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Abstract 24 

Purpose 25 

Several genetic regulators belonging to AraC family are involved in the emergence of MDR 26 

isolates of E. aerogenes due to alterations in membrane permeability. Compared with the 27 

genetic regulator Mar, RamA may be more relevant towards the emergence of antibiotic 28 

resistance.  29 

Methodology 30 

Focusing on the global regulators, Mar and Ram, we compared the amino acid sequences of 31 

the Ram repressor in 59 clinical isolates and laboratory strains of E. aerogenes. Sequence 32 

types were associated with their corresponding Multi-drug resistance phenotypes and 33 

membrane protein expression profiles using MIC and immunoblot assays. Quantitative gene 34 

expression analysis of the different regulators and their targets (porins and efflux pump 35 

components) were performed.  36 

Results 37 

In the majority of the MDR isolates tested, ramR and a region upstream of ramA were 38 

mutated but marR or marA were unchanged. Expression and cloning experiments highlighted 39 

the involvement of the ram locus in the modification of membrane permeability. 40 

Overexpression of RamA lead to decreased porin production and increased expression of 41 

efflux pump components, whereas overexpression of RamR had the opposite effects.  42 

Conclusion 43 

Mutations or deletions in ramR, leading to the overexpression of RamA predominated in 44 

clinical MDR E. aerogenes isolates andwere associated with a higher-level of expression of 45 

efflux pump components. It was hypothesised that mutations in ramR, and the self-regulating 46 

region proximal to ramA, probably altered the binding properties of the RamR repressor; 47 
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thereby producing the MDR phenotype. Consequently, mutability of RamR may play a key 48 

role in predisposing E. aerogenes towards the emergence of a MDR phenotype. 49 

 50 

Abbreviations : Multidrug-Resistant (MDR); Extended-Spectrum β-Lactamase (ESBL); 51 

Minimum Inhibitory Concentration (MICs); Luria-Bertani (LB); 5-Bromo-4-chloro-3-indolyl 52 

phosphate (BCIP); nitro blue tetrazolium (NBT) 53 

54 
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Introduction 55 

The worldwide emergence of Multidrug-Resistant (MDR) Gram-negative bacteria is a 56 

continuous health problem. This phenomenon is associated with the dissemination of selected 57 

clones of MDR bacteria as well as the local genetic adaptation of bacteria under the pressure 58 

of antibiotic exposure. Moreover, non-specific resistance mechanisms, such as the 59 

modification of membrane permeability, facilitate cross-resistance to unrelated molecules and 60 

favor the acquisition of specific resistance mechanisms such as target gene mutations and/or 61 

activation of hydrolytic enzymes, resulting in high-level drug resistance [1-3]. 62 

Enterobacter aerogenes has been recognised as a causative agent of nosocomial infection 63 

outbreaks since 1993, particularly in the Western Europe. This development was mainly due 64 

to the dispersion of an epidemic clone [3]. This event corresponded with the international 65 

spread of the Extended-Spectrum β-Lactamase (ESBL) TEM-24 (blaTEM-24), located on an 66 

epidemic plasmid [4-5]. Infections caused by this prevalent clone are often undetected at an 67 

early stage and consequently their control and treatment have been difficult. Since 2003, E. 68 

aerogenes has been considered as an important MDR pathogen, particularly in intensive care 69 

units [2]. This observation has been associated with a reduced susceptibility to the most 70 

recently developed cephalosporins, including cefepime and cefpirome, and to carbapenems 71 

[6]. The alteration of envelope permeability by downregulation of porin expression, 72 

modification of lipopolysaccharides, and variation in efflux pump expression levels, has been 73 

reported to influence both virulence and strain susceptibility to various compounds [3, 7, 8]. 74 

Such adaptations were particularly observed in clinical strains isolated during carbapenem 75 

treatment of infections [6, 9]. A longitudinal study of clinical E. aerogenes isolates, collected 76 

over an eight-year period, indicated an important role for efflux mechanisms in the emergence 77 

of resistance [10]. The efflux pump AcrAB-TolC, identified in E. aerogenes clinical isolates, 78 

extrudes a variety of compounds including detergents and structurally unrelated antimicrobial 79 
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agents such as quinolones, tetracyclines, and chloramphenicol [2]. A strong correlation 80 

between AcrAB expression and the genetic regulator RamA was reported previously in E. 81 

aerogenes [11]. The same pattern was documented in Klebsiella pneumoniae, Enterobacter 82 

cloacae and Salmonella enterica. [12-16]. Multiple genes and external factors are involved in 83 

the emergence of MDR isolates of these three species [15, 17, 18]. This capacity for 84 

development of antibiotic resistance has been associated with a regulatory cascade involving 85 

the regulators of the AraC family (MarA, SoxS, Rob and RamA) that control the expression 86 

of membrane transporters [19, 20]. RamA seems to be more relevant to the development of 87 

antibiotic resistance in K. pneumoniae and Salmonella spp. [20-24]. Key regulatory features 88 

of the ramA locus are conserved amongst Klebsiella, Enterobacter, Citrobacter and 89 

Salmonella spp [21]. Modification in the expression of global activators can be mediated by 90 

mutations or ligand-mediated interactions with the cognate repressor. Various compounds 91 

such as salicylate, imipenem or chloramphenicol for marA and chlorpromazine, thioridazine, 92 

fluoroquinolones, cefoxitin or paraquat for ramA contribute to the MDR phenotype [20, 25]. 93 

