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Abstract 

Background: Breast cancer is the most prevalent cancer in women in most countries of the world. Many computer-

aided diagnostic methods have been proposed, but there are few studies on quantitative discovery of probabilistic 

dependencies among breast cancer data features and identification of the contribution of each feature to breast 

cancer diagnosis.  

Methods: This study aims to fill this void by utilizing a Bayesian network (BN) modelling approach. A K2 

learning algorithm and statistical computation methods are used to construct BN structure and assess the obtained 

BN model. The data used in this study were collected from a clinical ultrasound dataset derived from a Chinese 

local hospital and a fine-needle aspiration cytology (FNAC) dataset from UCI machine learning repository.  

Results: Our study suggested that, in terms of ultrasound data, cell shape is the most significant feature for breast 

cancer diagnosis, and the resistance index presents a strong probabilistic dependency on blood signals. With respect 

to FNAC data, bare nuclei are the most important discriminating feature of malignant and benign breast tumours, 

and uniformity of both cell size and cell shape are tightly interdependent.  

Contributions: The BN modelling approach can support clinicians in making diagnostic decisions based on the 

significant features identified by the model, especially when some other features are missing for specific patients. 

The approach is also applicable to other healthcare data analytics and data modelling for disease diagnosis. 
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1. Introduction

Breast cancer is the most prevalent cancer in women around the world. It has been reported that 

approximately 1.3 million women worldwide have been diagnosed with breast cancer since 2011, 

and approximately 465,000 women die from breast cancer each year [1]. In China, 214,360 women 

had died from breast cancer by 2008. It has been estimated that the number of Chinese women with 

breast cancer will reach 2.5 million by 2021 [2]. According to a report published by the Chinese 

National Cancer Centre in 2017, breast cancer is the most common cancer in Chinese women. 

Following lung, stomach, liver, oesophageal and colorectal cancers, breast cancer is the sixth largest 

killer in small- and medium-sized cities, with a mortality rate of 8.44% and 9.59%, respectively, 

while the mortality rate from breast cancer in large-sized cities is 12.78%, making it the fifth most 

common cause of death among all cancer types in Chinese women [3]. Due to the rapid increase in 

the number of breast cancer patients, early identification of women at risk of developing breast 

cancer is currently an international priority [4].  

In order to improve diagnostic accuracy and help domain experts to make more effective decisions, 

many computer-aided diagnosis (CAD) systems have been developed [5]-[7]. They provide new 

computational algorithms combined with domain knowledge to support clinical diagnosis. Zeng et al. 

[8] proposed different nonlinear state-space models for lateral flow immunoassay, which have been 

commonly used in clinical diagnosis. In clinical medicine, breast cancer could also be diagnosed via 

several different techniques, such as ultrasound, fine-needle aspiration cytology (FNAC) and 

magnetic resonance imaging (MRI) scanning. 

Other CAD algorithms in [12] were also proposed to detect breast cancer. For example, Eltoukhy 

et al. [12] proposed a feature extraction method based on a statistical t-test for breast cancer 

diagnosis from a digital mammogram. They used wavelet and curvelet methods to transform digital 
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mammography data into vector coefficients and then employed a support vector machine (SVM) 

algorithm for breast cancer diagnosis. As a result, the highest diagnostic accuracy based on wavelet 

and curvelet coefficients was 96.56% with 1238 features and 97.30% with 5663 features [12]. 

As a well-established probabilistic classifier, Bayesian network (BN) analysis has been used 

widely for data analytics and data modelling in many healthcare area, such as psychotic depression 

[15], Alzheimer’s disease [16], heart disease [17] and social anxiety [18] as well as breast cancer. 

Wang et al. [19] proposed a three-layer BN for earlier diagnosis of breast cancer. They assessed the 

performance of the BNs constructed based on non-imaging features, imaging features and both. They 

found that the BN built on both imaging and non-imaging features performed well and that imaging 

features dominated BN performance. In 2007, Nicandro et al. [20] evaluated the performances of 

seven BN classifiers (i.e. Naïve Bayes classifier, Bayes-N, MP-Bayes, Greedy, MP-Bayes + Greedy, 

PC which is a procedure contained the Tetrad, and a CBL2 algorithm in Power Constructor, which is 

a software package containing CBL1 and CBL2 algorithms) for breast cancer diagnosis based on 

fine-needle aspiration from a breast lesion collected by a single observer and multiple observers. 

