
1 
 

MICROVASCULAR RESEARCH  

 

Accepted January 1st 2018   

 
ISSN: 0026-2862; IMPACT FACTOR= 2.574 

 

Publisher: Elsevier (USA) 

 
Editor-in-Chief: Prof. Dr. P.A. D'Amore, Harvard Medical School, Boston, Massachusetts, USA. 

 

 

STUDY OF MICROVASCULAR BLOOD FLOW MODULATED BY ELECTROOSMOSIS 

*1Dharmendra Tripathi, 1Ashu Yadav, 2O. Anwar Bég and 1Rakesh Kumar 

1Department of Mechanical Engineering, Manipal University Jaipur, Rajasthan-303007, India. 

2Fluid Mechanics and Propulsion, Aeronautical and Mechanical Engineering, University of Salford, 

Newton Building, G77, The Crescent, Salford, M54WT, England, UK. 

*Corresponding author- email: dharmendra.tripathi@jaipur.manipal.edu  

 

ABSTRACT 

An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the 

electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic 

solution. An externally applied static axial electrical field is imposed on the system. The 

Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate 

the electrical double layer (EDL) in the microvascular regime. With long wavelength, lubrication and 

Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical 

solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow 

rate, averaged volumetric flow rate along one time-period, pressure rise along one wavelength and 

stream function. A plug width is featured in the solutions. Via symbolic software (MathematicaTM), 

graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye 

length (thickness) and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the 

key hydrodynamic variables. An increase in plug flow width is observed to accelerate the axial flow, 

enhance volumetric flow rate and has a varied influence on the pressure rise depending on whether the 

flow is in the free pumping or pumping region. Increasing electrical Debye length consistently enhances 

axial flow, volumetric flow rate and also pressure rise (at any value of volumetric flow rate).  

 

KEYWORDS: Electroosmosis; Bingham plastic fluids; electric double layer; trapping; Blood flow; 

plug flow.  
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1. INTRODUCTION 

Electrokinetic transport has emerged as a vibrant area of modern fluid mechanics. It involves 

both analysis and experimental investigations of the interaction of electrolytic fluids and 

external electric fields which may be static or alternating. It features many complex and 

intriguing phenomena including electric double layers, wetted surfaces, zeta potentials and 

charge distributions. Electrokinetics includes electro-osmosis, electrophoresis, 

diffusiophoresis (where chemical gradients are significant) and various other phenomena. In 

recent years electro-osmotic (EO) flows in particular have penetrated many different micro- 

and nanoscale technological applications including nanoscale electro-fluid thruster designs in 

space propulsion [1], non-adsorbing polymer injection systems [2], ion-exchange membrane 

designs [3], biochip fabrication [4], micro-channels [5], microbial fuel cells in carbon capture 

[6], dewatering in fossil fuel  energy processes [7], corrosion mitigation in civil engineering 

[8], nano-bot propulsion for medical treatment [9] and novel pump designs for microfluidic 

chromatography. Other applications include laser diode arrays cooling and biological micro-

reactors. Electro-osmotic driven flow also achieves optimized flow profiles and is very 

beneficial in conveying sensitive samples. Electroosmotic pumping in micro-channels is 

characterized by a low Reynolds number and therefore inertial forces are dominated essentially 

by viscous hydrodynamic forces. At small scales the impact of electrical forces is significantly 

improved in electroosmotics. In parallel with clinical and industrial synthesis of electroosmotic 

devices, mathematical modelling of electroosmotic phenomena has also intensified in recent 

years since simulation provides an important compliment to experimental works. Soong et al. 

