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Abstract 

Over the last few decades global warming and human intervention have led to 

changes and deterioration in natural vegetation across the world. The Al Jabal Al 

Akhdar, in north east Libya, is one of those areas that have experienced changes in 

land cover. This region has environmental and economic importance in providing 

suitable habitat for wildlife and providing services for local communities and cities 

in the Libyan Desert. The overall aim of this thesis was to evaluate the factors which 

have affected vegetation cover change in the Al Jabal Al Akhdar region over the last 

42 years. 

There were three key objectives to this research: (1) to assess changes in natural and 

semi-natural vegetation cover in the north-east of Libya using forty years of satellite 

image data, (2) to assess land cover change and the effects of human activities in the 

study area over a period of 42 years, (3) to assess the factors affecting vegetation 

change in the study area. A further objective was to assess climate change in the 

study area using the climate data which was available from three climatic stations as 

climate change may be responsible for vegetation cover change in the areas that have 

low human activity. 

To address these objectives, remote sensing techniques were used to assess 

vegetation cover change and the changes in human activity from 1972 to the present. 

Satellite images provide data that cannot be collected by traditional methods and 

provide a historical archive of what the landscape looked like in the past. This study 

used multi-temporal Landsat images, which are freely available, for the period from 

1972 to the present and provide the key temporal record of vegetation change on the 

Earth. Vegetation Indices (NDVI, SAVI and EVI), derived from the spectral 

reflectance of leaves and canopies, were used to assess the changes in vegetation 

cover over time. Image classification was also used to characterise the nature of land 

cover change, in particular the impact of human intervention. 

A key finding related to Objective (1) was that some areas have experienced a 

statistically significant change in vegetation indices over the 42 years which was 

interpreted as a change in vegetation cover in the areas in question. A key conclusion 

related to Objective (2) was that land cover had changed in the study area over the 

period of study. The influence of human activities was exerted through increased 



 

xii 
 

land use and decreased areas of forest and shrubland in the region. The outputs of the 

above-mentioned objectives and the effects of climate change were used to assess 

Objective (3), to detect which factors caused vegetation cover change in the Al Jabal 

Al Akhdar region. The main factors causing vegetation change were the effects of 

human activities in the areas adjacent to human settlements, while in the sparsely 

populated areas in the south of the study area, vegetation cover changes may be 

related to recent climate change. 

In conclusion, although the number of available Landsat images used to delineate the 

changes in vegetation cover was limited, the methods used to interpret the images for 

vegetation indices and image classification were invaluable in determining important 

results for the objectives of the thesis. The results obtained from assessing vegetation 

cover and land cover change and patterns of changes are major steps towards filling 

the information gap and creating a database for monitoring land cover in the study 

area. This effort will contribute towards facilitating decision-making on mitigating 

the impact of land use dynamics on land cover as well as provide a basis for future 

research. 

 

 

 



Chapter 1: Introduction 

 

1 
 

CHAPTER 1: INTRODUCTION 

 

1.1 Introduction to the research  

Vegetation is a key component of ecosystems (Briales & Ravenel, 2013). It is involved in 

the regulation of various biogeochemical cycles, for example, water, carbon and nitrogen 

(Buriánek et al., 2013); affects soil development by increasing productivity; and provides 

habitat for wildlife (Briales and Ravenel, 2013). Every plant species has physiological 

characteristics that allow it to live in a certain range of temperatures, moisture, soil 

acidity, solar radiation, evaporation and nutrients (Hoffmann, 1998). Changes in these 

characteristics lead to changes in vegetation phenology, primary productivity, biomass 

and the distribution of vegetation types (Krishnaswamy et al., 2014). 

Climate is one of the factors that has a significant effect on the characteristics of 

vegetation. Changes in climatic elements such as temperature, precipitation, humidity and 

evaporation affect directly or indirectly affect vegetation dynamics (Langgut et al., 2011). 

Climate has changed significantly over the past five decades as a result of increased 

incidence of greenhouse gases in the atmosphere and CO2 emissions produced by such 

human activities (IPCC, 2014), such as deforestation, industrial development and the 

burning of fossil fuels for transport and energy production (McMichael et al., 2003; 

Chmura et al., 2011). Recent changes in climate include increases in temperature and 

changes in precipitation patterns, and these changes have impacted on terrestrial 

ecosystems (Horion et al., 2013).  Global climate change has led to changes in vegetation 

dynamics (Lei et al., 2014), such as ".. an increase in growing season duration and 

changes in photosynthetic activities" (Horion et al., 2013, pp, 20). Temperature is one of 

the strongest determinants of plant growth and increases in temperature, as a result of 

climate change, lead to increases in the rates of respiration and transpiration, which might 

lead to decreased carbon storage in soil due to increased respiration rates (Gerber et al., 

2004; De Long, 2016). Changes in temperature and rainfall may cause plant stress and 

carbon loss (Gerber et al., 2004), and may also affect vegetation growth and agricultural 

activity.  

Human activity, in concert with local factors such as climate change, has also caused 

vegetation change, for example, increased population has led to significant land cover 
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change globally since the mid-1950s (Foster, 1998). This is a result of the exploitation of 

areas which were covered by ‘natural vegetation’ and have been transformed by human 

activities, such as agriculture, urban and industrial development (Estes et al., 2012). 

These changes have caused degradation in soil productivity, soil erosion, desertification 

and decreases in plant and animal biodiversity (Wang et al., 2004; Mansour et al., 2012). 

The Mediterranean basin is one of the areas likely to be most susceptible to climate 

change (Liberato et al., 2011). Evidence indicates that the climate in the region has 

changed since the beginning of the 20th century (IPCC, 2014), with mean annual 

temperature increasing by 0.75°C from the mid-20th century (Osborne et al., 2000). 

Precipitation has decreased in terms of total annual rainfall, and interannual variance of 

precipitation across different regions of the Mediterranean has been noted. Philandras et 

al., (2011), for example, examined monthly precipitation totals from 1900 to 2010 at 40 

meteorological stations in the Mediterranean basin to investigate the trends in rainfall in 

the region. The precipitation data were collected from the World Climate Data and 

Monitoring Programme (WCDMP) of the World Meteorological Organization. The study 

indicated declining trends of annual precipitation totals over the period of 1901–2009 in 

the Mediterranean region as a whole although some areas have recorded fluctuating 

trends of rainfall, such as in northern Africa, southern Italy, and the western Iberian 

Peninsula (Philandras et al., 2011).  

During the second half of the 20th century the Mediterranean region experienced changes 

in regional vegetation in response to climate change, drought and land use change (Ivits et 

al., 2014; Jiguet et al., 2011; Lasanta & Serrano, 2012). Climate change has affected the 

structure and productivity of vegetation (Osborne et al., 2005), while human activity in the 

last few decades has impacted on some areas in the Mediterranean region. Increased 

urbanization, agriculture, industry, fires, uncontrolled grazing, salinization, pollution and 

deforestation in the region, have caused degradation of natural vegetation as a result of 

human-induced pressure on ecosystems in the region (Ispikoudis et al., 1993; Zalidis et al., 

2002).  

Natural vegetation in north eastern Libya comprises plants that have grown without 

human intervention (El-Barasi et al., 2011). The area belongs to the semi-arid/ arid 

natural vegetation of the Mediterranean (Bukhechiem, 2006). The perennial trees of the 
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Maquis are the main vegetation in the region, with Juniperus phoenicia one of the most 

important components of the vegetation. This is a perennial evergreen that comprises an 

estimated 80% of the total perennial tree cover in the Al Jabal Al Akhdar region (Al 

Mukhtar, 2005). The natural vegetation is found at the highest elevations and is 

concentrated in the Al Jabal Al Akhdar (Green Mountains) region which is the study 

area for this research.  It is the richest region of biological diversity in the country 

(Hegazy et al., 2011). The Al Jabal Al Akhdar region is located in the south of the 

Mediterranean basin and is located in the Mediterranean climate zone (Figure1.1). 

  

Figure 1.1: The Mediterranean basin and Al Jabal Al Akhdar region in Libya (Source: 

Google, 2017) 

Natural vegetation of the Al Jabal Al Akhdar has a significant impact in the region in 

terms of providing suitable habitat for wildlife (Hegazy et al., 2011), providing nutrients 

for the soil, stabilization of the soil and preventing erosion. The north-facing slopes, 

where there is extensive farmland, provide vegetables and fruits for local communities in 

the region and the cities of the Libyan desert (Ben Khaial & Bukhechiem, 2005). In 

addition, the natural vegetation in the region is economically important for the local 

population, in terms of providing medicinal herbs, aromatic plants, honey, traditional 

industries for tourists, and provides milk, eggs and meat from the livestock which feeds 

on the natural vegetation (Al Mukhtar, 2005).  

In recent years, a number of local studies (Al Mukhtar, 2005; Ibrahim, 2006; Ben 

Khaial & Bukhechiem, 2005) have examined the natural vegetation in the Al Jabal Al 

Al Jabal Al Akhdar 

N 
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Akhdar region of Libya and have confirmed that there has been a decrease in the 

natural vegetation cover. These studies relied on fieldwork to examine vegetation in 

different places in the study area. The studies were limited due to the rugged terrain of 

the region in terms of mountain cliffs and deep valleys with difficult access. By 

monitoring the dynamics of semi-arid/ arid natural vegetation in the Al Jabal Al 

Akhdar using remote sensing techniques, it is possible to map a large area that cannot 

be accessed by other means. In addition, remote sensing can provide a long temporal 

record of land surface observations dating back to 1972. This research will investigate 

natural vegetation dynamics in the Al Jabal Al Akhdar region using remote sensing 

techniques and examine changes in vegetation cover over the last 42 years in an 

attempt to determine the factors that have caused those changes. Although climate 

change is potentially an important factor, there are only three climatic stations in the 

study area. Therefore, it is not possible to examine spatial changes in climate within 

the study area. The research therefore used the available climate data on a station basis 

to provide a general picture of climate change in the Al Jabal Al Akhdar.  

1.2 Research aims and objectives  

The main aim of this study is to assess the natural and semi-natural vegetation dynamics 

of the Al Jabal Al Akhdar region and examine the factors affecting vegetation change. 

Vegetation cover has changed in the Mediterranean region due to climate change 

(Colombaroli & Tinner, 2013;  Ivits et al., 2014; Jiguet et al., 2011; Lasanta & Serrano, 

2012) and human activities (Muñoz-Rojas et al., 2011; Pérez-Hugalde et al., 2011; 

Sluiter, 2006). Overall this study attempts to decouple the effects of climate change and 

human activity, in relation to vegetation cover change, by examining the influence of 

each factor in the study area. This will be achieved by identifying the relationships 

between the areas that have experienced change in vegetation cover and the spatial 

distribution of human activities. Trends of temperature and rainfall at three stations are 

examined in order to give insights into the general climate trends in the study area, since 

the climate change may be responsible for vegetation cover change in the areas that have 

no influence from human activity.  

This is the first study to investigate vegetation cover for the whole of the Al Jabal Al 

Akhdar using remote sensing techniques. A few local scale studies have examined the 
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natural vegetation of the region, but most of these studies have adopted field work and 

studied a limited number of sites in the Al Jabal Al Akhdar, because of difficult 

topography and problems encountered when accessing certain areas such as deep 

valleys. The natural vegetation of the Al Jabal Al Akhdar has environmental and 

economic importance because it is the only region with evergreen forests in Libya. 

Much of the rest of the country is desert and so the study area is of key importance in 

soil stabilization and prevention of erosion, and its contribution to nutrient cycling 

(Ageena et al., 2013). In addition, the region is a focus of agricultural activity and 

provides products such as vegetables, fruit and livestock for the local cities in north 

east Libya. So, this study will examine the interaction of human-induced vegetation 

change and climate-induced vegetation change, and attempt to assess the variation of 

the factors affecting vegetation change in the study area since the 1970s. 

The aims of the study can be split into the following three specific objectives (Figure 

1.2). 

 

 

 

 

 

 

 

 

 

 

Figure1.2: An aim and objectives of the research 

 

Aim of the study 
 

Factors affecting recent vegetation 

cover change in north-east Libya 

 

Objective 3 
 

Assess the factors affecting 

vegetation cover change in 

the study area over the 42 

years 

Objective 1 
 

Investigate vegetation cover 

change over the last 42 years 

Objective 2 
 

Assess human activity change 

in the study area over 42 years  
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OBJECTIVE ONE:  To assess changes in natural and semi-natural vegetation 

cover in the north-east of Libya using the 42 year satellite image data record 

 

This objective evaluates the change in vegetation cover in the Al Jabal Al Akhdar using 

remote sensing techniques, in particular multi-temporal Landsat images which are 

available for the period from 1972 to the present. The satellite imagery provides 

information that cannot be collected by traditional methods due to difficulties in 

accessing the area, and provides the only medium-term record of vegetation change on 

the Earth (Lasanta and Vicente-Serrano, 2012). This objective used Vegetation Indices 

(VI), in particular the Normalized Difference Vegetation Index (NDVI), Soil Adjusted 

Vegetation Index (SAVI) and Enhanced Vegetation index (EVI) as proxies of 

vegetation cover to assess the changes. Vegetation index change images were used to 

determine the changes in vegetation cover in the region. This objective led to the 

specific research question: 

Has the vegetation cover of the Jabal Al Akhdar as determined using spectral 

vegetation indices changed over the period 1972 to the present? 