In addition, several mutations located in marRAB, ramAR, rob or soxRS in clinical isolates are 94 

associated with up- and down-regulation of efflux-pump genes; the same pattern has been 95 

reported for porin synthesis, respectively [22, 26-30]. This phenomenon has been observed 96 

both in vitro during culture of bacteria in the presence of drugs and in vivo during antibiotic 97 

treatment of infected patients [31-33]. 98 

Mutations arising in specific repressors, MarR and RamR, have commonly been reported to 99 

modulate the permeability barrier in bacteria. Resolution of the MarR crystal structure 100 

confirmed that it acts as a dimer, which is a common trait of bacterial regulators [34]. Three 101 

regions of the MarR repressor are important for its activity: two putative helix-turn-helix 102 

DNA-binding domains and the first 31 amino acids, which are involved in the dimerization 103 

process [35]. Numerous mutations described in several clinical isolates of E. coli are scattered 104 
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throughout the MarR sequence, and the minimal sequence necessary for function and 105 

specificity has not been defined [36]. RamR is a 191 amino acid regulatory protein in which 106 

the 50 first amino acids correspond to the DNA-binding domain and the C-terminus is 107 

composed of six -helices, including important regions for dimerization. It belongs to the 108 

TetR-family of transcriptional repressors and acts as a dimer on the operator region via 109 

palindromic binding sites [20, 21]. Different mutations in ramR, have been confirmed to play 110 

a role in resistance in Klebsiella and Salmonella spp. Such mutations include deletions that 111 

create a premature stop site, resulting in a truncated protein; or other nucleotide deletions in 112 

the putative binding site upstream of ramA [23, 28, 30, 37-39]. Despite these reports the true 113 

clinical role of MarA and RamA in the emergence and dissemination of MDR Enterobacter 114 

strains may be under-estimated due to the limited number of complete clinical investigations 115 

to date. For the most part, only partial and case by case studies have been carried out in this 116 

regard [10]. 117 

In this study, we characterized the sequence and function of the RamR repressor of multiple 118 

clinical isolates of E. aerogenes. We compared the RamR amino acid sequences of 47 119 

documented MDR clinical strains; 10 strains selected in vitro using defined antibiotics; and 2 120 

reference strains. Variations in the sequence were identified and their corresponding 121 

relationship(s) with the MDR phenotype was investigated in clinical isolates using MIC 122 

assays for structurally unrelated antibiotics. Quantitative gene expression of the different 123 

regulators and their targets pointed to a key role for RamA in the development of MDR E. 124 

aerogenes. We report differences in antibiotic susceptibility and expression of porins and 125 

efflux pump components among E. aerogenes strains that overexpress ramA or ramR. These 126 

results support the working hypothesis that the ramRA regulon is a key player in control of 127 

membrane permeability in Enterobacter spp. 128 

 129 
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Material and Methods 130 

Bacterial strains 131 

Fifty nine E. aerogenes strains were investigated: 2 laboratory reference strains, laboratory 132 

induced mutants by treatment with chloramphenicol (CM64) and imipenem (IPM5 to 133 

IPM240), and 47 clinical isolates (Table 1). All strain characteristics concerning antibiotic 134 

susceptibility, outer membrane protein content and activity of an efflux mechanism have been 135 

described previously [6, 10, 11, 29].  E. coli strain JM109 was used for all cloning 136 

experiments and expression vector construction. All bacteria were cultivated at 37°C in Luria-137 

Bertani (LB) Medium.  138 

 139 

Sequencing of marA, marR, ramA and ramR 140 

DNA from each bacterial isolate was prepared using the Wizard Genomic DNA Purification 141 

Kit (Promega). Purified DNA was then used as a template for PCR and later on for DNA 142 

sequencing to detect the presence of mutations in marA, marR, ramA, ramR and their flanking 143 

regions. The sequences of the primers are shown in Supplementary Tables. A final 144 

concentration of 0.4 µM of each primer was used together with, 0.2 mM of each dNTP, 1.5 145 

mM of MgCl2, 1x Taq buffer and 3 units of Taq DNA polymerase (Qiagen). After 5 min of 146 

denaturation at 94°C, amplification was performed over 33 cycles with steps of 30 s at 94°C, 147 

1 min at 64°C, 1 min at 72°C. A final extension step was performed at 72°C for 7 min. 148 

Amplicons were sent for nucleotide sequencing to Cogenics Online (https://www.cogenics 149 

online.com/COL/uwa.maya.engine.MayaEngine?siteid=col&mapid=home). Mutations in the 150 

amplified regions were identified by sequence alignments using BLASTN 151 

(http://www.ncbi.nlm.nih.gov /blast/Blast.cgi?PAGE=Nucleotides&PROGRAM=blastn) and  152 

CLUSTALW (http://www.ebi.ac.uk/Tools/clustalw2/ index.html). 153 

 154 
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Selection of bacterial mutants by incubation with antibiotics 155 

LB-agar-plates with increasing concentrations of chloramphenicol, rifampicin and fosfomycin 156 

were prepared. Two-fold dilution series of each antibiotic were prepared, using concentration 157 

ranges of   2-64 µg for chloramphenicol and fosfomycin ml-1 and 1-16 µg for rifampicin ml-1, 158 

according to the Société Française de Microbiologie (http://www.sfm.asso.fr). For each 159 

antibiotic, 12 colonies of the laboratory strain ATCC13048 were picked and grown under 160 

increasing antibiotic concentrations for 24 h at 37°C. 161 

The ramA and ramR genes of the surviving strains at the highest concentration of 162 

chloramphenicol (64 µg ml-1), fosfomycin (64 µg ml-1), and rifampicin (16 µg ml-1) were 163 

sequenced (GenomicExpress), and compared to identify the mutations that occurred during 164 

antibiotic treatment. 165 

 166 

Quantitative Realtime-PCR 167 

Two or three primer pairs were designed to quantify the expression of each gene of interest  , 168 

which included: ramA and ramR as representatives of  the ram-regulon; marA and marR as 169 

key players in the mar-regulon; soxR an important gene involved in the oxidative stress 170 

regulon [24]; acrA as a representative component of the efflux pump [33] and omp35 as the 171 

gene encoding the major porin involved in antibiotic influx [7, 9]. Each primer pair 172 

