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ABSTRACT 

Electro-osmotic peristaltic transport of aqueous nanofluids in a two-dimensional micro-

channel is examined analytically. Such flows arise in bio-mimetic pumping systems at 

the very small scale of interest in physiological treatment e.g. occular drug delivery 

systems. Complex waveforms are imposed at the walls to mimic sophisticated peristaltic 

wave propagation scenarios. Nano-particles are assumed to be in local thermal 

equilibrium. Joule electro-thermal heating is included. The dimensional conservation 

equations are linearized and transformed from the wave to the fixed (laboratory) frame 

under lubrication theory approximations. The emerging dimensionless model features a 

number of important thermo-physical, electrical and nanoscale parameter, namely 

thermal and solutal (basic density) Grashof numbers, nanoscale Brownian motion 

parameter, thermophoresis parameter, Helmholtz-Smoluchowski velocity (maximum 

electro-osmotic velocity), Debye electrokinetic length and Joule heating to surface heat 

flux ratio. Closed-form solutions are derived for the nano-particle volume fraction, 

temperature, axial velocity, averaged volumetric flow rate, pressure difference across one 

wavelength, skin friction (wall shear stress function), Nusselt number (wall heat transfer 

rate) and stream function distribution in the wave frame. The influence of selected 

parameters on these flow variables is studied with the aid of graphs. Bolus formation is 

also visualized and streamline distributions are observed to be strongly influenced and 

asymmetric in nature.  

 

KEYWORDS: Nano-particles; buoyancy; electro-kinetics; peristaltic waves; Debye 

length; heat transfer; Joule heating; Nusselt number; ocular drug delivery.  
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1. INTRODUCTION 

Nanofluids constitute suspensions of nanometer-sized particles in base fluids. In the 

medical context, many different nanoparticles have been explored in clinical applications, 

ranging from single-walled (SWCNT) and multi-walled carbon nanotubes, to metal 

oxides (gold, silver, titanium, copper etc.) and fullerene. The bio-compatibility [1] of 

nanofluids has led to their significant deployment in diverse areas of biomedical 

technologies including enzymes [2], anti-bacterial wound treatment [3], solid lipid and 

dendrimer nanofluids in ophthalmic [4-6], hypothermia regulation [7], radiofrequency 

ablation in cancer care [8] and orthopedic lubrication [9]. The effectiveness of nano-

particle doping of fluids was first demonstrated by Choi [10] wherein it was shown that 

thermal conductivity characteristics of base fluids (e.g. silicon oil, ethylene glycol etc) 

and other features may be enhanced with metallic nano-particles. Following experimental 

investigations, two major theoretical approaches to simulating volume-averaged 

properties of nanofluids have emerged. The Buongiorno MIT model [11] emphasizes the 

contribution of Brownian diffusion and thermophoresis for heat transfer enhancement 

applications. The Tiwari-Das formulation [12] features a nano-particle volume fraction 

and allows the simulation of different types of nano-particles. In the former [11] a 

separate mass (species) diffusion equation in addition to momentum and heat 

conservation equations is required whereas in the latter [12] only momentum and energy 

conservations equations are considered. Both models have been deployed extensively in 

medical engineering for formulating boundary value problems and circumvent the need 

for conducting very costly numerical simulations of nano-particle interactions which 

require the use of direct numerical simulation, Lattice Boltzmann methods etc. Latiff et 

al. [13] used Maple symbolic software to study the transient nano-bio-polymeric flow 

from an extending/contracting sheet. Tan et al. [14] used both an immersed finite element 

method and Brownian adhesion dynamics algorithm to simulate the interaction of nano-

particles with deforming red blood cells (RBCs) in drug delivery. Gentile et al. [15] 

studied analytically the longitudinal transport of nanoparticles in intra-vascular blood 

vessels using the Taylor-Aris dispersion model and Casson viscoplastic theory for blood. 

Bég et al. [16] used a Nakamura finite difference algorithm to study the bioconvection 

flow in nanofluids through deformable channels as a model of nanotechnological  
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microbial fuel cells. Tan et al. [17] studied fluid-structure interaction aspects of nano-

particle diffusion in vascular networks with a combined particulate and continuum 

model, also addressing particulate ligand–receptor binding kinetics.  Bég et al. [18] 

presented a computational simulations to study multiple aluminum oxide nano-particle 

transport in cylindrical vessels with a single-phase model and three different two-phase 

models (volume of fluid (VOF), mixture and Eulerian), observing that two-phase models 

correlate more closely with experimental measurements. Tan et al. [19] applied a Lattice 

Boltzmann-immersed boundary method to simulate nano-particle dispersion in blood 

vessels, confirming that dispersion rate is strongly influenced by local disturbances in 

the flow due to RBC motion and deformation. 

Peristalsis is a significant mechanism encountered in many complex biological transport 

processes. It utilizes deformability of the conveying vessel to generate contracting and 

expanding waves which propel contents very efficiently over large distances and through 

tortuous paths. An excellent appraisal of the fluid dynamics of peristalsis has been 

presented by Jaffrin and Shapiro [20] for two-dimensional Newtonian flows. 

Applications of peristalsis arise in arthropumps [21] (which combine peristaltic and 

pulsatile i.e. periodic flow), piezoelectric actuated micro-pumps [22], swallowing 

mechanisms [23], waste management pumping systems [24] and also in geophysical 

(coastal) processes [25]. Extensive analytical investigations of peristaltic pumping flows 

have been communicated over a number of decades. Wilson and Pattin [26] studied 

peristalsis in two-dimensional conduits, observing that a lateral bending wave 

propagating along the walls of the channel generates a mean flow. Gupta and Shehadri 

[27] considered peristaltic wave propagation in viscous incompressible flow in non-

uniform conduits. Ishikawa et al. [28] studied numerically the microbial flora transport in 

peristaltic flow in gastrointestinal tract, noting that viscous effects and wave amplitude 

significantly influence bacterial population and also concentration distributions of oxygen 

and nutrient. These studies did not consider nanofluid pumping by peristalsis. Bég and 

Tripathi [29] probably presented the first mathematical study of peristaltic transport of 

nanofluids in two-dimensional channels. They explored in detail the influence of cross-

diffusion (Soret and Dufour) effects and also Brownian motion and thermophoresis on 

pressure difference distributions and streamline evolution. More recently Akbar et al. 
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[30] used Mathematica symbolic software and a Chebyschev spectral collocation method 

to study the effects of various nanoparticle geometries (bricks, cylinders and platelets) on 

magnetized peristaltic nanofluid dynamics with heat transfer in a vertical channel. They 

noted that temperature is enhanced significantly for brick-shaped nanoparticles. 

