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ABSTRACT 

A theoretical study is presented of peristaltic hydrodynamics of an aqueous electrolytic non-

Newtonian Jeffrey bio-rheological fluid through an asymmetric microchannel under an 

applied axial electric field. An analytical approach is adopted to obtain the closed form 

solution for velocity, volumetric flow, pressure difference and stream function. The analysis 

is also restricted under the low Reynolds number assumption and lubrication theory 

approximations. Debye-Hückel linearization (i.e. wall zeta potential ≤ 25mV) is also 

considered. Streamline plots are also presented for the different electro-osmotic parameter, 

varying magnitudes of the electric field (both aiding and opposing cases) and for different 

values of the ratio of relaxation to retardation time parameter. Comparisons are also included 

between the Newtonian and general non-Newtonian Jeffrey fluid cases. The results presented 

here may be of fundamental interest towards designing lab-on-a-chip devices for flow 

mixing, cell manipulation, micro-scale pumps etc. Trapping is shown to be more sensitive to 

an electric field (aiding, opposing and neutral) rather than the electro-osmotic parameter and 

viscoelastic relaxation to retardation ratio parameter. The results may also help towards the 

design of organ-on-a-chip like devices for better drug design. 

 

KEYWORDS: Peristalsis; Electrokinetic Transport; Analytical Approach; Trapping; 

Viscoelastic Fluids. 
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1. INTRODUCTION 

The word peristalsis means clasping and compressing. It describes a progressive wave of 

contraction along a channel or tube whose cross-sectional area consequently varies along the 

axis. Peristalsis is a very efficient mechanism for transporting the fluid through a distensible 

tube or channel using the mechanism of contraction or expansion of the waves propagating 

along the walls of the conduit. Peristaltic transport is very significant in different biological 

systems, such as the gastrointestinal tract, lymphatic vessels, insect microscale internal flows 

etc. [1-4]. Peristaltic pumping is also deployed in a number of industrial applications such as 

roller and finger pumps and transfer of biological and chemical toxic liquids to avoid 

contamination via leakage [6-7].   

The fundamentals of peristaltic pumping at low Reynolds number have been explored by 

Jaffrin and Shapiro [8]. Pozrikidis [9] considered channel width, wave amplitude and phase 

shift effects in peristaltic flow under sinusoidal waves in a channel Stokes flow by applying a 

boundary integral method, noting that under varying mean pressure gradient, efficient 

molecular-convective transport is achieved. Subsequently a number of researchers have 

explored peristaltic flow for different wave forms and geometries, both experimentally and 

numerically. These peristaltic studies have also included both Newtonian and non-Newtonian 

models and representative works in this regard are Hayat et al. [10] who considered magnetic 

Maxwell fluids, Wang et al. [11] on Sisko fluids, Hina et al. [12] on Johnson–Segalman 

fluids in a curved channel, Abd elmaboud and Mekheimer [13] on second-order fluids, 

Sutradhar et al. [14] on Casson fluids, Tripathi and Bég [15] on generalized Burgers’ fluids, 

Abd-Alla and Abo-Dahab [16] on Jeffreys viscoelastic fluids, Tripathi and Bég [17] on a 

variety of viscoplastic fluids (including Herschel-Bulkley and Vocaldo models) and 

Mekheimer [18] on couple-stress fluids.  

In recent time, microfluidcs is becoming a major area of research due to its numerous 

applications in separation techniques in medical systems. BioMEMS and lab-on-a-chip 

devices usually involve sample preparation, treatment, injection, delivery, separation and 

detection. Most substances acquire surface electric charges when in contact with an aqueous 

(polar) medium. With electric field applied tangentially along a charge surface, a body force 

is generated on the ions in the diffuse layer and this results in an electroosmotic force (EOF). 

