms (network analysis algorithms), that try to understand the

structure of the network and analyse the relationships between network entities and

explore topological properties of a graph, such properties as:

a) Order and Size: the number of nodes and edges.

b) Degree: the number of edges incident for the node, in-degree which is the number

of incident on the node, out-degree which is the number of incident from the

node.

c) Distance: the number of edges in the shortest path between two nodes.

33

d) Diameter: the longest of all shortest paths between two nodes.

e) Girth: the length of the shortest cycle.

f) Connectivity coefficients: the minimum number of nodes that when removed the

graph will be disconnected.

g) Clustering coefficients: a measure to show how nodes cluster together.

h) Centrality: which determines the importance of a node in a graph. The four main

measures of centrality are:

1) Degree Centrality: the degree for that node normalized with the total

number of edges.

2) Closeness Centrality: is a measure for distance between a node and all

other nodes in the graph.

3) Betweenness Centrality: is a measure for the number of shortest paths go

through a node divided by the number of shortest path in the graph.

4) Eigenvector Centrality: is a measure for the importance of a node in the

graph.

2. Traversal algorithms, which navigate paths in a graph to solve problems such as: (a)

route problems by trying to optimize path lengths under certain conditions. (b) Flow

problems, for example, investigate flow of oil or gas over a directed graph. (c)

Coloring problems as partition the graph by labelling its entities. (d) Searching

problems by traversing nodes to answer query or find a problem stated.

3. Pattern-matching algorithms, by finding different graph patterns (e.g., cliques,

cycles, sub-graphs, network motifs) in a graph. Interesting application for this type

of algorithms include: social analytics, organizational analytics, epidemiology,

financial network modelling, pharmacology, and neuroscience.

34

Applying the mining algorithms on graph data is a challenge, as the graph miners need to

adapt or redesign their algorithms to be able to handle the new measures and properties of

graphs and be able to store, query and explore graphs in a similar way as in traditional

databases. Because of the fact that the structure of data is different, it hard to defined graph

measures and properties using classical data mining algorithms. In addition to the fact that

usually recent graphs are very big and does not fit in memory to be handled using traditional

mining algorithms[11] .

3.2 Big Graph

According to Skhiri [11], nowadays there is an urgent need to deal with structured,

unstructured, and heterogeneous data instead of the traditional one. Thus, graphs are now

widely used because of its expressive power and the ability to connected object in different

way. However, mining is hard to implement because of the structure of the data, and size of

the data as the real-world graphs are very big, and usually does not fit in a machine memory.

Adding to that, there is no single model that efficiently fits all the types of graph algorithms

and application, nonetheless many have been developed to solve specific problems or to

meet some special classes of applications.

3.2.1 Big graph History:

Graph processing is not new, it is a well-investigated area of research, in addition big graph

has been always a problem. However, the perception of defining how large is big graph has

been evolving.

Usually the big graph problem was dealt with by adding more power to the system (Scaling

up); increase the processing power, adding more core and more memory. Thus, the move

35

was toward using High-performance computing (HPC) using shared memory parallel

systems, which is an active area of research and development.

Nowadays, a rising trend to capture and store any data available, especially as the cost of

storage decreasing and ability to capture different kind of data increase. Pushed by the world

getting more connected; more connected devices and embedded sensors and expanding

networks and others all contribute to found the area of the Internet of Things (IoT); in

addition, people life is more digital nowadays than ever before, and there is increasing

presence of social media in our life (Facebook, Twitter, Snapchat, Instagram, and many

more).

The existing real-world dataset is getting large enormously, these datasets reflect different

kind of relationships and can be generally efficiently represented using graph structures.

However, as the graph grow larger their size and complexity go beyond single processing

machine ability and make processing it with HPC systems a challenging task which is not

always suitable for it[14].

Appearance of the MapReduce concept and its implementation in Hadoop equipped

researchers with a powerful tool to process large graphs, and a new trend toward processing

large graphs in cluster using distributed systems with commodity hardware raised (Scaling

out).

It is challenging to ensure the traditional set of properties ACID (Atomicity, Consistency,

Isolation, Durability) in graph database because of the different data structure, as a result,

new tools and data models were developed to adapt to the new data structure. For example,

new querying languages proposed like, Datalog, Xpath, Gremlin, Cypher, SPARQL to

provide graph support and give richer queries[76].

36

Likewise, new techniques for handling large graph processing developed, Skhiri[11]

introduce three categories: (1) high-performance graph DB such as DEX or Titan, (2) in-

memory and HPC/MPI graph processing such as SNAP, and (3) distributed approach based

on Bulk Synchronous Processing (BSP) such as Pregel. Hence Graph Management Systems

(GMS) solutions developed could be categorised as[56], [77]:

a) Transactional GMS such as: Neo4j (centralized graph database), Jena,

HyperGraphDB, RDF3x.

b) Analytic GDM such as Pregel (open source implementation Giraph)

c) Both such as Trinity, Horton, Titan (distributed graph database).

37

3.2.2 Big Graph Systems categorisation

The development in graph processing has recently flourish especially with unprecedented

amount of data acquired and captured, in addition it is motivated and inspired by the latest

advances in big data processing. Pushed by the big data processing move, many systems

have been developed to process, manage and analyse graph data.

We could identify two main categories in the big graph systems:

 Graph Databases systems: which is a database founded on the graph structure

(vertices and edges with their properties) to represent the graph data and store it, and

provide the means to query and retrieve data efficiently.

 Distributed graph processing systems: which provide the ability to do graph

analytics using iterative processing algorithms in distributed manner on cluster more

efficiently and reliably than the graph database systems can do.

3.2.3 Big graph system requirements:

Junghanns and Guerrieri [76] [78] both indicate that in order to have systems that can

flexibly manage big graphs and can efficiently analyze them the following requirement

should be met:

1. The graph systems should be adaptable with powerful graph model that is not

restricted to fixed schema, but it would be able to process graph with heterogeneous

vertices and edges with different kinds of data and provide tools to process and

analyze it.

2. Provide a powerful query language to retrieve and analyze graph data, and support

processing complex graph analysis jobs.

38

3. High performance and scalability in graph systems should be offered, to achieve that

in graph databases the emphasis is on how to support query optimization, indexing

and efficient graph storage that can expand as the size of the graph increase. On the

other hand, with distributed graph processing systems, the main focus is on how to

efficiently implement graph operator and partition the large graph in a distributed

cluster, in addition offer expanding processing power when needed by expanding the

cluster by increasing the number of nodes.

4. Providing persistent graph storage and offering support for ACID compliant

transactions on persistent data, reading it, analyze it, and storing it back in distributed

systems.

5. Graph processing system should not offer the user hard and complex experience

when analyzing the data, instead it should offer powerful tool to query the data, in

addition the ability to interactively explore the data and visualize it.

6. Failure is most likely to happen in big clusters and it is very important for the system

to be resilient to failure so the computation will continue even when a node or process

fail.

39

3.2.4 Graph databases

Graph databases are used to store data that is based on graph structure with Create, Read,

Update, and Delete (CRUD) methods, they provide graph operators which are designed to

enhance the performance on graph transformation and computation. They are generally

designed to be used with online transactional processing (OLTP) systems, where special

optimizations for performance, integrity, and availability are considered[79].

Usually one or more graph data model is supported in Graph Databases. A graph data model

is the conceptual representation that is used to model the real world entities and the relations

among these entities as a graph[79], [80].

 Majority of graph databases support the Property Graph Model (PGM), in which a

set of key-value pairs can be associated with any vertex or edge in a directed

multigraph, however only edges with one start vertex and end vertex are permitted.

 From the Semantic Web movement comes another graph model Resource

Description Framework (RDF), it has in its structure collections of triples (subject-

predicate-object), where vertices are (subjects, objects) and edges are (predicates).

These triples form a directed labelled multigraph [76].

 Only a few graph database systems use the Generic Graph Model called Hypergraph

in which it supports arbitrary user-defined data structures to be attached to vertices

and edges. In contrary to PGM, in hypergraph It is permitted to have edges with any

number of vertices at each end similar to many-to-many relationships in traditional

databases[79]. Such systems provide flexibility to model another graph models, but

also restrict the ability to provide optimized operators for graph transformation and

computation [76].

40

In a recent work by Junghanns [76], he reviewed some of the most recent graph database in

term of their data model, application scope, and storage technique for graph in large scale.

Mainly they support either PGM or RDF but some like IBM SYSTEM G7, Stardog8, and

Blazegraph9 support both of them, the last two store PGM using RDF. Only few support the

Generic graph model such as IBM System G and HypergraphDB10. In term of application

scope, many focus on providing transaction and querying functionality where only small part

of the data is accessed. However only few provide support for graph analytics where whole

data need to be processed; such systems either provide built-in algorithms for graph analytics

or provide the ability to run custom graph algorithms on the database such as Blazegraph.

Apache Tinkerpop11 gives both the functionalities of graph databases (OLTP) system and

graph analytic system for the user in one system by virtually integrating graph-processing

system in graph database. Furthermore, Tinkerpop also offer Gremlin12 graph traversal query

language. In term of storage, some use the native approach where data is stored in graph-

optimised form such as adjacency list. In non-native approach, the graph database is

implement on the top of other systems such as relational or document-oriented database,

OrientDB13 is an example. Other systems such as IBM SYSTEM G and Titan14 offer choice

of different kind of storage options[78].

7 http://systemg.research.ibm.com/
8 http://docs.stardog.com/
9 https://www.blazegraph.com/
10 http://hypergraphdb.org/
11 https://tinkerpop.apache.org/
12 http://tinkerpop.apache.org/gremlin.html
13 http://orientdb.com/orientdb/
14 http://titan.thinkaurelius.com/

41

3.3 Big Graph Processing Systems

Big graph processing is very new growing trend, nonetheless it is very active research area

in academia with leading companies (Google, Facebook, Microsoft, IBM, and many others)

investing and pioneering in its development. However, the development move is not in one

direction, one direction is to manage large scale graphs using single machine, the other is

efficiently process graph algorithms on parallel systems, and the last one is inspired by the

big data move and based on processing big graph in a distributed system, which our main

focus here.

Development of distributed big graph systems impose extra challenges other than those

inherited from big data processing, as a consequence of to the irregular structure of graphs

and its algorithms. For example, it involves extensive communication and message passing

between vertices due to its iterative processing nature, adding to that graph algorithms are

most likely to be explorative where whole data need to be processed. Furthermore,

computation performance can be seriously affected by different partitioning strategies

because of the problem of load balancing and increased communications between nodes in

cluster[81].

3.3.1 Features of Big Graph Processing Systems:

We can possibly categorize the big graph systems along multiple dimensions, as a

consequence of the existence of many features that play rules in defining system

performance and its application domain. Based on the work done by [82][83], the key

features can be discussed under the following headings, which are:

42

i. Graph Programming Model:

A graph programming model is a way to abstractly specify the underlying computing

infrastructure components like interface, methods, events that helps in describing graph data

structures and algorithms. Kalavri[82], [84] distinguished between two levels of graph

programming model:

 High-level programming model: in which the programmer can mainly focus on the

logic of the algorithm rather than computing environment where graph partitioning

and communication mechanisms are hidden. however, he will have less degree of

control and limited ability to do customisation [82].

 Low-level programming model: in which programmer have more flexibility on the

control of computing environment and more degree to customisation than the

previous model, however at the price of losing simplicity and user-friendly

programming interface provided in high-level programming model. Usually this

programming model is used to address a specific class of graph problems, and

generally can handle arbitrary graph computations[83].

ii. Expressiveness:

Here, expressiveness means the clarity in identifying system performance advantages and

recognizing good example of its application classes, in addition to clarifying any problematic

example cases or hidden costs or presumed conditions.

iii. Timing Execution model:

Generally, in big graph systems, graph algorithms run in iterations until convergence or they

reach a termination condition. Yan et al [83] described two modes: synchronous and

asynchronous.

43

 In synchronous execution model, a global barrier separates between iterations,

where vertices can only have access to information from the previous iteration, in

another word, all updates and outgoing messages are only available in the next

iteration after the barrier. This model is also known as the Bulk Synchronous Parallel

(BSP) model and was introduced by Valiant[85].

 In asynchronous execution model, vertices have direct access to the last updates

happened during the same iteration, in another word, view of the most recent state of

the graph. This model could effectively improve the performance for algorithms in

the case where some vertices could converge very much faster than other, as in the

case of PageRank algorithm. Though, this come at the cost that an approximate result

is produced instead of the exact result produces in synchronous model, which is in

many cases considered as good results as in PageRank. However, asynchronous

model is not applicable in many algorithms where approximate results are not

accepted. Furthermore, more work should be done to assure data consistency issues

such as ‘Race condition’ where different attempts to update vertex’s value at the

same time could happen.

Kalavri [82] discussed two extra models furthermore. Hybrid execution model, where the

previous two models exist in the same system. Incremental execution model, where system

can apply updates as it arrived and change the current state of the graph without the need to

do recomputing of the whole process.

Inspired by BSP model, Pregel system [46] can process big graph using synchronous

execution model, GraphLab[21] adopts the asynchronous execution model, while

Giraph++[86] use the hybrid model by using synchronous model with the computation and

communication inside partition and asynchronous model for computation and

communication between partitions. Another example for hybrid execution model (Hsync) is

44

PowerSwitch[87] that switches between the two models according to predictions for future

optimal performance, it constantly collects execution statistics to help in predicting the when

a model switch could be profitable.

iv. Communication mechanism

According to Kalavri [82] the following models are distinguished:

 Message-Passing model: a vertex updates to other vertices’ local states (data values)

can only happen by sending and receiving messages. Additionally, Yan [83] talked

about to two modes of the message-passing communication model for a vertex:

a. Edge-based communication: where a vertex can only communicate with its

neighbours via the edges connecting them, so one hop at a time.

b. ID-based communication: where a vertex can communicate with other

vertices via the vertices’ ID even if it is not directly connected to them, the

sender here needs to know the ID of the receiver.

 Shared memory mechanism: by shared memory here it does not mean a shared

memory maintained across machines (like in PRAM), however it means vertices can

have a direct access to the state of other vertices and edges by keeping data in main

memory and access it asynchronously [83]. Therefore, vertex only has access to its

neighbours’ values. Here, more work should be done to assure data consistency and

consider issues such as ‘Race condition’. This abstraction is adopted in two kind of

distributed systems as in systems GraphLab and PowerGraph, and in single machine

for processing big graph as in GraphChi, X-Stream & Chaos, and GridGraph.

 Dataflow model:

The data flows in graph from a stage to another using stateless operators where no

state is maintained and processing is done one by one (such as using filter and map

functions) over a cluster of distributed compute nodes. Thus it is usually difficult to

45

implement graph algorithms and achieve good performance, yet systems such as

Apache Spark and Apache Flink try to overcome this issue by efficiently

implementing cashing mechanisms[82].

v. Other features:

To further evaluate distributed big graph systems and its application domain, the algorithm

used in testing should be chosen to efficiently represent performance efficiency and its

implementation issues. Kalavri [82] surveyed some of the most recent applications in

distributed graph processing systems papers (34 examined systems), and grouped graph

algorithms and their most commonly used applications and sorted them by appearance

frequency. Moreover, according to Yan [83] identifying the Execution environment of a

system and what processing power it has and all resources available will help to evaluate its

performance in compared to other systems and identify its ideal application domain. Such

an environment could be distributed, as in a cluster of machines, or a single machine

environment using a commodity PC machine or high-performance computer

(Supercomputer). For example, in commodity PC machine where the memory is limited, big

graph processing is done by reading the graph piece by piece from the storage in streaming

manner, whereas for supercomputer the graph could be loaded in memory. Similar to single-

machine PC systems where there is limited memory and the graph is kept on disk, some

distributed system processes the graph on disk where the graph size is larger than the

collective size of memory on the cluster, such as Pregelix[88], GraphD[89].

It is important to understand that in general, considering all these features in big graph

systems makes evaluating and comparing between systems a very complex task. An open

research question is, what combination of these feature can best enhance the performance

related to a specific algorithm?

46

Our main objective for now is to review the current programming model at high level of

abstraction. Although low-level abstraction gives programmer more flexibility in controlling

the computing environment and more degree to do customisation, however the high-level

abstraction provides simplicity and user-friendly programming interface that helps to

represent algorithms and to some extent without the need to worry about data partitioning

techniques and communication mechanisms used in the background. So programmer can

easily implement graph algorithms, which is sometimes considered a more important feature

than pure performance [83]. In addition, it allows system developer to implement some

automatic optimisation when applicable.

3.4 Approaches in the Developments of Big Graph Processing

Systems

With graphs getting bigger in size, systems have to deal with the problem of limited memory

capacity within a single machine, and even with solutions such as partitioning the graph and

processing it from storage disk or from a distributed memory, scalability and parallelization

are hard to implement. Due to graph algorithms’ nature such as iterative processing and

explorative random-access patterns and extensive communication cause extra overhead and

complexity to the system to process and analyze such graphs[90].

There are many systems developed to solve the problem of big graph processing in a single

machine. Which requires high-performance machine with large memory capacity to fit the

graph, but this solution is expensive and not always efficiently scalable, the other solution is

to store the graph or part of it on disk which also result in a lot of reading from the disk and

therefore negatively affect the performance.

47

In this study, our focus is on graph systems that are built in a distributed environment. The

following is a brief overview of the most common distributed graph programming models

at high level of abstraction.

Distributed Graph Systems could be categorized in two main categories[76]:

 Dedicated Distributed graph processing systems: include vertex-centric approaches

such as Google Pregel and its variations and extensions including Apache Giraph,

GPS, GraphLab, Giraph++ etc.

 Distributed graph dataflow systems: are graph-specific extensions (e.g., GraphX and

Gelly) of general-purpose distributed dataflow systems such as Apache Spark and

Apache Flink.

i. Dedicated Distributed graph processing systems:

Here systems are specially designed for distributed graph processing, it is built around the

graph data structure and optimized to easily represent and implement graph algorithms. In

the following we describe high-level programming models for the distributed graph

processing system based on the categorization made by Kalavri et al.[82], these are: vertex-

centric, scatter-gather, gather-sum-apply-scatter, subgraph-centric, filter-process, graph

traversals model. We will go into details talking about vertex-centric, as it is the dominant

model used for graph processing.

a) Vertex-centric (Think like a vertex):

Vertex centric was developed to deal with the issue of iterative nature of a board set of graph

algorithms, in addition to make graph analysis programs easier to develop and more

efficiently perform[78]. The main concept is to express computation from a vertex point of

view where a user-defined program (vertex function) is iteratively executed on graph

vertices, where the programmer only need to define the behaviour of only one vertex.

48

Therefore, it is also known as “Think Like A Vertex” approach (TLAV). The vertex-centric

model shows that it is a good fit to represent a wide set of graph algorithms, especially when

the algorithm computation is mainly related to a vertex and its adjacent neighbours, such as

iterative value propagation algorithms and fixed-point methods algorithms[82]. TLAV was

first introduced by Google in a Pregel paper[46], which is based on Bulk Synchronous

Parallel (BSP) parallel programming model[85].

Bulk Synchronous Parallel (BSP)[85]

BSP was developed as conceptual model that address scalability challenges to efficiently

execute parallel program and algorithms across nodes. It was introduced as “a bridging

model for parallel computation” to facilitate the design of software for parallel hardware.

BSP uses message-passing interface (MPI) to address challenges such as high latency reads,

deadlocks, and race conditions[91].

Conceptually, there are three main phases they need to execute iteratively[78]:

 Components Parallel Computation: where each component executes specific tasks

on its local data.

 Communication phase: where components exchange messages among themselves,

using to the results from the components parallel computation phase.

 Synchronisation barrier phase (superstep barriers): this phase makes sure that all

components have finished the previous two phases, only then do synchronization

between the components participating at the superstep barriers.

The first two phases (Components Parallel Computation / Communication phase) together

called a superstep, each superstep is followed by a synchronization of the parallel tasks

reaching at the superstep barriers.

49

BSP model is not new concept, but only recently BSP model gained a lot of attention as a

graph framework, and has been implemented on almost the majority of recent distributed

frameworks to define graph algorithms[92], [93].

Furthermore, considering the communication mechanism, the systems based on vertex-

centric model can be divided into two categories:

 Vertex-Centric Message Passing Systems:

 Vertex-Centric Systems with Shared Memory Abstraction:

Vertex-Centric Message Passing Systems:

Where vertices communicate with each other by sending messages. Pregel is the most

known system based on vertex-centric and use message passing for communication

between vertices:

Pregel

Based on MapReduce[18][94][19] Google started developing a new system with the aim to

efficiently process large graphs and do graph analysis. inspired by the BSP model they

created Pregel[46] in C++. Which provided a native API for programmer to develop

algorithms based on the TLAV model while hiding the complexity of communication and

data distribution.

In Pregel, the graph is partitioned and the vertices are distributed on the cluster where each

vertex and its neighbours are located on the same node, to preserve data locality

(computation is done locally).

By analogy, each vertex is a component in BSP model that has a state (value) and initially

all vertices are active. Each vertex will exchange messages with its set of neighbours and

update its value according to a user-defined function (vertex function). Pregel computation

proceeds in iterations (supersteps), in each superstep, each vertex executes the vertex

50

function vf(msg) which take a message input msg which is the incoming messages from the

previous superstep. During the executing of the vertex function each vertex may do any of

the following:

 Update its value.

 Send a message to other vertices

 Deactivate itself (vote to halt) when no messages are received, so it will not run the

next superstep unless it was reactivated by receiving a message.

In Pregel supersteps are synchronous, as each superstep will end with synchronisation

barrier, that grantees that all the active vertices in that iteration have finished computation

and all the message exchange between them has finished. If an active vertex did not receive

any message, it will be deactivated and if an inactive one received a message it will be

activated. In the next superstep only the active vertices will run the vertex function. When

all the vertices are inactive the process will terminate.

Based on Master/Worker architecture in distributed system, where the graph is partitioned

across the cluster nodes (workers) and each node will load its graph portion in memory or

processing. The master node responsibility is to do the synchronisation process at each

superstep barrier[81].

Pregel Like Systems

Pregel system was developed and used by Google and it is not open source project, it is not

available outside Google. Thus, a lot of alternative were developed to fill that gap in big

51

graph processing area based on the Pregel system and inspired by the “Think Like A Vertex”

model, such as: Apache Hama15, Apache Giraph16, GPS17, Pregel+18, Pregelix, and Mizan.

The vertex-centric with message passing computing model allows programmer to design and

implement scalable distributed algorithms easily and debug their code, while the system

handles all the low-level details. However, systems based on this model, usually comes with

few limitations in performance[82][83]:

 For Non-iterative and asynchronous graph algorithms, it challenging to express using

vertex-centric model, in addition algorithms such as Graph transformations and

single-pass graph algorithms do not fit for this model, such as Triangle counting.

 For algorithms where some vertices converge faster than others (asymmetrically),

there is no priority given for specific vertices over others, in addition no priority also

given for local message over remote messages and superstep will only finish when

the slowest worker has finished, therefore communication can be often encountered

in the vertex-centric message-passing model.

 Concurrency is limited by the global barriers and could cause unnecessary

synchronization that will slow down the process.

Yan et al [83] discuss how some systems such as Maiter, GiraphUC have been developed in

order to avoid some of the limitations mentioned before.

Vertex-Centric Systems with Shared Memory Abstraction:

 Where vertices communicate with each other using shared memory programming

abstraction, which does not mean a shared memory maintained across machines (like in

PRAM), however it means vertices can have a direct access to the state of other vertices and

15 https://hama.apache.org/
16 http://giraph.apache.org/
17 infolab.stanford.edu/gps/
18 http://www.cse.cuhk.edu.hk/pregelplus/

52

edges by keeping data in main memory and access it asynchronously[83]. Therefore, vertex

only has access to its neighbours’ values. Here, more work should be done to assure data

consistency and consider issues such as ‘Race condition’. This abstraction is adopted in two

ways: as in distributed systems such as in GraphLab and PowerGraph, and when a single

machine is used for processing big graph as in GraphChi, X-Stream & Chaos, and

GridGraph.

b) Scatter-Gather

Also known as Signal/Collection model [95]. It shares the same philosophy a “Think Like

A Vertex” and uses the message-passing for communications. It provides an elegant and

concise abstraction for describing some graph algorithms, such as value-propagation

algorithms. Vertices interact with each other by means of signals messages that go through

edges. Vertices then collect signals and update the vertex state according to the old state and

all signals received. Here, the superstep is divided into two phases, which are scatter and

gather. In scatter, a user-specified function will produce the messages, and in gather, a user-

specified function will update its value using the received messages[76]. One of the

limitations is that, in scatter phase, there is no access to the received message on gather phase

unless all messages received are stored in the vertex value during the gather phase, which

will often require more memory and increase the complexity of the implementation [82].

c) Gather-Sum-Apply-Scatter (GAS)

It was proposed in PowerGraph[96] as a solution to efficiently process power-low graphs.

Usually in vertex-centric model, when only a few vertices have high degrees, most of the

computation work will be on those vertices, which cause bottlenecks and slow the execution

time. GAS model addresses this issue by distributing the computation more efficiently across

the cluster. It divides the vertex program into four separate phases, each will execute a user-

specified function. During the gather phase, user function is applied on each edge. The output

53

is aggregated for each vertex using an associative and commutative user-defined function in

the sum phase. The result from the sum phase together with the current value of the vertex

are passed to the apply function, which will define the new value for the vertex. In the scatter

phase, a function is applied on the updated values for each vertex and new messages

generated on each edge, which will be processed in next iteration. The last phase in this

model (scatter phase) is optional, where a variant model is introduced and called Gather-

Sum-Apply (GSA). The GAS model help to balance the computation workload and reduce

the amount of network traffic[76]. However, it requires high memory and communication

overhead during the computation on low-degree vertices. To solve this problem, the

differentiated vertex computation model is introduced, where high-degree vertices can be

processed using the GAS model, and low-degree vertices can be processed using one of the

vertex-centric models (such as using GraphLab) [82][83].

d) Subgraph centric (or Block-centric)

It is also known as “Think Like A Graph”[86]. It was developed to deal with the issue high

communication overhead with fine-grained abstraction such as TLAV [82], [84]. It is a

coarse-grained abstraction for distributed graph programming, which is considered a

subgraph as a computation block. Blocks can internally process vertices, update their values,

and exchange messages between them internally. In addition, blocks can externally interact

with other blocks through messages exchange. It can help reduce the number of messages

between cluster nodes and decrease the number of iterations for vertex-centric algorithms

[97]. In vertex-centric model, the user-specified function run on each vertex independently

from the others. However, in subgraph- centric model, the user-specified function takes as

an input all the vertices inside the subgraph and processes all of them together [76]. Two

distributed graph processing models could be categorised based on the subgraph centric

model:

54

 Partition-Centric Model

When graph is stored on a distributed system it is partitioned across the cluster into small

partitions. This approach consider stored graph partitions as subgraphs of the input

graph[86]. Where vertices can interact freely with each other inside the same partition, which

can reduce the communication and help to achieve a faster convergence[78]. Performance

in this model is highly determined by the quality of the partitions[82]. An example of such

processing model is GIRAPH++[86], it was developed as an extension to GIRAPH19[67].

This work was further optimised in BLOGEL[98].