Electroosmotic flow (EOF) refers to the electrically-driven transport of a fluid relative to 

the stationary charged surfaces which bound it, for example micro-channel walls. It has 

substantial benefits in microfluidic pumping and allows very effective regulation of 

micro-channel flow fields via electric fields since it does not require the customary 

moving components featured in conventional micro-pumps. Electro-osmotic pumping has 

been observed to produce a continuous pulse-free flow. These pumps are also much more 

amenable to fabrication at the microscale and are increasingly being deployed in 

biomedical systems including pharmacological delivery, plasma separation, electro-

osmotically actuated bio-microfluidic systems etc. Essentially flow actuation is achieved 

by applying an electric field to an electrolyte in contact with a surface. The contact of the 

surface with the electrolyte results in a net charge density in the solution. The viscous 

drag causes the liquid to flow tangentially to the surface and produces a consistent net 

migration of ions. Many theoretical and computational studies electro-osmotic flow with 

and without heat transfer have been reported. Babaie et al. [31] studied numerically with 

a finite difference method the fully developed electroosmotic flow of power-law fluids 

via a slit microchannel with a constant wall heat flux boundary condition, noting that 

both zeta potential and non-Newtonian behavior strongly modify heat transfer rate and 

volumetric flow rate at low values of the dimensionless Debye-Hückel parameter. Hu et 

al. [32] presented both particle-based numerical and current-monitoring laboratory 

results for electro-osmotic flow through microchannels with 3D prismatic elements. 

Masilamani et al. [33] used Lattice Boltzmann and finite difference algorithms to analyse 

the non-Newtonian electro-osmotic flow in micro-channels, noting the significant 

modification in flow patterns with rheological effects.Sadeghi et al. [34] used a power-

series analytical method to derive solutions for the fully developed electroosmotic slip 

flow in hydrophobic microducts of general cross section under the Debye–Hückel 

approximation, considering many different microgeometries (e.g. trapezoidal, double-

trapezoidal, isosceles triangular, rhombic, elliptical, semi-elliptical, rectangular etc), They 
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showed that flow rate increases in a linear fashion with slip length for thinner electric 

double layers (EDLs) Liao et al. [35] employed a finite element Galerkin algorithm to 

compute the mixed electro-osmotic/pressure-driven flows in triangle microchannels by 

solving the Poisson and Naiver–Stokes equations, highlighting that electrolytic solution 

mass flux is enhanced with positive pressure gradient and Debye length ratio. Marcos et 

al. [36] used a control volume integration method to simulate the steady state developing 

electro-osmotic flow in closed-end cylindrical micro-channels computing in detail the 

influence of electric field strength and channel geometry on pressure and velocity fields. 

These studies generally neglected the contribution of Joule heating (dissipation). This 

phenomenon relates to the heat generated from the electrical current arising from the 

flowing liquid with net free charges, which is common for the electro-osmotic flows at 

the micro/nanoscale. It is therefore a significant effect to consider in biomicrofluidics 

systems simulations since it may impact considerably on both pumping rates and wall 

heat transfer rates since it produces temperature gradients in cross-stream and axial 

directions which can alter the applied electric potential field and the flow field. Inclusion 

of Joule heating in mathematical EOF models therefore circumvents over-prediction of 

micro-pump characteristics. Bosse and Arce [37] investigated the influence of Joule 

dissipation on solute dispersion in a free convection electrophoretic cell for the batch 

mode of operation. Xuan and Li [38] investigated analytically the impact of Joule heating 

effects on the transport of heat, electricity, momentum and mass species in capillary-

based electrophoresis, showing that the thermal end effect induces significant depletion in  

temperature close to capillary ends, and that in these zones higher electric field strengths 

are necessary to ensure current continuity. Jing et al. [39] studied theoretically the Joule 

heating and viscous dissipation effects in steady, laminar, hydrodynamically and 

thermally fully developed pressure-driven flow in a microchannel with surface charge-

dependent slip. They found that Joule heating and viscous dissipation demonstrate a non-

monotonic variation with the continually increasing zeta potential and that owing to 

deceleration in the flow there is an associated decrease in Nusselt number with zeta 

potential. Further studies have been communicated by Yavari et al. [40] who considered 

non-uniform Joule heating and variable thermophysical property effects for EO dynamics 

in microtubes noting that a reduction in electrical resistivity of the fluid by increasing 
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temperature elevates the total energy generation due to the Joule heating and manifests in 

a decrease in Nusselt number. Several studies have also examined the combined 

peristaltic pumping of electro-osmotic flow and heat transfer in micro-channels with 

Joule heating effects. Recently Sutradhar et al. [41] presented perturbation solutions for 

electro-magnetic peristaltic transport of Casson blood in a permeable microvessel and 

observed that temperature is amplified with greater Joule heating. Nanofluid peristaltic 

pumping with Joule heating was analyzed by Hayat et al. [42] who also considered 

viscoelastic characteristics, wall slip and radiative heat transfer effects. Very recently 

Tripathi et al. [43] presented analytical solutions for peristaltic transport of electro-

osmotic nanofluids in finite micro-channels with Joule heating effects. This model 

however did not consider Brownian motion and thermophoresis effects as reflected in the 

Buongiorno formulation [11] and was also restricted to axi-symmetric pumping (the same 

peristaltic waves imposed at both micro-channel walls). In the present article, a 

generalized nanofluid model is employed to study more comprehensively the electro-

osmotic flow and heat transfer in two-dimensional micro-channels with Joule heating. 

Furthermore complex waveforms are imposed at the micro-channel walls to consider 

asymmetric peristaltic pumping. The computations are relevant to more realistic designs 

for ocular electro-osmotic pumps in drug delivery systems. 

 

2. MATHEMATICAL MODEL 

We consider electro-osmotic transport of nanofluids through a complex wavy two-

dimensional microchannel with Joule dissipation. The geometry of the channel is 

illustrated in Fig.1 and mathematically expressed as: 

1

2
( , ) sin ( )

m

i

i

i
h x t a x ct






   ,                                            (1) 

where , , , , ,ih x t a   and c  represent transverse vibration of the wall, axial coordinate, 

time, half width of the channel, amplitude of the different ( m ) waves, wavelength and 

wave velocity respectively. The temperatures and nanoparticle volume fraction at the 

center line and the walls of the micro-channel are given as: 0 0,T T F F   (at 0y  ), 

1 1, ,T T F F   (at y h ).  Furthermore, a  and i  satisfy the condition: 
1

n

i

i

a 


 .      
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Fig.1. Schematic view of electro-osmotic peristaltic transport of nanofluids through a 

complex wavy microfluidic channel. Wave propagates with wave velocity c  and with 

constant wavelength . 

 

The equations governing the multi-physical flow problem are the mass (continuity), 

momentum, energy and nanoparticle fraction conservation equations: 

. 0, q                         (2) 
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 
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q q q f                                (3) 
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DT
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t T
   

 
            

 
q ,         (4) 

2 2

0

( . ) t
b

DF
F D F T

t T


     


q ,                                            (5) 

where,  0 0 0 0 0(1 ) ( ) ( )( )g pg F T T F F        f , ( , )u vq  is velocity vector, 

i j
x y

 
  

 
 and 

2 2
2

2 2
.

x y

 
   

 
are Hamilton operator and Laplace operator 

respectively. The quantities f , p ,  , e , xE , ( )p fc , ( )p pc , 0 , p , g ,  ,T , F , efk , , 
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 , tD , bD  are the fluid density, pressure, viscosity, electrical charge density, applied axial 

electrical field,  heat capacity of fluid, effective heat capacity of nanoparticle, the 

nanofluid density at the reference temperature ( 0T ), nanoparticle mass density, 

acceleration due to gravity, volumetric expansion coefficient of the fluid, temperature, 

nanoparticle volume fraction, thermal conductivity, electrical conductivity, viscous 

dissipation function, thermophoretic diffusion coefficient, Brownian diffusion coefficient 

respectively. The subscript f   refers the fluid properties and p refers to nanoparticle 

properties. We introduce the following variables to non-dimensionalize the governing 

equations: 

