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ABSTRACT 

Micropolar fluids provide an alternative mechanism for simulating micro-scale and molecular fluid 

mechanics which require less computational effort. In the present paper, a numerical analysis is 

conducted for the primary and secondary flow characterizing dissipative micropolar convective 

heat and mass transfer from a rotating vertical plate with oscillatory plate velocity, adjacent to a 

permeable medium. Owing to high temperature, thermal radiation effects are also studied. The 

micropolar fluid is also chemically-reacting, both thermal and species (concentration) buoyancy 

effects and heat source/sink are included. The entire system rotates with uniform angular velocity 

about an axis normal to the plate. Rosseland’s diffusion approximation is used to describe the 

radiative heat flux in the energy equation. The partial differential equations governing the flow 

problem are rendered dimensionless with appropriate transformation variables. A Galerkin finite 

element method is employed to solve the emerging multi-physical components of fluid dynamics 

problem are examined for a variety of parameters including rotation parameter, radiation-

conduction parameter, micropolar coupling parameter, Eckert number (dissipation), reaction 

parameter, magnetic body force parameter and Schmidt number. A comparison with previously 

published article is made to check the validity and accuracy of the present finite element solutions 

under some limiting case and excellent agreement is attained. The current simulations may be 

applicable to various chemical engineering systems, oscillating rheometry, and rotating MHD 

energy generator near-wall flows. 

 

Keywords: Thermal radiation, viscous dissipation, oscillation, secondary flow, micropolar fluid, 

Galerkin finite element method. 

 

 



 

Nomenclature 

oB  applied magnetic field strenth                                   rU  uniform reference velocity 

C  concentration of the solute (mol m-3)                        
654321 w,w,w,w,w,w  arbitrary test functions 

fxC  primary skin friction coeffcient 

fyC  secondary skin friction coeffcient                            Greek letters 

xwC  primary wall couple stress                                    Eringen coupling number 

ywC  secondary wall couple stress                                     T  coefficient of thermal expansion (K-1) 

pC  specific heat at constant pressure (J Kg-1 K-1)          
C

 coefficient of concentration expansion (K-1) 

wC  concentration of the solute at the plate (mol m-3)       density of magneto-micropolar fluid(Kg m-3) 

C  free stream concentration (mol m-3)                            electrical conductivity of the fluid (S m-1) 

m
D  molecular diffusivity (m2/s)                                        thermal conductivity (W m-1K-1)                                 

Ec  Eckert number                                                             Kinematic viscosity (m2/s)                                                          

F  Radiation-conduction parameter                               r  Kinematic vortex viscosity (m2/s)                                                                        

Gm  species Grashof number                                               gyroscopic viscosity (Kg m/s)                                           

Gr  thermal Grashof number                                             Coefficient of gyro-viscosity (Kg m/s)                                          


j  micro inertia per unit mass                                         Fluid dynamic viscosity (Pa s)                                   

K  permeability of porous medium(m2)                           Dimensionless temperature                     

Kr  chemical reaction parameter                                       Dimensionless concentration                                     

M  magnetic field parameter                                         1  primary angular velocity                                    

n  non-dimensionaloscillation frequency                     2  Secondary angular velocity                    

Nu  Nusselt number                                                          shape function                                                                                                                                            

Pr  Prandtl number                                                          

rq  Thermal radiative heat flux (W/m2)                       constants 

Q  heat source parameter                                               g  acceleration due to gravity (m/s)    

R  rotational parameter                                        p  constant pressure   

xRe  local Reynolds number                                               Stefan-Boltzmann constant (W m-3 K-4) 

S  suction parameter                                                      k  mean absorption coefficient(m-1) 

Sc  Schmidt number                                                          constant uniform angular velocity   

xSh  Sherwood number                                                        constant   

t  non-dimensional time 

T  Temperature of the field (K) 

wT         Wall temperature of the fluid (K) 

T  Temperature of the fluid in free stream (K) 

u  primary velocity (m)                                                               

v  secondary velocity (m) 
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1. INTRODUCTION 

Rotating thermal convection flows arise in an extensive range of industrial systems including 

rotating heat exchangers, multi-stage cyclone separators, mixing devices in chemical engineering 

and spin-stabilization of spacecraft vehicles. Rotating fluid systems generate both real and 

fictitious forces, the former is the centrifugal force and the latter is the Coriolis force. Should the 

rate of rotation of a body change then a third fictitious force, the Euler force may also be invoked. 

The interplay between Coriolis force and viscous force have profound effects on for example 

external boundary layer growth, thermal boundary layer thickness etc. The Coriolis force induces 

motion in the secondary flow direction. Further complexities arise when the fluid is electrically 

conducting and when mass transfer (species diffusion) is present. Investigations of boundary layer 

flows from rotating bodies have included a variety of configurations e.g. rotating plate (Tokis, 

1988), spinning sphere (Bég et al., 2015), rotating disk (Kendoush, 2013), rotating cone (Bég et 

al., 2016) and rotating ellipsoid (Riley, 1996). These studies have shown significant modification 

in momentum, heat and also mass transfer rates induced by rotational body force. They have 

however generally been confined to Newtonian fluids. Many non-Newtonian fluids arise in 

technological applications including polymers, slurries, gels, dusty suspensions etc. They are 

characterized by complex micro-structure and observations have revealed that such fluids 

generally deviate from the classical Navier-Stokes viscous flow model. This model cannot 

simulate the effects of molecular spin since it neglects couple stresses in the constitutive 

formulation. To address this issue Eringen proposed the micro-morphic theory of fluids over five 

decades ago, of which several special cases have sustained significant interest in engineering 

sciences. These are the micro-stretch fluid and the micropolar fluid (Eringen, 2001).  The latter 

has received wide attention in heat and mass transfer modelling. The Eringen micropolar theory 

features additional degrees of freedom (gyratory motions) which allow the physical representation 

of the rotation of the microstructure. Hence, the balance law of angular momentum is introduced 

for solving gyration, extending the conventional linear momentum balance in Newtonian models. 