[11] analysed numerically the electrokinetic thermal-fluid flow in electroosmotic transport in 

a rotating dual rotor–stator disk system as a model of microfluidics, solving the transformed 

Navier-Stokes equations coupled with the Poisson electrical potential and Nernst-Plank 

convection-diffusion ionic equations. Bianchi et al. [12] considered the electroosmotic flow in 

complex geometries using a finite element code. Wang et al. [13] used a lattice Poisson-

Boltzmann method (LPBM) to investigate the dynamics of electroosmotic transport in 

anisotropic permeable materials containing ellipse arrays packed in a microchannel. These 

studies assumed the electrolytic solution to be Newtonian. However many working fluids in 

microfluidic systems exhibit non-Newtonian characteristics which dramatically alter flow 

characteristics. Non-Newtonian electroosmotic fluid mechanics has provided a rich arena for 

theoretical and computational studies and has stimulated the application of many different 

rheological material models. Ng [14] employed the Ostwald-de Waele power-law model to 

investigate electroosmotic rheological pumping in a slit micro-channel with variable geometric 
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and zeta potential characteristics, considering both pseudoplastic and dilatant cases. Cho et al. 

[15] also used the power-law model to analyse the mixing flow in a contracting-expanding 

microchannel noting that mixing efficiency is decreased with decreasing rheological flow 

behaviour index. Huang et al. [16] also employed the power-law model to confirm 

experimentally (via electrical current monitoring and microscopy fluorescence methods) that 

electroosmotic driven flow is enhanced with shear-thinning behaviour in rectangular micro-

channels. Jiménez et al. [17] used the Maxwell viscoelastic model to simulate the electroflow 

of ionic solutions in rectangular microchannels with large asymmetric wall zeta potentials, 

addressing both relaxation time effect and noting that velocity assumes a transient oscillatory 

trend caused by the competition between viscous, elastic and electroosmotic forces. Kaushik 

et al. [18] implemented the Oldroyd-B viscoelastic model for unsteady rotational 

electroosmotic flow in a microfluidic channel, motivated by hemodynamic microfluidic 

systems. Ng [19] utilized a viscoplastic Casson model for steady electroosmotic (EO) flow in 

a parallel-plate microchannel, noting that the yield surface delineates the regime into sheared 

and unsheared zones and that the opposing effect of yield stress on volumetric flow rate may 

be compensated for via pressure gradient. Further studies of electroosmotic rheological 

hydrodynamics have deployed thixotropic models [20] and the viscoelastic Phan-Thien–

Tanner model [21]. A further important rheological model is the Bingham viscoplastic model. 

This simulates quite accurately actual biological fluids for which a yield stress, a critical value 

of stress must be attained before flow is initiated. Originally introduced to simulate paints, 

owing to its simple and robust formulation, the Bingham model has been utilized in many 

diverse areas of engineering sciences including petroleum slurries [22], mud flows in coastal 

engineering [23], and microscale thermal engineering systems [24, 25].  

 

In the above studies the conduits considered e.g. micro-channels, have been assumed to possess 

rigid i.e. non-flexible boundaries (walls). With the recent upsurge in biomimetic and 

biologically-inspired designs, flexible boundaries have become attractive. An important 

biophysical mechanism which exploits wall deformability is peristalsis. In many physiological 

processes, as elaborated by Fung [26], bio-fluids are trans-located transportation by rhythmic 

muscles contraction followed by relaxation. This highly efficient and adaptive mechanism of 

internal fluid propulsion arises in embryology, intestinal pumping, vaso-motion in small blood 

vessels, swallowing, lymph dynamics, water transport in botany etc. A classical investigation 

of the pumping characteristics in peristalsis was presented many decades ago by Shapiro et al. 