, , , , ,
x y ct u v

x y t u v
a c c  

    
2

, ,
h pa

h p
a c 

 
0

, ,i
i

n
n

a n







    . The 

nonlinear terms in the momentum equation are determined to be of  2O Re , where 

ca
Re

 


  is Reynolds number and 

a



  is the wave number. The relative order of 

volumetric heat generation due to electric resistance heating (Joule heating), and a local 

volumetric heating due to viscous dissipation, i.e.
2 2

~vR
a



 


, allows the neglection of 

viscous dissipation in comparison to Joule heating effects for channel widths greater than 

10μm. Using lubrication theory and neglecting the viscous dissipation term, the 

governing equations for electro-osmotic nanofluid flow contract to: 

0,
u v

x y

 
 

 
                                                                                 (6) 

2 2

2 2
,t f HS

p u
GrT Gr F U

x y y

   
   

  
                                                                               (7) 
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where,
2 3

0 0 1 0

2

(1 )( )
t

g a F T T
Gr

 



 
 and 

3

0 0 1 0

2

( )( )p

f

g a F F
Gr

  



 
  are the thermal 

Grashof number and basic-density (nano-particle solutal) Grashof number, 

1 0( ) ( )p p b

b

c D F F
N

k

 
  and 

1 0

0

( ) ( )p p t

t

c D T T
N

kT

 
  are Brownian motion parameter and  

thermophoresis parameter,  0

1 0

T T
T

T T





 and 0

1 0

F F
F

F F





 are the dimensionless 

temperature and nanoparticle volume fraction, x
HS

E
U

c




   is the Helmholtz-

Smoluchowski velocity or maximum electro-osmotic velocity,  is zeta potential, and 

2 2

1 0/ ( )x efS E a k T T  , is the normalized generation term that represents the ratio of 

Joule heating to surface heat flux (for constant wall temperature conditions). The 

Poisson-Boltzmann equation for 25mV  , is expressed as 
2

2

2y


 
 


, where 

02

B

n
aez

K T



  is the Debye-Hückel parameter which is the inverse of Debye length,   

is the electrical permittivity of the electrolytic nanofluid, Bk  is Boltzmann constant. 

Employing the boundary conditions: (0) 0y   and ( ) 1h  , the electrical potential 

function is obtained as: 

cosh( )

cosh( )

y

h




  .                                                                                    (10) 

The physical boundary conditions for temperature, nanoparticle volume fraction and 

velocity are imposed as: 

0
0

y
T


 , 1

y h
T


 ,

0
0

y
F


 , 1

y h
F


 , 

0

0
y

u

y






, 0,

y h
u


                                        (11)                      

Solving Eqns. (8) & (9) with boundary conditions (11), the temperature field and 

nanoparticle volume fraction are determined as: 
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22 ( )sinh

( 1 )

NNy
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e N h S

y N e hS h
F

N h N N N e

 
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    
    
 

,                                                         (13) 

where, b tN N N  .  

Substituting Eqns. (12) & (13) into Eq.(7), further integrating and employing the  

boundary conditions of Eq.(11), leads to the following expression for axial velocity: 

( ) y
( ) y ( )( ) ( ) y

11 12 13 1436 ( 1 )( ) )

Nb Nt
Nb Nt Nb Nt h y Nb Nth

Nb Nt h h h
Nb Nt

e
u A e A e A e A e

hNb e Nb Nt




   





 
    

    
, 

                                                                                                                                        (14)              

where, 11A , 12A , 13A , 14A  are functions documented in the Appendix (Eqns. A7-A10). 

The volumetric flow rate is defined as follows: 

0

h

Q udy  .                                                                                                                        (15) 

The detailed expression is given in the Appendix (Eqn. A11) 

The pressure difference across the one wavelength is defined as: 

1

0

,
p

p dx
x


 


                                                                                                                    

(16)  

where, 
p

x




 is axial pressure gradient which again is provided in Appendix (Eqn. A12). 

The transformations between the wave frame ( , )w wx y moving with velocity ( c ) and the 

fixed frame ( , )x y  are given by : 

, , 1,w w w wx x t y y u u v v      ,                                                                   (17) 

where ( , )w wu v and ( , )u v  are the velocity components in the wave and fixed frame 

respectively. 

The volumetric flow rate in the wave frame is given by  
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0 0

( 1)

h h

w w w wq u dy u dy    ,                                                                                             (18) 

On integration this yields:  

wq Q h  .                                                                                                                      (19) 

Averaging volumetric flow rate along one time period, we get: 

1 1

0 0

( )wQ Qdt q h dt    ,                                                                                                 (20) 

which, on integration, yields 

1 1wQ q Q h     .                                                                                                     (21) 

The stream function is defined as: 

w

w

u
y





, w

w

v
x


 


.                                  (22) 

The skin friction coefficient ( fC ), and Nusselt number ( Nu ) are defined as:  

f

y h

h u
C

x y


 

 

,                                                                                                                (23) 

y h

h
Nu

x y





 

 

.                                                                                                               (24) 

 

3. NUMERICAL RESULTS AND DISCUSSION 

We have considered the wall deformation equation in non-dimensional form in the wave 

frame of reference as 
1

1 sin(2 )
m

i

i

h i x 


  , where, m is the number of waves 

propagating together. In all numerical computations, we take 10m  and the values of 

amplitudes are taken as: 1 0.01,  2 0.02,  3 0.03,   4 0.04,   5 0.05,   6 0.06,   

7 0.07,  8 0.1,  9 0.2,  10 0.3  , which satisfy the condition 
1

1
m

i

i




 to avoid the 

interference of lower and upper walls. The influence of selected electro-osmotic, 

nanoscale and geometric parameters are visualized in Figs. 2-9. Both variations across 

the upper half space of the micro-channel (i.e. with the transverse y-coordinate) and in the 

axial direction (x-coordinate) are computed.  
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Fig.2. Temperature profile at 1, 2b tN N  for different values of Joule heating parameters. 

 

 

Fig.3. Nanoparticle volume fraction vs transverse coordinate at 1, 2b tN N  for different 

values of Joule heating parameters.  
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Fig.4. Velocity profile at 1,xp  for different values of (a) Joule heating parameters (b) 

Brownian motion parameter (c) thermophoresis parameter (d) basic-density Grashof number (e) 

thermal Grashof number (f) Helmholtz-Smoluchowski velocity (g) Debye–Hückel parameter. 
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Fig.5. Volumetric flow rate along the channel length at 1,xp  for different values of (a) Joule 

heating parameters (b) Brownian motion parameter (c) thermophoresis parameter (d) basic-

density Grashof number (e) thermal Grashof number (f) Helmholtz-Smoluchowski velocity (g) 

Debye–Hückel parameter. 
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Fig.6. Pressure across one wavelength vs time averaged volumetric flow rate for different values 

of (a) Joule heating parameters (b) Brownian motion parameter (c) thermophoresis parameter (d) 

basic-density Grashof number (e) thermal Grashof number (f) Helmholtz-Smoluchowski velocity 

(g) Debye–Hückel parameter. 
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Fig.7. Skin friction coefficient along the channel length at 1,xp   for different values of (a) Joule 

heating parameters (b) Brownian motion parameter (c) thermophoresis parameter (d) basic-

density Grashof number (e) thermal Grashof number (f) Helmholtz-Smoluchowski velocity (g) 

Debye–Hückel parameter. 
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Fig.8. Nusselt number along the channel length at 1xp   for different values of (a) Joule heating 

parameters (b) Brownian motion parameter (c) thermophoresis parameter. 
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Fig.9 (a)-(g). Stream lines at 0.9Q   for various parameters  
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A constant axial pressure gradient scenario is considered and a finite thickness of the 

Debye electrical double layer. Plots are visualized only for the upper channel half space 

(0<y<h) due to symmetrical boundary conditions. 