Molecular spin can therefore be analysed robustly within the framework of micropolar fluid 

mechanics. An additional advantage is that micropolar models do not require computationally 

intensive simulations which are necessary for alternative approaches in micro scale fluid 

dynamics (e.g. Molecular Dynamics, Monte Carlo simulation etc.). Micropolar fluids do not 

sustain a simple shearing motion, where only one component of velocity is present. In the context 

of rotating flows, they provide both an assessment of the micro-scale rotary motions and the 

influence of micro-structural characteristics on global rotational motions. The interest in the 

present novel investigation arises from a desire to elaborate the collective influence of primary and 

secondary flow from a spinning rigid body (plate) when the boundaries are subjected to slow 

rotation. Motivated by geophysical and petrochemical engineering systems, early studies of 

micropolar transport phenomena from rotating bodies were presented by (Rao et al., 1969; 

Ramkissoon, 1977; Kirwan and Chang, 1976; Sastry and Rao, 1979). These investigations were 

however confined to fluid flow showing that the presence of micropolar elements enhances 

momentum boundary layer thickness.  One of the earliest comprehensive analyses of micropolar 

thermal convection from a spinning body was conducted by (Gorla and Takhar, 1994) who also 

considered heat generation effects. They showed numerically that the momentum, angular 

momentum (gyration) and thermal boundary layers grow with centrifugal forces. (Gorla, 1995) 

subsequently analyzed the non-similar mixed convection of a micropolar fluid from a rotating 

cone, exploring the influence of microrotation boundary conditions on velocity, micro-rotationand 

heat transfer distributions. The rotationally symmetric flow of micropolar fluids from a rotating 
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disk was studied by (Nazir et al., 2015) using the successive over relaxation (SOR) method. Very 

recently (Gajjela et al., 2016) derived analytical solutions for Bejan number in magnetized 

micropolar rotating annular flow. 

 

These simulations have considered steady-state flows. However, many materials processing 

systems feature oscillatory flow characteristics induced by periodic motions of the boundary. 

Periodic flows and judicious selection of oscillation frequency can aid in the diffusion of species 

and transport of heat. This can be critical in certain flow reactor designs using non-Newtonian 

liquids (Lee et al., 2001). Many theoretical studies on oscillatory mutli-physical flows have been 

communicated in recent years. (Bég et al., 2010) derived asymptotic solutions for oscillatory 

Couette channel hydromagnetic flow with inclined magnetic field and porous medium drag effects. 

(Reis et al., 2004) reported both analytical and experimental results for unsteady oscillatory 

hydrodynamics in a screening reactor. (Bhargava et al.,2009) presented solutions for periodic 

reactive flow with cross diffusion effects via FEM. (Bég et al., 2012) derived asymptotic solutions 

for oscillating hydromagnetic flow and heat transfer in couple stress liquids in a spinning 

bioreactor channel configuration. (Maqbool et al.,2016) presented Fourier series solutions for a 

variety of oscillatory magnetohydrodynamic channel flows, also considering rotational body force 

and both Newtonian and non-Newtonian material models. Oscillatory micropolar flows in the 

annular region of two concentric spheres were examined by (Iynger and vani, 2004). Buoyancy 

effects on magnetic oscillatory flow of micropolar fluids as well as nanofluids were reported by 

(Kim and Lee, 2003; Modather et al., 2009; Shamshuddin et al., 2017; Thirupathi et al., 2017). 

(Satya Narayana et al., 2013) reported analytical solutions on oscillatory micropolar flow in 

rotating system. (Shamshuddin and Thirupathi, 2017) computed cross-diffusion effects on 

transient dissipative micropolar free convection flows using a finite element technique. 

 

In many materials synthesis operations and in chemical processing, chemical reactions play a 

significant role. They often occur with mass transfer phenomena. Examples include heterogeneous 

fluid-solid non-catalytic reactions in metallic processing (Shon, 2003), wall-reactive flows in 

finishing (coating) of aerospace components (Tischer et al., 2010), chemical vapour deposition 

systems (Wei et al., 2007) and surface modification of polymers (Kee et al., 2003). The field of 

chemical reaction fluid mechanics is vast. In the context of boundary layer flows, simple 

homogenous or heterogeneous chemical reaction models are used. These may be constructive or 

destructive. In the present study a homogenous chemical reaction model is employed. This 

assumes that the reaction rate depends on the concentration of the species and via a power-law 

index a range of different reaction orders can be examined. The general nth order reaction rate 

assumes that chemical reaction rate varies with the nth power of the species concentration. A 

popular model in mathematical studies is the first order model for which the chemical reaction is 

directly proportional to the concentration. Many different computational methods have been 

employed to study reactive heat and mass transfer flows. These include lattice Monte Carlo 

techniques (Fiedler et al., 2015), finite element methods (Uddin et al., 2015) and finite volume 

codes (e.g. ANSYS Fluent) (Gomez et al., 2013). Micropolar reactive flows have also been 

addressed by a number of researchers using both analytical and numerical approaches. (Bakr, 

2011) presented closed-form solutions for reactive magnetized rotating natural convective heat 

and mass diffusion from an oscillating plate in a micropolar fluid. (Abbas et al.,2016) obtained 

shooting quadrature computational solutions for reactive micropolar viscoelastic flow from an 

extending/contracting sheet in a permeable regime. (Zueco et al.,2009) used a nth order reaction 
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model to investigate two-dimensional micropolar flow and mass transfer in porous media with the 

network electro-thermal code, PSPICE. (Rahman and Al-Lawatia, 2010) studied reactive 

boundary layer flow of a micropolar fluid from a non-linear stretching porous sheet in a permeable 

medium. (Mishra et al.,2016) presented numerical solutions for thermos-diffusive and reactive 

effects on magnetic micropolar convection flows and (Mishra and Bhatti, 2017) also presented 

numerical solutions on simultaneous effects of chemical reaction and Ohmic heating. Few reactive 

models including (Satya Narayana et al., 2013; Venkateswarlu and Satya Narayana, 2015) 

 