(Supplementary tables) was tested at an annealing temperature of 60°C using a standard 173 

PCR protocol to determine the optimal working primer pairs. RNA for quantitative Realtime-174 

PCR was extracted with the RiboPureTM-Yeast kit (Ambion), and quantified using a 175 

NanoDrop spectrophotometer. Contaminating genomic DNA was eliminated by two DNase I 176 

treatments according to the manufacturer’s instructions (Ambion), and its absence was 177 

confirmed by including a reverse transcriptase-minus control for each RNA sample. An 178 

Eppendorf epMotion 5070 robot was used to set up the plates and the qRT-PCR was 179 

performed using an Eppendorf Mastercycler ep realplex Thermal Cycler. 180 
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QuantiTect SYBR Green RT-PCR (Qiagen) was used with a final concentration of 0.5 μM of 181 

each primer and 500 ng of the template RNA. After 30 min at 50°C for the reverse 182 

transcription, the HotStarTaq DNA Polymerase (Qiagen) was activated by a heating step at 183 

95°C for 15 min. The 3-step cycles of 15 s at 94°C for denaturation, 30 s at 60°C for 184 

Annealing and 30 s at 72°C for Extension were repeated for 35-45 cycles. Each quantitative 185 

realtime PCR was repeated three times. 186 

Expression levels of the multi-drug efflux transporter and transcriptional regulator encoding 187 

genes were compared and normalized to those of the 16S rRNA housekeeping gene. Relative 188 

levels of gene expression, compared to the ATCC13048 strain, were quantified using the 2(-189 

Delta Delta C(T))  method of Livak and Schmittgen [40]. An increase or a decrease of 2-fold 190 

of was defined as a significant effect. 191 

 192 

Cloning and expression of ramA and ramR 193 

The ramA loci (including the putative marbox) and ramR genes were cloned from 194 

characterized strains of E. aerogenes. The ATCC 13048 ramA and ramR were used as an 195 

example of genes from susceptible strains, whilst EA27 (ramA27, ramR27) and CM64 196 

(ramA64) were representative of MDR clinical isolates. The CM64 ramA64 gene was 197 

identical to the ATCC13048 ramA (data not shown) and therefore was not cloned for this 198 

investigation. The CM64 ramR64 gene was the only ramR showing a deletion at position 199 

154/155 and therefore was used to characterize potential effects of this mutation.  200 

All ramA and ramR genes and associated marboxes were amplified by PCR using primers that 201 

incorporated restriction sites at each end (detailed in Supplementary Tables). 202 

PrimeStarTMHS DNA Polymerase (Takara) was used to amplify products by PCR according 203 

to the manufacturer instructions. Purified PCR-products were digested using XhoI and SacI 204 

(ramR) or BamHI and EcoRI (ramA) (New England Biolabs) and cloned into the expression 205 

vector pDrive (3851 bp) (Qiagen), using T4 ligase (NEB) to create pDriveramA-ATCC13048, 206 
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pDriveramA-EA27, pDriveramR-ATCC13048, pDriveramR-EA27, and pDriveramR-CM64. 207 

Plasmid constructs were transformed into electrocompetent E. coli JM109 strain. Plasmid 208 

constructs were purified and confirmed by sequencing (GenomeExpress), using the primer 209 

pair T7 and SP6 (Eurogentec). Each of the 5 plasmids was then transformed separately into E. 210 

aerogenes ATCC13048 (representative of non-MDR strains); EA289 (a kanamycin 211 

susceptible derivative of EA27, that represented more than 90% of MDR clinical isolates); 212 

CM64 (a laboratory mutant chosen for the specific deletion in RamR at positions 154/155), 213 

and IPM240 (a laboratory strain sequentially exposed to increasing imipenem concentrations 214 

and possessing ramA and ramR genotypes that were associated with a MDR phenotype) [6]. 215 

Bacterial transformants carrying the pDriveIV plasmid were grown in the presence of 216 

antibiotics: E. coli with 100 g ml-1 of ampicillin (Sigma) and E. aerogenes with 50 µg ml-1 217 

kanamycin (Sigma). 218 

 219 

Minimal inhibitory concentration (MIC) determination by E-Test stripes 220 

ATCC13048, EA289, CM64, and IPM24 plasmid-containing strains were grown to OD600 0.4 221 

in LB containing appropriate antibiotics and then induced with IPTG (1 mM) for 1 h at 37°C. 222 

Bacteria were then sub-cultured into fresh broth and grown to OD623 0.35 (approximately 10 x 223 

108 colony forming units ml-1). Induced cultures were diluted to 10 x 106 c.f.u ml-1, and 224 

spread (2.5 ml) on LB Agar-plates containing 0.5 mM IPTG. After drying for several minutes, 225 

E-Test stripes were placed on the plates and bacteria grew in presence of the tested antibiotics 226 

(ciprofloxacin, norfloxacin, nalidixic acid, tetracycline, chloramphenicol, imipenem, 227 

cefoxitin, cefuroxime, cefepime and ceftazidime) over night at 37°C. Assays were 228 

independently repeated 3 times. 229 

 230 

SDS-PAGE and Western Blotting 231 
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Bacterial protein extracts were analyzed by SDS-PAGE using 10% acrylamide. Samples were 232 

denatured in Laemmli loading dye containing 2% SDS and the protein-samples were heated 233 

three times at 95°C. Protein size was estimated by comparison with pre-stained low-range 234 

molecular weight marker (BioRad). Proteins were stained using Coomassie Brilliant Blue R-235 