This phenomenon is used in elctroosmotic pumping such as valve-less switching, accurate 

control of transportation and manipulation of liquid samples by an electrical field. Since no 

solid moving parts are involved, this feature makes electro-osmosis a preferred method for 

transporting liquids in microfluidics.  
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Mathematical simulations of peristaltic transport in microfluidic devices have recently 

attracted some attention. Chakraborty [19] studied the augmentation of peristaltic transport 

via electroosmotic means, considering Newtonian fluids. This model however constitutes a 

relatively simple formulation for analyzing electro-peristaltic transport. In this direction, 

some more recent investigations [20-25] have been reported to analyze the electro-peristaltic 

transport with channel flow [20], capillary flow [21], power law fluids [22], couple stress 

fluid [23], magnetohydrodynamics [24], Viscoelastic fluids [25]. They have concluded that 

peristaltic transport/physiological flow may be controlled by adding and opposing the 

external electric field. Some other investigations of electroosmotic induced flow of non-

Newtonian fluids have been communicated. However these generally involve pumping 

through straight micro-channels or tubes [26-31]. It is of greater practical importance to 

analyze the more general case of peristaltic pumping in the presence of applied electric fields 

with a peristaltic pumping zone of fixed length. Advances in silicon micromachining and 

novel actuation mechanisms of the channel wall such as electrostatic actuation and thermo-

pneumatic actuation have been implemented for the development of micro-peristaltic pumps 

[32]. It has been observed that electro-osmosis plays a key role in controlling and stabilizing 

the interface between two-fluids driven by a pressure gradient [33]. Owing to applications in 

capillary electrophoresis [34] there has been a significant amount of effort towards 

understanding the process of combined pressure driven and electro-osmosis in various 

configurations [35-36]. More recently, from a molecular viewpoint, Gillespie and Pennathur 

[37] have investigated enhanced ionic separation by means of a combined pressure driven 

and electroosmotic flow where the direction of electro-osmosis opposes the direction of the 

pressure driven flow. 

The volume of work indicates that there is a need for more robust mathematical models for 

electro-osmotic pumping processes. A unification of the Nernst-Plank theory for the transport 

of the electrolytes in the lubrication framework of peristalsis is a possible methodology for 

further elucidating the mechanisms of electro-osmotic pumping in microscale devices. This is 

the motivation for the present work. Furthermore the Jeffreys non-Newtonian viscoelastic 

model is employed. This rheological model has been used previously by Kothandapani and 

Srinivas [38] for magnetohydrodynamic peristaltic pumping in an asymmetric channel. The 

rheology of the Jeffrey model is different from the Newtonian fluid as it encloses a linear 

model using time derivatives. It has further been utilized by Tripathi et al. [39] for thermal 

transport in intestinal peristalsis, Ellahi et al. [40] for MHD flow and Bhatti et al.[41] for 

peristaltic flow through non-uniform rectangular duct having compliant walls. In the present 
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investigation, electro-kinetic peristaltic pumping of an aqueous ionic solution of Jeffrey’s 

fluid in an asymmetric channel is examined as a simulation of microscale electro-osmotic 

transport.  There exist many different viscoelastic formulations in the literature, including the 

Oldroyd-B model, PTT model, FENE-P model, the Giesekus model, Williamson model etc. 

Each has its relative merits. The attraction with the Jefferys model is that is a modified form 

of the Maxwell model achieved by an additional linear relationship, i.e. the time derivative of 

shear strain to the Maxwell model. The convected Jeffrey model in due course gives the 

Oldroyd-B model. Since we are considering biological flows, not polymer flows, the Jeffrey 

model is adequate. It is known (as with the convected Maxwell model) to be able to predict 

the appearance of the first difference of normal stresses but does not predict non-Newtonian 

behavior of the shear viscosity nor the second difference of the normal stresses, these 

characteristics being more important in polymer flows.  

