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Object-based audio presents the opportunity to optimize audio reproduction for different
listening scenarios. Vector base amplitude panning (VBAP) is typically used to render object-
based scenes. Optimizing this process based on knowledge of the perception and practices
of experts could result in significant improvements to the end user’s listening experience.
An experiment was conducted to investigate how content creators perceive changes in the
perceptual attributes of the same content rendered to systems with different numbers of chan-
nels, and to determine what they would do differently to standard VBAP and matrix based
downmixes to minimize these changes. Text mining and clustering of the content creators’
responses revealed six general mix processes: the spatial spread of individual objects, EQ
and processing, reverberation, position, bass, and level. Logistic regression models show the
relationships between the mix processes, perceived changes in perceptual attributes, and the
rendering method/speaker layout. The relative frequency of use for the different mix processes
was found to differ between categories of audio objects suggesting that any downmix rules
should be object category specific. These results give insight into how object-based audio can
be used to improve listener experience and provide the first template for doing this across
different reproduction systems.

1 INTRODUCTION

Object-based broadcast has been described as the “logi-
cal next step” in broadcast technology [1]; this is reflected
in current large scale research projects [2–4], standardiza-
tion activities [5, 6], interest from broadcasters [1], and
commercialization [7, 8]. Object-based audio (OBA) is an
approach to sound storage, transmission, and reproduction
whereby individual audio objects with associated metadata
are transmitted and rendered at the client side of the broad-
cast chain. An object will typically consist of an audio sig-
nal and metadata indicating the object’s position and level;
objects may also contain semantic metadata indicating, for
example, the language of a dialogue track or whether the
object is positioned on or off screen. This is in contrast to
traditional channel based audio, where pre-rendered con-
tent for a fixed reproduction system is broadcast. One of the
main benefits of OBA is that the content can be rendered
optimally for the given reproduction setup, environment,
or listening context. For example, the same audio content
could be rendered over loudspeakers, mobile devices, or
binaurally over headphones for a VR. However, there are

many open questions regarding how to render OBA content
optimally for different reproduction systems.

Panning in object-based systems is generally done us-
ing vector base amplitude panning (VBAP) [9]. As object-
based rendering algorithms have knowledge of the target
reproduction setup, there is an opportunity to further opti-
mize the reproduction via metadata adaptation. For exam-
ple, the panning trajectories of objects in the scene could
be modified depending on the limitations of the target loud-
speaker layout. This could lead to significant improvements
in listener experience over traditional VBAP rendering, par-
ticularly to systems with few channels, such as two-channel
stereo, where VBAP configurations are not applicable. Op-
timization of object-based rendering could be based on ob-
jective soundfield parameters of the scene (e.g., aiming for
an equal distribution of energy from all directions), percep-
tual parameters of the scene (e.g., by trying to maximize
listener envelopment), or could aim to simulate what an
expert would do when mixing object-based content for dif-
ferent speaker layouts (e.g., rules describing level adjust-
ments for individual objects). This paper is concerned with
the latter, and aims to develop a framework to build expert
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knowledge into object-based rendering. The presented re-
sults provide the first evidence of what expert mixers would
do when mixing object-based audio for different systems
and improves confidence that OBA can deliver on promises
of format agnosticism and improved listener experience.

1.1 Intelligent Systems in Audio Production
There have been a number of investigations into intelli-

gent systems for audio production. These systems include
automatic microphone mixing [10, 11], automatic panning
algorithms [12], gain normalization algorithms for feed-
back prevention [13], algorithms designed to reduce mask-
ing [14], automatic equalization [15], and automatic music
mixing [16, 17]. Generally, these systems operate on low
level signal and psychoacoustic features.

Ren et al. [18] proposed an automatic music production
system based on embedded expert knowledge. The system
extracts a feature set based on the musical score such as
pitch and marks of expression, musical features such as
loudness and pitch deviation, and technical audio features
such as signal to noise ratio. These features are then used to
model the probability of different processes being applied
to the production. Pestana and Reiss [19] used a grounded
theory approach to investigate current practices in mix en-
gineering to inform intelligent production strategies. This
study included an extensive literature search, along with
interviews with a large panel of successful mix engineers.
The main outcome of this work was a set of rules related to
mixing best practices.

The systems described in this section have generally
been designed for music applications and operate within
a channel-based framework. To date there has been no in-
vestigation into how professionals mix non-musical object-
based content for 3D audio systems. The results presented
in this paper, therefore, provide data that will be useful in
bringing together object-based audio and intelligent sys-
tems in audio production.

1.2 Perception of Spatial Audio
There have been numerous studies that have aimed to

elicit perceptual attributes for reproduced sound [20–29].
Generally, the outcome of these studies is a non-orthogonal
set of attributes that can be used to rate perceptual dif-
ferences between different reproduction conditions (loud-
speaker layouts, rendering methods, etc.). Generally, these
attribute sets describe various timbral (such as clarity and
coloration) and spatial (such as envelopment and horizontal
width) perceptual attributes. An overview of these studies
is given by Francombe et al. [30].

Recently, Francombe et al. [31, 32] conducted a study to
determine which perceptual attributes contribute to the lis-
tener preference of reproduced audio. Their study included
state of the art reproduction methods including systems
with height such as 4+5+0 and 9+10+3 speaker layouts1.
An elicitation experiment was conducted with a group of

1 The convention for describing loudspeaker layouts from [33]
is used in this paper. NU + NM + NB describes the number of

expert and non-expert listeners that resulted in two sets of
attributes (one for each of the listener groups) covering a
range of timbral and spatial attributes. This attribute set is
utilized in the present study (see Sec. 2.3).