250 as previously described [6]. 236 

For immunodetection, proteins were electro-transferred onto nitrocellulose membranes 237 

(Schleicher & Schull Bioscience Inc, NH, USA) in transfer buffer (20 mM Tris, 150 mM 238 

glycine, 20% isopropanol, 0.05% SDS). Membranes were blocked using 4% milk in Tris-239 

buffered sodium (TBS: 50 mM Tris-HCl, 150 mM NaCl, pH8). Polyclonal antibodies 240 

(Neosystem Co. Strasbourg, France), directed against denatured proteins (i.e., AcrA, AcrB 241 

and TolC), were used for detection [6, 10, 11]. Quantitation of the antigen-antibody 242 

complexes was performed with alkaline phosphatase-conjugated AffinitiPure goat anti-rabbit 243 

IgG antibodies (Jackson ImmunoResearch, PA, USA) using BCIP and NBT (Sigma) 244 

according to the manufacturer instructions [11]. 245 

 246 

Results 247 

 248 

Variability in regulators involved in resistance of clinical isolates 249 

 The marA, marR and ramA gene sequences of all E. aerogenes strains, investigated for 250 

this study, were identical to those of the susceptible ATCC13048 strain. However, 93.6 % 251 

(44/47) of the MDR clinical isolates, showed a deletion in the upstream region of ramA, 252 

proximal to the marbox   (Fig. 1). 253 

 Several amino acid-level changes were detected in the ramR sequences of MDR clinical 254 

isolates compared to laboratory strains. The majority of clinical isolates (97.8%; 93.6% and 255 

97.8% respectively) exhibited substitutions at positions 72 (Ala to Asp); 100  (Pro to Ser) and 256 
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121 (Ile to Ser). Compared with the ATCC13048 strain 93.6% (44/47) of the clinical isolates 257 

also contained an altered C-terminus, corresponding to a four amino-acid deletion. These 258 

mutations were located outside the putative DNA-binding area that corresponds to the 50 first 259 

N-terminal amino acid. Such mutations may alter the three dimensional structure of the 260 

repressor, taking into account the type of substituted side chains that have different charges 261 

and sizes compared to the original [41].  Stepwise increasing concentrations of 262 

chloramphenicol were used to select for the resistant laboratory strain CM64. When analysed, 263 

the sequence of its ramR64 gene showed unique amino acid deletions at positions 154 (Leu) 264 

and 155 (Phe) [8]. No other strain showed such deletion.   265 

 266 

In vitro selection of mutants can affect ramR structure and function. 267 

To determine whether the characteristic deletion at position 154/155 in ramR64 was 268 

reproducible, the ATCC13048 strain was grown under the same increasing chloramphenicol 269 

concentrations as were used to create CM64. For further verification and to determine 270 

whether new mutations would emerge, rifampicin and fosfomycin were also used in the same 271 

way; to select for resistant mutants. These antibiotics (chloramphenicol, rifampicin, and 272 

fosfomycin) are known for their capacity to select mutants at high frequency. The ramA and 273 

ramR genes of mutants, surviving sequential increasing antibiotic treatments, were sequenced. 274 

All tested strains produced mutants that survived stepwise treatment with high concentrations 275 

of rifampicin (up to 16 µg ml-1) and fosfomycin (up to 64 µg ml-1), and 67 % (8/12)  produced 276 

mutants that survived exposure to high levels of chloramphenicol (up to 64 µg ml-1). None of 277 

the fosfomycin or rifampicin resistant mutants showed variation in ramA or ramR sequences 278 

compared to the ancestral strains (data not shown).. One of the eight chloramphenicol selected 279 

mutants (CM64new-10) harbored an interesting mutation in ramR, which introduced a stop-280 

codon at position 27 (Fig. 2). 281 

 282 
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Characterization and validation of expression of regulators of the MDR phenotype by 283 

qRT-PCR 284 

 Realtime qPCR was used to compare the levels of expression of key genes involved in 285 

E. aerogenes responses to antibiotic treatments and involved in the Mar and Ram regulation 286 

cascades (Table 2). The clinical isolate RAB76089G and the two imipenem resistant strains, 287 

IPM20 and IPM240, did not exhibit any significant change in expression profile compared to 288 

the reference ATCC13048 strain for all target genes (marA, marR, ramA, ramR, soxR, acrA 289 

and ompA): with the exception of RAB76089G, that showed a 2.88 fold decrease in marR 290 

expression (Table 2). All other clinical isolates (EA27, EA117, EA3, EA5, GIM55621, 291 

GIM59704, MOK75586 and PAP12515) and the laboratory mutant CM64 showed a marked 292 

increase in the expression of the transcriptional activator, ramA ranging from > 14-fold 293 

increase (PAP12515) to  > 140-fold increase for the chloramphenicol mutant CM64. The 294 

putative repressor of the ram-regulon, ramR, was also highly expressed by clinical isoales 295 

compared to the reference ATCC13048 strain, but ramR expression was considerably weaker 296 

than ramA expression in the same isolate. Relative ramA expression levels ranged from > 2-297 

fold (GIM59704) to > 10-fold (CM64). The exception was EA5 that showed > 3-fold 298 

decreased expression of ramR compared to ATCC13048.Three clinical isolates (EA117, EA3 299 

and EA5) exhibited significantly increased expression of the mar regulon genes(marA and 300 

marR), and soxR (ranging between> 20-fold to >160-fold increase).The remaining strains 301 

showed only marginal variations in expression that were not significantly different to the 302 

reference strain. 303 

The majority of MDR clinical isolates were found to be upregulating expression of the efflux 304 

pump component acrA (up to a 3-fold increase) and downregulating expression of the major 305 

porin gene omp35 (down to a 9-fold decrease). IPM20 and IPM240 mutants, selected using 306 

sequentially increased concentrations of imipenem, showed similar expression of the tested 307 
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genes to the reference ATCC13048 strain. This can be explained by the lack of imipenem 308 

selective pressure used during growth of these cultures for the qRT-PCR experiments.  309 