 

Fig.2. depicts the response in temperature for different values of Joule heating parameter 

(S), across the upper micro-channel half space. An increase in positive values of S 

significantly elevates temperature. Negative values of S however generate the opposite 

effect and cool the nanofluid. In all cases there is a growth from the centerline (y = 0) to 

the upper micro-channel wall (y = h). The profiles evolve from approximately linear 

distribution for S <0 to a strongly parabolic profile for S > 0. 
2 2

1 0/ ( )xS E a k T T  . This 

parameter reflects that stronger axial electrical field (Ex) with all other parameters 

constrained, enhances the contribution of Joule heating. The effect appears in the energy 

(heat) conservation eqn. (8) as an isolated term, +S. The case of S = 0 (absence of Joule 

heating) as expected falls between the results for S < 0 and S> 0. The influence of Joule 

heating is also associated with the imposition of low Péclet number. This assists in 

reverse thermal diffusion of heat from the entry zone to the exit zone of the channel 

which will impact on temperature evolution across the semi-span of the micro-channel. 

The Joule resistive heating overall exerts a substantial effect on the thermal field in the 

micro-channel. 

Fig. 3 depicts the response in nano-particle volume fraction (F) with Joule heating 

parameter (S). The opposite behavior is computed compared with temperature field. With 

positive value of S, there is a strong depletion in F values which are infact negative for 

considerable distance across the micro-channel from the centreline. Only at relatively 

high values of transverse coordinate (y), are positive F values achieved. With negative S 

value, there is a weak negativity inn profile near the centreline; however there is a 

strongly positive growth in nano-particle volume fraction across the majority of the upper 

micro-channel half-span. Imposition of stronger axial electrical field enhances Joule 

heating and the associated electric conduction and clearly modifies nano-particle 

distribution significantly throughout the upper micro-channel zone. With absence of 

Joule heating, there is still a negative trend in F values for much of the transverse 

coordinate value; however there is a positive growth commencing at greater values of y 
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and this trend is achieved earlier than for the case of positive S value. Effectively the 

presence of Joule heating influences markedly the diffusion of nano-particles in the 

regime.  

Figs.4(a)-(g) present the evolution in axial velocity profile for different values of (a) 

Joule heating parameters (b) Brownian motion parameter (c) thermophoresis parameter 

(d) basic-density Grashof number (e) thermal Grashof number (f) Helmholtz-

Smoluchowski velocity (g) Debye length. The axial pressure is fixed at unity in these 

plots. Fig. 4a clearly demonstrates that with negative Joule heating there is a significant 

deceleration whereas with positive Joule heating there is a marked acceleration. In all 

cases the distributions are semi-parabolic since the maximum velocity arises at the 

channel centre (only the upper channel half space is included). At the upper microchannel 

wall the no-slip boundary condition enforces a zero velocity (the same will be present at 

the lower microchannel wall, not shown). When electrical field (axial) is increased, the 

Joule parameter (for constant temperature difference) is also enhanced. This results in 

boosting the momentum for positive S value and decreasing momentum for negative S 

value. The absence of Joule heating falls between these two cases. Fig. 4b shows that an 

increase in Brownian motion parameter (Nb) induces strong acceleration in the axial flow. 

Nb in the Buongiorno formulation [11] is related to the size of spherical nano-particles. 

Larger values correspond to smaller nano-particle size which leads to axial acceleration. 

Smaller Nb values are associated with larger nano-particles manifesting in axial flow 

deceleration. The exact mechanism of Brownian motion in nanofluids is still a topic of 

some debate. It is however generally accepted that ballistic collisions are elevated with 

smaller nano-particles and that the Brownian motion forces are enhanced for smaller 

nano-particles which effectively boosts momentum development [44]. Fig. 4c indicates 

that with increasing thermophoresis parameter (Nt) there is a weak acceleration in the 

axial flow. This is amplified in the central zone of the channel. Greater thermophoresis 

implies stronger migration of nano-particles under a temperature gradient away from the 

micro-channel walls. This influences the thermal field and in turn modifies the velocity 

field, via coupling terms between the momentum equation and energy equations i.e. 

buoyancy terms. Fig. 4d demonstrates that with increasing basic-density (nano-particle 

solutal) Grashof number there is a tangible retardation induced in the axial flow. The 
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opposite effect is generated (i.e. acceleration) with an increase in thermal Grashof 

number as observed in Fig 4e. The buoyancy forces associated with solutal and thermal 

effects are therefore not consistent in their impact on the axial flow development. 

Furthermore a much stronger modification in axial velocity is caused with greater thermal 

Grashof number compared with a less prominent reduction in axial velocity with solutal 

Grashof number. With an absence of solutal buoyancy effect (Grf=0) the axial velocity is 

a maximum whereas with an absence of thermal buoyancy force (Grt = 0) the axial 

velocity is a minimum. In both figures 4d and 4e axial flow reversal (backflow) is never 

induced since positive values are sustained across the upper microchannel half space. Fig. 

4f reveals that with an increase in UHS i.e. the Helmholtz-Smoluchowski velocity (or 

maximum electro-osmotic velocity), from 0 (vanishing axial electrical field) to 1, there is 

initially a strong acceleration in the axial flow. However for UHS =2 i.e. with subsequent 

increase in axial electrical field, there is a significant deceleration induced. A critical 

electrical field strength there exists beneath which the flow is assisted and above which it 

is impeded. A similar trend has been reported in Ranjit et al. [45]. In fig 4g it is evident 

that an increase in Debye–Hückel parameter () substantially accelerates the axial flow. 

It also dramatically modifies the shape of the velocity profile, which evolves from a 

monotonic decay from the centre-line to the upper micro channel wall (for  = 2) to a 

plateau profile for much of the micro-channel half space eventually descending sharply at 

the upper micro-channel wall for  = 10 and 20. Although  =does not appear explicitly 

in the conservation eqns. (6)-(9), it does feature in the term 
2

2

2y


 
 


 in the 

momentum eqn (7). Debye–Hückel parameter is the reciprocal of Debye length.  

Reducing Debye length i.e. increasing Debye–Hückel parameter is known [46, 47] to 

increase the electrical potential since enhanced migration of ions arises as we progress 

away from the charged surface (micro-channel walls). Debye length is therefore a critical 

design parameter in controlling the electrical potential distribution which in turn 

influences markedly the axial velocity field.  

Figs.5 (a)-(g) present the variation in volumetric flow rate along the channel length i.e. 

with axial coordinate (x) for various parameter combinations. In all plots the asymmetric 

nature of the peristaltic wave propagation is clearly captured with significantly greater 
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amplitudes computed at the entry zone to the micro-channel (x~0). Amplitudes generally 

decrease with increasing axial distance but are increased again at the exit zone (x~1.0).  