[27] who established much of the methodology for low Reynolds number long wavelength 
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models and popularized the transformation from the wave (i.e. moving) frame and the 

laboratory (fixed) frame. They derived relationships for the free pumping, augmented pumping 

and pumping regions and also analysed for the first time carefully the tapping and reflux 

phenomena in two-dimensional situations. More recently Walker and Shelley [28] presented a 

generalized variational method for optimizing the wave shape in two-dimensional peristaltic 

pumping in a channel using a sequential quadratic programming (SQP) method and mimicking 

wall deformation via an explicit front-tracking approach over a wide spectrum of fluxes and 

Reynolds numbers. Two-dimensional peristaltic flows containing suspended particles were 

earlier studied using asymptotic methods by Kaimal [29]. Tang and Shen [30] used Stokes and 

long wave asymptotic expansions to simulate the peristaltic pumping of a heat-conducting fluid 

in cylindrical vessels with a prescribed pressure drop, and Newton's cooling law enforced at 

the vessel wall. These studies were however confined to Newtonian viscous flows. An 

extensive range of micro-scale devices utilize non-Newtonian working fluids. Peristaltic 

micro-channel rheological flows provide a rich arena for simulation.  Nagarani et al. [31] used 

the Casson viscoplastic model to examine the annular pumping of a polymer under peristaltic 

waves, observing that both yield stress and annular gap dramatically modify the pressure rise, 

frictional wall resistance and synthesis and evolution of trapped boluses. Further non-

Newtonian peristaltic hydrodynamic studies include Tripathi and Bég [32] who deployed a 

fractional second-grade viscoelastic model for oblique peristaltic pumping and Abd elmaboud 

and Mekheimer [33] who examined peristaltic transport in porous media-filled conduits with 

the Reiner-Rivlin differential second order viscoelastic model. Several studies of peristaltic 

pumping with the Bingham plastic model have also been communicated in recent years. 

Khabazi et al. [34] used the bi-viscous (Bingham) model and the multiple-relaxation-time 

lattice Boltzmann method (MRT-LBM) to compute peristaltic pumping characteristics in a 

planar two-dimensional channel, noting that for yield-stress fluids there arises a threshold wave 

number above which the yield stress accelerates axial flow and that yield stress causes a 

contraction in bolus size. Tripathi and Bég [35] explored a variety of viscoplastic models for 

peristaltic pumping including the Vocadlo model, Bingham model and Casson model. 

Electroosmotic Newtonian and non-Newtonian peristaltic flows have also attracted some 

attention in recent years. Chakraborty [36] considered power-law electrolytes in micro-channel 

peristaltic transport. Tripathi et al. [37] studied Debye length effects on electroosmotic 

Newtonian pumping in capillary blood flows. Goswami et al. [38] used both Newtonian (for 

the wall adhering layer) and non-Newtonian (for the core region) models to investigate 

electroosmotic wavy flow in microvascular hemodynamics. Further analyses include Tripathi 
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et al. [39] who used the Jefferys viscoelastic model, Shit et al. [40] who employed a power-

law model and also considered heat transfer and Joule dissipation effects and very recently 

Tripathi et al. [41] who employed Stokes’ couple stress rheological model.  

 

To the authors’ knowledge, thus far, the electroosmotic peristaltic pumping of Bingham plastic 

fluids has not been scrutinized for the case of complex wavy micro-channels i.e. where 

different amplitude waves propagate along both upper and lower micro-channel walls. 

However the system does retain symmetry about the micro-channel centre line. The present 

study addresses this configuration for the first time. Detailed analytical solutions for the 

transformed, non-dimensional boundary value problem are presented. Extensive interpretation 

of the impact of electroosmotic parameters and viscoelasticity (yield stress) on peristaltic flow 

characteristics are evaluated. Bolus dynamics is also visualized. The present closed-form 

solutions are numerically evaluated with physically relevant data using Mathematica symbolic 

software. The solutions present an important benchmark also for more general microvascular 

blood flow models and experimental studies. 