They found that the classifiers learnt from different data performed differently, which indicated that 

the observations would impact the breast cancer diagnostic result. Furthermore, in 2009 [21], 

Nicandro and his team made use of two decision trees and four different BNs for breast cancer 

diagnosis. Their study discovered interobserver variability in breast cancer cytodiagnosis, indicating 

that different observers would focus on different perspectives while making a diagnostic decision. 

Kalet et al. [22] designed a Bayesian model to detect a misdiagnosis made at the initial diagnostic 

stage of a disease such as lung, brain or female breast cancer. The BN model they designed produced 

a better AUC (0.98) than a decision made by clinical experts (0.90). 

Additionally, BN was also used in other studies of breast cancer, such as risk factor estimation 

[23], and causal interaction detection [24]. Nicandro et al. [25] employed a score-based BN approach 

to estimate the power of thermography for breast cancer diagnosis. The BNs were learned using 
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Naïve Bayes, hill-climber and repeated hill-climber algorithms with a minimum description length 

(MDL) metric. The BN learned by a repeated hill-climber algorithm provided the best accuracy for 

both cancer and non-cancer diagnosis (75.50 ± 6.99%) and sensitivity of cancer diagnosis (94%). 

Furthermore, their obtained BN identified five important features for breast cancer diagnosis: 1C 

(hottest point in only one breast), f unique (total number of hottest points), thermovascular network 

(number of veins with the highest temperature), curve pattern and asymmetry (temperature 

difference between the right and left breasts). 

Although a BN modelling approach has been used for breast cancer diagnosis, a report on 

quantitative analysis among different breast cancer features, which is critically important for clinical 

decision making, is lacking. As a result, some researchers might ignore the relationships between 

different features, which may lead to a high misdiagnosis rate [19][26]. A clearly explained BN in a 

medical area can increase the understanding of disease pathology and provide valuable decision-

making assistance to domain experts. This paper employed a BN modelling approach to discover the 

probabilistic relationships between different data features of breast cancer. We also analysed the 

contribution of each feature to breast cancer diagnosis. The data were focused on ultrasound and 

FNAC examinations obtained from The First Affiliated Hospital of Fujian Medical University, China 

and the Breast Cancer Wisconsin Dataset (BCWD) of the UCI machine learning repository [27]. 

BN modelling can be deconstructed into two sub-processes: structure learning and parameter 

learning. In this study, a K2 learning algorithm [28] with an MDL score metric was used to learn the 

BN structure. Our reasons for using a K2 algorithm were the following: 1) K2 is the most commonly 

used algorithm for BN structure learning [29], 2) K2 is relatively easy to implement [29], 3) K2 only 

needs to consider a subset of a directed acyclic graph (DAG) and can quickly find the variable with 

the local maximal score [30] and 4) a K2 algorithm makes good use of experts’ knowledge to learn 

the BN structure.  
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The contributions of this study are 1) we discovered the most important features which can 

provide uninitiated observers and doctors objective and quantitative guidance to focus on specific 

features for early breast cancer diagnosis. 2) We analysed the probabilistic dependencies among 

different data features and identified the strength of the dependency, which can assist the domain 

experts in making a quantitatively accurate diagnosis, even using fewer available features. A focus 

on different features by different observers [21] may cause them to miss some important features, 

which can significantly influence diagnostic results. The above two contributions are helpful in 

decreasing the misdiagnosis rate. 3) Our study showed a potential translational application of the BN 

modelling approach to the breast cancer care pathway. 

The remainder of this paper is organized as follows. Section 2 provides the basic theory of BN in 

detail, as well as a brief introduction about the technique of BN visualization. Section 3 presents the 

experimental results based on two real-world datasets. Section 4 discusses the results and evaluates 

the BN modelling approach in comparison with other methods. Finally, Section 5 concludes this 

paper and discusses potential extensions of the method in future work. 

2. Methods and materials

Numerous approaches have been developed to support breast cancer diagnosis. BN analysis has 

been used widely to improve diagnostic accuracy and to discover probabilistic relationships among 

features and the influence of joint probability distribution inference. 