The above studies generally neglected thermal radiative heat transfer. At high temperatures, 

radiation is the dominant mode of heat transfer. It therefore is intrinsic to many modern 

manufacturing processes including glass synthesis, coating deposition, chemical reactor vapour 

deposition, combustion and flame treatment of materials. Radiative heat transfer is also the most 

complex mode of thermal transport. It involves many complex features including spectral effects, 

optical thickness, reflection, absorption, transmission etc. To simulate radiative heat transfer 

problems, very sophisticated numerical algorithms must be employed to cater for a multitude of 

thermo-physical phenomena which is both time-consuming and expensive. Many approaches have 

been developed to overcome this challenge and popular models emerging in engineering sciences 

include the Milne-Eddington approximation, Chandrasekhar discrete ordinates method, P1 

differential approximation, Schuster-Schwartzchild two-flux model and the Rosseland diffusion 

model (Modest, 1992). These methods convert the integro-differential radiative equation into 

either partial differential equations or algebraic flux equations which are much easier to 

implement. Many simulations have been presented using these radiative models including 

(Malpica et al.,2003; Mohamed et al., 2003; Pai and Scaglione, 1970; Murthy et al., 2017; Bhatti 

et al., 2017; Pal and Talukdar, 2012; Olajuwon and Oahimire, 2013; Bakr, 2013; Swapna et al., 

2015; Seth et al., 2011; Das, 2011; Harish Babu and Satya Narayana 2013; Satya Narayana et al., 

2015). 

 

In the present article, we investigate the buoyancy-driven primary and secondary flow with heat 

and mass transfer in a rotating electrically-conducting reactive micropolar fluid adjacent to an 

oscillating vertical plate in a porous medium under substantial thermal radiation. The Darcy model 

is utilized (Bég et al., 2016) and the Rosseland radiative flux model adopted. Viscous dissipation 

is also considered as it has been shown to contribute significantly in micropolar flows (Khonsari 

and Brewe, 1994). Although the current study is theoretical, the physical justification for the 

micropolar model has been documented by (Papautsky et al.,1999). Numerical solutions are 

developed using the versatile Galerkin finite element technique. As such we generalize the 

previous analytical (perturbation) solutions of (Bakr, 2011; Bakr, 2013) to consider combined 

Rosseland flux and porous media effects, simultaneously validating the present finite element 

code. The current study is relevant to reactive magnetic non-Newtonian materials processing and 

certain magnetohydrodynamic (MHD) energy generator configurations featuring rotating 

components (Rosa, 1987). 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 
 

The case of unsteady natural convective flow, heat and mass transfer of an electrically conducting 

incompressible micro-polar fluid from a vertical plane in an isotropic saturated porous medium is 

considered. The plate and fluid like in the x*-z* plane and both are rotating in unison with constant 



6 
 

 
 

uniform angular velocity  about the z -axis with a velocity    tnu cosrU 1 .Initially at time

0t  both the plate and fluid are at rest and are maintained at a uniform temperature

T  and 

concentration

C . At time 0t , the plate starts moving in the x*-direction with uniform velocity

rU in its own plane, thereafter the plate is maintained at constant temperature 

wT  and concentration


wC . These values are assumed to be greater than the ambient temperature 


T  and concentration


C

.The physical configuration is illustrated in Fig. 1.  

 

 

FIG. 1. Geometry and coordinate system  

A uniform magnetic field of strength 0
B is applied normal to the flow direction. It is assumed 

that the induced magnetic field is negligible in comparison to the applied magnetic field (Malpica 

et al., 2003). Since the magnetic Reynolds number of the flow is taken to be very small, the induced 

magnetic field is neglected so that magnetic field   00 ,Bo,B  . It is also assumed that no external 

electric field is applied so the electric field due to polarization of charges is negligible (Seth et al., 

2013; Satya Narayana et al., 2013) (  000 ,,E  )which corresponds that applied or polarized 

voltage is neglected so that no energy is added or extracted from the fluid by electrical means. 

Ohmic (Joule) heating is neglected as are Soret and Dufour cross-diffusion effects. The first order 

species concentration has also been incorporated in the mass transfer equation.  

The Boussinesq approximation is taken and invokes thermal and species buoyancy body forces in 

the primary momentum equation, as follows: 
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Here  vu , and w are velocity components along  yx ,  and z -axis respectively, 
1 and

2  are 

angular velocity components along the x and y directions respectively,  

The relevant and appropriate initial and boundary conditions are given by: 
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The oscillatory plate velocity assumed in Eq. (8) is based on the model proposed by (Ganapathy, 

1994). Integrating the continuity equation (1) for variable transpiration (lateral mass flux) velocity 

normal to the plate, a convenient solution emerges as: 
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

                                                                                                                                      (9)                                                              

Here 0w is the normal velocity at the plate 00 w  for suction, 00 w for blowing, while 00 w

corresponds to an impermeable plate. The radiative heat flux expression in Eq. (6) is given by 

Rosseland approximation (Modest, 1992) as 
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Using Taylor’s series expansion about 

T  the expansion of 
4T  can be written as follows, 

neglecting higher order terms: (Raptis and Perdikis, 1998) 
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Neglecting higher order terms beyond the first degree in   TT  , we have  
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Now differentiating (10) w.r.t. the coordinate z  and invoking eqn. (11), we get: 
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Substituting 3T in Eqn. (10) with 3

T , Eqn. (6) can then be expressed as follows: 
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It is pertinent to note that if this assumption is neglected, the radiative heat flux in Eqn. (6) results 

in a highly non-linear expression. In that case the energy equation for non-linear thermal radiation 

with augmented thermal conductivity becomes: 
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Although the primitive conservation equations and boundary conditions (1) -(5), (7), (8) and (14) 

can be solved with a variety of numerical methods e.g. Crank-Nicolson difference scheme, their 

solution requires explicit data for thermo-physical properties. It is therefore judicious to render the 

system dimensionless. The following non-dimensional variables are introduced therefore: 
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Quantities with superscript * are dimensionless, z is dimensionless coordinate along the plate 

length. All quantities which are dimensionless mentioned in nomenclature. Assimilating the 

dimensionless variables (16) into equations (1) -(5), (7) and (14) yields the following system of 

unsteady dimensionless partial differential equations: 
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Dimensionless initial and boundary conditions are  
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         (23) 

3. GALERKIN FINITE ELEMENT NUMERICAL SOLUTION 

 

3.1 Finite Element Method 

The set of partial differential equations (17)-(22) subject to initial and boundary conditions (23) 

are nonlinear and strongly coupled. The finite element method is therefore adopted to solve this 

system. FEM remains the most versatile numerical method for engineering sciences. It uses 

integration rather than differentiation which smooths solutions faster and leads to greater accuracy 

and faster convergence. The variational form is especially popular for fluid mechanics and 

transport phenomena simulations and succinct appraisals of this approach are provided by (Reddy, 

1985). Although the method has been used in many micropolar fluid mechanics problems, most 

applications have been steady-state. Recent unsteady micropolar flow studies employing FEM 

include magnetic micropolar nanofluid cavity flow (Turk and Tezer-Sezgin, 2017) and micropolar 

flow from an oblique surface (Shamshuddin et al., 2017). The five basic fundamental steps can be 

referred in (Shamshuddin et al., 2017).  

