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Abstract: G protein-coupled receptors (GPCRs) have been implicated in transmitting signals across
the extra- and intra-cellular compartments, thus allowing environmental stimuli to elicit critical
biological responses. As GPCRs can be activated by an extensive range of factors including hormones,
neurotransmitters, phospholipids and other stimuli, their involvement in a plethora of physiological
functions is not surprising. Aberrant GPCR signaling has been regarded as a major contributor
to diverse pathologic conditions, such as inflammatory, cardiovascular and neoplastic diseases.
In this regard, solid tumors have been demonstrated to activate an angiogenic program that relies on
GPCR action to support cancer growth and metastatic dissemination. Therefore, the manipulation of
aberrant GPCR signaling could represent a promising target in anticancer therapy. Here, we highlight
the GPCR-mediated angiogenic function focusing on the molecular mechanisms and transduction
effectors driving the patho-physiological vasculogenesis. Specifically, we describe evidence for the
role of heptahelic receptors and associated G proteins in promoting angiogenic responses in pathologic
conditions, especially tumor angiogenesis and progression. Likewise, we discuss opportunities to
manipulate aberrant GPCR-mediated angiogenic signaling for therapeutic benefit using innovative
GPCR-targeted and patient-tailored pharmacological strategies.

Keywords: GPCR; tumor angiogenesis; tumor microenvironment; VEGF; HIF-1; GPER; SDF-1;
sphingosine-1P

1. Introduction

Over the past decade, the discovery and study of G-protein coupled receptors (GPCRs) has
unveiled novel molecular mechanisms through which extracellular signals promote changes in cell
functions. Encoded by more than 900 genes in the human genome, GPCRs belong to one of the
largest families of membrane proteins involved in the detection of a wide panel of extracellular
stimuli, including photons and ions, as well as peptides, proteins, hormones and phospholipids [1,2].
Members belonging to the GPCR superfamily regulate a broad spectrum of physiological functions,
such as vision, smell, and taste, as well as neurological, cardiovascular, endocrine, and reproductive
functions [1–3].

GPCRs signal through their association with G-proteins, which are membrane bound
heterotrimers consisting of a guanine diphosphate (GDP)-bound α subunit with GTPase activity,
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and a Gβγ functional monomer [1–3]. Based on the sequence of the α subunit, G-proteins are defined
in four classes (Gαs, Gαq, Gαi, and Gα12), each coupling to more than one receptor subtypes, although
with different affinity [2]. GPCRs are classified based on their phylogenetic origin and sequence
homology (Figure 1).
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Figure 1. G-protein coupled receptors (GPCRs) classification. The International Union of Pharmacology
(IUPHAR) classification (left column) applies to both vertebrates and invertebrates (Class D and E are
unique to invertebrates). The GRAPH system (middle column) applies specifically to vertebrates.

Typically, upon ligand binding, the receptor undergoes a conformational change transmitted to
the heterotrimer, whose tri-dimensional rearrangement determines the exchange of GTP for GDP
on the α subunit and the dissociation of the Gβγ monomer. Overlapping with GTP recruitment,
the transition from “off” to “on” state allows the Gα and Gβγ subunit to interact with and
regulate the activity of a vast repertoire of transduction effectors, such as calcium, adenylyl
cyclase, phospholipase C, phosphodiesterases, and protein kinases [4,5]. These second messengers
activate additional intracellular pathways such as the mitogen-activated protein kinase (MAPK),
phosphoinositide-3 kinase (PI3K)-Akt, small GTP-binding proteins (Ras and Rho GTPases), which
ultimately engage transcription factors, leading to gene expression changes [5,6]. Additionally, many
seven trans-membrane receptors (7TMRs) are orphan GPCRs with unidentified ligands and potential
ligand-independent properties, suggesting that GPCR-mediated action may include unexpected
biological functions, conceivably unrelated with the classical paradigm of a signal conveyed through
the cell membrane [7]. In addition to their participation in an extraordinary number of physiological
processes, some of which yet to be defined, GPCRs are implicated in the onset and evolution of several
pathological conditions, including inflammatory and degenerative diseases, metabolic imbalances, and
cancer [8–11]. Not surprisingly, the manipulation of aberrant GPCR transduction pathways holds great
therapeutic potential [12]. Indeed, GPCR-targeting agents, totaling almost one third of all currently
marketed drugs, are excellent candidates for the treatment of a widespread array of diseases [12–14].
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For instance, GPCRs as drug targets to halt the anomalous formation of new blood vessels
may be a strategy to normalize the dysregulated vascularization, which distinguishes various
ischemic and inflammatory conditions and cancer [15]. Neoangiogenesis is an essential physiological
and developmental process tightly regulated by a highly coordinated balance between pro- and
anti-angiogenic factors. Alterations in this fine-tuned equilibrium could arguably lead to the increased
production of pro-angiogenic mediators and the loss of inhibitory factors, which ultimately drive an
aberrant vascularization [16–18]. For example, during cancer progression, an excessive vascular growth
with abnormal vessel remodeling and tortuosity is actively stimulated by the release in the tumor
microenvironment of angiogenic mediators such as vascular endothelial growth factor (VEGF) [19–21].

Several 7TMRs are reported to trigger VEGF release to boost the formation of new blood vessels,
particularly during cancer evolution toward an aggressive and metastatic cancer phenotype [22,23],
suggesting that GPCRs may serve as novel drug candidates in combination therapies aimed at
combatting tumor angiogenesis. In addition to their role in the production of angiogenic factors,
7TMRs also function as receptor for angiogenic ligands, directly mediating endothelial cell function.
Hence, GPCRs are regarded as potent regulators of blood vessel formation, in both developmental
and pathological angiogenesis. Based on these observations, a better understanding of the molecular
mechanisms orchestrated by GPCR signaling and driving the transition from a non-angiogenic to an
angiogenic phenotype may pave the way for the control of a plethora of pathologic states governed by
unbalanced angiogenesis, whose clinical management is not fully met.

Here, we review the angiogenic actions elicited by GPCRs and associated signaling partners in
physio-pathological conditions such as ischemic and inflammatory disease (Section 2, summarized
in Tables 1 and 2). In particular, we comprehensively report the most recent findings on the GPCRs
involved in vasculogenesis through the activation of developmental pathways, as well as on the most
clinically relevant GPCRs involved in the regulation of angiogenesis both in normal and pathological
conditions such as sphingosine 1P receptor (S1P1) and thrombin receptor (PAR1). Moreover, we
analyze the most recent data on the role of GPCRs in regulating tumor angiogenesis, particularly
focusing on the role of chemokine receptor CXCR4 and the G-protein estrogen receptor (GPER)
(Section 3, summarized in Table 3). Finally, we discuss the opportunities to translate these major
findings in a clinical setting.