2.1 Bayesian network 

A BN represents a domain which explicitly provides a set of variables belonging to a specific 

domain and visualizes the relationships between the variables [31]. It can successfully represent 

uncertain knowledge in various fields [30]. A BN is usually represented using a DAG, ( , )DAG V E= , 

where V denotes a set of nodes made up by a set of variables, and E denotes a set of edges between 

the nodes in V. No cycles are present in the DAG [32]. Each edge is directly linked from one node to 
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another, and it indicates that the corresponding two nodes are mutually dependent. Otherwise, nodes 

are independent if there is no link between them. 

Consider a given dataset D containing a set of variables 1 2{ , ,..., }nX X X X= , the joint probability

distribution on X, 1( ,..., )np X X  , is defined as 

1
1

( ,..., ) ( | )
n

n i i
i

p X X p X π
=

= ∏ (1) 

where iπ is the set of parents ofiX . 

2.1.1 Structure learning 

BN modelling process contains structure learning and parameter learning. Structure learning aims 

at identifying the topology of the network in order to display the relationships among the nodes. 

Parameter learning quantitatively finds how a node relates to its parent nodes [33]. BN structure 

learning methods are normally classified into search-and-score-, constraint- and dynamic 

programming-based categories [30]. Compared with the other two categories, the search-and-score-

based category is suitable for large data sets in the whole feature space to assist in finding an exact 

structural topology [30]. As the name implies, it needs a search strategy and a score metric [33]. 

The K2 learning algorithm [28] is one of the most commonly used search strategies. It starts with a 

set of ordering nodes, and each node initially has no parents. It then, according to a certain order, 

iteratively adds the parent nodes for the node of interest, i.e. if iX  is preceded by jX  ( i j≠ ), the 

edge from jX  to iX  is not allowed. Assume there is a set of ordering nodes, 1 2{ , ,..., }nX X X X= , 

and each node has ir  states. iπ  is initialized with empty at the beginning. The function ( )ipred X

represents a set of nodes preceding iX in the X. The K2 learning algorithm will add the node mX  of 

( )ipred X  into iπ  when mX  makes the score newf  larger than the old scoreoldf . The formula of the 

scoring functionf  is given by equation (2) [28]. 
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where iq is the number of all possible values ofiπ ; ijkN  is the number of cases in the given dataset in 

which the node iX  is in the kth state, and its parent iπ  is in the jth state; and
1

ir

ij ijk
k

N N
=

=∑ .

2.1.2 Parameter learning 

The parameters of BN are denoted asijkθ , which is the conditional probability distribution of node 

iX  when it takes the kth value and its iπ  takes the jth value, i.e. 

( | )ijk i k ip X x jθ π= = = (3)

This learning process is implemented by expectation-maximization (EM) algorithm [34]. 

2.1.3 Strength of influence 

BN structures the probabilistic dependency between different nodes, which can be explained in 

different ways [35]. Koiter [36] proposed a comprehensive technique to visualize the inference in a 

BN in order to clearly understand the constructed BN. The technique can show the strength of the 

influence between two directly linked nodes by automatically adjusting the thickness of the 

corresponding arcs. Koiter made use of a dynamic model to show this influence without considering 

the direction of the arc in a BN. The proposed dynamic model is illustrated in Fig.1, where each node 

represents a variable. The red crossed sign denotes the node as a target node, and the green question 

mark means that the BN has not yet been updated. Four possible cases in Fig.1 are as follows: (1) an 

arc from a target node A to a non-target node B, e.g. the influence B-to-A (Fig.1 (a)); (2) an arc from 

a non-target node A to a target node B, e.g. the influence A-to-B (Fig.1 (b)); (3) an arc between two 

target nodes (Fig.1 (c)) and (4) an arc between two non-target nodes (Fig.1 (d)). Both cases (3) and 

(4) illustrate the influences in both direction, e.g. the influence A-to-B and B-to-A. 

The strength of the influence (SI) between nodes is determined by the mean distance between 

different posterior probability distributions [36], i.e. 
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where n is the number of states about a node. A and B are the directly linked nodes. ( )P A  is the a 

priori probability of A, and ( | )iP B A a=  is the posterior probability of B, given a certain state of A. 

D is the distance function between these two probability distributions. 

2.2 Materials 

We applied a BN modelling approach combined with expert knowledge to analyse the 

probabilistic relationships among data features with respect to ultrasound and FNAC examinations 

for breast cancer diagnosis. 