 310 

Overexpression of ramA or ramR can regulate the expression of efflux-pump 311 

components and outer membrane porins 312 

Construction of strains that over-expressed ramA or ramR, and immune-detection of 313 

key membrane permeability components, corroborated the associated variation observed in 314 

gene expression at the protein level. Western blot analysis showed significant variations in the 315 

expression of major porins (Omp35 and Omp36) and components of efflux pumps (AcrA, 316 

AcrB, TolC) in several strains that over-expressed ramA or ramR. A notable decrease in porin 317 

protein expression was observed in protein extracts from transformed strain EA27 that over-318 

expressed ramA from ATCC13048 and EA27 By contrast, when the same strain was modified 319 

to over-express ramR from ATCC13048, EA27 and CM64 a small increase in porin protein 320 

expression was observed (Figure 3). At the same time, no variation of the OmpA, an outer 321 

membrane protein involved in the membrane organization, was observed [2]. Similar effects 322 

were observed for strains EA289, CM64, and IPM240 that over-expressed ramA (data not 323 

shown). Overexpression of ramR in ATCC13048 showed no alteration of the porin content, 324 

regardless of the ramR origin (data not shown). 325 

The effects of ram gene over-expression on the production of the efflux pump components 326 

(AcrA, AcrB, and TolC) are also presented in Figure 3. Both ramA of ATCC13048 and EA27 327 

induced a small increase in AcrA expression, along with AcrB and TolC in EA289, CM64 328 

and IPM240. Overexpression of ramR from ATCC13048, EA27, and CM64 had the opposite 329 

effect and generated significant decreases in the signals of efflux pump components in the 330 

three tested strains. No variation of efflux pump components was observed in the strain 331 

ATCC13048 when ramR was overexpressed (data not shown). 332 

 333 
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Involvement of RamA overexpression on the antibiotic phenotype  334 

 Both ATCC13048 and the imipenem-selected mutants (IPM20 and IPM240) exhibited 335 

a significant change in their antibiotic susceptibility profiles when ramA was overexpressed. 336 

Table 3 shows that the ATCC13048 strain presented increased resistance to a to nalidixic acid 337 

tetracycline, and chloramphenicol, (6-fold higher MIC), and to cefepime (4-fold higher MIC). 338 

The strain IPM240 showed increases in resistance to nalidixic acid and tetracycline. 339 

Overexpression of ramA had only slight effects in already MDR-strains EA289 and CM64 340 

(data not shown).  341 

 342 

Involvement of ramR overexpression on the antibiotic phenotype of a strain selected 343 

under increasing concentration of imipenem. 344 

 E-test strip analysis of the imipenem-selected mutant IPM240, that had been modified 345 

to over-express ramR from 3 different sources (ATCC13048, EA27, and CM64), resulted in a 346 

nearly 3-fold decrease in the minimum inhibitory concentration of imipenem from 32 µg ml-1 347 

to 12 µg ml-1 (Table 4). A significant decrease in the MICs was also observed for tetracyclin 348 

and chloramphenicol. Overexpression of ramR in EA289 and CM64 resulted in only minor 349 

effects and no effect at all was observed when the various ramR genes were over-expressed in 350 

ATCC13048 due to a native inhibition in this strain (data not shown). 351 

 352 

Discussion 353 

Numerous regulators have been described in the development of bacterial MDR and 354 

both structural and genetic investigations endeavor to understand and decipher their 355 

mechanisms of action [14, 18, 19]. Enterobacteriaceae have evolved different molecular 356 

resistance strategies in response to a variety of toxic compounds and environmental stresses 357 

by way of the membrane permeability modulation, which is associated with the expression of 358 

drug transporters including porins and efflux pumps. The control of their expression is carried 359 
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out at several levels: global or local regulators, activators, repressors and response to chemical 360 

or pharmaceutical factors [3]. 361 

One positive regulator of growing interest in E. aerogenes is the global transcriptional 362 

activator RamA that is known to be involved in the balance of outer membrane permeability 363 

and in the active extrusion of intracellular antibiotics. RamA shares high similarity with MarA 364 

and it can be expected that ramA and marA might recognize an overlapping set of operator 365 

sequences. Previous reports have revealed that mutations or gene interruptions could be 366 

acquired either within ramR or in the ramA promoter [23]. In the present study, sequence 367 

analysis of various MDR strains of E. aerogenes revealed the presence of several mutations in 368 

ramR that were located outside the region involved in the DNA-binding domain of TetR 369 

family repressors,  they were found in the C-terminus, that was associated with protein 370 

dimerization.  371 

These ramR mutations have not previously been described in E. aerogenes or in other related 372 

species, such as S. enterica, K. pneumoniae, and E. cloacae [22-24, 28, 33, 37, 39-42]. These 373 

mutations could induce structural changes, inactivating the RamR repressor function. The 374 

deletion upstream of ramA was located between the gene and the putative marbox, 375 

responsible for self-regulation of the gene. The binding site of RamR contains essential 376 

features of the ramA promoter, including the -10 conserved region, the transcriptional start 377 

site of ramA and two 7-bp inverted repeats [23]. Modifications here could alter protein-DNA 378 

binding and hence the self-regulation of ramA. Both detected modifications could therefore be 379 

responsible for the increased expression of ramA that consequently trigger the MDR 380 