Neighborhood-Centric Model

In this approach, custom subgraphs of the input graph are defined. Usually, the subgraph is

determined based on vertices and their multi-hop neighbourhoods. A partition could contain

more than one subgraph. This model is preferred for analysis that requires multi-hop local

neighbourhoods in large graphs, such as the analysing ego networks [99]. However,

determining the subgraphs in this model is an expensive process in term of both execution

time and memory [82].

e) Filter-Process Mode

It is also called “think like an embedding”. It was introduced in ARABESQUE[100]. An

embedding is a subgraph instance of the input graph that is dynamically generated during

the process that matches a user-specified pattern. Computations proceed through a sequence

of exploration steps. At each step, two main functions are executed: (1) Filter function to

determine if an embedding subgraph should be processed. (2) Process function which apply

some action of the embedding. During each exploration step, subgraphs are explored and

passed to the application, which will compute outputs and decide whether the subgraph

19 http://giraph.apache.org/

55

should be further extended. This model is preferable in graph mining problems such as:

frequent subgraph mining, counting motifs, and finding cliques [82] [100].

f) Graph Traversals Model

It was introduced in the Apache Tinkerpop project20, a graph computing framework for both

graph databases (OLTP) and graph analytic systems (OLAP). Tinkerpop uses the Gremlin

[101] graph traversal language to help users model their domain as a graph and analyse that

graph. In graph traversal model, the traversers walk through the input graph following the

instructions specified in the traversal, traversal are distributed using BSP model. When a

vertex receives a traverser, it executes its traversal step, and either generates other traversers

to be sent as messages to other vertices, or store halted traverser in the vertex attribute. When

all traverser are halted and no more traversal are sent the process terminate and returns the

location of the halted traversers[82].

ii. Distributed graph dataflow systems:

General-purpose distributed systems can also support graph processing by providing graph

processing libraries on top on them. These libraries enable integration of the graph

processing operation in the generation data processing without the need to change the

system. This is the common scenario in real-world data processing, where the graph

processing could be only one step of a pipeline of data processing operations[102]. In the

following we review some of those graph processing libraries:

a) Pegasus21

Pegasus (Peta-scale graph mining library)[20] is an open source package and a few years

ago became very popular in both academia and industry [103] [22]. It was tested using

20 http://tinkerpop.apache.org/
21 http://www.cs.cmu.edu/~pegasus/index.htm

56

Graphs with billions of nodes and edges, and provides important large-scale graph mining

algorithms on Hadoop.

The main idea in Pegasus is built on the basis that many of the algorithms used in graph

mining use repeated matrix-vector multiplication in computation. In another word, message

exchanges in a graph can be represented by multiplication between adjacency matrices and

vectors of the current states of nodes. Pegasus introduced Generalized Iterative Matrix-

Vector multiplication (GIM-V), which generalise the three internal operations of general

iterative matrix-vector multiplication (multiply, sum, assign).

Let 𝑚𝑖,𝑗 denote the (i, j)-th element of 𝑀. Then the usual matrix-vector multiplication is

𝑀 × 𝑣 = 𝑣′ 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖
′ = ∑ 𝑚𝑖,𝑗 𝑣𝑖

𝑛

𝑗=1

The algorithm is applied in two stages [20]. Stage1 performs combine2() function to combine

the columns of the matrix with the rows of the vectors (𝑚𝑖,𝑗 × 𝑣𝑖). The output then becomes

the input to stage2, which combines the results from stage1 and applies the combineAll()

function ∑ 𝑛
𝑗=1 and assign() functions.

Throughout the process two files are used:

(1) edge file which is an immutable file that describes the graph where each record

corresponds to a non-zero element in the adjacency matrix 𝑀 With each record is an

edge e:(𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡 , 𝑚𝑣𝑎𝑙) where vsrc connect to vdst,

(2) vector file which is a mutable file where each record is an edge (𝑣, 𝑣𝑣𝑎𝑙) where each

v corresponds to an element in the vector 𝑉.

This is implemented in two steps:

 Stage 1: one MapReduce job

57

o It takes an input which is Matrix 𝑀 = {(𝑣𝑠𝑟𝑐 , (𝑣𝑑𝑠𝑡 , 𝑚𝑣𝑎𝑙))} and Vector 𝑉 =

{ (𝑣, 𝑣𝑣𝑎𝑙) } and performs combine2() function on columns of matrix

(𝑣𝑑𝑠𝑡 of 𝑀) with rows of vector (𝑣 of 𝑉). The output is a (key, value) pairs

vector 𝑉′ = {(𝑣𝑠𝑟𝑐 , combine2 (𝑚𝑣𝑎𝑙, 𝑣𝑣𝑎𝑙))}.

 Stage 2: one MapReduce job is required:

o It takes the output of Stage1 and combines all partial results using the

combineAll() function and assigns the new vector values to the old vector.

Stage 1 and 2 run iteratively until convergence is met, resulting in the new vector file.

In Pegasus, GIM-V was used to define different algorithms such as PageRank, Random

Walk with Restart, diameter estimation, and connected components [20], [50], [52].

b) GraphX

GraphX is a Spark API for graphs and graph-parallel computation[25], [104], [105] it offers

a graph abstraction that is implemented using Spark, which combines both specialized graph

system optimizations together with the partitioning, lineage, and effective fault tolerance in

distributed dataflow frameworks. GraphX also adopt the GAS model (Gather, Apply,

Scatter) to efficiently distribute computations across the cluster[105].

GraphX API gives the user the ability to construct a graph and express it either as a graph or

as a collection, which gives the flexibility in applying a wider range of operations and

optimisations without data movement or duplication.

It introduces Resilient Distributed Property Graph based on Spark RDD, which is a directed

graph that has a pair of collections (RDDs) for vertex and edge with some additional

operations and specific optimizations for graph computation (figure 2-12)[104].

58

class Graph [VD, ED] { //VD, ED are types for vertex and edge

 val vertices: VertexRDD[VD]
 val edges: EdgeRDD[ED]
}

Figure 3-1:GraphX Graph Class

In vertex collection (VertexRDD), vertices keyed by a unique 64-bit long identifier

(VertexID) with constraint that each VertexID occurs only once and stored in a reusable

hash-map data-structure. In edge collection (EdgeRDD), edge properties keyed by the

source and destination VertexID. As explained earlier Spark RDDs are immutable,

distributed, and fault-tolerant, similarly graphs GraphX. When change is made on a graph a

new graph is created from the original one, but the new graph inherits the original graph

indices, attributes, and structure (if it was unaffected) and reuse them.

GraphX also introduce a new RDD called triplet view, a logical representation that joins

the source and destination vertex properties with the edge properties (figure 2-13).

22

As a graph processing framework embedded within Spark the distributed dataflow system,

GraphX Includes the operators available in Spark on RDDs (e.g. map, filter, and

reduceByKey) in addition to some specialized graph operators[106]:

 Property Operators, in which new graph generated with vertex or edge properties

modified but the structure is unaffected (mapVertices, mapEdges, mapTriplets)

 Structural Operators, in which new graph generated with a modified structure

(reverse, subgraph, mask, groupEdges)

22 https://spark.apache.org/docs/latest/graphx-programming-guide.html

Figure 3-2: Triplet View

59

 Join Operators, in which RDD is joined with the graph(joinVertices,

outerJoinVertices)

 Graph Builders, provides several ways of building a graph(fromEdges,

fromEdgeTuples, edgeListFile) and to repartitions the graph’s edges use(partitionBy)

 Neighbourhood Aggregation, in which information about adjacent triplets are

aggregated) aggregateMessages, mapReduceTriplets)

 Collecting Neighbours, to collect neighbouring vertices and their attributes at each

vertex (collectNeighborIds, collectNeighbors)

 Computing Degree Information (inDegrees, outDegrees, degrees)

 Caching and Uncaching operators, for caching graphs in memory or removing it

from memory (persist, cache, unpersistVertices)

In addition, Pregel (pregel)operator is available based on bulk-synchronous parallel

messaging abstraction, which is also used to implement a set of graph algorithms that

can be used directly in GraphX for analytics tasks (pageRank, connectedComponents,

triangleCount, stronglyConnectedComponents)

Optimisation in GraphX

On the top of Spark distributed dataflow framework with GraphX operators, graph specific

optimisation techniques are implemented, vertex-cut partitioning approach is used to

minimizes communication and storage overhead, however another range of built-in

partitioning strategies are included to choose. Because GraphX treats graphs as a joined

collection of RDDs and when an operator derived a new graph without modifying the

structure (e.g., subgraph) or create a new RDD without changing indices of the original

graph (e.g., mapVertices). Index reuse increases the efficiency by enabling faster joins and

reducing memory overhead[105][25].

60

In term of Triplet view, which is a three join operations between vertices and edge properties,

to do these join efficiently and improving system performance, some optimisation

techniques applied such as: Vertex Mirroring, Multicast Join, Partial Materialization,

Incremental View Maintenance[104] .

c) Gelly

Gelly is a graph processing library on top of Apache Flink [107], and it is implemented on

top of its dataset API [66]. It supports the implementation of different graph processing

models, such as vertex-centric, gather-sum-apply, and scatter-gather[84]. In Gelly, graph is

represented by a dataset of vertices and a dataset of edges (figure3-3):

class Graph [K, VV, EV] { // K represents the vertex id type
 DataSet <Vertex <K, VV >> vertices // VV the vertex value type and

 DataSet <Edge <K, EV>> edges //EV the edge value type

}

Figure 3-3: Gelly Graph Class

A Gelly graph provides operations for creating graphs and performs simple graph metrics

operations to retrieve graph properties. In addition to transformation operations, which

return a new, possibly modified graph from the input graph, it also provides neighbourhood

operations, which allow vertices to perform an aggregation on their direct neighbour

vertices.

Gelly provides similar functionality to GraphX and it benefits in its iterative methods from

the native efficient delta iteration operators in Apache Flink. However, GraphX offers more

optimizations for graph processing such as graph partitioning and more efficient join

operations by reducing network traffic between workers through vertex mirroring and

multicast joins[76], [102].

61

3.5 Summary

This chapter provided an overview of the graph concept in modelling relationships in

datasets. The concept of graph has been used to understand complex human and natural

phenomena through the algorithms developed to solve different kind of problems. Followed

by reviewing graph processing systems focusing on big graphs. It is very active research

area and its development is moving in different directions. However, the interest of this study

is the processing of big graphs in distributed systems. The Key features of big graph

processing was briefly discussed. In addition, a description of the two main approaches used

in the developing of big graph processing systems was given at high level of abstraction.

The first approach is the dedicated distributed graph processing. The second approach is the

general-purpose distributed graph processing. Both approaches will be used in this study.

Although the main focus of this study is on the connected component algorithms, it is

important to understand the different environments and processing systems where these

algorithms were developed and applied. Different systems provide different features with

different kind of limitations which might affect the way algorithms are designed.

62

Chapter 4: Finding Connected Components in Large

Graphs

In this thesis, we focus on the algorithms for finding connected components in an undirected

graph, which is one of the main concepts that has been studied in Graph Theory[10]. In the

following, we defined finding connected components algorithm and its application, then

review its models of study, and explain its importance, and finally review available

algorithms that were implemented using MapReduce.

4.1 What is finding connected components in graphs?

A component represents a graph (or subgraph) where any two vertices inside that graph are

connected via paths, and there is no edge that connects any vertex outside the component.

Isolated vertices are considered connected components themselves and a component could

include all the vertices in a graph, in which the whole graph will be a single component[6].

4.2 Why it is important to study Connected Components

algorithms?

The problem of finding disjoint subgraphs (connected components) has been well studied,

as it is an essential pre-processing step to extract knowledge about the graph[10]. It is also a

fundamental operation for some graph computations such as pattern recognition,

reachability, graph compression, graph partition, and random walk[12]. It also makes an

essential first step in some sophisticated graph techniques [14], and is a building block in

complex graph analysis such as clustering[13].

63

4.3 Application of Connected Components algorithms?

Finding connected components has uses on a broad range of applications that include e

calculation of betweenness centrality, community detection, image processing[108],

complex graph analysis like clustering [22], analysis of Coherent cliques in social media,

image segmentation[13][9][109] and many more.

4.4 Models of study for finding Connected Components:

The problem of finding connected components in an undirected graph has been well studied

for several years. Different solutions and results have been produced based on the

environment settings and graph types in which the problem was investigated. However, our

focus here is on large graph processing, and the problem of finding connected components

in big graph whose size exceeds the memory capacity of a single machine. Different ways

have been used to study the problem of finding connected components in big graph. At a

high level, we could group them into three groups:

4.4.1 In Single machine systems

i. Traditional

There are well known effective solutions to find connected components in small to medium

size graph, usually using graph traversal algorithms such as Depth First Searches (DFS) and

Breadth First Search (BFS). However, efficiency decreases as a graph’s size increases, given

the limited memory available on single machines. Another memory-based approach is

proposed by [110] to increase the speed by exploiting the multi-core architecture available

in recent computers. This approach is based on the use of the disjoint-set data structure,

where each component is a set and connected components are unified in an algorithm based

64

on Union-Find algorithm. However, this approach is limited by graph size that cannot exceed

available memory capacity[12].

ii. Disk-based Systems

To overcome the problems with finding connected components for large graphs on a single

machine with limited memory size, new disk-based systems were used. To some extent, this

approach can efficiently manage large graphs by utilising both SSDs and rotational hard

desks and by using I/O efficient algorithms.

GraphChi, uses label- propagation to iteratively propagate the node with the minimum label

to its neighbours until it reaches all the nodes in the same components. Another work by

Kim et al. [111] proposed a DSP-CC algorithm to find connected components for billion-

scale graphs in a single PC based on a union-find algorithm[12].

Such systems benefit from the ability to perform graph mining on large graphs and avoid

tricky and expensive tasks such as cluster management or high-performance computer

configuration. However, they offer limited scalability when processing graphs with hundreds

of billions of edges. Moreover, for such big graphs with billions of edges their size will

become extremely large and it is not always practical or possible to store them on the hard

disks of one single machine[14].

4.4.2 In distributed systems

Many algorithms were developed to implement finding connected components algorithms

in parallel using Depth First Searches (DFS), Breadth First Search (BFS), propagation, or

contraction. However, they are unable to handle large-scale graphs [112] [20].

For example, an optimised parallel BFS is not efficient when there are components with

large diameters or a large number of components with small diameters [15].

65

i. PRAM

The Parallel Random-Access Machine (PRAM) model is a shared-memory abstract machine

where processors compute in parallel using a common shared memory. It is commonly the

classical model used in to analyse the performance of parallel algorithms.

The classic Shiloach-Vishkin (SV) algorithm is widely used for finding connected

components in the PRAM model, requires the PRAM model to handle concurrent reads, and

writes to the shared memory (CRCW PRAM). The algorithm will begin with single trees

corresponding to each vertex and maintain a forest of trees of connected components. It then

iteratively applies pointer chasing operations (change the pointer of a vertex from pointing

to its parent to pointing to it grandparent in the tree), or hooking (merging two different trees

into one larger tree) at each iteration. The algorithm bounds the number of iterations to O

(log n) where each iteration requires O (n+m) processors (n is the number of vertices and m

is the number of edges). Many improvements and optimisations have been introduced to the

SV algorithm and PARM model such as the recent work by Jain et al.[15]. Generally, this

approach assumes computing processors have access to shared memory and can perform

concurrent writes. However, this may not always be efficiently implemented in large-scale

distributed processing paradigms such as MapReduce [22].

ii. Bulk Synchronous Parallel (BSP)

Implementations for finding connected components can be found in almost all dedicated

large graph processing systems which are based on the Bulk Synchronous Parallel (BSP)

paradigm[82]. For example, systems such as Pregel, GraphLab, PowerGraph use a vertex-

centric programming model (explained earlier in section 3.4.i.a) to implement the algorithm

based on a label propagation. The approach benefits from the reduced overheads between

iterations compared to MapReduce. This model could be very efficient for finding connected

components in a large graph.

66

iii. MapReduce

MapReduce has been the dominant programming model used for processing large-scale data

in recent years, because of its ease of use, fault-tolerance, and scalability. Therefore, much

work has been carried out which attempts to migrate many previous algorithms and

implement them using the new paradigm[113], this includes algorithms for finding

connected components in graphs. However, it is not always an easy or efficient step for large

graphs. For example, to find connected components using a breadth-first search[114] will

require a number of iteration equal to the sum of the diameters of each connected component

which is not acceptable for medium or large graphs. Work in Pegasus[20] and zone[10]

reduce the number of iterations to O(d), where d is the diameter of the largest component,

but it is not efficiently scalable to large graphs[14]. Moreover, a problem of prohibitive

communications load per iteration could occur in some other implementation of connected

components algorithm[14]. Later in this thesis most of the work carried out to find the

connected components of a large graph using MapReduce will be reviewed.

4.5 Why CC algorithms may perform poorly in practice?

Due to the huge size of many current graphs, tackling the problem of connected components

has become a challenge and traditional processing solutions are not feasible especially when

the graph size does not fit within the collective memory of a parallel computing cluster.

Furthermore, highly scalable parallelized algorithms that can adapt to different types of real-

life graphs are very complex to develop, and hard to maintain and have limited portability

[115], [116], [117].

Adopting the new MapReduce paradigm is promising, but requires care when designing

graph algorithms using MapReduce. This is because:

67

 Graph algorithms usually require multiple iterations which is an inefficient process

in MapReduce because of the I/O overhead during each iteration. Therefore, it is very

useful to reduce the number of iterations to the minimum.

 Some algorithms could increase the graph size with newly generated edges, which

will increase the communication cost during each iteration. Therefore, minimising

the volume of message passing during each iteration could help increase the

performance.

 Many real-life graphs have a degree of skew which could lead to an unbalanced

workload resulting in few reducers in the cluster taking almost all the workload and

slowing the whole process as the other reducers need to wait.

4.6 Why it is important to use MapReduce in Graph

Processing?

The most common choice nowadays is to store large-scale data in a distributed format using

distributed file systems such as HDFS. This includes large-scale graph data, which makes it

very suitable to process using MapReduce. MapReduce might not be ideal for cases like

iterative graph algorithms, but the huge popularity of Apache Hadoop make it important to

find an adequate implementation for graph algorithms based on MapReduce.

The BSP model could be very efficient in large graph processing. However, some recent

works[21][22] show that it is possible to outperform BSP model algorithms for finding

connected components in MapReduce. MapReduce can have better latency than BSP in

congested cluster situations [14] and when the graph size is more than the collective shared

memory of the system[12]. Therefore, there is a need to design efficient graph algorithms

68

using MapReduce that could give both good performance and better integration with general

distributed processing systems.

4.7 Previous algorithms for Finding CC in MapReduce

4.7.1 Using zones to finding connected components

One of the earliest algorithms to find CC in a large graph was introduced by Cohen [10]. His

algorithm uses zones to find connected components based on MapReduce. The main concept

is by forming “zones” each of which includes a set of vertices that belong to the same

component. As the algorithm proceeds, the zones merge to form larger zones.

Throughout the process two files are used:

(1) edge file which is an immutable file where each record is an edge e:(v1,v2) and v1

connects to v2.

(2) zone file which is a mutable file where each record is an edge (v, z) and each vertex

v is assigned to a so-called zone z. Initially the zone file is constructed with each

vertex assigned to itself as its own zone (v, v).

The basic idea is that the algorithm iterates testing to determine if each edge connects two

vertices from different zones so that zones will be merged forming larger zones. The

algorithm will iterate until no further expansion is possible. Finally, each zone will

correspond to a component.

This is implemented in two steps:

 Step 1 requires two MapReduce jobs:

o MapReduce 1 merges records from the edge and zone files and associates

edges with zones, each output record connects an edge to a zone (e, z).

69

o MapReduce 2 reads all the zones for the same edge Z, to find the minimum

zone zm ∈Z such that 𝑧𝑚 ≤ 𝑧, ∀ 𝑧 ∈ 𝑍, for each z∈Z - {zm}. The output

records then each connect one zone to a better one (z, zm).

 Step 2 requires only one MapReduce job to update the zone file:

o MapReduce 3 updates the old zone file by merging the output from Step1 in

mapper (z, zm) with the old zone file records (v, z). The result would be

(z, {V ∪ Z}) where V is all the vertices pointing to the old zone, and Z is the

new better zones for the old zone (which could be zero). The reducer then

finds the best new zone for this vertex: 𝑍𝑏 = min { t | t ∈ Z ∪ z } and

outputs a record (v, zb) for each v∈V assigning each vertex to the new zone.

Steps 1 and 2 alternate until the first step produces no records, at which time the result is in

the zone file.

The main drawback of this algorithm is that all edges need to be processed at each iteration

and each iteration requires execution of three MapReduce jobs. Each MapReduce job could

move every graph record across the cluster, which could inefficiently increase the bandwidth

used. This algorithm requires 𝑂(𝑑) iterations where d is the diameter, and 𝑂(𝑚 + 𝑛) number

of messages per iteration. In addition, Cohen [10] suggested a further improvement on

MapReduce3 in step2 to create load balancing on the output of map 3 when there are very

large zones.

4.7.2 Pegasus HCC

HCC is the proposed algorithm in Pegasus (explained in section 3.4.ii.a) for finding

connected Components in large graphs[20], [50], [52]. It uses Pegasus Generalized Iterated

70

Matrix-Vector (GIM-V) primitive, to apply a generalized of iterative Matrix-Vector

multiplication using MapReduce.

The following steps illustrate the execution of the algorithm in GIM-V:

(1) First, initialize the component ID of each vertex a by initiating a component vector

𝐶 = { (𝑣, 𝑐𝑣𝑎𝑙)} , where 𝑐𝑣𝑎𝑙 represent the component id for vertex 𝑣. Initially

𝑐𝑣𝑎𝑙 = 𝑣.

(2) Second, each node sends its component ID to its neighbours. This is done in Stage1

in a MapReduce job by performing the function:

 𝑐𝑜𝑚𝑏𝑖𝑛𝑒2(𝑚𝑖,𝑗 , 𝐶𝑗) = 𝑚𝑖,𝑗 × 𝐶𝑗

(3) Third, in Stage2 in the second MapReduce job, each node updates its component ID

by the smallest component ID received. This is achieved by performing the function

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝐴𝐿𝐿𝑖(𝑥1, … . , 𝑥𝑛) = 𝑚𝑖𝑛 { 𝑥𝑗 | 𝑗 = 1 . . 𝑛 }

Find for each vertex the minimum value among the current component id and all the

received component ids from its neighbours and then update the component id in the

component vector 𝐶 using the function:

𝑎𝑠𝑠𝑖𝑔𝑛(𝐶𝑖, 𝐶𝑛𝑒𝑤) = 𝑚𝑖𝑛 (𝐶𝑖, 𝐶𝑛𝑒𝑤)

(4) Finally, iterate until no change is required.

The main drawback of this algorithm is that each vertex sends its component id to only its

direct neighbours and updates each adjacent one hop at each iteration. This means the upper

bound of iterations requires a maximum of d iterations where d is the diameter of the graph,

in addition, two MapReduce jobs are required for each iteration, and each MapReduce job

requires disk I/O and shuffling which decreases running time.

71

Both this algorithm, Pegasus HCC and the previous Zones algorithm do not scale well for a

graph with a large diameter according to Rastogi[22].

Time Complexity of GIM-V: One iteration of GIM-V takes O (
𝑚+𝑛

𝑀
 𝑙𝑜𝑔

𝑚+𝑛

𝑀
) time, where

𝑀 is the number of machines. Space Complexity: GIM-V requires O (𝑚 + 𝑛) space, and

requires 𝑂(𝑑) iterations, with 𝑂(𝑚 + 𝑛) number of message per iteration.

4.7.3 Hash-to-Min

Hash-to-Min [22][22] was developed and tested to compare with Pegasus HCC and showed

a better performance regarding runtime. The algorithm tries to enhance performance by

minimizing the number of iterations and communication per step.

The main idea is to maintain a cluster file where each vertex points to its cluster, and

iteratively merge overlapping clusters to compute connected components.

Hash-To-Min is the proposed algorithm for finding connected components:

(1) First, a Cluster file is created as a mutable file where each record is an edge (𝑣, 𝐶𝑣)

where each 𝑣 corresponds to a vertex of the graph 𝐺, and 𝐶𝑣 is a cluster of vertices.

Initially, the algorithm assumes that each vertex and its neighbours constitute a

connected component. 𝐶𝑣 = {𝑣} ∪ 𝑛𝑏𝑟𝑠(𝑣)

(2) Second, the map stage, where the mapper applies Hash-to-Min function to (𝑣, 𝐶𝑣)

where it:

a. Finds 𝑣𝑚𝑖𝑛 which is the smallest vertex in the cluster 𝐶𝑣 .

b. Sends the entire cluster 𝐶𝑣 to reduce vertex 𝑣𝑚𝑖𝑛 .

c. Sends {𝑣𝑚𝑖𝑛 } to all reducers of all vertices 𝑢 ∈ 𝐶𝑣 .

72

(3) Third, the reduce stage, where each reducer for a key 𝑣 aggregates tuples emitted by

different mappers (𝐶𝑣
(1)

, … , 𝐶𝑣
(𝑘)

). The reducer applies the merging function over 𝐶𝑣
(𝑖)

to compute a new value 𝐶𝑣 by taking the union of all vertices received.

(4) Repeat from step (2) until no change is made to any in cluster 𝐶𝑣 .

(5) Finally, export connected components 𝐶 from the final clusters 𝐶𝑣 using one

MapReduce iteration.

Input: An undirected graph G = (V, E),

 Hashing function h,

 Merging function m,

 Exporting function EXPORT.

Output: A set of connected components C ⊂ 2V

1. Initialize Cv = {v}∪ nbrs(v)

2. repeat

3. mapper for node v:

4. Compute h (Cv), which is a collection of key-value pairs (u, Cu) for u ∈ Cu .

5. Emit (vmin, Cv), and (u, {vmin}) for all nodes u ∈ Cv.

6. reducer for node v:

7. Let {Cv
(1)

, , Cv
(K)

 } denote set of values received from different mappers.

8. Set Cv ← m({Cv
(1)

, , Cv
(K)

 }).

9. until Cv does not change for all v.

10. return C = EXPORT (∪v { Cv })

Figure 4-1 Hash-to-Min Algorithm[22].

The main drawback of this algorithm is that it requires the largest connected components to

fit in the memory of a single reducer, which is not usually the case in large-scale graphs.

This is especially for graphs with degree skew. In addition, there will be a heavy load on that

reducer, which could cause a communication bottleneck and decreases the performance.

Some later modifications to this algorithm enhanced performance and scalability by using

73

secondary sorting in MapReduce and load balancing. However, it is still does not have good

load balancing properties[103].

For the worst-case scenario as in path graph, Hash-to-Min can be shown to complete in

𝑂 log (𝑙) number of MapReduce iterations with communication 𝑂(log 𝑙 |𝑚| + |𝑛|), where

𝑙 is the size of the largest connected component. However, Rastogi et al[22] claim that in

practice the algorithm completes in at most 2 log (𝑑) iterations and 3(|𝑚| + |𝑛|)

communications per iteration where 𝑑 is the diameter of the graph.

4.7.4 CC-MR

A similar approach to Hash-to-Min appeared the same year by Seidl et al [13]. The CC-MR

algorithm outperforms Pegasus-HCC and zones Algorithms in terms of the number of

iterations, communication costs, and execution runtime.

The basic idea is based on the zones algorithm. However, it improves it by adding additional

edges on the graph as a shortcut to reduce the number of iterations needed to converge. In

each iteration, edges are added and deleted in such a way that vertices with larger IDs are

connected to the vertices with a smaller ID. Each component has one of two states, operating

either in locally maximal state where no further steps need to be performed or in merge state

where it should be merged with another sub-component. CC-MR is the proposed algorithm

for finding connected Components[13]:

The input file contains the graph itself, where each record represents an edge (𝑣source, 𝑣dest)

in a graph 𝐺 = (𝑉, 𝐸) where 𝑉 is a set of vertices and 𝐸 is a set of edges.

Initially, a MapReduce job is required to create a representation of the graph based on the

adjacency list of all vertices (𝑣, 𝑎𝑑𝑗(𝑣)), where 𝑎𝑑𝑗(𝑣) is a list of neighbours of vertex 𝑣.