2.2.1 Clinical ultrasound dataset 

We collected a total of 1993 complete data samples from clinical ultrasonic examination in The 

First Affiliated Hospital of Fujian Medical University, China. The data are composed of 1494 benign 

(non-cancerous) and 499 malignant (cancerous) samples. Each sample contains five ultrasonic 

features of the breast tumour: shape (SH), resistances index (RI), calcification (CA), blood signal 

(BS) and the diameter-to-width ratio (DW). 

The feature SH is either regular or irregular and was labelled as either 0 or 1, respectively. RI has 

three categories: none, less than 0.7 and greater than or equal to 0.7, labelled as 0, 1 and 2, 

respectively. Therefore 0.7 is an important cut-off point to distinguish between benign and malignant 

tumours in clinics. The feature CA contains no calcification, micro-calcification and macro-

calcification. In our experiment, each CA category was labelled with 0, 1 and 2, respectively. Feature 

BS has two categories, i.e. no and yes, labelled with 0 and 1, which respectively indicates that a 

blood signal in the breast tumour is absent or present. In clinics, the BS in a malignant tumour is 

richer than that in a benign tumour. The two categories of the feature DW were labelled as 0 (the 

tumour’s diameter is greater than its width) and 1 (the tumour’s width is greater than or equal to its 

0

1
( ( ), ( | ))

n

i
i

SI D P A P B A a
n =

= =∑   (4) 
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diameter). However, our study excluded the feature DW because 1305 out of 1993 DW values were 

missing. The ultrasound data are described in Table 1. 

2.2.2 FNAC examination dataset 

The BCWD of the UCI machine learning repository contains a total of 683 complete FNAC data 

samples (444 benign and 239 malignant). The nine scored cytological features are bare nuclei 

(BANU), uniformity of cell size (UCSI), single epithelial cell size (SECS), uniformity of cell shape 

(UCSH), normal nucleoli (NN), marginal adhesion (MA), bland chromatin (BC), clump thickness 

(CT) and mitosis (MITO). All these features were computed from a digital image of a breast tumour 

FNAC examination, and they could be used to describe the characteristics of the cell nuclei shown in 

the image. Each feature was scored using an integer value ranging from 1 to 10, where 1 represented 

the most benign characteristic, and 10 represented the most malignant characteristic. According to 

[27], each sample was classified into either the benign or the malignant diagnostic category, labelled 

as 0 or 1, respectively. The FNAC data description are detailed in Table 1. 

2.3 Data pre-processing 

As BN structure learning is based on discretized data, we discretized the ultrasound data features 

according to their corresponding definitions, while each FNAC feature was discretized into two 

categories according to [37], [38] (see Table 1). We then applied an information gain algorithm [39] 

to rank each feature’s relevance to the diagnostic result (i.e. benign or malignant). The obtained 

information gain score (IGs) of each feature is listed in descending order in the last column of Table 

1. Finally, a K2 learning algorithm was applied to learn the BN structure of the given datasets with

IGs-ordered features. All experiments were carried out on a PC using Weka [40] and GeNIe [41] 

software. 
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3. Results

We randomly split both datasets into 10 folds for cross validation. Each fold of the ultrasound 

dataset contained 1000 training data points (750 benign samples and 250 malignant samples) and 993 

testing data points (744 benign samples and 249 malignant samples). For FNAC data, each fold 

contained 355 training data points (230 benign samples and 125 malignant samples) and 328 testing 

data points (214 benign samples and 114 malignant samples). After 10-fold cross validation, the 

obtained BNs were visualized and are shown in Fig.2, where the rectangular boxes stand for feature 

nodes. In each box, the feature’s name is labelled in the upper cell, the categories of each discretized 

feature and the corresponding probability distributions are shown in the lower left cell and the lower 

right cell intuitively shows the probabilities using different coloured bars. The arrows indicate the 

probabilistic influence between two features, and the thickness of the arrow represents the strength of 

the corresponding influence. The thicker the arrow, the stronger the influence. Since diagnosis in the 

obtained BN models (Fig.2) was set as a target while other features were non-target, the influences 

between diagnosis and other features should be in line with Fig.1 (a) case, while the influences 

among non-targets is in line with Fig.1 (d). 

The BN model in Fig.2 (a) depicts that all four ultrasound features have influences on diagnosis. 