Table 1. GPCRs involved in the regulation of vasculogenesis and angiogenesis in physiological
conditions.

GPCR Ligand Target Cell/Tissue Function References

Frizzled 4,
Frizzled 6,
Frizzled 8

Wnt7a, 7b
and Wnt2 ECs

BBB formation,
CNS angiogenesis,

hepatic angiogenesis
[24–26]

Frizzled 4,
Frizzled 7 Wnt3A, Norrin retinal ECs retinal angiogenesis, BBB

formation and maintenance [27,28]

PAR1 Thrombin
mouse ESCs,
human ECs,

Platelets
vasculogenesis, angiogenesis [29–36]

S1P1 S1P ECs, VSMCs vasculogenesis, angiogenesis [37–39]

GPR126 Unknown ECs proliferation, migration,
endothelial tube formation [40]

BBB, brain blood barrier; EC, endothelial cell; ESCs, embryonic stem cells; VSMC, vascular smooth muscle cell; S1P,
sphingosine-1-phosphate; GPR126, G protein receptor 126; PAR1, protease activated receptor 1.
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Table 2. GPCRs involved in the regulation of angiogenesis in pathological conditions.

GPCR Ligand Target Cell/Tissue Pathological Process Function References

S1P1 S1P

rat aortic smooth
muscle cells, rat

heart, renin
containing mast cells

myocardial ischemia protection against
ischemic injury [41–43]

S1P2 S1P mouse retinal ECs retinopathy
release of

inflammatory
mediators

[44]

PAR1 Thrombin mouse aorta, ECs acute myocardial
infarction angiogenesis [45,46]

PAR1 Thrombin human retinal
microvascular ECs

proliferative diabetic
retinopathy cell proliferation [47]

GPER Unknown rat heart

primary and
secondary

hypertension,
myocardial ischemia

regulation of
vascular tone and

blood pressure
[48–50]

Table 3. GPCRs involved in the regulation of tumor angiogenesis.

GPCR Ligand Target Cell/Tissue Function References

LPAR1–LPAR3 LPA ovarian cancer cells activation of HIF/VEGF
pathway [51]

AGTR1 ANGII TAMs, breast
cancer cells tumor angiogenesis, EMT [52,53]

S1P1 S1P TAMs lymphangiogenesis [54]

KSHV-GPCR Orphan ECs tumor angiogenesis [55,56]

CXCR4–7 CXCL12 cancer cells, CAFs release of angiogenic factors,
EPCs activation, angiogenesis [57–62]

CXCR5 CCL5 chondrosarcoma cells,
breast cancer cells

ECs differentiation, release of
angiogenic factor [63–65]

GPR124 Orphan ECs tumor angiogenesis [66]

ELDT1 Orphan tumor associated ECs tumor angiogenesis [67–69]

GPER Orphan,
17β-Estradiol

breast cancer cells,
CAFs

activation of HIF/VEGF
pathway, tumor angiogenesis [70–72]

TAM, tumor associate macrophages; CXCL12, C-X-C motif chemokine 12; CCL5, Chemokine C-C motif
ligand 5; CXCR, C-X-C motif chemokine; ELDT1, EGF, latrophilin and seven transmembrane domain
containing 1; KSHV-GPCR, Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor; AGTR1,
angiotensin II receptor type 1; LPAR, lysophosphatidic acid receptor; HIF/VEGF, hypoxia-inducible factor/vascular
endothelial growth factor; CAFs, cancer associated fibroblasts; EMT, epithelial mesenchymal transition; GPER, G
protein-estrogen receptor.

2. G Protein-Coupled Receptors (GPCRs) Involved in Early Vascular System Development and
Maintenance: The Road to Cell Fate Commitment through Lineage Restriction

The vascular system fulfils the requirements of oxygen and nutrients of the whole organism
and provides an efficient gateway for immune surveillance [17,18]. Thus, it is not surprising that
structural or functional vessel abnormalities may contribute to the development of several pathological
conditions. For instance, alterations in vessel maintenance play a causal role in the development
of myocardial infarction, stroke, neurodegenerative and metabolic disorders, whereas an excessive
vascular growth and permeability characterizes inflammatory conditions and malignant disease [17,18].
Hence, the identification of the multiple mechanisms orchestrating the complex process of blood vessel
formation is relevant to the management of several ailments.

Vasculogenesis is usually referred to as the formation of primitive blood vessels during the
early embryonic development [18]. It is a multifaceted process involving the in situ assembly
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of mesoderm-derived endothelial precursors (angioblasts) into a primitive vascular network [73].
In this context, several developmental signals have been considered as the main drivers of mesoderm
progressive restriction to the endothelial lineage, nonetheless ECs may also derive from hemangioblasts,
bipotential precursors that give rise to both hematopoietic and endothelial cells [74]. These initial
steps are followed by vessel sprouting, characterized by the recruitment of pericytes and vascular
smooth muscle cells that enwrap the primitive tubule of endothelial structures, giving rise to arteries
and veins [75,76]. This latter process of vessel splitting from pre-existing vessels is known as
angiogenesis, which actively participate to vascular maintenance both pre- and postnatally. Despite
the elevated angiogenic activity of the early developmental phases, in the adult, blood vessels sprout
new branches very rarely, mostly remaining in a quiescent state. Of note, certain angiogenic signals
may waken up and activate endothelial cells, toward a motile and invasive phenotype, with increased
protrudent filopodia [18]. In these conditions, tip cells and stalk cells start to organize new sprouts,
establish a lumen and build vessel loops. The process culminates with the formation of basement
membranes and the recruitment of mural cells, which stabilize the novel vessels into efficiently working
structures [77,78]. When the need for new blood vessel is met, proangiogenic signals are ablated and
quiescence is restored [77,78].

GPCRs participate in all the aforementioned steps involved in vasculogenesis and angiogenesis;
indeed, their expression has been detected in endothelial, vascular smooth, tip cells, as well as
in endothelial progenitors [79]. For instance, Wnt signaling has become increasingly recognized
for its role in developmental processes such as vascular differentiation, and has been shown to be
necessary for the differentiation of hepatic sinousoidal endothelial cells (HSECs) [24]. In addition,
the ligands Wnt7a and Wnt7b, derived from neural progenitors, have been demonstrated to
activate the Wnt/β-catenin signaling in ECs, leading to angiogenesis and blood–brain barrier (BBB)
formation [25,26,80]. Wnt-dependent angiogenic responses have also been observed in human foetal
aorta-derived CD133+ cells and correlated with tissue repair in a pre-clinical model of ischemic diabetic
ulcer [27]. Recently, a method for the production of human progenitor stem cells (HPSC)-derived
endothelial progenitors and ECs based on small-molecule activation of Wnt signaling has been
described, corroborating the involvement of this pathway in lineage restriction toward ECs, and
suggesting that the manipulation of Wnt/β-catenin signaling may serve as an effective in vitro method
for the generation of ECs to study vascular development and disease [28].