74

 In the map stage, the mapper used is called identity mapper, which only forwards the

data to the reducer without performing any changes.

 In the reduce stage, each reducer for a key 𝑣 aggregates tuples emitted by different

mappers(𝑢1 , 𝑢2 , . ., 𝑢𝑘)which represent 𝑎𝑑𝑗(𝑣). Here Hadoop secondary sorting is

used, which means the reducer will receive values in order (first value 𝑢1 is the minimum

in 𝑎𝑑𝑗(𝑣)).

Check for vertex 𝑣 and its adjacent neighbour vertices in 𝑎𝑑𝑗(𝑣) if 𝑣 has the smallest

id or not (𝑣 > 𝑢𝑓𝑖𝑟𝑠𝑡):

a) If no (locallyMaxState), assign all 𝑢 ∈ 𝑎𝑑𝑗(𝑣) to 𝑣 by sending (𝑣, 𝑢).

b) Else (mergeState), there is a vertex 𝑢 ∈ 𝑎𝑑𝑗(𝑣) in which 𝑢 < 𝑣, in this case

it is 𝑢𝑓𝑖𝑟𝑠𝑡, assign 𝑣 and 𝑎𝑑𝑗(𝑣) to 𝑢𝑓𝑖𝑟𝑠𝑡 by sending (𝑣, 𝑢𝑓𝑖𝑟𝑠𝑡) and sending

(𝑢𝑓𝑖𝑟𝑠𝑡 , 𝑢) 𝑎𝑛𝑑 (𝑢 , 𝑢𝑓𝑖𝑟𝑠𝑡). This will merge the components of 𝑣 with the

components of 𝑢.

The process will iterate until the merge State situation does not occur anymore. The graph

will transform into star-like subgraphs, where each one represents a component and the

centre vertex is the component ID.

75

1. newIterationNeeded = false // global variable

2. void reduce (Int vsource , Iterator<Int> values)

3. isLocMaxState = false

4. vfirst = values.next(); // take first element

5. if (vsource < vfirst)

6. isLocMaxState = true

7. emit(vsource, vfirst)

8. vdest-old = vfirst

9. while (values.hasNext() {

10. vdest = values.next()

11. if (vdest == vdestold) continue // remove duplicates

12. if (isLocMaxState) // locMaxCase

13. emit(vsource, vdest) // only fwd. edge

14. else // cases stdMergeCase, optimizedMergeCase

15. emit(vfirst, vdest) // fwd. edge and

16. emit(vdest, vfirst) // backwd. edge

17. newIterationNeeded = true

18. vdest-old = vdest

19. }

20. // stdMergeCase

21. if (vsource < vdest && !isLocMaxState)

22. emit(vsource, vfirst) // backwd. Edge

Figure 4-2 Reducer of the CC-MR algorithm[13].

Similar to Hash-to-Min, the main drawbacks for this algorithm are that it requires the largest

component in the graph to fit in the memory of a single reducer. In, a very large component

will put a heavy load on one reducer. When this happens, we have skew degree graph with

a very large component. This situation is also called ‘the curse of the last reducer’, when a

connected component is very large and all the vertices of this component need to be sent to

and processed by the same reducer. This may then cause computation problems and place a

large communication load on one reducer. CC-MR also lacks any analytical guarantees.

76

Both Hash-to-Min and CC-MR algorithms address the “curse of last reducer” problem and

provide solutions to carry out load balancing:

 in Hash-to-Min, for a vertex (𝑣, 𝐶𝑣) when its cluster 𝐶𝑣 gets larger than a specified

threshold. In the cluster 𝐶𝑣, for all the vertices 𝑢, 𝑤ℎ𝑒𝑟𝑒 𝑢 ∈ 𝐶𝑣 𝑎𝑛𝑑 𝑢 ≤ 𝑣 send

𝑢 to 𝑣𝑚𝑖𝑛 reducer and send 𝑣𝑚𝑖𝑛 to 𝑢 reducer. For all vertices 𝑢, 𝑤ℎ𝑒𝑟𝑒 𝑢 ∈

 𝐶𝑣 𝑎𝑛𝑑 𝑢 > 𝑣 , send 𝑢 to 𝑣 reducer, and send { 𝑣 } to 𝑢 reducer. To ensure that

𝑣𝑚𝑖𝑛 does not receive more than the threshold.

 in CC-MR the solution for the problem is by augmenting hash values in the map

phase to vertex which has adjacent list larger than a specified threshold which is then

sent to different reducers.

77

4.7.5 CCF

Later, Kardes & Agrawal [9] presented their Connected Component Finder (CCF)algorithm

that they had been using regularly for two years on massive graphs.. The main idea is similar

to Hash-to-Min but the algorithm will run iteratively using a chain of two MapReduce jobs

in each iteration called CCF-Iterate, and CCF-Dedup.

Initially, the input file contains the graph itself, where each record represents an edge

(𝑣1, 𝑣2) where 𝑣1 connects to 𝑣2 in a graph 𝐺 = (𝑉, 𝐸) and 𝑉 is a set of vertices and 𝐸 is a

set of edges.

 CCF-Iterate stage:

o The mapper will send values so that an adjacency list will be generated in reducer

like the initial step in CC-MR.

o The reducer will receive the data (𝑢1 , 𝑢2 , . ., 𝑢𝑛) sorted as the MapReduce

secondary sort approach is used It will take the first value which should be the

minimum (as the values are sorted (𝑚𝑖𝑛 = 𝑢𝑓𝑖𝑟𝑠𝑡)) and compare it with the

vertex id 𝑣 :

If (𝑣 > 𝑚𝑖𝑛) then 𝑣 is not the minimum:

 Send (𝑣 , 𝑚𝑖𝑛).

 Send (𝑢𝑖 , 𝑚𝑖𝑛) for each node 𝑢𝑖 in the adjacency list.

 Increase a global counter which is used to indicate if a new component is

found.

 CCF-Dedup stage which only reproduces CCF-Iterate output with no duplication to

increase efficiency in term of speed and I/O overhead.

Iterate until the counter is zero, which means that no new component has been found.

78

According to the author CCF outperformed PEGASUS in terms of total runtime and was

slightly behind CC-MR, unless the diameter is very large. It finishes with 𝑑 + 1 iterations in

a worst-case scenario where d is the diameter of the graph.

Figure 4-3 CCF Algorithm[9].

4.7.6 MemoryCC

In MapReduce inputs are in the form (key, value) pairs. Map and reduce jobs will process

each input record one by one. Lin and Schatz [118] proposed a set of enhanced design

patterns that can be used to accelerate a large class of graph algorithms. One of the “rules”

mentioned is building a hash table that contains the graph structure for the graph partition

processed in the mapper, and perform messages passing from source to destination locally

between vertices that are included in the Hashtable. Therefore, reducing the data traffic on

the network will increase the speed of the algorithm as network traffic dominates the

execution time of MapReduce algorithms. This concept was adopted by Varamesh & Akbari

[119] in their algorithm for finding connected components. Initially each map job loads all

its input records to a hash table that could be accessed during the map job lifetime.

79

MemoryCC is the proposed algorithm for finding connected components in large graph:

Firstly, for a graph 𝐺 = (𝑉, 𝐸) a mutable Graph file is generated in a similar way to the

initiation step in the previous algorithm. Each record represents a vertex and its component

id and adjacency list (𝑣, (𝑐𝑜𝑚𝐼𝐷, 𝑎𝑑𝑗(𝑣))) where 𝑐𝑜𝑚𝑝𝐼𝐷 is the component ID for vertex

𝑣, and 𝑎𝑑𝑗(𝑣) is its list of neighbours. Initially, it assumes that each vertex is a connected

component itself and set 𝑐𝑜𝑚𝐼𝐷 = 𝑣.

 In the Map stage, the mapper takes the input in a <key, value> format and then loads the

entire partition assigned to it and generates a HashTable that has the graph structure of

this partition. By doing so the mapper will have access to the structure data of its part of

the graph during its lifetime by using the hash table generated previously:

a. In the map stage, before emitting any message, it updates the component ID with

the minimum for each vertex that has internal neighbours in the hash table and

this process will repeat until no internal updates occur. This will reduce the

number of Component ID updates that need to be sent to the reducer.

b. If a connected component is split over more than one mapper, each mapper will

process the partial connected component internally and define the smallest

Component ID and emit it, which will to converge faster and reduce the number

of iterations.

 In the reduce stage, each reducer for a key 𝑣 aggregates tuples emitted by different

mappers (𝐶𝑣
(1)

, … , 𝐶𝑣
(𝑘)

) in sorted order using secondary sorting in Hadoop MapReduce

and takes the smallest one as the new Component ID.

Repeat the MapReduce iteration until no change is made to any in cluster 𝐶𝑜𝑚𝐼𝐷 .

According to the author, the MemoryCC algorithm communication complexity is O(n)

where n is the number of vertices and runtime should be in direct relation to the number of

80

vertices. The algorithm helps in reducing both the intermediate data communications and

number of iterations and in practice it performs up to ten times faster than PEGASUS and

CC-MR However further analysis of time and space complexity is needed to prove

this[119].

1. Map

2. Hashmap subgraph<key,value>

3. Input <Key, Value> : <(node n, Comp_IDn), adjacency list of n>

4. subgraph.put(node n, <Comp_IDn , adjacency list of n>)

5. while (any component ID updates) do

6. for each node n in subgraph do

7. for each node i which is neighbor of n do

8. if i is in subgraph & Comp_IDi is smaller than Comp_IDn do

9. replace Comp_IDi with Comp_IDn

10. for each node i in subgraph do

11. emit <i, Comp_IDi >

12. emit <i, adjacency list of i >

13. for each node i not in subgraph

14. & has at least a neighbor in subgraph do

15. emit <i, smallest Comp_ID of i’s neighbours in subgraph >

16. Reduce

17. Input<Key, Value> = <node n, received IDs and adjacency list of n >

18. component_IDn = smallest id received

19. emit < (n, component_IDn) , adjacency list of n >

Figure 4-4 MemoryCC Algorithm[119].

4.7.7 CC-MR-mem

Kolb et al.[120] proposed CC-MR-mem which is an algorithm for finding connected

Components in large graphs. It is an optimized version of MR_CC[13]. One of the major

81

improvements achieved by CC-MR-Mem is memory-based connection of subgraphs in the

map phase and is similar to the approach adopted in MemoryCC by Varamesh & Akbari

[119]. In addition has the capability to identify stable components that do not grow more to

avoid increased processing times and this will enhance performance by reducing the amount

of intermediate data communicated and the number of iterations.

Initially, the input file contains the graph itself, where each record represents an edge

(𝑣source, 𝑣dest), where 𝑣source connects to 𝑣dest in a graph 𝐺 = (𝑉, 𝐸), 𝑉 is a set of vertices

and 𝐸 is a set of edges.

 Unlike the map job in MR_CC, the map stage inputs records of the entire partition

assigned to the mapper which will be buffered in memory and where a HashMap Table

will be generated. Accordingly, the map output will be generated in the following two

steps:

a. Generate Hash Table: The hash table is constructed with each vertex mapped to

a set of vertices connected to it, 𝐻𝑎𝑠ℎ𝑀𝑎𝑝 (𝑣 , 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑆𝑒𝑡). As new edges

are added, component sets for their vertices are created, updated, or merged with

each other.

b. Generate map Output: Depending on the hash table the mapper will defined the

minimal vertex (smallest ID) for each component set, and accordingly generate

an output that connects each vertex to the minimal vertex and vice versa. This

reduces the amount of processing required in the reduce job This will also reduce

the amount of intermediate data communicated and the number of iterations at

an extra cost of using more memory and processing in the map phase.

The reduce stage is the same as the reduce job in MR_CC, where each reducer for a key 𝑣

aggregates tuples emitted by different mappers (𝑢1, 𝑢2 , . . , 𝑢𝑘)which represent 𝑎𝑑𝑗(𝑣). Here

82

Hadoop secondary sorting is used, which means the reducer will receive values in order (first

value 𝑢1 is the minimum in 𝑎𝑑𝑗(𝑣)).

Check for vertex 𝑣 and its adjacent neighbour vertices in 𝑎𝑑𝑗(𝑣) if 𝑣 has the smallest

id or not (𝑣 > 𝑢𝑓𝑖𝑟𝑠𝑡):

c) If yes (locallyMaxState), assign all 𝑢 ∈ 𝑎𝑑𝑗(𝑣) to 𝑣 by sending (𝑣, 𝑢).

d) Else (mergeState), there is a vertex 𝑢 ∈ 𝑎𝑑𝑗(𝑣) in which 𝑢 < 𝑣, in this case

it is 𝑢𝑓𝑖𝑟𝑠𝑡, unlink CC-MR here we only need to send (𝑢𝑓𝑖𝑟𝑠𝑡 , 𝑢), 𝑢 ∈ 𝑎𝑑𝑗(𝑣).

Repeat the MapReduce iteration until the mergeState situation does not occur anymore. The

graph will transform to star-like subgraphs where each one represents a component and the

centre vertex is the component id.

Performance is also enhanced by identifying stable components that need no more

processing. Stable components will be augmented by a stable flag so that they will be

separated in the following iteration when they will be written to a different file and will not

be read by mapper in the later iterations. This enhancement is achieved with virtually no

additional overhead in terms of data volume and memory requirements.

A further modification tested by the author was to consider the vertex degree instead of the

minimum vertex id in defining the component id. However, this approach required more

iterations to identify the degree for each vertex, and increased the data transferred between

the mapper and reducer. This was in addition to the overhead of reading each vertex degree

from the distributed cache during this first iteration.

83

Figure 4-5 : CC-MR-mem Algorithm (Map Phase) [120].

84

4.7.8 Two-Phase & ALT-OPT

Kiveris [14] introduced two MapReduce CC algorithms, which can easily scale to large

graph with hundreds of billions of edges. These algorithms also outperform Hash-to-Min

algorithm by an order of magnitude. Both algorithms make use of the small-star and large-

star operations, where they perform both operations until convergence is reached.

 Small-star: for edges to neighbours with smaller or equal ids, replace each edge

with an edge to the minimum vertex.

𝑁 = { 𝑢 ∈ Γ(𝑣) , ∀ 𝑙𝑢 ≤ 𝑙𝑣 }, replace the edge (𝑢 , 𝑣) with (𝑢, 𝑚(𝑣))

 Large-star: for edges to neighbours with greater ids, replace each edge with an

edge to the minimum vertex.

𝑁 = { 𝑢 ∈ Γ(𝑣) , ∀ 𝑙𝑢 > 𝑙𝑣 }, replace the edge (𝑢 , 𝑣) with (𝑢, 𝑚(𝑣))

The algorithms will transform the graph into a collection of star graphs where each represents

a connected component. They will proceed in a way that guarantees the number of edges

never increases, instead it does decrease. Both operations can be easily implemented in

MapReduce:

Small Star Operation

Map < 𝑣, 𝑢 >

 If (𝑙𝑢 ≤ 𝑙𝑣) then:

 Emit (𝑣 , 𝑢)

 Else:

Emit (𝑢, 𝑣)

Reduce < 𝑣, 𝑁 ⊆ 𝛤(𝑣) >

 Let 𝑚 = arg 𝑚𝑖𝑛𝑢∈ N ∪{v} 𝑙𝑢

 Emit (𝑢, 𝑚) , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑁

Large Star Operation

Map < 𝑣, 𝑢 >

 Emit (𝑣 , 𝑢)

 Emit (𝑢 , 𝑣)

Reduce < 𝑣, 𝛤(𝑣) >

 Let m = arg minu∈ Γ++(v) lu

 Emit (𝑢, 𝑚) , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 , ∀ 𝑙𝑢 > 𝑙𝑣

Figure 4-6 Large Start and Small Star operations[14]

85

The difference between the Two-Phase and the alternating algorithms is the order in which

they run large-star and small-star operations:

o In the Alternating algorithm, the large-star and small-star operations run sequentially

until convergence.

o In the Two-Phase algorithm in each iteration, large-star is repeated until convergence

which then performs the one small-star operation.

Further optimisations have been proposed for both algorithms:

 Similar to CC-MR-mem and MemoryCC this algorithm uses a distributed hash table

(DHT) to improve the runtime by reducing the total number of iterations of MapReduce.

For the large-star in the Two-Phase algorithm, the DHT creates a table for mapping each

vertex to its smallest neighbour, with vertices initially pointing to themselves. Then each

vertex repeatedly updates its smallest neighbour in the DHT until convergence. Then

only one MapReduce iteration is required to finish. The algorithm will finish in

𝑂(𝑙𝑜𝑔𝑛 𝑙𝑜𝑔𝑙𝑜𝑔𝑛) MapReduce iterations using a DHT of size 𝑂 (
𝑛

𝑙𝑜𝑔 𝑛
).

 The other optimisation is to solve the problem of “the curse of the last reducer” in skew

degree graphs and carry out load balancing. The proposed optimised algorithm is called

Optimized Alternating (Opt-Alt) It ensures that the reducer for a vertex 𝑣 will not take

all neighbours of v when their number exceeds the threshold defined 𝜏. When the

number of neighbours of a vertex exceeds 𝜏, create 𝜏 copies of that vertex and attach to

the vertex label of each copy an infinitesimally small number and connect the main

vertex to each of the newly created copies and distribute the neighbours to the copies

created.

86

4.7.9 Cracker

Lulli [115], [116] introduce the Cracker algorithm, an efficient iterative MapReduce-Like

algorithm to find connected component in large graph. Cracker build a spanning tree of

connected components in the graph by adding nodes to the tree with each node has its

component identifier as it root in the tree. It also provides node-pruning mechanism, which

effectively reduce the number of active vertices after each iteration; each node added to the

spanning tree is discarded from the computation in the following iterations.

It is organized in two main phases, shown in Figure 4.7:

1. Seeds identification phase, where seed nodes for each component are identified,

during this process at each iteration non-seed node will be added to the spanning tree

and excluded from the processing graph. This is achieved in two steps:

a. Min Selection Step: where nodes that are guaranteed not to be a seed node

for any component is identified.

b. Pruning Step: where identified nodes from the previous step are excluded

from computation and added to the spanning tree

This process will iterate the two steps until only the seed nodes for each component

are left, where they will be added to spanning tree as the main root node for the

component.

2. Seeds Propagation, in which the all seed nodes will propagate their ids to their child

nodes until all nodes belonging to the same component will share the same root node

id as their component identifier. The result will be a spanning tree of connected

components with the root node for each tree as the component identifier.

The algorithm will finish in 𝑂(𝑙𝑜𝑔𝑛) iterations with number of message 𝑂 (
𝑛 𝑚

𝑙𝑜𝑔 𝑛
) per

iteration. Thus, the Cracker algorithm outperforms its competitor algorithms, such as

87

Hash-to-Min, PEGASUS, CC-MR, CCF with best competitor being 9% to 75% slower,

also it achieves the least message volume among all its competitors.

Input: an undirected graph G = (V,E)

Output: a graph where every vertex is labelled with the seed of its CC

1. u.Active = True ∀u ∈ G

2. T ←(V, ∅)

3. t←1

4. Gt ←G

5. repeat

6. Ht ← Min_Selection_Step(u) ∀u ∈ Gt

7. Gt+1 ← Pruning_Step(u,T) ∀u ∈ Ht

8. t←t+1

9. until Gt = ∅

10. G∗ ← Seed_Propagation(T)

11. return G∗

Figure 4-7: The Cracker Algorithm[115]

4.8 Summary

Previously mentioned algorithms are presented in table 4-1 with some information about the

complexity analysis and features used in each one such as using Distributed Hash-Table

(DHT), if load balancing is considered in the algorithm design, how is the component

identifier is selected, and if the algorithm provide vertex pruning. In addition to, what

processing system has been used for testing the algorithm. The table also reports the other

algorithms used in the performance comparison for each algorithm. Different criteria were

used for measuring the performance of each algorithm, mainly the runtime, and the number

of iteration, and the intermediate data has been reported for most algorithms.

The Cracker algorithm is the only algorithm that fully use the vertex pruning, where non-

active nodes are removed from the processing graph. Thus, it tracks how the size of the graph

changes after each iteration by reporting the number of active nodes. Other algorithms also

88

use load balancing to avoid the problem of ’the curse of the last reducer’, when a connected

component is very large and all the vertices of this component need to be sent to and

processed by the same reducer. Therefore, the computation assigned for the reducer of high

degree node are distributed to copies of that nodes across the cluster as presented in figure

4-8.

The component identifier for all the algorithms are selected based on the lexical ordering of

the node id values. Although, Kolb et.al [120] mentioned using the degree of node for

selecting the component identifier, he did not adopt this approach as it requires pre-

computing of the degree which would add computation overhead.

Different environment setups were reported in the experimental evaluation for each

algorithm. Hadoop processing system is the mainly processing system used except in the

Cracker algorithm which used more recent and advance processing system such as Spark.

However, there is a variety in the environment setup even when Hadoop is used, different

number of the worker nodes and different nodes’ specification were used. In addition,

different type and size of datasets reported for experiment. Thus, there is a need used

common benchmarked datasets and experiments’ setups to efficiently compare and evaluate

the performance of each algorithm.

Figure 4-8: Load Balancing[14]

89

Algorithm

Name

The

algorithm

s
compared

to

Round

Complexity

Communic

ation
Complexity

Measures DHT

L
o

ad

B
al

an
ci

n
g

C
o

m
p
o

n
en

t

Id
en

ti
fi

er

V
er

te
x

p
ru

n
in

g
 Experiment

environment

Zones
N/A O(d)3 O(n + m)3 N/A No No ID No Hadoop Cluster

Pegasus

HCC

N/A O(d)3 O(n + m)3 - Runtime No No ID No Hadoop Cluster

9 nodes

Hash-to-

Min

- HCC O(log(d))4 2 (n + m) - # of iterations
- Intermediate data

- Runtime

No Limi
ted

ID No Hadoop Cluster

CC-MR

- HCC

- zones

N/A N/A - Runtime

- # of iterations
- # of edges remaining

No Yes ID No Hadoop Cluster

14 nodes

CCF

- HCC

- CC-MR

O(d)

N/A - Runtime

- # of iterations

No No ID Limi

ted

Hadoop Cluster

80 nodes

MemoryCC

- HCC

- CC-MR
- Hash-

to-Min

N/A

O(n) - Intermediate data

- # of iterations
- Runtime

Yes No ID No Hadoop cluster

8 nodes

CC-MR-

mem

- CC-MR N/A N/A - # of iterations

- Runtime
- Intermediate data

- overall data volume

No Yes ID/

VD

No Hadoop Cluster

(on Amazon EC2)
+ 20 worker nodes

+ 40 worker nodes

- 100 worker nodes

Alternating

Optimized

(Alt-Opt)

- Hash-

to-Min

O(log n)5 O(m) - # of iterations

- Runtime-

- # of edges remaining

Yes Yes ID No N/A

Cracker

- Alt-Opt

- CCF

O (log n)2 O (
𝑛 𝑚

log n
) - # of edges remaining

- Runtime

- Active nodes

No No ID Yes Spark Cluster

5 nodes

Table 4-1: Finding Connected Component Algorithms using MapReduce (n is the number

of nodes, m is the number of edges, d is the diameter)

The Cracker algorithm outperforms all its competitors in practice, and theoretically it could

achieve the best results. Thus, this algorithm was chosen to be studied in more details. In the

next chapter, the Cracker algorithm is selected as the foundation used to implement our

proposed enhancement and extend optimisations. In addition, we mainly compare the

performance of our proposed approach to the performance of the original Cracker algorithm.

90

Chapter 5: Proposed Algorithm

5.1 Introduction

All the algorithms previously described in Chapter 4, are design based on the MapReduce

programming model. However, current large distributed systems provide more flexibility

and further features beyond the MapReduce paradigm, such as the ability to cache and

partition the data. In addition, all those algorithms choose the component identifier based

only on the lexical ordering of the node id values, ignoring the existing structure of the graph.

Hence, to enhance and optimise the performance of the connected components algorithms,

we use two types of properties:

 Graph Structure properties: where we consider the graphs structure properties in

choosing the best candidate as component identifier, instead of blindly choosing it

based on its lexical ordering.

 Processing System properties: where we consider features and functionality provided

by new processing systems to improve the design of the MapReduce implementation

of the algorithm in order to increase efficiency or improve the performance of the

algorithm.

Lin and Schatzand [118] proposed a set of enhanced design patterns that can be used to

improve the performance of a large class of graph algorithms based on message passing. In

the process of design and implementation of our new algorithms, we try to follow some of

those patterns such as:

91

 Role(1): Using the Range Partitioning technique to partition the graph into multiple

blocks and allowing different mappers to execute in parallel on stored portions of the

graph.

 Role(2): Building a hash table that contains the graph structure for the graph partition

processed in the mapper, and passing messages from source to destination locally

between nodes that are included in the Hashtable. Thereby, reducing the data traffic

on the network, which in turn increases the speed of a MapReduce algorithm, as the

network traffic dominates the execution time.

 Role(3): Ensuring the mapper outputs the node structure (< Node ID,

{Adjacency_List} >) to the reduce phase to perform multiple iterations.

In the approach we introduce, we will consider the properties from the graphs structure and

from the processing system, whilst using some of the MapReduce best practices in the design

and implementation of our algorithm for finding connected components in a large-scale

graph using GraphX in Spark.

5.2 Proposed Improvements

Finding connected components in large graphs requires iterative processing, however

iterative processing is not directly supported in MapReduce. Our aim is to enhance the

performance of finding connected component algorithm for undirected graphs in big data

processing systems using MapReduce, this could be achieved by addressing the following

questions:

 How to reduce the number of iterations while minimising the communication load in

the shuffling phase between iterations.

92

 How to increase the efficiency of the algorithm in modern processing system using

the new features provided.

In the Objectives of this study, we follow best practices used in designing MapReduce

algorithms and apply it on the algorithm for finding connected components in a graph.

Furthermore, in the design of the algorithm, we consider both the properties of the graph

structure, and the advanced features supported in current large distributed graph processing

systems

We approach our objectives from two angles:

 First, adopted a new approach to enhance the performance of CC algorithms in

general. In our case, instead of choosing the component identifier for each connected

component based only on the lexical ordering of the node id values, we integrated

graph structure degree property and use it in chosen the component identifier.

 Second, we reviewed current algorithms and choose the most recent one that

outperforms other algorithms. Then using the properties provided by the processing

system, we apply few modifications that could boost the performance of the

algorithm. In our case, we based our modifications on the concept of moving the

computation process toward where the data is stored could help enhance the

performance. This is essentially the concept behind MapReduce also, however, we

could benefit here from systems like Spark that provides extra features by caching

the data in memory and controlling the partitioning process across the cluster. The

algorithm we choose to introduce our improvements is the Cracker algorithm[115],

[116], it was selected based on its performance, as it provides the best performance

among its competitors (all the algorithms described in chapter 4), in addition it has

the feature of graph contraction, where the graph size shrink after each iteration.

93

With respect to our objective, we design and implement improvements for the Cracker

algorithm using Spark, a general-purpose data processing system that provides support for

iterative processing. In addition, we use its graph-processing library GraphX, which provides

a distributed graph representation with many optimisations implemented that can

significantly enhance processing performance. Our work is inspired by the Cracker

algorithm, in which a graph is iteratively transformed into a set of trees, each representing a

connected component. During each iteration, the graph size is reduced by identifying nodes

that do not have impact on other connected components. These nodes are excluded from

computation in the next iteration and are added to the trees. The result will be a spanning

tree of connected components with the root node for each tree is its component identifier.