The studies described in this section provide useful tools
to assess the perception of reproduced sound. However,
little is known about how perceptual attributes are degraded
when the same object-based content is rendered to systems
with different numbers of channels and how professional
mix engineers would alter the downmix to compensate for
these changes.

1.3 Conceptual Model
Conceptually, the work presented in this paper assumes

the following model of perception. It is assumed that when
object-based audio is rendered to different loudspeaker lay-
outs, changes in the physical sound field will cause a change
in the auditory scene perceived by the listener. According to
Coombs [34], differences between pairs of stimuli represent
a distance in a latent high dimensional psychological space,
which can be described by a finite number of perceptual di-
mensions. In the perception of complex sound stimuli, these
dimensions are assumed to relate to some combination of
perceptual attributes [35]. Therefore, if a sound designer
is tasked to remix content to a different loudspeaker lay-
out with the aim of preserving the production intent of the
original content, their judgments of similarity between the
original and the re-rendered content will be based on differ-
ences in the positions of the stimuli in this perceptual space.
When a change in these perceptual attributes is detected by
the sound designer, they will make changes to the mix of
the re-rendered content to attempt to compensate for the
change in the perceptual attribute. It is this relationship be-
tween perceptual attributes and general mix processes that
is of interest in this paper.

1.4 Aims and Objectives
At present, there has been no systematic investigation of

how professionals mix object-based content for different
reproduction systems or how perceptual attributes change
when object-based content is rendered to different loud-
speaker systems. This paper reports on an experiment that
was conducted to investigate:

1. Which perceptual attributes change when the same
object-based content is rendered to systems with dif-
ferent numbers of channels, and;

2. What professional content creators would do differ-
ently to a standard VBAP renderer when content is
rendered to systems with different numbers of chan-
nels.

The first objective of this exploratory study is to iden-
tify a small number of the most common mix processes
used by professionals when remixing object-based content

loudspeakers in the upper layer (NU), middle layer (NM), and
bottom layer (NB).
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for systems with different numbers of channels. A second
objective is to explore how the perceptual attributes of the
rendered soundfield change between VBAP renderings of
the same content to different speaker layouts. The identified
mix processes can be used by designers of OBA systems and
by researchers in OBA, intelligent audio systems, and spa-
tial audio generally. The processes will also inform future
research, the aim of which will be to determine quantitative
rules that can be used when rendering OBA for different
loudspeaker layouts.

1.5 Structure of Study
The work presented in this paper consists of three main

phases. First, experiments were conducted with profes-
sional audio content producers in which they were asked
to compare a 9+10+5 channel rendering of an object-based
audio drama scene to a rendering of the same content to a
system with fewer channels. The content producers were
asked what they would do differently if they had control
over mix for the system with fewer channels and indicate
what perceptual attributes changed between the reference
and the lower channel version. As this is an exploratory
study, aiming to elicit the common mix processes a con-
tent producer might employ when remixing object-based
content for loudspeaker systems with different numbers
of channels, the test participants were asked openly about
their intentions rather than asking them to directly operate
on the mix. A follow-up experiment will give the content
producers direct control over a small number of the most
commonly suggested processes to determine quantitative
downmix rules for those processes.

The open text data collected in the first phase were an-
alyzed using text mining techniques and follow-up inter-
views with the test participants to identify a small number
of common changes suggested by the sound designers. Fi-
nally, the relationships between the data relating to changes
in perceptual attributes, the identified mix processes, and
the rendering method/speaker layout were explored using
logistic regression models.

2 MATERIALS AND METHODS

2.1 Ethics
The experiment described in this paper was approved

by the University of Salford ethics committee. Participants
took part in the experiment voluntarily, and written consent
was taken prior to the test session. Participants were free to
withdraw from the experiment at any time without needing
to give a reason to the researcher.

2.2 Stimuli
Stimuli for the experiment were generated using pro-

fessionally produced object-based audio drama content,
produced as part of the S3A project [36]. The clips were
originally mixed for a 9+10+5 channel setup (9+10+3 as
specified in Recommendation ITU-R BS.2051 [33] with 2
additional speakers in the lower layer at ±135o); subwoofer
signals in the listening room during the mix were generated

Table 1. Description of stimuli used in the listening experiment.
The scenes are available from

https://doi.org/10.17866/rd.salford.3120112.

Scene Description Main features

1 Children run around the
listener in a forest

3D diffuse background and
music; Movement in
lower layer (footsteps);
Elevated narrator

2 Within a crowd at a protest Surrounding crowd;
Elevated static source;
Dialogue to the side of
listener

3 A child runs down stairs
behind the listener and
speaks with his family

Movement from behind;
Multispeaker dialogue

4 A large monster approaches
from behind and leaps
over the listener’s head

Movement over listener’s
head; Composite object
made of different objects;
Movement in lower layer

by an IOSONO Core bass management system. Four clips,
each with a duration of around 20 seconds, were selected
from this material to be used in the test. The clips were se-
lected to demonstrate a wide range of features of advanced
3D audio systems and to include a range of different object
types [37, 38]. Descriptions of the four clips are provided
in Table 1.