Fig 5a shows that with positive Joule parameter (S>0), the amplitudes are boosted i.e. 

flow rate is accentuated throughout the extent of the micro-channel. The contrary 

behavior is computed with negative Joule parameter (S<0). Increasing Brownian motion 

parameter, Nb, also strongly enhances volumetric flow rate (fig. 5b) in particular at the 

entry zone of the micro-channel and to a lesser extent at the exit zone.  A weak but non-

trivial increase in flow rate is also induced with greater thermophoresis parameter (Nt), as 

shown in fig 5c. Again the effect is amplified at the entry and exit regions of the micro-

channel and is stifled at intermediate axial distances. Increasing nano-particle (solutal) 

Grashof number, Grf is observed to strongly depress the magnitudes of volumetric flow 

rate (fig. 5d)  whereas a slight enhancement in flow rates accompanies an increase in 

thermal Grashof number (Grt), as plotted in fig. 5e. Solutal buoyancy effects therefore 

impact more significantly on flow rates than thermal buoyancy effects. With increasing 

positive UHS i.e. the Helmholtz-Smoluchowski velocity, flow rates are markedly 

increased whereas they are strongly reduced with negative UHS. Again the asymmetry in 

distributions is clearly computed in fig. 5f owing to the imposition of different peristaltic 

wave forms at the upper and lower walls of the mciro-channel. We further note that both 

vanishing (UHS= 0) and negative UHS result in negative flow rates i.e. backflow in the 

micro-channel. This is only eliminated for the case of positive Helmholtz-Smoluchowski 

velocity. Fig 5g indicates that with greater values of Debye–Hückel parameter () i.e. 

lower values of the Debye electro-osmotic length, there is initially a considerable 

elevation in the volumetric flow rate, Q. However when the Debye–Hückel parameter () 

is doubled from 10 to 20 the subsequent increment in flow rates is marginal indicating 

that flow rates are optimized at lower values than 20. In all cases Q characteristics remain 

positive i.e. backflow is not induced anywhere along the micro channel for any value of 

Debye–Hückel parameter (). 

Figs. 6(a)-(g) illustrate the distribution of pressure difference across one wavelength (p) 

with time averaged volumetric flow rate ( Q ) for selected nanoscale and electro-osmotic 

parameters. Three pumping regimes are of importance, namely the pumping region (p > 

0), the augmented pumping region (p < 0), and the free pumping region (p =0). 
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Generally, in the pumping region, pressure difference increases with negative flow rates 

whereas it is reduced with positive flow rates. The p-Q relationship is clearly an inverse 

linear relationship i.e. pressure difference decreases with increasing time averaged flow 

rate. Fig 6a shows that for negative Joule heating (S) pressure difference is depressed for 

all values of time-averaged flow rate. However for positive values of Joule heating 

parameter, pressure difference is enhanced markedly over the entire range of values of Q . 

A weak enhancement in pressure difference is induced with increasing Brownian motion 

parameter, Nb as seen in fig 6b, whereas they are more considerably elevated with 

increasing thermophoresis parameter (Nt), as plotted in fig. 6c. Negative pressure 

difference is computed only at very high values of time-averaged flow rate. Increasing 

nano-particle (solutal) Grashof number, Grf  very weakly elevates the pressure difference 

(fig. 6e) whereas a more significant increase is caused by increasing thermal Grashof 

number (Grt), as shown in fig. 6e. Pressure difference is also boosted with positive 

Helmholtz-Smoluchowski velocity (UHS) whereas it is decreased with negative 

Helmholtz-Smoluchowski velocity, as depicted in fig. 6f. Finally an increase in Debye–

Hückel parameter (), as illustrated in fig. 6g, from 2 to 10, induces initially a 

considerable elevation in the pressure difference, whereas with subsequent increase in  

to 20, results in a relatively weak enhancement. 

Figs. 7 (a)-(g) present the response in skin friction i.e. wall shear stress function (Cf) 

along the channel length with selected parameters. Maximum shear stress arises at the 

fully contracted walls of the micro-channel and the minimum is associated with fully 

relaxed walls. Maximum impedance is generated to the peristaltic flow at the fully 

contracted walls and the opposite behavior arises when the walls are fully relaxed. The 

constriction in the walls when fully contracted serves to oppose the flow and manifests in 

an elevation in frictional resistance at the walls i.e. greater wall shear stress (skin 

friction). As with velocity plots described earlier, the maximum amplitudes of shear 

stress correspond to the entry zone of the micro-channel and high values are also 

computed at the exit zone. At intermediate locations there is a depression in the 

amplitudes. With positive Joule parameter (S>0), fig 7a shows that the skin friction 

amplitudes are consistently increased along the micro-channel length whereas they are 

reduced with negative Joule parameter (S<0). Increasing Brownian motion parameter, Nb  
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(fig 7b) and increasing thermophoresis parameter, Nt (fig 7c) both induce a weak increase 

in skin friction amplitudes. Greater nano-particle (solutal) Grashof number, Grf (fig. 7d) 

suppresses skin friction whereas increasing thermal Grashof number (Grt) elevates skin 

friction values. The cases of Grf =0 and Grt =0 correspond to vanishing nano-solutal and 

thermal buoyancy and result in maximum and minimum skin friction values in figs. 7d 

and 7e respectively. With positive UHS value (fig. 7f), there is an increase in skin friction. 

Negative Helmholtz-Smoluchowski (UHS < 0) velocity also increases skin friction and 

results in higher magnitudes. The peaks and troughs for these two cases appear in an 

alternating fashion across the micro-channel length. With vanishing Helmholtz-

Smoluchowski velocity (UHS = 0) skin friction magnitudes are significantly suppressed 

with a small peak only arising near the entry zone of the micro-channel. With increasing 

Debye–Hückel parameter () (decreasing Debye electro-osmotic length), skin friction is 

greatly enhanced throughout the micro-channel length, as shown in fig. 7g. 

Fig.8. illustrate the evolution in wall heat transfer rate (Nusselt number) along the micro-

channel length with respective variations in (a) Joule heating parameter (b) Brownian 

motion parameter (c) thermophoresis parameter. A significant enhancement in Nusselt 

number is generated with a negative Joule dissipation parameter value (S <0) whereas a 

reduction is caused with positive Joule dissipation parameter value (S >0), as observed in 

fig. 8a. The reduction in temperatures associated with negative Joule dissipation 

parameter value (S <0) results in a net migration of heat away from the nanofluid towards 

the micro-channel walls (nanofluid cooling and wall heating) and the opposite  behaviour 

(nanofluid heating and wall cooling) is associated with positive  Joule dissipation 

parameter value (S >0). With increasing Brownian motion parameter (Nb), as seen in fig. 

8b, and also increasing thermophoresis parameter (Nt) as depicted in fig. 8c, there is a 

noticeable decrease in Nusselt numbers at all values of axial coordinate. The thermal 

enhancement in the nanofluid (increased temperatures) draws thermal energy away from 

the micro-channel walls. The nanoscale parameters therefore both induce cooling at the 

micro-channel walls.  