Chapter-5

Proposed Improvements

Graph

contraction

 based on

 node degree

Dynamic

evaluation of

the degree

Computing

 local CC

in map phase

Cracker-Original
Algorithm

Node Assorting

using degree

Cracker-Degree-Opt
Algorithm

Graph Structure

Properties

Processing System

Properties

Cracker-Degree
Algorithm

Local Seed

Propagation

Local Max

Identification

Degree

Update5.2.1

5.2.2

5.2.3

Figure 5-1: Proposed improvements diagram

94

The key improvements proposed in this research are presented in figure 5-1 , in which base

on the graph structure properties and the processing system properties we introduce our

improvements and apply them on the original Cracker algorithm, these can be listed as

follows:

5.2.1 Graph contraction based on node degree:

Graph contraction is the process in which a node id is selected as a component identifier,

then all the other nodes belonging to the same component are contracted into it[121]. In

all the algorithms previously reviewed in Chapter 4, the graph contracts to the nodes with

the smallest id, based on their lexical ordering, ignoring the existing structure of the

graph. However, real-world graphs are usually scale-free graphs and follow the power-

law degree distribution, whilst the majority of nodes have a small number of edges only

a few have a large number of edges. Existing algorithms use label propagation to

propagate the node with the smallest id regardless of any other properties of the node

such as degree. This could eventually cause additional iterations by not choosing the

node with the highest degree, such nodes help the algorithm to propagate and converge

faster.

In the approach we present, we attached the degree to each node and based on that

information we choose the component id identifier. When the two nodes have the same

degree, we compare the node ids and choose the node with largest id as the component

identifier. Therefore, we introduce “node assorting step” to the Cracker algorithm, as

shown in figure 5-1, which will be further explained in details later in this chapter.

95

5.2.2 Dynamic evaluation of the degree in the graph:

Usually, graph contraction based on the smallest id is a straightforward approach, as the

node id never changes even if the structure of the graph changes. Change only happens

to the node label that indicates its component id or to the adjacency list of the node.

However, when using contraction based on degree, the degree of each node might

change. This is because, after each iteration the graph structure changes usually by

updating the adjacency list for the node. Therefore, updating nodes degree after each

iteration could help the algorithm to converge faster following the previous suggested

improvement.

5.2.3 Computing local CC in the map phase

In the proposed sets of enhanced design patterns for MapReduce and based on the

Role(2)[103](section 5.1). We could reduce the data traffic and increase the speed of a

MapReduce algorithm, by building a distributed hash table (DHT) that contains the graph

structure for the graph partition processed in the mapper and performing operations locally

before emitting messages between nodes in the cluster. This approach was implemented and

followed in different algorithms to improve processing time, as in [88], [104], [105]. The

main idea is to take nodes in each partition of data and load them with their components’ ids

in a hash table data structure, and then identifying the local components in each partition. In

the hash table, each node is mapped to the components it belongs to. The approach then

repeatedly scans and updates the component id for each node until no further updates are

needed. At this stage, some components would merge locally, which comes at some cost as

it requires more memory and processing. It also places additional overheads on the system

during the map phase. However, this step would affect the performance of the algorithm in

different ways. For example, the number of emitted messages would be reduced and as a

96

result less network traffic. Likewise, a number of computations carried out in the reduce

phase would also reduce and fewer iteration would be required. With reference to the

objectives of this work, we implement this type of improvement on the Cracker algorithm,

thus, we introduce two further steps in the algorithm, which are, (a) local max identification

step, and (b) local seed propagation step, as shown in figure 5-1 , which will be explained in

detail later in this chapter.

Throughout this thesis, the term ‘Cracker-Degree’ is used to refer to the Cracker algorithm

after applying nodes’ degree approach in finding connected components, and the term

‘Cracker-Degree-Opt’ is used to refer to the algorithm after apply the improvements based

on the local CC computation in the map phase.

97

5.3 Preliminaries:

Let G = (V, E) be an undirected graph which consists of a set of nodes V (Vertices) uniquely

identified by values in ℤ. Nodes that are connected to each other by links called edges E.

Let n = |V| be the number of nodes and m = |E| is the number of edges. For a node v, we

denote by Γ(v) = {u | (v , u) ∈ E} the neighbours of v and Γ+ (v) = Γ(v)∪{v} denotes a set

that contains the node v itself and its neighbour nodes.

5.4 The Framework Model:

We use features in GraphX to develop and optimised the algorithm for finding connected

components in a large graph. Using GraphX helps to achieve a significant impact on

performance by providing features such as indices reuse, in memory processing, and

controlling partitioning strategies. To better understand the approach we follow, we put the

proposed approach into a simple framework pipeline model, shown in figure 5-2.

Figure 5-2:Framework Pipeline Model

The framework uses features and operations available in GraphX to enhance data flow in the

algorithm. To have a better understanding the data processing is divided into three main

stages: (i) Pre-processing stage takes input data in its raw format and prepare it with the

format required for processing. (ii) Computing stage, where we apply the improvements we

98

introduced to the algorithm. (iii) Post-processing stage, where we present the results for

evaluation.

In the following, we expand the pipeline framework model and give a more detailed

description about each data processing stages, as illustrated in figure 5-3.

Figure 5-3: Algorithm Framework Model

99

i. Pre-Processing Stage:

 At this stage, we take the raw data and prepare the initial graph needed in the Computing

stage. Using GraphX, we build the graph from the raw data in datasets, which could be

structured or unstructured. The graph used in our algorithm is built based on the adjacency

list graph representation, where each node is aware of all the neighbours it is connected to.

Here, each node stores in its property field a set of all its adjacent nodes <u → adjSet > ∀u

∈ G = (V,E). Furthermore, to use the degree of the node as the main criteria for choosing the

component identifier, we attach the node degree to the node id u= (uid, udegree). Therefore,

this stage will process the raw data and build a graph based on the adjacency list

representation with each node aware of its degree and the degree of all other adjacent nodes.

ii. Computing Stage:

 In a similar way to the Cracker algorithm, we divide this stage into two main phases: Seed

identification and seed propagation.

In the first, we try to identify seed nodes, which are the nodes that will become the

component identifier for the component it belongs to. This could be achieved by iteratively

excluding non-seed nodes, which are nodes that are guaranteed not to be seed nodes, and

they do not have any effect on chosen seed nodes. During this phase, a seed propagation tree

is iteratively built, by adding the non-seeds nodes. Each identified node is rooted to a

potential seed node in the propagation tree and deactivated in the processing graph. This

phase finishes when all nodes are added to the tree, and there are no active nodes in the

processing graph. Initially, computation in this phase is performed locally on each graph

partitions across the cluster, as suggested in the proposed improvements. Then, computation

is performed on cluster levels, similar to the original Cracker algorithm.

100

In the second phase, the seed nodes in propagation tree start to propagate their components’

id to all their children nodes, and every node that receives a new components id will in turn

propagate it to its children. This processes is performed iteratively until all the nodes belong

to the same component are propagated with the same identifier, forming a tree rooted to a

node represents the components identifier. Computation here is initially carried out locally

similar to the previous step, and then across the cluster nodes. Further detailed explanation

will follow in this chapter.

iii. Post-Processing Stage:

In this stage, we take the output graph from the previous stage, count the number of nodes

in each component, and return the number of connected components with top largest 10

components, to check the accuracy of the algorithm.

5.5 Computing Stage:

The focus in this chapter is on explaining the proposed approach in finding connected

components in large graphs. Thus, we only describe the computation stage here. A detailed

description of the implementation of all stages is documented in the next chapter.

 In this stage, we only work on the VertexRDD of the graph, which is an extended RDD that

represent vertices (nodes) in GraphX to ensure there is only one entry for each node, and to

pre-index the entries for fast and efficient join operations, where two VertexRDD with the

same index can be joined efficiently. In VertexRDD each node is stored with its properties,

such properties could be a set of adjacent neighbours or the degree property for each node.

As mentioned before, Resilient Distributed Datasets (RDDs) is used to perform in-memory

computations on large clusters where RDD’s elements are partitioned across a cluster of

nodes, so they can be operated on in parallel. Spark will control this process. Moreover, it

101

provides operators that help in implementing user specific optimisation as required, which

fulfil the Role (1) described in the section 5-1.

In the computation stage finding CCs could be achieved using two phases (shown in figure

5-4), each phase contains multiple steps. Similar to Cracker algorithm[115] the two main

phases are seed identification and seed propagation as presented in figure 5-5.

Computation Stage

 Seed Identification Phase

Seed PropagationPhaseMax

Identification

Step

Pruning

Step Node Assorting

using degree

Local Seed

Propagation

Cluster Seed

Propagation

Degree

Update

Propagation

Tree Update

Local Max

Identification

Cluster Max

Identification

DisjointSet

Seed

Propagation

-

Output

Use
DS-Prop

+

Pre-Processing

Stage

Input

Post-Processing

Stage

Figure 5-4: Computation Stage

102

Input: an undirected graph G = (V,E)

Output: a graph where every vertex is labelled with the seed of its CC

1. u.Active = True ∀u ∈ G

2. T ←(V, ∅)

3. t←1

4. Gt ←G

5. repeat

6. Gt
update← Local_Max_identification(u) ∀u ∈ Gt

7. HCt ← Cluster_Max_identification(u) ∀u ∈ Gt
update

8. Gt+1 ← Pruning(u,T) ∀u ∈ HCt

9. t←t+1

10. until Gt = ∅

11. G∗ ← Local_Seed_Propagation(T)

12. G∗ ← Cluster_Seed_Propagation(T)

13. return G∗

Figure 5-5: Cracker-Degree Algorithm

The following is a detailed description of the two phases:

5.5.1 Seed Identification Phase:

In this phase, we scan the graph looking for connected components identifier ids (seed

nodes), while excluding nodes that have no effect on chosen seed nodes and add them to the

propagation tree. This reduces the graph size and saves the processing time in later iterations.

The main idea is that each node interacts with its set of adjacent neighbours in to choose its

potential connected component identifier. When a node is not recognised as a potential CC

identifier for any of its neighbours and it is guaranteed that it will not become one in later

iterations, this node will be deactivated in the main processing graph and excluded from

being computed in later iterations. It will then be added to the propagation tree rooted to a

seed node which is the potential CC identifier recognised among its neighbours. This phase

finishes when all nodes are added to the tree, and there are no active nodes in the processing

graph.

103

As shown in the Figure 5-4, this phase starts by taking the output graph of the pre-processing

stage as its initial input graph and only works on the VertexRDD of the graph using the

GraphX operator graph.vertices, where each node has a set of adjacent neighbours as its

property. In the initial graph, all the nodes are in the active state, and therefore are all nodes

are involved in the first computation. The computation in this phase is achieved by iteratively

executing two main steps: (i) Max identification step, helps to identify non-seed node in the

processing graph. (ii) Pruning step, where identified nodes are excluded from the processing

graph and added to propagation tree. The following is a detailed description for the two steps.

i. Max Identification Step

The computation in this step is performed at two levels - local and cluster level. Initially, in

local computation, each data partition is processed locally, with no need to shuffling any

output data between partitions. In cluster computation, the output result requires data from

all partitions and hence requires data shuffling between cluster nodes. Details of these two

levels are presented in the following two sub-steps:

a) Local Max Identification Step:

In this step, data is partitioned across the cluster and is processed on the node where it is

stored. Each node in the cluster could host more than one partition. Computation is therefore,

carried out on each data partition a locally on the cluster node and no information is shuffled

across the cluster. Each partition is therefore, considered to be an independent part of the

graph, where we seek to identify the connected components in this partial graph. The purpose

of this step is to find the local CC identifier for each group of vertices, which are connected

in the data partition to which they belong. This will help to reduce the amount of processing

required in later operations that could involve shuffling data across the cluster, as well as

reducing the amount of shuffled data itself. This concept was recommended by Lin and

104

Schatzand [118] as in rule (2) in section 5-1, and was implemented in different ways as in

[14], [119], [120].

For example Kiveris in his paper [14] used distributed hash table (DHT), where in map phase

all nodes are loaded in a hash-table data structure and stored, each node is mapped to a its

component identifier, initially the node itself. The process then repeatedly scans the table

and updates the component identifier for each node with the minimum component identifier

among neighbours until convergence. At this point, all the nodes will be mapped to their

component identifier, which is represented by the minimum node id in that component.

In our work, we use the same approach; however, instead of using hash table, our approach

is based on the Disjoint-Set data structure (also called union-find data structure) with path-

compression so that the sets have a self-adjusting structure. The data is partitioned into non-

overlapping dynamic sets with no intersection among them, each set has one of its members

as the representative element of this set. This data structure was chosen as in order to increase

the speed updates required for the component identifier for each node.

Generally, generating these updates in the hash table require depth-first-search algorithm

(DFS) to do the job, DFS has the time complexity of O (𝑉 + 𝐸). On the other hand, Disjoint-

Set (DS) has time complexity of O (𝛼(𝑉) + 𝐸). Optimised DS provides near-constant-time

operations with amortised time 𝑂(𝛼(𝑉)) (bounded by 𝛼(𝑉) the inverse Ackermann function

where V is the number of nodes, which is a very slowly growing function that is less than 5

for any practical value), and turns out to be just barely more than O(1). Which make the time

complexity of DS close to O (𝑉 + 𝐸) , which is very much close in performance to DFS.

However, DS is preferred for situation where edges are continuously being added, and

incremental computation for connected component is required. [122]

105

In our case, in the disjoint-set data structure, each set represents a connected component with

the component id identifier as its representative node. We implement the sets as a rooted tree

with each element as a node, and where each node points to its parent in the tree. The root

of each tree is the representative node of that tree which in our case is the connected

component identifier. To use disjoint-set, we need to define three main functions:

1. a function to initiate any new node as a new set (tree) with a pointer to the root node

(parent). Initially, each node is rooted to itself by default.

2. A root function, that for each node returns the root of the tree this node belongs to.

In this function path compression is recursively applied, which means that at any call

for this function all the nodes on the same path between the requested node and the

root node will update their parent to point directly to the root node (all nodes will

become direct children of the root node), which will make subsequent similar

operations much more efficient.

3. A union function, which will unify any two tree sets into one by pointing the root of

one of them to the root node of the other. In this way, the two trees will be merged

with one of the original root nodes becoming the new root. The new root node is

chosen based on the degree of that node on the original graph, the node with the

higher degree will become the new root node. If both root nodes of the trees have

the same degree, the node with the larger id will be chosen. This operation is very

much based on the root function defined earlier to check the root node for any given

node. It will also use path-compression to adjust the tree structure with each call of

the root function, and eventually lead to a more efficient performance in later calls.

In the local max identification step, we process each data partition alone on the local machine

where it is stored. The aim is to try to accomplish part of the computation locally on small

partitions of the data before the need to process the whole data across the cluster.

106

We use the disjoint-set data structure to help us find the local connected component identifier

for each node in the partition it is stored on. Using the mapPartition function in Spark, each

partition will be processed individually using our LocalMaxIdentification function to prepare

the data for later processing, see figure 5-6 for the pseudo code of this function.

Input: a partition of the graph Gp = (V,E)

Output: Gupdate updated partition

1. u ←(u id ,u degree,u comp, u adjSet) ∀u ∈ Gp

2. ds = new DisjointSet()

3. for (u in Gp){

4. if (ds not contains(u id))){

5. ds+= u

6. }

7. if (u adjSet not empty) {

8. for (node in u adjSet){

9. if (ds not contains(node.id))){

10. ds+= node

11. }

12. union(item ,node)

13. }

14. }

15. }

16. Gupdate ← Gp

17. for (u in Gupdate){

18. ucomp = ds.root(u id) ∀u ∈ Gupdate

19. }

20. return Gupdate

Figure 5-6: Local Max Identification Function

Each data partition Gp will be passed to the LocalMaxIdentification function where for each

node u in that partition, the node will be added to build the disjoint-set ds in case it was

missing, then add all adjacent neighbours of u (in uadjSet) to ds. The union operation will then

unify the node u with each of its neighbours to be in the same tree. As consequence, the root

of that tree will be updated to be the node with the max degree. After all the nodes in the

partition are added to build the ds disjoint-Set data structure, we will have in ds a forest of

107

trees, each representing connected components in that partition with the component

identifier as the root of each tree. Finally, each node in the data partition Gp will updates its

component identifiers according to the root of the tree it belongs to in ds. The flowchart for

this function is shown in figure 5-7.

Start

Gp

Stop

for u , u Gp

u :(u id ,u comp, u adjSet)

Gupdate

DS

Cache

uid DS

Add to DS

uid Cache

Add to Cache

ucomp DS

Add to DS

ucomp Cache

Add to Cache

|u adjSet| > 0

for node , node u adjSet

node Cache

Add to Cache

node DS

Add to DS

 Union(uid , root(node))

for u , u Cache
u :(u id ,u comp, u adjSet)

Update u comp = root(u id)

Figure 5-7: LocalMaxIdentification_Map

108

b) Cluster Max Identification

The main objective to be achieved in this step is to identify seed nodes in the graph. We

achieve that by initially identify nodes that have no effect on the process of choosing the

connected component identifiers (seed nodes) and exclude those nodes from being processed

in later operations. This, in turn, will help to reduce both the size of data processed and the

volume of transfer between cluster nodes. The outcome will lead to faster convergence.

Using the data received from the previous step, each node will be processed as follows:

1. For each node u ∈ Gt that has the adjacent set of neighbours Γ(u), we defined Γ+ (u) as

a set of the adjacent nodes of node u including the node u itself, Γ+ (u) = Γ(u) ∪ {u}.

2. Compute vmax, which is the node that has the maximum degree and largest id in Γ+(u)

using the function findMaxCompInSet, which will be explained in details in section 6.2.1.

3. For each node v in Γ+(u) add an edge (v → vmax) to HCt, which is a directed graph that

has the output of this step for each node.

These pseudocode for this step is represented in figure 5-8.

Input: a node u ∈ Gt = (V,E)

1. Γ (u) = { v: (u↔v) ∈ Gt }

2. Γ+ (u) = Γ(u) ∪ {u}

3. vmax = findMaxCompInSet (Γ+(u))

4. for (v ∈ Γ+ (u)){

5. add (v → vmax) to HCt

6. }

Figure 5-8: ClusterMaxIdentification Function

This step is implemented using one MapReduce job, where the map function processes all

nodes in each partition of the graph using the function map_ClusterMaxIdentification. This

will send vmax of Γ+(u) for each node u to all the nodes in Γ+(u). The flowchart for the map

function is shown in figure 5-9.

109

Start

G
t

Stop

for u , u G
t

Γ (u) = { v: (u v) Gt }

for (v Γ+(u))

vmax = findMaxCompInSet (Γ+ (u))

HC
t

v vmax

Add to HC
t

Γ+ (u) = Γ(u) {u}

u.max = u

Yes

Γ(u) = 0

Yes

u.active = false

Γ(u)=1

Yes

u Γ(u)

Yes

No

No

No

No

Γ(u) > 0
u {}

Add to HC
tNo

Yes

Figure 5-9: ClusterMaxIdentification_Map

The messages from the output of the map function are grouped for each node and then

reduced using the function reduce_ClusterMaxIdentification. which will process each node

as follows:

1. Aggregate the nodes notified by map functions and group them as the new adjacent set

of the outgoing edges for the processed node.

110

2. Identify and assign the node with the max degree as the new component identifier (seed

node) for the processed node.

Because non-seed nodes could be characterised by not being the local component identifier

for any of their neighbours, they will not have any incoming edge in the output graph of the

Max Identification Step (HCt). This will help in identifying those non-seed nodes in next step

(Pruning Step). In the following we explain the pruning step, in which non-seed nodes are

excluding from computation in this phase and added to the propagation tree to be processed

in next phase.

ii. Pruning Step

The output from the Max Identification Step is a directed graph with a collection of edges

that represents the relationship between each node and its neighbours, we call it HCt. This

output graph (HCt) is used to isolate nodes that are guaranteed not to be seeds anymore and

exclude them from taking part in later computations in this phase. Excluded nodes added to

the seed propagation tree T, where each node is rooted to its local component identifier which

is represented by the neighbour node with the maximum degree. Detailed explanation of the

pruning step is further presented in the following three sub-steps:

a) Node assorting

This step will use HCt as input and process all the nodes to produce two outputs:

1) A new set of edges that form the new graph Gt+1 after excluding all the guaranteed non-

seed nodes.

2) A set of edges to update the seed propagation tree T. These updates consist of excluded

non-seed nodes with each one rooted to its local components identifier (seed node) in

HCt.

111

 Using the data received from the previous step, each node will be processed as the

following:

1. For each node u ∈ HCt that has the adjacent set of neighbours Γ(u), we defined Γ+ (u)

which is a set of the adjacent nodes of node u including the node u itself Γ+ (u) = Γ(u)

∪ {u}.

2. Compute vmax, which is the node that has the maximum degree and largest id in Γ+(u)

using the function findMaxCompInSet will be explained in detail in section 6.2.2.

3. For all the neighbours of u in Γ+(u), generate an undirected edge to vmax. This will

preserve connectivity in the graph in case node u needs to be excluded from Gt+1.

4. Check if node u is guaranteed not to be a seed node in order to exclude it from Gt+1 and

add it to T. As mentioned before, nodes which are not potential local component

identifiers to any of their neighbours will not have any incoming edge from the others.

In the previous step in the Cluster Max Identification, when a node is identified as a

potential component identifier vmax, a collection of edges will be generated from all the

nodes of Γ+ (u) to vmax (see line 5 in figure 5-11). This will also include an edge from

this node to itself (vmax → vmax) in HCt. Self-loop edge for a node u means that this was

identified as a potential component identifier in the previous step and accordingly,

nodes which have no existence in its neighbours set (self-loop) u ∉ ΓH
t (u)), are

guaranteed not to be seed node and therefore could be safely excluded. These nodes are

inserted in the seed propagation tree T where each will be rooted to its local component

identifier (vmax →u) (see line 11 in Figure 5-11).

5. Seed nodes also identified in this step. The main purpose of this step is to reduce the

size of the graph after each iteration by excluding non-seed nodes. Eventually, for each

component, the last active node processed is the seed node, which is the component

identifier for all neighbour nodes that belong to the same components, which has been

112

previously excluded. As mentioned before, self-loop edge for a node indicates that it

was identified as a local seed node in the previous step. However, when the node has

no other edge, other than the one to itself, means it is either the end root node for other

nodes in the propagation tree or a single component node where its component

identifier is itself. Identified seed nodes are then deactivated and inserted in the seed

propagation tree T where each will be rooted to itself (u →u) (see line 15 in Figure 5-

11).

The flowchart of node assorting is presented in figure 5-10 and figure 5-11 for pseudocode.

113

Start

HCt , T

| ΓH
t (u) | >1

v vmax

Add to G
t+1

u u

Add to T

Stop

No

vmax vmax

Add to G
t+1

Yes

 if v !=vmax

vmax u

Add to T

for u , u HCt

ΓH
t (u) = { v: (u v) HCt }

for (v ΓH
t (u))

No

| ΓH
t (u) | ==1

u ΓH
t (u)

u ΓH
t (u)

vmax = findMaxCompInSet (ΓH
t (u))

G
t+1

 , T

No
Yes

No

No

(1)

(2)

(3)

(4)(5)

Figure 5-10: Node Assorting Flowchart

114

Input: node u , ∀u ∈ HCt

 seed propagation tree T

Output: Gt+1

 update T

1. ΓH
t (u) = { v: (u →v) ∈ HCt } # neighbour of node u in HCt

2. vmax = findMaxCompInSet (ΓH
t (u)) # max node in u neighbours ΓH

t (u)

3. if (|ΓH
t (u)| > 1) {

4. for (v ∈ ΓH
t (u) \ vmax) {

5. Add (v → vmax) to Gt+1

6. Add (vmax → v) to Gt+1

7. }

8. }

9. if (u ∉ ΓH
t (u)) {

10. u.Active = False

11. Add (vmax →u) to T

12. }

13. If (IsSeed (u)) {

14. u.Active = False

15. Add (u →u) to T

16. }

Figure 5-11: Node Assorting

b) Degree Update

The main concept in our approach is to use the degree as the primary criteria for selecting

the connected component identifier. However, new edges are created, and nodes are

excluded in each step, thus the structure of the graph changes with each iteration.

The Graph structure changes as its size shrinks due to nodes both being deactivated and

added to the seed propagation tree. Thus, nodes’ degrees continuously changes, especially

for active nodes that act as potential seeds. This is because non-seed nodes are removed from

their neighbourhood or when components merge. The graph degree was evaluated during

the first step in the pre-processing stage. However, as the graph structure changes the node

degrees need to be updated to reflect the actual graph structure after each iteration. To

115

address this problem, we add a lightweight MapReduce job to evaluate the new degree values

for each node (shown in Figure 5-12). From each node, a message will be sent to each of its

neighbours, and count the number of messages received from its adjacent neighbours.

This information gathered will then be used to update the degree for all nodes in Gt+1. The

updates will be sent to each cluster node, then using the mapPartition operator in Spark

(which process data locally with no data shuffling required), in each partition the degree for

each node will be updated in addition to both its component identifier degree and the degree

for each of its neighbours (see Appendix1, Update Degree section).

Map: a node u ∈ Gt+1

1. Γ(u) = { v: (u↔v) ∈ Gt+1 \ u }

2. for (v ∈ Γ(u)){

3. emit (v → 1)

4. emit (u → 1)

5. }

Reduce: u, Γ(u)

6. Emit (u, Γ(u).sum)

Figure 5-12: Degree Update

c) Propagation Tree Update

In the Node Assorting step, the aim is to exclude non-seed nodes which make no difference

on the process of choosing the component identifier for any other node. The excluded nodes

will be sent as updates to the propagation tree T after each iteration, where they are merged

into T. The updated format will be a set of directed edges, each root the identified non-seed

node to it local seed node (vmax → u), where u is the non-seed node and vmax is the root of

that node u. At the beginning of the step, the propagation tree T is an RDD (we call it

PropTreeRDD) initialized with each node rooted to itself (each node is an independent tree

itself with the root node the same as the node itself). However, as updates arrive following

each iteration of the Max Identification Step, the new updates are added to PropTreeRDD.

116

The Seed Identification Phase will repeat as long as there are nodes to process in Gt. Nodes

will continue to migrate from G to T at each iteration until there are no more active nodes Gt

= ∅ (see Figure 5-11, Line 10). This is confirmed by counting the output of the Cluster Max

Identification Step. When it is zero, this phase will terminate (See appendix A).

5.5.2 Seed Propagation Phase:

When all the nodes have been added to the seed propagation tree T, the process of seed

propagation starts.

Seed propagation Tree T has the following characteristics:

 Non-seeds nodes are rooted to their local seed nodes.

 Local seed nodes are rooted to other seed nodes with a higher degree.

 The seed node, which is the root of the tree, is rooted to itself.

We could use two methods for the seed propagation process, either by processing the

propagation tree after the seed identification phase has finished, or by updating the

propagation tree during the process of seed identification phase. The two methods are

described in the following:

i. Seed Propagation.

In this phase, seed nodes start to iteratively propagate their component ids to all their children

nodes, and every node that receives a new components id will propagate it to its children. In

the end, all nodes belonging to the same component will be propagated with the same

identifier, forming a tree rooted to the components id node. Computation is initially

performed locally and then across cluster nodes. Further details of the two computation

levels in this step are presented in the following:

117

a) Local Seed Propagation.

The computation in this step is carried out locally on each data partition on the cluster node

and no information is shuffled across the cluster. The root nodes will send its component

identifier to the child nodes on the same partition using the map function mapPropagate (see

Appendix A.2). Messages for each node in the same partition are grouped locally. Its

component identifier is accordingly updated using the reduce function reducePropagate.