Object-based renderings of the clips were generated for
4+9+0, 0+5+0, and 0+2+0 speaker layouts (as specified
in Recommendation ITU-R BS.2051 [33]) using VBAP.
These systems were selected to include a 3D surround lay-
out, a 2D surround layout, and a standard stereo layout. The
renderings were generated from the original object-based
scenes, using the original metadata to define the position
of sources. In the case of the 2D systems, the height in-
formation was disregarded in the rendering. As VBAP is
not able to render sources outside of the active arc of the
speaker layout, a virtual speaker was positioned at 180◦

in the 0+2+0 layout. As with the original mix, subwoofer
signals for the 4+9+0 and 0+5+0 systems were generated
using the IOSONO Core bass management system in the
listening room.

The VBAP renderings were generated using the algo-
rithms described by Pulkki [9] implemented in a realtime
C++ software rendering framework developed in the S3A
project. The software takes as an input a loudspeaker config-
uration, the audio signals for each object, and the metadata
for each object via a UDP JSON stream and outputs signals
for the given loudspeaker configuration. The loudspeaker
configuration is meshed into a set of triplets and a gain ma-
trix for each triplet is inverted and multiplied by the object
positions described in the metadata to calculate panning
gains for each object in the scene. The calculated gains are
applied to each object’s audio signal to generate the output
loudspeaker signals. The metadata model and the software
rendering framework are described in more detail in [39].

Alongside VBAP, matrix downmixes from an object-
based 9+10+3 render to 0+5+0 and 0+2+0 were also
included to understand how the object-based renderings
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perform compared to standardized matrix downmix meth-
ods. The coefficients for the matrix downmixes were taken
from [40]. All of the clips used in the experiment were loud-
ness normalized using a multichannel extension to ITU-R
1770-2 [41].

2.3 Listening Experiment
Eight professional content producers took part in the

listening experiment. Each of the participants identified
that audio production was their full time profession. The
participants’ professional experience ranged from theater
sound designer, studio manager, sound supervisor, sound
editor, sound designer, sound mixer, composer, and sonic
artist. The participants had experience mixing for surround
systems ranging from 5.1 mixes for sport, entertainment,
and theatricals to multichannel museum installations. The
average age of participants was 43.5 (SD = 9.1) and they
were paid an honorarium for their time.

The experiment was conducted in the listening room
at BBC R&D. This listening room complies with ITU
BS.1116 [42] and is equipped with 32 Genelec 8030B loud-
speakers and 2 Genelec 7040 subwoofers. Further details
of this listening room are given in [43].

Participants were presented with the stimuli described in
Sec. 2.2 in pairs, the reference stimulus, and a version of the
same content rendered for a speaker system with a lower
number of channels.

For each comparison the participant was asked:

1. What they would have done differently if they had
control of the version with the lower number of loud-
speakers if they were mixing the clip with the aim
of preserving the intent of the reference clip, and;

2. To indicate, using a list of perceptual attributes, what
had changed between the reference and the down-
mix.

The order of the stimuli and attribute list was random-
ized for each participant and participants were not informed
about the layout of the target reproduction systems. Partic-
ipants were able to switch freely between the reference
stimulus and the downmix stimulus.

The interface for the test is shown in Fig. 1. Responses to
1. were collected using open text data; the participants were
asked to type each change they would make on a new line
of the text box. Responses to 2. were collected using check
boxes; the attributes on the right hand side of the figure
are harshness, spatial clarity, spatial naturalness, envelop-
ing, richness of sound, ease of listening, detail, position
of sound, ensemble balance, spectral resonances, clarity,
realism, sense of space, spatial movement, spectral clarity,
bandwidth, horizontal width, level of reverb, depth of field,
amount of distortion, surrounding, subjective quality of re-
verb, phasiness, overall spectral balance, spatial openness,
and bass. The list of attributes was taken from the findings
of an elicitation experiment by Francombe et al. [31, 32].
The definitions of the attributes given in [31] were pro-
vided to the participants. Participants were also allowed to

add any other attributes they perceived as having changed
in an open textbox; however, none of the participants used
this option suggesting that the attributes in [31] covered all
of the perceptual differences in the test stimuli.

2.4 Statistical Methods
2.4.1 Cluster Analysis

Two methods of cluster analysis are used in this study—
k-means and hierarchical agglomerative clustering. The aim
of both of these methods is to divide a set of data into
interpretable groups.

K-means clustering is a flat clustering algorithm that
aims to minimize the average squared Euclidean distance
of objects from the centroid of the object’s cluster [44]. In
k-means clustering, the number of clusters k returned by
the algorithm is specified in advance.

Hierarchical agglomerative clustering is a method of
clustering whereby all of the objects begin as individual
clusters. In an iterative process, the two closest clusters are
merged. The final top level of the hierarchy consists of a
single cluster containing all objects. Using this method, the
number of clusters does not need to be specified in advance;
different numbers of clusters can be obtained by slicing the
hierarchical solution at different levels [45].

2.4.2 Regression Modeling
Categorical response variables with more than two cat-

egories can be modeled using multinomial logistic regres-
sion [46]. In the present study, the changes suggested by
the sound designers for each reproduction system (see Sec.
3.1.1) can be represented in this way. Consider a multino-
mial categorical response variable Yi that can take one of J
values. The probability πi,j that the i-th response falls into
the j-th category can be denoted as such:

πi, j = P(Yi = j) (1)

In the multinomial logistic model, one of the categories of
Yi is used as a baseline category, and the log-odds for all the
other categories relative to this baseline are modeled. The
odds that the i-th response falls into category j as opposed
to the baseline is πi,j/πi,Baseline.