Figs 9a-g present the streamline distributions for various combinations of the key electro-

osmotic, nanofluid and buoyancy parameters. The benchmark case is fig 9b where all 

parameters are prescribed unity values. Each of the other figures is compared respectively 
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with this case to elucidate the influence of the respective parameter being varied on the 

growth of trapped zones. These figures visualize a key characteristic of peristaltic flows, 

namely trapping phenomenon which relates to the stream lines circulation and formation 

of a trapped bolus. It allows the determination of reflux characteristics and also vortex 

growth and circulation intensity in peristaltic flows. In all the plots there is a significant 

lack of symmetry about the centre line (y =0) owing to the dissimilar peristaltic wave 

prescribed at the lower and upper micro-channel. Considering fig 9a (S=-1) relative to fig 

9b (S=+1) with all other parameters fixed at unity, it is evident that the peristaltic flow is 

intensified in the central zone as testified to by the emergence of multiple vortex zones 

around the micro-channel centerline. Streamline concentration is much weaker in the 

lower micro-channel half-space in fig 9a compared with fig. 9b. The nature of the Joule 

heating (dissipation) considerably influences the structure of the flow. Fig 9c (Nb=5) 

illustrates the streamline distribution with a much greater Brownian motion parameter 

effect compared with fig 9b (Nb =1). The shield-shaped dual trapped zones in the upper 

half space are transformed into tear-drop shaped single boluses with increasing Nb nd the 

distorted streamlines in the lower zone are almost completely eliminated with streamlines 

aligning more evenly for higher Brownian motion parameter. There is also significant 

damping of the flow around the centerline. Fig. 9d illustrates the influence of greater 

thermophoresis parameter (Nt) which is increased to 3 compared with unity value in fig. 

9a. There is substantial modification in the vortex zones in the upper section of the 

channel with stronger thermophoretic body force; they become singular in nature and are 

widened towards the centre-line, forming more triangular patterns. Simultaneously the 

significant streamline distortion in the lower channel periphery vanishes with increasing 

thermophoresis although there is some distortion in the streamlines along the core region 

of the micro-channel. Increasing solutal Grashof number (Grf) to 2 (fig. 9e) weakly 

modifies the streamline patterns compared with fig 9b (Grf =1). The shield-shaped zones 

grow at the centre whereas they are squashed at the upper section and stretched at the 

lower section of the micro-channel. Doubling the solutal (nano-particle species) 

buoyancy force therefore does impact on trapping phenomena in the regime. The 

modification induced with increasing thermal Grashof number (Grt =2 in fig 9f compared 

with Grt = 1 in fig 9b) is similar  to that caused with increasing solutal buoyancy force, 
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but less stretching downwards of the lower zone streamline patterns is caused. Increasing 

Helmholtz-Smoluchowski velocity (UHS) and Debye–Hückel parameter () (decreasing 

Debye electro-osmotic length), as presented in fig 9g and 9h, respectively, both result in a 

slight compression of the central vortex zones i.e. boluses, compared with the benchmark 

case, fig. 9b. 

 

4. CONCLUSIONS  

Motivated by new developments in ocular pharmacological delivery systems, a 

mathematical model has been developed for peristaltic electro-osmotic nanofluid flow in 

a micro-channel with different wave forms imposed at the walls. Joule heating and 

thermal and species (solutal) buoyancy effects have been included. The non-dimensional 

boundary value problem has been solved with integration methods subject to isothermal 

boundary conditions at the walls. The key parameters dictating the thermal and 

hydrodynamic behavior have been shown to be the thermal and solutal (basic density) 

Grashof numbers, nanoscale Brownian motion parameter, thermophoresis parameter, 

Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), Debye 

electrokinetic length and Joule heating to surface heat flux ratio. Mathematica software 

has been implemented to numerically evaluate the effects of these parameters on nano-

particle volume fraction, temperature, axial velocity, averaged volumetric flow rate, 

pressure difference across one wavelength, skin friction (wall shear stress function), 

Nusselt number (wall heat transfer rate) and stream function distribution in the wave 

frame. The computations have shown that: 

• Increasing Brownian motion parameter strongly accelerates the axial flow and 

strongly increases volumetric flow rate whereas it weakly increases pressure 

difference and skin friction. However it reduces the Nusselt number and 

eliminates distortion in streamlines in the lower micro-channel half space. 

• Increasing thermophoresis parameter weakly accelerates the axial flow, weakly 

increases Nusselt number and slightly enhances volumetric flow rate whereas it 

strongly increases pressure difference along the channel and results in the growth 

of triangular boluses in the central zone.  
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• Increasing positive Joule parameter significantly increases nanofluid temperature, 

reduces nano-particle volume fraction (concentration), accelerates the axial flow, 

boosts the volumetric flow rate, increases pressure difference and skin friction, 

decreases Nusselt number and generates stronger bolus formation in the central 

zone. Negative Joule parameter induces the opposite effects and results in 

stronger boluses in the upper zone of the micro-channel. 

• Increasing nano-particle solutal Grashof number decelerates the axial flow, 

decreases volumetric flow rate, weakly increases pressure difference, reduces skin 

friction, and results in stronger and narrower boluses in the central zone of the 

micro-channel. 

• Increasing thermal Grashof number accelerates the axial flow significantly, 

weakly increases volumetric flow rate, markedly increases the pressure 

difference, substantially elevates skin friction at the walls, and also generates 

stronger and narrower boluses in the core zone of the micro-channel. 

• Increasing positive Helmholtz-Smoluchowski velocity accelerates the axial flow, 

enhances the volumetric flow rate, increases pressure difference, increases skin 

friction and leads to a weak compression in streamlines in the upper zone 

peripheral area. Negative Helmholtz-Smoluchowski velocity generally induces 

the contrary effects except that it also leads to an increase in skin friction but with 

lower magnitudes than those computed with positive Helmholtz-Smoluchowski 

velocity. 

• Increasing Debye–Hückel parameter () (decreasing Debye electro-osmotic 

length) considerably accelerates the axial flow, enhances volumetric flow rate, 

increases pressure difference and skin friction and slightly compresses the 

streamline patterns.  

The current results are relevant to elucidating fluid dynamics of proposed novel drug 

delivery systems. However they have neglected both slip effects at the walls of the micro-

channel and also non-Newtonian properties of the electrolytic nanofluid. Furthermore 

entropy generation minimization is also an important aspect of optimizing nano-electro-

osmotic pumping designs in pharmacology [X]. All these areas will therefore be 

addressed in the future.  



37 

 

REFERENCES 

1. Mikityuk M.V.: Nanoparticles and prospects for their application in biology and 

medicine.  Problems Ecology Med., 15(5-6): 42-50 (2011). 

2. P. Muthuraman, K. Ramkumar and D.H. Kim: Analysis of dose-dependent effect 

of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme 

activity in adipocytes Appl. Biochem. Biotechnol., 174: 2851–2863 (2014). 

3. D. Archana. Brijesh K. Singh. Joydeep Dutta. P.K. Dutta, Chitosan-PVP-nano 

silver oxide wound dressing: In vitro and in vivo evaluation, Int. J.  Biological 

Macromolecules, 73, 49-57 (2015). 

4. Y. Qazi, B. Stagg, B. Ambati, Nanoparticles in ophthalmic medicine. 

International Journal of Green Nanotechnology: Biomedicine, 1, 10-24 (2009).  