 

OBJECTIVE TWO:  To assess the changes of human activities in the Jabal Al 

Akhdar 

Human activity affects vegetation cover through different land use activities (Estes et 

al., 2012). These include urbanization, water management, agricultural development 

and other forms of land use management. In order to assess semi-natural and natural 

vegetation cover change, it is necessary first to account for the changes in human 

activity and identify regions where human activity has increased? 

The political situation has changed in Libya since 2011 and several illegal activities can 

be observed in the area,  e.g. illegal charcoal-burning, overgrazing, collection of 

medicinal plants for commercial and folk medicine use, cutting down trees, etc. without 

control in the areas that have natural vegetation.  

This objective was established to assess human activity changes in the Al Jabal Al 

Akhdar, through examining land cover change across the area over 42 years. To achieve 

this objective, a time series of Landsat imagery was used to investigate changes in land 
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cover across the study area. The research classified satellite images in order to identify 

land cover changes and generate thematic maps of land cover over the period of study.  

This objective used a land cover mapping approach in the Al Jabal Al Akhdar together with 

Libyan population data to determine the concentration of population and its relation to 

human activity, especially the activities that could not be observed on the satellite images 

such as grazing and logging to produce fuel. The aim was to produce a map of human 

activity across the study area, allowing identification of areas of high and low human 

activity. This objective led to a specific research question:  

Has land cover changed in the Jabal Al Akhdar over the period 1972- present? 

OBJECTIVE THREE:  To assess the factors affecting vegetation change in the 

study area 

Vegetation in the study area is affected by many factors which cause spatial and 

temporal change in vegetation cover. This objective was used to determine the factors 

which affect vegetation cover change in Al Jabal Al Akhdar. To achieve this objective, 

the research used results of the first objective, spatial maps of vegetation cover change 

in the region, in combination with the result from the second objective, a spatial map of 

human activity that identified areas of high and low activity across the study area. To 

examine the influence of human activity on vegetation change, the research overlaid the 

human activity map with the vegetation change map to examine spatial correspondence. 

The expectation was that the areas that have experienced vegetation change would be 

the same areas that had dense populations and a variety of human activities. Areas with 

vegetation change and sparse populations may be responding primarily to climate 

change.  This objective led to the main research question:  

What factors have caused vegetation cover change in the Al Jabal Al Akhdar over the 

period 1972- present? 

1.3 Thesis structure  

This thesis is organised in such a way as to achieve its objectives, through eight chapters, 

and these chapters are briefly described as follows: 
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Chapter 1 is a general introduction to the contents of the research.  

Chapter 2 presents a general background literature review on the factors impacting on 

vegetation cover change, including climate change and human activity. In this chapter, 

research focusing on vegetation cover change in the Mediterranean region, important 

factors affecting vegetation change, and the role of remote sensing for detecting the 

vegetation change in the region are presented. The chapter also includes general 

background principles of remote sensing and its application to vegetation change 

detection.  

Chapter 3 is devoted to the general background of the study area in terms of its 

location, topography, soil, water resource and vegetation cover. In addition, analysis 

of climate data from three stations in the study area, focusing on temperature and 

precipitation, is presented in order to assess changes in climate during the period of 

the study. 

Chapter 4 outlines the methodologies which are used to achieve the research aims and 

objectives. The chapter presents the different applications of remote sensing data that 

have been applied to assess vegetation, land cover and land use change. The chapter 

also contains a discussion of image pre-processing and also presents the vegetation 

indices that are used to assess the vegetation dynamics in the study area. The chapter 

illustrates the image classification methods used to map the land use and land cover 

change and investigates how the relationships with population data are assessed. At the 

end of this chapter, the method which is applied to investigating the climate change in 

the stations of the study area is presented. 

Chapter 5 assesses the vegetation cover change in the study area, which is the first 

objective of the thesis, using Landsat imagery. In this chapter, the research generates 

vegetation index images from the satellite data in order to measure the vegetation cover 

change over the study period. The chapter outlines the statistical methods that were 

developed to detect statistically significant changes in the vegetation index time-series 

data.  

Chapter 6 assesses land cover change over the study period. This chapter addresses 

the second objective and presents the classification method that was used to assess 
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land cover change. The classified images are reclassified to present each class in order 

to calculate the areal extent for each category in the study area and present the 

changes over the period of the study. The results of the changes are outlined at the end 

of this chapter. 

Chapter 7 provides spatial analysis for the factors that affect vegetation change. This 

chapter presents the results of overlaying the vegetation cover change with the results 

concerning land use and land cover change, and population data. The results show 

factors that have a significant effect on vegetation cover change in the study area.  

Chapter 8 is dedicated to a discussion of this research and conclusions reached. 
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CHAPTER 2: LITERATURE REVIEW 

 

 

This chapter contains an introduction to the background literature and techniques that 

are both relevant to and applied through this thesis. It includes background 

information relating to vegetation change and the factors which cause it. This chapter 

explains both the positive and negative influences of climate change and human 

activity on vegetation cover in the Mediterranean region. The applications of remote 

sensing to vegetation change detection are reviewed, with technical details and 

examples of previous successful applications and investigations of a similar nature in 

the Mediterranean region.  

Finally, this chapter identifies research gaps and the relationship to previous work 

already performed in this field in the study area, and also how this work is original in 

its own right and adds to current existing knowledge. This chapter provides the 

background required to both justify the methods and interpret the results presented 

throughout this thesis.  

 

2.1 Introduction 

Natural vegetation includes all plants that grow naturally without human intervention 

(Gregory et al., 2012), growing in ‘natural’ climatic, soil and landform conditions 

(Hoffmann, 1998). Changes in these conditions lead to changes in vegetation 

phenology, primary productivity and the distribution of vegetation types 

(Krishnswamy et al., 2014). The Mediterranean basin is characterized by a special 

biodiversity (Combourieu-Nebout et al., 2015). The vegetation is a complex mixture 

of species which vary between Eurasian vegetation to the north and the east of the 

Mediterranean basin, and the desert vegetation of the Sahara-Arabian region in the 

south (Langgut, et al., 2011). Consequently, the Mediterranean region is one of the 

most globally diverse regions with over 25,000 native and endemic plant species 

(Abbott & Le Maitre, 2010; Colombaroli & Tinner, 2013; Beltrán et al., 2014). 
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2.2 Vegetation cover change in the Mediterranean region 

 

Vegetation cover is a key indicator of long-term vegetation change in ecosystems 

(Trodd & Dougill, 1998). Vegetation of the Mediterranean region comprises a 

variety of forests, which grow in elevated areas which are characterized by particular 

temperature and rainfall conditions, and shrubs and herbaceous plants, which grow in 

coastal areas and at a low altitude with lower levels of precipitation (Hegazy et al., 

2011). 

Land cover in the Mediterranean has been changing since the end of the 1940s due to 

drivers which include climate, land use and socio-economic changes (Fox et al., 

2012; Lavorel et al., 1998). The change in vegetation cover has varied from area to 

area across the region, for example, the forest area in southern France increased 

between 1965 and 1976 by 2428 km2 per year, whereas the forest area in Tunisia 

decreased over the same time period by 130 km2 per year (Shoshany, 2000). 

There has been an increase in areas impacted by drought, land cover change and land 

use changes in the region, such as the expansion of agricultural areas, pasture and 

urban development. For example, there was an increase in the total urban area from 

30.1 ha to 393.8 ha between 1950 and 2003 in a Mediterranean catchment area near 

St Tropez, France (Fox et al., 2012), and less than 5% of primary vegetation 

remained unaltered (Pérez-Hugalde et al., 2011).  

Vegetation cover of some areas in the Mediterranean region has been monitored 

using observations from remote sensing to detect land cover change (Li et al., 2012). 

Remote sensing has a proven track record for monitoring fire disturbance and 

desertification in many areas in the Mediterranean region (Shoshany, 2000). Several 

observations confirm that there was an increase in shrubland cover between 1981 and 

1991 in eastern Turkey and the Maghreb region of North Africa (Algeria, Morocco 

and Tunisia) (Osborne & Woodward, 2001; Horion et al., 2013). In other areas there 

was a decrease in vegetation cover due to climate change and human activity 

(Shoshany, 2000).   
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Overall, the natural vegetation cover of the Mediterranean region has changed over 

time. This change differs from area to area and has been either positive or negative. 

There was a variety of factors affecting on vegetation cover, such as climate change, 

drought, human activity, fire and desertification. Most of these factors have had a 

negative effect on vegetation and caused decreasing vegetation cover or changes in 

the structure or distribution of vegetation. 

2.3 Factors affecting vegetation change 

 

2.3.1 General factors affecting vegetation change 
 

Natural vegetation at a given place is determined by abiotic factors, in particular 

climate, landform and soil related characteristics (Jing-Yun et al., 2002). Each plant 

lives within a certain range of temperature, moisture and soil conditions (Hoffmann, 

1998), and any change in abiotic conditions may lead to a change in the structure and 

distribution of vegetation (Jing-Yun et al., 2002). 

 

There are various factors impacting on global vegetation change; these factors could 

have a direct or indirect effect on vegetation, some of them rapid and others slow. 

Significant factors affecting vegetation change include both natural and 

anthropogenic factors (Prentice, 1986; Soleimani et al., 2008). These factors control 

the growth and distribution of vegetation. Natural factors include climate, soil, water 

availability and terrain (Haferkamp, 1988), whereas anthropogenic factors are human 

activities which affect or change the land cover (Lepart & Debussche, 1992). Soil 

may affect vegetation by changing the quantity of organic materials, quality of the 

detritus, and root respiration (Raich & Tufekcloglu, 2000). However climate is one 

of the main controllers of vegetation growth and distribution (Langgut, et al., 2011). 

For example, the dominance of Mediterranean maquis with lower tree populations 

and taller steppe vegetation in the South East Mediterranean area, compared with the 

evergreen and sclerophyllous forests in the western and central region, is due to a 

moisture gradient (Langgut, et al., 2011). The projections of climate change for 

2016–2035 in southern Europe made by the IPCC (2014), taking into account an 

increase in temperature, predict a possible reduction in forest and semi-natural 

vegetation and an increase in the risk of desertification in some areas such as Sicily, 

one of the Italian regions most threatened by land degradation (La Mela Veca, et al., 
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2016). Climate change could significantly affect terrestrial ecosystems (Horion et al., 

2013), and lead to a change in vegetation phenology, primary productivity and 

biomass (Krishnswamy et al., 2014; La Mela Veca, 2016). As Horion et al. (2013, 

p.20) states, “primary productivity increased globally by 6% between 1982 and 1999 

due to climate changes”.  

During the second half of the 20th century, the Mediterranean region experienced 

large changes in regional vegetation in response to drought and land use change, 

which included the effects of economic development on the environment 

(Colombaroli and Tinner, 2013;  Ivits et al., 2014; Jiguet et al., 2011; Lasanta 

&Serrano, 2012). The effect of climate change on vegetation is more difficult to 

predict. It can irreversibly convert plant community composition, structure, and 

function. It may also, cause sharp modifications in species and their habits (Jiguet et 

al., 2011: pp, 407). Human activity may have a longer term effect on natural 

vegetation than climate change. It could be rapid and occur within days or weeks 

(McMichael et al., 2003; IPCC, 2007). However, it is clear that the impact of land 

use and land cover change together with climate change could lead to a deterioration 

in the biodiversity of the Mediterranean region over this century (Muñoz-Rojas et al., 

2011). 

2.3.2 Effects of human activity on vegetation change in the Mediterranean 

region 

Human activity is one of the main factors affecting vegetation change (McMichael et 

al., 2003). Vegetation cover has changed since the middle of the 20th century as a 

result of an increase in population, which turn has caused an increasing demand for 

food, which in turn led to an increase in agricultural land and urban areas (Foster, 

1998; Estes et al., 2012). Over the last ten years, land use has changed in rural areas 

across the Mediterranean as a result of the intensification of agriculture, fires, 

urbanization and tourism (Pérez-Hugalde et al., 2011). Recent land cover change in 

the Mediterranean has been associated with extensification of human activity 

(Sluiter, 2006). Global warming, climate change and desertification are caused by 

anthropogenic emissions of carbon dioxide (CO2), while the influence of land use 
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and land cover change combined with climate change have led to a deterioration in 

the biodiversity of the Mediterranean since the mid-20th century (Muñoz-Rojas et 

al., 2011). Thus, these areas will be more sensitive to the risks of flooding and 

desertification due to loss of vegetation cover, which protects the soil from erosion 

and reduces evaporation, which in turn, affects soil moisture (Fox et al., 2012). 