The multinomial logistic model assumes that the log-
odds of each response category over the baseline follows a
linear model:

ln(πi, j/πi,Baseline) = α j + xT
i βj (2)

where αj is the model intercept for the j-th category, βj is a
vector of regression coefficients, xi is a vector of observa-
tions, and T indicates a matrix transpose. αj and βj can be
estimated via maximum likelihood.

Considering Eq. (2), as the the log-odds are being mod-
eled, taking the exponential of the βj regression coefficients
directly leads to an odds-ratio against the baseline category
for a unit increase in the corresponding independent vari-
able. For example, if a βj coefficient of 0.70 were found
for a given binary predictor variable, this can be directly
interpreted as the odds of a response occurring in the j-th
category over the baseline category being twice as high
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Fig. 1. Test interface used in the listening tests.

when the predictor variable takes on a value of 1 (as e0.70

≈ 2).
Binary logistic regression, which is used in Sec. 3.4.2,

can be considered as a special case of multinomial logistic
regression when the number of response categories J = 2.

3 ANALYSIS AND RESULTS

3.1 Open Text Data
3.1.1 Text Mining

The open text data collected using the methods described
in Sec. 2.3 were initially analyzed using unsupervised text
mining techniques. The aim of this exercise was to begin
to look for general categories of changes that the sound
designers indicated they would make to the content ren-
dered to systems with a lower number of loudspeakers than
the reference system. Text mining allows the investigation
of latent structures in a collection of documents (in this
case a document refers to a single phrase2 elicited in the
experiment) [47]. Text mining has an advantage over sim-
ply examining word frequencies, as it can reveal clusters
of phrases that relate to similar concepts; for example, in
the present study the word “position” is used frequently

2 In the remainder of this paper a phrase refers to a single
sentence provided by the participant.

in phrases relating to both static and dynamic positions of
objects.

The text data were cleaned by converting every letter
to lower case and by removing numerical and punctua-
tion characters. Following this, a list of stopwords was
constructed. Stopwords are words that are disregarded in
the text mining process because they offer little predictive
power; this may be because they are common words within
the language (e.g., a, the, and) or because they are com-
mon within the domain that is being investigated (in the
present study, this included words such as speaker, stereo,
downmix).

A list of common English words from the SMART in-
formation retrieval project [48] was used as a base for the
stopword list. This list was manually examined to ensure
any words that had potential predictive power were retained.
Following this, any word that only occurred once in the cor-
pus was considered a stopword [47]. As the main aim of
the exercise was to investigate mix processes, the result-
ing dictionary was manually examined to remove hedonic
phrases (e.g., good, better, excellent) and modifiers (e.g., lit-
tle, increase, decrease). The decision was made to include
all audio objects identified in the phrases as stopwords to
prevent the algorithm from creating clusters of objects. A
list of the stopwords used is included as an appendix to
this paper. Fig. 2 shows the 20 most frequently used words
within the corpus after removal of stopwords.
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Fig. 2. Frequency of use of words within the corpus after stemming and removal of stopwords.

The text data were quantitatively represented by gener-
ating a phrase-term matrix, whereby each phrase is repre-
sented as a feature vector representing which terms in the
dictionary exist in that phrase (in this context, a dictionary
is a list of all words that appear in the corpus). K-means
clustering (see Sec. 2.4.1) was used to analyze the phrase-
term matrix. As the number of clusters k is a variable that
needs to be determined, a scree plot was generated to exam-
ine the within cluster sum of squares as a function of k. The
scree plot showed no obvious elbow, but a shallowing of the
gradient of the curve suggested a 20 cluster solution was
an appropriate staring point. Examination of the 20 cluster
solution revealed that the largest returned cluster contained
a number of clear sub-clusters. Therefore, the k-means al-
gorithm was run a second time on this top level cluster to
obtain an additional 10 cluster solution making the total
number of clusters 29.

Each of the clusters returned by the algorithm was auto-
matically labelled by calculating a metric comparing mean
word use for the phrases within a cluster (win) to the mean
word use for the phrases not in that cluster (wout). The metric
was calculated as follows:

win = Nw

Nc
for w ∈ c (3)

wout = Nw

N − Nc
for w /∈ c (4)

wdi f f = wout − win (5)

where Nw is the number of occurrences of word w, Nc is the
number of words in cluster c, and N is the number of words
in the corpus. The cluster was then automatically labelled
by rank ordering wdiff and taking the top term.

Table 2 shows the automatic labels for the first 10 phrase
clusters revealed in the text mining analysis. This table also
shows the number of phrases in each cluster. It can be seen

Table 2. Automatic labels for the first 10 clusters revealed in the
text mining analysis.

Cluster Automatic labels N phrases

1 Envelope 81
2 Level 41
3 Nothing 27
4 Move 26
5 Position 24
6 Reverb 15
7 Clarity 14
8 Movement 9
9 Effects 9
10 Bass 9

that generally the automatic label describes a mix process or
perceptual attribute, except the cluster labelled Nothing that
consists of the responses where the participants indicated
they would make no changes. From Table 2 it is apparent
that a number of the clusters could be describing the same
concept (for example, the clusters labelled move and posi-
tion). To explore this, one-to-one follow up interviews were
conducted with the test participants.