phenotype. It has been previously demonstrated that sequence alterations in ramR or in the 381 

upstream region of ramA led to an up-regulation of AcrAB in Salmonella enterica [31, 43]. A 382 

characteristic deletion at position 154/155 in ramR was only found in a chloramphenicol-383 

resistant mutant (CM64) that was selected for with increasing concentrations of 384 

chloramphenicol [8, 44]. A mutation in the repressor causing increased expression of the 385 
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global activator might bring benefits for bacterial survival in an otherwise hostile 386 

environment. 387 

Expression patterns of marA and marR indicated that a balance between expression of 388 

activators and repressors takes place in E. aerogenes resistant isolates. An increased 389 

expression of RamR, that does not affect expression of ramA, indicated that the repressor 390 

would be less functional, probably as a result of the detected mutations. After growing in the 391 

absence of antibiotics, the E. aerogenes strains rapidly re-regulated membrane permeability 392 

and showed the same expression patterns as the susceptible reference strain ATCC13048. In 393 

contrast, the expression pattern of the chloramphenicol resistant mutant CM64, exhibiting a 394 

deletion in ramR, was comparable with those of the clinical isolates. The clinical isolates 395 

showing a MDR phenotype also exhibited a decreased transcription of porin gene (omp35) 396 

and an increased expression of the efflux pump gene, acrA. These results depicted a 397 

consistency between the increased expression of both ramA efflux pumps, and the decreased 398 

expression of porins that triggers the MDR phenotype in clinical isolates. Some MDR clinical 399 

isolates showed increased expression of omp35 that can be balanced out by the post-400 

transcriptional control of porin genes or the post-translational control of porin assembly into 401 

the bacterial outer membrane [8]. In contrast, the expression of marA remained on a 402 

comparable level with the susceptible reference strain. As suggested by Wang et al. in K. 403 

pneumoniae, MarA might serve as an alternative regulator and RamA would be the most 404 

potent regulator of the MDR phenotype [21, 42]. This observation points to the importance of 405 

the global regulator ram for the MDR-phenotype in E. aerogenes. However, Martin et al. 406 

compared activation of a set of promoters containing marboxes, depending of MarA or SoxS 407 

concentration [19]. They observed that the half maximal activation of promoters by MarA 408 

was highly concentration dependent, and correlations between in vivo and in vitro 409 

experiments measuring optimal activator concentration were poor, and the promoter 410 



18 

 

activation profile depends specifically on the activator. So target gene activation is thought to 411 

depend on the concentration and the nature of a given activator of the mar regulon. 412 

 Cloning experiments confirmed the role of RamA in reducing porin expression and 413 

increasing the expression of efflux pump components; this pattern was consistent with the 414 

altered corresponding antibiotic susceptibility profile. In S. Typhimurium and in K. 415 

pneumoniae, several studies have confirmed the role of RamA in fluoroquinolones resistance 416 

due to AcrAB overexpression [14, 15, 18, 23, 31, 36]. These results supported the assumption 417 

that RamA is a global regulator triggering the MDR phenotype by modification of the 418 

membrane permeability with ramR acting as its local operonic repressor. Despite identical 419 

RamR mutations found in most of the various clinical strains studied, the level of expression 420 

of ramA was variable and antibiotic MICs were not identical. However, it has been 421 

demonstrated that increasing ramA expression due to identical RamR deregulation was 422 

variable. As observed by Bailey et al., bacterial carefully “orchestrate” the level of RamA, 423 

expression and genes within its regulon are produced at the correct level only under 424 

appropriate conditions [15]. This is supported by the existence of alternate pathways in ramA 425 

regulation as the level of other regulators and the intracellular concentration-dependent 426 

response of the bacterium to increasing overexpression of the transcriptional activator [20, 427 

41]. Conversely, diverse mutations in RamR were able to stimulate identical ramA 428 

overexpression as previously demonstrated [42]. Moreover, considering the reported influence 429 

of RamA on more than 100 genes, the combination of their level of expression could result in 430 

a panel of pleiotropic MDR phenotypes [20]. Regarding the strain CM64 that presented a 431 

particular deletion in RamR, expression of ramA expression was increased by more than 100-432 

fold compared to the others, suggesting that this deletion was more important in the regulation 433 

cascade. Importantly, the MDR phenotype of CM64 was not particularly different, a feature 434 

that makes it difficult to further elucidate their role in functional changes in ramR. 435 
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Rosenblum et al. observed that in K. pneumoniae, RamR mutations could be found in both 436 

DNA and ligand binding domains, suggesting that there were no mutational hotspots within 437 

RamR [24]. Moreover, it has been demonstrated that several mutations are required for MarR 438 

inactivation, so as to obtain a significant alteration of its repressor activity [23, 24, 30, 35, 36]. 439 

Genes regulated by RamA seemed to be controlled by it in a concentration-dependent manner, 440 

as observed by qRT-PCR experiments and Western blotting results.  441 

 The MDR phenotype in E. aerogenes is caused by several factors acting in concert. 442 