 

Human interventions over the millennia, through changes in vegetation cover caused 

by land use change and fires, have resulted in local extinctions of plants, including 

rare endemics and economically valuable species (Colombaroli and Tinner, 2013). 

Fire is one of  the most important factors shaping the patterns of vegetation around 

the world (Fyllas & Troumbis, 2009), and most fires are caused by human activity. 

While climate change and land use have changed vegetation composition and its 

distribution, fire disturbance can lead to the degradation of ecosystems by directly 

affecting topsoil, seeds and vegetation (Colombaroli & Tinner, 2013). 

On the other hand, human intervention has also had a positive impact on vegetation 

cover by keeping ecosystems open and diverse. For example, the impact of fire on 

the evolution of plants has been an important factor in the Mediterranean region as 

some species need fire to grow (Naveh, 1975), and diversity in grassland  provides a 

much diversified range of  food sources (Colombaroli & Tanner, 2013). 

Reforestation has taken place in many countries in the Northern Mediterranean 

region as a result of the policies of countries. For example, the forests in Spain, 

France and Portugal have been re-established causing an increase in forested areas 

during the period 1950 to 2010 , due to the reforestation actions of the EU, which has 

overseen the conversion of  agricultural areas or grassland to forests (Fuchs et al., 

2012), especially in the areas that have experienced degradation in vegetation cover 

as a result of human activity, such as in the mountainous and watershed headwaters 

areas where reforestation has reduced soil erosion and prevented an increase in 

desertification (Blondel, 2010: Dale et al., 2000).  

2.3.3 Effect of climate change in the Mediterranean region 

The Mediterranean region is an area which has experienced significant climate 

change (Liberato et al., 2011). Studies conducted by the IPCC fourth and fifth reports 

(2007, 2014), Michaelowa (2006) and Giorgi & Lionello (2008), confirm that the 
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climate in the region has been changing since the beginning of the 20th century. The 

countries most impacted by climate change are in North Africa and the eastern 

Mediterranean region (IPCC, 2014). The climate of the Mediterranean is 

characterized by hot, dry summers and mild winters with a large intra-annual 

variability in rainfall (De Luis et al., 2001; Et-Tantawi, 2005). Temperatures increase 

greatly towards the Sahara desert. The coastal areas of North Africa typically have a 

dry summer with precipitation occurring in the winter months. Climate change in the 

Mediterranean region is related to an increase in the mean annual temperature and 

changes in precipitation patterns in the region (Abbott & Le Maitre, 2010). 

 

The mean annual temperature in the Mediterranean region has increased by 0.75 °C 

since 1970 (Osborne et al., 2000), with expectations of increases of 1 - 3°C between 

2010 and 2039, 3 - 5°C by mid-century (2040–2069) and of 3.5 -7°C by the end of 

the century (2070–2099) (Abbott & Le Maitre, 2010; Lelieveld et al., 2012). The 

period 1976 –1994 has been described as a climatic warming period in the 

Mediterranean region (Osborne et al., 2000) because of increased temperatures, 

recurrence of droughts and fluctuations in the amount and distribution of rainfall. 

 

Increases in temperature have led to increased drought in the second half of the 20th 

century in the Mediterranean region (Lelieveld et al., 2012), and the frequency and 

intensity of droughts in the 21st century are expected to increase (Cook et al., 2014), 

which is partly due to an increase in evaporation. Furthermore, high temperatures 

may lead to an increased risk of fire, which may raise serious problems for 

Mediterranean ecosystems in terms of damage to large areas of vegetation and soil 

(De Luis et al., 2001). As a result, the above-mentioned climate changes have had a 

negative impact on terrestrial ecosystems (Horion et al., 2013). For example, primary 

productivity of vegetation decreased during the extremely hot summer in Europe in 

2003 (Jiguet et al., 2011). 

Precipitation has shown marked variation throughout the Mediterranean basin 

(Osborne et al., 2000). Changes in the total annual rainfall and the inter-annual 

variance of precipitation differ across the regions of the Mediterranean basin 

(Lavorel et al., 1998). The mean annual rainfall has decreased over the 

Mediterranean region between latitudes 40°N and 45°N, with concentrations of 
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rainfall occurring during a few months each year which has resulted in an increase in 

droughts (Combourieu-Nebout et al., 2015; Osborne et al., 2000; Karas, 1997). Areas 

which receive more precipitation north of 45°N, will be drier as a result of increased 

evaporation and changes in the seasonal distribution of rainfall and its intensity 

(Karas, 1997). For example, during the recurrent droughts in the early 1990s, which 

occurred in the south of the Mediterranean basin, some areas in the east and west of 

the region experienced intense rainfall and extreme cold events (Combourieu-Nebout 

et al., 2015; Osborne et al., 2000; Rivaes et al., 2013). 

Climate change has influenced vegetation (Lei et al., 2014; Morales et al., 2007), 

with changes in growing season length and vegetation productivity (Ivits et al., 

2014). Some species have benefited from changes of temperature or rainfall and 

others have not (Abbott & Le Maitre, 2010). For example, some areas in the region 

experienced an increase in productivity and length to the growing season while the 

drought events between 1999 and 2010 allowed the Mediterranean ecosystems to 

adapt in terms of vegetation phenology and productivity (Ivits et al., 2014). Plants 

have adapted to drought conditions by growing deeper roots to access water, and 

having a decreased leaf area and a thicker epidermis layer to reduce the transpiration 

and respiration processes (Osborne et al., 2000). 

On the other hand, some types of vegetation have been damaged by drought and 

warming conditions. For example, drought has affected forests in terms of structure, 

canopy shape and biodiversity (Dale et al., 2000), and has increased tree mortality 

and negatively affected crown condition between 1987 and 2007 in the southern 

European forests (Jiguet et al., 2011). 

Temperature change is the largest factor influencing all plant growth processes, such 

as photosynthesis, transpiration, respiration, the breaking of seed dormancy and seed 

growth (Brovkin, 2002).  Each type of vegetation species has an optimum 

temperature and a minimum requirement of heat. If the temperature decreases below 

a critical level, the plant stops growing. Increased respiration and transpiration due to 

increased temperature leads to decreased photosynthesis, which affects growth and 

may lead to physiological drought and death of plants (Berendse, 2005; Brovkin, 

2002; Taub, 2010). The structure of the plant may change in response to increases in 
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temperature, such as decreased leaf area to reduce the transpiration process and water 

loss from the plant (Podleśny & Podleśna, 2013). 

Observed changes in climate include a marked decrease in precipitation in the 

Mediterranean basin (De Dios et al., 2007). Precipitation has both a direct and 

indirect impact on vegetation in that it affects, for instance, plant growth and soil 

moisture directly, while indirectly impacting soil respiration which leads to limited 

microbe activity in the soil (Reichstein et al., 2003).  In addition, increasing 

precipitation may lead to flooding, soil erosion and removal of nutrients from the soil 

which plants rely on for growth (Chmura et al., 2011; Mistiming et al., 2011). 

Changes in the pattern of rainfall may also affect forest growth because the trees are 

accustomed to growing within a given climatic condition (De Dios et al., 2007). 

 

2.4   Approaches to monitoring vegetation change 

Monitoring vegetation change involves making repeated measurements, usually of 

the same sample units, to assess changes in composition, structure and condition over 

time; it also involves permitting investigation of the processes that influence such 

changes (Elzinga et al, 1997). To assess and detect vegetation change, it is necessary 

to use multi-temporal data sets to identify vegetation change over long periods 

(Alqurashi & Kumar, 2013). There are several methods of monitoring vegetation 

change, some of which rely on ground-based measurement such as the cover of 

vegetation, the density of vegetation and leaf area index (Pears, 1990). Other 

methods use remote sensing techniques to detect vegetation change over longer 

periods (Hansen and Loveland, 2012).  

Ground-based measurements are used to monitor vegetation in a small area, and rely 

on field work and direct measurement of parts of plants, such as the leaf area index; 

thus, it inevitably takes a long time to examine vegetation change (Kasturirangan, 

1996). Remote sensing has the capacity to detect changes by way of providing a long 

temporal record of land surface observations. It is used to monitor large areas with 

high spatial resolution; all generated information is based on electromagnetic 

radiation emitted or reflected from an object (Suwanprasit and Srichai, 2012; Hansen 

and Loveland, 2012; Trodd and Dougill, 1998). Remote sensing data are of 

http://www.sciencedirect.com/science/article/pii/027311779500657Z
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considerable value because they allow analysis of data both temporally and spatially. 

Time-series remote sensing data can reveal trends in vegetation cover change 

(increase or decrease) over long periods of time (Hill et al., 2008). Geographic 

Information Systems (GIS) have the potential to spatially model information about 

land use and land cover changes (Symeonakis et al., 2004). GIS uses multiple layers, 

such as topographic maps, soil maps, and vegetation maps to extract useful 

information in terms of trends and changes using statistical and analytical functions 

(Sluiter, 2006). 

2.4.1 Ground based measurement of vegetation 

Ground-based measurement of vegetation can be used to determine the composition 

of vegetation in a given area; however, it is impossible to measure large areas 

(Kasturirangan, 1996). Investigating the changes in vegetation cover, density and 

structure of plants generally requires long-term studies to examine and monitor the 

changes (Pears, 1990). There is a variety of quantitative ground-based measurements 

that can be used, as discussed below. 

 

2.4.1.1 Vegetation cover 

Vegetation cover may be defined as the proportion of the ground that is obscured by 

plant materials above ground such as leaves, stems and flowers (Wilson, 2007). It is 

a measurement of the whole community without categorizing plants into species (Li 

et al., 2015, pp, 6). It “values the proportion of the ground surface covered when the 

high parts of each plant are projected perpendicularly down on to the ground. Cover 

values are expressed as a percentage of total area of the sampling unit” (Pears, 1990, 

pp, 23). The photographic method calculates vegetation cover from a picture (Hall, 

2001; Roush et al., 2007), but this method will may not be useful when the cover of 

plants is overlapping, because plants can have leaves and stems creating a combined 

cover, which can take values that exceed 100%. Leaves and stems of a plant do not 

often completely obscure the ground (Seefeldt & Booth, 2006).  Meanwhile, the 

visual estimation method is the most common method of estimating cover because it 

does not require specialist equipment, although it may require the ability to identify 

plants by species to reveal the entire coverage of each species. To measure coverage 

http://www.sciencedirect.com/science/article/pii/027311779500657Z
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across a study area, an average of the cover of an individual species is usually taken 

to estimate overall total cover (Pears, 1990; Seefeldt & Booth, 2006). However, a 

drawback of visual estimation is the inaccuracy of the results of measurement (Pears, 

1990), because it is subjective, and determined by differences appertaining to each 

individual observer (Wilson, 2011). 

2.4.1.2 Leaf area index 

Leaf area index (LAI) is an important measure for monitoring vegetation dynamics 

as it is related to various biophysical processes within and below the canopy (Fan et 

al., 2009). LAI is the total one-sided area of leaf tissue per unit ground surface area 

[LAI = leaf area / ground area, m2 / m2] (Breda, 2003). This measurement depends 

on the composition of vegetation, the stage of development, season and site 

conditions, and is used in models to estimate vegetation productivity, 

evapotranspiration and photosynthesis (Fan et al., 2009). It differs from vegetation 

cover measurement such as the photographic method, by directly measuring the 

tissue of leaf per unit ground surface area. LAI can be measured directly by 

harvesting leaf tissue and quantifying the leaf surface or indirectly by using various 

techniques, such as hemispherical photography or the use of optical instruments 

(Weiss et al., 2004). 

2.4.1.3 Density 

Density is another measurement of vegetation. It is a quantitative measure of the 

number of plants per unit area or is derived from measurement of the distance from 

one plant to the next nearest plant (Alhamad, 2006). It is useful to determine the 

changes in population structure and productivity of dominant species. Density 

determination can be very time-consuming, especially when plants are small and 

numerous (Warmink, 2007).   

2.4.2 Remote sensing of vegetation change 

Remote sensing is used in many applications including land cover classification, soil 

moisture measurement, forest classification, snow mapping and sea ice type 

classification (Gandhi et al., 2015). Remote sensing is the observation and 
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measurement of objects on Earth, the atmosphere and oceans from a distance 

(Suwanprasit & Srichai, 2012). It detects radiation which is reflected from the Earth's 

surface or emitted energy from the Earth (Chuvieco & Huete, 2010). The radiant 

energy signal is transmitted from the object to the sensor in the form of 

electromagnetic radiation, enabling measurement of information about the object 

from afar (Solaimani et al., 2001). Electromagnetic energy reaching the earth's 

surface from the sun is reflected, transmitted or absorbed and these waves consist of 

the entire set of wavelengths or frequencies. The EM spectrum ranges from the 

shortest wavelengths (gamma rays, x-rays) up to the long wavelengths (visible, 

infrared) used in telecommunication (Chuvieco & Huete, 2010). Spectral signatures 

are the values of reflectance at different wavelengths for features on the Earth such 

as water, sand, roads, forests, etc, which are measured by remote sensing techniques 

(Shaw & Burke, 2003). The differences in spectral signatures are used to help 

classify satellite images into spectrally similar classes (Aggarwal, 2004).  