3.1.2 Follow-Up Interviews
The automatic labels for the clusters revealed in the text

mining analysis were used in follow-up interviews with
the listening test participants. In these discussions the par-
ticipants were presented with the phrases in each cluster
describing the suggested changes, along with the automatic
key words shown in Table 2. For each cluster, they were
asked to consider the following:

1. Does the cluster describe a unique category of mix
process?
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Fig. 3. Frequency of process use across all systems and program
items (out of a total of 338 phrases).

2. If not, can the cluster be merged with another of the
clusters?

3. Do all of the phrases belong in that cluster, or do
they need to be reallocated to a different cluster?

This process was conducted iteratively, until all of the
phrases in the corpus were allocated to a category.

Based on the categorizations developed by each of the
participants, a phrase x category matrix was built such that
the matrix contained a 1 if the participant had allocated
a phrase to a certain category and a 0 otherwise. Hierar-
chical agglomerative clustering (Ward method [49]) was
conducted on these data revealing 7 clear categories:

1. Spread: A change in the spread or width of individual
objects.

2. EQ and processing: Changes to frequency content
and effects such as distortion.

3. Reverb: Changes to the level or time of reverb ap-
plied to individual objects.

4. Position: A change in the position or movement of
individual objects.

5. Bass: A change to the level of the LFE channel.
6. Level: Changes to the level of individual objects.
7. No change: No suggested change.

The full clustering solution can be found at
https://doi.org/10.17866/rd.salford.3120112.

3.2 General Mix Processes
Based on the clustering solution, each of the phrases in

the corpus was coded according to one of the seven cate-
gories identified in Sec. 3.1.2. Fig. 3 shows the frequency
of the general mix processes across all systems and pro-
gram items. It can be seen from this figure that the most
frequently suggested mix process was a change in position
followed by no change, level, EQ and processing, bass,
reverb, and spread.

Table 3. Total number of suggested changes over all participants
and program items, broken down by system.

System Total suggested changes

VBAP 4+5+0 38
VBAP 0+5+0 36
Matrix 0+5+0 45
VBAP 0+2+0 91
Matrix 0+2+0 70

Table 3 shows the total number of suggested changes
over all participants and program items. It can be seen from
the table that the greatest number of suggested changes
were for the VBAP and matrix 0+2+0 systems (91 and 70
changes respectively). The distribution of these data are
shown in Fig. 4, which shows the cumulative frequency of
process use broken down by target reproduction system.
Changes in position are the most commonly suggested mix
process for the VBAP 4+5+0, VBAP 0+5+0 system, VBAP
0+2+0, and matrix 0+2+0 systems. Changes in level were
the most commonly suggested mix process for the matrix
0+5+0 system.

Fig. 5 shows the cumulative frequency of process use
broken down by the type of audio object to which the pro-
cess referred. The categories of objects are taken from a
study into the cognitive categorization of auditory object
in complex spatial audio scenes [37]. In general, for ac-
tion/movement sounds, prominent transients, clear speech,
and non-diegetic music, the most commonly suggested pro-
cess was a change in position. For transient background
sounds and sounds that indicate the presence of people,
the most commonly suggested process was level. When no
specific object was mentioned (i.e., processes on the overall
scene), the most commonly suggested process was EQ and
processing. For continuous background sounds and sounds
indicating the presence of people, changes in the spread of
the object were also commonly suggested.

3.3 Attributes
In the listening experiment described in Sec. 2.3, the par-

ticipants were asked to indicate which perceptual attributes
from a list had changed between the reference clip and the
re-rendered or downmixed clip. Fig. 6 shows the frequency
of attribute use across all systems and program items. It can
be seen from this figure that the top three most frequently
selected attributes relate to spatial aspects; this gives sup-
port to the finding in Sec. 3.1.1 that the most commonly
suggested change was positional. The open text box to enter
other attributes was not used by any of the participants.

It is likely that there is some redundancy in the attribute
set, with some attributes describing the same percept. To
investigate patterns in the way that the attributes were used,
hierarchical agglomerative clustering (Ward method [49])
was conduced on a phrase x attribute matrix. A dendrogram
showing the results of this analysis is shown in Fig. 7.
From top to bottom, the first two clusters appear to relate
to spatial attributes, the third cluster appears to relate to
clarity and realism, and the fourth cluster appears to relate
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Fig. 4. Cumulative percentage of process use, broken down by system.

to artifacts. These categories of perceptual attributes will
be used in the regression model described in the following
section.

3.4 Regression Models
3.4.1 Relationship between Perceptual
Attributes and Mix Processes

This section describes the development of a regression
model to explore the relationship between the changes to
perceptual attributes identified by the test participants and
the changes to the mix that they suggested.

Initially, each of the perceptual attributes were included
separately and individually as independent variables in a
multinomial logistic regression model with the mix pro-
cesses identified in Sec. 3.1.1 (Process) as a dependent
variable with a baseline of No change (i.e., the model ex-
presses the log-odds of a given mix process being suggested
compared to no changes being suggested). The choice of
independent and dependent variables was based on the con-
ceptual model detailed in Sec. 1.3, which posits that changes
in attributes detected by the mix engineers cause a sugges-
tion of a mix process. The purpose of this was to identify

any attributes that were not significant predictors of the
changes proposed by the sound designers. The significance
of each model was assessed via a likelihood ratio test against
the null model. Any attribute that resulted in a likelihood
ratio test with a p-value greater than 0.05 (i.e., no signif-
icant improvement in model fit over the null model) was
discounted from further analysis. Of the attributes inves-
tigated, horizontal width, spectral balance, spatial open-
ness, bandwidth, phasiness, reverb level, and spectral res-
onances were found not to be significant predictors of
Process.