The links between SH, RI and BS show their relatedness, while CA is independent of the other three. 

The BN model in Fig.2 (b) shows that all nine FNAC features have influences on diagnosis. 

Additionally, UCSI has a relationship with MA, UCSH, NN, CT, SECS and BANU, where NN is 

also related to MITO and BC. The strength of the influences of both ultrasound and FNAC features 

on diagnosis are shown in Fig.3. These could reflect each feature’s contribution to diagnosis. For 

example, Fig.3 (a) shows that SH makes the highest contribution to diagnosis (SI: 0.3201), followed 

by RI, CA and BS. Hence, SH would be the most important diagnostic marker. Fig.3 (b) shows the 

SI of BANU to be 0.379, which is the highest among those of FNAC features. This indicates that 

BANU would be the most valuable diagnostic feature. On the other hand, SECS presented the 
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weakest influence on diagnosis (SI: 0.165). In addition, we also investigated the extent of 

dependence between different features, the results of which are shown in Fig.4. In order to clearly 

illustrate the dependency, we used *1 (* denotes the feature’s name, such as SH1) to represent the 

impact producer. Fig.4 (a) shows that SH influences RI and BS with a strength of 0.1452 and 0.1465, 

respectively (see the diamond markers). The strengths of influence of RI and BS on SH are 0.2269 

and 0.1415, respectively (the square and triangle markers in the left column), while RI and BS are 

strongly dependent each other (SI: 0.4398 and 0.4246, see the highest triangle and square markers). 

Fig.4 (b) clearly shows the strength of the dependencies among FNAC features. The highest triangle 

and square markers indicate that UCSI and UCSH are strongly dependent each other. 

4. Discussion  

In order to verify and validate the obtained BNs, statistical analysis based on pure data was also 

carried out. Fig.5 shows the true-positive rate (TPr, malignant tumour is correctly classified as 

malignant), the true-negative rate (TNr, benign tumour is correctly classified as benign) and the 

overall correct diagnostic accuracy, using diamond, square and triangle markers, respectively, in 

terms of individual ultrasound features and their combinations.  

The result suggested that, considering individual features, SH presented the highest diagnostic 

accuracy and TNr and a higher TPr. Although BS had the highest TPr, its accuracy and TNr were 

very low. Therefore, the feature SH presented higher diagnostic performance than other features, 

while BS showed the lowest diagnostic accuracy. With respect to the combinations of any two 

features, SH combined with RI presented the highest TNr of 0.995, a high TPr of 0.886 and the 

highest accuracy of 0.967. In terms of combinations of any three features, the combination of SH, RI 

and CA contributed the highest TNr of 0.999, a high TPr of 0.9 and the highest malignant tumour 

diagnosis accuracy of 0.978. Furthermore, the combination of all features (i.e. SH + RI + BS + CA) 
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showed the highest performance in terms of TPr (0.934), TNr (0.999) and malignant tumour 

diagnosis accuracy (0.982). This is very consistent with the obtained BN shown in Fig.2 (a).  

Many CAD methods have been proposed to support breast cancer diagnosis. Some studies [19][26] 

assumed that the features of breast cancer data should be independent, i.e. the Naïve Bayes (NB) 

modelling method would be appropriate. In addition, the decision tree methods, such as ID3 and J48, 

are also commonly used [21], while the NBTree is a classifier of the combination of the Naïve Bayes 

and decision tree methods. In this paper, we evaluated the performance of these representative and 

frequently-used methods; we then compared them with that of a BN modelling approach based on 

ultrasound and FNAC datasets using 10-fold cross-validation in order to obtain a fair comparison of 

classification accuracy for breast cancer diagnosis. 