The Wnt receptors, Frizzled-4 and Frizzled-7, have been implicated in EC differentiation and
complete vascularization of the neural retina [81,82], while in human placenta, Frizzled-9 enriches
for mesenchymal stem cells (MSCs) with arteriogenic and angiogenic properties [83]. Evidence for
the importance of sonic hedgehog (Shh) pathway in ECs formation has been reported several times.
Indeed, this developmental pathway has been correlated with endothelial progenitors activation,
arterial gene expression, vessel sprouting, and adult hematopoietic stem cell (HSC) formation [84,85].
All these responses appear to be affected by age, as down-regulation of desert hedgehog (hh) and
smoothened (Smo) impairs hh signaling in aged mice, ultimately leading to inhibition of angiogenesis,
as demonstrated also using a Smo haplo-insufficiency mice model [86]. Interestingly, the integrated
connections between hh and other developmental and angiogenic cascades such as Notch and VEGF
has been shown to instruct ECs toward an arterial or a venous differentiation, whereas the interaction
between hh, Notch and Scl drives a lineage shift characterized by hematopoietic progenitor formation
and endothelial-to-hematopoietic transition [87,88]. Supporting these observations, in animal models
of brain ischemic injury and stroke, the pharmacological activation of the hh pathway has proven
therapeutic benefit by promoting tissue repair and angiogenic programs, associated with increased
functional recovery [89,90].

GPCRs other than the ones classically involved in self-renewal, quiescence and differentiation
have been implicated in the endothelial differentiation and in the hematopoietic process, which together
contribute to maintain homeostasis within the vascular system. For instance, a GPCR gene expression
screen performed in mouse embryonic stem cells (mESCs) has identified PAR1 as the crucial GPCR



Int. J. Mol. Sci. 2017, 18, 2713 6 of 27

involved in cell reprograming toward an endothelial phenotype [29]. Extending these observations,
regulation of lineage specification and homing, together with preservation of self-renewal capacity
and expansion of hematopoietic stem and progenitor cells (HSPCs) are regulated by several members
of the rhodopsin family, such as chemokine C-X-C motif receptor 4 (CXCR4), sphingosine-1-phosphate
receptor (S1PR1/EDG1), and prostaglandin receptor (EP2), and a member of the glutamate family
(calcium sensing receptor CaSR) [91–96]. Together, these data highlight the involvement of GPCRs in
the activation of the hematopoietic process, in the formation and maintenance of a proper vascular bed
and in cell reprograming toward endothelial lineage.

These observations suggest that the identification and manipulation of GPCR-mediated
developmental pathways may be an effective strategy in regulating the early stages of angiogenesis.
Based on this hypothesis, Kaur and co-workers [97] recently reported that GPCR expression is
heterogeneous but functionally patterned within the vascular system, with specific GPCR expression
clusters observed in pathological conditions [97]. More specifically, by using a microfluidic-based
single-cell GPCR expression analysis in both primary smooth muscle cells (SMCs) and endothelial
cells (ECs), the authors demonstrated that although the GPCR expression is heterogeneous in normal
conditions, several subpopulations expressing specific GPCRs patterns can be detected upon stressful
stimuli, such as inflammation, sepsis or atherosclerosis [97]. Furthermore, several GPCRs such as
Gpr39, Gprc5b, Gprc5c or Gpr124 were up-regulated during SMC dedifferentiation, suggesting that
the changes in GPCR repertoire might represent a crucial event in the transition from healthy to altered
vascular cells [97]. These observations clearly indicate that GPCRs other than the ones involved in the
regulation of developmental pathways may play a pivotal role not only in vasculogenesis, but also in
triggering new blood vessel formation in pathological conditions. In Sections 2.1 and 2.2, we describe
Shingosine 1P Receptors and Thrombin Receptors as examples of well-acknowledged GPCRs involved
in the regulation of physio-pathological angiogenesis.

2.1. Lysophospholipid Receptors: Angiogenic Actions Mediated by SPHINGOSINE 1P Receptors

Sphingosine-1-phosphate (S1P) belongs to the class of lysophospholipids with sphingoid
backbone, deriving from the metabolism of sphingomyelin by the spyngomielinase pathway [98,99].
S1P, which is generated by the ATP-dependent phosphorylation of sphingosine triggered by the
enzyme sphingosine kinase, is involved in the transmission of cell signals that regulate critical
biological responses, such as proliferation, cell motility, and apoptosis [100–103]. Although functioning
as an intracellular mediator, S1P can be released and exert its effects extracellularly, binding to
cell surface receptors [104]. Indeed, S1P is a bona-fide ligand for the G-protein coupled receptor
endothelial differentiation gene (Edg) family members, also known as S1P receptors [104,105]. The
Edg family comprises five receptors, S1P1 (Edg-1), S1P2 (Edg-5), S1P3 (Edg-3), S1P4 (Edg-6) and S1P5
(Edg-8), which can couple to different G proteins and activate several downstream signaling pathways,
including the ERK, JNK, small GTPases such as Rho and Rac, phospholipase C, adenylyl cyclase and
phosphatidilinositol 3 kinase (PI3K) [104,105]. S1P1 is considered an important mediator for vascular
maturation during embryonic development, as demonstrated by gene ablation in vivo [105,106].
In this respect, several vascular defects incompatible with life were detected in the early stage of
embryonic development in S1P knock-out mice, characterized by an altered migratory capability of
mural cells (VSMCs) and pericytes around the nascent vessels [37]. In vitro and in vivo studies have
provided evidence on the ability of S1P/S1P1 signaling to activate an angiogenic program in ECs,
by stimulating cell proliferation, migration, tube assembly and formation of cell junctions [107,108].
In addition to its remarkable ability in preserving endothelial function, S1P acts as a mitogen and
migratory factor on VSMCs [38,39], corroborating that S1P and its receptors play an integral role in
vessel maturation, development and repair. S1P/S1P1 signaling exerts a cardiovascular beneficial
action in diverse ischemic conditions, both during pre- and post-conditioning, although the protective
effects have been mainly attributed to the activation of salvage kinase pathways, the regulation of
mitochondrial dynamics and the inhibition of the RAS (renin-angiotensin system) signaling [41–43,109].
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Nonetheless, several reports have demonstrated that both endogenous and microparticles-delivered
S1P exerts beneficial actions linked to angiogenesis and blood stream recovery in animal models of
limb ischemia [110,111].