The remaining variables were added blockwise to a
multinominal logistic regression model. A model contain-
ing only a variable identifying which clip was being as-
sessed was specified as a baseline model to control for the
effect of the different types of program material used in
the listening experiment. The variable blocks were spec-
ified according to the results of the hierarchical cluster
analysis of attribute ratings described in Sec. 3.3. The vari-
able blocks were added to the model in the following or-
der: 1) Clip (baseline model), 2) Spatial attributes a, 3)
Spatial attributes b, 4) Clarity attributes, and 5) Artifact
attributes.
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Fig. 7. Dendrogram showing hierarchical agglomerative cluster-
ing of attribute use across all systems and program items.

Table 4. Summary of the results of the multinomial logistic
regression.

Block χ2 �χ2 p R2 �R2

Baseline 30.4 – 0.03 0.03 –
Spatial 1 102.25 71.85 < 0.0001 0.08 0.05
Spatial 2 157.85 55.6 < 0.0001 0.13 0.05
Timbral 214.19 56.34 < 0.0001 0.18 0.05
Artifacts 269.49 55.3 < 0.0001 0.22 0.04

The change in overall χ2 of the model fit was used to test
the utility of each successive block of variables. The results
of the multinomial logistic regression are summarized in
Table 4. The table shows a clear improvement in the fit
of the model as successive blocks of variables are entered
into the model. The first two columns show the overall χ2

of the model and the change in χ2 (�χ2) over the previous
model. For each block, the change in χ2 over the previous
model represents a significant improvement in the model
fit (p < 0.05).

The final two columns of Table 4 give the McFadden
pseudo R2 of the model and the improvement in R2 when
blocks of variables are entered into the model. The McFad-
den R2 value of the full model is 0.22. This is a pseudo R2

based on the increase in log-likelihood of the full model
over the null model. As such pseudo R2 cannot be inter-
preted as a proportion of variance accounted for as in or-
dinary linear regression; according to [50], values between
0.2 – 0.4 represent an “excellent fit.”

The results of the full model are given in Table 6 of
Appendix II.

3.4.2 Relationship between Rendering System
and Perceptual Attributes

To investigate the effect of the different system types on
changes to perceptual attributes, binomial logistic regres-
sion models were calculated for each of the attributes with
system type as the independent variable. The models are
shown in Table 5. These models are all against a baseline
of the VBAP 4+5+0 render3, therefore the models describe
the log-odds of a change of attribute being detected over the
highest channel system in the test that was not the reference
system. It can be seen that the only significant results at the
p < 0.05 level for the 0+5+0 systems was for envelopment in
the VBAP rendering, suggesting the two 0+5+0 rendering
methods performed similarly to the baseline VBAP 4+5+0
system; this result is in line with recent findings from Fran-
combe et al. [32] where little difference was found between
preference ratings of 5-channel and 9-channel systems. The
two 0+2+0 systems result in significant changes in the the
majority of the tested attributes.

4 DISCUSSION

The primary aim of the work presented in this paper was
to determine a small number of common mix processes that
professional content producers would employ when down-
mixing object-based content to different speaker layouts.
Text mining of the open response data collected in the lis-
tening tests described in Sec. 2.3, combined with follow up
interviews and cluster analysis, identified six general cate-
gories of mix processes. The results suggest that changes
in level and position are the most commonly suggested mix
processes. These results provide a framework of common
processes that could be built into an object-based renderer.
The next steps in this work will focus on determining quan-
titative rules that describe how professional mix engineers
would vary these processes for different categories of audio
objects.

The results presented in Fig. 5 suggest that these general
processes apply differently to different categories of audio
object. These findings provide evidence that any down-
mix operations included in an object-based audio renderer
should consider the category of object to which the process
is being applied. The most commonly suggested changes
across all categories of objects were changes in level and
position. The mix process spread was suggested more com-
monly for continuous and transient background objects and
sounds indicating the presence of people than other ob-
ject categories. Operations of the position of individual
objects were commonly suggested for objects that indicate
actions and movement compared to the other identified mix

3 Due to the paired comparison method used, participants were
not able to suggest changes to the reference system, therefore the
highest channel system for which data are available is the VBAP
4+5+0 system.
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Table 5. Results of multinomial regression model for Process by attributes.