Table 2 lists the sensitivity (TPr) and specificity (TNr) of malignant tumour diagnosis, the overall 

correct classification accuracy for both benign and malignant classes and the AUC (area under the 

ROC curve) performance in terms of the five classifiers applied to the two given datasets. For the 

ultrasound dataset, J48 showed the highest performance in terms of sensitivity (0.9110), specificity 

(0.9100), accuracy (0.909) and AUC (0.941), followed by ID3 (sensitivity 0.8847, specificity 0.9083, 

accuracy 0.899 and AUC 0.9258) and lastly, the BN (sensitivity 0.8762, specificity 0.8978, accuracy 

0.898 and AUC 0.9298). The BN approach performed competitively with ID3, with an even higher 

AUC than that of ID3, while NB and NBTree presented relatively worse performance. Although J48 

performed the best, it could not successfully represent the probabilistic relationships among different 

data features (see the J48 tree constructed on ultrasound data in Fig. 6). Moreover, the diagnostic 

result in terms of the RI feature is unacceptable. According to the definition of RI, if the RI is less 

than 0.7, the tumour will normally be considered as a benign sign; otherwise, it will be considered as 

a malignant sign. However, the obtained J48 tree classified the tumour into the malignant category 

regardless of whether its RI was less than 0.7. We then reviewed our obtained BN model, and it 

could correctly diagnose a tumour with an RI less than 0.7 as benign. Apparently, this verified that 
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the BN model can provide more accurate and reasonable diagnosis than the J48 tree. For the FNAC 

dataset, the BN performed best in terms of sensitivity (0.9659) and specificity (0.9617) of malignant 

tumour diagnosis, correct classification accuracy of 0.965 and an AUC of 0.9887. 

Hence, the experimental results verified that the BN model is more reliable than other models with 

which it was compared to discover probabilistic dependencies among data features for breast cancer 

diagnosis and for diagnostic classification accuracy improvement. More importantly, with the BN 

modelling approach, FNAC examination showed more accurate performance in terms of malignant 

tumour diagnosis and the correct classification for both malignant and benign tumours than 

ultrasound examination. However, FNAC is more complex than ultrasound examination.  

To enhance the above analysis, we also calculated three classification errors, i.e. mean absolute 

error (MAE) [42], root mean square error (RMSE) [43] and relative absolute error (RAE) [43], of the 

five classifiers applied to the two datasets. Fig.7 (a) shows that BN constructed on the ultrasound 

dataset obtained the lowest MAE (0.143) and RAE (0.381). ID3 had the lowest RMSE (0.269), and 

BN had the second lowest RMSE (0.271). For the FNAC dataset, BN presented the lowest MAE 

(0.044), RMSE (0.179) and RAE (0.098) (see Fig.7 (b)). This further strengthens the competitiveness 

of the BN model in comparison with other representative models. 

Furthermore, the kappa coefficients (κ) of the five classification models based on ultrasound and 

FNAC datasets were calculated. The κ is an essential metric to evaluate the agreement between 

different classifiers [44]. The assessment of κ was based on Landis and Koch [45]. They considered 

0.21 ≤ κ ≤ 0.40 to indicate fair agreement, 0.41 ≤ κ ≤ 0.60 to indicate moderate agreement, 0.61 ≤ κ 

≤ 0.80 to indicate tentative agreement and 0.81 ≤ κ ≤ 1 to indicate definite agreement. Fig.8 showed 

that all five models constructed from ultrasound data were in stronger agreement with a random 

classifier, which indicated that they all performed well in breast cancer diagnosis. Especially, ID3 

showed the highest κ of 0.7434, followed by BN (κ = 0.7378). For FNAC, the five models worked 

perfectly, as the rankings (in descending order) of κ of BN, NB, NBTree, ID3 and J48 were 0.9222, 
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0.9114, 0.8941, 0.8881 and 0.8681, respectively. This is further evidence that FNAC would be a 

more effective examination than ultrasound for breast cancer diagnosis, which is also consistent with 

our above-mentioned experimental results shown in Table 2. 

5. Conclusions

This study employed a BN modelling approach to support decision making on whether a breast 

tumour is diagnosed as benign or malignant. A benign breast tumour can be cured by treatment, but a 

malignant tumour, which is one of the most terrible diseases, cannot be completely cured. Early 

diagnosis and treatment will improve patient survival. A BN modelling approach has been used 

widely for breast cancer diagnosis, but a report quantitatively analysing the contributions of different 

breast cancer features to diagnosis is lacking. Moreover, studies about probabilistic relationships 

between different breast tumour features based on ultrasound examination and FNAC examination, 

respectively, are few. In this paper, we attempted to meet these two challenges using a BN modelling 

approach. The BN model we obtained can support clinical decisions in an automated manner by 

using a set of machine learning algorithms. We used a clinical ultrasound dataset from a local 

hospital and an FNAC dataset from openly sourced UCI machine learning repository. Numeric data 

features were discretized in line with their descriptions. The BNs were structured according to a K2 

learning algorithm and validated by 10-fold cross validation.  