5. Seyfoddin, A., Shaw, J., Al-Kassas, R. (2010). Solid lipid nanoparticles for 

ocular drug delivery. Drug Delivery, 17, 1–23.  

6. Kambhampati, S. P., & Kannan, R. M. (2013). Dendrimer nanoparticles for 

ocular drug delivery, J. Ocular Pharmacology and Therapeutics, 29(2), 151–165. 

7. A. Sohail et al, A review on hyperthermia via nanoparticle-mediated therapy, 

Bulletin du Cancer. http://doi.org/10.1016/j.bulcan.2017.02.003,  

8. Q. Wu, Haiyan Zhang, Minshan Chen,Yaojun Zhang, Junting Huang, Zuowen 

Xu, Wenguang Wang,  Preparation of carbon-coated iron nanofluid and its 

application in radiofrequency ablation, J. Biomedical Materials Research- Part B: 

Applied Biomaterials, 103, 908–914  (2015). 

9. A. Pendleton; Prasenjit Kar; Subrata Kundu; Sahar Houssamy; Hong Liang, 

Effects of nanostructured additives on boundary lubrication for potential artificial 

joint applications, ASME J. Tribol., 132, 031201-031201-5 (2010). 

10. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer 

DA, Wang HP (eds) Developments and applications of non-Newtonian flows, 

FED, vol 231/MD, vol 66. ASME, New York, pp 99–103 (1995). 

11. J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer, 

128(3) 240-250 (2006).  

http://www.sciencedirect.com/science/journal/00074551
http://doi.org/10.1016/j.bulcan.2017.02.003


38 

 

12. R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven 

differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer, 

50, 2002–2018 (2007).   

13. Nur Amalina Abdul Latiff, Md Jashim Uddin, O Anwar Bég, Ahmad Izani Ismail, 

Unsteady forced bioconvection slip flow of a micropolar nanofluid from a 

stretching/shrinking sheet, Proceedings of the Institution of Mechanical 

Engineers, Part N: Journal of Nanomaterials, Nanoengineering and 

Nanosystems, 230, 177-187 (2016). 

14. Tan, J., Thomas, A. & Liu, Y. Influence of red blood cells on nanoparticle 

targeted delivery in microcirculation. Soft Matter, 8, 1934-1946 (2012). 

15. F. Gentile, M. Ferrari, P. Decuzzi, The transport of nanoparticles in blood vessels: 

the effect of vessel permeability and blood rheology, Ann. Biomed Eng., 36 (2): 

254-61 (2008). 

16. O. Anwar Bég, M. Faisal Md Basir, M.J. Uddin, and A. I. Md. Ismail, Numerical 

study of slip effects on asymmetric bioconvective nanofluid flow in a porous 

microchannel with an expanding/contracting upper wall using Buongiorno’s 

model, J. Mechanics in Medicine and Biology, 17 (5) 1750059 (28 pages) (2017). 

DOI: 10.1142/S0219519417500592.  

17. J. Tan, S. Wang, J. Yang and Y. Liu, Coupled particulate and continuum model 

for nanoparticle targeted delivery. Comput. Struct. 122, 128–134 (2013).  

18. O. Anwar Bég, M.M. Rashidi, M. Akbari, A. Hosseini, Comparative numerical 

study of single-phase and two-phase models for bio-nanofluid transport 

phenomena, J. Mechanics in Medicine and Biology, 14, 1450011.1-31 (2014).  

19. J. Tan, W. Keller, S. Sohrabi, J. Yang and Y. Liu, Characterization of 

nanoparticle dispersion in red blood cell suspension by the lattice Boltzmann-

immersed boundary method, Nanomaterials, 6, 30; 1-14 (2016). 

20. M. Jaffrin and H. Shapiro, Peristaltic pumping,  Annual Review of Fluid 

Mechanics, 3(1): 13-37 (1971). 

21. L. von Segesser, A. Jeanjacquot, P. Meyer, J.B. Buchs, Arthropump with 

peristaltic effect and pulsatile flow, J. Biomedical Engineering, 6, 146-150 

(1984). 

http://journals.sagepub.com/doi/abs/10.1177/1740349915613817
http://journals.sagepub.com/doi/abs/10.1177/1740349915613817


39 

 

22. L.-S.Jang, Y.-J.Li, S.-J.Lin, Y.-C.Hsu, W.-S.Yao, M.-C. Tsai, C.-C. Hou, A 

stand-alone peristaltic micropump based on piezoelectric actuation, Biomed. 

Microdev., 9, 185–194 (2007). 

23. C. de Loubens et al., A lubrication analysis of pharyngeal peristalsis: application 

to flavour release, J. Theoretical Biology, 267, 300-311 (2010). 

24. J. Hœpffner and K. Fukagata, Pumping or drag reduction? J. Fluid Mechanics, 

635, 171-187 (2009).  

25. M. S. Longuet-Higgins, Peristaltic pumping in water waves, J. Fluid Mechanics, 

137,  393-407 (1983).  

26. D.E. Wilson and R.L. Panton, Peristaltic transport due to finite amplitude bending 

and contraction waves, J. Fluid Mechanics, 90, 145-159 (1979).   

27. B.B. Gupta, V. Seshadri, Peristaltic pumping in non-uniform tubes, J. 

Biomechanics, 9, 105–109 (1976).  

28. T. Ishikawa, T. Sato, G. Mohit, Y. Imai, T. Yamaguchi, Transport phenomena of 

microbial flora in the small intestine with peristalsis, J. Theoretical Biology, 279, 

63-73 (2011).  

29. O. Anwar Bég and D. Tripathi Mathematica simulation of peristaltic pumping 

with double-diffusive convection in nanofluids: a bio-nano-engineering model, 

Proc. IMECHE Part N: J. Nanoengineering and Nanosystems 225, 99–114 

(2012). 

30. N.S. Akbar, D. Tripathi and O. Anwar Bég, Modeling nanoparticle geometry 

effects on peristaltic pumping of medical magnetohydrodynamic nanofluids with 

heat transfer, J. Mechanics in Medicine and Biology, 16 (06), 1650088 (2016). 

31. A. Babaie, M. H. Saidi and A. Sadeghi, Heat transfer characteristics of mixed 

electroosmotic and pressure driven flow of power-law fluids in a slit 

microchannel, Int. J. Thermal Sciences, 53, 71-79 (2012). 

32. Y. Hu et al., Electroosmotic flow in microchannels with prismatic elements, 

Microfluidics and Nanofluidics, 3, 151-160 (2007).  

33. K. Masilamani, Suvankar Ganguly, Christian Feichtinger and Ulrich Rüde, 

Hybrid lattice-Boltzmann and finite-difference simulation of electroosmotic flow 

in a microchannel, Fluid Dynamics Research, 43, 025501 (2011). 

http://www.sciencedirect.com/science/journal/00225193/267/3
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/volume/06C961DBB5C1373CFC78A2D114B2145F
http://www.sciencedirect.com/science/article/pii/S002251931100172X
http://www.sciencedirect.com/science/article/pii/S002251931100172X
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=YKNCryEAAAAJ&cstart=40&sortby=pubdate&citation_for_view=YKNCryEAAAAJ:5MTHONV0fEkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=YKNCryEAAAAJ&cstart=40&sortby=pubdate&citation_for_view=YKNCryEAAAAJ:5MTHONV0fEkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=YKNCryEAAAAJ&cstart=40&sortby=pubdate&citation_for_view=YKNCryEAAAAJ:5MTHONV0fEkC
http://iopscience.iop.org/journal/1873-7005
http://iopscience.iop.org/volume/1873-7005/43


40 

 

34. M. Sadeghi, Arman Sadeghi and Mohammad Hassan Saidi, Electroosmotic flow 

in hydrophobic microchannels of general cross section, ASME J. Fluids Eng., 

138(3), 031104 (2015).  