Dependent variable vs VBAP 4+5+0

VBAP 0+5+0 Matrix 0+5+0 VBAP 0+2+0 Matrix 0+2+0

Envelopment 2.1462∗∗ 3.573∗∗∗ 2.9957∗∗∗

Depth 1.6704∗∗∗ 1.1727∗∗

Ensemble balance 1.1227∗∗ 1.1856∗∗

Spatial movement 1.6144∗∗∗ 0.9345∗

Spatial clarity 1.3683∗∗∗ 1.5247∗∗∗

Spatial naturalness 2.0562∗∗∗ 2.1289∗∗∗

Surrounding 1.01881∗∗ 1.0033∗∗

Sense of space 1.44036∗∗∗ 1.26929∗∗∗

Position 1.4404∗∗∗ 1.6358∗∗∗

Detail 0.8633∗ 1.6084∗∗∗

Spectral clarity 0.9708∗ 1.3319∗∗ 1.1618∗∗

Clarity 1.08059∗∗

Realism 1.76359∗∗∗ 0.88504∗

Bass –0.9884∗ 1.3077∗∗∗ 1.0301∗∗

Richness 1.0759∗∗ 1.501∗∗∗

Ease of listening 1.088∗ 1.381∗∗

Distortion 1.3809∗

Quality of reverb 1.8438∗∗∗

Harshness 1.64∗∗∗ 1.39879∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

processes. The process EQ was suggested commonly in
reference to operations on the overall scene and prominent
transient sounds. One of the main advantages of object-
based audio is the ability to operate on separate objects or
categories of objects. Semantic metadata could be included
to indicate the category of objects, and category specific
rules could be incorporated into a rendering scheme to re-
flect these differences. This could not be achieved with
standard matrix downmixing methods.

Fig. 8 provides a summary of the regression models de-
rived in Secs. 3.4.1 and 3.4.2; lines are drawn where signif-
icant relationships were found (p < 0.05) and the thickness
of each line is proportional to the effect size. In this case the
odds ratio has been taken as an indication of the effect size.
Chen et al. [51] provide an empirical relationship between
odd-ratios and Cohen’s d. These relationships have been
used to indicate the effect size in the Fig. 8; solid arrows
indicate a large effect size (d 0.8), dashed arrows indicate a
medium effect size (0.4 � d < 0.8), dotted arrows indicate
a small effect size (0.2 � d < 0.4), and dot-dashed arrows
indicate a very small effect size (d � 0.2).

The largest effect size for the relationships between the
reproduction systems and the perceptual attributes is for
the envelopment attribute, with odds ratios of 35.6 and 19.9
for the VBAP and Matrix 0+2+0 systems respectively. This
means that if the same content is rendered to 0+2+0 using
VBAP, a change in envelopment is 35.6 more likely than
if the content were rendered to a 5+4+0 system. Smaller
effect sizes can be seen between the 0+2+0 systems and the
majority of the other attributes.

Overall, the largest effect sizes were with the attribute
harshness followed by envelopment and ensemble balance.
Recent research has shown that envelopment is one of the
most important attributes in determining preference be-
tween spatial audio systems [32]. This is supported by other

studies that have found that spatial attributes contribute to
overall listener preference [26, 27, 52]. This suggests that
OBA systems could deliver improvements to listener ex-
perience if they employed optimized rendering rules for
spatial attributes such as envelopment; recent research has
shown that it is possible to adapt object-based mixes to
result in different levels of envelopment [53]. Relation-
ships with large and medium effect sizes can be observed
between envelopment and all of the processes apart from
spread. This suggests that the test participants were able to
suggest changes to ameliorate the degradation of envelop-
ment. Other attributes exhibiting large and medium effect
sizes include ensemble balance, spatial movement, spatial
naturalness, clarity, bass, richness, and harshness.

5 CONCLUSION

This paper has presented the results of an experiment de-
signed to identify a small number of the most common mix
processes used by sound designers when mixing object-
based content to loudspeaker systems with different num-
bers of channels. Six general mix processes were identified
from open text data gathered in the listening experiment.
These processes were related to the spatial spread of indi-
vidual objects, EQ and processing, reverb, position, bass,
and level. Over all program items and systems tested, the
most commonly suggested process was a change in the
position of individual objects.

Multinomial and binary logistic regression models were
developed to investigate the relationships between the type
of reproduction system, changes in perceptual attributes,
and suggested mix processes. Significant relationships were
found between the 2-channel stereo systems tested and the
majority of the perceptual attributes investigated in the ex-
periment; the largest effect size was between the VBAP
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dashed is a medium effect size, dotted is a small effect size, and dot-dahed is a very small effect size.

0+2+0 system and envelopment. Significant relationships
were also found between changes in perceptual attributes
and the suggested mix processes. The largest effect sizes
were with the attribute harshness followed by envelopment
and ensemble balance. Although it was ensured that the
program material used in the test covered a wide range of
audio object types, it should be noted that the study was lim-
ited to audio drama program material; other processes and
relationships may be found for different types of program
material.

Taken together, these results show that when professional
content producers detect changes in perceptual attributes
when rendering the same content to systems with different
numbers of channels, they are able to suggest changes to the
mix that can be categorized into a small number of common
processes. The relative frequency that the content creators
suggested different mix processes was found to differ be-
tween categories of audio objects; this finding suggests any
downmix operations included in an object-based audio ren-
derer should consider the category of object to which the
process is being applied. In the study, test participants were
asked about their intentions rather than asking them to di-
rectly operate on the mix. The next step of this work will
be to allow content producers to directly manipulate the
identified mix processes in a method of adjustment task in
order to determine quantitative rules that could be built into
an intelligent object-based renderer.
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APPENDIX I