 

2. MATHEMATICAL MODEL 

The two-dimensional peristaltic flow of a non-Newtonian aqueous ionic solution in an 

infinite asymmetric channel having width 1 2b b  is considered, as illustrated in Fig.1. An 

asymmetric flow regime is produced by choosing the peristaltic wave train, travelling with 

wave velocity c  along the walls to have different amplitudes ( 1 2,a a ) and phase ( ).The 

upper and lower walls of the asymmetric microchannel (see Fig.1) are geometrically 

modelled using the respective relations: 

2 1 1

2
sin ( ) ,h b a x ct





 
   

 
………………upper wall                                                          (1a) 

1 2 2

2
sin ( )h b a x ct






 
     

 
,   ………lower wall                                                          (1b) 

where  , x , t  are the wavelength, axial coordinate, and time. The phase difference   

varies in the range 0    . When 0  , a symmetric channel with waves out of phase 

can be described and for   , the waves are in phase. The aqueous ionic solution of Jeffrey 

viscoelastic fluid is sensitive to an externally applied electric field along the length of the 

asymmetric channel. The positive ions n  and negative ion n  are both assumed to have bulk 

concentration (number density) 0n , and a valency of z  and z  respectively. For simplicity, 

we consider the electrolyte to be a :z z  symmetric electrolyte, i.e. z z z    . It may be 
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noted that the channel material for typical peristaltic pumps comprise silicone elastomers, 

teflon, polyvinyl chloride, polyurethane rubber or similar substances. 

 

 

 

 

 

 

 

 

 

 

Fig.1. Physical model for peristaltic pumping in an asymmetric microchannel under an 

applied external electric field. 

 

These materials are typically employed in a wide variety of microfluidic devices owing to 

their flexibility and ease of fabrication. When an aqueous solution is brought into contact 

with such materials, it acquires a net surface potential (referred to as zeta potential,  ) 

relative to the bulk through a solution pH-dependent surface charging process. It may be 

observed that for majority cases, with pH near 7, the zeta potential is around -25 mV or less. 

Regardless of the charging mechanism, the presence of a negative surface potential leads to 

an attraction of n  ions and repulsion of n  ions, leading to the establishment of the 

electrical double layer (EDL).  It is assumed that the wavelength of the pulse is much larger 

than the channel height; i.e. we assume that the lubrication approximation is valid ( 1  ). 

The governing equations for unsteady, two-dimensional, viscous, incompressible flow under 

an applied axial electrical field are given as: 

 

2b  

 

2 2( )h    

1 1( )h    

1a  

2a  

1b  

y  

x  

Direction of peristaltic wave 
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Net flow due to 
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applied electric field 
and peristaltic 
pumping 

Net positive 
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0,
u v

x y

 
 

 
                                                                                             (2) 

,
xyxx

e x

SSp
u v u E

t x y x x y
 

     
       

      
                                                    (3) 

,
yx yyS Sp

u v v
t x y y x y


     

      
      

                                              (4) 

where, , , ,Sxx xy yx yyS S S  are the extra stress components and , , , , ,u v p  and xE  denote the 

fluid density, axial velocity, transverse velocity, pressure, fluid viscosity, and axial electrical 

field. The constitutive equation of extra stress S  for the Jeffrey viscoelastic model, following 

[38]-[41] may be defined as: 

2

1

( )
1

S


  


 


,                                                                                                                 (5) 

where 1 2, ,    are the rate of strain, the ratio of relaxation and retardation times, the 

retardation time and dots denote differentiation with respect to time. 

Also, e z n e z n e      , denotes the charge number density of the aqueous solution present with 

e  being the protonic charge. The charge number density is related to the electrical potential 

in the transverse direction   through the Poisson equation: 

2 e


   ,                                                                                                                             (6) 

where   is the electrical permittivity. Furthermore in order to determine the potential 

distribution, it is necessary to describe the charge number density. For this, the ionic number 

distributions of the individual species are given by the Nernst-Planck equation for each 

species as:  

2 2

2 2

B

n n n n n Dze
u v D n n

t x y x y k T x x y y

     
 

            



         

              
,                           (7) 

where, we have assumed equal ionic diffusion coefficients for both the species, and that the 

mobility of the species is given by the Einstein formula where D  represents the diffusivity of 

the chemical species, T  is the average temperature of the electrolytic solution and Bk  is 

Boltzmann constant.  
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To facilitate analytical solutions of equations (2-7) it is advantageous to introduce a group of 

non-dimensional parameters; 
1

, , ,
x y tc

x y t
b 

    1 2
1 2, ,

c c 
 

 
   