The visible (VIS) spectrum ranges between 0.4 and 0.7 µm, and is divided into three 

regions. The blue region ranges between 0.4 and 0.5 µm, and is used for atmosphere 

and water imaging. Green (0.5 to 0.6 µm) is used for imaging vegetation and deep 

water structures. Red (0.6 to 0.7 µm) is used for imaging man-made objects, and 

deep water up to 9 m, soil, and vegetation. The Near-infrared (NIR) region is 0.7 to 

1.2 µm, and it is used primarily for imaging vegetation (Chuvieco & Huete, 2009). 

The Mid-infrared (MIR) 1.2 to 8 µm, is used for imaging vegetation, soil moisture 

content, and some forest fires. Thermal-infrared (TIR) ranges between 8 and 14 µm, 

and is used for imaging geological structures, thermal differences in water currents, 

fires, and for night time studies (Chuvieco & Huete, 2009; Campbell, 2002). 

Different types of vegetation cover can be identified through their spectral behaviour 

in the form of reflected radiation across these different wavelength regions (Bannari 

et al, 1995). 

2.4.2.1 Spectral response of vegetation  

 

Vegetation has a unique spectral signature which enables it to be distinguished from 

other types of land cover (Jiménez & Díaz-Delgado, 2015). The spectral response of 

vegetation depends on such factors as the orientation and height of the sun in the sky 
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(solar elevation angle), the health of vegetation, and the state of the atmosphere 

(Shaw & Burke, 2003). Differences in the water content, pigment, carbon content 

and nitrogen content in plants are responsible for the variation in spectrum (Silleos et 

al., 2006).  

The spectral reflectance of vegetation can be measured in three major wavelength 

regions (Figures.2.1): 

 

Figure 2.1: Spectral signature of green vegetation (Source: GSP216) 

 

(i) Visible wavelengths (0.4-0.7 m): low reflectance, high absorption, and minimum 

transmittance. Here, the reflectance of vegetation is low in both the blue and red 

regions of the spectrum, due to absorption of radiation by chlorophyll for 

photosynthesis (Cracknell, 2007), but there is a slight reflectance peak in the green 

band, which is the reason why growing vegetation appears green.  

(ii) NIR (0.7-1.3 nm):  high reflectance and transmittance, very low absorption. The 

reflectance is high due to the cellular structure in the leaves (Roder &Hill, 2009). 

Hence, vegetation can be identified by the high NIR (Kharuk et al., 1992).  

(iii)  MIR (1.3- 2.5 nm): both reflectance and transmittance generally decrease from 

medium to low, while absorption increases from low to high (Roder &Hill, 2009). 

Internal leaf structure has some effect, but the reflectance is largely controlled by leaf 

tissue water content (Mather, 1996).  
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The spectral reflectance may be used to distinguish between vegetated and non-

vegetated areas on remotely sensing imagery, and demonstrate differences between 

the species (Mather, 1996). However, it is affected by factors such as soil nutrient 

status, the growth stage of vegetation and colour of the soil (which may be affected 

by recent weather conditions) (Kharuk et al., 1992; Roder &Hill, 2009). The values 

of reflectance may also be used to estimate physical properties of the vegetation, 

such as leaf area or biomass production ((Jiménez & Díaz-Delgado, 2015).   

2.4.2.2 Vegetation Indices (VI) 

 

Vegetation indices (VI) are derived from the spectral reflectance of leaves and 

canopies, as measured by remote sensing sensors and are used to detect changes in 

vegetation cover (Cihlar et al., 1991). VI are indicators that describe the greenness or 

relative density and health of vegetation in a satellite image and may be related to the 

amount of photosynthetically active radiation absorbed by a plant canopy, and 

therefore to physiological processes, such as photosynthesis, occurring in the upper 

canopy (Huete, 2012). VI were developed to extract the plant signal only, however, 

the soil background, moisture conditions, solar zenith angle, sensor view angle and 

the atmosphere may alter VI values in complex ways (Jackson & Huete, 1991). 

Over forty vegetation indices have been developed during the last two decades in 

order to assess vegetation response and minimize the effects of the factors described 

above (Bannari et al., 1995; Gandhi et al., 2015). The three VI used in this study to 

examine vegetation cover change based on a remote sensing technique are described 

in the next section. 

2.4.2.2.1 Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) measures green leaf biomass 

(Cihlar et al., 1991). It is also used to estimate the fraction of vegetation cover and 

also the exact percentage of the vertical projection of vegetation (branch, stem and 

leaves) in an area of the land surface (Li et al., 2015). The NDVI is calculated as a 

ratio difference between measured canopy reflectance in the red and near infrared 

bands respectively (Gandhi et al., 2015). The red and near infrared wavelengths are 

sensitive to the presence of green vegetation. Lower reflectance from vegetation in 
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the red band is caused by chlorophyll absorption, so the red wavelength can 

distinguish between dry areas and green areas. The high reflectance from vegetation 

in the near-infrared band is caused by the refraction of radiation within the leaf due 

to leaf cellular structure. Near-infrared wavelengths can therefore monitor the density 

and distribution of vegetation and distinguish between plants, soil and water (Bannari 

et al, 1995). The NDVI is widely used as an indicator of vegetation productivity and 

as a measure of the vegetation cover (Wang et al., 2004; Andela et al., 2013). The 

NDVI is calculated for each pixel in a satellite image using the following equation 

(Equation 2.1): 

                                

where NIR is the near infrared reflectance and RED is the red reflectance. NDVI 

values range between -1 and +1, where maximum theoretical greenness is at NDVI= 

1 and less vegetated or non-vegetated areas have values close to zero (Box et al., 

1989; Jin et al, 2008). NDVI can indicate vegetation cover change for a certain area 

through a time series of the NDVI images (Wang et al., 2004; Ahl et al., 2006). 

 

2.4.2.2.2 Soil Adjusted Vegetation Index (SAVI)  

 

The spectral reflectance of a plant canopy is the combination of the reflectance 

spectra of plant and soil components (Rondeaux et al., 1996). The background and 

brightness of soil exert a considerable influence over canopy spectra and the 

calculated vegetation indices. For example, darker soil increases the amount of 

vegetation estimated and gives higher values for the vegetation index (Huete, 1988). 

Soil background is one of the challenges facing remote sensing for monitoring 

vegetation (Gilabert et al., 2002), since the effect of soil brightness and colour exert 

considerable influence on vegetation on VI (Bannari et al, 1995). Soil-adjusted 

indices such as SAVI have been introduced to address this issue. It is an important 

step towards describing dynamic soil-vegetation systems from remotely sensed data 

and attempting to reduce the influence of the soil. SAVI assumes that most soil 

spectra follow the same soil line when Red and NIR are adopted against each other. 

This is “the linear relationship between the reflectance in red and near infrared 

wavelengths of bare soil reflectance with varying amount of moisture roughness" 

[2.1] 

http://wiki.landscapetoolbox.org/lib/exe/detail.php/remote_sensing_methods:ndvi_eq.png?id=remote_sensing_methods:normalized_difference_vegetation_index
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(Gilabert et al., 2002, pp. 303), and minimizes soil brightness influences on spectral 

vegetation indices involving red and near-infrared (NIR) wavelengths. (Rondeaux et 

al., 1996). To calculate SAVI from images, the following equation is used (Equation 

2.2):                                                                                                                              

 

where L is an adjusting factor of  0.5, which has been found to be the optimal  in 

reducing soil effect over the full range of canopy covers (Huete, 1988). 

2.4.2.2.3 Enhanced Vegetation Index (EVI) 

The Enhanced Vegetation Index (EVI) was proposed by the MODIS Land Discipline 

Group to provide spatial and temporal information regarding global vegetation 

(Matsushita et al., 2007). With the launch of the MODIS sensors, NASA adopted 

EVI as a standard MODIS product, which is distributed by the United States 

Geological Survey (USGS) (Sesnie et al., 2012). The enhanced vegetation index 

(EVI) was developed as an alternative vegetation index to reduce the influence of 

atmospheric conditions on vegetation index values, and correct for canopy 

background signals (Jiang et al., 2008). 

 EVI differs from NDVI because it tends to be more sensitive to canopy differences 

like leaf area index (LAI), canopy structure and plant phenology while NDVI only 

responds to the amount of chlorophyll present in the plant (Rondeaux et al., 1996).  It 

uses a red band and near infrared band to capture vegetation amount and a blue band 

to remove the influence of atmosphere from the red band. It is computed using the 

following equation (Equation 2.3): 

 

where NIR, RED, and Blue are atmospherically-corrected surface reflectance 

wavelengths, and C1, C2, and L are coefficients to correct for atmospheric conditions 

(i.e., aerosol thickness). For the standard MODIS EVI product, L=1, C1=6, and 

C2=7.5. EVI has the ability to improve vegetation monitoring by minimizing soil and 

atmospheric influences (Rondeaux et al., 1996).  

[2.2] 

[2.3] 

http://wiki.landscapetoolbox.org/lib/exe/detail.php/remote_sensing_methods:savi_eq.png?id=remote_sensing_methods:soil-adjusted_vegetation_index
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This research uses these specific indices because NDVI is effective for measuring a 

low-density of vegetation cover (Andela et al., 2013). Consequently, the NDVI 

proved useful for monitoring the vegetation in the study area due to its ability to 

monitor an area that has a low-density of vegetation cover. The SAVI was used 

because there are many types of soil in the study area. The reflectance of these soil 

types varies and can affect reflectance of areas that have low vegetation. The 

research used EVI to remove the impact of the ground below the vegetation, 

especially areas with a high density of vegetation because the material on the ground 

may affect the vegetation value. 

 

2.4.2.3 Image classification 

 

Image classification methods can be used to create thematic maps and detect land 

cover change (Gallego, 2004). Classifying satellite images to present the distribution 

of different land cover types across an area and comparing these classified images 

over different periods can show how the land cover changes (Elhag & Boteva, 2016). 

Land cover classification provides a picture of the distribution of land cover at a 

given time (Aplin, 2004).  

The process involves sorting the pixels in a digital image into a finite number of 

individual classes, or categories of data, based on the spectral value in each pixel in 

an area that has been chosen for classifying (Lillesand and Kiefer, 1987) (Figure 

2.2). The technique of classification can be applied to raw images but it should 

preferably be carried out on atmospherically corrected data (Chuvieco & Huete, 

2010). Atmospheric correction is a process of removing the impacts of gases, water 

vapour, aerosols, dust and pollutants from the satellite image (Chuvieco and Huete, 

2010).  

Classification methods are based on two major categories of image classification 

technique:  unsupervised and supervised classification (Jensen, 2005). One of the 

advantages of unsupervised classification is that it requires minimum input from the 

analyst (Campbell, 2002). Therefore, when the analyst does not have enough 

knowledge and information about a study area, this method may be more useful for 

classification. Unsupervised classification is used when the outcomes (groupings of  
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Figure 2.2:  Satellite image classification modelling (source: CCRS, 1998). 

pixels with common characteristics) are based on the software analysis of an image 

without the user providing sample classes (Jensen, 2005).The computer uses 

clustering techniques to determine which pixels are related spectrally and groups 

them into classes (Chuvieco and Huete, 2010). The analyst can specify the desired 

number of output classes but otherwise does not aid in the classification process (Liu, 

2005). The analyst then determines the land cover identity of these spectral groups 

by comparing the classified image data with ground reference data (Lillesand & 

Kiefer, 1987). In supervised classification, the analyst can select sample pixels in an 

image that is representative of specific classes using his knowledge about the study 

area (Chuvieco and Huete, 2010). These training areas (input classes) are used as 

references to classify pixels that have the same reflectance in the image (Jensen, 

2005). Many analysts use a combination of supervised and unsupervised 

classification processes to develop a final output analysis and classified maps (Liu, 

2005). 

2.5 Remote sensing of vegetation change in the Mediterranean 

 

Remotely sensed data have potential value for vegetation change detection. Many 

studies have used remote sensing data and VI to detect vegetation change in the 

Mediterranean basin and the factors which have caused this change. Some of these 
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studies have examined the influence of climate change on vegetation change in 

different areas in the region and others have used the remote sensing technique to 

examine the impact of human activity on land cover in some areas of the region. In 

general these studies have confirmed that land use in the Mediterranean region has 

undergone widespread transformation in recent decades, due largely to changes in 

socioeconomic development, which have had a strong effect on land cover. For 

example, Lasanta et al. (2012) used Landsat images to analyse abrupt and gradual 

changes in the land cover types from 1984 to 2012 in the middle Ebro valley, Spain. 