In addition, impairment of S1P-dependent angiogenic actions has been detected during
preeclampsia, a serious pregnancy disorder associated with maternal and foetal morbidity and
mortality [112]. Based on these observations, the administration of S1P1 agonists such as FTY720
and LASW1238 has been proven effective in mice and proposed as novel therapeutic strategy in the
clinical management of ischemic injury, although in humans the clinical use of FTY720 is complicated
by severe adverse side effects [43,109–113].

On the other hand, S1P has been reported to mediate detrimental actions attributable to the
release of pro-inflammatory mediators such as IL-17A in cerebral ischemia [114,115]. Likewise, the
activation of an S1P2-dependent inflammatory program has been regarded as one of the leading
route of pathologic neovascularization in mice retina [44]. Together, these findings suggest that
S1P signaling may differentially promote beneficial effects related to angiogenesis in pathological
conditions, depending on various factors such as tissue specificity and the GPCR subtype involved.

2.2. Thrombin Receptors

Thrombin is a serine protease that plays a key role in platelet aggregation and clot formation
by converting fibrinogen in fibrin, thus allowing tissue repair and wound healing [116]. In addition
to hemostasis, thrombin orchestrates several physio-pathological responses in the vascular system
such as angiogenesis and atherosclerosis, by stimulating platelets, ECs, and VSMCs [116,117]. These
cellular, non-hemostatic actions of thrombin are primarily mediated by its interaction with a family
of GPCRs named Protease-Activated Receptors (PARs), which are activated by proteolytic cleavage
and subsequent unmasking of a new tethered N-terminal residue [30,117]. This signaling mechanism,
unique within the GPCR superfamily, is shared among all four members of thrombin receptors
(PAR1-PAR4), which show differential agonist specificity and signaling properties. In fact, only
human PAR1, PAR3 and PAR4 can be activated by thrombin, while PAR2 is cleaved mainly by
trypsin and other coagulation factors [31]. The activation of PARs results in the engagement of a
wide-ranging network of signaling pathways, including G12/13, Gq and Gi/z proteins as well as
small G-proteins such as Rho. These signaling network are mainly involved in cytoskeletal remodeling
in platelets as well as migration and permeability of ECs [30–32]. Through the involvement of Gαq,
PARs can trigger phospholipase Cβ-dependent calcium mobilization and protein kinase C activation,
involved in granule secretion, platelet aggregation and transcriptional responses in ECs, while Gαi
signaling and Gβγ subunit are mainly responsible for the regulation of adenilate cyclase and PI3K
activity [32,118,119].

Beyond the regulation of vessel tone and permeability, PARs signaling in ECs plays a pivotal role
in the early stages of vasculogenesis. Indeed, ablating PAR-1 expression in ECs was sufficient to prevent
a proper vascular development and maturation in mouse embryos, while rescuing PAR-1 expression
reversed the vascular abnormalities [33]. Recently, Huang et al. demonstrated that PAR1 activation
stimulates platelets to selectively release diverse pro-angiogenic regulators, including VEGF, stromal
cell-derived factor 1α, and matrix metalloproteinases, which in turn trigger the angiogenic activity
of endothelial progenitor cells (EPCs) [34]. Likewise, in ECs thrombin has been shown to activate
HIF-1α/VEGF signaling, to increase the expression of VEGF receptors (VEGFRs), to promote the
secretion of angiopoietin-2 and to trigger cell proliferation and tube formation [35,36,120]. Next, using
the chick chorioallantoic model as a physiologically intact in vivo system, thrombin has been shown to
engage PAR1/MAPK/AKT transduction pathway to promote neoangiogenesis [121]. Interestingly,
the angiogenic effects of thrombin have been explored for their beneficial cardiovascular effects,
particularly in low oxygen conditions. For instance, systemic administration of the thrombin peptide
TP508 during chronic hypoxia and ischemia has been shown to potentiate the angiogenic response of
aortic endothelial cells to VEGF [45]. Corroborating these findings, thrombin triggered angiogenesis
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and cardiac recovery in a model of acute myocardial infarction [46]. Based on these findings, patients
affected by ischemic conditions might get benefit from the administration of thrombin or its derivatives,
which would stabilize the blood vessel network through PAR1 stimulation. On the other hand, aberrant
signaling through the thrombin/MMP1/PAR1 transduction pathway and its correlation with VEGF
expression has been detected in patients affected by proliferative diabetic retinopathy [47]. In addition,
in human retinal microvascular endothelial cells the stimulatory effects induced by thrombin and
MMP1 through VEGF were prevented using the PAR1 inhibitor vorapaxar [47]. These findings,
obtained using pre-clinical and animal models, point at the involvement of thrombin/PAR1 signaling
in the pathogenesis of retinal disease, particularly upon certain metabolic unbalances such as diabetes,
suggesting that targeting PAR1 may represent a novel and safe tool toward the eradication proliferative
diabetic retinopathy (PDR). In summary, these findings suggest that the manipulation of PAR signaling
holds promise for therapeutic benefit in certain inflammatory vascular conditions characterized by
ischemia, hypoxia, as well as hyperglycemia.