This operation iterates until no further updates are generated. Each partition is considered

as an independent part of the graph, and here we seek to identify the connected components

in this partial graph. The purpose of this step is to find the local CC identifier for each group

of vertices, which are connected in the data partition they belong to. This will help to reduce

the processing required in later operations that could involve shuffling data across the

cluster. It will also reduce the number of shuffled messages.

b) Cluster Seed Propagation

After the nodes in each partition have updated its component identifiers according to the

other root nodes in the same partition, the same process is repeated across cluster nodes.

Here for each connected nodes’ tree the updates are generated from the root to the child

nodes, and each node notifies its child nodes with its component identifier, which is the id

of its root node. This step reaches convergence when the component identifier for the leaf

nodes in the tree are the same as the main root node.

In the end, we will have a forest of trees where each tree represents a connected component

with the root node as the component identifier.

ii. DisjointSet Seed Propagation

As indicated previously, all steps suggest the implementation of the seed propagation step

after the Seed Identification Phase has finished, where all nodes would be added to the

118

propagation tree T. However, here we suggest building the propagation tree and caching it

in the memory of the driver node in the cluster. Because at the end of each iteration of the

Seed Identification Phase all the information will be gathered on the driver node to generate

the output, there is no need to wait until the end to gather propagation tree update and process

them. Therefore, such updates could be merged into the propagation tree dynamically as they

are generated using the disjoint-Set data structure (explained before). This could

significantly increase the load on the driver node, however, usually driver nodes in clusters

are chosen with the highest specification compared to other worker nodes. Thus, the overload

caused by implementing this step could be handled by increasing the specification of the

driver node only.

5.6 Summary

This chapter began by describing the general pattern used in MapReduce algorithm for

finding connected components, then identify two kind of properties that could be targeted to

apply improvements, which are Graph Structure properties and Processing System

properties. Next, in respect to these properties the proposed approach to enhance the

performance of CC algorithm was introduced. First, it adopted the degree property in graph

as the main criteria for choosing the component identifier. Second, it introduced

optimisations based on properties provided by the processing system. It went on to suggest

the use of Cracker algorithm to apply the proposed approach, and gave a detailed description

of framework design to integrate suggested improvements in the Cracker algorithm. The

next chapter describes the procedures and methods used in the design and implementation

of the proposed approach.

119

Chapter 6: Design & Implementation

6.1 Introduction:

Large graph distributed processing is very fast-moving research and development area, in

which new systems and new paradigms regularly appear. Hadoop is considered the most

common tool used for big data. Thus, the initial plan was to use Hadoop in our algorithm

implementation and MapReduce as our programming framework with Python. However, as

we investigated the area in more detail and started to develop a better understanding of the

field, we found an excellent opportunity to change our plan and use Spark instead. Spark is

considered the new alternative for MapReduce. It provides the ability to cache some parts of

the data in memory, allowing it to be used it in later iterations. This capability could help to

reduce the number of iterations and decrease the intermediate communication load between

iterations, leading to potential performance enhancement. This performance enhancement

could be achieved without losing the ability to expand the size of the data beyond the size of

the memory resources available. If the cache files grow and no longer fit in memory, Spark

can distribute the cache files on local disks and recompute them later when needed. As a

result, Spark could run programs up to 100 times faster than Hadoop MapReduce in memory,

or 10 times faster on disk.[68]

For the graph processing, GraphX on top of Spark was a good candidate, and was chosen for

several reasons:

1. Apache Spark is a very active project, more so than Hadoop. More than 100

developers from over 200 companies have contributed to Spark. 19 organisations are

committed to the project. This is very promising as Spark has recently started to

replace the MapReduce paradigm.[68]

120

2. GraphX is Spark's API for graphs and graph-parallel computation. It has a growing

library of graph algorithms, which provide seamless interfaces and operations with

both graphs and collections while its performance competes with the fastest graph

processing currently available.

3. Its high-level Scala API provides the ability to efficiently use the wide range of

operations and optimisations available for use in our implementation.

4. The storage abstraction Resilient Distributed Datasets (RDDs) capability used in

Spark achieves efficient fault tolerance using the notion of lineage, which enables

automatic recreation lost data partitions.

5. GraphX can retain graphs or any RDD in memory for later use. This is essential for

iterative graph algorithms, and even when RDD does not fit in available memory, it

can be stored on disk in a way similar to MapReduce.

6. Using the operators provided in GraphX, can optimise communication in finding

connected components algorithm implementation by controlling the partitioning of

the RDDs.

Spark 1.0.0 was released in 2014. Since then it has received numerous updates and additions.

In our implementation, we have upgraded to the latest stable version when a new update is

available. We used Spark 2.0.0 in 2016 for development and testing on a single machine

However for the evaluation of our work on a cluster; we used the latest available version as

we will describe in next chapter. GraphX is a part of the Apache Spark project, so it is tested

and updated with each Spark release. GraphX is built using Scala, running on a Java VM. It

is a general-purpose programming language providing support for functional and object-

oriented programming.

121

For local implementation and testing Spark was downloaded to a single Windows PC

machine (not a cluster) and built using sbt. We used also IntelliJ IDEA, an open source

integrated development environment (IDE) tool.

For our initial implementation and testing, Spark was set up to work in a simple standalone

deploy mode with all implementations developed using the Scala language. In the initial

local testing, we were able to launch a standalone cluster, which is established, by manually

starting a master and workers together on one single machine, then run our program, or by

using one of the launch scripts to launch a Spark standalone cluster with each run of the

program [123].

6.2 Framework Implementation

The framework design presented in the previous chapter (section 5-4), is based on the work

of Lulli and his Cracker algorithm for finding connected components in large graphs[115],

[116]. It extends his work to optimises the performance by using a different approach for

choosing the component identifier (the degree property in our case), then uses features and

operators available in GraphX to optimise and enhance the data flow in the algorithm by

processing the data locally when applicable to reduce both the time for convergence and the

number of shuffled message between iterations.

This framework starts by taking input data in its raw format, preparing it and transforming

it into the format required in the processing stage which is where we apply our approach to

finding the connected components. It completes by accessing and arranging the output in a

presentable format ready for evaluation.

 In the following, we review each stage in the framework and provide a detailed explanation

of the implementation process.

http://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts

122

6.2.1 Pre-Processing Stage

In this stage, we take the dataset and prepare the data to build the initial graph for later

processing. As explained previously, the initial graph for processing should be built using

the adjacency list representation, where each node has a list of its neighbours.

< 𝑢 → adjSet > ∀𝑢 ∈ G = (V, E)

We developed two functions. The first was used to test other algorithms, on the graph with

an adjacency list generated, where each node is attached to its list of neighbour nodes. The

second function is used to create a graph with an adjacency list similar to the previous one,

but with the addition that each node is aware of its degree and the degree of all other nodes

with which it interacts.

For the adjacency list graph the following steps are followed:

1. Use raw data it to create a graph in GraphX using the GraphX operators

provided.

2. Compute the adjacency list for each node in the graph and add it to its

property, to create the Adjacent List Graph.

3. We could assign the component identifier for each node compID, from each

node’s adjacency list take the minimum and compare it with the node ID and

assign the minimum to compID. At completion, Initial Graph is created, in

which each row of the VertexRDD has the form <id, (compID, adjSet))>

with the compID set to the minimum ID.

To create the adjacency list graph with degree awareness the following steps are followed:

a. Use the raw data it to create a graph in GraphX using the GraphX operators

provided.

123

b. Compute the degree of each node and add it as its property.

c. Compute the adjacency list for each node in the graph to create a new graph,

the Adjacent List Graph, where each node has its degree, and a set of the

adjacent nodes attach to it.

d. Output the graph for the next stage with each node having its degree and a set

of pairs of adjacent nodes and their degrees <nodeId, (nodeDegree,

Set(adjacent nodes))>.

In this stage, we process the raw data available on the cluster, usually on a distributed file

system like HDFS or Amazon S3. Next, we generate the graph in GraphX using graph

builder operators. The raw Data could be structured or unstructured. For example, data could

be in a text file in a format like <source_id, destination_id>, or an XML web content format

that needs some cleaning and preparation to be in the right format for processing.

After creating the graph, the adjacency list for each vertex needs to be generated. For this

purpose, we created a function called adjacencyListGenerator(), which takes a graph as

input and returns an output graph with each vertex with its adjacent list. In the VertexRDD

of the output graph, the property field for each vertex has a set of adjacent neighbour

vertices.

The adjacencyListGenerator() function performs the following steps (see figure 6-1): The

function starts by initializing each vertex (node) property with its own VertexID.

1) Then we call GraphX operator collectNeighborIds() on the graph, which will

Collect the neighbour vertex IDs for each vertex and return it in a

VertexRDD.

2) We convert the array of vertices into an mutable HashSet. A mutable HashSet

type in Scala is considered here as it is iterable and contains no duplicate

124

elements. Here operations such as lookup, add, and remove, can take

effectively a constant time depending on some assumptions such as the

maximum length of a vector or the distribution of hash keys[124].

3) Finally, take the VertexRDD adjGraph created and generate a new graph

using the same EdgeRDD from the original graph, and return the new graph.

def adjacencyListGeneratorOpt[VD:ClassTag, ED:ClassTag](graph: Graph[VD, ED]): Graph[Set[VertexId], ED] =

{

 val WorkGraph = graph.mapVertices { case (vid, _) => (vid) }

 val nbrs = WorkGraph.collectNeighborIds(EdgeDirection.Either).cache()

 val nbrsVerts: VertexRDD[Set[VertexId]] = nbrs.mapValues ((vid, nbrs) => Set(nbrs.toSet.toArray: _*))

 val adjGraph: Graph[Set[VertexId], ED] = Graph(nbrsVerts, graph.edges)

 adjGraph

}

Figure 6-1: adjacencyListGenerator function

Using the new graph generated in the previous step, we apply .mapVertices() operator,

which will take the property for each vertex (compID, adjSet) and apply the function

findMaCompInSet(). The function will find the vertex that has the minimum ID in the

adjSet, compare it to the compID and return the minimum (see figure 6-2).

 def findMincCompInSet(compID: VertexId, set: Set[Long]): VertexId = {
 var setMin = compID
 if (!set.isEmpty) {
 setMin = set.min
 if (setMin > compID) setMin = compID
 }
 setMin
 }

Figure 6-2: findMincCompInSet function

125

The output of this step is a graph (we call it the Initial Graph) with the compID set to

minimum ID. We will use the Initial Graph later in testing CC algorithms and comparing it

with the proposed approach of using the degree in CC algorithms.

For the proposed approach, we will use a graph which has degree awareness. This means all

vertices in the graph, know their degrees and the degree of all the other nodes they directly

interact with. To create the adjacency list graph with degree awareness, we created a function

called adjacencyListGeneratorDgOpt() that takes a graph as input and returns an output

graph.

In the VertexRDD of the output graph, the property field for each vertex has the vertex

degree and a set of adjacent neighbour vertices with their degrees.

 The adjacencyListGeneratorDgOpt() function performs the following steps (figure 6-3):

1. The function starts by computing the degree of each vertex using a built-in

operators in graphX. This is achieved using a Pregel-like (bulk-synchronous

message-passing) implementation inside GraphX. Then the degree is added

as the vertex property in the graph.

2. We call the operator aggregateMessages() on the graph, to aggregate values

from the neighbouring edges and vertices of each vertex and return it in a

VertexRDD as the vertex property. As a result, we will have with an array of

neighbouring vertices.

3. We convert the array of vertices into a set of neighbouring vertices each

stored with its ID and degree.

4. Finally, we take the VertexRDD neighboursWithDegree graph created and

used it to generate a new graph using the same EdgeRDD from the original

126

graph, and return the new graph as the initial graph. This is achieved using

outerJoinVertices operator.

def adjacencyListGeneratorDgOpt[VD:ClassTag, ED:ClassTag](graph:Graph[VD,ED]): Graph[(Int,
Set[(VertexId,Int)]), ED] = {

 val degrees = graph.degrees

 val graphWithDegrees = graph.outerJoinVertices(degrees){(_, _, optDegree) => optDegree.getOrElse(1)}

 val WorkGraph = graphWithDegrees.mapVertices { case (vid, degree) => (vid,degree) }

 val neighboursWithDegree = WorkGraph.aggregateMessages[Set[(VertexId, Int)]](

 sendMsg = triplet => {

 val srcWithDegree = triplet.srcAttr

 val dstWithDegree = triplet.dstAttr

 triplet.sendToDst(Set(srcWithDegree))

 triplet.sendToSrc(Set(dstWithDegree))

 },

 mergeMsg = (x, y) => x ++ y

).mapValues(x=>(x.size,x))

 val emptySet:(Int,scala.collection.immutable.Set[(VertexId,Int)])= (0, scala.collection.immutable.Set())

 val adjGraph = graph.outerJoinVertices(neighboursWithDegree){(_, _, optDegree) =>

 optDegree.getOrElse(emptySet) }

 adjGraph

}

Figure 6-3: adjacencyListGeneratorDg function

From the new graph generated in the previous step, we apply the .mapVertices() operator

that will take the property for each vertex (compID, adjSet) and apply the function

findMaxCompInSet (compID,adjSetDg). The function will find the vertex that has the max

degree in the adjSetDg using maxDg() function, which will identify the node that has the

max degree. If both nodes have the same degree, it will choose the one with the higher ID.

At completion, it will compare it to the compID and return the max using the same function

(See figure 6-4).

127

def findMaxCompInSet (compID: (VertexId,Int), setDg: Set[(VertexId, Int)]): (VertexId,Int) = {

 def maxDg(ver1: (VertexId,Int), ver2:(VertexId,Int)):(VertexId,Int) ={

 if (ver1._2 > ver2._2) { ver1

 } else if (ver1._2 == ver2._2){

 if (ver1._1 > ver2._1) ver1

 else ver2

 } else ver2

 }

 var setMaxDg = compID

 if (!setDg.isEmpty) setMaxDg = setDg.reduceLeft(maxDg)

 maxDg(setMaxDg , compID)

}

Figure 6-4: findMaxCompInSet function

The operation of generating the adjacency list graph with degree awareness is more

expensive that one generates the adjacency list without considering the degree. However,

this operation is executed only once to prepare the graph for processing in the next stage.

6.2.2 Computing Stage

In this section, we review the implementation process and code structure for the computing

stage documented in section 5.5. It is worth noting that in respect with the objectives of this

research, we experimentally apply all the proposed improvements on the fastest existing CC

algorithm, which is the Cracker algorithm in our case. Hence, the coding structure in many

parts of this work is based on the original implementation of the Cracker algorithm23, with

further implementation of our extensions that were proposed in section 5.2.

The output from the pre-processing stage is a vertexRDD, which is representation of each

node and its properties. The vertexRDD holds in the property field for each node, the node

23 https://github.com/hpclab/cracker

128

degree and all its adjacent nodes with their degrees. Processing is carried out by exchanging

messages between nodes and accordingly each node use the receive messages to update its

properties such as: its degree, its component identifier, or its adjacent set of neighbours.

Therefore, the code structure uses different kinds of message-classes. In each phase, different

node properties need to be exchanged and for each we have different class of message (see

Appendix A- Classes). For example, message_Identification class used for message used in

the max identification & pruning steps. message_Tree class used for generate update

messages for seed propagation tree T. message_Propagation used in the Seed Propagation

Phase to hold the updates are generated from the root to the child nodes, where each node

notifies its child nodes with its component identifier. Figure 6-6 presents the class diagram

of the classes used for exchanging messages between nodes.

Figure 6-5: Class Diagram

The two main phases of the algorithm (described in the framework model figure 5-3 and

explained section 5-5) are seed identification and seed propagation.

129

i. Seed Identification Phase

In which two main steps are performed:

a) The Max identification Step

The aim of this step is to update the node properties in such a way that it will be possible

to exclude non-seed nodes from the computation and add them to the propagation tree in

next step. This step is implemented in two levels:

o Local Max Identification, in which we try to accomplish part of the

computation locally on small partitions of the data before the need to process

the whole data. Therefore, we developed the function LocalMaxIdentification

described in section 5.5.i.a (data flowchart in figure 5-7). We apply the

function using the mapPartition operator in GraphX.The function will use the

disjoint-set data structure to find the local component identifier for all nodes

in the same partition and update their component identifiers accordingly.

(appendix A.2.i.a and Appendix A.Classes for code)

o Cluster Max Identification, in which we try to identify non-seed nodes. We

achieve this using one MapReduce job. The map function used to generate the

messages is called map_ClusterMaxIdentification (described in section 5.4.b).

The output is reduced by using the function reduce_ClusterMaxIdentification,

which will aggregate the nodes notified by the map functions and group them as

the new adjacent set of outgoing edges for the processed node, then identify and

assign the node with the max degree as the new component identifier. As a result,

any node that is smaller than all its neighbour nodes in term of degree and id (not

the local component identifier for any adjacent nodes), this node will not receive

any incoming edges. (appendix A.2.i.b for code)

130

b) The Pruning Step

In which three further operations are required:

o Node assorting, where identified non-seed nodes are separated from the rest of the

nodes. These will be added to the propagation tree later and the rest of nodes will

be processed again using max identification step. Node assorting requires one

MapReduce job. For the map phase, nodes are assorted by into two groups of

nodes, which are (a) potential seed nodes and (b) non-seed nodes.

A function called map_Pruning was created for purpose (described in section

5.5.1.i.a, data flowchart in figure 5-10, code in appendix A.2.i.c). The

map_Pruning will process each node and it adjacent nodes and generate new

messages, as either IdentificationMessages or TreeMessages. The former are

messages that identified as potential seed nodes and they will be processed again

in the next iteration of the seed identification phase. The latter are the non-seed

nodes and they will be added to the propagation tree T and processed later in the

seed propagation phase.

For the reduce phase, a reduce function called reduce_Pruning function was

created to merge and reduce messages for each node. Next, these messages are

filtered into separate groups of nodes; nodes that need to be added to the

propagation tree and the rest of nodes. Code structure is shown in figure 6-6.

val tmp = ret.flatMap(item => map_Pruning(item)) \\ apply the map function

val tmpReduced = tmp.reduceByKey(reduce_Pruning).cache \\ apply the reduce function

val tmpReduced_MsgIdentification= tmpReduced.filter(t => t._2._2.MsgIdentification.isDefined)

.map(t => (t._1, (t._2._1,t._2._2.MsgIdentification.get))) \\ filter the potential seed

nodes

val tmpReduced_MsgTree =tmpReduced.filter(t => t._2._2.MsgTree.isDefined)

.map(t => (t._1, t._2._2.MsgTree.get)) \\ filter the non-seed nodes

Figure 6-6: Node Assorting Code

131

o Update Propagation Tree

Initially, all nodes in the propagation tree RDD all are rooted to themselves, in

another word, the component identifier refers to the node itself. In the

implementation the component identifier is set to (-1) to denote this.

propagationTreeRDD = Option.apply(ret.map(t => (t._1, new DgCracker_MsgTree(-1, Set()))))

Nodes gathered in the tmpReduced_MsgTree (which represent the non-seed nodes),

are used to update the propagation tree T. This is achieved by simply merging the

two RDDs (propagationTreeRDD, tmpReduced_MsgTree) using the union operator

in GraphX (detailed code is presented in appendix A.2.i.c).

propagationTreeRDD = propagationTreeRDD.get.union(tmpReduced_MsgTree)

o Update Degree

The graph structure changes as its size shrinks due to some nodes being added to the

seed propagation tree T and some excluded from the processing graph G. Thus, the

nodes’ degree continuously changes. To reflect those changes, we add the

MapReduce job to evaluate the new values of degree for each node. Each node will

send a message for each of its neighbours and count the number of messages received

from its adjacent neighbours, which will return the new degree. These values are

collected in a HashMap structure and then broadcasted to each node in the cluster.

A mapPartition operation will then run to update the degree for each node within

each partition from the hash map which exist on the same machine without the need

to shuffle the whole data between cluster nodes (see appendix A.2.i.c for code).

132

ii. Seed Propagation Phase

When all the nodes has been added to the propagation tree T, and there is no more nodes for

further processing in G, the seed propagation phase starts.

Initially, the data is an RDD with a collection of entries made by the union operation between

the propagationTree RDD and the updates generated after each iteration in the seed

identification phase. Each entry is a node connected to its root (vmax →u) (section 5.4.c).

First, we need to prepare the data for processing by applying a reduce operation using the

reducePrepareDataForPropagation function that will aggregate for each root node all its

child nodes. Afterwards, we run an iterative MapReduce job to propagate the component

identifier from each node to all its children. This operation runs on two levels:

Local Seed Propagation, using the mapPartition operator, the root nodes will send

its component identifier to the child nodes on the same partition by applying the

map function mapPropagate, and then the output will be grouped and reduced

inside the same partition. Each partition is considered as an independent part of

the graph, and the function will try to identify the connected components in this

partial graph. (appendix A.2.ii (a) for code).

o Cluster Seed Propagation, a MapReduce job runs on all the data in the cluster, in

which update are generated from the root to the child nodes, and each node notifies

its child nodes with its component identifier, which is the id of its root node. The

map function mapPropagate will generate update from the root node to its child

node, and the reduce function reducePropagate will update the component

identifier for each node (see appendix A.2.ii (b) for code).

133

6.2.3 Post-Processing Stage

This stage is only to verify the work and show the results to check their correctness. We do

not include its runtime in the evaluations.

The input of this stage is the updated propagationTreeRDD, where each node is rooted to

the max components identifier (VertexID→CompID)

The input for this stage is the output graph from the computing phase. Where in the

VertexRDD, each node and its components identifier are in the form <VertexID,CompID>,

(CompID refers to the ID of the connected components they belong to).

To show the largest 10 components, we run a basic MapReduce job, which is the same as

the word count example (explained in 2.1.7):

 In the map phase, for each node generate an output to the component identifier

<VertexID, CompID > => < CompID, 1>.

 In the reduce phase we sum all the (1)s for each CompID.

Then we use .sortBy() to sort the output, and .take(10) to only take the first 10, and print

the largest 10 components with number of nodes in each one (see appendix A.3 for code).

All the information about the number of components and size for each one are known for

each dataset used. Therefore, this step will help in verifying the accuracy of the algorithm

on dataset when results are compared with previously known information about the dataset.

134

Chapter 7: Experimental Evaluation & Results

To validate and fairly evaluate the proposed enhancements suggested in our approach with

respect to other existing approaches we applied the same methodology and used matching

technologies running in an identical environment.

Spark was built using the Scala programming language. It supports many languages to

enable parallel applications to be developed and interactively used. However, its graph

processing library, GraphX, only uses the Scala language. Therefore, all the coding for

developing the proposed approach and the implementation of other approaches was carried

out using the Scala language on Spark. All our tests used the same installation of Spark with

the same configuration and the same computational resources. Details about the datasets

used and the experimental setup are presented in the following sections.

7.1 Dataset description

To test the performance of proposed approach different types and sizes of datasets were

selected, in order to generalise the result of the evaluation in the experiment. All tests ran on

two categories of graphs:

 Real-world Datasets: a collection of commonly used datasets for large graph testing

such as.

o Web-google: It was released in 2002 by Google, with edges represented by

hyperlinks between pages.

o Patent citation: The graph includes all citations made by patents over 37

years.

135

o KGS: It is a real-time server that enables two online players to simultaneously

play against each other in real time. The graph represents edges between

players.

o Dota-league: The graph represents friendship between players in the DotA

gaming platform in Europe.

o LiveJournal: It is a free online community. Members maintain journals,

individual and group blogs, and friendship between each other.

 Synthetic datasets (Graph500 graphs24). A collection of benchmark graphs which

focus on graph analysis. They were developed t to help evaluate systems for data

intensive applications[125]. Graph500 graphs are generated using the Kronecker

generator, which will produce power-law graphs (also called scale-free graphs) and

are similar to Recursive MATrix (R-MAT) scale-free graphs [126].

 Dataset name # of nodes # of edges

Real-World

Datasets

Google web 875713 5105039

Patent citation 3774768 16518948

KGS 832247 17891698

Dota-league 61170 50870313

LiveJournal 3997962 34681189

Synthetic

Datasets

graph500-22 2396657 64155735

graph500-23 4610222 129333677

graph500-24 8870942 260379520

graph500-25 17062472 523602831

graph500-26 32804978 1051922853

Table 7-1: Datasets used in the evaluation

All the selected datasets contain a large connected component that includes most nodes or

in some all the nodes. They are publicly available to give a fair opportunity for re-evaluation

24 http://graph500.org/

136

of this work25 26. Datasets used are shown in table 7.1 with information about the number

of nodes and edges in each one.

7.2 Experimental Setup:

For testing jobs, we ran all our experiments on a shared production cluster using spot

Amazon EC2 (Amazon Elastic Compute Cloud) instances. The driver node (Type:

r4.4xlarge) has 16 Cores CPU and 122 GB of memory, each of the 8 worker nodes (Type:

r4.2xlarge) has 8 Cores CPU and 61 GB of memory. All nodes run Spark version 2.1 (built

with Scala 2.10).

Spark 2.1 (Scala 2.10) EC2 instance Nodes Processor Memory

Driver: r4.2xlarge 8 8CPU 61G

Workers: r4.4xlarge 1 16CPU 122G

Table 7-2: Amazon EC2 instances used for the cluster in the evaluation

For cluster management, we used the Databricks Cloud Platform powered by Apache

Spark27, which makes it straightforward to manage big data complex infrastructures, systems

and tools. Databricks also provides its collaborative workspace Notebooks to run interactive

queries with Spark-powered dashboards. We used Notebooks to run our Scala code and

publish the Notebook for public availability (appendix A). All our datasets were hosted on

Amazon Simple Storage Service (Amazon S3) and connected to the Databricks platform to

allow data transfer to EC2 instances for processing.

It should be noted that, Cloud Computing Environments such as the Amazon EC2, have

some overheads posed on communication and computation because of virtualization on

25 https://atlarge.ewi.tudelft.nl/graphalytics/#
26 https://snap.stanford.edu/data/index.html
27 https://databricks.com/unified-analytics-platform

137

Amazon's instances. These affect the performance evaluation[127]. Furthermore, using the

Databricks services could also introduce some extra overheads with their configuration of

the cluster and the cluster load at testing time. However, due to the limited resources and

non-availability of an in-house cluster to evaluate our work in an optimal configurable

environment, we used all services previously mentioned. To overcome any unexpected lags

in performance, we ran all our tests three times on the cluster and report the median value of

the results after removing any anomalies.

7.3 Measuring Metrics:

To evaluate our approach in comparison with other algorithms, several metric measures can

be used to indicate the algorithm’s performance. These include running time, communication

cost, number of iterations, evolution of the graph size, scalability, sensitivity to diameter,

memory usage, and other resource usage. However, in this study, we only consider the

following three measures:

i. Running time

The performance of algorithms could be indicated by reporting the running time to show the

improved processing speed of each algorithm compared to others. In this study, for running

times we reported only the actual times by omitting the time needed for transferring data to

the cluster. We also omitted pre-processing stage timings, which include building and

preparing the graph

ii. Evolution of the graph size

This indicates how the structure of graph is changing and whether it is growing or shrinking.

Many algorithms change the graph structure during the process, as in the graph contraction

scheme, and this change could have a significant impact on how the algorithm performs.

138

Several algorithms try to reduce to size of the graph after each iteration by removing or

deactivating nodes. This can help to reduce the amount of computation, the cost of memory

access and disk I/O. This could also reduce the amount of network transferred information

due to fewer messages being generated.

iii. Number of Iterations

The total number of iterations the algorithm takes until it finishes, could be a useful indicator

of how fast the algorithm achieves convergence. However, it is not a precise measure of how

well the algorithm performs.

7.4 Testing & Results

This section reports the results following testing of each of our algorithm extensions. Each

extension is tested in one experiment and its results are compared with the results from the

original implementation without the extension. Table 7-3 shows the extensions evaluated,

the algorithms used in the evaluation, which part of the algorithm was measured, and the

criteria measures used in the evaluation.

