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Abstract

Near-end speech enhancement works by modifying speech prior to presenta-
tion in a noisy environment, typically operating under a constraint of limited
or no increase in speech level. One issue is the extent to which near-end
enhancement techniques require detailed estimates of the masking environ-
ment to function effectively. The current study investigated speech modifi-
cation strategies based on reallocating energy statically across the spectrum
using masker-specific spectral weightings. Weighting patterns were learned
offline by maximising a glimpse-based objective intelligibility metric. Key-
word scores in sentences in the presence of stationary and fluctuating maskers
increased, in some cases by very substantial amounts, following the applica-
tion of masker- and SNR-specific spectral weighting. A second experiment
using generic masker-independent spectral weightings that boosted all fre-
quencies above 1 kHz also led to significant gains in most conditions. These
findings indicate that energy-neutral spectral weighting is a highly-effective
near-end speech enhancement approach that places minimal demands on de-
tailed masker estimation.
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1. Introduction1

Listening to speech in noisy or reverberant environments is both error-2

prone and effortful. Consequently, reducing the impact of noise via speech3

enhancement has been the goal of a significant research effort (e.g. Hu and4

Loizou, 2004; Paliwal and Alsteris, 2005; Martin, 2005; Chen et al., 2006;5

Srinivasan et al., 2007; Kim et al., 2009; Williamson et al., 2015). Tech-6

niques such as noise cancellation or suppression are widely used in human-7

machine interfaces, and in technologies such as mobile communication and8

noise-cancelling headphones. However, these approaches have limited use in9

applications such as public-address systems where listeners are not directly10

adjacent to the end-point of the transmission channel since, even when the11

speech signal is further enhanced at the listener’s end, the ensuing signal may12

suffer further contamination in a noisy listening environment.13

An alternative approach is to manipulate the speech signal itself, analo-14

gous to the way human talkers adjust their speaking style in noisy conditions15

(e.g. Lombard, 1911; Summers et al., 1988; Junqua et al., 1998; Boril and16

Pollak, 2005; Cooke and Lu, 2010). Many approaches have been proposed17

in the last decade to increase speech intelligibility under adverse conditions18

by altering the clean speech signal. The concept of near-end listening en-19

hancement, introduced by Sauert and Vary (2006), describes situations where20

the speech signal originating at the end of the transmission channel distant21

from the listener is modified to increase speech intelligibility for the near-end22

listener who is assumed to be located in a noisy environment. Techniques23

are generally based on raising the speech spectrum above the average noise24

spectrum using spectro-temporal manipulation of local signal-to-noise ratio25

(SNR). Bonardo and Zovato (2007) introduced a dynamic range controller to26

increase perceived loudness of synthetic speech while maintaining the origi-27

nal intensity range. Time-frequency dependent amplification was employed28

by Brouckxon et al. (2008) in formant-enhancement, leading to a decreased29

speech reception threshold in noise.30

The aforementioned studies show that increasing SNR via amplification31

provides a clear benefit for listeners. However, the use of excessive output32

levels may lead to listener discomfort and stress, and sustained exposure can33

cause damage to hearing (Knobel and Sanche, 2006) or equipment (Sabin34

and Schoenike, 1998). Methods proposed in more recent studies (e.g. Yoo35

et al., 2007; Sauert and Vary, 2009; Tang and Cooke, 2010, 2012; Taal et al.,36

2014; Schepker et al., 2015) operate under a constant input-output regime37
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for the speech signal, precluding any intelligibility gains due simply to an1

increase in overall SNR. Even under these constraints speech modification2

can be highly-effective. Extensive across-algorithm comparisons involving 263

speech modification techniques and using the same dataset for evaluation4

(Cooke et al., 2013a,b) have shown that state-of-the-art approaches are able5

to boost intelligibility by an amount equivalent to increasing the gain of6

unmodified speech by more than 5 dB.7

Objective intelligibility or quality metrics (OIMs) have been used in the8

design of near-end speech modification techniques based on optimising model9

parameters by maximising the objective metric. Sauert and Vary (2009) op-10

timised the Speech Intelligibility Index (ANSI S3.5-1997, 1997), while the11

algorithm proposed by Taal et al. (2014) transferred energy to consonant-12

vowel transients by optimising a perceptual distortion measure developed by13

Taal and Heusdens (2009), leading to significant listener gains. In our pre-14

vious work (Tang and Cooke, 2012), the glimpse proportion metric (Cooke,15

2006) was used as the OIM in closed-loop optimisation process to derive a16

series of masker- and level-dependent spectral weightings. Akin to band-17

importance functions (Studebaker et al., 1987; Stubebaker and Sherbecoe,18

1991; Bell et al., 1992) which quantify the contribution of each frequency re-19

gion to overall intelligibility, spectral weightings inject more energy in certain20