2

1 ,
pb

p
c 

  1
1

1

,
h

h
b

   

2
2

1

,
h

h
b


1 2 2

1 2

1 1 1

, ,
a a b

b
b b b

    , 1b



 ,

0

,
B

ze n
n

k T n


   .where   are the wave number.  The 

nonlinear terms in the Nernst Planck equations are  2O Pek , where RePe Sc  

represents the ionic Peclét number, Sc D   denotes the Schmidt number and 

Re
c

 
  denotes the Reynolds number, where the nonlinear terms in the momentum 

equation are found to be  2O Re .   Therefore, the nonlinear terms may be dropped in the 

limit that Re, , 1Pe   .  

In the above approximations, dropping the bars, the emerging Poisson equation is: 

2
2

2 2

n n

y


    

   
  

,                                                                                                              (8) 

where 0 1
1

2

B d

n b
b ez

K T


 
  , is known as the electro-osmotic parameter and 

1
d


  is 

Debye length or characteristic thickness of the electrical double layer (EDL).  

And the ionic distribution may be determined by means of the simplified Nernst Planck 

equations:  

2

2
0

n
n

y y y




   
  
   

 ,                                                                                                          (9) 

subjected to 1n    at 0   and 0n y    where 0y    (bulk conditions). These yield the 

much celebrated Boltzmann distribution for the ions  

n e 

  .                                                                                                                                (10) 

Combining equations (8) and (10), we obtain the Poisson-Boltzmann paradigm for 

determining the electrical potential distribution: 

 
2

2

2
sinh

y


 





.                                                                                                                  (11) 

In order to make further analytical progress, we must simplify equation (11). Equation (11) 

may be linearized under the low-zeta potential approximation. This assumption is not ad hoc 
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since for a wide range of pH, the magnitude of zeta potential is less than 25 mV. Therefore, 

equation (11) may be simplified to yield: 

2
2

2y


 





,                                                                                                                             (12) 

which may be solved subject to 
1

1y h
 


  and 

2
2y h

 


 . The electrical potential function 

thereafter emerges in terms of transcendental hyperbolic functions: 

1 2

y yC e C e    ,                                                                                                                (13)  

where, 
2 1

2 1

2 1

2 21

h h

h h

e e
C

e e

 

 

 



 and 2

1 2 1 2
2 1

2 2
1 2

h h h h
e e e

C
h h

e e

   
 

 








 
  
 

. 

In the above limit, dropping the bars, the continuity and momentum equations are reduced as: 

0,
u v

x y

 
 

 
                                                                                         (14) 

2
2

2

1

1
,

1
hs

p u
u

x y
 



  
  

   
                                                                            (15) 

0
p

y





,                                                                                        (16) 

where 
x

hs

E
u

c




     is the Helmholtz-Smoluchowski velocity or maximum electro-osmotic 

velocity. The associated normalized boundary conditions are: 

10u at y h  ,                                                                                                           (17a)                                  

20u at y h  ,                                                                                                            (17b) 

Integrating Eq.(15) and imposing the above boundary conditions, the axial velocity is found 

to be: 

 
2

1 2 1 3 41 ( )
2

y y

hs

y p
u u C e C e C yC

x

   
      

 
,                                                          (18)                     

where,                                                      

  1 1 2 2

2 2

1 1 2
3 2 2 1 1 2 1

1 2

1
( ) ( )

2 2

h h h h

hs hs

h hp p
C h u C e C e h u C e C e

h h x x

     
       

         
       

, 

 

 
   

1 2

1 2 2 1 1 2 1 21 2 22 2

4 2 1 2 1

2 1

1
2 ( ) 2 ( )

2

h h

h h h h h h h h

hs

e p
C e h h u C e e C e e

h h x

 

         

  
  

      
  

. 
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The volumetric flow rate in laboratory frame of reference is defined as: 

2

1

h

h

Q u dy  ,                                                                                                                           (19) 

which, by virtue of Eq. (18), assumes the following form: 