 

2. ELECTRO-OSMOTIC PERISTALTIC VISCOPLASTIC MODEL  

 

2.1. Flow regime 

We consider electroosmotic flow of Bingham viscoplastic fluids through a complex wavy two-

dimensional microchannel. The geometry of the channel is illustrated in Fig.1 and wall 

deformation is mathematically expressed as: 

1

2
( , ) sin ( )

m

i

i

i
h x t a x ct






   ,                                                  (1) 

where , , , , ,ih x t a   and c  represent transverse vibration of the wall, axial coordinate, time,  

half width of the channel, amplitude of the different ( m ) waves, wavelength and wave velocity 

respectively. Furthermore, a  and i  satisfy the condition: 
1

n

i

i

a 


 .      

 

2.2. Bingham Plastic Fluid Model 

The constitutive equations for a Bingham viscoplastic fluid is expressed as: 

0 0

0

,

0,

    

  

   


  
                                                                                 (2) 
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where  is the shear stress, 0  is the yield stress,   is the rate of shear strain,  is the 

consistency of viscoplastic material.  

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Geometrical representation of electroosmotic flow through complex wavy 

microchannel. 

 

 2.3. Governing Equations 

In this model, we consider the electroosmotic flow of non-Newtonian aqueous ionic solution 

altered by means of an externally applied electric field along the length of channel. The 

governing equations are considered as: 

 

0,
u v

x y

 
 

 
                                                                                             (3) 

,
p xyxxu v u E

e xt x y x x y


 

    
       

      
                                                  (4) 

,
yx yyp

u v v E
e yt x y y x y

 
 

     
       

      
                                                          (5) 

where, , , ,xx xy yx yy     are the extra stress components and , , , , ,u v p  and &x yE E  denote 

the fluid density, axial velocity, transverse velocity, pressure, fluid dynamic viscosity, and 

electrical field in axial and transverse directions, respectively.  

The positive ions n  and negative ion n  are both assumed to have bulk concentration (number 

density) 0n , and valencies of z  and z  respectively. For simplicity, we consider the electrolyte 

xE

a



plh

y

x
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to be a :z z  symmetric electrolyte, i.e. z z z    . The charge number density is related to 

the electrical potential in the transverse direction ( ) through the Poisson equation: 

2 e





   ,                                                                                                                             (6) 

where   is the electrical permittivity of the ionic solution. Further, in order to determine the 

potential distribution, we need to describe the charge number density. For this, the ionic number 

distributions of the individual species are given by the Nernst-Planck equation for each species 

as:  

2 2

2 2

B

n n n n n Dze
u v D n n

t x y x y k T x x y y

     
 

            



         

              
,                       (7) 

Here it is assumed that there are equal ionic diffusion coefficients for both the species, and that 

the mobility of the species is given by the Einstein formula where D  represents the diffusivity 

of the chemical species, T  is the average temperature of the electrolytic solution and Bk  is 

Boltzmann constant.  

To facilitate analytical solutions of equations (2)-(7), it is advantageous to introduce a group 

of non-dimensional parameters; , , ,
x y tc

x y t
a 

  
u

u
c

 , 
v

v
c

 , ,
h

h
a

 ,i
i

a


 

a



 ,

0
0, ,

aa

c c


 

 
 

2

,
pa

p
c 


0

,
B

ze n
n

k T n


   , where, x and y are dimensionless longitudinal 

(axial) and transverse coordinates  respectively, t is non-dimensional time, h is dimensionless 

transverse vibration of the wall, dimensionless amplitude of the different ( m ) waves,  is 

peristaltic wave number,   is dimensionless shear stress, 0  is the non-dimensional yield stress, 

p is non-dimensional pressure,  is normalized electrical potential and n is dimensionless 

number density of the Bingham electrolyte. The nonlinear terms in the Nernst Planck equations 

are  2O Pe , where Pe represents the ionic Peclét number ( RePe Sc ), Sc D   

denotes the Schmidt number and Re
c 


  denotes the Reynolds number based on peristaltic 

wave length. The nonlinear terms in the momentum equation are found to be  2O Re .   