3. GPCR Signaling and Tumor Angiogenesis: An Interactive Loop Promoting
Disease Progression

Establishment of an amplified blood vessel network is an essential prerequisite for cancer growth
and progression, as tumor neo-vascularization provides cancer cells with adequate oxygen and nutrient
supply to satisfy the enhanced metabolic requirements of the neoplastic mass [122]. Multiple signaling
mediators contribute to the regulation of tumor angiogenesis, an intricate process that entails the
functional cooperation of cancer cells and several components of the microenvironment [123]. First, ECs
are activated toward a secretory phenotype characterized by the release of proteases, which promote
the degradation of the basement membrane, hence generating an interstitial space for the migration and
proliferation of ECs. Such biological responses precede the endothelial tube assembly, which represents
the main step toward the formation of new blood vessels [122,123]. Unlike normal blood vessels, tumor
vasculature is characterized by a disorganized labyrinth of maladapted and abundant vessels [122].
The impairment in vascular structure and function is evidenced by the establishment of tortuous blood
vessels, increased leakiness, permeability and extravasation. Altogether, these vascular abnormalities
contribute to intra-tumor hypoxia, which is considered a distinguishing feature of locally advanced
solid cancer. Low oxygen tension usually results from an imbalance between oxygen (O2) supply
and consumption [124]. Multiple biochemical and mechanical forces within the microenvironment
contribute to intra-tumor hypoxia, which is observed in cells distant more than 70–150 µM from a
perfused blood vessel. The rapid expansion of the tumor mass is mainly responsible for the increased
diffusion distance between nutritive blood vessels and the cells lying in the central regions of the
neoplastic formation. Furthermore, a reduced O2 transport capacity is due to the loss of red blood cells,
caused by extravasation and aggravated by several anti-cancer treatments [124]. To escape the hypoxic
hostile microenvironment, cancer cells activate a plethora of biological responses such as angiogenesis,
thus establishing a vicious circle in which tumor hypoxia triggers aberrant blood vessel formation
toward the development of malignant disease progression [124]. In accordance with this scheme, it
has been demonstrated that hypoxia, altering gene expression and/or regulating post-transcriptional
and post-translational events, generates relevant changes in the tumor cell proteome in order to
overcome the low oxygen stress [124,125]. To a large extent, quantitative proteomic analysis has
demonstrated that proteins involved in the activation of angiogenic programs are actively produced
in tumor cells exposed to hypoxia [126]. The vascular endothelial growth factor (VEGF) is the most
relevant pro-angiogenic factors in both physiological and pathological angiogenesis [126]. In cancer
cells, the regulation of VEGF expression is stimulated by the hypoxia inducible factor-1 (HIF-1),
a transcription factor that mediates cell adaptation to low oxygen conditions [127,128]. Indeed,
overexpression of HIF-1α/VEGF signaling is associated with increased vascular density, higher tumor
grade, therapeutic resistance and poor prognosis [126,129]. Due to its role in supporting angiogenesis,
the HIF-1α/VEGF signaling pathway is currently regarded as an outstanding pharmacological target
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to control aberrant vessel sprouting in cancer [130]. Diverse members of the GPCR superfamily
have been shown to mediate angiogenic signals in cancer, suggesting that the manipulation of GPCR
signaling may be included among the novel therapeutic strategies to halt angiogenesis in the tumor
microenvironment [131–133]. Several GPCR ligands and accessory proteins have been shown to
contribute to tumor vascularization, including lysophosphatidic acid (LPA), sphingosine 1P, thrombin,
angiotensin, prostaglandin, melatonin and diverse interleukin and chemokines [22,23], suggesting that
GPCR-mediated signaling may support vessel formation in diverse tumor types (Figure 2). For instance,
neuroblastoma cells engineered to express a constitutively active mutant of LPA receptor 1 (LPAR1)
showed an increased VEGF expression and ability to promote ECs migration respect to the normal
counterpart [134]. Additionally, both LPAR1 and LPAR3 have been implicated in multiple myeloma
vascularization [134], while LPAR1 has been shown to boost angiogenic response in pre-neoplastic
lesions, thus suggesting that the involvement of these receptors in the transition from dysplastic
to neoplastic formations is correlated with increased angiogenesis [135]. Supporting these findings,
Song and collaborators [51] found that, in ovarian cancer cells, LPA stimulates the HIF-1 independent
expression of VEGF, through a G12/13-Rho-Rock-c-myc mediated mechanism [51]. Likewise, a
pan-antagonist for 4 LPA, namely BrP-LPA, exhibited anti-growth and anti-angiogenic actions in a
lung cancer xenograft model [136].

Several mediators involved in vessel repair and vascular tone maintenance have been shown to
exert stimulatory actions in tumor development and progression, including Angiotensin II, which
signal through the Angiotensin II type 1 receptor (AGTR1) to trigger angiogenic actions [137]. By
using multiple independent breast cancer profiling studies, a MetaCOPA bioinformatics analysis has
allowed prioritizing AGTR1 as a second ranked meta-outlier, immediately after HER2neu, which was
identified as the most significant meta-outlier [137]. Indeed, overexpression of AGTR1 in breast cancer
cells has been shown to promote tumor angiogenesis and epithelial mesenchymal transition (EMT),
which together contribute to disease progression toward a malignant phenotype [52]. Extending
these observations to additional tumor types, a reduction in capillary density was observed in AGTR1
deficient mice engrafted with melanoma cells [53]. Furthermore, the ANGII/AGTR1 transduction
pathway was involved in the release of VEGF by tumor-associated macrophages, hence suggesting
that host AGTR1 signaling triggers new blood vessel formation by acting on tumor microenvironment
components [53]. While AGTR2 has been classically involved in antagonizing AGTR1-mediated
actions, a recent study has demonstrated that the dual targeting of AGTR1 and AGTR2 using losartan
and CGP42112A synergistically decreases cell survival and angiogenesis in epithelial ovarian cancer,
through the inhibition of PLC β3 phosphorylation and VEGF expression [138].

Compelling experimental evidence obtained in vitro as well as animal models has revealed the
role of sphingosine-1-phosphate (S1P) and its receptors (S1P1–S1P5) in generating a microenvironment
permissive to cancer growth and progression [139]. Likewise, tumor vasculature highly expresses the
S1P receptor type 1 (S1P1), and its ablation suppressed tumor angiogenesis and growth in vivo [139].
Accordingly, using as experimental system a mouse model of breast cancer, it was shown that deletion
of S1P1 in tumor-associated macrophages reduces angiogenesis and lung metastatic spread, by
inhibiting IL-1β signaling and inflammasome activation [54]. These observations suggest that the
angiogenic actions elicited by S1P/S1P1 signaling may involve the active contribution of tumor
microenvironment through the engagement of inflammatory cells and mediators. Spiegel and
collaborators [140–143] have uncovered the molecular underpinnings of S1P action in several
physio-pathological conditions, including cancer, thus helping to decipher S1P interaction with
estrogen signaling toward breast tumor angiogenesis and progression [140–143]. As an intriguing
outcome of these investigations, the S1P1 antagonist FTY720 has been shown to elicit strong
anti-angiogenic effects and to inhibit breast cancer growth both in vitro and in vivo [144–146].
Furthermore, a combination therapy based on the oral administration of both sunitinib and FTY720
has proven to be effective in reducing tumor growth and normalizing blood vessels in a syngeneic
breast cancer model [147].
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In addition, virally encoded GPCRs such as the Kaposi’s sarcoma-associated herpes virus G
protein-coupled receptor (KSHV-GPCR) exhibited angiogenic potential for its ability to induce the
HIF-α/VEGF axis as well as EC survival [55,56]. These reports emphasize the importance of virally
encoded GPCRs in promoting the survival of viral-infected cells and highlight the role of these
receptors in the development of certain viral-related neoplastic disease [55,56].
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3.1. Chemokine Receptors CXCR4 and CXCR5: A Signaling Hub in Tumor Angiogenesis