3.2 Variational formulation 

The variational formulation associated with Eqs. (24) - (29) over a typical two-node linear element 

 1ee z,z  is given by: 
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where ,A 11   K/MA 12  , 3A ,    Pr//FA 3414  ,  Pr/QA 5 . After dropping the 

order of integration and non-linearity, we arrive at the following system of equations: 
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3.3 Finite Element formulation 

By substituting finite element approximations of the form in Eqs. (30) - (35), finite element model 

may be obtained 
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Also 
e

i  are the shape functions for this element  1ee z,z which are defined as: 
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The finite element model of the equations for the  element thus formed is given by 
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Where     mnmn MK ,  and                  meeeeeeeeeeeee band,,,v,u,,,,,v,u  
2121

m, n=1,2,3,4,5,6)denote the set of matrices of order 22  and 12   respectively and prime )( 
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In general, to verify that the converged solutions are indeed correct, i.e. to guarantee grid (mesh) 

independency, a grid refinement test is carried out by dividing the whole domain into successively 

sized grids 81x81, 101x101 and 121x121 in the z-axis direction. Furthermore, the finite element 

code is run for different grid sizes and for a grid size of 101x101 the solutions are observed to 

achieve mesh independence. Therefore, for all subsequent computations, a grid size of 101 

intervals is elected. The iterative process is terminated when the following conditions fulfilled: 
6

,

1 10 
ji

nn                (46) 

where  ,,,,v,u 21 and n denotes the iterative step. This criterion maintains high accuracy 

for coupled multi-physical boundary layer equations. Once the key variables are computed, many 

wall gradient functions may be automatically evaluated.  

Skin-friction components (primary and secondary) are obtained as: 
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Finally, skin friction components  assume the form: 
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Wall couple stress components (primary and secondary) are computed as: 
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The plate surface rate of the heat transfer i.e. Nusselt number emerges as: 
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The plate surface rate of mass transfer i.e. Sherwood number is calculated with: 
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It is important to note that the present simulation extends the conventional studies by including a 

secondary component for the wall couple stress function. This allows further sophistication in 

analyzing the micro-element gyration field near the plate surface, a characteristic which is usually 

only addressed by a single couple stress function as noted by (Gorla, 1988; Eringen, 1976). 

Furthermore, we note that the micro-rotation boundary conditions in (23) reflect the physically 

realistic condition – see (Ahmadi, 1976) wherein the wall gradient of the gyration vector must 

approach zero at the wall. This accommodates the framework of boundary layer growth at the wall, 

which is violated by the often-simple reduction to a vanishing micro-rotation boundary condition. 

Micro-element rotary motions will be inhibited at the wall but not eliminated completely. The 

micropolar theory model’s fluids comprising non-deformable micro-elements. The ratio of 

Eringen micropolar vortex viscosity to Newtonian dynamic viscosity   and the ratio of gyro-

viscosity to Newtonian dynamic viscosity (as encompassed in ) quantify respectively the relative 

strengths of the micro-structural coupling to the viscous effect and the couple stress to the viscous 

effect. They may assume any values greater than or equal to zero. In the vanishing case 0 
, the elegance of the micropolar model is reflected since the Newtonian (Navier-Stokes) viscous 

flow case is then extracted. At the opposite end of the spectrum, for , the implication is 

that couple stresses are infinite with respect to the viscous effect. However, this is not physically 

realizable in industrial fluids and generically intermediate values are studied which provide a good 

approximation for progressively greater concentrations of micro-elements (Latiff et al., 2016; 

Thirupathi et al., 2017). 

 

4. GRID SENSITIVITY OF FEM SOLUTIONS  

The numerical values of primary and secondary velocities v,u ,primary and secondary angular 

velocities 21 , , temperature   and concentration  for different grid sizes are shown in Table 1. 

From this it reflects the physically realistic results. Hence, this method has been proven to be 

adequate and gives adequate results for conservation equations. 

 

5. VALIDATION OF FEM SOLUTIONS  

The boundary value problem comprising the dimensionless system of equations (17) – (22) subject 

to (23) are solved with a Galerkin finite element method. Although grid-independence has been 

achieved, further verification of computations is provided against analytical solutions from the 

literature, as presented in Tables 2-4. Table 2 presents a comparison between analytical and 

numerical results for skin friction and couple stress (Cf, Cw i.e. only primary components 

considered) with variation of 4 key parameters, namely Eringen coupling parameter ( ), reaction 

parameter (
rK ),rotation parameter ( R ) and suction parameter ( S ). It must be mentioned that 

in the case of F=Ec=0 (i.e. vanishing radiative flux and zero viscous dissipation) the present results 

are excellent agreement with the perturbation solutions of (Bakr, 2011). Tables3 and 4 depicts the 
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comparison between analytical and numerical results for various parameters on primary and 

secondary shear stress and wall couple stress components ( yxyx Cw,Cw,Cf,Cf ). Table 3 considers 

the case of Ec= Kr=0, (i.e. vanishing viscous dissipation, no chemical reaction) and Table 4 

considers Q = Ec= Kr=0, (i.e. absence of heat source, vanishing viscous dissipation, no chemical 

reaction). Evidently excellent correlation is achieved in all three tables with the results reported by 

(Bakr, 2013). It is interesting to note that in Table 2 generally, positive results are obtained for the 

primary skin friction and wall couple stress. There is no reversal in either linear velocity or micro-

rotation field at the wall is computed for any value of the varied parameters. 