We carried out extensive experiments to evaluate the performance of the employed BN modelling 

approach and four commonly used methods, i.e. NB, ID3, J48 and NBTree, in terms of sensitivity 

and specificity of malignant tumour diagnosis, the overall correct classification accuracy, and the 

AUC metrics. It turned out that the BN model is competitive and promising for breast cancer 

diagnosis. The BN model can explicitly present the probabilistic relationships between directly 

linked data features. SI mirrors the importance of different features to diagnosis and the intensity of 

dependence between features. The most important ultrasound marker with respect to breast cancer 



15 

diagnosis would be SH, followed by RI and CA. CA is independent of other features, but it cannot be 

ignored when making a diagnostic decision. RI is tightly associated with BS. We can select RI as a 

measure for diagnosis, but cannot use BS alone due to its weak influence. In addition to the 

ultrasound features we investigated, other features from ultrasound scanning were accessible, such as 

echo halo and posterior shadowing; however, they fall into the area of medical image processing, 

which is outside the scope of this study. In terms of the FNAC dataset, the best-performing marker 

for breast cancer diagnosis is BANU, followed by UCSI, UCSH, NN, MITO and MA. Clinicians can 

refer to the importance ranking of these features when making diagnostic decisions. Due to the 

strong dependencies between UCSI and UCSH, a breast tumour will be considered benign if both the 

size and shape of the cells are uniform. Malignancy should be associated with a large number of 

BANU.  

This study can provide a valuable guide and assist observers in focusing on the most valuable 

features when collecting data; it can also indirectly aid breast cancer oncologists in making more 

accurate diagnoses when few features are known. Moreover, the BN-observed probabilistic 

relationships between different clinical features of breast tumours, identified from both ultrasound 

and FNAC examinations, can help oncologists to make more exact inferences, especially for specific 

patients with some missing feature values. In the meantime, the BN modelling approach can be 

extended to the diagnosis of other diseases in the healthcare area, which is our potential application.  

Although the BN modelling approach performed well in our study, it requires that the data used be 

discrete [46]. Therefore, we need to discretize continuous data prior to data modelling. However, it is 

difficult to determine a stable cut-point value for discretization of specific features, which may cause 

inflated performance estimates. Therefore, a regression method that suits continuous data will be 

investigated in our future work.  

Breast cancer contains many subtypes at the molecular level [47], and the treatments may differ 

between subtypes [49]. Our study so far focuses on two datasets collected from different countries, 
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and the data only reflect binary diagnostic categories, which might limit our research in its current 

stage. However, this study is attempting to fill a requirement using machine learning and data 

modelling approaches to discover holistic quantitative relationships among breast cancer data, which 

are few in the area. We are not searching for a new aetiology, and the experimental results from our 

study based on available data are consistent with the known aetiology of breast cancer. This can be 

used to validate our approach for use with potential new data types. Therefore, in next research stage, 

we will collect more data types and time-evolved data from our collaborative hospital to extend our 

study not only to breast cancer diagnosis but also to prognosis.  
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Fig.1. Four cases of a dynamic BN model. Each elliptic node stands for a variable. The red crossed 

sign denotes a target node, and the green question mark means that the BN has not been updated. (a) 

Influence from a target node A to a non-target node B. (b) Influence from a non-target node A to a 

target node B. (c) Influence between two target nodes A and B. (d) Influence between two non-target 

nodes A and B. 

Fig.2. Bayesian network models constructed based on ultrasound (a) and FNAC (b) datasets. 

Rectangular boxes stand for feature nodes. In each box, the feature’s name is labelled in the upper 

cell, the categories of each discretized feature and the corresponding probability distributions are 

shown in the lower left cell and the lower right cell intuitively shows the probabilities using different 

coloured bars. The red crossed sign marks the target node, and the green check mark means the BN 

has been updated. The arrows indicate the probabilistic dependencies between two features, and the 

thickness of the arrow represents the strength of the corresponding dependency.  
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Fig.3. Strength of the influences between diagnosis and each single feature in terms of ultrasound (a) 
and FNAC (b) datasets. 