frequency bands at the expense of others, although unlike band-importance21

functions the weightings depend on the masker. Speech with optimised spec-22

tral weights was more intelligible than unmodified speech for both stationary23

and fluctuating maskers (Cooke et al., 2013b).24

The current study extends Tang and Cooke (2012) in three directions.25

First, the optimisation process makes use of a new glimpse-based OIM re-26

cently shown to outperform the original glimpse proportion measure. The27

success of an optimisation strategy is limited by the accuracy of the chosen28

OIM. In a recent comparison (Tang and Cooke, 2016) of glimpse-based op-29

timisation approaches alongside a state-of-the-art OIM (Christiansen et al.,30

2010), a metric based on high-energy glimpses led to the most accurate pre-31

dictions of listener intelligibility scores across nearly 400 conditions varying32

in speech style, masker type and SNR. The high-energy glimpsing metric,33

described in section 2, forms the basis for the optimisation approach of the34

current study.35

Second, the effect on intelligibility of both masker-dependent and masker-36

independent spectral weightings is evaluated, by questioning the assumption37

behind many of the aforementioned modification approaches (e.g. Sauert and38
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Vary, 2009; Tang and Cooke, 2010; Taal et al., 2014) that the background1

noise signal is known or capable of being accurately-estimated. In prac-2

tice, noise estimation can be problematic, particularly at short time delays.3

Consequently, algorithms have been proposed that operate independently4

of knowledge of the masker. Such algorithms typically boost those speech5

regions or properties believed to convey salient speech information. For ex-6

ample, Zorila et al. (2012) demonstrated that subjective intelligibility can7

benefit from enhancing formant information and emphasising voicing seg-8

ments while preserving high frequency components, with a further intelli-9

gibility boost produced by dynamic range compression. In another study,10

Jokinen et al. (2016) showed that modifying the phase spectrum of wide-11

band telephony speech by enhancing high-amplitude peaks caused by the12

glottal excitation in the time domain can also increase speech intelligibility13

in noise. Consequently, one of the objectives of the current study was to14

determine the effectiveness of spectral weightings learnt offline (Expt. 1) or15

based on a generic masker-independent boosting pattern (Expt. 2).16

Finally, in this study we employ a numerical optimisation approach that17

is capable of operating with the high-dimensionality parameter vectors that18

result from an auditory-based spectral representation. Although it is possible19

to optimise spectral weightings using a low dimensionality representation20

such as octave-bands (e.g. Viktorovitch, 2005), it is desirable to make use21

of a more realistic finer-scale spectral representation that is known to reflect22

auditory frequency resolution. Our earlier approach (Tang and Cooke, 2012)23

used genetic algorithms (Holland, 1975; Mitchell, 1996) for this purpose.24

In the current study we use a different numerical optimisation technique,25

pattern search (Hooke and Jeeves, 1961; Davidon, 1991), which was designed26

to be deployed in complex, high-dimensional and potentially-discontinuous27

search spaces.28

Section 2 motivates the high-energy glimpse pro portion metric used at29

the core of the optimisation process to predict intelligibility. Spectral weight-30

ings which result from pattern search optimisation in the presence of different31

maskers are derived in section 3. The following section presents the outcome32

of an experiment in which listeners identified keywords in sentences modified33

by optimised spectral weights in matched masker/level conditions. Based1

on common features of the spectral weightings discovered via optimisation,2

section 5 describes the results of a second intelligibility experiment using a3

number of generic, masker-independent spectral weightings.4
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2. High energy glimpse proportion5

Glimpse proportion (GP) quantifies the proportion of time-frequency re-6

gions of an auditory-inspired representation of the speech signal that exceed7

equivalent regions of the masker by a specific amount. GP is intended to re-8

flect the local audibility of speech in noise, and is correlated with subjective9

intelligibility data (e.g. Barker and Cooke, 2007). Tang and Cooke (2012)10

demonstrated that modifying speech to maximise GP can lead to intelligi-11

bility gains. GP is defined in terms of spectro-temporal excitation patterns12

(Moore, 2003) Sf(t) and Nf (t) for speech and noise at time t in frequency13

region f as follows:14

GP =
1

TF

F∑

f=1

T∑

t=1

H[Sf (t) > Nf (t) + α] (1)

where F denotes the number of frequency bands, T the number of time15

frames, andH[·] is the unit step function which counts the number of spectro-16

temporal regions meeting the local masked audibility criterion α. GP is a17

normalised measure in the range 0-1.18

The high-energy glimpse proportion metric (HEGP; Tang and Cooke,19

2016) was inspired by an approach taken in the Coherence Speech Intelligi-20

bility Index (Kates and Arehart, 2005) of separately weighting frames based21

on a tripartite categorisation of the RMS energy of the speech signal in each22

frame. The OIM introduced by Christiansen et al. (2010) used a similar23

notion and employed only the high-energy frames. Rather than classifying24

at the frame level, Tang and Cooke (2016) categorised glimpses based on25

their energy relative to the mean in each frequency region. High-energy26

glimpses are defined as those time-frequency regions deemed to be glimpses27

by eq. 1 with the additional requirement that the local excitation pattern28

for the speech-plus-noise mixture, Yf(t), is greater than the average level in29

frequency region f . In HEGP the glimpsing criterion in eq. 1 is replaced by:30

[Sf(t) > (Nf (t) + α)] ∧ (Yf(t) > Ȳf) (2)