In humans, the family of chemokines includes 50 low molecular proteins with chemoattractant
function and cytokine nature and 20 trans-membrane receptors coupled to G-proteins [148]. Primarily
involved in leukocyte trafficking in homeostatic and pathologic conditions [148], chemokines and their
receptors may also contribute to oncogenesis, being implicated in most of the processes characterizing
the hallmarks of cancer [149]. Of note, chemokine signaling may serve as an efficient communication
system between cancer cells and components of the tumor microenvironment such as stromal, immune
and vascular cells. Indeed, chemokines and their receptors contribute to the multistep processes
required for the angiogenic switch, starting from the early stages of progenitors mobilization and
recruitment from bone marrow by SDF-1 (Stromal Derived Factor-1, also known as CXCL12), to the
transdifferentiation of CSCs to endothelial phenotypes by CCL20 [150–152]. Some chemokines promote
new blood vessel formation acting directly on ECs, as the CCR1-binding chemokines CCL15, CCL16
and CCL23 [153–155]. Nevertheless, many chemokines trigger angiogenesis by integrating paracrine
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signals within the tumor milieu [156]. For instance, CXCL17, CCL2 and CCL3 attract inflammatory
cells such as monocytes, neutrophils and macrophages, and then induce angiogenic factors such as
HIF-1α, VEGF and MMP-9 in the attracted cells [157–160]. As elevated levels of certain chemokines
are associated with the formation of anomalous blood vessel network, anticancer strategies targeting
chemokine signaling hold promise for the management of several malignancies characterized by
aberrant vascularization. In parallel, the characterization of the molecular mechanisms involved in
chemokine-dependent tumor angiogenesis is a topic under intense investigation, for its potential to
unveil novel pharmacological target in cancer. In this context, using osteosarcoma cells as experimental
model CCL3 was found to activate JNK, ERK and p38 and to trigger the down-regulation of miR-374b,
which in turn promoted the up-regulation of VEGF and the VEGF-dependent migration and tube
formation of EPCs [161]. Diverse microRNAs are involved in the up-regulation of VEGF levels
mediated by CCR5. First, by analyzing gene expression from chondrosarcoma patients, a positive
association was found between CCL5 and VEGF mRNA levels, whereas a negative correlation was
assessed between CCL5 and miRNA200b expression [162]. Next, the stimulation of chondrosarcoma
cells with CCL5 determined a PI3K-dependent down-regulation of miR-200b that resulted in increased
VEGF protein levels [162]. It has also been reported that the angiogenic actions elicited by CCL5 in
chondrosarcoma cells may rely on the down-regulation of miR-199a, which targets JAG-1 to up-regulate
VEGF signaling thereby inducing EC differentiation [63,64]. Altogether these studies suggest that
CCL5/CCR5 signaling regulates angiogenic responses in cancer by modulating certain miRNAs,
nevertheless the stimulatory actions mediated by CCR5 may also rely on the direct regulation of the
HIF-1α/VEGF transduction pathway [163]. Recently, it has also been established that the suppression
of cancer cell-produced CCL5 or host CCR5 could result in defective breast tumor vascularization
and growth [65]. For instance, the impairment in CCL5/CCR5 signaling abrogated angiogenesis
by targeting the interactions between tumor and ECs, rather than halting the bone marrow derived
activation of EPCs. These observations indicate that the abrogation of CCR5-mediated action may
block tumor vascularization by hijacking microenvironmental communications, rather than altering
EPC biology [65].

CXCL12 is a highly conserved chemokine that binds to CXCR4 as well as CXCR7 [164,165].
Experimental and clinical evidence have indicated that the CXCL12/CXCR4 axis promotes new
blood vessel formation in diverse types of malignancies, including breast, ovarian, prostate, hepatic,
gastric, colorectal cancer, and glioma [57–62,166]. Additionally, circulating CXCL12 levels have been
associated with tumor angiogenesis in patients affected by multiple myeloma [167]. The angiogenic
actions mediated by the CXCL12/CXCR4 transduction pathway in cancer may involve the activation
of EPCs, as well as the recruitment of additional pro-angiogenic molecules such as VEGF. For
instance, conditioned medium collected from osteosarcoma cells has been shown to promote the
CXCL12-mediated migration of CD34+ progenitors [168]. Moreover, in gliomas characterized by high
vasculogenic potential, the incorporation of EPCs into blood vessels was associated with CXCL12
secretion, whereas the CXCR4 antagonist AMD3100 abrogated the ability of CXCL12 to trigger EPC
incorporation into the tumor vasculature [169]. On the other hand, CXCR4 activation triggered
VEGF-dependent neoangiogenesis in glioma and breast cancer cells, suggesting that CXCL12 may
synergize with other pro-angiogenic factors to induce the formation of new blood vessels [170,171].
Likewise, CXCR4 expression was detected up-regulated upon hypoxia, which is one of the main
microenvironmental conditions involved in the activation of a compensatory angiogenic response in
cancer [172].

As most chemokines, CXCL12 and its receptor may serve as connecting bridges between cancer
and stromal cells, thus creating a permissive microenvironment for tumor growth and invasion. In this
regard, cancer associated fibroblasts (CAFs) co-implanted with breast cancer cells stimulated tumor
growth more efficiently than normal fibroblasts [173]. This effect has been at least in part attributed
to the ability of CAFs to trigger tumor angiogenesis through the recruitment of EPCs mediated by
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CXCL12 [173]. The interaction between CXCL12 secreted by CAFs and CXCR4 expressed in cancer
cells is also accountable for the direct growth effects elicited by activated stromal cells [173].

On the other hand, compelling experimental evidence suggest that CXCL12 from both epithelial
and stromal cells may play a crucial role in breast tumorigenesis. In this vein, Liu and coworkers
found drastic differences in the vascular content of mammary tumors induced by overexpression of
Wnt1 compared with mammary tumors induced by overexpression of Her2 [174]. The increased tumor
vascularization observed in MMTV-Wnt1 tumors and revealed by histological analysis was shown to
be correlated with higher expression levels of CXCL12, both in tumor myoepithelial and stromal cells.
In the same study, the administration of a CXCL12 neutralizing antibody was sufficient to inhibit the
growth of Wnt1- but not Her2-overexpressing tumors and this effect was correlated with decreased
infiltration of myeloid progenitor cells and ECs [174]. Based on these observations, anti-CXCL12
strategies may represent an innovative approach for targeting mammary tumors abundantly expressing
myoepithelial and stromal CXCL12 [174].

The role of CXCR4 signaling in regulating key aspects of tumor progression such as angiogenesis
has prompted the development of CXCR4 antagonists such as ADM3100, the first identified
potent and selective CXCR4 antagonist [175,176]. ADM3100 prevents endothelial sprouting from
human embryonic stem cells and efficiently antagonizes CXCL12-dependent angiogenic actions [177].
However, the administration of this drug in healthy volunteers has been shown to strongly increase
the number of circulating EPCs and circulating angiogenic cells (CACs) deriving from monocytes [178],
thus limiting the clinical use of ADM3100. Novel ligand-based approaches have led to the identification
of alternative CXCR4 antagonists, such as peptide R, Nef-M1 and CTCE-9908 which elicited
antiangiogenic activity in glioblastoma, breast, colon and prostate cancer [179–181].