 

        

      

1 2

1 21 2 1 2

2 1 1 1

2 2 3 3

3 1 2 4 1 2 1 1 2

1 1

6 3 1
6

h h
h hh h h h

hs hs

e
Q C u e e e C e e u

p
C h h C h h h h

x


    






 


     

 
         

 

.                      (20)                                                                

The transformations between a wave frame ( , )w wx y moving with velocity c and the fixed 

frame ( ,x y ) are given by : 

, , ,w w w wx x ct y y u u c v v      ,                                                               (21) 

where ( , )w wu v and ( , )u v  are the velocity components in the wave and fixed frame respectively. 

The volumetric flow rate in the wave frame is given by: 

2 2

1 1

( 1)

h h

w w w w

h h

q u d y u dy    ,                                                                                     (22) 

which, on integration, yields:  

1 2wq Q h h   .                                                                                                          (23) 

Averaging the volumetric flow rate along one time period, we get: 

1 1

2 1

0 0

( )Q Qdt q h h dt     ,                                                                                     (24) 

which, on integration, yields 

1 21 1wQ q b Q b h h        .                                                                                 (25) 

Rearranging the terms of Eq.(18) and using Eq.(23), the pressure gradient is obtained as: 

 

   
      

        

1 2

1 2 1 2

1 2 1 2

2

2 1 2 1 2 13

1 2 1

2

1 1 2 1 2 1

16
2 2 1

1

2 2 2 1

h h
h h h h

hs

h h h h

hs

p e
C e u e h h e h h

x h h

e Q C u e h h e h h


  

  

    
 

     

 





       

  

        

.           

                      (26) 

The pressure difference across one wavelength ( p ) is defined as follows: 

 
1

0

p
p dx

x


 


,                                                                                                           (27) 
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Using Eq.(18), the stream function in the wave frame (obeying the Cauchy-Riemann 

equations, w

w

u
y





and w

w

v
x


 


) takes the form: 

  

 

     
         

           

   

1 2
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1 2

2
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1 2
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2 2 1 2
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3. NUMERICAL RESULTS  

Figs.2-5 present selected graphical solutions for velocity, volumetric flow rate, pressure 

difference and streamline distributions, with different values of κ (ratio of the one side width 

of the capillary b1 and the Debye length λ), hsu  (Helmholtz-Smoluchowski velocity or 

maximum electro-osmotic velocity) and 1  (ratio of relaxation to retardation times).   
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Fig.2. Velocity profile (axial velocity vs. transverse coordinate) at 

1 20.6, 0.5,b 1,   
1 20.5, 1,    and (a) 11, 1hsu   , / 2   (b) 

11, 1   , / 2   (c) 1, 1hsu   , / 2  (d) 1, 1hsu   , 1 1  . 
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Fig.3. Volumetric flow rate vs. channel length at constant pressure gradient and 

1 20.6, 0.5,b 1,   
1 20.5, 1,    and (a) 11, 1hsu   , / 2   (b) 

11, 1   , / 2   (c) 1, 1hsu   , / 2  (d) 1, 1hsu   , 1 1  . 
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Fig.4. Pressure difference across one wavelength vs. time averaged volumetric flow rate at 

1 20.6, 0.5,b 1,   
1 20.5, 1,   / 2  (a) 11, 1hsu    (b) 11, 1    

(c) 1, 1hsu   . 
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Fig.5. Stream lines in wave form at 1 20.7, 1.5, 3,b    1.5Q  , 
1 20.5, 1,  

/ 2  for (a) 10, 1, 1hsu      (b) 11, 1, 1hsu       (c) 11, 1, 1hsu    

(d) 11, 2, 1hsu      (e) 11, 3, 1hsu       (f) 11, 1, 2hsu       (g) 

11, 1, 3hsu       (h) 11, 1, 0hsu       
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4. DISCUSSION 

The velocity of the fluid with varying magnitude of the electro-osmotic parameter is shown in 