where Ȳf represents the mean of Yf across time.31

Tang et al. (2016) reported further significant improvements in the pre-32

dictive power of the HEGP metric by removing inaudible (sub-threshold)33

glimpses, and by applying a quasi-logarithmic transformation to the GP1

value, based on the finding that subjective intelligibility scores reach ceiling2
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for relatively low values of GP (Barker and Cooke, 2007). These extensions3

increased listener-model correlations from 0.79, 0.71 and 0.53 for the original4

GP metric to 0.92, 0.83 and 0.87 across three large-scale datasets.5

In the version of HEGP used in the current study, excitation patterns6

were produced by a bank of F = 34 gammatone filters uniformly distributed7

on the equivalent rectangular bandwidth scale, covering the frequency range8

100-7500 Hz, sampled in time at a frame rate of 100 Hz. The local SNR9

threshold α was set to 3 dB based on the findings in Cooke (2006).10

3. Optimised spectral weightings11

3.1. Maximising HEGP via Pattern Search optimisation12

In the current study, Pattern Search (PS; Hooke and Jeeves, 1961; Davi-13

don, 1991) was used alongside HEGP to estimate spectral weightings. PS is14

a member of the direct search family of numerical optimisation methods that15

do not require estimates of the gradient or higher derivatives of the objective16

function. These methods are suitable for optimisation in a high-dimensional17

space (Yu, 1979). In the current context, PS operates by exploring the space18

of spectral weight vectors. Each component of the vector is a value in deci-19

bels representing a boost or an attenuation in the corresponding frequency20

band. At each iteration, the candidate vector is normalised to have zero21

mean and the average HEGP metric evaluated across a development set of22

sentences in the presence of a given masker at a specified SNR. The final23

spectral weighting results when a convergence criterion is reached, or after a24

specified maximum number of iterations.25

It is important to note that the zero mean normalisation step only ap-26

proximates the effect of a constant input-output RMS level for the purposes27

of HEGP computation in PS optimisation. In practice, the actual RMS level28

resulting from the spectral weighting at any step of the optimisation pro-29

cess will be different for each sentence in the development set. Crucially, for30

the listening experiments reported below, normalisation was performed on a31

sentence-by-sentence basis to ensure that the RMS level following boosting32

was exactly the same as the level prior to boosting.33

Spectral weight vectors consisted of 34 components corresponding to the34

number of gammatone filters (F ) used to compute the HEGP metric. Since35

PS is a minimisation procedure, the negative of HEGP was used as the36

cost function. The development set over which HEGP was evaluated at1

each iteration contained 100 sentences (see section 3.2). At each iteration2
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individual spectral weights were constrained to the range [−50, 50] dB to3

prevent excessive boosting or attenuation in specific frequency regions. An4

implementation of PS from the MATLAB Global Optimisation Toolbox was5

used, with an initial mesh size of 1, and mesh expansion and contraction6

factors of 2.0 and 0.5 respectively. An iteration limit of 200 was imposed but7

in practice PS converged after only 25-30 iterations.8

3.2. Speech material9

Speech material was drawn from the Sharvard corpus (Aubanel et al.,10

2014), a phonemically-balanced Spanish sentence resource inspired by the11

original English Harvard sentences (Rothauser et al., 1969). The corpus12

contains 700 sentences uttered by both a male and a female native Span-13

ish talker. Each sentence contains five keywords for scoring e.g. ‘el grupo14

de gente se sumó a la fuerte lucha’. Sentences 1-100, with a sampling fre-15

quency of 16 kHz, from the male talker were used to learn optimised spectral16

weightings.17

3.3. Maskers and SNRs18

Six maskers, depicted in Fig. 1, were used in the optimisation procedure19

and in subsequent perceptual listening experiments. The SSN masker was20

constructed to have a long term spectrum matching that of the male Shar-21

vard speaker. The CS masking material came from the female Sharvard22

talker. The SMN masker was generated by multiplying the SSN signal by23

the envelope of randomly-concatenated CS sentences. Low-pass and high-24

pass noise maskers LP and HP were derived by filtering the SSN signal at25

cutoff frequencies of 4000 and 500 Hz respectively using IIR Chebyshev fil-26

ters with 0 dB passband gain and 80 dB stop-band attenuation. Long term27

average spectra of the six maskers are shown in Fig. 1.28

For each masker, optimisation was performed at two SNR levels, denoted29

‘low SNR’ and ‘high SNR’, whose values are provided in Fig. 1. SNRs were30

chosen in pilot tests to result in approximately 25% and 50% keywords correct31

scores.32

3.4. Spectral weighting candidates33

In order to examine the consistency of the spectral weight patterns learnt34

in individual optimisation runs, the output of two trials of the optimisa-35

tion process were inspected for each condition. While the resulting spectral36
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Figure 1: Details of the maskers used in the study.