The combination of an enzymatic barrier caused by several antibiotic-degrading enzymes, a 443 

target-protection barrier caused by mutations in the targets of antibiotics, and the physical 444 

barrier by alteration of the outer membrane profile, work together to protect the bacteria from 445 

harmful substances. Alteration of just one of these barriers will not switch off MDR. This 446 

feature is supported by the fact, that overexpressed ramA or ramR alter the membrane profile 447 

of the tested MDR strains by increasing or decreasing the expression of porins or efflux pump 448 

components as shown by immunoblot analysis, but the E. aerogenes susceptibility to various 449 

antibiotics was not completely modified, as shown by MIC data. The strain EA289 remained 450 

resistant to the majority of the tested antibiotics because the enzymatic and the target 451 

protection barrier are insensitive to the overexpression of ramA or ramR [1, 3]. The reason 452 

that the chloramphenicol-selected mutant, CM64 maintained its MDR phenotype, despite 453 

over-expression of ramR could not be determined in this study. Since chloramphenicol 454 

induced a high mutation rate, we cannot eliminate the possibility that the CM64 mutant 455 

possesses mutations in other loci. These mutations could also contribute to the MDR 456 

phenotype. The fact that ramR did not have any effect on the already antibiotic susceptible 457 

strain ATCC13048 can be explained by the normal production of ramR in the susceptible 458 

strain. An overexpression of ramA on the other hand may contribute to an imbalance in the 459 

ratio between activator ramA and repressor ramR, thereby altering membrane permeability 460 

and thus increasing resistance to several antibiotics as shown by the MIC data. 461 
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To conclude, this study demonstrated that the global regulator ram is important in the cascade 462 

of membrane permeability. The mutations identified in ramR seem to modify the structure of 463 

the protein required for the affinity of the binding site as previously reported for MarR and 464 

TetR repressor family and hereby leave it less functional compared to the wild-type [25, 43]. 465 

In addition, the activity of the global regulator also depends on its expression level. 466 

Overexpression of a less functional repressor is able to modify the content of porins and 467 

efflux pumps in the outer membrane. Finally, this was the first study to provide data 468 

describing the direct correlation between the expression of genes constituting the ram-regulon 469 

and their respective influence on membrane permeability in E. aerogenes.  470 
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Figures legend 637 

Figure 1: Sequence upstream of ramA (represented by startcodon ATG) with putative marbox 638 

and deletion found in several clinical isolates. IPM represents the 9 strains IPM1-IPM240. 639 

EA103280 and EA112978 are non-MDR clinical isolates. Strains GIM59704, MOK75586, 640 

PAP12586, RAB73482 and EA27 represent 91.5% (43 of 47) of all tested MDR clinical 641 

isolates. 642 

 643 

Figure 2:  Comparison of the amino-acid sequence of RamR identified in 2 variants of the 644 

ATCC13048 reference strain, obtained after treatment with chloramphenicol; CM64 was 645 

characterized previously [43] and CM64 new-10 was identified form the stepwise treatment 646 

with chloramphenicol. 647 

 648 

Figure 3: Expression of AcrA, AcrB, TolC and Omp36 in Enterobacter aerogenes strain 649 

EA289 harboring different plasmids. Lines 1-6: 1 empty plasmid pDriveIV, 2 insert ramA 650 

ATCC, 3 ramA EA27, 4 ramR ATCC, 5 ramR EA27 and 6 ramR CM64.  Increased 651 

expression respectively of AcrA, AcrB, TolC due to overexpression of ramA marked with 652 

stars *, decrease due to ramR marked with ¤. Lowered expression of omp36 due to 653 

overexpression of ramA marked with stars *654 



28 

 

Tables  655 

 656 

Strains        Year of isolation/origin          MIC (mg l-1)         Outer membrane protein content 657 
        658 
                                                                                               Antibiotics 659 
     CHL CIP FEP IMP                  Porin              Efflux 660 
 661 
ATCC 13048 Reference   16 0.25 0.25 0.125  yes  no 662 
   663 
ATCC15038 Reference   2 0.125 ND† 0.25  yes  no 664 
 665 
CM64  Laboratory [43]  256 2 0.5 0.25  yes  yes 666 
 667 
EA117  1996[44]   512 256 64 0.25  yes (weak)  yes 668 
 669 
EA119  1996[44]   16 256 32 0.125  yes (weak)  no 670 
 671 
EA3  1996[44]   ND ND 64 4  yes (modified) yes 672 
 673 
EA27  1996[44]   512 256 64 8  no  yes 674 
 675 
EA5  1996[44]   512 256 64 4  no  yes 676 
 677 
EA19  1996[44]   1024 >512 64 1  yes  yes 678 
 679 
EA14  1996[44]   1024 512 32-64 2  yes  yes 680 
 681 
EA7  1996[44]   256 64 4 1  yes  yes 682 
 683 
EA45377  1995[10]   ND ND ND ND  ND  ND 684 
 685 
EA103  1995[10]   ND ND 16 16  no  no 686 
 687 
EA111  1995[10]   ND ND 16 8  no  ND 688 
 689 
EA110  1995[10]   ND ND 64 16  no  ND 690 
  691 
EA102  1995[10]   ND ND 32 16  no  ND 692 
 693 
EA121653  2003[10]   256 256 1 1  ND  no 694 
  695 
EA1061701 1995[10]   >256 128 64 16  ND  yes 696 
 697 
EA109688  2003[10]   16 128 4 1  ND  yes 698 
 699 
EA108  1995[10]   <4 64 ND 2  ND  no 700 
 701 
EA103280  2003[10]   8 <4 1 4  ND  yes 702 
 703 
EA54  1995[10]   16 64 4 2  ND  yes 704 
 705 
EA112978  2003[10]   <4 256 4 4  ND  no 706 
 707 
EA6582  1995[10]   256 256 4 4  ND  yes 708 
 709 
GIM63001 1997[6, 29]   256 64 4 2  yes  ND 710 
 711 
GIM59705 1997[6, 29]   256 128 64 16  no  ND 712 
 713 
GIM59704 1997[6, 29]   256 128 32 16  no  ND 714 
 715 
GIM53292 1997[6, 29]   512 128 32 32  no  ND 716 
 717 
GIM54584 1997[6, 29]   256 128 16 4  yes  ND 718 
 719 
GIM55621 1997[6, 29]   512 128 128 8  no  ND 720 
 721 
GIM55625 1997[6, 29]   256 64 2 1  yes  ND 722 
 723 
GIM59627 1997[6, 29]   512 128 64 8  no  ND 724 
 725 
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MOK72691 1997[6]   256 256 128 16  no  ND 726 
 727 
MOK73694 1997[6]   128 256 128 16  yes  ND 728 
 729 
MOK75586 1997[6]   128 256 32 32  no  ND 730 
 731 
MOK76500 1997[6]   128 256 2 1  yes  ND 732 
 733 
PAP11668 1997[6, 29]   8 2 1 1  yes  ND 734 
 735 
PAP13165 1997[6, 29]   256 64 64 16  no  ND 736 
 737 
PAP12698 1997[6, 29]   256 32 16 2  yes  ND 738 
 739 
PAP12586 1997[6, 29]   256 32 8 2  yes  ND 740 
 741 
PAP12515 1997[6, 29]   256 32 64 16  no  ND 742 
 743 
RAB73698 1997[6]   256 64 4 2  yes  ND 744 
 745 
RAB73482 1997[6]   256 64 2 1  yes  ND 746 
 747 
RAB76089G 1997[6]   256 64 128 8  no  ND 748 
 749 
RAB76089P 1997[6]   512 32 2 4  yes  ND 750 
 751 
IPM5  Laboratory  - - - -  no  yes 752 
 753 
IPM20  Laboratory  - - - -  no  yes 754 
 755 
IPM40  Laboratory  - - - -  no  yes 756 
 757 
IPM60  Laboratory  - - - -  no  yes 758 
 759 
IPM70  Laboratory  - - - -  no  yes 760 
 761 
IPM80  Laboratory  - - - -  no  yes 762 
 763 
IPM120  Laboratory  - - - -  no  yes 764 
 765 
IPM160  Laboratory  - - - -  no  yes 766 
 767 
IPM240  Laboratory  - - - -  no  yes 768 
 769 
106206  2003[10]   256 128 64 4  ND  yes 770 
 771 
112978  2003[10]   <4 256 4 4  ND  no 772 
 773 
131102  2003[10]   >256 256 2 4  ND  yes 774 
 775 
131538  2003[10]   >256 256 32 8  ND  yes 776 
 777 
137464  2003[10]   >256 512 64 8  ND  yes 778 
 779 
 780 