Fig.2 for the fixed values of 
1 20.6, 0.6,b 1,    1 20.5, 1,   / 2   and 

11, 1hsu   . Since  denotes the ratio of one side width of the capillary b1 and the Debye 

length λ, it follows that for  →1, the one side thickness of the capillary is reduced to the 

same order of magnitude as the Debye length. This situation is not completely compatible 

with the solution for which Debye-Hückel approximation is valid. However it still remains a 

reasonable approximation to follow. In the present analysis, therefore we consider three 

different values of electro-osmotic parameter i.e.  0 1
1

2

B d

n b
b ez

K T


 
   i.e. 2, 3 and 4. Flow 

reversal is computed for all the cases. It is emphasized that the velocity of the fluid attains its 

minimum value at the wall of the capillary i.e. strongest deceleration is induced at the wall. It 

is also evident that beyond a critical height of the capillary there is no significant change in 

the velocity with electro-osmotic parameter and near the wall, with increasing electro-

osmotic parameter (i.e. for smaller Debye length) there is a substantial deceleration in the 

axial velocity. 
x

hs

E
u

c




   and it is clear that the maximum velocity is directly proportional 

to the external applied electric field. The axial velocity of the fluid is studied for three 

different values of hsu each depicting the case of adding ( 0hsu  ), opposing ( 0hsu  ) and 

vanishing applied electric field ( 0hsu  ).  Increasing hsu  depletes the electrokinetic body force 

resistance and manifests in increasing axial velocity (Fig. 2b). Quite an opposite phenomenon 

observed when the rheology of the fluid changes from Newtonian (λ1 = 0) to a Jeffrey fluid 

(λ1 > 0) in the presence of aiding applied electric field. The velocity of the fluid is markedly 

decelerated with an increase in λ1 i.e. ratio of relaxation to retardation times (which signifies 

stronger viscoelastic effect). 

 

Fig. 3 depicts the variation of the time-mean flow rate as a function of electroosmotic 

parameter (), characteristic electro-osmotic velocity ( hsu ) and ratio of relaxation to 

retardation times (λ1). It is observed that the volumetric flow rate increases with greater 

electro-osmotic parameter i.e., as the EDL becomes thinner, as seen in fig. 3a.  This is a result 

of the increased body force for thin EDL. Volumetric flow rate becomes positive for higher 

values of κ. Volumetric flow rate decreases (in the negative sense) when an opposing electric 
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field changes to the case of an aiding electric field. Volumetric flow rate is increased with 

positive electro-osmotic velocity (
hsu ) whereas it is reduced with negative electro-osmotic 

velocity, as plotted in fig. 3b. Volumetric flow rate is decreased with greater ratio of 

relaxation to retardation parameter as observed in fig. 3c. Lower values are obtained for the 

Jeffrey fluid (λ1 > 0) rather than the Newtonian fluid (λ1 = 0) in the presence of aiding electric 

field.  

 

Fig.4 depicts the variation in pressure difference as a function of time averaged volumetric 

flow rate across a single wavelength for different values of κ, 
hsu  and λ1.  Figs. 4a-c 

demonstrate that the relation between pressure difference and the volumetric flow rate is 

inversely proportional i.e., the pressure rise gives larger values for small volumetric rate and 

vice-versa. It is also noted that the pressure difference is larger for the absence time averaged 

flow rate. However, all the variations are linearly dependent. The electroosmotic parameter 

introduces an additional electro-osmotic force which enhances the pressure difference (fig. 

4a). The pressure difference and the time average flow rate are larger for the favorable 

electric field. Pressure difference is increased with positive electro-osmotic velocity ( hsu ) 

whereas it is reduced with negative electro-osmotic velocity, as plotted in fig. 4b. The 

pressure difference decreases with increase of λ1. This implies that pressure difference is 

larger for the Newtonian fluid than the Jeffrey fluid but only up to a critical flow rate; 

thereafter the reverse trend is computed.  