Therefore, the nonlinear terms may be dropped in the limit that Re, , 1Pe   . In the above 

approximations, the emerging Poisson equation is: 
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n n

y


    

   
  

                                                                                                            (8) 

 

where 02

B

n
aez

K T



 , is inverse of Debye length (or EDL thickness). Additionally the ionic 

distribution may be determined by means of the simplified Nernst Planck equations:  

 

2

2
0

n
n

y y y



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  
   

 ,                                                                                                         (9) 

 

Eqns (9) are subjected to 1n   at 0   and 0n y    where 0y    (bulk conditions). 

These yield the much-celebrated Boltzmann distribution for the ions:  

 

n e



 .                                                                                                                        (10) 

 

Combining equation (8) and (10), we obtain the Poisson-Boltzmann paradigm for the potential 

determining the electrical potential distribution; 

 

 
2

2

2
sinh

y


 





.                                                                                                            (11) 

In order to make further analytical progress, equation (11) requires simplification. Equation 

(11) may be linearized under the low-zeta potential approximation. This assumption is not ad 

hoc since for a wide range of pH values, the magnitude of zeta potential is less than 25 mV. 

Therefore, equation (11) may be contracted to:  

 

2
2

2y


 





,                                                                                                                        (12) 

which may be solved subjected to 
0

0
y

y









 and 1

y h



 . The resulting potential function is 

obtained as: 
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cosh( )

cosh( )

y

h





 ,                                                                                                                      (13) 

After employing the large wavelength and low Reynolds number approximation, the Eqs. (1-

5) are reduced to: 

 

1

( , ) 1 sin 2 ( )
m

i

i

h x t i x t 


   ,                                                                                           (14) 

0 0

0

,

0,

xy xy

u

y

u
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 

 
    

  


  
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                                                                                    (15) 

0,
u v

x y

 
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 
                                                                            (16) 

2 cosh( )
,

cosh( )

xy

e

p y
u

y x h

 




 
 

 
                                                                (17) 

0
p

y





,                                                                                                                                   (18) 

where, x
e

E
u

c




   is the Helmholtz-Smoluchowski velocity. The associated normalized 

boundary conditions are: 

0
0xy y



 ,

0
pl

xy y h
 


 , 0

y h
u


 ,                                                                                         (19)                                                  

where, plh , is width of the plug flow region. 

 

2.4 Analytical Solution 

Using Eq.(15) and boundary condition (19), the axial velocity from Eq.(17) is obtained as: 

2 2
sinh( )1 cosh( )

( ) ( ) 1 ( )
2 cosh( ) cosh( )

pl

pl e

hp p y
u y h h y h u h y

x x h h




 


  
        

   

,  
plh y h             (20)                                                                        

The volumetric flow rate in 
plh y h  is defined as follows: 

pl

h

h

Q udy  .                                                                                                                            (21) 

After integration, the appropriate expression is: 

3 2 2
sinh( )1 1

( ) ( ) ( 1 ( ) ) tanh( )
3 2 cosh( )

ple e
pl pl e pl

hu u
Q h h h h u h h h

h

p

x


 

  
        





.                (22) 
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Manipulating Eq.(22), the pressure gradient is derived as: 

2 2

3

sinh( )3 1 1 1
( ) ( 1 ( ) ) tanh( )

( ) 2 cosh( )

pl

e pl pl

pl

p

x

h
Q u h h h h h

h h h


 

  






   
         

    

.            (23) 

The pressure rise across the one wavelength can be expressed as: 

1

0

,
p

p dx
x


 


                                                                                                                        

(24)  

The transformations between the wave frame ( , )w wx y moving with velocity ( c ) and the fixed 

(laboratory) frame ( , )x y  are given by: 

, , ,w w w wx x ct y y u u c v v      ,                                                                       (25) 

where ( , )w wu v and ( , )u v  are the velocity components in the wave and fixed frame respectively. 