8



100 500 1000 4000

-45

-30

-15

0

15

30

45

S
pe

ct
ra

l w
ei

gh
tin

g 
(d

B
)

HEGP: 0.563

100 500 1000 4000
Frequency (Hz)

-45

-30

-15

0

15

30

45

S
pe

ct
ra

l w
ei

gh
tin

g 
(d

B
)

HEGP: 0.567

100 500 1000 4000

HEGP: 0.540

100 500 1000 4000
Frequency (Hz)

HEGP: 0.543

SSN: Trial 1

SSN: Trial 2

CS: Trial 1

CS: Trial 2

Figure 2: Best spectral weightings from two separate PS optimisation runs
for SSN (left) and CS (right) maskers in the high SNR condition. The
HEGP score for each weighting is also displayed.

weights differed in some details, in general the overall patterns were very37

similar, as illustrated in Fig. 2.1

The spectral weightings for the six maskers at both SNR levels are pre-2

sented in Fig. 3. For each condition, the final weightings were computed as3

the average over the candidates from the two trials. The three maskers whose4

long-term spectrum is that of broadband speech (CS, SSN and SMN) as well5

as the LP masker display a similar spectral weighting pattern with a clear6

boost for frequencies above 1 kHz. The two fluctuating maskers CS and7

SMN additionally exhibit a tendency to boost very low frequencies. The8

WN masker displays a converse pattern, with a clear boosting of mid-to-low9

frequencies. The HP masker leads to spectral boosting applied in the region10

below 500 Hz and above 2000 Hz. To a first-order, profiles are similar at11

both low and high SNRs. However, differences in the low frequency region12

are evident for the CS, SMN and LP maskers, and in the mid-high region13

for the WN and HP maskers. An unexpected feature of the spectral weight-14

ings is the presence of wide-ranging fluctuations in the degree of boosting,1

covering a range of some 60 dB, particularly in the high frequency region.2
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We speculate on possible origins for these features in section 4.6. The next3

section presents the results of a listening experiment which measured the4

effect on intelligibility of spectral weighting.5

100 500 1000 4000

-45

-30

-15

0

15

30

45

S
pe

ct
ra

l w
ei

gh
tin

g 
(d

B
)

SSN

100 500 1000 4000

CS

100 500 1000 4000

SMN

100 500 1000 4000
Frequency (Hz)

-45

-30

-15

0

15

30

45

S
pe

ct
ra

l w
ei

gh
tin

g 
(d

B
)

WN

100 500 1000 4000
Frequency (Hz)

HP

100 500 1000 4000
Frequency (Hz)

LP

high SNR
low SNR

Figure 3: Optimised spectral weightings discovered by Pattern Search.

4. Experiment 1: subjective intelligibility of sentences boosted by6

masker- and SNR-dependent optimised spectral weightings7

4.1. Speech and masker material8

A set of 240 sentences drawn from the male talker of the Sharvard cor-9

pus (sentences 401-640) was used in Expt. 1. These sentences are different10

from the 100-member development set employed during pattern search op-11

timisation. Maskers and SNRs were the same as those used in the learning12

phase.13

4.2. Listeners14

Some 22 native Spanish undergraduate and graduate students (age range15

20-38 years, mean 23.8 years, std. dev. 4.8 years) from the University of16

the Basque Country took part in Expt. 1. All participants were given an17

audiometric hearing screening test at octave frequencies between 125 Hz and18

10



8000 Hz. Results from two participants who had hearing thresholds above19

20 dB HL at two or more frequencies were excluded. All participants were1

paid for their participation.2

4.3. Procedure3

The complete set of 240 sentences in both unmodified form (‘plain’) and4

spectrally-weighted (‘weighted’) using the optimised weightings shown in5

Fig. 3 was mixed with each of the 6 maskers at the 2 SNR levels, lead-6

ing to 5760 stimuli (240 sentences × 6 maskers × 2 SNRs × 2 modifica-7

tions). Each listener was allocated a subset of 240 stimuli using a balanced8

design, such that each listener heard the same sentence only once, and each9

masker/SNR condition was heard by the same number of listeners. The10

240 sentences were blocked into 12 masker/SNR conditions, with 10 plain11

and 10 spectrally-weighted stimuli per block. Block presentation order was12

randomised for each participant, as was within-block stimulus presentation13

order.14

Stimulus presentation and response collection made use of a custom-built15

MATLAB application. Stimuli were normalised to the same RMS level, and16

20ms half-Hamming ramps applied to attenuate onset and offset transients.17

Presentation level was fixed at 80 dB(A), calibrated using a Brüel & Kjær18

4153 artificial ear with a Brüel & Kjær 2250-L sound pressure level anal-19

yser. Listeners heard stimuli via Sennheiser HD380 Pro headphones in a20

sound-attenuating booth in the Phonetics Laboratory at the University of21

the Basque Country (Vitoria-Gasteiz Campus). A practice session preceded22

the formal test in order to accustomise listeners to the testing environment.23

Listeners typed their responses into an on-screen text box.24

4.4. Post-processing25

Subjective intelligibility was computed as the correct keyword recognition26

rate for each condition. Five keywords per sentence were used for scoring.27

Due to inconsistent use of diacritics by listeners, all vowel accents were re-28

moved prior to scoring so that answers with or without accents were consid-29

ered to be equivalent e.g. both ‘ŕıo’ and ‘rio’ were considered to be correct30

responses for the word ‘ŕıo’. For statistical purposes, percentages were con-31

verted to rationalised arcsine units (RAU; Studebaker, 1985). However, for32

ease of interpretation, results are shown in percentages in the figures.33
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4.5. Results34