They found that time-series of high spatial resolution satellite images and the 

application of remote sensing provided a useful approach to identifying abrupt and 

gradual changes in land cover processes, which are not available using classical 

analytical approaches.  
 

Land cover has changed in many areas due to urban expansion, industrial activity, 

the establishment of land irrigation and agricultural expansion. Other areas have 

gradually changed as a result of global warming and drought. These areas showed 

rates of change that were lower in magnitude than those directly transformed by 

human activity (Bajocco et al., 2012). 

 

The study by Osborne & Woodward (2001) assessed evergreen sclerophyllous shrub 

vegetation, comprised of species such as Quercus coccifera and Pistacia lentiscus at 

sites in eastern Turkey and the Maghreb region of North Africa (Algeria, Morocco 

and Tunisia), between 1981 and 1999. The study used a model designed to estimate 

the NDVI from absorption of photosynthetically active radiation (PAR) and near-

infrared radiation (NIR), which were estimated on a ‘per unit ground area’ basis for 

vegetation and soil components. Secondly, total absorbed and incident fluxes were 

used to obtain reflection coefficients for PAR and NIR at the vegetated land surface, 

from which the NDVI was calculated. The model also reproduced observations of 

diurnal and seasonal variation in photosynthesis, stomatal conductance, 

evapotranspiration and soil water content in sclerophyllous vegetation, and 

adequately estimates NPP and LAI at shrubland sites throughout the Mediterranean 

region.  
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The study compared the results of NDVI with the time-series of the NDVI derived 

from NOAA-AVHRR data for the study area from 1981 to 1991 and the results 

indicated an increasing trend for NDVI in the study areas in both results, noting that 

an increase in the NDVI could have been caused by changes in canopy structure 

which were driven by variation in precipitation and rising atmospheric CO2, and not 

increasing temperature. 

 

Hill et al. (2008) confirmed in their research that the Iberian Peninsula area had 

undergone widespread land use transformations which had had an influence on 

vegetation cover. This study was based on time-series analysis of 1-km regulation 

NOAA–AVHRR images, to assess vegetation dynamics in the study area using the 

NDVI. The results indicated that decreased vegetation cover was mainly caused by 

fires which in turn caused an increase in desertification and a decline of vegetation 

productivity after disturbance. Drought or human activity caused these fires in the 

areas which have undergone a decrease in vegetation cover. 

Symeonakis et al. (2004) studied the relationship between land cover and land use 

changes and land degradation in two Mediterranean sites, which were, firstly, in the 

north of the Alicante province in southeast Spain and, secondly, on the Aegean island 

of Lesbos, Greece, using remote sensing. This study used Landsat images for both 

sites, Landsat MSS (July 1978 and May 1975), TM (August 1999) and ETM+ 

(August 2000). The results showed increases in degradation and runoff, and erosion 

in the areas that were exposed to forest fires, urbanization, and overgrazing. This 

study identified the main cause of land cover change to be human intervention in the 

areas having natural vegetation. 
 

Some studies such as those of  Stefanidis et al. (2016), Sluiter (2005), Alqurashi & 

Kumar (2013), and Symeonakis et al. (2006), examined land cover in the 

Mediterranean region using classification of remote sensing images such as Landsat, 

NOAA AVHRR and ASTER imagery. These studies indicated the effectiveness of 

the classification method to monitor the changes in land cover. They observed 

changes in land cover or land use in different areas in the Mediterranean region over 

different periods of study, and they confirmed that vegetation cover had changed due 

to human activity in recent years.  
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Stefanidis et al (2016) analysed spatial-temporal changes of land cover and land use 

at a catchment scale of two connected lakes in Greece, Lake Vegoritis and Lake 

Petron, from 1972 to 2011. The study was based on classification of historical land 

cover and used a series of Landsat images from 1972 to 2011. Also, climate data and 

temporal series of water levels were analysed to investigate the potential role of 

climate variability on lake hydrology and water quality. Results showed that a 

combined effect of climate and human-induced land cover changes appeared to be 

responsible for the environmental changes in these lakes. Regarding the effect of 

climate, it appears that the precipitation trend declined, which correlated with water 

level fluctuations, whereas, the results of classification showed that between 1972 

and 2011, almost 28% of Lake Vegoritis and 13% of Lake Petron catchment areas 

were replaced by cultivation. 

 

Symeonakis et al. (2006) used Landsat TM and ETM+ data from various dates 

spanning 14 years from 1987 to 2001 to assess land use and cover change in a 

Spanish coastal area as a trial site for the Mediterranean region using classification 

methods. The key result for this study was that land cover changed over the period of 

study with a decrease in forest and shrublands as a result of an increase in human 

activities such as agriculture and urban development. The study confirmed the 

effectiveness of remote sensing to assess long-term land cover change. 

 

Sluiter’s (2005) study examined the Peyne area, approximately 60 km west of 

Montpellier France, to determine and describe changes in vegetation communities. 

This study used three ways to detect any changes: multi-spectral ASTER, Landsat 7 

ETM+ data, and a time series of eight aerial photograph mosaics from 1946 to 2000 

using GIS. Furthermore, it analysed and classified remote sensing imagery of the 

area to determine the changes in land cover. This study demonstrated that it was 

possible and useful to develop a land cover change model to detect the changes and 

factors which caused land cover change and which can be validated by remote 

sensing data. The result indicated vegetation cover had changed over the time and 

this result was confirmed by the three methods used. 
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2.5.1 Remote sensing of vegetation change in Libya 

 

Only a few studies have examined vegetation change in Libya using different remote 

sensing methods. El Tantawi (2005) assessed climate change in Libya and 

desertification of the Jifara Plain in the west of Libya using geographical information 

systems (GIS) and remote sensing techniques. This study assessed the climate at 

eleven climatic stations located in north-west Libya as little information was 

available for southern Libya. The work also investigated the changes of vegetation 

cover in some parts of the Jifara Plain and the desertification in these areas using 

Landsat classification imagery. The study used climate data from the Libyan 

Meteorological Department in Tripoli and used NDVI derived from atmospheric 

correction of Landsat MSS (1976), TM (1987-1990) and ETM+ (1999-2002). 

The main results showed that the temperature had increased over most of Libya from 

1946 to 2000 and large spatial variations of mean annual temperatures were observed 

from north to south over Libya, explained by several factors (urban heat islands in 

cities located in northern Libya and greenhouse gases resulting from the oil 

industries) (Figure 2.3). 

Over the period 1976-2000, annual minimum and maximum temperature trends were 

positive over all of Libya, except Benina in north-east Libya for which a negative 

trend of maximum temperature was computed (Figure 2.4). In terms of precipitation, 

over the period 1976-2000, the trends for annual precipitation totals were negative 

over most of Libya, indicating decreased precipitation at eleven stations across 

Libya. However, this does not correspond with the results of the examination of 

rainfall at the stations of the study area in chapter 3, which showed a fluctuating 

trend of rainfall across the study area over 57 years. 

The Jifara Plain located in north-west Libya, is exposed to desertification and has 

seen significantly degraded quantity and quality of vegetation from 1976 to 2001, as 

a result of climate change, landforms, overgrazing, over-cultivation, population 

growth and deforestation for agriculture in semi-arid lands around settlement areas. 

Soils have been degraded and vegetation cover has declined in many parts of the 

region. (Figure 2.5). 
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Figure 2.3: Regionalization of mean annual temperature trends (°C) in Libya, 1946-2000 (Source: El Tantawi, 2005).

 Benina 
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Figure 2.4: Regionalization of mean annual temperature trends (°C) in Libya, 1976-2000 (Source: El Tantawi, 2005).
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Figure 2.5: Change detection of vegetation and agricultural lands in north Jifara Plain 

1976, 1989 and 2001 (Source: El Tantawi, 2005) 
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Figure 2.5 showed the classification of land cover into cropland and natural 

vegetation in some parts of the Jifara Plain and an increase in the area of cropland 

from 1976 to 2000 along with declining vegetation cover across the study area. 

In Oune’s (2006) study, multi-temporal Landsat TM imagery was used to assess land 

cover change in south west Tripoli in the west of Libya, from 1988 to 2000 using 

classification techniques, Soil Adjusted Vegetation index (SAVI) and selecting fifty 

random areas in 2004 in the south-west of Tripoli to confirm the results of the 

classification. A Geographic Information System was used to combine and interpret 

a range of parameters (land cover, soil type, topography, climate, etc.).  The study 

classified SAVI images of 1988, 1992, 1999 and 2000, with VI values of between  

0.1 and  0.9 to map vegetation of various densities over the study area and classify 

the images into four classes. Very high density of vegetation was classified as equal 

to or greater than 0.4, while high density of vegetation ranged between 0.4 and 0.3, 

with medium density ranging between 0.3 and 0.2 and low vegetation density 

between 0.2 and 0.1 (Figure 2.6). A key result of the analysis of the images was 

detection of vegetation degradation in the study area as a result of increased use of 

marginal lands for crops and grazing due to population growth. Accelerating soil 

degradation and erosion due to inappropriate agricultural practices, and escalating 

deforestation due to a growing need for fuelwood, building materials, cropland and 

urban expansion were also found. 
 

 

2.5.2 Remote sensing of vegetation change in Al Jabal Al Akhdar region 

 

Previous local-scale studies in Libya were limited in terms of spatial coverage and 

spatial resolution. Some researchers adopted fieldwork to study sites in the Al Jabal 

Al Akhdar area, but due to the rugged terrain of the region with its mountain cliffs 

and deep valleys, access to the area was difficult. The most recent study (Ibrahim, 

2008) carried out in this region examined vegetation change from 1982 to 2006. This 

study used remote sensing data for assessing desertification conditions in the Al 

Jabal Al-Akhdar region using the NDVI derived from previous sensors, in particular 

the NOAA-Advanced Very High Resolution Radiometer (AVHRR) (1982-2006)  
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Figure 2.6:  Various vegetation density classes in years 1988, 1992, 1999 and 2000 

(Source: Oune, 2006). 

 

with a resolution of 1 km and Moderate Resolution Imaging Spectrometer MODIS 

(2001-2006) with a spatial resolution of up to 250 x 250 m. 

This study used the mean annual rainfall statistics to detect the effect of rainfall on 

vegetation change and concluded that annual rainfall for the purposes of the study 

varied between the south and north of the area. 

This agreed with spatial distribution patterns of NDVI which ranged from -0.3 to 

0.00 in the southern part of the area, to 0.10 to 0.62 in the northern part of the study 
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area. All results of the NDVI analysis indicated a decrease in vegetation cover across 

the study area (Figures 2.7 & 2.8). The spatial distribution patterns of NDVI ranged 

between less than -0.3 and 0.00 in the southern part of the area to more than 0.10 - 

0.62 in the northern part of the study area. This is consistent with the results of the 

precipitation trend, where the northern part of the area received the greatest amount 

of rainfall. 

 

Figure 2.7: Spatial distribution of annual mean of AVHRR NDVI (2001-2006), in Al 

Jabal Al Akhdar region (Source: Ibrahim, 2008).  
 

The figures show the differences in NDVI values between AVHRR and MODIS 

from 2001 to 2006. The NDVI values from AVHRR sensors were lower than those 

from the MODIS sensor because of atmospheric effects (Fensholt & Sandholt, 2005).  

The data from the NOAA sensor were possibly affected by noise and significant data 

gaps because of issues with the on-board scan motor. 
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Figure 2.8: Spatial distribution of annual mean of MODIS NDVI (2001-2006), in Al 

Jabal Al Akhdar region (Source: Ibrahim, 2008). 

2.6 Other studies of vegetation change in the region 
 

In recent years, a number of local studies have examined the natural vegetation in the 

Al Jabal Al Akhdar region (Al Mukhtar, 2005; Ben Khaial and Bukhechiem, 2005; 

Ibrahim, 2006; Libyan Agriculture Department, 2004).  These studies relied on 

fieldwork, ground measurements of vegetation cover and leaf area index to assess the 

vegetation in some parts of the region. They confirmed that there has been a decrease 

in the semi-natural and natural vegetation cover of the region. The region has dense 

forests of Maquis of juniper, Lentisc trees, and also bromegrass, canary grass, 

bluegrass, and ryegrass. Meanwhile, Hegazy et al. (2011) and Al Mukhtar (2005) 

have suggested that there has been a decrease in the average tree and shrub growth, 

that some parts of trees have died, and that desertification is on the increase in the 

south of the Al Jabal Al Akhdar region. 
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The Libyan Agriculture Department (2004) estimated that the area of natural forests 

in the Al Jabal Al Akhdar region was approximately 320,000 ha at the beginning of 

the 1970s, which had declined by 2004 to about 299,000 ha. This deterioration is 

particularly evident for the juniper tree, a perennial. Some species are approaching 

extinction, such as sage, orchid family types and pistachio atlantics. The perennial 

trees of the Maquis are the main vegetation species in the region, with Juniper 

Phoenicia being one of the most important components of vegetation.  