139

Extension

Evaluated

Algorithm Algorithm part evaluated Criteria measured

Runtime Number

of

Iterations

Evolution

of graph

Size

Degree approach Pregel-

Original
All Yes Yes No

Pregel-

Degree
All Yes Yes No

Alternating

-Original
All Yes Yes No

Alternating

- Degree
All Yes Yes No

Cracker-

Original

Min-

Selection

step

Pruning

step

Propagation

step
Yes Yes Yes

Cracker-

Degree

Max

Identification

step

Pruning

step

Propagation

step
Yes Yes Yes

Local-Max

Identification

Cracker-

Degree
Seed Identification phase Yes Yes Yes

Cracker-

Degree-Opt
Yes Yes Yes

Local-Seed

propagation

Cracker-

Degree
Propagation phase Yes

Cracker-

Degree-Opt
Yes

DS-Pruning Cracker-

Degree
All Yes

Cracker-

Degree-DS
Yes

Table 7-3: Evaluation Table

7.4.1 Effect of using the Degree Approach to find connected components

Here, we evaluate the approach of using the vertex degree in finding connected components.

Usually, algorithms used for that purpose, selects the identifier for each component based

on the lexical ordering of nodes and ignores the existing graph’s structure. However, in this

experiment, both the general approach of selecting the component identifier based on the

minimum id node, and the approach of selecting the identifier based on the degree of node.

Where node that has the highest degree is selected, and in case more than one node share the

same highest degree, the node with the maximum ID is selected.

140

i. Performance of the Degree Approach in BSP Paradigm

In the first experiment, we compared the performance of two implementations of Pregel to

find connected components in the datasets presented in Table 7-1. Pregel, described

previously in the literature review, is considered a more efficient framework for distributed

graph processing than MapReduce. However, it does not provide fault tolerance and does

not perform well for very large datasets with a skewed degree distribution[14].

The first implementation used the traditional way that identified the node with the minimum

ID. The second is our approach of using the node degree. Our results are presented in figure

7-1 for runtime and figure 7-2 for number of iterations until convergence.

Figure 7-1: Run-Time for Pregel-Original vs Pregel-Degree

0

50

100

150

200

250

300

350

400

Ti
m

e

Dataset

Runtime

pregel-original pregel-degree

141

Figure 7-2: Number of Iterations for Pregel-Original vs Pregel-Degree

These results show an increase in runtime for the algorithm to finish. This because of the

increase in message size between nodes and the need for more computation to choose

component identifiers in each iteration. However, we also noticed a decrease in the number

of iterations needed to converge in most tests.

Figure 7.3 shows that, in the initial few iterations, processing takes more time when using

the degree approach compared to the original approach. However, this margin rapidly

decreases and in some cases, runtime is less than the original approach for the corresponding

iteration, and in almost every case there are fewer iterations.

0

2

4

6

8

10

12

14

16

18

20
It

er
at

io
n

s

Dataset

Number of Iterations

pregel-original pregel-degree

142

Figure 7-3: Iteration vs Reducer Time for Pregel-Original vs Pregel-Degree

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11

Ti
m

e

Iterations

Live-Journal

pregel-original pregel-degree

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5

Ti
m

e

Iterations

graph500-23

pregel-original pregel-degree

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 101112131415161718

Ti
m

e

Iterations

cit-Patents

pregel-original pregel-degree

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6

Ti
m

e

Iterations

Graph500-24

pregel-original pregel-degree

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

TI
m

e

Iterations

web-graph
pregel-original pregel-degree

0

10

20

30

40

50

60

70

0 1 2 3 4 5

Ti
m

e

Iterations

graph500-25
pregel-original pregel-degree

143

ii. Performance of the Degree Approach in Alternating algorithm

The second experiment is very similar to the previous one. However, here we compare the

performance of two implementations of the Alternating algorithm[14] to finding connected

components in some of the datasets presented in Table 7.1. The first implementation is based

on the original algorithm using the minimum ID as the component identifier. The second

implementation uses the node degree approach. The results presented in Figure 7-4 and 7-5

show similar performance, where the runtime increases when the degree is used, and the

number of iterations decreases in most of cases.

Figure 7-4: Run-Time for Alternating-Original vs Alternating -Degree

Figure 7-5: Number of Iterations for Alternating-Original vs alternating -Degree

0

5

10

15

20

25

graph500-22 graph500-23 graph500-24 web-Google cit-Patents dota-league Live-Journal

Ti
m

e

Dataset

Runtime

alternating-original alternating-degree

0

1

2

3

4

5

6

7

graph500-22 graph500-23 graph500-24 web-Google cit-Patents dota-league Live-Journal

It
er

at
io

n
s

Dataset

Number of Iterations

alternating-original alternating-degree

144

iii. Performance of the Degree Approach in Cracker algorithm

In this experiment, our objective was to determine the node degree approach for finding

connected components on the performance of the Cracker algorithm, which was explained

in section 4.7.8. According to Lulli[115] the Cracker algorithm outperforms its competitor

algorithms for finding connected components in large graphs in terms of both time and

volume of messages between iterations.

The first implementation used the original source code28 provided by the developer of the

algorithm. In the second implementation, we integrated the degree in the Cracker algorithm

and modified it to choose the component identifier based on node degree instead of the node

ID. Our source code is shown in Appendix A. We did not introduce any optimisation to the

modified algorithm other than using the degree.

Figure 7.6 presents the results for the runtime taken by both the original Cracker algorithm

and our modified version, which we call Cracker-Degree to indicate our implementation

using the degree approach discussed previously. In figure 7-7, runtime is shown separately

for each of the main three steps in the Cracker algorithm to evaluate the effect of our

modifications in each step.

The graph shows that there has been an insignificant difference with some slight increase for

runtime in some real-world datasets. This can be result from the extra node degree

information included in the messages transferred between cluster nodes. However, for the

synthetic datasets (Graph500~) the graphs show a marked decrease in runtime of almost

every step when using the degree approach. This could be explained from Tables 7-4 and 7-

5 that show the number of active nodes after each iteration. Table 7-4 indicates that there

has been a sharp drop in the number of active nodes after the first iteration in synthetic

28 https://github.com/hpclab/cracker

145

datasets. This results from using the degree approach in identifying non-seed nodes in the

seed identification step and excluding them for the computation process in later iterations.

Figures 7-8 and 7-9 show the results where more non-seed nodes identified in Cracker-

Degree were compared to the original algorithm. This also helped to reduce the number of

iterations. Therefore, it appears that using the degree approach results in faster convergence

and can lead to a significant performance improvement.

Table 7-4: The number of active nodes at each iteration for synthetic datasets

Table 7-5: The number of active nodes at each iteration for real-world datasets

Figure 7-6: Runtime for the Cracker-Original and Cracker-Degree

0

1000

2000

T
im

e

Dataset

Runtime

Cracker-Original Cracker-Degree

 Graph500-22 Graph500-23 Graph500-24 Graph500-25

Iter Cracker_Org Cracker_Degree Cracker_Org Cracker_Degree Cracker_Org Cracker_Degree Cracker_Org Cracker_Degree

1 2396657 2396657 4610222 4610222 8870942 8870942 17062472 17062472

2 748509 220282 1440366 412988 2797920 777933 5412675 1457768

3 878 167 1443 252 2661 427 4670 786

4 2 0 2 0 2 2 3 0

5 0 0 0 0 0

Iter dota-league kgs cit-Patents web-Google soc-LiveJournal
1 61170 61170 832247 832247 3774768 3774768 875713 875713 4846609 4847571

2 4302 1945 146900 136740 2023363 940837 280757 107648 1228095 1125190

3 0 0 3561 1920 229472 90203 17305 8237 79398 61598

4 50 41 11850 5330 1010 472 3903 1825

5 2 0 395 230 91 70 214 29

6 0 18 4 6 2 9 2

7 0 0 0 0 0 0

146

Graph500-22 Graph500-23

Graph500-24 Graph500-25

web-Google kgs

dota-league soc-LiveJournal

Figure 7-7: Runtime for the Cracker-Original and Cracker-Degree at each step

0

20

40

60

80

100

120

Min Selection

Step

Purning Step Propagation Step

T
im

e

Cracker-Original Cracker-Degree

0

50

100

150

200

250

300

350

Min Selection

Step

Purning Step Propagation

Step

T
im

e

Cracker-Original Cracker_Degree

0

100

200

300

400

500

600

Min Selection

Step

Purning Step Propagation Step

T
im

e

Cracker-Original Cracker_Degree

0

200

400

600

800

1000

1200

Min Selection

Step

Purning Step Propagation

Step
T

im
e

Cracker-Original Cracker_Degree

0

20

40

60

Min Selection

Step

Purning Step Propagation Step

T
im

e

Cracker-Original Cracker_Degree

0

20

40

60

Min Selection

Step

Purning Step Propagation Step

T
im

e

Cracker-Original Cracker_Degree

0

5

10

15

20

25

30

35

Min Selection

Step

Purning Step Propagation Step

T
im

e

Cracker-Original Cracker_Degree

0

20

40

60

80

100

Min Selection

Step

Purning Step Propagation

Step

T
im

e

Cracker-Original

147

Figure 7-8: The number of active nodes at each iteration

G
ra

p
h

5
0
0

-2
2

G
ra

p
h

5
0
0

-2
3

G
ra

p
h

5
0
0

-2
4

G
ra

p
h

5
0
0

-2
5

0

100

200

300

1 2 3 4 5

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

Iteration

Cracker-Degree Cracker-Original

0

50

100

150

200

250

300

1 2 3 4 5

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

Iteration

Cracker-Original Cracker-Degree

0

20

40

60

1 2 3 4 5

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Cracker-Original Cracker_Degree

0

10

20

30

40

50

1 2 3 4 5

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0
Iteration

Cracker-Original Cracker_Degree

0

100

200

1 2 3 4 5

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Cracker_Degree Cracker-Original

0

50

100

150

200

1 2 3 4 5A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Cracker-Original Cracker_Degree

0

50

100

1 2 3 4 5

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Cracker_Degree Cracker-Original

0

20

40

60

80

100

1 2 3 4 5

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Cracker-Original Cracker_Degree

148

Figure 7-9: The number of active nodes at each iteration

w
eb

-G
o
o
g
le

k
g
s

ci
t-

P
a
te

n
ts

d
o
ta

-l
ea

g
u

e

so
c-

L
iv

eJ
o
u

rn
a
l1

0

5

10

1 2 3 4 5 6 7A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Cracker_Degree Cracker-Original

0

2

4

6

8

10

1 2 3 4 5 6 7A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration
Cracker-Original Cracker_Degree

0

50

100

1
2

3

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

Iteration
Cracker-Original Cracker_Degree

0

50

100

1 2 3

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

Iteration

Cracker-Original Cracker_Degree

0

200

400

1 2 3 4 5

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

Iteration
Cracker-Original Cracker_Degree

0

100

200

300

400

1 2 3 4 5

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

Iteration
Cracker-Original Cracker_Degree

0

5

10

1
2

3A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

Iteration

Cracker-Original Cracker_Degree

0

2

4

6

8

1 2 3

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

Iteration

Cracker-Original Cracker_Degree

0

20

40

60

1 2 3
4

5A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration
Cracker-Original Cracker_Degree

0

20

40

60

1 2 3 4 5

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Cracker-Original Cracker_Degree

149

7.4.2 Effect of local Max Identification

In the Seed Identification phase, the main objective is to exclude non-seed nodes from the

computation and add them to the propagation tree. In the original Cracker algorithm, it is

implemented in two steps, max identification and pruning step. The first step will identify

those nodes which will be excluded in the pruning step. However, we try to break the first

step in two further steps: local max identification and cluster max identification. In the local

max identification step, which we described in section 5.5.1, we process each partition

separately to find the local component identifier for all nodes in that partition and for each

node update its component identifier accordingly. A disjoint data structure is used to

implement this step as described in section 5.5.1. The results from the experiment of

evaluating the efficiency of this step are presented in Table 7-6. The number of active nodes

after each iteration is reported for both the modified implementation (where the local max

identification is added), and the original algorithm implementation (where only the cluster

max identification is performed).

Table 7-6: The number of active nodes after each iteration of seed identification phase.

Optimised Seed ident (Seed-Iden-Opt) vs Original Seed ident (Seed-Iden- Org)

Iter
cit-Patents kgs dota-league

Seed-Iden-

Org Seed-Iden- Opt Seed-Iden- Org Seed-Iden- Opt Seed-Iden- Org Seed-Iden- Opt

1 2396657 2396657 832247 832247 61170 61170

2 220282 17757 136740 15062 1945 0

3 2 14 1920 52 0

4 0 0 41 3

5 0 2

6 0

Iter Graph500-22 Graph500-23 Graph500-24 Graph500-25

Seed-Iden-

Org

Seed-Iden-

Opt
Seed-Iden-

Org
Seed-Iden-

Opt
Seed-Iden-

Org
Seed-Iden-

Opt
Seed-Iden-

Org
Seed-Iden-

Opt

1 2396657 2396657 4610222 4610222 8870942 8870942 17062472 17062472

2 220282 17757 412988 61811 777933 202671 1457768 610993

3 2 14 3 24 427 61 786 120

4 0 0 0 0 2 0 0 0

5 0

150

d
o
ta

-L
ea

g
u
e

kg
s

Figure 7-10: Runtime for the Seed Identification Phase

 Optimised Seed ident (Seed-Iden-Opt) vs Original Seed ident (Seed-Iden- Org)

0

5

10

15

20

25

T
im

e

Seed-Iden- Org Seed-Iden-Opt

0

1

2

3

4

5

6

7

1 2 3
A

ct
iv

e
n
o

d
es

x
 1

0
0

0
0

Iteration

Seed-Iden- Org Seed-Iden-Opt

0

5

10

15

20

25

30

35

40

45

T
im

e

Seed-Iden- Org Seed-Iden-Opt

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

A
ct

iv
e

n
o

d
s

x
 1

0
0

0
0

0

Iteration

Seed-Iden- Org Seed-Iden-Opt

P
a
te

n
ts

0

0.5

1

1.5

2

2.5

3

3.5

T
im

e

Seed-Iden- Org Seed-Iden-Opt

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Seed-Iden- Org Seed-Iden-Opt

151

G
ra

p
h
5
0
0
-2

2

G
ra

p
h
5
0
0
-2

3

G
ra

p
h
5
0
0
-2

4

G
ra

p
h
5
0
0
-2

5

Figure 7-11: Runtime for the Seed Identification Phase

 Optimised Seed ident (Seed-Iden-Opt) vs Original Seed ident (Seed-Iden- Org)

0.85

0.9

0.95

1

1.05

T
im

e

Seed-Iden- Org Seed-Iden-Opt

0

5

10

15

20

25

30

1 2 3 4A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Seed-Iden- Org Seed-Iden-Opt

1.55
1.555

1.56
1.565

1.57
1.575

1.58
1.585

T
im

e

Seed-Iden- Org Seed-Iden-Opt

0

10

20

30

40

50

1 2 3 4
A

ct
iv

e
n
o

d
es

x
 1

0
0

0
0

0
Iteration

Seed-Iden- Org Seed-Iden-Opt

3

3.2

3.4

3.6

3.8

4

T
im

e

Seed-Iden- Org Seed-Iden-Opt

0

10

20

30

40

50

1 2 3 4

A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Seed-Iden- Org Seed-Iden-Opt

0

5

10

15

T
im

e

Seed-Iden- Org Seed-Iden-Opt

0

50

100

150

200

1 2 3 4A
ct

iv
e

n
o

d
es

x
 1

0
0

0
0

0

Iteration

Seed-Iden- Org Seed-Iden-Opt

152

The results of this experiment show a further drop in the number of active nodes and the

number of iterations when local max identification is used. These results agree with and

support the objectives introduced from the implementation of this step. However, contrary

to expectations, the runtime results shown in figures 7-10, 7-11, and 7-12 indicate some

inconsistencies. Although for some real-world datasets the runtime was promising as it

decreased, for the synthetic datasets the runtime increased. This inconsistency may be due

to the difference in the type of graph structure, as real-world graphs tend to be more sparse.

Furthermore, not all tests on real-world datasets have finished in our implementation, as in

case of the web-google and soc-liveJournal datasets. This indicates the need for further

optimisation of our implementation. In addition, further research should be undertaken to

investigate the cause of some contradicting results.

Figure 7-12: Runtime for the Seed Identification Phase on different datasets

Optimised Seed ident (Seed-Iden-Opt) vs Original Seed ident (Seed-Iden- Org)

-8

2

12

22

32

42

52

cit-Patents kgs dota-league web-Google

T
im

e

Runtime

Seed-Iden- Org Seed-Iden-Opt

0

5

10

15

Graph500-22 Graph500-23 Graph500-24 Graph500-25

T
im

e

Runtime

Seed-Iden- Org Seed-Iden-Opt

153

7.4.3 Effect of local Seed Propagation

Nodes are added to the propagation tree T in the Seed Identification phase, where each node

is rooted to its local component identifier. In the Seed Propagation Phase, each node then

propagates its component identifier to its children until all nodes belonging to the same

component are propagated with the same identifier. To enhance this operation a Local Seed

Propagation Step was proposed as described in section 5.5.2.

In the experiment presented in figure 7-13, the runtime results for the Seed Propagation

Phase, for both the enhanced implementation (where the local seed propagation is added),

and the original algorithm implementation (where only the cluster seed propagation is

performed) are shown. For the real-world datasets, no significant differences are noted.

However, when the size of the synthetic dataset increase there is a marked decrease in the

runtime.

Figure 7-13: Runtime for the Seed Propagation Phase on different datasets

Optimised Seed Propagation (Seed-Prop-Opt) vs Original Seed Propagation (Seed-Prop-

Org)

0

100

200

300

400

500

600

700

800

900

1000

T
im

e

Dataset

Runtime

Seed-Prop-Org Seed-Prop-Opt

154

The results of this experiment indicate that there is an interesting runtime improvement on

the synthetic datasets tests, where the runtime improves as the size of the tested dataset

becomes larger.

7.4.4 Performance of the DS-Pruning

In this experiment, we tested the implementation of building the propagation tree and

caching it in the memory of the driver node in the cluster. Updates at the end of each iteration

of the Seed Identification Phase are gathered and merged into the propagation tree

dynamically as they are generated using the disjoint-Set data structure described in section

5.4.ii.

Although, Spark does not support such operations where data could be cached only in the

driver node memory, we tried implementing this on Spark using its available operators. we

collected the propagation updates and forced a dynamic merge operation between the

updates and the propagation tree. However, we couldn’t cache the propagation tree in the

memory of the driver node, which caused to some overhead on the system (our code is shown

in Appendix A).

Results are presented in figure 7-14. These results were not very encouraging as the runtime

increased significantly compared to the original algorithm implementation. This is most

likely caused by the unexpected issue of the vastly increased amount of data shuffling.

Nonetheless, we managed to get accurate results and the algorithm coverage as expected.

In the results of this experiment, only the runtime has been reported because the number of

iterations and the size of graph evolution are the same in both the original and optimised

algorithms. Nonetheless, the need to proceed into the Seed Propagation Phase was avoided,

155

and consequently this could help to improve the performance in case the issue of the

enormous amount of data shuffling was resolved. There is significant room for further

progress if this could be optimised in Spark, or implemented using a different distributed

graph processing framework.

Figure 7-14: Runtime for the seed propagation (a) & (b)

Cracker-Degree vs Cracker-Degree using disjoint-set for Propagation (Cracker-Degree-

DS)

0

100

200

300

400

500

600

700

800

900

dota-league web-google kgs cit-Patents Live-Journal1

T
im

e
in

 s
ec

o
n
d

s

Dataset

(a)

Runtime

Cracker-Degree Cracker-Degree-DS

0

1000

2000

3000

4000

5000

6000

graph500-22 graph500-23 graph500-25

T
im

e
in

 s
ec

o
n
d

s

Dataset

(b)

Runtime

Cracker-Degree Cracker-Degree-DS

156

7.5 Summary

The results in this chapter with respect to the proposed improvements indicate the

following:

(i). Using the node degree approach:

 In finding connected components algorithms using the node-degree for choosing the

component identifier can significantly affect the performance of the algorithm.

 In all case, it helps to reach converge faster by reducing the number of

iterations. However, it increases the size of the graph as the node degree is

attached to each node, in addition this increases the communication load due

to the increased size in messages. Therefore, this approach can increase the

runtime of the algorithm in spite of decreasing the number of iterations

needed.

 For algorithms which provide vertex pruning, where the algorithm has the

ability of excluding unusual vertices for the computation from the process,

which shrink the size of the graph after each iteration. In this case, using the

node degree approach appears to be very efficient and results in faster

convergence which lead to a significant performance improvement. Both the

runtime and number of iteration has decreased, especially after the first

iteration where there has been a sharp drop in the number of active nodes in

compare to the approach where the node ID is used.

(ii). Using the local computation for connected components approach: by moving

more computation toward where the data is stored on the worker nodes and finding

connected component in the data partition

 In case of local max identification

157

o The runtime on the synthetic dataset has increased, while for the real-world

dataset runtime decreased with more effect on reducing the number of node

after each iteration when this approach is used.

o This inconsistency may be due to the difference in the type of graph structure,

as real-world graphs tend to be more sparse. Also, the increase of the runtime

could be explained due to the overhead caused by the computation for each

partition is done by only CPU core (spark configuration).

 In case of local propagation

o The runtime for the real-world datasets showed no significant differences are

noted. However, when the size of the synthetic dataset increases there is a

marked decrease in the runtime, which indicates that, when the graph size

increases, and consequently the number of partitions increases, performance

of local seed identification becomes more efficient.

 Performance of the DS-Pruning

These results were not very encouraging as the runtime significantly increased most

likely due to the vastly increased amount of data shuffling. However, final results

were accurate and the algorithm coverage and the need to proceed into the Seed

Propagation Phase was avoided, which could consequently improve the

performance in case the issue of the enormous amount of data shuffling could be

resolved.

In summary, it has been shown from the results that these experiments have confirmed that

using the degree approach resulted in faster convergence and can lead to significant

performance improvement. In many cases, optimising the design of the algorithm with local

pre-processing of the data using processing system features can also result in performance

enhancement.

158

Chapter 8: Conclusions

8.1 Introduction:

The aim of this research has been to examine the processing of large-scale graphs and more

specifically, enhance the performance of finding connected components algorithms in large

graphs. Finding connected components is an essential pre-processing step to extract

knowledge about the graph. It is also a fundamental operation for some graph computations

such as pattern recognition, reachability, graph compression, graph partition, and random

walk[12]. The MapReduce[18] framework dominates the processing of large-scale data on

Hadoop, and it is commonly used for mining big graphs[128]. However, iterative processing

is not directly supported in MapReduce. Nonetheless, some recent works[21][22] show that

it is possible to outperform other models for finding connected components using

MapReduce. Yet, only a few studies have investigated this problem in big data distributed

system using MapReduce[14].

Current big data processing systems have become more advanced with features beyond

MapReduce, such as Spark[23], which supports iterative processing. In addition, current

MapReduce algorithm for finding connected component only use the traditional approach to

selecting the component identifier for each component based on the lexical ordering of the

node ID value. These issues have been addressed by implementing a new algorithm for

finding connected components following best practices and design patterns recommended

when using MapReduce paradigm. In the new algorithm, graph structure property is

considered. More specifically, the node degree has been used as the main criteria for

choosing the component identifier. In addition, features beyond MapReduce provided by the

processing system have also been considered, such as the ability to move more computation

159

toward where the data is stored. For the local computation for the connected components,

disjoint-set data structure has been used.

8.2 Summary

This thesis has reviewed current big data processing systems, focusing on large-scale graph

processing systems. The study has started by defining what big data is, the technologies used,

and how MapReduce operates. It has discussed graphs and big graph processing systems and

the approach used in the developments of big graph processing systems with a brief overview

of the most common distributed graph programming models. The main focus of this study

has been on the algorithm of finding Connected Components in an undirected graph, which

is one of the main concepts that have been studied in Graph Theory[6]. Most of the known

algorithms for CC in MapReduce have been reviewed in depth, and a few improvements in

our approach has been introduced. The improvements implemented have included graph

contraction based on node degree, dynamic evaluation of the degree after each iteration, and

computing local CC in the map phase based on Disjoint-Set data structures. The study has

applied the proposed improvements on the latest algorithm for finding connected

components, carrying out extensive experimental evaluations of the implementations using

large real world and synthetic graph datasets on computing clusters.

One of the key issues in the design of current CC algorithms for large graphs is that they do

not consider the structure of the graph processed. Moreover, they do not benefit from new

features available in the current advance distributed processing systems. Instead, they follow

the traditional MapReduce programming model using its original Hadoop system

implementation. This study has addressed these issues in the proposed approach. It has

initially experimentally investigated using the node degree for choosing the component

identifier instead of just using the node ID. Furthermore, it has proposed moving more

160

computation to where the data is stored on the worker nodes and used a disjoint-set data

structure to help find connected components locally on one node.

The results of these experiments confirm that using the degree approach resulted in faster

convergence and can lead to significant performance improvement. In many cases,

optimising the design of the algorithm with local pre-processing of the data can also result

in performance enhancement. However, this step should be considered wisely as it could

cause some system overhead and a drop-in performance. Many factors can affect this, such

as graph size, structure, and density.

8.3 Contributions

This study contributes to the field of knowledge as follows:

(v). Using the node degree approach in finding connected components algorithm:

using the degree approach in choosing the connected component identifier will

always result in less number of iteration until convergence, however it adds some

overload on the system due to the extra work required to calculate the degree for each

node and the increased size of messages due to the attachment of the degree to the

node. Nonetheless, this approach showed significant performance improvement

when applied to algorithms which apply vertex pruning; where unuseful nodes for

the computation are excluded from the process after each iteration. In this kind of

algorithms (Cracker in our case) the number of iterations decreases and the size of

graph shrinks faster when this approach is applied, leading to better runtime.

(vi). Using the local computation for connected components approach:

Moving more computation towards where the data is stored, and trying to apply

computation on a data partition before the need to do computation on the cluster can

161

effectively improve the performance of the algorithm. In the case with the Cracker

algorithm, despite the inconsistency in results, in general there is a noticeable

performance improvement especially in the seed propagation phase for the larger

datasets. This approach should to be wisely considered and implemented as it could

increase the load on the system and lead to performance degradation.

(vii). Considering different level of computation in the design of the algorithm.

In big data processing system operations are applied at different level, by identifying

the level of processing, and integrating them in the process of the algorithm design

can help to increase the efficiency of the algorithm. For example, start by processing

the data partition, then process the collective data of partitions inside a cluster worker

node, and finally process all the data at the cluster driver node. Customising operation

in the algorithm for each level could increase the performance of the algorithm. In

this study, processing has been customised and applied on the data partitions in the

cluster driver nodes. However, additional operations could be added to process the

data inside a cluster worker node using multi-core structure of the cluster nodes.

(viii). Guidelines to be implemented in different context

It is worth noting that one of the major contribution of this work is to encourage

active researcher in the field to consider features provided by the current new

processing systems in the design of their algorithms. This could be considered as

useful guidelines to be implemented in different context.