The boxplots in Fig. 4 indicate means and ranges of the percentage of35

keywords identified correctly for plain and spectrally-weighted speech in the36

two SNR and six masking conditions. Spectral weighting led to increases1

in all conditions apart from those related to the white noise masker, with2

improvements ranging from 8 to 55 percentage points. A similar pattern of3

gains was observed at each SNR. Averaged across the two SNRs, the largest4

gains amounted to 51 and 44 percentage points respectively. These occurred5

for the two stationary maskers with a low-pass characteristic (SSN and LP).6

Gains for the two fluctuating maskers (CS and SMN) were more modest,7

with increases averaged across SNR levels of 17 and 26 percentage points8

Figure 4: Intelligibility scores for spectrally-weighted speech and unmodified
‘plain’ speech in the presence of masking noise at low (top) and high (bottom)
SNRs.
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respectively. The HP condition led to a smaller increase of 10 percentage9

points. The exception to the pattern of intelligibility increases was white10

noise, with decreases of 15 and 6 percentage points at the low and high SNR1

levels (all figures have been rounded to the nearest integer).2

A three-way repeated measures ANOVA with within-subjects factors of3

masker type, SNR level and modification style (plain, weighted) performed on4

RAUs confirmed the statistical significance of the reported outcomes. A sig-5

nificant main effect of modification style [F (1, 21) = 476.98, p < .001, η2 =6

.41] was observed, as well as a two-way interaction between modification style7

and masker type [F (5, 105) = 117.5, p < .001, η2 = .39], and a three-way8

interaction among the three main factors [F (5, 105) = 5.99, p < .001, η2 =9

.021] but no significant interaction between the modification style and SNR10

level [F (1, 21) = .03, p = .87, η2 < .001]. Post-hoc analyses based on11

a Fisher’s least significant difference of 5.1 RAUs confirmed that spectral12

weighting led to a significant intelligibility gain for all masker types apart13

from WN.14

4.6. Discussion15

The outcome of experiment 1 provides a clear demonstration that the16

simple expedient of reallocating spectral energy by boosting some frequency17

bands at the expense of others is capable of increasing speech intelligibility18

substantially without increasing SNR. Further, spectral boosting profiles can19

be learnt by closed-loop optimisation with an objective intelligibility metric20

at its core.21

While gains from static spectral boosting might be expected for stationary22

maskers, benefits were also evident for the fluctuating maskers CS and SMN.23

Both maskers led to similar scores in plain speech, but SMN-based weighting24

produced larger gains than CS-based weighting. Since both maskers have25

similar temporal properties – the temporal modulation pattern of SMN is26

derived from the temporal envelope of the CS masker – it is possible that27

the difference stems from additional informational masking in the case of the28

competing talker (Brungart et al., 2001). An alternative explanation for the29

smaller gains observing in the CS condition might be a loss of audibility: in30

order to achieve similar intelligibilities across maskers for the plain baseline,31

a rather low SNR of -21 dB was required in the CS condition. Since the32

presentation level was constant, the level of the speech target was reduced33

for the CS condition relative to the SMN masking condition.34
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The spectral boosting pattern learnt for the white noise masking condi-35

tions was not only ineffective, but actually harmed intelligibility. An inspec-36

tion of Fig. 3 shows that spectral energy was transferred from mid and high37

frequencies to the region below 1 kHz. While the HP pattern has a similar38

characteristic in the low frequencies, it is apparent that it is only in the WN1

case that the high frequencies are entirely attenuated. It may be that the2

reduction in salience of cues to the location of the higher formants and the3

presence of fricative energy resulted in an intelligibility loss in this condition.4

An alternative possibility is that the HEGP predictions are poor in the case5

of WN, leading to an inappropriate boosting pattern. There is some evi-6

dence to support this hypothesis: the least accurate predictions were seen in7

the WN and HP conditions, with a Pearson correlation coefficient of just8

0.43 for the comparison of HEGP and subjective scores, while the equivalent9

correlation for the remaining four maskers was 0.91. Further work is required10

to understand why the HEGP metric makes poorer predictions for white and11

high-pass maskers.12

The largest gains came from the four maskers with a similar spectral13

boosting pattern (SSN, CS, SMN, LP). Indeed, these maskers have near-14

identical long-term average spectra up to 4 kHz (fig. 1). Given that on15

average a speech-shaped masker (by definition) masks speech equally in all16

frequency regions (Mayer, 1894; Wegel and Lane, 1924), it is surprising to17

observe that a strategy that essentially boosts all information above 1 kHz18

is so effective. One explanation might be that due to the cochlear tonotopic19

mapping there are proportionally more frequency channels devoted to the20

0-1 kHz region than any other 1 kHz wide band, and thus more potential21

glimpses available to be reallocated elsewhere. Another possibility is that22

the regions above 1 kHz are more important for speech perception, although23

the evidence for such a claim is mixed (see General Discussion). A related24

possibility is that voicing information available in the lower frequency region25