Fig.4. Strength of the dependencies among different features in terms of ultrasound (a) and FNAC (b) 

datasets. *1 is used to represent the impact producer, e.g. SH1 in (a) where the diamond markers 

stand for the influences of shape (SH) on the resistance index (RI) and blood signal (BS). The square 

markers stand for the influences of RI on SH and BS. The triangle markers represent the influence of 

BS on SH and RI. Similar presentation in (b). 
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Fig.5. Performance of each individual feature and their combination in diagnosis based on the 

ultrasound dataset. The diamond, square and triangular markers denote the true-positive rate (TPr), 

true-negative rate (TNr) and the overall correct diagnostic accuracy. 

Fig.6. J48 tree structure constructed on ultrasound data. The elliptical nodes stand for ultrasonic 

features, the rectangle boxes represent the diagnostic results and the labels next to the links between 

upper and lower features are the states of each upper feature. 
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Fig.7. 10-fold cross validation based classification error rates of the five classifiers applied to both 

ultrasound (a) and FNAC (b) datasets. The blank bar is the mean absolute error (MAE), the bar filled 

with points is the root mean square error (RMSE) and the bar filled with oblique lines stands for the 

relative absolute error (RAE). 

 

 

Fig.8. Kappa coefficients (κ) about BN, NB, ID3, NBTree and J48 classifiers applied to both 

ultrasound and FNAC datasets. The blank bar represents the Bayesian network (BN) model, the bar 

with vertical lines represents the Naïve Bayes (NB) model, the bar with left slash lines represents 

ID3 algorithm model, the bar with diamond marks represents the NBTree algorithm and the bar with 

right slash lines represents the J48 algorithm. The height of the bars suggests the κ value. 
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Table 1. Data description for both ultrasound and fine needle aspiration cytology (FNAC) datasets. 

IGs: information gain scores. 

Datasets Features Values Labels IGs 

Ultrasound 

Shape (SH) 
Regular 
Irregular 

0 
1 0.343 

Resistance index (RI) 

None 
RI <0.7 
RI ≥0.7 

0 
1 
2 0.182 

Calcification (CA) 

None 
Micro 
Macro 

0 
1 
2 0.078 

Blood signal (BS) 
No 
Yes 

0 
1 0.065 

Diameter/width ratio (DW) 
DW <1 
DW ≥1 

0 
1 --- 

FNAC 

Bare Nuclei (BANU) 1 
2–10 

0 
1 

0.571 

Uniformity of Cell Size (UCSI) 1 
2–10 

0 
1 0.525 

Single Epithelial Cell Size (SECS) 1 
2–10 

0 
1 0.494 

Uniformity of Cell Shape (UCSH) 1 
2–10 

0 
1 

0.475 

Normal Nucleoli (NN) 1 
2–10 

0 
1 0.416 

Marginal Adhesion (MA) 1 
2–10 

0 
1 0.347 

Bland Chromatin (BC) 1 
2–10 

0 
1 0.323 

Clump Thickness (CT) 1 
2–10 

0 
1 0.291 

Mitosis (MITO) 1 
2–10 

0 
1 

0.199 
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Table 2. Classification performance of Naïve Bayes (NB), Bayesian network (BN), ID3, J48 and 

NBTree classifiers applied to both ultrasound and FNAC datasets. 

Dataset Model Sensitivity Specificity Accuracy AUC 

Ultrasound 

NB 0.8620 0.8927 0.891 0.8958 
BN 0.8762 0.8978 0.898 0.9298 
ID3 0.8847 0.9083 0.899 0.9258 
J48 0.9110 0.9100 0.909 0.9410 

NBTree 0.8768 0.8941 0.893 0.9076 

FNAC 

NB 0.9603 0.9497 0.960 0.9880 
BN 0.9649 0.9617 0.965 0.9887 
ID3 0.9450 0.9277 0.945 0.9484 
J48 0.9414 0.9393 0.941 0.9447 

NBTree 0.9519 0.8533 0.952 0.9822 
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Highlights 

� Using Bayesian network modelling approach, probabilistic dependencies among different data types

were discovered for decision support of breast cancer diagnosis.

� Diagnostic contributions of ultrasound and fine-needle aspiration cytology examinations were

quantitatively analyzed.

� Bayesian network modelling approach is competitive and promising for breast cancer early diagnosis

due to its high classification accuracy, high sensitivity, and high specificity, in comparison with other

representative used methods.