The volumetric flow rate in the wave frame is given by  

0 0

( 1)

h h

w w w wq u dy u dy    ,                                                                                     (26) 

On integration this yields:  

wq Q h  .                                                                                                                 (27) 

Averaging volumetric flow rate along one time period, we get: 

1 1

0 0

( )wQ Qdt q h dt    ,                                                                                        (28) 

which, on integration, yields 

1 1wQ q Q h     .                                                                                                         (29) 

The stream function is defined as: w

w

u
y





, w

w

v
x


 


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3 3 2 2 2

3
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1
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 

   

         


        
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(6 3 3 ))sin sih( ) 4( ) ))).nh(pl pl pl pl

y
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 

    



     

      (30)

                               

3. COMPUTATIONAL RESULTS AND DISCUSSION 

Via Mathematica symbolic software, numerical evaluation of the closed-for solutions is 

conducted for selected parameters. The results are plotted in figs. 2- 13. 
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3.1 Effects of yield stress 

 

 

Fig.2. Effect of plug flow width on axial velocity profile with 1, 1, 1ex u   . 

 

 

Fig.3. Effect of plug flow width on volumetric flow rate with 1, 1eu   . 

 

 

 

Fig.4. Effect of plug flow width on pressure rise with 1, 1eu   . 
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(a) 

(b) 
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Fig.5. Stream lines for 0.6, 1, 1eQ u    with (a) 0plh   (b) 0.1plh   (c) 0plh  .2 

 

 

 

 

3.2 Effects of EDL thickness 

 

 

Fig.6. Effect of Debye length on axial velocity with 1, 0.1, 1pl ex h u   . 

 

 

 

(c) 
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Fig.7. Effect of Debye length on volumetric flow rate with 0.1, 1pl eh u  . 

 

 

Fig.8. Effect of Debye length on pressure rise with 0.1, 1pl eh u  . 
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Fig.9. Stream lines for 0.6, 0.1, 1pl eQ h u    with (a) 2   (b) 3   (c) 4  . 
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3.3 Effects of Helmholtz-Smoluchowski velocity 

 

 

Fig.10. Effect of Helmholtz-Smoluchowski velocity on axial velocity with 1, 1,x  

0.1plh  . 

 

 

Fig.11. Effect of Helmholtz-Smoluchowski velocity on volumetric flow rate with 

1, 0.1plh   . 

 

 

Fig.12. Effect of Helmholtz-Smoluchowski velocity on pressure rise with 1, 0.1plh   . 
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Fig.13. Stream lines for 0.6, 1, 0.1plQ h    with (a) 0eu   (b) 2eu   (c) 5eu  . 

 

Fig. 2 illustrates the evolution in axial velocity across the channel semi-span with variation in 

plug flow width (hpl). Due to symmetry only half the channel span is considered. Maximum 

velocity as expected arises at y = 0 (channel centre line) with vanishing of velocity at the micro-

channel boundary (y = h). The plug flow width corresponds to the cross-channel core region 

width. When this is increased the viscoplastic fluid is permitted to flow with more ease. The 

axial flow is therefore boosted. When the plug flow width is zero the core region has not 

developed and significant retardation to the axial flow is induced. The Bingham viscoplastic 

fluid behaves as a solid when the applied shear stress is less than the yield stress.  However 

once the yield stress is exceeded, as in the present simulations, the viscoplastic fluid flows like 

a conventional fluid.  Bingham plastics are a special class of viscoplastic fluids that exhibit a 

linear behavior of shear stress against shear rate. Although this model is simple it does represent 

quite accurately reported behaviour in electrokinetic microfluidcs systems, as elaborated by 

Tang et al. [42]. The Bingham plastic also exhibits a smooth velocity profile (parabolic across 

the whole channel). There is no alternation in the magnitudes of velocity indicating that the 

flow remains orientated in one direction.  