Below is a list of the stopwords used in the text mining
analysis:

doesnt, sound, sounds, bit, think, also, downmix, good,
better, slightly, seems, there, needs, little, get, like, feels,
mix, clips, clip, lack, increase, decrease, lower, raise, slight,
better, thinner, nice, perfect, cleaner, very, low, sudden,
slight, too, excllent, reduce, noticible, previous, add, be-
tween, sides, down, sources, front, rear, left, right, above,
central, surround, actors, hubub, man, child, Children, vo,
dialogue, loudhailer, lady, kid, Voice, crowd, dog, bark, vio-
lins, music, chord, narrator, narrators, woodpecker, mega-
phone, dad, humming, chartacters, speach, monster, son,
girls, tom, shouting, boy, ducks, synth, dinosaur, dialogues,
barking, footsteps, male, vocal, girl, speach, megafono,
thump, goose, character, background speakers, speaker, far,
match, original, wider, centre, trebly, first, half, opening,
back, harsh, mid, high, field, shifted, atmos, stereo, lost,
voice, well

APPENDIX II

Table 6 shows the results of the model described in Sec.
3.4.1. The un-bracketed values show the model coefficients
and the bracketed values show the standard errors. In this
model, a large coefficient means a greater chance that a
mix process would be used if a change in the attribute was
detected.
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Table 6. Results of multinomial regression model for Process by Clip and attributes.

Dependent variable vs No change

Spread Processing Reverb Position Bass Level

Clip2:Clip1 3.522∗∗ 2.043∗∗ 1.877 1.698∗∗ 2.376∗∗ 0.343
(1.532) (0.831) (1.212) (0.752) (1.052) (0.798)

Clip3:Clip1 2.588∗ 0.537 −0.450 1.327∗∗ 2.214∗∗ 0.222
(1.396) (0.724) (1.283) (0.628) (0.947) (0.641)

Clip4:Clip1 2.540∗ −0.308 0.332 0.500 1.256 0.110
(1.500) (0.761) (1.179) (0.651) (0.997) (0.618)

Envelopment 1.286 1.962∗∗ 2.302∗∗ 2.124∗∗∗ 2.285∗∗∗ 1.340∗

(0.936) (0.787) (1.010) (0.709) (0.869) (0.756)
Depth −0.269 −1.106 0.193 −0.243 −0.419 0.256

(0.826) (0.687) (0.899) (0.556) (0.754) (0.600)
Ensemble balance 1.562∗∗ 1.344∗∗ 2.446∗∗∗ 1.308∗∗∗ 0.489 1.504∗∗∗

(0.772) (0.594) (0.864) (0.503) (0.673) (0.529)
Spatial movement 1.223 0.544 1.649∗∗ 1.089∗∗ −0.133 0.980∗

(0.823) (0.607) (0.806) (0.534) (0.712) (0.581)
Spatial clarity 0.348 0.216 −0.142 −0.223 −0.329 −0.601

(0.936) (0.692) (0.914) (0.591) (0.801) (0.645)
Spatial naturalness 2.156∗∗ 1.435∗∗ 0.787 0.577 0.233 0.792

(0.940) (0.688) (0.878) (0.573) (0.781) (0.618)
Surrounding 1.711∗ −0.452 0.459 0.509 −0.203 0.235

(1.023) (0.663) (0.948) (0.589) (0.750) (0.622)
Sense of space −1.845∗ −0.628 −1.223 −0.359 −0.894 −0.683

(1.079) (0.689) (1.023) (0.619) (0.761) (0.656)
Position −1.915∗∗ −1.573∗∗ −2.058∗∗ −0.756 −1.050 −1.471∗∗

(0.873) (0.675) (0.915) (0.567) (0.714) (0.589)
Detail −0.231 −0.929 −1.650 −0.396 −1.858∗∗ −0.487

(0.959) (0.790) (1.097) (0.669) (0.943) (0.738)
Spectral clarity 0.076 0.611 −0.669 0.701 0.107 0.353

(0.825) (0.693) (0.991) (0.590) (0.843) (0.633)
Clarity −0.884 1.942∗∗∗ 1.409 0.321 2.043∗∗ 1.464∗∗

(1.056) (0.737) (0.946) (0.666) (0.833) (0.667)
Realism 1.311 1.168 0.059 0.825 0.195 0.262

(0.882) (0.739) (0.992) (0.642) (0.847) (0.696)
Bass 0.803 0.712 0.884 1.115∗∗ 1.743∗∗ 0.900

(0.814) (0.648) (0.885) (0.549) (0.779) (0.617)
Richness −0.458 0.237 0.962 0.066 1.278∗ 0.242

(0.806) (0.666) (0.842) (0.580) (0.729) (0.629)
Ease of listening −0.324 −1.012 −0.642 0.368 −1.115 −0.001

(1.123) (0.868) (1.285) (0.749) (1.032) (0.783)
Amount of distortion −0.366 0.114 −0.073 −0.867 0.078 −0.241

(1.678) (1.243) (1.433) (1.163) (1.452) (1.183)
Quality of reverb −0.054 −2.800∗∗∗ −1.816∗ −2.355∗∗∗ −2.416∗∗∗ −1.848∗∗

(0.908) (0.842) (0.957) (0.724) (0.917) (0.752)
Harshness 1.723 3.484∗∗∗ 3.548∗∗∗ 2.214∗∗ 3.647∗∗∗ 1.934∗

(1.222) (1.018) (1.136) (0.984) (1.068) (1.018)
Constant −5.186∗∗∗ −1.994∗∗∗ −3.632∗∗∗ −2.207∗∗∗ −2.970∗∗∗ −1.121∗∗

(1.469) (0.601) (0.992) (0.553) (0.847) (0.466)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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