Conversely in Tables 3, 4, a combination of negative and positive values, are observed for the 

primary and secondary components of skin friction and wall couple stress. There is therefore 

significant fluctuation in velocity and micro-rotation fields at the wall when secondary flow is 

present. This behaviour is not captured in the absence of secondary effects. 

 

6. NUMERICALRESULTS AND DISCUSSION 

 

The evolution of translation velocity components  v,u , microrotation velocity components 

(gyration fields)  21  , , temperature    and concentration    profiles are illustrated in Figs. 

2-31, for selected parameters i.e. , ,S ,R ,F ,Q and Kr . The following default parameter values 

are implemented in all the finite element computations: ,.,/nt 0102   ,n 10 ,Gm,Gr 410   

7060550 .Pr,.Sc,K,.M  . We do not explicitly consider oscillatory velocity influence 

since this has been thoroughly appraised in other studied – see Ganapathy (1994). Weak transverse 

magnetic field is considered  50.M   and strong thermal and species buoyancy effects. High 

permeability is examined (when K the purely fluid regime is recovered i.e. vanishing porous 

media fibers, and the Darcian drag components in the primary and secondary momenta eqns. (

 uK/1  and  vK/1  vanish).  

Figs. 2 and 3 depict the impact of micropolar vortex viscosity (coupling) parameter    on the 

translational (linear)primary and secondary velocity profiles. With increasing vortex viscosity of 

micro-elements, the primary velocity u distribution (Fig.2) is significantly enhanced with 

transverse coordinate (normal to the plate) with maximum acceleration computed a short distance 

from the plate surface. No cross-over of profiles is observed and positive magnitudes are sustained 

indicating that backflow never arises. Similarly, with increasing vortex viscosity of micro-

elements, the secondary velocity v distribution (Fig.3) is significantly reduced. 

 

Figs. 4 and 5 present the response in angular velocity (micro-rotation) components with coupling 

parameter   . In contrast to the primary linear velocity field, the primary angular velocity 
1

decreases with greater vortex viscosity whereas the secondary angular velocity
2 increases (again 

the opposite effect to the secondary linear velocity field). The increasing concentration of micro-

elements which enhances vortex viscosity (reflected in higher  values) damps the primary 

gyratory motions of micro-elements and the loss in angular momentum in the primary field is 

transferred to the secondary field where gyration is elevated. The maximum influence is at the wall 

since with greater concentration of micro-elements, these micro-elements are physically impaired 

from rotating near the boundary more than anywhere else in the fluid regime. This effect is 
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progressively reduced with distance from the plate. These computations concur with the earlier 

observations of (Das, 2011; Gorla et al.1988).  

 

Fig. 6 illustrates the variation in temperature profile   for different values of thermal radiation 

parameter  F for both Newtonian and micropolar cases. Since the thermal conduction is dominant 

for large values of ,F therefore as F increases the temperature decreases and results in a depletion 

in thickness of thermal boundary layer. A reduction in radiative flux therefore leads to cooling of 

the micropolar fluid. Further, it is also observed that fluid temperature is lower for micropolar 

fluids than for Newtonian fluids. This confirms the cooling characteristics of micro-elements 

(observed in numerous other studies e.g. Latiff et al., 2016) which may be exploited in materials 

processing and thermal regulation. 

 

Fig. 7 presents the effect of Eckert number on temperature profiles. Ec expresses the relative 

contribution of kinetic energy in the flow and the enthalpy difference in the boundary layer. It 

embodies the conversion of kinetic energy into thermal energy by work done against the viscous 

fluid stresses. Hence temperature is markedly boosted. 

  

Figs. 8-9 depict the distributions of v,u  to a variation in thermal Grashof number  Gr and solutal 

Grashof number  Gm . Primary translational velocity increases strongly with an increase in both Gr

and Gm . Further, the velocity near the wall of the porous plate increases rapidly and the primary 

velocity overshoot is pushed further from the plate with increasing thermal and species buoyancy 

effects. Secondary angular velocity is also enhanced with increasing thermal and species Grashof 

numbers. The positive values of Gr correspond to cooling of the surface by natural convection 

currents. Similarly, positive Gm implies a reduction in wall mass transfer rate. The enhancement 

in primary velocity and secondary angular velocity is associated with the body forces, 

 GmGr   and  z/ 
2

  in the primary momentum eqn. (17). This induces a significant 

acceleration effect directly on u  and indirectly on v via the coupling with the secondary angular 

momentum equation (20). However, buoyancy terms do not feature in either the secondary linear 

momentum eqn. (18) or the primary angular velocity eqn. (19) and therefore negligible 

modifications in these components are computed (not shown). 

 

Figs. 10-11indicate that with increasing magnetic parameter  M there is a decrease in the primary 

fluid velocityu  and increasing secondary fluid velocity v . The Lorentz magnetic drag force i.e. 

Mu  in eqn. (17) is generated by the application of magnetic field in the z-direction (transverse 

to the primary velocity direction). This retards the primary flow whereas it accelerates the 

secondary flow via re-distribution in linear momentum. Significant flow alteration is therefore 

achieved with even a relatively weak increase in magnetic field. Maximum primary velocity and 

minimum secondary flow velocity therefore respectively correspond to 0M  (vanishing 

magnetic field i.e. electrically non-conducting micropolar flow case).  

 

Figs. 12-13 present the influence of magnetic body force parameter  M on primary angular 

velocity 
1 and secondary angular velocity

2 . The Lorentz drag component Mv in the 

secondary linear momentum eqn. (18) as expected induces a marked retardation in primary angular 

velocity via the coupling term,  z/ 
1

 which indirectly influences the primary angular 
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velocity field. The secondary angular velocity increases with the increase of M  since the term 

 z/ 
2

 couples the secondary angular momentum field to the primary linear momentum field 

and the drag component, Mu . 