162

8.4 Limitation

During the process of conducting this research, we faced many issues. The most important

limitation being that of resources and the non-availability of a suitably configured in-house

processing cluster to evaluate our work in an optimal configurable environment. This study

was therefore, carried out using the Amazon Cloud Computing Environment. However, this

also had some limitations, it is not obvious wither there is other application running on the

same cluster nodes at the same time and what is the impact of their jobs. So not all the

allocated resources could be available at that time. In addition, some overheads could impact

communication and computation caused by the virtualization used by Amazon, which affects

the performance evaluation. During the testing, we encountered inconsistency in readings

for the algorithm runtime. We attempted to overcome any unexpected lags in performance

by running all our tests three times on the cluster and reporting the median value of the

results after removing any anomalies. However, this did not guarantee the right results. We

restarted the cluster before each test run to ensure there would be no impact from running

the previous tests, as we noticed that Spark keeps some unnecessary RDD files in memory

even after asking it to un-cache them.. However, we had no control on communications and

other processes that could be running on other shared resources in the virtual system. An

additional uncontrolled factor was controlling the configuration of the cluster. We used the

Databricks cloud platform to manage the cluster and its Spark-powered dashboards to run

our code. This also could introduce some extra overheads with their configuration of the

cluster and the cluster load at the testing time. Again, this also limited our ability to change

the configuration of cluster, and therefore restricted the options in trying larger datasets and

using larger clusters.

163

An issue that was not addressed in this study was the fast-moving pace of technology in this

area, as most of the algorithms and technologies mentioned were created during the process

of conducting this study.

8.5 Future Works

Findings from this research offer the following insights and recommendations for future

research:

 Future research should concentrate on the investigation of the previous issues addressed

in the limitations section 8.4. For example, using a dedicated cluster with a controlled

configuration could achieve very reliable results and help to understand them.

 A further study could assess the scalability of the improvements implemented to

determine how they perform on larger datasets or on different type of graphs.

 A more straightforward future evaluation would be to implement the new algorithm

using serverless service in Databricks, which could automatically allocate the optimal

resources as needed. However, this service is not available yet.

 More research is also required to determine the efficacy of using the degree of node

approach on another algorithm. This could prove to be particularly valuable especially

for algorithms that use the graph contraction scheme.

 Another possible area of future research would be to investigate the use of parallel

disjoint-set for finding connected component locally. This could benefit from the multi-

core structure available in the processing node.

 Further studies regarding designing the algorithm to use local pre-processing is strongly

recommended, as most new big data processing systems support it.

164

 Spark is a very active developing project. Therefore, it is always recommended to revisit

this study and apply updated features and best practices to help tune and troubleshoot

Spark implementation of the algorithm.

 Apply the approach of using the degree in finding connected components in dynamic

graphs. In addition, test the approach of local computation of connected components

using disjoint-Set data structure, as it is more efficient in situation where edges are

continuously being added and incremental computation of connected components is

required.

165

References:

[1] T. Kraska, “Finding the Needle in the Big Data Systems Haystack,” IEEE Internet

Comput., vol. 17, no. 1, pp. 84–86, Jan. 2013.

[2] D. Cearley, “The Top 10 Strategic Technology Trends for 2015,” in Gartner

Symposium/ITxpo, 2015.

[3] P. Zikopoulos and C. Eaton, Understanding Big Data: Analytics for Enterprise

Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, 2011.

[4] S. Madden, “From Databases to Big Data,” IEEE Internet Comput., vol. 16, no. 3,

pp. 4–6, May 2012.

[5] E. Dumbill, “Making Sense of Big Data,” Big Data, vol. 1, no. 1, pp. 1–2, Mar.

2013.

[6] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning about a

highly connected world. Cambridge University Press, 2010.

[7] G. D. F. Morales, “Big Data and the Web: Algorithms for Data Intensive Scalable

Computing,” PhD.Thesis, IMT Institute for Advanced Studies, Lucca,Italy, 2012.

[8] R. Bordawekar, B. Blainey, C. Apte, M. Mcroberts, and Y. Heights, “Analyzing

Analytics Part 1 : A Survey of Business Analytics Models and Algorithms,” IBM

Syst. J., vol. 42, no. 4, pp. 1–82, Feb. 2014.

[9] H. Kardes and S. Agrawal, “CCF: Fast and scalable connected component

computation in MapReduce,” 2014 Int. Conf. Comput. Netw. Commun., pp. 994–

998, Feb. 2014.

[10] J. Cohen, “Graph Twiddling in a MapReduce World,” Comput. Sci. Eng., vol. 11,

no. 4, pp. 29–41, 2009.

[11] S. Skhiri and S. Jouili, “Large Graph Mining: Recent Developments, Challenges and

Potential Solutions,” Bus. Intell. SE - 5, vol. 138, pp. 103–124, 2013.

[12] H.-M. Park, N. Park, S.-H. Myaeng, and U. Kang, “Partition Aware Connected

Component Computation in Distributed Systems,” in IEEE International

Conference on Data Mining series (ICDM), 2016.

[13] T. Seidl, B. Boden, and S. Fries, “CC-MR – Finding Connected Components in

Huge Graphs with MapReduce,” in Machine Learning and Knowledge Discovery in

Databases, 2012, pp. 458–473.

[14] R. Kiveris, S. Lattanzi, V. Mirrokni, V. Rastogi, and S. Vassilvitskii, “Connected

Components in MapReduce and Beyond,” in Proceedings of the ACM Symposium

on Cloud Computing - SOCC ’14, 2014, pp. 1–13.

[15] C. Jain, P. Flick, T. Pan, O. Green, and S. Aluru, “An Adaptive Parallel Algorithm

for Computing Connected Components,” IEEE Trans. Parallel Distrib. Syst., vol.

XX, no. c, pp. 1–1, 2017.

[16] A. B. Patel, M. Birla, and U. Nair, “Addressing big data problem using Hadoop and

166

Map Reduce,” Eng. (NUiCONE), 2012 Nirma Univ. Int. Conf., pp. 1–5, 2012.

[17] “ApacheTM Hadoop®,” Apache Hadoop. [Online]. Available:

http://hadoop.apache.org/. [Accessed: 20-Jun-2017].

[18] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters,” in Proceedings of the 6th Conference on Symposium on Opearting

Systems Design & Implementation - Volume 6, 2004, p. 10.

[19] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large

clusters,” Commun. ACM, vol. 51, no. 1, p. 107, Jan. 2008.

[20] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A Peta-Scale Graph

Mining System Implementation and Observations,” in 2009 Ninth IEEE

International Conference on Data Mining, 2009, pp. 229–238.

[21] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,

“Distributed GraphLab,” Proc. VLDB Endow., vol. 5, no. 8, pp. 716–727, Apr.

2012.

[22] V. Rastogi, A. Machanavajjhala, L. Chitnis, and A. Das Sarma, “Finding connected

components in map-reduce in logarithmic rounds,” in 2013 IEEE 29th International

Conference on Data Engineering (ICDE), 2013, pp. 50–61.

[23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

Cluster Computing with Working Sets,” in 2nd {USENIX} Workshop on Hot Topics

in Cloud Computing, HotCloud’10, 2010, p. 10.

[24] M. Zaharia et al., “Apache Spark: A Unified Engine for Big Data Processing,”

Commun. ACM, vol. 59, no. 11, pp. 56–65, Oct. 2016.

[25] J. J. E. Gonzalez, R. R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I.

Stoica, “GraphX: Graph Processing in a Distributed Dataflow Framework,” in 11th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}

14), 2014, pp. 599–613.

[26] F. Bajaber, R. Elshawi, O. Batarfi, A. Altalhi, A. Barnawi, and S. Sakr, Big Data 2.0

Processing Systems: Taxonomy and Open Challenges, vol. 14, no. 3. 2016.

[27] M. Romao, “A Vision for Big Data,” Policy@Intel. 2013.

[28] Planning Guide, “Getting Started with Big Data,” Intel IT Center, 2013.

[29] S. Sagiroglu and D. Sinanc, “Big data: A review,” 2013 Int. Conf. Collab. Technol.

Syst., pp. 42–47, May 2013.

[30] “STATS | YouTube Company Statistics – Statistic Brain.” [Online]. Available:

http://www.statisticbrain.com/youtube-statistics/. [Accessed: 28-Jul-2017].

[31] F. Shull, “Getting an Intuition for Big Data,” IEEE Softw., vol. 30, no. 4, pp. 3–6,

Jul. 2013.

[32] T. Davenport, P. Barth, and R. Bean, “How ‘Big Data’is Different,” MIT Sloan

Manag. Rev., vol. 54, no. 1, 2012.

[33] A. Katal, M. Wazid, and R. H. Goudar, “Big data: Issues, challenges, tools and

Good practices,” in 2013 Sixth International Conference on Contemporary

167

Computing (IC3), 2013, pp. 404–409.

[34] P. Hunter, “Journey to the Centre of Big Data,” Eng. Technol., vol. 8, no. 3, pp. 56–

59, Apr. 2013.

[35] S. Chaudhuri, “How Different is Big Data?,” in 2012 IEEE 28th International

Conference on Data Engineering, 2012, pp. 5–5.

[36] F. J. Alexander, A. Hoisie, and A. Szalay, “Big Data,” Comput. Sci. Eng., vol. 13,

no. 6, pp. 10–13, Nov. 2011.

[37] K. Venkatram and M. A. Geetha, “Review on Big Data & Analytics –

Concepts, Philosophy, Process and Applications,” Cybern. Inf. Technol., vol. 17, no.

2, Jan. 2017.

[38] D. Laney, “3-D Data Management: Controlling Data Volume, Velocity and

Variety.,” META Gr. Res. Note, vol. 6, p. 70, 2001.

[39] A. Bhatia and G. Vaswani, “Big data: A review,” IEEE Int. J. Eng. Sci. Res.

Technol. IJESRT, vol. 2, no. 8, pp. 2102–2106, Aug. 2013.

[40] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money, “Big Data: Issues and

Challenges Moving Forward,” 2013 46th Hawaii Int. Conf. Syst. Sci., pp. 995–1004,

Jan. 2013.

[41] S. Yin and O. Kaynak, “Big Data for Modern Industry: Challenges and Trends,”

Proc. IEEE, vol. 103, no. 2, pp. 143–146, Feb. 2015.

[42] LAVASTORM Analytics, “The Top Challenges in Big Data and Analytics,” 2013.

[43] R. Mateosian, “Ethics of Big Data,” IEEE Micro, vol. 33, no. 2, pp. 60–61, Mar.

2013.

[44] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad,”

in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles - SOSP ’13, 2013, pp. 439–455.

[45] “HPCC Systems: High performance Computing Cluster.” [Online]. Available:

http://hpccsystems.com/.

[46] G. Malewicz et al., “Pregel,” in Proceedings of the 2010 international conference

on Management of data - SIGMOD ’10, 2010, p. 135.

[47] “Storm, distributed and fault-tolerant realtime computation.” [Online]. Available:

https://storm.apache.org/. [Accessed: 20-Jun-2017].

[48] “S4: Distributed Stream Computubg Platform.” [Online]. Available:

http://incubator.apache.org/s4/.

[49] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” ACM

SIGOPS Oper. Syst. Rev., vol. 37, no. 5, p. 29, Dec. 2003.

[50] U. Kang and C. Faloutsos, “Big graph mining,” ACM SIGKDD Explor. Newsl., vol.

14, no. 2, p. 29, Apr. 2013.

[51] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets.

Cambridge: Cambridge University Press, 2014.

168

[52] U. Kang, D. H. Chau, and C. Faloutsos, “Pegasus: Mining billion-scale graphs in the

cloud,” in 2012 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2012, pp. 5341–5344.

[53] S. N. Srirama, P. Jakovits, and E. Vainikko, “Adapting scientific computing

problems to clouds using MapReduce,” Futur. Gener. Comput. Syst., vol. 28, no. 1,

pp. 184–192, Jan. 2012.

[54] V. K. Vavilapalli et al., “Apache Hadoop YARN,” in Proceedings of the 4th annual

Symposium on Cloud Computing - SOCC ’13, 2013, pp. 1–16.

[55] K. Grolinger, M. Hayes, W. a. Higashino, A. L’Heureux, D. S. Allison, and M. A.

M. Capretz, “Challenges for MapReduce in Big Data,” in 2014 IEEE World

Congress on Services, 2014, no. Services, pp. 182–189.

[56] G. Shroff, “Web Intelligence and Big Data,” coursera.org, 2013. [Online].

Available: https://class.coursera.org/bigdata-002/. [Accessed: 10-Dec-2013].

[57] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding, “Data mining with big

data,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97–107, Jan. 2014.

[58] J. Ekanayake et al., “Twister,” in Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing - HPDC ’10, 2010, p. 810.

[59] U. Gupta and L. Fegaras, “Map-based graph analysis on MapReduce,” in 2013 IEEE

International Conference on Big Data, 2013, pp. 24–30.

[60] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop,” Proc. VLDB Endow.,

vol. 3, no. 1–2, pp. 285–296, Sep. 2010.

[61] “Apache Tez.” [Online]. Available: http://hortonworks.com/hadoop/tez/. [Accessed:

20-Jun-2017].

[62] J. Ekanayake et al., “DryadLINQ for Scientific Analyses,” in 2009 Fifth IEEE

International Conference on e-Science, 2009, pp. 329–336.

[63] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica, “Hyracks: A flexible

and extensible foundation for data-intensive computing,” in 2011 IEEE 27th

International Conference on Data Engineering, 2011, pp. 1151–1162.

[64] D. J. Dewitt and A. Krioukov, “Clustera : An Integrated Computation And Data

Management System,” vol. 1, no. 212, pp. 28–41, 2008.

[65] A. Alexandrov et al., “The Stratosphere platform for big data analytics,” VLDB J.,

vol. 23, no. 6, pp. 939–964, Dec. 2014.

[66] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and K. Tzoumas,

“Apache Flink: Unified Stream and Batch Processing in a Single Engine,” Data

Eng., pp. 28–38, 2015.

[67] “Apache Giraph: Iterative Graph Processing System.” [Online]. Available:

http://giraph.apache.org/. [Accessed: 20-Jun-2017].

[68] “Apache SparkTM - Lightning-Fast Cluster Computing.” [Online]. Available:

http://spark.apache.org/. [Accessed: 20-Jun-2017].

[69] M. Zaharia et al., “Resilient Distributed Datasets: A Fault-tolerant Abstraction for

169

In-memory Cluster Computing,” in Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation, 2012, no. UCB/EECS-2011-82, p.

2.

[70] M. Armbrust et al., “Scaling spark in the real world,” Proc. VLDB Endow., vol. 8,

no. 12, pp. 1840–1843, Aug. 2015.

[71] J. Lin and C. Dyer, “Data-Intensive Text Processing with MapReduce,” Synth. Lect.

Hum. Lang. Technol., vol. 3, pp. 1–177, 2010.

[72] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora, “Graph

metrics for temporal networks,” Underst. Complex Syst., pp. 15–40, 2013.

[73] V. Kostakos, “Temporal graphs,” Phys. A Stat. Mech. its Appl., vol. 388, no. 6, pp.

1007–1023, 2009.

[74] J. Han, M. Kamber, and J. Pei, “Graph Mining, Social Network Analysis, and

Multirelational Data Mining,” in Data Mining: Concepts and Techniques, Second

Edi., Morgan Kaufmann, 2005, pp. 535–589.

[75] C. C. E. Tsourakakis, “Data Mining with MAPREDUCE: Graph and Tensor

Algorithms with Applications,” Master thesis, Carnegie Mellon University, 2010.

[76] M. Junghanns, A. Petermann, M. Neumann, and E. Rahm, Handbook of Big Data

Technologies. Cham: Springer International Publishing, 2017.

[77] A. Ghrab, S. Skhiri, S. Jouili, and E. Zimányi, “An Analytics-Aware Conceptual

Model for Evolving Graphs,” in Data Warehousing and Knowledge …, 2013, pp. 1–

12.

[78] A. Guerrieri, “Distributed Computing for Large-scale Graphs,” PhD thesis,

University of Trento, 2015.

[79] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. Elsevier, 2013.

[80] R. Angles, “A comparison of current graph database models,” Proc. - 2012 IEEE

28th Int. Conf. Data Eng. Work. ICDEW 2012, pp. 171–177, 2012.

[81] S. Sakr, “Large-Scale Graph Processing Systems,” in Big Data 2.0 Processing

Systems: A Survey, Cham: Springer International Publishing, 2016, pp. 53–73.

[82] V. Kalavri, V. Vlassov, and S. Haridi, “High-Level Programming Abstractions for

Distributed Graph Processing,” pp. 1–19, 2016.

[83] D. Yan, Y. Bu, Y. Tian, A. Deshpande, and J. Cheng, “Big Graph Analytics

Systems,” Proc. 2016 Int. Conf. Manag. Data, vol. 7, no. 1–2, pp. 2241–2243, 2016.

[84] V. Kalavri, “Performance Optimization Techniques and Tools for Distributed Graph

Processing School of Information and Communication Technology,” Doctoral

dissertatio, KTH Royal Institute of Technology, 2016.

[85] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33,

no. 8, pp. 103–111, Aug. 1990.

[86] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson, “From ‘think

like a vertex’ to ‘think like a graph,’” Proc. VLDB Endow., vol. 7, no. 3, pp. 193–

204, Nov. 2013.

170

[87] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, “SYNC or ASYNC: time to fuse

for distributed graph-parallel computation,” in Proceedings of the 20th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming -

PPoPP 2015, 2015, pp. 194–204.

[88] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie, “Pregelix: Big(ger) graph

analytics on a dataflow engine,” Proc. VLDB Endow., vol. 8, no. 2, pp. 161–172,

Oct. 2014.

[89] D. Yan, Y. Huang, J. Cheng, and H. Wu, “Efficient Processing of Very Large

Graphs in a Small Cluster,” Jan. 2016.

[90] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin, “Scalable big graph

processing in MapReduce,” in Proceedings of the 2014 ACM SIGMOD

international conference on Management of data - SIGMOD ’14, 2014, pp. 827–

838.

[91] R. R. McCune, T. Weninger, and G. Madey, “Thinking Like a Vertex: A Survey of

Vertex-Centric Frameworks for Large-Scale Distributed Graph Processing,” ACM

Comput. Surv., vol. 48, no. 2, 2015.

[92] E. Carlini, P. Dazzi, A. Lulli, and L. Ricci, “Layered Thinking in Vertex Centric

Computations,” pp. 1–3.

[93] E. Carlini, P. Dazzi, A. Lulli, and L. Ricci, “Distributed Graph Processing: An

Approach based on Overlay Composition,” Sac 2016, pp. 1912–1917, 2016.

[94] R. Lämmel, “Google’s MapReduce programming model — Revisited,” Sci.

Comput. Program., vol. 70, no. 1, pp. 1–30, Jan. 2008.

[95] P. Stutz, A. Bernstein, and W. Cohen, “Signal/Collect: Graph Algorithms for the

(Semantic) Web,” Springer, Berlin, Heidelberg, 2010, pp. 764–780.

[96] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “PowerGraph:

Distributed Graph-Parallel Computation on Natural Graphs,” in Presented as part of

the 10th {USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 12), 2012, pp. 17–30.

[97] Y. Lu, J. Cheng, D. Yan, and H. Wu, “Large-scale distributed graph computing

systems,” Proc. VLDB Endow., vol. 8, no. 3, pp. 281–292, Nov. 2014.

[98] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel - a block-centric framework for

distributed computation on real-world graphs,” Proc. VLDB Endow., vol. 7, no. 14,

pp. 1981–1992, 2014.

[99] A. Quamar, A. Deshpande, and J. Lin, “NScale: Neighborhood-centric Analytics on

Large Graphs,” Proc. VLDB Endow., vol. 7, no. 13, pp. 1673–1676, 2014.

[100] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and A.

Aboulnaga, “Arabesque,” in Proceedings of the 25th Symposium on Operating

Systems Principles - SOSP ’15, 2015, pp. 425–440.

[101] M. A. Rodriguez and M. A., “The Gremlin graph traversal machine and language

(invited talk),” in Proceedings of the 15th Symposium on Database Programming

Languages - DBPL 2015, 2015, pp. 1–10.

[102] M. Junghanns, A. Petermann, N. Teichmann, K. Gómez, and E. Rahm, “Analyzing

171

extended property graphs with Apache Flink,” in Proceedings of the 1st ACM

SIGMOD Workshop on Network Data Analytics - NDA ’16, 2016, pp. 1–8.

[103] H.-C. Lai, C.-T. Li, Y.-C. Lo, and Shou-De Lin, “Exploiting and Evaluating

MapReduce for Large-Scale Graph Mining,” 2012 IEEE/ACM Int. Conf. Adv. Soc.

Networks Anal. Min., pp. 434–441, Aug. 2012.

[104] R. R. S. Xin, J. J. E. Gonzalez, M. J. M. Franklin, and I. Stoica, “GraphX: A

Resilient Distributed Graph System on Spark,” in First International Workshop on

Graph Data Management Experiences and Systems, 2013, p. 2:1--2:6.

[105] R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez, M. J. Franklin, and I. Stoica,

“GraphX: Unifying Data-Parallel and Graph-Parallel Analytics,” arXiv Prepr.

arXiv1402.2394, Feb. 2014.

[106] “GraphX Programming Guide - Spark 1.2.0 Documentation.” [Online]. Available:

https://spark.apache.org/docs/latest/graphx-programming-guide.html. [Accessed:

20-Jun-2017].

[107] P. Carbone Asterios Katsifodimos, S. Ewen Volker Markl, and S. Haridi Kostas

Tzoumas, “Apache FlinkTM: Stream and Batch Processing in a Single Engine,” Bull.

IEEE Comput. Soc. Tech. Comm. Data Eng., vol. 36, no. 4, 2015.

[108] R. Mccoll, O. Green, and D. A. Bader, “A New Parallel Algorithm for Connected

Components in Dynamic Graphs,” in The 20th Annual IEEE International

Conference on High Performance Computing (HiPC), 2013, pp. 246–255.

[109] A. Sharma and R. Misra, “Computing Large Connected Components Using Map

Reduce in Logarithmic Rounds,” in 2016 IEEE 2nd International Conference on Big

Data Security on Cloud (BigDataSecurity), IEEE International Conference on High

Performance and Smart Computing (HPSC), and IEEE International Conference on

Intelligent Data and Security (IDS), 2016, pp. 1–6.

[110] M. M. A. Patwary, P. Refsnes, and F. Manne, “Multi-core Spanning Forest

Algorithms using the Disjoint-set Data Structure,” in 2012 IEEE 26th International

Parallel and Distributed Processing Symposium, 2012, pp. 827–835.

[111] M.-S. Kim, S. Lee, W.-S. Han, H. Park, and J.-H. Lee, “DSP-CC-: I/O Efficient

Parallel Computation of Connected Components in Billion-Scale Networks,” IEEE

Trans. Knowl. Data Eng., vol. 27, no. 10, pp. 2658–2671, Oct. 2015.

[112] R. McColl, O. Green, and D. A. Bader, “A new parallel algorithm for connected

components in dynamic graphs,” in 20th Annual International Conference on High

Performance Computing, 2013, pp. 246–255.

[113] F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. D. Ullman, “Map-reduce

extensions and recursive queries,” in Proceedings of the 14th International

Conference on Extending Database Technology - EDBT/ICDT ’11, 2011, p. 1.

[114] B. Wu and Y. Du, “Cloud-based Connected Component Algorithm,” in 2010

International Conference on Artificial Intelligence and Computational Intelligence,

2010, pp. 122–126.

[115] A. Lulli, L. Ricci, E. Carlini, P. Dazzi, and C. Lucchese, “Cracker: Crumbling large

graphs into connected components,” in 2015 IEEE Symposium on Computers and

Communication (ISCC), 2015, pp. 574–581.

172

[116] A. Lulli, E. Carlini, P. Dazzi, C. Lucchese, and L. Ricci, “Fast Connected

Components Computation in Large Graphs by Vertex Pruning,” IEEE Trans.

Parallel Distrib. Syst., vol. 28, no. 3, pp. 760–773, Mar. 2017.

[117] R. Elshawi, O. Batarfi, A. Fayoumi, A. Barnawi, and S. Sakr, “Big Graph

Processing Systems: State-of-the-Art and Open Challenges,” in 2015 IEEE First

International Conference on Big Data Computing Service and Applications, 2015,

pp. 24–33.

[118] J. Lin and M. Schatz, “Design patterns for efficient graph algorithms in

MapReduce,” in Proceedings of the Eighth Workshop on Mining and Learning with

Graphs - MLG ’10, 2010, pp. 78–85.

[119] A. Varamesh, “Fast Detection of Connected Components in Large Scale Graphs

Using MapReduce,” IOSR J. Eng., vol. 4, no. 2, pp. 35–42, Feb. 2014.

[120] L. Kolb, Z. Sehili, and E. Rahm, “Iterative Computation of Connected Graph

Components with MapReduce,” Datenbank-Spektrum, vol. 14, no. 2, pp. 107–117,

Jul. 2014.

[121] Y. Deng, J. Wu, and Y. Tan, “A fast connected component algorithm based on hub

contraction,” in 2016 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), 2016, pp. 000066–000069.

[122] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani, Algorithms, 1 edition. McGraw-

Hill, Inc., 2006.

[123] “Spark Standalone Mode - Spark 1.2.0 Documentation.” [Online]. Available:

http://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts.

[Accessed: 20-Jun-2017].

[124] “Collections - Sets - Scala Documentation.” [Online]. Available: http://docs.scala-

lang.org/overviews/collections/sets.html. [Accessed: 20-Jun-2017].

[125] T. Rabl, N. Raghunath, M. Poess, M. Bhandarkar, H.-A. Jacobsen, and C. Baru,

Eds., Advancing Big Data Benchmarks, vol. 8585. Cham: Springer International

Publishing, 2014.

[126] A. Iosup et al., “LDBC graphalytics,” Proc. VLDB Endow., vol. 9, no. 13, pp. 1317–

1328, Sep. 2016.

[127] P. Mehrotra et al., “Performance evaluation of Amazon Elastic Compute Cloud for

NASA high-performance computing applications,” Concurr. Comput. Pract. Exp.,

vol. 28, no. 4, pp. 1041–1055, Mar. 2016.

[128] U. Kang, D. H. Chau, and C. Faloutsos, “Mining large graphs: Algorithms,

inference, and discoveries,” in 2011 IEEE 27th International Conference on Data

Engineering, 2011, pp. 243–254.