3.2. Orphan GPCRs and Tumor Angiogenesis: The Case of GPER

To date, only 20% of the genes identified by the Human Genome Project as codifying for GPCRs
have been matched with an endogenous ligand [182]. Indeed, deorphanization represents a challenging
step toward the characterization of the physio-pathological functions of orphan 7TMRs [182]. Several
approaches have been undertaken to unravel the biological actions of orphan GPCRs, including the
phenotypical characterization after knocking-down or overexpressing the orphan protein, as well as the
development of synthetic surrogate ligands [183]. However, many ligand-independent functions have
been attributed to several orphan GPCRs, ranging from constitutive activity to hetero-dimerization
with other proteins [183]. Based on these observations, the term “true orphan” refers to orphans with
unknown ligands so far, while the term “conditional orphans” identifies GPCRs that can behave as
orphans/non-orphans depending on the presence/absence of the ligand [183].

Several GPCRs involved in the regulation of angiogenesis do not possess an annotated ligand,
nonetheless the contribution of these 7TMRs to vascularization is under the magnifying lens for the
potential therapeutic implications. For instance, the orphan receptor GPR126 has been shown to
participate in developmental and pathological angiogenesis by modulating VEGFR2 signaling [40].
In particular, among 100 orphan GPCRs screened, GPR126 expression was highly enriched in
VEGFR2-positive cells isolated from a mouse embryoid body, which represents a useful animal
model to study ESCs differentiation [40]. In the same study, GPR126 was found to regulate EC
proliferation, migration and tube formation, as well as to contribute to vascularization in response
to hypoxic stress [40]. The orphan GPR124 has also been implicated in new blood vessel formation,
particularly in the tumor microenvironment. For instance, GPR124 contributed to VEGF-induced
tumor vascularization by regulating cell-cell interaction, endothelial tube formation and permeability,
cell migration and invasion [66]. In vivo, GPR124 knock-down in ECs ablated angiogenesis and growth
in a mouse xenograft tumor model [66].

In an effort to discover a common angiogenic gene signature in human cancer, Masiero and
co-workers analyzed more than 1000 primary human tumor samples and identified those genes
whose expression jointly correlates with several well-known angiogenic genes in multiple cancer [67].
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Furthermore, the authors complemented their analysis by studying the modulation of the gene
signature in response to antiangiogenic treatments in preclinical models to identify novel potential
uncharacterized players [67]. This approach allowed them to determine that the endothelial
orphan 7TMR named ELDT-1 (Epidermal growth factor, latrophilin and seven-transmembrane
domain-containing 1) is significantly up-regulated across multiple cancer types and correlates with
tumor angiogenesis. In fact, ablation of ELDT-1 expression suppressed endothelial sprouting and
vessel formation, and halted ovarian, colorectal cancer and glioblastoma growth [67–69].

The last orphan GPCR with angiogenic properties described in this review is the G-protein
estrogen receptor (GPER), a member of the rhodopsin group of GPCRs [184,185]. GPER, also known
as GPR30, was first cloned nearly twenty years ago and subsequently characterized for its ability to
mediate estrogen action in several physio-pathological conditions [184–186]. GPER has been shown to
regulate relevant biological functions in the reproductive, skeletal and central nervous system and to
transduce signals involved in maintaining certain metabolic and immune responses [187–191].

Of note, GPER exerted cardiotropic actions and was implicated in the regulation of vascular
biology and tone [48,49,192]. For instance, GPER expression was found increased in animal models
of spontaneous and secondary hypertension, whereas the stimulation of GPER triggered beneficial
cardiovascular effects and lowered blood pressure [50,193,194]. The protective effects triggered by
GPER activation both in physiologic and pathologic conditions may mimic the beneficial actions of
estrogens both in the heart and in the vascular network [195,196], suggesting that the manipulation of
GPER transduction pathway could be considered in the clinical management of certain cardiovascular
disorders [197,198].

Indeed, among the multifaceted aspects involved in GPER signaling, the contribution of
this receptor to the mitogen actions elicited by estrogens in the development and progression of
estrogen-sensitive tumors is notable, as well as contributing to pharmacological resistance to tamoxifen
treatment [199]. As it concerns the molecular mechanisms of action, estrogenic GPER signaling
engages several rapid transduction cascades such as MAPKs and PI3K/AKT, which in turn activate
the intracellular transcriptional machinery, leading to stimulatory effects in cancer cells, as well as in
components of the tumor microenvironment such as Cancer Associated Fibroblasts (CAFs) [200,201].

Intriguingly, based on our studies, GPER was included among the hypoxia-regulated genes
within the breast tumor microenvironment [23,202]. In this regard, we provided evidence that a
ROS-triggered and HIF-1α-dependent up-regulation of GPER may contribute to the adaptive breast
cancer cell responses to low oxygen stress [23,202]. As hypoxia is mainly tackled by the generation
of new blood vessels, we have explored the possibility that GPER may serve as a mediator of tumor
angiogenesis. Hence, we have shown that a functional cooperation between HIF-1α and GPER
drives the expression of VEGF in response to hypoxia and the heavy metal copper, which triggers
biological actions as those observed in low oxygen conditions [70,71]. Furthermore, the engagement
of the HIF-1α/VEGF axis by estrogen- and endothelin-activated GPER signaling has been shown
to stimulate angiogenesis and tumor growth both in vitro and in vivo, as evidenced in breast and
hepatic cancer models as well as in CAFs [72,203]. The above findings have been supported by other
studies that correlate the expression of GPER with VEGF production and angiogenesis in neoplastic
and inflammatory conditions [204,205]. In addition, GPER signaling promoted VEGF-independent
blood vessel formation through diverse mechanisms, including the activation of the glycolytic enzyme
phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3), the up-regulation of acid ceramidase
expression, the increase of X-linked inhibitor of apoptosis protein (XIAP), and the regulation of
Na+/H+ exchanger-1 (NHE-1) activity [206–209]. In summary, these findings suggest that targeting
GPER signaling in the interactions between cancer, stromal and endothelial cells could represent a
novel anti-angiogenic strategy to halt aberrant vascularization in tumor patients.
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4. Concluding Remarks and Challenges Ahead

Totaling over 900 members, GPCRs represent the largest and most targeted receptor family
in the human proteome, with 25–30% of all drugs currently on the market having their effect
through 7TMRs [210–212]. Among the multifaceted actions, GPCRs are involved in the regulation of
vascularization and angiogenesis in the early stages of development as well as in tissue maturation and
healing. In this scenario, the dissection of GPCR pharmacology may improve the current knowledge on
the physio-pathological functions mediated by this heterogeneous class of receptors, and represents the
ultimate goal for controlling the formation of aberrant blood vessel network, which is a distinguishing
feature in the progression of inflammatory and ischemic diseases, as well as malignancies. Nevertheless,
the pharmacological manipulation of GPCR-dependent pathways encounters some limitations
due to the pleiotropic actions mediated by this broad class of membrane-embedded receptors.
In this regard, the future challenge in the development of GPCR-targeted therapies is mainly
represented by the identification of compounds with selective action and tailored action, to comply
with GPCR pharmacogenomic. Molecular modeling, X-ray crystallography, in silico screening,
protein bioengineering and new approaches aimed at dissecting the multi-dimensional features of
GPCRs, represent crucial tools to narrow the pharmaceutical pipeline of GPCR-targeting agents in a
clinical perspective.