 

Figs. 14-15 present the impact of permeability parameter (K) on both primary and secondary 

velocites. This parameter characterizes the hydrauic transmissivity of the porous medium. It arises 

in primary and secondary linear momentum equations (17) and (18), as    vK/anduK/ 11 

.With increasing permeability, the regime solid fibers progressively decrease. This results in 

acceleration in the primary translational velocity and deceleration in secondary velocity. This 

behaviour is sustained across the boundary layer. The presence of a low permeability porous 

medium therefore damps the primary flow and boosts the secondary flow and vice versa for larger 

permeability media. 

 

Figs.16-17 depict the response in the angular velocity (micro-rotation) components to variation in 

permeability parameter (K). The reverse behaviour is observed compared with the linear velocity 

components. Primary angular velocity is reduced with greater permeability parameter (Fig. 16) i.e. 

the spin of micro-elements is damped with decreasing porous material fibers. Conversely the 

secondary angular velocity is accentuated indicating that micro-element spin (gyratory motion) is 

encouraged with greater permeability. 

 

Figs. 18-21 present the response in 
1

,v,u  and 
2

 profiles for various values of suction parameter 

S, against spanwise coordinate, z .It is noticed that increasing suction significantly decreases 

primary linear velocity i.e. decelerates the boundary layer flow. Greater suction corresponds 

physically to removal of micropolar fluid via the wall. This destroys momentum, and causes the 

boundary layer to adhere to the wall thereby stabilizing boundary layer growth due to which the 

primary velocity of the fluid decreases, i.e., the flow is decelerated. However, the opposite behavior 

is computed for the secondary velocity which is enhanced with greater suction at the plate surface. 

The case 0S corresponds to blowing (mass injection) at the wall and is not relevant to the current 

study and has therefore not been addressed. A similar behaviour is observed in the case of angular 

velocities i.e. primary angular velocity decreases. With increasing wall suction, primary micro-

rotation  1 i.e. gyratory motion (spin) of micro-elements is damped significantly whereas 

secondary angular velocity is elevated markedly i.e. secondary gyratory motion (spin) of micro-

elements  2 is boosted. Further, it is also observed that fluid velocity and angular velocity is 

consistently lower for micropolar fluids  0 than for Newtonian fluids  0 . 

 

Figs. 22-23 depict the evolution in temperature   and concentrations   profiles with various 

suction parameter  S values. Stronger wall suction significantly diminishes both temperature and 

concentration distribution, although a greater spread in profiles is computed over the same 

variation in suction parameter for concentration. Both temperature and concentration reduced with 

enhanced wall suction. Therefore, a smooth convergence of profiles is achieved asymptotically in 

free stream. 

 

Figs. 24-27 present the variations in primary and secondary components of translational velocity 

and angular velocity with rotation parameter, R .The results show that primary velocity decreases 
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as rotation parameter decreases  R increases and conversely enhances the secondary velocity. A 

reverse phenomenon is observed in primary and secondary angular velocities i.e. primary angular 

velocity increases and secondary angular velocity decreases as R increases. The rotational 

parameter, R ,features in the so-called “cross flow terms” see (Greenspan, 1968), Rv in the 

primary momentum eqn. (17) and Ru in the secondary momentum eqn. (18). As R  increases the 

centrifugal force increases (faster angular velocity of rotation of the plate, ). The centrifugal 

effect influences each velocity field via the rotational body force term in the other velocity field 

equation. Although both terms are negative, only primary linear flow is decelerated and the 

compensation in momentum assists the secondary flow field.  The micropolar coupling terms in 

both linear momenta equations i.e.   





  221 z/u ,   






  221 z/v   and additionally the angular 

momentum coupling terms, viz.  z/ 
2

  and  z/ 
1

 ,enable the rotational body force 

effect to impart a considerable influence on the micro-rotation field components. The primary spin 

of micro-elements is effectively accelerated whereas the secondary spin is retarded. Gyration is 

therefore substantially modified by rotational (centrifugal) body force. A similar observation has 

been computed for rotating cone micropolar thermal convection by (Gorla and Takhar, 1994) 

although they only consider a single micro-rotation component in their analysis. 

 

Figure 28 illustrates the evolution in temperature profiles for different values of Prandtl number 

(Pr). The temperature decays quickly for large values of Prandtl number. The no-slip condition 

requires that the flow velocity at the surface of a solid object (i.e. barrier) is zero and that the fluid 

temperature is equal to the surface temperature. The thermal boundary layer thickness is similarly 

the distance from the body at which the temperature is 99% of the temperature found from an 

inviscid solution. The ratio of the two thicknesses is dictated by the Prandtl number. For Prandtl 

number of unity, both boundary layers are of the same However when Prandtl number exceeds 

unity, the thermal boundary layer is thinner than the velocity boundary layer. Generally, higher Pr 

fluids will have relatively low thermal conductivities which will suppress thermal conduction heat 

transfer from the wall and reduce thermal boundary layer thickness, resulting in lower micropolar 

fluid temperatures in the boundary layer regime. Smaller values of Pr are equivalent to increasing 

thermal conductivities, and therefore heat is able to diffuse away from the heated plate more 

rapidly than for higher values of Pr . Hence in the case of smaller Pr  the boundary layer is thicker 

and the rate of heat transfer to the wall is reduced. This has important implications in materials 

processing since by changing the Prandtl number (related to thermophysical properties of the 

liquid) the heat transfer characteristics can be dramatically modified. Faster cooling is achieved 

with denser micropolar liquids compared with lighter ones.  

Figure 29 depicts the impact of heat absorption (sink) parameter, Q, on temperature profiles. 

Generally, the presence of heat absorption (mimicking for example thermal sink zones in materials 

processing operations) has the tendency to reduce the fluid temperatures. The effect is most 

prominent at some distance from the wall (plate surface). The heat sink effect therefore works 

effectively in cooling the boundary layer regime and decreases thermal boundary layer thickness.  