Table 1: Clinical and laboratory strains studied. Data concerning MICs and outer membrane 781 

proteins content were obtained in precedent studies [6, 10, 29, 43, 44].  782 

CHL, chloramphenicol; CIP: ciprofloxacin; FEP: cefepime; IMP: imipenem.  783 

†ND: not determined.784 
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 strains       genes    

     ramA ramR marA marR soxR acrA omp35  

 

 EA27    28.42 4.66 -1.24 1.07 -2.88 1.92 -2.75 

 CM64    147.80 10.90 2.98 3.39 -2.10 3.19 -4.59 

 IPM20    1.01 1.12 1.05 1.28 -1.00 1.06 1.13 

 IPM240    1.09 1.09 -1.15 -1.10 -1.38 -1.26 1.69 

 EA117    40.61 5.42 39.26 27.29 91.09 2.18 3.63 

 EA3    29.78 6.14 22.73 15.41 51.94 1.91 2.96 

 EA5    68.76 -3.52 54.93 52.85 169.59 3.80 9.02 

 GIM55621   18.07 3.03 5.01 2.84 9.25 1.64 1.03 

 GIM59704   19.33 2.26 -1.32 -1.37 -2.73 2.37 -2.14 

 MOK75586   17.62 2.28 1.02 1.02 -4.25 3.02 -2.10 

 PAP12515   14.37 2.49 -3.26 -2.19 -4.83 1.41 -2.31 

 RAB76089G   -1.81 -1.80 -1.16 -2.88 -1.42 -1.02 -1.19 

 

Table 2: DDCt qRT-PCRs results. The values are relative to the reference strain 

ATCC13048.  
 

 

 

 

      Antibiotic MIC (µg ml-1) 

       Strains  _________________________________________________________ 

   CIP NFX NAL TET CHL IMP CFX FEP CAZ 

ATCC13048 

pDrive   0.25 1 4 4 8 2 8 0.25 1.5 

pramA   0.5 4 24 24 48 2 16 1 3 

IPM240 

pDrive   0.19 2 6 16 48 >32 ---† 3 12 

pramA   0.25 3 12 48 48 >32 --- 3 8 

 

Table 3: Combination of strains and plasmids with corresponding antibiotic MICs in µg ml-1. 

CIP, Ciprofloxacin; NFX, Norfloxacin; NAL, Nalidixic acid; TET, Tetracycline; CHL, 

Chloramphenicol; IMP Imipenem; CFX, Cefuroxime; FEP, Cefepime; CAZ, Ceftazidime.  

†--- means no inhibition could be remarked 
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       MIC (µg ml-1)  

       Strains  _________________________________________________________ 

   CIP NFX NAL TET CHL IMP CFX FEP CAZ 

 

IPM240 

pDrive   0.19 2 6 16 48 >32 ---† 3 12 

pramR ATCC  0.125 1 4 24 12 12 --- 3 16 

pramR EA27  0.125 1 8 12 16 12 --- 2 12 

pramR CM64  0.125 0.5 4 6 4 12 --- 3 24 

 

Table 4: Combination of strains and plasmids with corresponding MICs in µg ml-1.  

 CIP, Ciprofloxacin; NFX, Norfloxacin; NAL, Nalidixic acid; TET, Tetracycline; CHL, 

Chloramphenicol; IMP Imipenem; CFX, Cefuroxime; FEP, Cefepime; CAZ, Ceftazidime.  

†--- means no inhibition could be remarked 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