does not necessarily require the transmittance of all resolved harmonics, lead-26

ing to some redundancy of information. In a similar vein, one unexpected27

characteristic of the learnt spectral weighting patterns is what appears to be28

selective boosting of channels, mainly in the mid and high frequencies. A29

similar sparse boosting pattern was found in Tang and Cooke (2012) using30

a GP-based metric and genetic algorithm optimisation. It is tempting to31

conclude that under a constant input-output energy constraint, it is better32

to ensure that a range of frequencies is boosted rather than enhancing neigh-33

bouring frequency channels that contain redundant information, although34

14



there is no basis for preferring non-neighbouring channels in the HEGP met-35

ric.36

Having observed that the weightings obtained by maximising HEGP in37

the main emphasise mid-to-high frequencies (Fig. 3), one hypothesis is that38

intelligibility benefits from an increase in the average across-frequency-band1

SNR. To investigate this possibility, the optimisation procedure described2

in Section 3.1 was used to determine weightings based on maximising the3

average SNR across frequency bands (denoted ‘Max SNR’) in the low SNR4

condition for each masker. We also looked at the effect of pre-emphasis,5

since this also results in the transfer of energy from low to high frequencies6

under the constant input-output energy constraint adopted in this study.7

Fig. 5 displays the weightings for each masker that are suggested by the8

optimisation. The frequency response of a pre-emphasis filter with α = 0.979

is also shown. It is clear that weightings based on maximising average band10

SNR, along with those for pre-emphasis, are qualitatively different from those11

based on HEGP (Fig. 3) with the latter showing a far steeper transition12

between low and mid-high frequencies.13
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Figure 5: Spectral weightings learnt by maximising average across-frequency-
band SNR. The frequency response of a pre-emphasis filter (α = 0.97) is
shown with a 15-dB offset.

When comparing the average band SNR of speech modified by maximising14
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HEGP, maximising average SNR, and by pre-emphasis, to that of unmodified15

speech (Fig. 6), the highest average SNRs are indeed produced by the max16

SNR weightings, with pre-emphasis also showing increases over the Plain1

baseline. However, the approach proposed in this study, max HEGP, results2

in a clear reduction in average SNR, demonstrating that intelligibility gains3

from spectral weightings produced by maximising HEGP are not due to4

increased average SNR. Enhancing speech intelligibility under a constant5

input-output energy constraint does not necessarily require a better average6

band SNR.7

The observed similarities of the spectral weighting patterns for the three8

wideband speech-based maskers (CS, SSN, SMN) raises the question of9

whether weighting patterns might be generalised across these maskers, and10

the extent to which masker- and SNR-dependent weightings are needed at11

all. A second listening experiment was performed to address this issue.12

5. Experiment 2: The effect of generic spectral weightings13

The primary goal of Expt. 2 was to evaluate the effectiveness of a generic14

(masker independent) spectral weighting pattern based on a schematic ver-15

sion of the mid-high frequency energy reallocation pattern observed in the16
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Figure 7: Boosting patterns investigated in Expt. 2.

optimised weightings derived from the CS, SSN and SMN maskers. At the17

same time, the role of sparse boosting was investigated using three further18

static weightings in which a smaller number of frequency channels received19

a boost, with the side effect of reducing the amount of attenuation in the1

non-boosted channels. The four weightings used in Expt. 2 are depicted in2

Fig. 7. In all cases a constant maximum boost of 30 dB was applied to a range3

of channels, with a commensurate reduction in the level of the non-boosted4

channels to produce a constant speech level following boosting. The 30 dB5

value was chosen as approximately the boosting value observed in this range6

for these maskers in Expt. 1.7

1. HP-flat: boost applied to all 20 frequency bands in the region above8

1 kHz, and attenuation of the 14 bands below 1 kHz.9

2. HP-random: boost 10 frequency bands randomly chosen in the range10

above 1 kHz; attenuation of the remaining 24 bands. Unlike the other11

boosting patterns, a different random set of 10 channels was used for12

each of the 240 sentences.13

17



3. HP-sparse: boost applied sparsely to 5 frequency bands in the range14

above 1 kHz; attenuation of the remaining 29 bands. The 5 boosted15

locations were evenly-spaced in the range of 1000-7500Hz.16

4. HP-sparse-low: asHP-sparse, with the addition of the lowest band1

centred on 100 Hz. This pattern was motivated by the presence of a2

similar low-frequency boost in the CS and SMN optimised spectral3

weights observed earlier.4

5.1. Listeners and procedure5

Participants in Expt. 2 constituted a non-overlapping cohort of 22 native6

Spanish listeners (mean 21.1 years; std. dev. 2.3 years) with the same profile7

as the listeners of Expt. 1. One participant was excluded from further8

analyses following audiometric screening, as was a further participant who9

responded to the non-target talker in the CS condition.10

The stimuli for Expt. 2 were the same 240 sentences used in Expt. 1.11

Using a similar balancing procedure as for Expt. 1, stimuli were blocked1

by masker (CS, SSN, SMN) and SNR (low, high) into 6 conditions. Eight2

sentences from each of the four modifications plus the plain baseline were3

presented in a random order in each block.4

5.2. Results5

Keyword scores for the conditions of Expt. 2 are plotted in Fig. 8.6

Clear gains, ranging from 8 to 57 percentage points, were produced in the7

HP-flat boosting condition, while the other boosting patterns were less suc-8

cessful in general, and in some cases led to falls in intelligibility, particularly9