2.7 Conclusion 

The effectiveness of remote sensing techniques to monitor vegetation change has 

been demonstrated in the studies of El Tantawi (2005), Hill et al. (2008) and Lasanta 

et al. (2012). Although remote sensing provides multi-temporal data sets and 

examines large areas over long periods of time, the technique has still seen very little 

use for monitoring vegetation in Libya. This research is the first study to examine the 

vegetation dynamics of the Al Jabal Al Akhdar area using high spatial resolution 

Landsat (3 0m) data to test a long-term data record for vegetation cover change in the 

study area. The research will also be the first study of vegetation cover change using 

three different vegetation indices NDVI, SAVI and EVI. The research will also 

determine the factors which affect vegetation dynamics in the region, focusing on 

climate change and human activity. Most of the previous studies (Al Mukhtar, 2005; 

Ben Khaial and Bukhechiem, 2005) have assessed only the vegetation in the region 

without exploring the controlling factors. 

The next chapter presents the study area and assesses the recent climate change in the 

Al Jabal Al Akhdar. 
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CHAPTER 3: BACKGROUND ON THE AL JABAL AL 

AKHDAR REGION 

This chapter contains an introduction to the study area. It presents information 

relating to the natural environment of the study area including the location, 

topography, climate, the water availability and information about the population of 

the area. This chapter illustrates the distribution of vegetation in the study area in 

relation to topography. Finally, the chapter investigates the climate change at three 

meteorological stations in the study area. It presents the climate data and the 

methodology used in the study.  

3.1 Introduction  

Libya is located on the south coast of the Mediterranean in North Africa. It is 

situated between 19° 29’- 32° 55’ N and 9° 24’- 25° 02’ E and covers an area of 

approximately 1,750,000 km². Most of the land area is desert with nearly 90.5% of 

the area classified as very barren, 7.5% barren, 1.5% semi-barren, and only 0.5% 

categorized as sub-humid (Ageena et al., 2013; El-Tantawi, 2005). The main 

concentration of population is in the mountains in the north-east and the north-west 

of Libya. Jabal Nafusah (960 m) is the highest point in north-west Libya, and Al 

Jabal Al-Akhdar at 880 m above sea level is the highest in the north-east (El-

Tantawi, 2005).  

3.2   Location of the study area 

Al-Jabal Al-Akhdar is an upland area. It is located between 32° 00’- 32° 58’N and 

longitudes 19° 56’- 23° 09’E (Al Mukhtar, 2005). The total area of the region is 

about 7,800 km2, which extends for a distance of over 300 km along the Libyan coast 

(Bukhechiem, 2006), including the most vegetated part of the country (Bukhechiem, 

2006; Al Mukhtar, 2005). The wide region is characterized by a variety of natural 

environments that are caused by variation in geology, topography, climate, water 

resources, soil and natural vegetation (Figures 3.1 & 3.2). Distance from the sea and 

altitude cause important variations in climate (Ben Khaial and Bukhechiem, 2005). 
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Figure 3.1: The site of Al-Jabal Al- Akhdar in the North East of Libya (Source: 

Ibrahim, 2008). 

 

Figure 3.2: The Al-Jabal Al Akhdar in the north east of Libya (Source: Google Earth, 

2017). 

The study area is a high plateau which varies in elevation from one region to another. 

The elevation of the coastal plain is approximately 26 m above the sea level in the 

north and more than 600 m in the south (Bukhechiem, 2006). The north side of the 

plateau descends steeply towards the coast and consists of steep cliffs which separate 

it from the sea by a coastline which differs in breadth from one place to another (Al 

Mukhtar, 2005). 

N 
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3.3 Topography and landforms 

Al Jabal Al Akhdar is a medium altitude plateau (Ben Khaial and Bukhechiem, 

2005). It consists of three edges and two long terraces extending parallel to the coast 

(Al Mukhtar, 2005). The terraces differ in breadth and length from one area to 

another. The highest area on the ridge of Al Jabal Al Akhdar is the Sidi Al Hamri 

(800 metres above sea level) which extends for a distance of approximately 40 km 

along the watershed of Al Jabal Al Akhdar. There are many large valleys descending 

from the watershed of Al Jabal Akhdar through the north and south interfaces of the 

mountain, to ending up at the sea in the north, and the desert in the south.  Each 

topographical feature is described below. 

3.3.1 The coastal plain 

The coastal plain extends from the first edge of the Al Jabal Al Akhdar and the 

coastline, with a length of about 85 km. In general its breadth ranges between 2 km 

at estuaries to a few metres in some parts of the coastline (Ben Khaial and 

Bukhechiem, 2005).  

3.3.2 The first rim and terrace  

The first rim and terrace are located on top of the first edge. The landforms of the 

terrace are diverse with elevation ranges between 200 and 400 m above sea level, and 

a width exceeding 10 km in some places, and less than 10 km in others. The terrace 

is dissected by many valleys that cross the northern slopes of the Green Mountain 

such as Cove valley, Mmlouh valley, Mashhour valley, Hyena, Tirah, and Al Mahbol 

valleys. The importance of this area lies in agricultural production and pastoral 

activities especially around estuaries where fertile soils occur (Ben Khaial & 

Bukhechiem, 2005).  

3.3.3 The second rim and terrace 

The second rim and terrace are located south of the first terrace with elevation ranges 

between 500 and 700 m above sea level and an increase in height to the south 

towards the third rim (Bukhechiem, 2006). The landforms are very complex 

compared with the first terrace with surfaces dissected by several deep valleys.  
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3.3.4 The third rim 

The third rim is smaller in area than the first and second rim. It is the high point of 

the Al Jabal Al Akhdar, an area of the Sidi Al Hamri, and is located at the watershed 

of Al Jabal Al Akhdar, which divides the valleys sloping to the north, which come to 

an end at the sea, and valleys sloping to the south, which end up at the semi desert 

area in the south of the Al Jabal Al Akhdar. 

The Sidi Hamri is the highest area of the Al Jabal Al Akhdar at altitudes reaching up 

to 880 m above sea level (Ben Khaial and Bukhechiem, 2005). The land is 

predominantly level compared with the previous parts, and large parts of this 

territory are exploited by human activities such as agriculture and livestock 

production (Al Mukhtar, 2005) (Figure 3.3). 

3.3.5 The south slope of the Al Jabal Al Akhdar 

The southern slopes of the Al Jabal Al Akhdar descend gradually towards the south. 

The majority of the terrain is undulating, rugged and covered by rock. This slope is 

incised by many seasonal water courses that end in water bodies surrounded by low 

slopes south of Al Jabal Al Akhdar. This water remains for relatively long periods 

and is often used for watering animals and plants (Al Mukhtar, 2005). The most 

important valleys are the Tnamilo, Al Aker, Qurna, Al Hamama and Samalos, which 

is the largest and most important valley on the southern slopes of Al Jabal Al 

Akhdar, covered by mud sediments known as Al balta (Ibrahim, 2008). 

3.4 The soil of study area 

There are several types of soil in the Al Jabal Al Akhdar, and they differ in their 

mechanical and chemical properties. Distribution of soil is influenced by landforms 

and its relationship with climatic elements, especially temperature and rainfall. There 

are five types of soil in the region: Terra Rossa, Rendzina, Lithosol, Regosol and 

saline soils (Ben Khaial and Bukhechiem, 2005). Terra Rossa (red soils) is 

concentrated in parts of the first terrace, and appears in some parts of the west of the 

coastal plain. In addition there are sub-types of Terra Rossa in the southern parts in 

the Al Jabal Al Akhdar (Al Mukhtar, 2005). Rendzina (dark, greyish-brown) is 

usually formed by the weathering of soft rock types: usually carbonate rocks



                                                                                     Chapter 3: Background on the Al Jabal Al Akhdar region 

 

43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.3: Land forms of north- east Libya including the Al Jabal Al Akhdar (Source: WesternDesertBattle Area1941 en.svg).

https://commons.wikimedia.org/wiki/File:WesternDesertBattle_Area1941_en.svg
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 (dolomite, limestone, marl, chalk) (Ben Khaial and Bukhechiem, 2005). It is 

concentrated in sub-humid areas in some places on the first and second terraces and 

some parts of the coastal area in the region. It is characterized by low organic matter 

content, alkaline, with a depth of more than one metres, although it also includes a 

range of shallow calcareous soil (Al Mukhtar, 2005). 

Lithosol and Regosol soils have similar structure and both of them are shallow rocky 

soils, and mixed with gravel stones with the proportion of gravel greater than that of 

coarser material. Lithosol covers the hills and plateaus of Al Jabal Al Akhdar while 

Regosol covers the north slopes and the slopes of valleys (Ibrahim, 2006). The saline 

soils are spread across hills and the southern plains of the Al Jabal Al Akhdar and in 

valleys on the north and the southern slopes of the region (Bukhechiem, 2006). 

3.5 Water resources in the study area 

The main Libyan water source is groundwater which supplies about 88 % of the 

population. There is some seasonal surface water which collects in valleys. Libya has 

five water basins three of them in the north, Jafara plain, Al Jabal Al Akhdar, and Al 

Hamada Al Hamra and two in the south, Murzuq and El-Kufra-Serir. The water in 

the northern basins has declined sharply in the last few decades with fluctuations in 

precipitation and increases in population leading to increases in the consumption of 

groundwater and subsequently in the increased drilling of wells, which have 

consequently caused salinity in the water, rendering it unusable for drinking (FAO, 

2005).  

A massive water pipeline project, called the Great Man-Made River (GMR) project 

was initiated in 1984, which was designed to transport 2 million cu m of water per 

day from 270 artesian wells via 2,000 km of pipeline to the coast from underwater 

aquifers in the south to Sirte and Benghazi in the north. The basins in the south are 

large but not renewable (El-Tantawi, 2005).  

Dams were built in the northeast and northwest of the country to store rain water. 

The water source in the study area relies mainly on valleys that are filled by water 

during the rainy season, especially when rainfall is more than 40 mm per day-1 (Ben 

Khaial and Bukhechiem, 2005). Sixteen small and medium-sized dams located in the 
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largest valleys have a storage capacity of roughly 385 million m3 and an average 

annual supply capacity of 60.6 million m3 y-1 in the winter (FAO, 2005). 

3.6 Vegetation of the Al Jabal Al Akhdar region  

The natural vegetation in the study area varies between forests, shrubland, coastal 

plain and low vegetation in the semi-arid areas (Figure 3.4). The research divides the 

vegetation of the region into three sections dependent on topography: the vegetation 

of the coastal plain, the highlands, and the internal region. 

 

Figure 3.4: Vegetation distribution in Al Jabal Al Akhdar (Modified from: Mukhtar, 

2005). 

On the coastal plain region, the species of plants tolerate the lack of rain and increase 

in soil salinity (because it is near the sea). The species include Acacia spp, Borassus, 

Cistus spp. Urginea maritime, and Malva parviflora (Feng, et al., 2013; Hegazy, et 

al., 2011). The vegetation is characteristically short and well-spaced with small 

leaves, mixed with some sea grass that grows in rocky crevices and on the surfaces 

of slopes and the terraces.  

The density of this vegetation is lower in the east, while increasing in the south 

towards the foot of the Al Jabal Al Akhdar, with Maquis type vegetation which 

spreads over the northern slopes of Al Jabal Al Akhdar with Juniperus phoenica and 

Pistacia lantiscus (Al Mukhtar, 2005). The highlands include the northern slope of 
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Al Jabal Al Akhdar. This region is characterized by dense tree cover and shrubs of 

Mediterranean types as well as landform, calcareous soils and semi-wet climate in 

most of the northern slopes (Al Mukhtar, 2005; Bukhechiem, 2006; Hegazy et al., 

2011). Shrubs include Juniperus phoenica, Arbutus pavarii, Pistacia lantiscus, 

Cupressus sempervirens, Eucalyptus camaldulensis, Meliaazedarach and 

Oleaeuropaea (Feng et al., 2013). There are tree species in the valleys, such as 

cypress, Aleppo pine, oak, and mixed communities (Figure 3.5). The trees and shrubs 

are considerably less dense from north to south as a result of lack of precipitation, 

drought, soil type and landform, and the influence of the desert climate. 

 

Figure 3.5: The vegetation on the northern slopes of the Al Jabal Al Akhdar (Source: 

http://ports.com /libya/port-of-ras-el-hilal/photos). 

The internal region includes the southern slopes of the Al Jabal Al Akhdar. This 

region is characterized by high temperatures, and rainfall of less than 50 mm y-1. The 

vegetation is characterized by its ability to tolerate severe drought and high 

temperatures, with short stature species such as Acacia flava, Aristidaacutiflora, 

Euphorbia abyssinica, Calligonum comosum, Acacia senegali, and Cordiaafricana 

(Feng et al., 2013; Hegazy, et al., 2011), Zizyphus lotus, harmala , Solanum nigrum, 

Tamarix aphylla, Urtica urens and Peganum (Al Mukhtar, 2005) (Figure 3.6).  