 

Fig. 3 depicts the evolution in volumetric flow rate with axial distance (x) for various plug flow 

width values. In all plots the multiple wave amplitudes of the peristaltic waves are clearly 

(c) 
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captured. Markedly higher values of volumetric flow rate arise at the entry zone to the micro-

channel (x=0), again mid-way along the channel but are significantly reduced with further 

increase in axial distance plummeting at the exit zone (x~1.0).  With increasing plug flow 

width, as anticipated, the flow is accelerated and volumetric flow rate is enhanced considerably. 

The nature of plug flow width is intimately associated with the type of Bingham plastic, as 

noted by Nguyen and Boger [43]. Judicious selection of the appropriate working fluid therefore 

ensures that while yield stress behaviour is still present, it does not inhibit plug flow growth.  

 

Fig. 4 illustrates the evolution in pressure difference across one wavelength (p) with time 

averaged volumetric flow rate ( Q ) for selected plug width flow values. Three pumping 

regimes, as first identified by Shapiro et al. [27] are significant in peristaltic propulsion. These 

are the pumping region (p > 0), the augmented pumping region (p < 0), and the free pumping 

region (p =0). Evidently in the pumping region, pressure difference decreases with flow rates. 

The p- Q relationship is clearly an inverse linear relationship i.e. pressure difference 

decreases with increasing time averaged flow rate. However the relationship between pressure 

difference and flow rate strongly depends on whether pressure difference is negative or 

positive. When plug flow width is zero and pressure difference is positive, lower pressure 

difference is computed compared with non-zero plug width. However the dominant trend 

(when pressure difference is negative) is a decrease in pressure difference with increasing plug 

flow width which is accentuated with greater averaged volumetric flow rate. The maximum 

deviation in profiles therefore corresponds to the maximum flow rate case.   

 

Figs. 5 (a)-(c) visualize the streamline distributions for variation in plug flow width (hpl) with 

all other parameters constrained (Debye–Hückel parameter () i.e. Debye electroosmotic 

length = Helmholtz-Smoluchowski velocity (ue)= unity). The entire micro-channel space is 

considered. These figures visualize a key characteristic of peristaltic flows, namely trapping 

phenomenon which relates to the stream lines circulation and formation of a trapped bolus. It 

allows the determination of reflux characteristics and also vortex growth and circulation 

intensity in peristaltic flows. Two sets of trapping zones are present – one above the centreline 

and one below. These zones contain large boluses at the entry and exit zones which 

progressively shrink in the intermediate zone. Multiple small boluses exist for hpl =0 in both 

sets below and above the channel centre line. With an increase in plug flow width the upper 
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row of boluses is eliminated and the lower row contracts significantly. Trapping is therefore 

largely suppressed with increasing plug flow width i.e. variation in Bingham viscoelasticity.  

 

Figs. 6- 9(a)-(c) depict the impact of the electrical double layer thickness i.e. Debye–length 

parameter () on respectively the axial flow velocity, volumetric flow rate, pressure difference 

and streamline distributions. Since the induced electrical field is dwarfed by the externally 

applied electric field, streaming potential is discarded in the electroosmotic flow. When the 

ions move in the diffuse layer, they pull the liquid along with them in the opposite direction to 

the pressure driven flow. This effect is inversely proportional to the thickness of the electrical 

double layer. Hence as  values increase the migration of ions is inhibited and the axial flow is 

accelerated, as observed in fig. 6. There will be a corresponding boost therefore in volumetric 

flow rates which will also be elevated with increasing electrical double layer thickness, as 

illustrated in fig. 7. Enhanced pumping is therefore achieved with larger  values. Distinct from 

the p- Q profiles computed in fig. 4, a consistent response is observed for all three pumping 

zones in fig. 8. In the the pumping region (p > 0) and the free pumping region (p =0), an 

increase in electrical double layer thickness i.e. Debye–length parameter () significantly 

elevates pressure differences with increasing averaged volumetric flow rate. This trend is also 

sustained for the augmented pumping region (p < 0). Enhanced efficiency of peristaltic 

pumping is therefore attained with greater Debye–length parameter irrespective of the pumping 

zone considered. Figs 9a-c demonstrate that with an initial increase in Debye–length parameter 

() the lower row of boluses in the micro-channel is initially reduced in size; however with 

subsequent increase the boluses begin to grow again. The upper row of boluses remains largely 

unaffected and is not sensitive to changes in Debye–length parameter. 