 

Another interesting phenomenon in peristaltic motion is trapping. It is basically the formation 

of an internally circulating bolus of fluid by closed stream lines. This trapped bolus is pushed 

along by peristaltic waves. The streamlines for the different governing parameters hsu , κ, λ1 

are shown in Figs. 5(a) – 5(h). Figs. 5(a) – 5(c) depict the streamlines for different values of 

hsu with κ=1 and λ1=1. It is evident that with increase of the electro-kinetic slip velocity, 

there is a decreasing resistance to the fluid motion. It is this reduction in resistance which 

ensures an augmented propensity of the fluid particles to propagate along the axial direction 

and contributes to the elimination of trapping. In the presence of opposing electric field, the 

effect of the electro-osmotic parameter on the streamlines is shown in Fig. 5(b), 5(d) and 5(e) 

for κ = 1, 2 and 3. It is clear that smaller value of κ leads to parallel streamlines while for the 

case of higher value of κ, there is a small region where there is a fluid bolus which is trapped. 

It observed that the trapping of the bolus decreases in both upper and lower half of the 
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channel with an increase in osmotic parameter. The characteristic of bolus with different 

value of λ1 (= 0, 1 and 3) is visualized in Figs. 5(f), 5(g) and 5(h), with all other parameters 

invariant. It is evident that the shape of the bolus is larger for the case of Newtonian fluid 

than the non-Newtonian Jeffrey fluid.  The trapping bolus for both upper and lower channel 

decreases with an increase in viscoelastic parameter, λ1. 

 

5. CONCLUSIONS 

A mathematical study has been conducted for peristaltic motion of aqueous electrolyte 

solution of a non-Newtonian Jeffrey fluid through an asymmetric microchannel altered by 

concomitant applied electric field. The study is motivated by further expounding the electro-

hydrodynamics of peristaltic electro-osmotic (EO) mechanisms in on-chip drug release and 

micro-scale biomimetic EO pumps. Assuming low Reynolds number and lubrication theory 

approximations, exact solutions for the transformed boundary value problem are derived for 

velocity, volumetric flow rate and pressure difference. Streamlines are also computed. The 

influence of electroosmotic parameter, Helmholtz-Smoluchowski velocity (varying 

magnitudes of the electric field for both aiding and opposing cases) and the ratio of relaxation 

and retardation time parameter on flow characteristics is investigated. Furthermore a 

comparison is made between the Newtonian and Jeffrey fluid results. The existence of the 

trapping is observed to be highly dependent on the electric field (aiding, opposing and 

neutral). Bolus magnitude is enhanced for a Newtonian fluids compared with non-Newtonian 

Jeffrey fluid.  Increasing relaxation to retardation time ratio parameter therefore decreases 

bolus size. Pressure difference is enhanced with positive electro-osmotic velocity (uhs) 

whereas it is decreased with negative electro-osmotic velocity. Stronger viscoelasticity as 

characterized by greater relaxation to retardation time ratio parameter suppresses the pressure 

difference. Increasing electro-osmotic parameter (i.e. smaller Debye length) induces a 

significant retardation in the axial. Furthermore the flow is decelerated with an increase in 

ratio of relaxation to retardation times indicating that stronger viscoelasticity of the aqueous 

solution is inhibiting. The present computations may provide deeper insight into electro-

osmotic propulsion mechanisms for micro-scale applications including lab-on-a-chip devices 

for flow mixing, cell manipulation, etc. The one-dimensional solutions derived herein 

furthermore provide a more realistic insight into non-Newtonian electro-osmotics since we 

evaluate simultaneously the combined effects of peristaltic waves, viscoelasticity and electro-

osmotic body force. These solutions also provide a solid foundation for benchmarking more 

complex computational fluid dynamics models of flow characteristics of rheological fluids 
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deployed in electro-osmotic pumps. The current work has been restricted to a one-fluid 

viscoelastic model and has ignored slip effects at the walls. It has also only considered a 

simple conduit. Important work in two-fluid electro-kinetic transport has been reported by 

Afonso et al. [42], in slip electro kinetic flows also by Afonso et al. [43] and in annular 

electro-osmotic pumping by Ferrás et al. [44]. These complexities constitute interesting 

pathways for extending the current work and will be addressed imminently. 
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