Over the last forty years there have been changes in the semi- natural and natural 

vegetation cover in the Al Jabal Al Akhdar which may be the result of climate 



                                             Chapter 3: Background on the Al Jabal Al Akhdar region  

47 
 

change and /or human activity (Al Mukhtar, 2005). In the Al Jabal Al Akhdar region, 

human activities include deforestation, overgrazing, fires, burning trees to cultivate 

crops and the growing of fruit trees, all of which may lead to change in land use and 

vegetation cover. 

 

Figure 3.6: Natural vegetation south of the Al Jabal Al Akhdar (Source: Feng et al., 

2013). 

These activities usually often occur in sensitive areas such as mountain slopes, 

shallow soils or rocky areas and may cause a reduction in vegetation cover and 

degradation of ecosystem studies (Oune, 2006). 

3.7 The population distribution 

The population of Libya was approximately 5.6 million in 2006 and about 6.6 

million in 2010 (General Directorate of Documentation and Information, 2010), with 

an average growth of 2.37 % y-1 and an average birth rate of about 27.17 /1,000/y-1 

and an average death rate of 3.48/1,000/y-1. More than 75% of the population lives 

along the coastal zone which extends over 1980 km and is about 1.5 % of the total 

area of the country (Ageena et al., 2013). The Al Jabal Al Akhdar is the second area 

of population concentration with 21% after the Jifarah plain and the Misratha area in 

the western coastal region with 54 % of the Libyan population (FAO, 2005). 
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 Most Libyan inhabitants are young, with 33% of them under 15 years old. The 

population density differs varies from 150 inhabitants km2 in the northern regions to 

less than 1 per km2 in other parts of the country (FAO, 2005). 

3.8 The human activity in the region 

There is a variety of human activity in the study area such as agriculture, traditional 

industries, grazing and the services sector. Agriculture contributes to about 28 % of 

GDP in the region and provided employment for about 5 % of the total population in 

2005. Industry contributes to about 8% and the services sector more than 41% in the 

region (Ben Khaial & Bukhechiem, 2005). Furthermore, livestock breeding is carried 

out in private farms as well as grazing. 

In 2011 the political situation changed in Libya and these changes impacted on state 

policy regarding agriculture and other activities. In the absence of controls, the 

agricultural and urban areas were expanded after 2012 to areas having natural 

vegetation. Overgrazing was also rampant while deforestation and fires were also on 

the increase due to lack of control by the government. 

3.9 Conclusion 

Due to the location of Al Jabal Al Akhdar in the south of the Mediterranean basin, 

variations in geology, topography, climate, water resources, soil and natural 

vegetation, have given the Al Jabal Al Akhdar a wide variety of natural 

environments. 

These environments provide suitable habitat for wildlife and provide many services 

for the local population. The natural vegetation has economic importance for local 

communities in terms of providing medicinal herbs, aromatic plants and traditional 

industries for tourists. The deterioration of the surface conditions that are vital to 

plant growth caused by shifting cultivation, bush burning or overgrazing are very 

destructive for the flora. Therefore, studying changes in natural and semi- natural 

vegetation cover will be important in the long-term to assess changes within the 

region, especially after the recent political upheavals in Libya. 
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CHAPTER 4:  RESEARCH METHODOLOGIES 

The purpose of this chapter is to provide an overview of the methodologies used in 

this research. The work will first involve analysis of the spatial and temporal 

distribution of vegetation change across the study area using time-series satellite 

imagery. Land cover change and population data will then be examined along with, 

and related to general observed climate change patterns. The research will focus on 

vegetation cover change in the Al Jabal Al Akhdar (Green Mountain) area in north-

east of Libya, aiming to assess the influence of climate change and human activity 

over the last 42 years.  

 

4.1 Overview of research methodologies  

The first objective aims to assess vegetation cover change which requires an 

approach reliant on time series Landsat imagery starting from 1972. Landsat data sets 

are available at a relatively high spatial resolution, cover large areas, and are ideal for 

the aims of this research. However, one of the challenges of satellite-based land 

cover characterization is removing the extraneous influences of factors which may 

affect the reflectance of the vegetation (Benediktsson et al., 2012). Therefore, it was 

necessary to first correct the images by removing atmospheric and topographic 

effects in order to derive a series of cross-calibrated images of the study area. To 

assess the aim that there had been a change in vegetation cover during the period of 

study, a series of eleven images, available for the study area, was used to measure the 

change in green vegetation cover. This approach used time-series of NDVI, SAVI 

and EVI indices to detect major vegetation cover changes in the Al Jabal Al Akhdar 

over the period 1972-2014. Once the pattern of increase or decrease in vegetation 

cover had been established (see chapter 5), the research then attempted to explain the 

factors causing these patterns.  

The second objective aims to assess the effects of human activity in the region. The 

research used Libyan population data and a population distribution map from the 

LandScan global population database, to map the general picture of the density of 

human activity. In addition, the time series of Landsat images of the study area was 
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used to examine the relationship between changing land cover and land use, and the 

population distribution.  

The third objective aims to investigate the factors affecting vegetation change in the 

study area using the outputs of the first and second objective. The research evaluated 

the climate change in the study area, as a sub-objective, in the previous chapter, 

using time-series of climatic data, especially temperature and rainfall, at three 

stations in the region. The approach identified the trends in temperature and rainfall 

between the 1940s and 2003, and gave insights into the general climatic trends in the 

study area. With this as background, the research then examined the relationship 

between land cover and land use change and the vegetation change patterns in the VI 

images. It then determined the contribution of human-induced vegetation change, 

and mapped areas of low human impact and significant vegetation cover change. 

Objectives are addressed using quantitative data analysis techniques that use both 

descriptive and qualitative data interpretation. Detailed methodologies are presented 

for assessing vegetation cover change, land cover change and spatial analysis of 

factors affecting vegetation change in the study area.  

4.2 Approach to assessing vegetation cover change 

Satellite imagery provides data that cannot be collected by traditional methods in 

places with difficult access, and the Landsat series of satellites provide the only 

medium-term record of vegetation change on the Earth (Lasanta and Vicente-

Serrano, 2012). This study relied on high spatial resolution satellite images of (79 m) 

MSS, and (30m) TM, ETM and OLI, to monitor vegetation cover change in the Al 

Jabal Al Akhdar. The reasons for selecting Landsat data were: 

(i) The approach aimed to use remote sensing techniques to cover the whole study 

area, including those areas that cannot be accessed by other means, and to investigate 

the vegetation across the region. 

(ii) The current research differs from previous studies in the region by adopting high 

spatial resolution Landsat (30 m) to examine a long-term record for monitoring 

vegetation cover change in the Al Jabal al Akhdar region from 1972 to the present. 
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The previous study (Ibrahim, 2008) used sensors with 1 km spatial resolution and 

examined the vegetation from 1982 to 2006. The high spatial resolution (30 m) used 

in this research means that the fine detail of local-scale vegetation change will be 

revealed at scales never examined before in this region.  

The research collected 11 images from different Landsat sensors to obtain a cloud-

free image series and cover the whole study area over an extended period of time. 

There were up to 200 images from Landsat MSS, TM, ETM and OLI, for the study 

area but just 11 images were usable due to cloud cover, or being in a different season 

(Table 4.1). The research specifically used the images which were acquired in the 

same season to ‘avoid’ cover changes related to seasonal differences in vegetation 

growth. 

Table 4.1: Landsat images used in the study area 

Satellite Sensor Bands 
Spectral 

Range 

Path-   

Row 
Pixel Scene 

Images 

used 

L 1-3 
Multi Spectral 

scanner (MSS) 
1,2,3,4 0.5 - 1.1 µm 

183- 

37 
79 m 

 

185 

X 

185 

km 

1972-1978 

1986 

L 4-5 
Thematic 

Mapper (TM) 
1,2,3,4,5,7 0.5 - 1.1 µm 

183- 

37 
30 m 

1987-2003 

2006 

L 7 

Enhanced 

Thematic 

Mapper  Plus 

(ETM+) 

1,2,3,4,5,7 

6.1, 6.2 Thermal 

8 Panchromatic 

0.450 - 2.35 µm 

10.40 - 12.50 

µm 

0.52 - 0.90 µm 

183- 

37 

30 m 

1999-2001 
60 m 

15 m 

L 8 

Operational 

Land  Imager 

(OLI) 

1,2,3,4,5,6,7, 

9,10 11 

8 Panchromatic 

0.45- 12.51 µm 

0.50 - 0.68 µm 

183- 

37 

30 m 

2013-2014 
15 m 

Source: USGS, 2017 

Seasonal difference can contribute to the variability of spectral responses. The 

Vegetation Index (VI) values are higher during the wet season (December, January 

and February), than the dry or hot season (June, July and August), when VI values 

are low (Xie et al., 2008). An increase in precipitation in the wet seasons may 

improve moisture availability for plants and thus lead to an increase in plant growth 

that may be critical or at least partially account for increase vegetation cover and 
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increased in the VI (Chuvieco & Huete, 2010; Roerink et al., 2003).  The research 

collected the images which were close to the same season, which is between July and 

October in different years (Table 4.2).  

Table 4.2: The dates of Landsat images which were downloaded for the study area. 

 

 

 

 

 

 

 

4.2.1 Initial image processing 

In spite of the availability of Landsat images it was a significant challenge to ensure 

that these images were useable to show the change in vegetation cover in the study 

area. The images required pre-processing to produce images that were valid for study 

and the approach used is presented in the following sections, specifically 

atmospheric and topographic correction processes applied to the Landsat data. 

4.2.1.1 Atmospheric correction  

The atmosphere has a significant impact on the solar radiation that is reflected by the 

Earth’s surface and recorded by satellite sensors (Nazeer et al, 2014). The 

atmosphere is composed of many gases, water vapour, aerosols, dust and pollutants 

(Chuvieco and Huete, 2010) and these components affect satellite images through 

absorption and scattering (Lillesand and Kiefer, 1987). Atmospheric correction is 

therefore necessary for satellite imagery data to determine ‘true surface reflectance’ 

values. For the purposes of atmospheric correction, a radiance value is converted into 

reflectance data in remotely sensed imagery (Tuominen & Lippinga, 2011). Several 

proposed methods for removing the influences of atmosphere from satellite images 

are described below. 

Sensor Date 

MSS 7/9/1972 

MSS 2/9/1978 

MSS 6/10/1986 

TM 30/9/1987 

TM 10/9/2003 

TM 5/9/2006 

TM 23/8/2010 

ETM 25/10/1999 

ETM 26/7/2001 

OLI 8/9/2013 

OLI 22/7/2014 
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4.2.1.1.1 LEDAPS 

The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) was 

originally developed through the NASA Terrestrial Ecosystems Program and the 

NASA Applied Sciences Program (Maiersperger et al., 2013). The LEDAPS method 

uses Landsat TM5, ETM+7 and OLI 8 images, metadata, and daily atmospheric data 

to remove the influence of the atmosphere and produce atmospherically corrected 

surface reflectance products (Feng et al., 2013). It also generates cloud masks for 

images that are covered partially by the clouds. LEDAPS relies on deriving “the 

aerosol optical thickness from each Landsat acquisition and independently correcting 

each acquisition assuming a fixed continental aerosol type” (Ju et al., 2012, p. 176). 

The research collected the available surface reflectance images (with the atmospheric 

correction) from the Earth Explorer website for the study area. The LEDAPS-

corrected images were for 1987, 2003, 2013 and 2014. These images were used to 

correct other images to surface reflectance using the empirical line method.  

 

4.2.1.1.2 Empirical line correction 

Empirical line correction is another atmospheric correction method that uses 

information that is embedded in the image (Tuominen & Lipping, 2011). The 

empirical line method uses the raw digital numbers (DN) in an image together with 

ground reflectance data from some source (Tuominen & Lipping, 2011; Song et al., 

2001). To test the approach, two images from the same month for different years 

were used, one was an image without atmospheric correction (DN) and other was a 

surface reflectance image that had the LEDAPS atmospheric correction applied. The 

first step was to select 50 targets at different sites for the (DN) image of AL Jabal Al 

Akhdar and the same targets in the surface reflectance image. These targets ranged 

from very bright to very dark and later applications of the method assumed that their 

reflectance had not changed between the dates of imagery used. The research 

therefore collected targets from roads, quarries and the sea because they were 

assumed not to have changed over time. The second step was to identify the values 

of the pixel in each band of the image at each of the 50 chosen sites (50 pixels), 

which were used as reference points for comparison with the DN image. The same 

process was repeated with all bands in the both images. 
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The third step was to identify the relationship between each band in the DN image 

and the others in the surface reflectance image using the equation (y= DN x +b) and 

build an image for each band with atmospheric correction using Model Maker in 

ERDAS Imagine. This approach built seven new bands and removed the influence of 

the atmosphere using an ERDAS model.   