35. Q. Liao, , T.Y. Wen, X. Zhu, Numerical investigations of electro-osmotic flows in 

triangle microchannels, Applied Thermal Engineering,  28, 1463–1470 (2008). 

36. Marcos, K.T. Ooi, C. Yang, J.C. Chai, T.N. Wong, Developing electro-osmotic 

flow in closed-end micro-channels, Int. J. Engineering Science, 43, 1349–1362 

(2005). 

37. M.A. Bosse and P. Arce, Role of Joule heating in dispersive mixing effects in 

electrophoretic cells: convective-diffusive transport aspects, Electrophoresis, 

21(5):1026-33 (2000). 

38. X. Xuan and D. Li, Analytical study of Joule heating effects on electrokinetic 

transportation in capillary electrophoresis, J. Chromatogr A., 1064(2):227-37 

(2005).  

39. D. Jing, Y. Pan, X. Wang, Joule heating, viscous dissipation and 

convective heat transfer of pressure-driven flow in a microchannel with surface 

charge-dependent slip, Int. J. Heat Mass Transfer, 108, 1305-1313 (2017). 

40. H. Yavari, A. Sadeghi, M.H. Saidi, S. Chakraborty, Combined influences of 

viscous dissipation, non-uniform Joule heating and variable thermophysical 

properties on convective heat transfer in microtubes, Int. J. Heat Mass Transfer, 

55, 762–772 (2012). 

41. A. Sutradhar, J. K. Mondal, P. V. S. N. Murthy and Rama Subba Reddy Gorla, 

Influence of Starling's hypothesis and Joule heating on peristaltic flow of an 

electrically conducting Casson fluid in a permeable microvessel, ASME J. Fluids 

Eng 138(11), 111106 (2016). 

42. T. Hayat, Shafique M, Tanveer A, Alsaedi A, Radiative peristaltic flow of Jeffrey 

nanofluid with slip conditions and Joule heating. PLoS ONE 11(2): e0148002 

(2016). doi:10.1371/journal.pone.0148002. 

43. D. Tripathi, Ashish Sharma and O. Anwar Bég, Electrothermal transport of 

nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule 

http://www.sciencedirect.com/science/journal/13594311/28/11
http://www.sciencedirect.com/science/journal/00207225/43/17


41 

 

heating and Helmholtz-Smoluchowski velocity, Int. J. Heat Mass Transfer, 111, 

138–149 (2017).  

44. W.E. Evans, J. Fish and P. Keblinski, Role of Brownian motion hydrodynamics 

on nanofluid thermal conductivity, Appl. Phys. Lett. 88, 093116 (2006). 

45. N.K. Ranjit, G.C. Shit, , A. Sinha, Transportation of ionic liquids in a porous 

micro-channel induced by peristaltic wave with Joule heating and wall-slip 

conditions, Chemical Engineering Science (2017). 

https://doi.org/10.1016/j.ces.2017.06.012 

46. D.A. Saville, Electrokinetic effects with small particles, Ann. Rev. Fluid 

Mechanics, 9, 321-337 (1977).  

47. G. D. Ngoma and F. Erchiqui, Pressure gradient and electroosmotic effects on two 

immiscible fluids in a microchannel between two parallel plates, J. Micromech. 

Microeng., 16, 83-90 (2005). 

48. M. M. Bhatti, M. Sheikholeslami  and A. Zeeshan, Entropy Analysis on Electro-

Kinetically Modulated Peristaltic Propulsion of Magnetized Nanofluid Flow 

through a Microchannel,. Entropy, 19(9), 481 (2017) 

 

 

  

 

APPENDIX 

The electric potential within the microchannel is given by the well-known Poisson-

Boltzmann equation: 

2 e


    ,                                                                                                                 (A1) 

where ( )e ez n n     is the electrical charge density, n and n  are positive  and 

negative ions  having bulk concentration (number density) 0n  and a valence of z  and z  

respectively, and e represents elementary charge.  

The Nernst-Planck equation is defined to determine the potential distribution and 

describe the charge number density as:  

https://doi.org/10.1016/j.ces.2017.06.012
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q ,                                                                 (A2) 

where D  represents the diffusivity of the chemical species. After non-dimensionalization 

of Eq.(A2), the nonlinear terms appear to the  2O Pe , where Pe Re Sc  represents 

the ionic Peclét number and fSc D   denotes the Schmidt number. Using the 

limitations Re, Pe, <<1, the Poisson equation is obtained as: 

2
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n n
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,                                                                                                    (A3) 

The Nernst-Planck equation is simplified to:  

2

2
0

n
n

y y y
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 ,                                                                                                  (A4) 

subject to boundary conditions 1n   at 0  and 0n y    where 0y    (bulk 

conditions). These yield:  

Φn e  .                                                                                                                         (A5) 

Using equations (A3) and (A5), the Poisson-Boltzmann paradigm is obtained as: 
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.                                                                                                        (A6) 

The values of 11A , 12A , 13A , 14A  used in Eq.(14) are given as: 

 

3 2

11 6 ( )( ),t b f t b tA h Gr N Gr N N N h S                                                                        (A7) 

3 2 2 2

12

3 2 2 2 3 3 4

3 2 2 2 3 4

5 2 2 4 3 2 2 3

A (3 ( ) ( 2 ) ( 6 ( )

( 6 2 ) ( ) ) ( (

6 4 6 6 4 )

( 6 2 ) ( ) y ( ) )),

b b t HS t b b t

b b t t b t f b

b t b t t b t b t t

t b b t t b t t b t

p p
hN N N h U y Gr h N h N N

x x

h N N N N S N N Sy Gr h N

N N N N N N N N N N

h N N N N N S N N h N N N Sy

 
      

 

       

     

        

              (A8) 



43 

 

2 2 2

13

3 2 2

2 4

2 3

3 2 2

A ( )( 3 ( ) ( 2 )

( )(2 ( 3 ) 3( ) 2 ( )

( )( 6 3 3 )) ( )(2 ( 3 )

( 2 )( ) 2 ( )

( ) (

b t b b t HS

t b b t b t b t

b t b t f t b t

b t b t t b t

b t b

p p
N N hN N N h U y

x x

Gr hN h y h N N S N N y h N N Sy

h N N N N Sy Gr h y h N N N S

h N N N N y h N N N Sy

N N y h N

 
     

 

        

          

    

    2 2)( (6 2 )))),t b b t t tN N N N N N Sy   

            (A9) 

3

14A 6( 1 ) ( ) cosh( )sech( ))b tN N

b b t HSe hN N N U y y 
     .                                     (A10) 

The volumetric flow rate is derived as: 
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The axial pressure gradient is derived as: 
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The stream function is derived as: 
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