 

Figs. 30 and 31 show concentration profiles for different values of Schmidt number Sc and 

chemical reaction parameter, Kr. Chosen values of Sc are 220.Sc  (hydrogen), 30.Sc 

(helium), 60.Sc  (water vapour) and 622.Sc  (propyl benzene) at 250c temperature and one 

atmosphere pressure. It is inferred that concentration profiles decrease at all locations with 
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increasing Sc, since smaller values of Sc are equivalent to increasing chemical molecular 

diffusivity. D quantifies the relative thickness of linear velocity (hydrodynamic) boundary layer 

and species (concentration) boundary layer. Evidently, Sc modifies significantly the concentration 

distribution throughout the regime. A similar trend is also seen in case of chemical reaction 

parameter Kr . Owing to consumption of the reactive species, the concentration magnitudes are 

suppressed rapidly as Kr increases. Thus, the diffusion rates can be tremendously altered by 

destructive first order homogenous chemical reaction which thins the concentration boundary layer 

thickness. 

 

6. CONCLUSIONS 

In this paper a numerical investigation has been carried out to examine primary and secondary 

flow in unsteady magnetohydrodynamic (MHD) free convective micropolar heat and mas transfer 

from a rotating oscillating porous plate in the presence of thermal radiation, heat sink and 

dissipation effects. The evolution of primary as well secondary translation velocities and 

microrotation velocity components, temperature and concentration profiles with selected 

parameters have been visualized and interpreted in detail. Validation of the finite element 

numerical solutions with several special analytical solution cases has been included. The important 

findings are summarized as below: 

 

• Primary translational (linear)flow is accelerated with increasing Eringen micropolar vortex 

viscosity (coupling) parameter, permeability parameter, thermal Grashof and species Grashof 

number whereas it is damped (decelerated) with increasing magnetic field parameter, wall 

suction parameter and rotation (centrifugal) parameter.  

• Secondary linear flow is accelerated with increasing magnetic field parameter, wall suction 

parameter and rotation parameter whereas it is decelerated with greater Eringen coupling 

parameter and permeability parameter. 

• Primary angular velocity (gyration component) increases with rotation parameter whereas the 

converse effect (deceleration) is induced with increasing Eringen coupling parameter, 

magnetic body force parameter, permeability parameter and wall suction. 

• Secondary angular velocity is depressed with increasing rotational parameter whereas it is 

accelerated with increasing Eringen coupling parameter, magnetic body force parameter, 

permeability parameter and wall suction. 

• The temperature of the micropolar fluid and thermal boundary layer thickness are both 

decreased with increasing conduction-radiation parameter, wall suction, Prandtl number and 

heat sink parameter whereas they are enhanced with increasing dissipation parameter (Eckert 

number). 

• Reactive solute concentration and concentration boundary layer thickness is suppressed with 

increasing wall suction, Schmidt number and first order chemical reaction parameter. 

 

The present finite element code demonstrates excellent convergence and accuracy features for 

unsteady micropolar multi-physical flows. It is presently being applied to extend the current study 

to consider alternative radiative transfer models e.g. P1 approximation, and the results of these 

efforts will be communicated imminently. 
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TABLES 

Table.1: Numerical values of  ,,,,v,u 21  for variations of mesh sizes 

Grid Size=0.01 

u  v  1  
2      

1.015 0 -0.55 0.55 1 1 

3.692615 -3.777113 -0.344104 0.344104 0.575667 0.418662 

5.645103 -5.549523 -0.189119 0.189120 0.292743 0.175343 

4.075523 -4.155844 -0.070451 0.070440 0.149121 0.075861 

2.606545 -2.630525 -0.035045 0.035045 0.063523 0.033802 

1.531605 -1.534532 -0.024623 0.024623 0.030118 0.015111 

0.909117 -0.921104 -0.020441 0.020441 0.012606 0.006854 

0.559544 -0.557105 -0.008171 0.008171 0.005211 0.002937 

0.252822 -0.251117 -0.005125 0.005135 0.002315 0.001311 

0.053531 -0.056608 -0.002644 0.002644 0.000917 0.000310 

Grid Size=0.001 

1.015 0 -0.55 0.55 1 1 

3.692405 -3.776982 -0.343823 0.343823 0.575532 0.418531 

5.644923 -5.549453 -0.188902 0.188902 0.292684 0.175264 

4.075389 -4.155689 -0.069839 0.069839 0.148898 0.075683 

2.606499 -2.630387 -0.034792 0.034792 0.063384 0.033745 

1.531485 -1.534412 -0.024565 0.024565 0.029771 0.015003 

0.908921 -0.920543 -0.019892 0.019892 0.012580 0.006678 

0.559388 -0.557011 -0.007893 0.007893 0.005115 0.002786 

0.252764 -0.251002 -0.005041 0.005041 0.002276 0.001188 

0.053411 -0.056522 -0.002580 0.002582 0.000874 0.000286 

Grid Size=0.001 

1.015 0 -0.55 0.55 1 1 

3.692201 -3.776772 -0.343645 0.343645 0.57539 0.418488 

5.643745 -5.549309 -0.188792 0.188792 0.292644 0.175198 

4.075221 -4.155566 -0.069691 0.069691 0.148093 0.075481 

2.606287 -2.630198 -0.034596 0.034596 0.063222 0.033594 

1.531299 -1.534229 -0.024387 0.024384 0.029759 0.014987 

0.908765 -0.920388 -0.019665 0.019662 0.012564 0.006586 

0.559198 -0.556762 -0.007700 0.007700 0.005000 0.002589 

0.252666 -0.250000 -0.005000 0.005000 0.002093 0.001000 

0.053299 -0.056379 -0.002559 0.002559 0.000868 0.000286 
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Table 2: Comparison of 
fC and wC when 00  Ec,F  

 Analytical results (Bakr, 2011) Present FEM results 

  rK  R  
S  

fC  wC  fC  
wC  

0.2 0.01 0.2 1.0 5.661 1.591 5.660881 1.590083 

0.4 0.01 0.2 1.0 6.078 1.133 6.078016 1.133432 

1.0 0.01 0.2 1.0 7.010 0.631 7.010023 0.631119 

0.2 0.5 0.2 1.0 5.634 1.153 5.634002 1.152577 

0.2 1.0 0.2 1.0 4.841 0.990 4.842012 0.990091 

0.2 0.01 0.4 1.0 3.917 1.274 3.917431 1.273590 

0.2 0.01 0.6 1.0 2.607 0.889 2.607218 0.890221 

0.2 0.01 0.2 1.5 6.564 3.346 6.564401 3.346333 

0.2 0.01 0.2 2.0 6.552 6.533 6.551669 6.533228 

 