173

Appendix A: Code

// import the library needed for the execution

import org.apache.spark.rdd.RDD

import org.apache.spark.SparkContext

import org.apache.spark.graphx._

import scala.reflect.ClassTag

import scala.collection.immutable.HashMap

import scala.collection.mutable.HashSet

import scala.collection.mutable.ListBuffer

import scala.collection.mutable.Set

8.6 Pre-Processing Stage

// defined a function to restructure the graph in adjacency list representation:

def adjacencyListGeneratorOpt[VD:ClassTag, ED:ClassTag](graph: Graph[VD, ED]): Graph[Set[VertexId],

ED] = {

 val WorkGraph = graph.mapVertices { case (vid, _) => (vid) }

 val nbrs = WorkGraph.collectNeighborIds(EdgeDirection.Either).cache()

 val nbrsVerts: VertexRDD[Set[VertexId]] = nbrs.mapValues ((vid, nbrs) => Set(nbrs.toSet.toArray: _*))

 val adjGraph: Graph[Set[VertexId], ED] = Graph(nbrsVerts, graph.edges)

 adjGraph

}

// defined a function to restructure the graph in adjacency list representation:

def adjacencyListGeneratorDgOpt[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]):

Graph[(Int,scala.collection.immutable.Set[(VertexId,Int)]), ED] = {

 val degrees = graph.degrees

 val graphWithDegrees = graph.outerJoinVertices(degrees) { (_, _, optDegree) =>

 optDegree.getOrElse(1)

 }

 val WorkGraph = graphWithDegrees.mapVertices { case (vid, degree) => (vid,degree) }

174

 val neighboursWithDegree = WorkGraph.aggregateMessages[scala.collection.immutable.Set[(VertexId,

Int)]](

 sendMsg = triplet => {

 val srcWithDegree = triplet.srcAttr

 val dstWithDegree = triplet.dstAttr

 triplet.sendToDst(scala.collection.immutable.Set(srcWithDegree))

 triplet.sendToSrc(scala.collection.immutable.Set(dstWithDegree))

 },

 mergeMsg = (x, y) => x ++ y

).mapValues(x=>(x.size,x))

 val emptySet:(Int,scala.collection.immutable.Set[(VertexId,Int)])= (0, scala.collection.immutable.Set())

 val adjGraph = graph.outerJoinVertices(neighboursWithDegree) { (_, _, optDegree) =>

 optDegree.getOrElse(emptySet)

 }

 adjGraph

}

// apply the adjacencylistGenerator function on the graph

val adjGraphDg = adjacencyListGeneratorDgOpt(graph)

// create the initial graph and add the component identifier for each node using the

findMaxCompInSet function:

val ret_Initial = adjGraphDg.vertices.map(t =>

 (t._1, (t._2._1,new DgCracker_MsgIdentification(

 findMaxCompInSet_Dg((t._1,t._2._1),t._2._2),t._2._2))))

 .cache

var ret= ret_Initial

175

8.7 Processing Stage

Chapter 9: Seed Identification Phase

a) Local Max Identification Step

// Defined the map function for the Local Max Identification Step

def map_LocalMaxIdentification_DisjointSet(items : Iterator[(VertexId,(Int,

DgCracker_MsgIdentification))], forceLoadBalancing : Boolean) = {

 val ds = new DisjointSetModified()

 var cache =scala.collection.mutable.HashMap.empty[VertexId,(Int,DgCracker_MsgIdentification)]

 while (items.hasNext) {

 val cur = items.next

 val id = cur._1

 val dg = cur._2._1

 val idDg= (id,dg)

 val max = cur._2._2.max

 val adjSet = cur._2._2.neigh

 if (!(cache contains id)){

 cache.put(id, (dg,new DgCracker_MsgIdentification(max, adjSet)))

 }

 if (!(cache contains max._1)){

 cache.put(max._1, (max._2,new DgCracker_MsgIdentification(max, scala.collection.immutable.Set())))

 }

 if (!(ds contains(id))){

 ds+= idDg

 }

 if (!(ds contains(max._1))){

 ds+= max

 }

 ds union(idDg,max)

176

 if (adjSet.size >0) {

 for (node<- adjSet){

 if (!(cache contains node._1)){

// cache.put(node._1, (node._2,new DgCracker_MsgIdentification(max,

scala.collection.immutable.Set())))

 }

 if (!(ds contains(node._1))){

 ds+= node

 }

 ds union(idDg,(ds(node),node._2))

 }

 }

 }

 cache.foreach{ cur =>

 val id = cur._1

 val dg = cur._2._1

 val idDg= (id,dg)

 val max = cur._2._2.max

 val adjSet = cur._2._2.neigh

 val maxNew= ds(idDg)

 val maxNewDg= (maxNew,cache(maxNew)._1)

 cache(id)= (dg,new DgCracker_MsgIdentification(maxNewDg, adjSet))

 }

 cache.iterator

 }

// Apply using the mapPartition function

val ret_LocalMax = ret.mapPartitions { ItrInp => {

map_LocalMaxIdentification_DisjointSetModified(ItrInp)}}

ret =ret_LocalMax

177

b) Cluster Max Identification Step

// defined the map function for the Cluster Max Identification Step

def map_ClusterMaxIdentification(item : (VertexId,(Int, DgCracker_MsgIdentification)),

forceLoadBalancing : Boolean, edgePruning : Boolean = true) : Iterable[(VertexId, (Int,

DgCracker_MsgIdentification))] = {

 var outputList : ListBuffer[(VertexId, (Int, DgCracker_MsgIdentification))] = new ListBuffer

 if (item._2._2.max._1 == item._1 && (item._2._2.neigh.isEmpty || (item._2._2.neigh.size == 1 &&

item._2._2.neigh.contains((item._1,item._2._1))))) { //this will deactivate single nodes or root nodes

 } else {

 val max = item._2._2.max

 if (item._2._2.neigh.isEmpty) {

 outputList.prepend((item._1,(item._2._1, new DgCracker_MsgIdentification(max,

scala.collection.immutable.Set()))))

 } else {

 outputList.prepend((item._1,(item._2._1, new DgCracker_MsgIdentification(max,

scala.collection.immutable.Set(max)))))

 }

 if (max._2 > item._2._1 || !forceLoadBalancing || !edgePruning) {

 val it = item._2._2.neigh.iterator

 while (it.hasNext) {

 val next = it.next

 outputList.prepend((next._1,(next._2, new DgCracker_MsgIdentification(max,

scala.collection.immutable.Set(max)))))

 }

 }

 }

 outputList.toIterable

 }

// Apply the map function

val map_ClusterMax= ret.flatMap(item => map_ClusterMaxIdentification(item, false))

// defined the Reduce function for the Cluster Max Identification Step

def reduce_ClusterMaxIdentification(item1 : (Int, DgCracker_MsgIdentification), item2 : (Int,

DgCracker_MsgIdentification)) : (Int, DgCracker_MsgIdentification) = {

178

 val ret = item1._2.neigh ++ item2._2.neigh

 val max = maxDg(item1._2.max,item2._2.max)

 val dg = if(item1._1> item2._1) item1._1 else item2._1

 (dg,new DgCracker_MsgIdentification(max, ret))

}

// Apply the reduce function

val reduce_ClusterMax = map_ClusterMax.reduceByKey(reduce_ClusterMaxIdentification)//.dependencies

c) Pruning Step

c) Node Assorting

//mapper for the node assorting step

def map_Pruning(item : (VertexId,(Int, DgCracker_MsgIdentification))) : Iterable[(VertexId,(Int,

DgCracker_GeneralMsg))] = {

 map_Pruning(item, false)

}

def map_Pruning(item : (VertexId,(Int, DgCracker_MsgIdentification)), forceLoadBalancing : Boolean,

obliviousSeed : Boolean = true) : Iterable[(VertexId,(Int, DgCracker_GeneralMsg))] = {

 var outputList : ListBuffer[(VertexId,(Int, DgCracker_GeneralMsg))] = new ListBuffer

 val maxSet : scala.collection.immutable.Set[(VertexId,Int)] = item._2._2.neigh

 if (maxSet.size > 1) {

 if(forceLoadBalancing || obliviousSeed) {

 outputList.prepend((item._2._2.max._1,(item._2._2.max._2, DgCracker_GeneralMsg.apply(new

DgCracker_MsgIdentification(item._2._2.max, scala.collection.immutable.Set(item._2._2.max))))))

 }

 else {

 outputList.prepend((item._2._2.max._1,(item._2._2.max._2, DgCracker_GeneralMsg.apply(new

DgCracker_MsgIdentification(item._2._2.max, maxSet)))))

 }

 var it = maxSet.iterator

 while (it.hasNext) {

 val value : (VertexId,Int) = it.next

 if (value != item._2._2.max)

179

 outputList.prepend((value._1,(value._2, DgCracker_GeneralMsg.apply(new

DgCracker_MsgIdentification(item._2._2.max, scala.collection.immutable.Set(item._2._2.max))))))

 }

 } else if (maxSet.size == 1 && maxSet.contains((item._1,item._2._1))) {

 outputList.prepend((item._1, (item._2._1,DgCracker_GeneralMsg.apply(new

DgCracker_MsgIdentification((item._1,item._2._1), scala.collection.immutable.Set())))))

 }

 if (!item._2._2.neigh.contains((item._1,item._2._1))) {

 outputList.prepend((item._2._2.max._1,(item._2._2.max._2, DgCracker_GeneralMsg.apply(new

DgCracker_MsgTree(-1, scala.collection.immutable.Set(item._1))))))

 outputList.prepend((item._1,(item._2._1, DgCracker_GeneralMsg.apply(new

DgCracker_MsgTree(item._2._2.max._1, scala.collection.immutable.Set())))))

 }

 outputList.toIterable

}

// the merge function for message that update the Graph Gt+1

def merge_MsgTree(first : Option[DgCracker_MsgTree], second : Option[DgCracker_MsgTree]) :

Option[DgCracker_MsgTree] = {

 if (first.isDefined) {

 first.get.merge(second)

 } else {

 second

 }

}

//The merge function for messages that update the propagation tree T

def merge_MsgIdentification(first : Option[DgCracker_MsgIdentification], second :

Option[DgCracker_MsgIdentification]) : Option[DgCracker_MsgIdentification] = {

 if (first.isDefined) {

 first.get.merge(second)

 } else {

 second

 }

}

180

// reducer for the node assorting step

def reduce_Pruning(item1 : (Int, DgCracker_GeneralMsg), item2 : (Int, DgCracker_GeneralMsg)) : (Int,

DgCracker_GeneralMsg)= {

 val dg = if(item1._1< item2._1) item1._1 else item2._1

 (dg, new DgCracker_GeneralMsg(merge_MsgIdentification(item1._2.MsgIdentification,

item2._2.MsgIdentification), merge_MsgTree(item1._2.MsgTree, item2._2.MsgTree)))

}

// Initialise variables to check active nodes after Seed node assorting step

val active = ret.count

val control = active == 0

d) Update Degree

// the mapper function to generate the updates

def DgMap(item: (VertexId,(Int, scala.collection.immutable.Set[(VertexId, Int)]))) : Iterable[(VertexId,Int)]

={

 var outputList : ListBuffer[(VertexId,Int)] = new ListBuffer

 val it = item._2._2.iterator

 while(it.hasNext) {

 val next = it.next

 if (next._1!= item._1) {

 outputList.prepend((next._1, 1))

 outputList.prepend((item._1, 1))

 }

 }

 outputList.toIterable

}

//calculate the new degree using Mapreduce

val degreePair=tmpReduced_MsgIdentification

 .flatMap(x=>DgMap((x._1,(x._2._1,(x._2._2.neigh)))))

 .reduceByKey(_+_)

// save the updates in HashMap table

val degreeMap= degreePair.collectAsMap

181

val degreeBroadcast= sc.broadcast(degreeMap)

// the update function

def updateDegree(item: (VertexId, (Int, DgCracker_MsgIdentification))) = {

 val id = item._1

 val dg_old=item._2._1

 val max = item._2._2.max

 val neigh = item._2._2.neigh

 var dg_new= degreeBroadcast.value.get(id).getOrElse(dg_old)

 if (dg_new== -1) dg_new=dg_old

 val it = neigh.iterator

 var max_new= (max._1,degreeBroadcast.value.get(max._1).getOrElse(max._2))

 var neigh_new = scala.collection.immutable.Set[(VertexId, Int)]()

 while(it.hasNext)

 {

 val next = it.next

 neigh_new +=((next._1,degreeBroadcast.value.get(next._1).getOrElse(next._2)))

 }

 (id,(dg_new, new DgCracker_MsgIdentification(max_new,neigh_new)))

}

// merge the updates

val retUpdated = tmpReduced_MsgIdentification.mapPartitions((it =>

 it.map{case (id, attr)=> updateDegree(id,attr)}),

 preservesPartitioning = true)

182

e) Update Propagation Tree

//Initialise the propagationTree as empty

var propagationTreeRDD : Option[RDD[(VertexId, DgCracker_MsgTree)]] = Option.empty

// add each node and initialize the component identifier as -1

// If not done, CC of size 1 are not recognized

propagationTreeRDD = Option.apply(ret.map(t => (t._1, new DgCracker_MsgTree(-1,

scala.collection.immutable.Set()))))

// merging function

def mergePropagationTree(start : Option[RDD[(VertexId, DgCracker_MsgTree)]], add : RDD[(VertexId,

DgCracker_MsgTree)]) : Option[RDD[(VertexId, DgCracker_MsgTree)]] =

 {

 if (start.isDefined) {

 Option.apply(start.get.union(add))

 } else {

 Option.apply(add)

 }

 }

// merge the tree

propagationTreeRDD = mergePropagationTree(propagationTreeRDD, tmpReduced_MsgTree)

183

Implementation

// implement Seed Identification Phase iteratively in while loop

// configuration initialising

cracker_Skip_LocalMaxIdentification = true

cracker_Skip_PruningUpdateDegree = false

cracker_Skip_PruningUpdateTree = false

var numIter = 0

ret= ret_Initial

propagationTreeRDD = Option.apply(ret.map(t => (t._1, new DgCracker_MsgTree(-1,

scala.collection.immutable.Set()))))

val active =ret.count

control= active==0

// Run everything in while loop (iterate until convergance)

while (!control) {

 // 2. Seed Identification

 numIter+=1

 // 2.1. Local Max Identification

 if (!cracker_Skip_LocalMaxIdentification){

 val ret_LocalMax = ret.mapPartitions { ItrInp => {

map_LocalMaxIdentification_DisjointSetModified(ItrInp,false)} }

 ret =ret_LocalMax

 }

 // 2.2 Cluster Max Identification

 val map_ClusterMax= ret.flatMap(item => map_ClusterMaxIdentification(item, false))

 val reduce_ClusterMax = map_ClusterMax.reduceByKey(reduce_ClusterMaxIdentification)

 val active = ret.count

 control = active == 0

184

 // 2.3 Purning Step

 if (!control) {

 // Node Assorting

 val tmp = ret.flatMap(item => map_Pruning(item))

 val tmpReduced = tmp.reduceByKey(reduce_Pruning).cache

 val tmpReduced_MsgIdentification=tmpReduced.filter(t => t._2._2.MsgIdentification.isDefined).map(t

=> (t._1, (t._2._1,t._2._2.MsgIdentification.get)))

 val tmpReduced_MsgTree =tmpReduced.filter(t => t._2._2.MsgTree.isDefined).map(t => (t._1,

t._2._2.MsgTree.get))

 // Update Degree

 if(!cracker_Skip_PruningUpdateDegree){

 val degreePair=tmpReduced_MsgIdentification

 .flatMap(x=>DgMap((x._1,(x._2._1,(x._2._2.neigh)))))

 .reduceByKey(_+_)

 val degreeMap= degreePair.collectAsMap

 val degreeBroadcast= sc.broadcast(degreeMap)

 val retUpdated = tmpReduced_MsgIdentification.mapPartitions((it =>

 it.map{case (id, attr)=> updateDegree(id,attr)}), preservesPartitioning = true)

// degreeBroadcast.destroy

 ret = retUpdated

 }else{

 ret= tmpReduced_MsgIdentification

 }

 //update Propagation Tree

 if(!cracker_Skip_PruningUpdateTree){

 propagationTreeRDD = mergePropagationTree(propagationTreeRDD, tmpReduced_MsgTree)

 }else{

 propagationTreeRDD= propagationTreeRDD

 }

 }

}

185

Chapter 10: Seed Propagation Phase:

// get the data from the previous phase

var propagationTreeRDD_tmp = propagationTreeRDD.get

// reduce function to prepare the data for processing

def reducePrepareDataForPropagation(a : DgCracker_MsgTree, b : DgCracker_MsgTree) :

DgCracker_MsgTree = {

 var parent = a.parent

 if (parent == -1) parent = b.parent

 new DgCracker_MsgTree(parent, a.child ++ b.child)

}

// prepare the data for processing

var propagationTreeRDD_clean = propagationTreeRDD_tmp

 .reduceByKey(reducePrepareDataForPropagation)

 .map(t => (t._1, t._2.getMessagePropagation(t._1))).cache

// flag to skip running local seed propagation

val cracker_Skip_PartitionMapPropagate= false

a) Local Seed Propagation.

def mapPropagatePart_par(items : Iterator[(Long, DgCracker_MsgPropagation)]) = //: Iterable[(Long,

CrackerTreeMessagePropagation)] = {

 var outputList : ListBuffer[(Long, DgCracker_MsgPropagation)] = new ListBuffer

 var update: Boolean = true

 control = false

 numIter = 0

 var treeRDDPropagationPar= items.flatMap(mapPropagate(_)).toList.groupBy(t => t._1).map {

case (group, traversable) => (group, traversable.map(t=> t._2).reduce(reducePropagate)) }

 control = treeRDDPropagationPar.map(t => t._2.max != -1).reduce { (a:Boolean, b:Boolean) => a

&& b }

 while (!control && numIter<20) {

 treeRDDPropagationPar= treeRDDPropagationPar.toList.flatMap(mapPropagate(_)).groupBy(t =>

t._1)

 .map { case (group, traversable) => (group, traversable.map(t=>

t._2).reduce(reducePropagate)) }

186

 control = treeRDDPropagationPar.map(t => t._2.max != -1).reduce { (a:Boolean, b:Boolean) => a

&& b }

 numIter+=1

 }

 treeRDDPropagationPar.toIterator

}

b) Cluster Seed Propagation

// Map function to propagate the component identifier

def mapPropagate(item : (VertexId, DgCracker_MsgPropagation)) : Iterable[(VertexId,

DgCracker_MsgPropagation)] = {

 var outputList : ListBuffer[(Long, DgCracker_MsgPropagation)] = new ListBuffer

 if (item._2.max != -1) {

 outputList.prepend((item._1, new DgCracker_MsgPropagation(item._2.max, Set())))

 val it = item._2.child.iterator

 while (it.hasNext) {

 val next = it.next

 outputList.prepend((next, new DgCracker_MsgPropagation(item._2.max, Set())))

 }

 } else { outputList.prepend(item) }

 outputList

}

// Reduce function to propagate the component identifier

def reducePropagate(item1 : DgCracker_MsgPropagation, item2 : DgCracker_MsgPropagation) :

DgCracker_MsgPropagation = {

 var maxEnd = item1.max

 if (maxEnd == -1) maxEnd = item2.max

 new DgCracker_MsgPropagation(maxEnd, item1.child ++ item2.child)

 }

// Run everything in while loop (iterate until convergance)

while (!control) {

187

 if(cracker_Skip_PartitionMapPropagate){

 propagationTreeRDD_clean = propagationTreeRDD_clean

// .mapPartitionsWithIndex { (idx, ItrInp) => { mapPropagatePart3(ItrInp)} }

 .mapPartitionsWithIndex { (idx, ItrInp) => { mapPropagatePart_par(ItrInp)} }

 }

 propagationTreeRDD_clean = propagationTreeRDD_clean.flatMap(item => mapPropagate(item))

 propagationTreeRDD_clean = propagationTreeRDD_clean.reduceByKey(reducePropagate).cache

 control = propagationTreeRDD_clean.map(t => t._2.max != -1).reduce { case (a, b) => a && b }

// step = step + 1

 numIter+=1

}

10.1 Post-Processing Stage

// found out the number of nodes in each component

val Final =propagationTreeRDD_clean.map(t => (t._2.max, 1)).reduceByKey { case (a, b) => a + b }

// take the top 10 components with the highest number of nodes

Final.sortBy(x => x._2, false).take(10).foreach(println(_))

188

10.2 Implementation Using Disjoint-Set Pruning

// initialise the Disjoint-Set Tree

val treeDS = new DisjointSetModified()

ret.map(t => (t._1,t._2)).foreach(t => if (!(treeDS contains(t._1))){treeDS+= (t._1,t._2._1)})

// update the treeDS in each iteration of the Seed Identification phase

while (!control) {

 numIter1srPhase+=1

 // simplification step

 ret = ret.flatMap(item => emitBlue(item, false))

 ret = ret.reduceByKey(reduceBlue).cache

 val active = ret.count

 control = active == 0

 stat_1srPhase+=((numIter1srPhase,active))

 if (!control) {

 // reduction step

 val tmp = ret.flatMap(item => emitRed(item))

 val tmpReduced = tmp.reduceByKey(reduceRed)

 val tmpReduced_MsgIdentification= tmpReduced.filter(t => t._2._2.first.isDefined).map(t => (t._1,

(t._2._1,t._2._2.first.get)))

 val tmpReduced_MsgTree =tmpReduced.filter(t => t._2._2.second.isDefined).map(t => (t._1,

(t._2._1,t._2._2.second.get)))

 treeRDD = mergeTree(treeRDD,tmpReduced_MsgTree , crackerUseUnionInsteadOfJoin,

crackerForceEvaluation)

// tmpReduced_MsgIdentification.map(t => t).collect.map(node=> {

 tmpReduced_MsgTree.map(t => t).collect.map(node=> {

 val nodeDg= (node._1,node._2._1)

// val max = node._2._2.max

 val max = node._2._2.parent

 if (!(treeDS contains(node._1))){

 treeDS+= nodeDg

 }

 if (!(treeDS contains(max._1))){

 treeDS+= max

 }

 treeDS union(nodeDg,(treeDS(max),max._2))

 })

 ret= tmpReduced_MsgIdentification

 step = step + 2

 } else {

 step = step + 1

 }

}

189

Classes

// Class Diagram structure

// DisjointSet Class

class DisjointSetModified extends Serializable {

//https://github.com/pathikrit/scalgos/blob/master/src/main/scala/com/github/pathikrit/scalgos/DisjointSet.sca

la

 import scala.collection.mutable

 import DisjointSetModified.Node

 val parentMap = mutable.Map.empty[VertexId, Node]

 private var numComponents =0

 private[this] implicit def toNode(x: (VertexId,Int)) = {

 if(contains(x._1)){

 }

 parentMap(x._1)

 }

190

// @return true iff x is known

 def contains(x: VertexId) = parentMap contains x

// Add a new singleton set with only x in it (assuming x is not already known)

 def +=(x: (VertexId,Int)) = {

 if(!contains(x._1)){

 parentMap(x._1) = new Node(x._1,x._2)

 numComponents+=1

 }

 }

 override def toString = parentMap.toString

// Union the sets containing x and y

 def union(x: (VertexId,Int), y: (VertexId,Int)) = {

 val (xRoot, yRoot) = (x.root, y.root)

 if (xRoot != yRoot) {

 if (xRoot.dg < yRoot.dg) {

 xRoot.parent = yRoot

 } else if (xRoot.dg > yRoot.dg) {

 yRoot.parent = xRoot

 } else {

 if(xRoot.id > yRoot.id){

 yRoot.parent = xRoot

 }else{

 xRoot.parent = yRoot

 }

 }

 numComponents-=1

 }

 }

 // @return the root (or the canonical element that contains x)

 def apply(x: (VertexId,Int)) = x.root.id

 // @return Iterator over groups of items in same set

 def sets = parentMap groupBy {_._2.root.id} values

 // @return number of components

 def components: Int = numComponents

 }

object DisjointSetModified {

// Each internal node in DisjointSet

 class Node(val id: VertexId,val dg:Int=0){

 /**

 * parent - the pointer to root node (by default itself)

 * rank - depth if we did not do path compression in find - else its upper bound on the distance from node

to parent

 */

 var parent= this

 def get={

 (id,dg)

 }

 var rank = 0

 def root: Node = {

 if (parent != this) {

 parent = parent.root // path compression

 }

 parent

 }

 override def toString = "{("+id.toString+","+dg.toString+")-> parent:("+parent.id+","+parent.dg+")}"

 }

191

// @return empty disjoint set

 def empty[VertexId,Int] = new DisjointSetModified

// @return a disjoint set with each element in its own set

 def apply[A,T](elements: (VertexId,Int)*) = {

 val d = empty[VertexId,Int]

 elements foreach {e => d += e}

 d

 }

}

// defind function used in Classes

// function to find the the max between two nodes based on the degree then the ID:

def maxDg(ver1: (VertexId,Int), ver2:(VertexId,Int)):(VertexId,Int) ={

 if (ver1._2 > ver2._2) ver1

 else if (ver1._2 == ver2._2){

 if (ver1._1 > ver2._1) ver1

 else ver2

 }

 else ver2

}

// function to find the the max in a set of nodes based on the degree then the ID:

def findMaxCompInSet_Dg(compID: (VertexId,Int), setDg:scala.collection.immutable.Set[(VertexId, Int)]):

(VertexId,Int) = {

 var setMaxDg = compID

 if (!setDg.isEmpty) {

 setMaxDg = setDg.reduceLeft(maxDg)

 }

 maxDg(setMaxDg , compID)

}

// a function to give Boolean if first node is less than the second

def lessThan(left:(VertexId,Int),right:(VertexId,Int)):Boolean ={

 if (left._2<right._2) true

 else if (left._2==right._2){

 if(left._1< right._1) true else false

 }else false

}

192

// Message abstract class

trait CrackerMessageSize extends Serializable{

def getMessageSize : Long

}

// Message Identification Class

class DgCracker_MsgIdentification (val max: (VertexId,Int), val neigh:

scala.collection.immutable.Set[(VertexId,Int)]) extends CrackerMessageSize {

 def voteToHalt = neigh.isEmpty

 def getMessageSize = neigh.size + 1

 def merge(other : Option[DgCracker_MsgIdentification]) : Option[DgCracker_MsgIdentification] =

 {

 if(other.isDefined)

 {

 Option.apply(new DgCracker_MsgIdentification(maxDg(max, other.get.max),

 neigh ++ other.get.neigh))

 } else

 {

 Option.apply(DgCracker_MsgIdentification.this)

 }

 }

 override def toString = "(max:"+max.toString+",neigh:"+neigh.toString+")"

}

object DgCracker_MsgIdentification {

 def empty = new DgCracker_MsgIdentification((-1,0), scala.collection.immutable.Set())

}

// Message Propagation Class

class DgCracker_MsgPropagation (val max : VertexId, val child : scala.collection.immutable.Set[VertexId])

extends CrackerMessageSize {

 def getMessageSize = child.size + 1

 override def toString = "{"+max.toString+","+child.toString+"}"

}

193

// Message Tree Class

class DgCracker_MsgTree (val parent : VertexId, val child : scala.collection.immutable.Set[VertexId])

extends CrackerMessageSize

{

 def getMessageSize = child.size + 1

 def merge(other : Option[DgCracker_MsgTree]) : Option[DgCracker_MsgTree] =

 {

 if(other.isDefined)

 {

 var parentNew = parent

 if(parentNew == -1)

 {

 parentNew = other.get.parent

 }

 Option.apply(new DgCracker_MsgTree(parentNew, child ++ other.get.child))

 } else

 {

 Option.apply(DgCracker_MsgTree.this)

 }

 }

 def merge(other : DgCracker_MsgTree) : DgCracker_MsgTree =

 {

 var parentNew = parent

 if(parentNew == -1)

 {

 parentNew = other.parent

 }

 new DgCracker_MsgTree(parentNew, child ++ other.child)

 }

 def getMessagePropagation(id : VertexId) =

 {

 if(parent == -1)

 {

 new DgCracker_MsgPropagation(id, child)

194

 } else

 {

 new DgCracker_MsgPropagation(-1, child)

 }

 }

 override def toString = "{"+parent.toString+","+child.toString+"}"

}

object DgCracker_MsgTree

{

 def empty = new DgCracker_MsgTree(-1, scala.collection.immutable.Set())

}

// General Message Class

class DgCracker_GeneralMsg (val MsgIdentification : Option[DgCracker_MsgIdentification], val MsgTree :

Option[DgCracker_MsgTree]) extends CrackerMessageSize

{

 def getMessageSize =

MsgIdentification.getOrElse(DgCracker_MsgIdentification.empty).getMessageSize +

MsgTree.getOrElse(DgCracker_MsgTree.empty).getMessageSize

 override def toString =

"MsgIdentification:("+MsgIdentification.getOrElse("").toString+"),(MsgTree:("+MsgTree.getOrElse("").toSt

ring+")"

}

object DgCracker_GeneralMsg

{

 def apply(MsgIdentification : DgCracker_MsgIdentification) = new

DgCracker_GeneralMsg(Option.apply(MsgIdentification), Option.empty)

 def apply(MsgTree : DgCracker_MsgTree) = new DgCracker_GeneralMsg(Option.empty,

Option.apply(MsgTree))

}