in the CS masker.10

A three-way within-subjects ANOVA with factors of masker, SNR level11

and boosting type (plain i.e. none, HP-flat, HP-random, HP-sparse,12

HP-sparse-low) was performed on RAU-transformed scores. Apart from13

expected main effects of SNR level and masker, there was a strong main14

effect of the type of boost applied [F (4, 80) = 98.9, p < .001, η2 = .42],15

as well as two-way interactions between boost and masker [F (8, 160) =16

33.6, p < .001, η2 = .24] and between boost and SNR [F (4, 80) = 4.19, p <1

.01, η2 = .01]. Based on a Fisher’s least significant difference of 7.2 RAUs,2

HP-flat boosting led to gains in all masking and SNR conditions. HP-3

flat boosting also outperformed every other boosting type in all condi-4

tions. HP-random and HP-sparse produced statistically-equivalent scores5

18



Figure 8: Keyword scores in plain and modified speech resulting from the
four static boosting patterns in the presence of speech-shaped noise (SSN),
competing speech (CS) and speech-modulated noise (SMN).

in each condition, while HP-sparse-low led to smaller gains than either in6

the SSN and SMN masking conditions.7

Figure 9 compares the mean gains produced by optimised spectral weight-8

ing in Expt. 1 and the generic HP-flat weighting in Expt. 2. Apart from9

the high SNR CS masking condition, the gains are of a similar magnitude in10

each condition.11

5.3. Discussion12

Experiment 2 demonstrates that a very simple generic boosting pattern13

that reallocates energy from the region below 1 kHz to the region above 1 kHz14

is capable of generating similar intelligibility gains in most conditions as pro-15
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Figure 9: Comparison of gains resulting from optimised spectral weighting
(Expt. 1) and generic HP weighting (Expt. 2).

duced by the masker- and SNR-specific boosting patterns derived in the first16

experiment. Sparse boosting of a limited number of frequency channels, ei-17

ther fixed (HP-sparse) or randomly-chosen (HP-random) while beneficial,18

did not produce the same degree of improvement. Under the constant input-19

output SNR constraint, boosting the larger number of frequency bands in20

HP-flat is compensated for by a greater attenuation of the remaining fre-21

quency bands. It appears that this tradeoff favours uniform high-frequency22

boosting. One speculation is that salient speech information below 1 kHz23

consists in the main of F1 frequency and evidence of voicing in resolved har-24

monic components, and that both of these are available in a limited region25

around the F1 formant frequency whose amplitude resists the increase in26

attenuation implied by the HP-flat boosting spectrum.27

It is not clear why boosting only 5 fixed channels was equivalent to boost-28

ing 10 at random. Given the preceding discussion, it seems unlikely that the29

slightly smaller degree of low frequency attenuation in the 5 channel case30

was responsible for the preservation of intelligibility gain. Instead, it may be31

that listeners find the changing trial-by-trial choice of the 10 boosted chan-32
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nels to be disruptive. Alternatively, the broader boosting regions may have33

created ‘false formants’, something that is less likely to occur for the narrower34

channels of the sparse boosting condition.35

One notable finding concerns the effect of boosting in the presence of1

competing speech material. In this condition, only HP-flat boosting was2

helpful. One possibility is that, while HP boosting leads to a smooth spectral3

change, preserving local amplitude relationships in all frequency regions apart4

from at the 1 kHz boundary, the other boosting patterns tend to disrupt5

these relationships, perhaps leading an increase in cognitive load, a form6

of informational masking that is particularly deleterious in the presence of7

competing speech (Koelewijn et al., 2012a,b).8

The rather large drops in intelligibility for HP-sparse-low boosting in9

the SSN and SMN conditions is hard to explain, given that the sole difference10

with respect to the HP-sparse condition is a 30 dB boost to the 100 Hz11

frequency band, and a consequent modest attenuation elsewhere. It may12

be that such an enhancement creates an artificial grouping cue relating the13

very low and the mid-high frequency regions, leading to an artificial source.14

The smaller intelligibility drop relative to HP-sparse in the CS condition15

might be the result of cognitive masking of this spurious grouping cue in16

the presence of competing speech. Further studies are needed to explore the17

origins of the deleterious effect of low frequency boosting.18

6. General discussion19

Both experiments indicate that speech intelligibility in noise can be in-20

creased by large amounts without raising overall RMS level by modifying21

the spectral energy distribution of the speech content, using automatically-22

derived spectral weighting patterns. Experiment 2 further suggests that a23

generic boosting pattern can be as effective as a masker- and SNR-specific24

pattern, at least for maskers with a long-term spectrum similar to that of25

speech.26

Methods based on post-filtering (e.g. Hall and Flanagan, 2010; Jokinen27

et al., 2012) might achieve similar effects in terms of reallocating energy28

across frequencies. While the frequency response of the filter in Jokinen29

et al. (2012) is close to the static weighting found in the current study (i.e.30