It should be mentioned that many GPCR-targeting compounds are currently proposed for
the normalization of aberrant new blood vessel formation, in a large and heterogeneous range of
pathological conditions (Figure 3). For instance, the pharmacological manipulation of CXCR4 pathway
finds application in contrasting the detrimental effects of ischemic disease and myocardial infarction as
well as in management of rheumatoid arthritis and liver fibrosis [213,214]. In this scenario, it is worth
mentioning that several GPCR antagonists used to treat certain pathological states are now being
re-purposed for their antiangiogenic properties. Indeed, the PAR1 antagonist vorapaxar, a well-known
anti-platelet agent, has been proposed for the treatment of proliferative diabetic retinopathy (PDR) [47].
In addition, the Angiotensin II type 1 receptor antagonists (ARBs), used for the treatment of BP (blood
pressure) and as renal- and cardio-protective agents, are currently regarded as novel pharmacological
tools to normalize blood vessel network in cancer [52,53,138].

Representing the rate-limiting step in neoplastic growth and dissemination, tumor angiogenesis
is finely regulated and achieved through multiple mechanisms that may enroll GPCR-mediated action
as a pivotal molecular mechanism toward the acquisition of an aggressive phenotype [22]. In this
context, combining the classical chemotherapeutic anti-cancer treatments with anti-angiogenic agents
based on GPCR manipulation may represent an effective strategy for the eradication of neoplastic
disease. Using GPCRs as drug candidates to halt the angiogenic process may pave the way for
optimizing the current anti-angiogenic strategies, mainly based on disrupting VEGF/VEGFR2 axis.
Indeed, the existing gap between the pre-clinical effects of anti-VEGF drugs respect to those observed
in clinical models calls for further exploring how VEGF-targeting agents act in patients, in order to
propose novel routes toward more effective and tailored anti-angiogenic therapy. To date, the clinical
benefits derived from anti-VEGF therapy is limited by the activation of a plethora of compensatory
biological responses [215]. For instance, the inhibition of VEGF signaling has been shown to induce
the production of angiogenic chemokines and cytokines, including SDF-1 [216]. To overcome these
limitations, a CXCR4-targeted lipid-based nanoparticle formulation has been shown to represent an
effective approach for overcoming the evasion of anti-angiogenic therapy in hepatocellular carcinoma.
In particular, the use of nanoparticles simultaneously delivering CXCR4 antagonist ADM3100 and
siRNA sequences targeting the VEGF gene, has allowed to synergistically control tumor angiogenesis
and prevent local and distant tumor growth [217].

Nevertheless, the generation transient hypoxia in response to anti-VEGF treatment, may trigger
the mobilization of cancer stem cells (CSCs), thus limiting the clinical effectiveness of conventional
angiogenic-impairing agents [218–220].
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Figure 3. Schematic representation of the most relevant GPCRs, ligands, downstream pathways and
candidate drugs involved in the regulation of the angiogenic process. S1P1, sphingosine 1 phosphate
receptor 1; AGTR1, angiotensin II receptor type 1; GPER, G protein-estrogen receptor; EGFR, epidermal
growth factor receptor; CXCR4, C-X-C chemokine receptor type 4; PAR1, protease activated receptor
1; S1P, sphingosine 1 phosphate; AngII, angiotensin II; EGFR, epidermal growth factor; CXCL12,
C-X-C motif chemokine 12; GTP, guanosine triphosphate; PI3K, phosphoinositide 3-kinase; MAPK,
mitogen-activated protein kinase; HIF-1α, hypoxia inducible factor-1 α; STAT, signal transducer and
activator of transcription; FAK, focal adhesion kinase; EGR-1, early growth response protein 1; PIP2,
phosphatidylinositol 4,5-bisphosphate; PLC, phospholipase C; DAG, diacylglycerol; MMP, matrix
metalloproteinase; CDC42, cell division cycle 42; PAK, p21 activated kinase; RAC, ras-related c3
botulinum toxin substrate 1.

It is worth noting that the progression of certain metastatic diseases such as non-squamous
non-small cell lung cancer (NSCLC) and ovarian cancer can be efficiently controlled using conventional
anti-angiogenic agents, whereas such approach has consistently failed in impacting overall patient
survival in metastatic breast, pancreatic, prostate cancer and melanoma [221]. It is plausible that
relevant differences in tumor biology might be responsible for the different effects of classical
anti-angiogenic strategy. Nevertheless, a further characterization of the multiple players involved in
new blood vessel formation such as GPCRs may provide novel pharmacological targets to block the
malignant evolution of neoplastic disease across different tumor types.

In the context of these observations, the manipulation of GPCR signaling may be strategically
combined with classical anti-VEGF strategies to effectively halt the activation of angiogenic programs
and block tumor progression. Such combination strategy holds promise for great therapeutic impact
and deserves further consideration in order to improve the clinical management of cancer patients.
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Abbreviations

GPCRs G protein-Coupled Receptors
7TMRs 7 Transmembrane Receptors
GTP Guanosine 5′-Triphosphate
VEGF Vascular Endothelial Growth Factor
HIF-1 Hypoxia Inducible Factor 1
SDF-1 Stromal Derived Factor-1
S1P Sphingosine 1-Phosphate

ELDT1
Epidermal Growth Factor, Latrophilin and Seven
Transmembrane Domain-Containing Protein-1

GPER G Protein Estrogen Receptor
PARs Protease-Activated Receptors
LPARs Lysophosphatidic Acid Receptors
AGTR Angiotensin Receptor
VEGFR2 Vascular Endothelial Growth Factor Receptor 2
ROS Reactive Oxygen Species
ECs Endothelial Cells
EPCs Endothelial Progenitor Cells
VSMCs Vascular Smooth Muscle Cells
CAFs Cancer Associated Fibroblasts
TAMs Tumor Associated Macrophages
BBB Blood–Brain Barrier
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