Table 3: Comparison of 
yxyx Cw,Cw,Cf,Cf for Q , Gr , Gm when 0 rKEc  

 Analytical results [Bakr, 2013] Present FEM results 

Q  Gr  Gm  xCf  yCf  xCw  yCw  xCf  yCf  xCw  yCw  

0.5 10 4.0 2.373 -0.11 -0.015 -0.08 2.372902 -0.108910 -0.014881 -0.080013 

1.0 10 4.0 2.819 -0.123 -0.017 -0.947 2.820013 -0.123115 -0.017101 -0.946791 

0.5 5.0 4.0 0.881 0.078 -0.019 -0.605 0.880901 0.077890 -0.019016 -0.604610 

0.5 10 2.0 1.799 0.323 -0.020 -0.706 1.798817 0.322701 -0.020011 -0.706013 

 

Table 4: Comparison of 
yxyx Cw,Cw,Cf,Cf for M , K , Pr , Sc when 000  Krand,Ec,Q  

 Analytical results [Bakr, 2013] Present FEM results 

M
 K  Pr  Sc  xCf  yCf  xCw  yCw  xCf  yCf  xCw  yCw  

0.5 0.5 0.7 0.6 7.716 2.548 -0.047 -1.344 7.715994 2.548210 -0.047012 -1.344231 

1.0 0.5 0.7 0.6 6.846 2.086 -0.039 -1.249 6.846032 2.085709 -0.039034 -1.248871 

2.0 0.5 0.7 0.6 5.490 1.490 -0.031 -1.102 5.486109 1.490052 -0.030947 -1.102212 

0.5 1.0 0.7 0.6 10.25 4.421 -0.079 -1.623 10.250023 4.422301 -0.079231 -1.622651 

0.5 2.0 0.7 0.6 12.58 6.95 -0.123 -1.856 12.576051 6.950333 -0.123111 -1.857010 

0.5 0.5 1.0 0.6 7.457 2.427 -0.045 -1.315 7.457341 2.426978 -0.045063 -1.315230 

0.5 0.5 3.0 0.6 5.939 1.751 -0.037 -1.146 5.941220 1.751132 -0.036690 -1.146220 

2.0 0.5 0.7 1.0 5.302 1.424 -0.03 -1.081 5.301765 1.424441 -0.030036 -1.081003 
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Figure Captions 

Figure 1: Geometry and coordinate system for rotating magnetic micropolar transport from an 

oscillating plate in porous media 

Figure 2: Effect of Δ on primary velocity. 

Figure 3: Effect of Δ on secondary velocity. 

Figure 4: Effect of Δ on primary angular velocity. 

Figure 5. Effect of Δ on secondary angular velocity. 

Figure 6. Effect of F on Temperature. 

Figure 7. Effect of Ec on Temperature. 

Figure 8. Effect of Gr &Gm on primary velocity. 

Figure 9. Effect of Gr & Gm on secondary angular velocity. 

Figure 10. Effect of M on primary velocity. 

Figure 11. Effect of M on secondary velocity. 

Figure 12. Effect of M on primary angular velocity. 

Figure 13. Effect of M on secondary angular velocity. 

Figure 14. Effect of K on primary velocity. 

Figure 15. Effect of K on secondary velocity. 

Figure 16. Effect of K on primary angular velocity. 

Figure 17. Effect of K on secondary angular velocity. 

Figure 18. Effect of S on primary velocity. 

Figure 19. Effect of S on secondary velocity. 

Figure 20. Effect of S on primary angular velocity. 

Fig. 21. Effect of Son secondary angular velocity. 

Figure 22. Effect of S on temperature. 

Figure 23. Effect of S on concentration. 

Figure 24. Effect of R on primary velocity. 

Figure 25. Effect of R on secondary velocity. 

Figure 26. Effect of R on primary angular velocity. 

Figure 27. Effect of R on secondary angular velocity. 

Figure 28. Effect of Pr on temperature. 

Figure 29. Effect of Q on temperature. 

Figure 30. Effect of Sc on concentration. 

Figure 31. Effect of Kr on concentration. 
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Figure 2. Effect of Δ on primary velocity profiles. 

 

 
Figure 3. Effect of Δ on secondary velocity profiles. 
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Figure 4. Effect of Δ on primary angular velocity profiles. 

 

 
Figure 5. Effect of Δ on secondary angular velocity profiles. 

 
Figure 6. Effect of F on Temperature profiles. 
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Figure 7. Effect of Ec on Temperature profiles. 

 

 
     Figure 8. Effect of Gr & Gm on primary velocity profiles. 

 

 
 Figure 9. Effect of Gr & Gm on secondary angular velocity profiles. 
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 Figure 10. Effect of M on primary velocity profiles. 

 

 
Figure 11. Effect of M on secondary velocity profiles. 

 

 
    Figure 12. Effect of M on primary angular velocity profiles. 
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Figure 13. Effect of M on secondary angular velocity profiles. 

 

 
Figure 14. Effect of K on primary velocity profiles. 

 

 
Figure 15. Effect of K on secondary velocity profiles. 
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Figure 16. Effect of K on primary angular velocity profiles. 

 

 
Figure 17. Effect of K on secondary angular velocity profiles. 

 

 
Figure 18. Effect of S on primary velocity profiles. 
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Figure 19. Effect of S on secondary velocity profiles. 

 

 
Figure 20. Effect of S on primary angular velocity profiles. 

 

 
          Figure 21. Effect of S on secondary angular velocity profiles. 
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Figure 22. Effect of S on temperature profiles. 

 

 
Figure 23. Effect of S on concentration profiles. 

 
Figure 24. Effect of R on primary velocity profiles. 
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Figure 25. Effect of R on secondary velocity profiles. 

 

 
Figure 26. Effect of R on primary angular velocity profiles. 

 

 
Figure 27. Effect of R on secondary angular velocity profiles. 
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Figure 28. Effect of Pr on temperature profiles. 

 

 
Figure 29. Effect of Q on temperature profiles. 

 

 
Figure 30. Effect of Sc on concentration profiles. 
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Figure 31. Effect of Kr on concentration profiles. 

 

 