 

Finally figs. 10-13 present the response in axial flow velocity, volumetric flow rate, pressure 

difference and streamline distributions.to a change in the Helmholtz-Smoluchowski velocity 

(ue). The definition of this parameter is negative i.e. x
e

E
u

c




   . It is directly proportional to 

the strength of axial electrical field. For negative values of ue, the electrical field acts in the 

positive axial direction. It therefore impedes the axial flow (fig. 10) and this decreases axial 

velocity. However for positive values of ue, the axial field is orientated in the reverse x-direction 

and this serves to accelerate the axial flow since the electroosmotic body forces assists 

momentum diffusion in this scenario. The direction of axial field therefore has a profound 
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effect on flow characteristics. Volumetric flow rate (fig. 11) is therefore also boosted for 

positive values of ue, and reduced for negative values of ue. The oscillatory nature of the 

peristaltic flow is evident from the volumetric flow rate plot and shows peaks again at the entry 

and intermediate zones of the micro-channel length with a reduction at the exit zone. Pressure 

difference is found to decrease with time-averaged volumetric flow rate (fig. 12) and is always 

lower for negative values of ue (aligned electrical axial field) whereas it is higher for positive 

values of ue (reverse electrical axial field), for all three (free, standard and augmented) pumping 

zones. Figs. 13a-c exhibit the modification in bolus dynamics with increasing positive values 

of Helmholtz-Smoluchowski velocity (ue). It is apparent that no tangible alteration is induced 

in the upper row of boluses, whereas there is a notable growth in the lower row of boluses. An 

increase in positive Helmholtz-Smoluchowski velocity implies that the axial electrical field is 

progressively stronger in the reverse x-direction. This encourages trapping in the lower micro-

channel half space. Overall the presence of an electrokinetic body force effect induces non-

trivial modifications in streamline distributions.  

 

4. Conclusions 

An analytical investigation of microvascular non-Newtonian blood flow model has been 

conducted. Multiple amplitudes of peristaltic waves have been considered and the Bingham 

viscoplastic rheological material model has been adopted. The non-dimensional boundary 

value problem has been solved with integration methods. Numerical evaluation of the closed-

form solutions has been performed with Mathematica symbolic software. The effects of 

Bingham plug flow width, Debye electrokinetic length and Helmholtz-Smoluchowski velocity 

(maximum electroosmotic velocity) on the axial velocity, averaged volumetric flow rate, 

pressure difference and stream function distribution have been plotted graphically. The 

computations have shown that: 

• An increase in plug flow width increases axial velocity, reduces volumetric flow rate, 

elevates pressure difference (only in the pumping region) and suppresses bolus 

magnitudes  

• Increasing electrical Debye length accelerates the axial flow, volumetric flow rate and 

also pressure rise (whether in the augmented, standard or free pumping region) and 

initially reduces bolus size (in the lower microchannel half-space) whereas with 

subsequent increase it increases bolus magnitudes. 
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• With positive Helmholtz-Smoluchowski velocity (reverse axial electrical field) the 

axial flow is strongly accelerated and there is a significant enhancement in volumetric 

flow rate and pressure difference (for all pumping zones). The opposite trends are 

computed with negative Helmholtz-Smoluchowski velocity (aligned axial electrical 

field.  

• Furthermore there is a substantial amplification in size of the lower row boluses with 

increasing positive Helmholtz-Smoluchowski velocity whereas the upper row of 

boluses is unaltered. 
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