it tends to be flat after approximately 1.5 kHz), the filter proposed in Hall31

and Flanagan (2010) has an incremental response from approximately 0.4 to32

3.5 kHz, which then holds constant thereafter 3.5 kHz. By comparing the33
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performance of the two filters, Jokinen et al. (2012) demonstrated that the34

filter with nearly equal frequency response for mid-high frequencies is more35

efficient than that with an incremental response in increasing narrowband36

(up to 4 kHz) intelligibility for listeners, especially in more severe conditions.37

Having observed that the speech processed by both post-filtering methods is1

more intelligible than the unprocessed speech, this could further suggest that2

additional intelligibility gain may be obtained by boosting the frequencies in3

the region 1.5-3.5 kHz equally, along with high frequencies. Post-filtering4

studies confirm the effectiveness of a strategy of injecting energy from else-5

where to mid-high frequencies to enhance intelligibility under the constant6

input-output SNR constraint.7

As a practical approach to near-end listening enhancement, spectral weight-8

ing is appealing because it is fast to implement and does not call for a de-9

tailed, time-varying estimate of the ongoing masker spectrum. Instead, the10

method requires an estimate of masker type and SNR (e.g. Rombouts et al.,11

2006) in order to select the appropriate frequency response. Whether such12

a masker-dependent approach can be implemented in real-time will depend13

on how quickly the masker type and SNR are changing. In circumstances14

where both the masker type and SNR tend to be constant, it is possible to15

estimate these properties prior to applying the speech modification. Further16

work will determine how fine-grained a classification of both factors is nec-17

essary, but the outcome of Expt. 2 suggests that even a coarse estimate will18

lead to some benefits. The static weighting approach requires only a constant19

high-pass filter to be applied to the input signal, and can be implemented20

with a minimal delay.21

The basis for the intelligibility improvements from spectral weighting22

remain unclear. For example, there is no simple relationship between the23

weightings uncovered in Expt. 1 and previously-reported frequency impor-24

tance functions for speech, which themselves present a mixed picture as to25

where the salient spectral bands lie (Studebaker et al., 1987). While some26

studies have reported peaks of importance in the 2 kHz region (e.g. French27

and Steinberg, 1947; DePaolis et al., 1996), others have suggested a near-28

equal weighting of importance above and below 1 kHz (Studebaker et al.,29

1987; Healy et al., 2013). The effect of incorporating frequency importance30

functions into the spectral weighting procedure is worthy of further investi-31

gation.32

The quality of the modified speech may be an issue when being presented33

in mild noise or noise-free conditions, since any artefacts introduced by the34
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modification to the speech signal may become perceptually noticeable by the35

listener, leading to a potential reduction in speech quality. Previous stud-36

ies (e.g. Tang and Cooke, 2010) investigating the quality of algorithmically-1

modified speech using the perceptual evaluation of speech quality (PESQ,2

ITU-T P.862, 2001) suggest that spectral modification alone has a relatively3

small negative impact on PESQ, compared to modifications performed in4

the time and the time-frequency domains. PESQ scores were also calculated5

for all modifications in the current study. For the noise-dependent spectral6

weightings, the PESQ values fall in the range between 3.8 and 4.2 across the7

six maskers. For the static weightings, HP-flat and HP-sparse-low lead8

to the best (4.0) and the worst (3.7) PESQ scores, respectively. These results9

are consistent with our previous findings in Tang and Cooke (2010). How-10

ever, there is some evidence revealing that severely attenuating frequencies11

where pitch and harmonic information exist may lead to poor perceptual12

speech quality in quiet (Gabrielsson et al., 1988). This might explain the13

finding of Jokinen et al. (2012) that post-filtering with a frequency response14

which has smooth transition between low and mid frequencies leads to better15

naturalness of the processed speech than when the filter has a steep cut-off.16

Thus, when deploying speech modification techniques in practice, it may be17

worthwhile performing SNR estimation online (e.g. Jokinen et al., 2012), in18

order to determine the threshold for modification (de)activation in respect19

to speech quality.20

Conclusions21

Modifying clean speech prior to presentation by the simple expedient of22

altering its spectral balance without changing its RMS level can be a highly-23

effective way to increase intelligibility in the presence of masking noise. The24

current study demonstrates that masker-dependent spectral weightings can25

be learnt by maximising the value of an objective intelligibility metric, ob-26

viating the need for detailed time-varying masker estimates during speech27

presentation. Further, generic spectral weighting patterns that boost en-28

ergy above 1 kHz are beneficial for maskers with a speech-shaped long-term29

spectrum.1
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