The result showed the relationship (R2) between the values of pixels in each band in 

the images with and without atmospheric correction (Figure 4.1).  

 

 

Figure 4.1: The relationship between red (a) and near infrared (b) values at 50 sites in 

the DN image of September 1978 and surface reflectance image of September 1987.  

The research applied the method on other images that had no atmospheric correction 

using the available surface reflectance images. The research chose pairs of images 

that were recorded in the same month to avoid difference of weather conditions that 

may have affected the reflectance of targets (Table, 4.3). In terms of Landsat MSS 

images, which had four bands, the research applied the method on those bands and 

built new images without atmospheric effects.  
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Table 4.3: Methods applied to remove the influence of the atmosphere from the 

Landsat images selected for this study 

Sensor Data Surface 

reflectance 

Empirical line 

corrections 

applied 

Image pair 

selected 

R2 

Red 

waveband 

R2 

Near- 

infrared 

waveband 

MSS 7/9/1972   1972 and 1987 0.67 0.66 

MSS 2/9/1978   1978 and 1987 0.80 0.93 

MSS 6/10/1986   1986 and 1987 0.84 0.93 

TM 30/9/1987      

TM 10/9/2003      

TM 5/9/2006   2006 and 2003 0.62 0.77 

TM 23/8/2010   2010 and 2014 0.71 0.74 

ETM 25/10/1999   1999 and 1987 0.91 0.95 

ETM 26/7/2001   2001 and 2014 0.85 0.93 

OLI 8/9/2013      

OLI 22/8/2014      

 

The results showed a significant positive relationship between the red and near 

infrared DN for all wavebands and surface reflectance. Therefore, applying the 

empirical line method was successful with these images and the influence of 

atmosphere was removed from the whole time-series of satellite data. 

 

4.3 Calculation of Vegetation Indices 

To achieve the aim of assessing the vegetation cover change, the approach used 

vegetation indices which are combinations of surface reflectance at two or more 

wavelengths that are designed to quantitatively evaluate vegetation cover (Bannari et 

al., 1995), and are designed to maximize the difference in reflectance between 

vegetation and other surface types. The VI used were the Normalized Difference 

Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Enhanced 

Vegetation Index (EVI) as described in chapter 3. 

The approach generated eleven VI images from the Landsat images and stacked them 

together as one image with 11 layers. A linear regression image which finds the best-

fit straight line through the points was generated for every pixel in the image 

(Hoffmann, 2010). The equation (VI =Year * b + a) (where Y is the VI reflectance of 

the pixel and X is time) was used to investigate the time-dependent change in VI for 
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every image pixel (Appendix 1). A regression image was then computed to test for 

trends in the VI in each pixel.  

Correlation coefficients images were also generated from the VI image stacks to test 

which pixels showed statistically significant changes in vegetation cover. Finally, the 

approach classified both regression and correlation images to highlight the areas that 

had seen a significant change (see chapter 5).  

4.4 Image classification 

To achieve the objective of assessing the impact of human activity in the study area, 

the time series of Landsat imagery was next used to investigate changes in land cover 

and land use across the study area. As an initial step, it was necessary to correct the 

images by removing the topographic effects and correct the aspect and slope 

direction effect on image reflectance. 

4.4.1 Topographic correction 

Topographic variation has an influence on the spectral reflectance of the land surface 

and thus affects the value of the pixel in an image (Svoray & Carmel, 2005). The 

position of the sun in addition to topography can greatly affect the illumination angle 

and the amount of light that is reflected at any point on the Earth’s surface. Slopes 

facing the sun receive higher radiance and appear brighter (Zhang and Li., 2011), 

while slopes oriented away from the sun appear darker when compared to a 

horizontal geometry (Richter et al, 2009) because they receive less radiation. The 

topographic effect is the difference in illumination due to the slope direction relative 

to the elevation and azimuth of the sun (Zhang and Li., 2011). 

To reduce topographic influences in the imagery, the approach used a Digital 

Elevation Model (DEM) for topographic correction of the 30m resolution Landsat 

TM and the 79m resolution Landsat MSS (Figure 4.2), and produced images with 

more evenly illuminated terrain without topographic effects. In this process, the 

research used the "Lambertian Reflectance Model" in the Topographic 

Normalization section of the ERDAS Field Guide and input each Landsat image and 

DEM for the study area into the process.  
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Figure 4.2: Digital Elevation Model (DEM) of Al Jabal Al Akhdar (height in m) 

This model requires sun azimuth and sun elevation for the image, this information 

being normally available in the data header of the Landsat image file. The solar 

azimuth and elevation of the input file sensor at the time of data acquisition were 

entered and units (metres) of DEM obtained from the DEM image file data were 

chosen. The researcher entered this information and the new image was generated 

after removing the influence of topography. The approach also generated images of 

the slope and aspect representing the orientation of the land surface (Figures 4.3, 4.4 

& 4.5).  
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Figure 4.3: The slope (by degrees) of the study area derived from DEM 

 

Figure 4.4: The aspect (by degrees) of slopes in the study area derived from DEM 
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Figure 4.5: TM image of Al Jabal Al Akhdar for 1987 as true colour composite with 

topographic correction. 

The topographic correction is an important process for classification of the remote 

sensing images. The research also tested the influence of topographic correction on 

VI values by comparing random pixels in the NDVI image of 1987 after topographic 

correction with the NDVI image without corrections in (Figure 4.6).  

 

 

Figure 4.6: Comparison between the NDVI values in two images of 1987 with and 

without topographic corrections.  
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The research applied topographic correction on the NDVI image of 1972 (Figure 

4.7), and the result found no significant difference, thus indicating that the VI are not 

sensitive to topographical effects and so images were used without topographic 

correction.     To further evaluate the accuracy of the result, the approach collected 

pixels from the images of 1972 with and without topographic correction. The result 

again illustrated the strong relationship between the NDVI values in 1972 thus the 

topography had no effect on the NDVI values. 

 

 

Figure 4.7: Comparison the NDVI values with and without topographic correction in  

two images of 1972. 

 

4.4.2 Image classification 

The research used image classification methods to categorize all the pixels in an 

image into one of several land cover classes, and also used the 11 images to assess 

the change in land cover and land use over the study period. The intention of the 

classification process was to identify the distribution of different land cover types 

across the area and compare these classified images over different periods to assess 

how the land cover changed. 

Image classification is based on two major categories of image classification: 

unsupervised (calculated by software) and supervised (human-guided) classification 

(Jensen, 2005). Unsupervised classification is a method which classifies data based 

on their inherent spectral similarities without the analyst’s intervention and these 

groupings are called “clusters” (Liu, 2005). This requires minimum input from the 

analyst (Campbell, 2002), who determines the number of clusters to generate 
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(Lillesand & Kiefer, 1987). The software then groups pixels that are similar and 

places them into classes using clustering algorithms (Chuvieco and Huete, 2010). 

Class labelling is subsequently done by the analyst. 

In supervised classification, the land cover classes depend on the analyst to select 

sample pixels in an image using his or her knowledge about the study area such as 

personal experience of the region, experience with thematic maps, or by way of on-

site visits (Chuvieco and Huete, 2010). These samples of pixels are called “training 

areas” which represent each known land cover category that appears in the image 

(Liu, 2005). The software then uses these training sites (input classes) as references 

to classify all other pixels in the image (Jensen, 2005). This research used supervised 

classification in ERDAS Imagine to classify the land cover in all images of the study 

area and these data were used to determine the influence of human activity. Arc-GIS 

software was also used to create a display and analyse geospatial data in layers 

(Childs, 2004), in particular, to map the influence of human activity on vegetation 

index cover change in the study area. Eleven land cover classes were used, based on 

background information and knowledge of the study area. 

4.5 Libyan population data 

Libyan population data were used to determine the distribution of population and the 

relationship with human activity especially, the activities that were difficult to 

classify on the satellite images such as grazing and areas that had seen logging to 

produce fuel. Thus, it was thought that the distribution of population may be of help 

to determine these areas.  Libyan population data for 2012 were collected from 

ORNL's LandScan™ at a resolution of approximately 1 km, and included a table of 

the census counts, gender, and map of the distribution of the Libyan population 

(Figure 4.8). LandScan provides global coverage of populations and relies on the use 

of a high-resolution remote sensing data. The Libyan population distribution was 

analysed in Arc-GIS software to compare population and land cover. In this way, the 

research assessed the diversity of land cover and land use change based on 

population, and used this to infer the likely impact on vegetation index cover 

changes. To assess the effect of human activity, the research firstly overlaid the 

vegetation index change map, and land cover and land use change maps to identify 
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the relationships between the areas that had experienced vegetation index change, 

and the land cover or land use of these areas. 

 

Figure 4.8: The distribution of Libyan population data in the Al Jabal Al Akhdar 

region in 2012 

Second, the research overlaid the vegetation index change maps on the Libyan 

population map to determine the relationship between the population distribution and 

the areas that experienced significant VI change. 

Third, the research overlaid the maps of land cover and land use change with 

population data to determine the distribution of population in each class of land cover 

change in the images of 2013 and 2014 and determine the effect of population on 

land cover change. 

4.6 Conclusion  

This chapter has presented an introduction to the subsequent research chapters, 

presenting a brief explanation of the methodologies that were used to achieve the 

research aims and objectives, and to analyse the data used for each objective, 

including climate data, satellite images and Libyan population distribution data. The 

chapter showed the applications of remote sensing to derive vegetation index data 
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that were used to assess the vegetation dynamics in the study. Although there were 

few available images for the study area, which was one of the limitations in the 

statistical analysis of the spatial and temporal distribution of vegetation cover, the 

use of vegetation indices was effective in remapping the recent change of vegetation 

cover in the study area and provided a database of sources for vegetation cover 

change analysis in the area. 

It also showed the importance of image pre-processing that was applied to the 

Landsat images to make them usable for analysis. To assess human activity, the 

chapter presented the classification methods which were used for measuring land 

cover change. In terms of investigating the factors affecting vegetation change, the 

chapter briefly explained the methods used to assess the factors using the results of 

the first and second objectives and also the result of climate change analyses. The 

chapter also used the population data to determine the relationship between the 

distribution of population and land cover change. Population data can be effective as 

sources for studying human activity and determining the areas undergoing human 

activities which cannot be observed from satellite imagery. The next chapter will 

focus on vegetation change detection in the study area.   
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CHAPTER 5: RECENT CLIMATE CHANGE IN THE AL 

JABAL AL AKHDAR 

 

This chapter examines climate change in the study area over the period 1946- 2003 

through available climate data from the main three climate stations located in the 

study area. The approach uses statistical analysis to assess significant trends of 

temperature and rainfall in order to provide the general picture for climate trends in 

the study area which may be one of the factors affecting vegetation change in the 

region. 
 

5.1 Introduction 

The Libyan climate varies between Mediterranean in the north-eastern region (Al 

Jabal Al Akhdar Mountains) and north-western region (Naffosa Mountains) of Libya 

and the desert in the centre and south of the country. The climate of Al Jabal Al 

Akhdar is actually influenced by both Mediterranean and desert climate systems, and 

thus air masses of continental and maritime origin impact on its climatic 

characteristics (El-Tantawi, 2005; Ageena, 2010). The climate of the study area 

therefore varies from coastal Mediterranean on the north-facing slopes, to semi-arid 

and desert on the south-facing slopes (Al Mukhtar, 2005; Bukhechiem, 2006). 

The climate of the study area differs from one area to another due to the variation in 

elevation; for example, there are differences between the measurements of stations in 

the climate elements on the northern slopes of the Al Jabal Al Akhdar, due to 

differences in elevation and the distance from the sea (Bukhechiem, 2006). As a 

result of these factors, the mean daily temperature differs between the various 

climate stations of the Al Jabal Al Akhdar. It was 23.7°C at Shahat station (in the 

mountains) and 28.4°C in Darnah (on the coastal plain) in August (the warmest 

month of the year) over the period 1945 to 2003 (El-Tantawi, 2005), while the mean 

daily temperature at Al Makhili station in the south of the region for the same  time 

period was about 29°C.  

January and February are the coldest months in Libya. At Shahat the mean daily 

temperature in January is about 10°C, whilst in Dernah it is 14.80 °C, due to the 
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influences of elevation and its location next to the sea, which makes it warm 

compared to other parts of the region (Bukhechiem, 2006). The mean daily 

temperature decreases to 11.7°C in January at Al Makhili station in the south. 

In general, there are no large differences in climate in the northern parts of Al Jabal 

Al Akhdar, there are no large differences in climate in the northern parts of Al Jabal 

Al Akhdar, but there are clear differences in the southern part, taking into account 

the impact of the semi-desert climate (Ben Khaial and Bukhechiem, 2005). 

The largest percentage of the total annual precipitation in the Al Jabal Al Akhdar 

region occurs in the winter and autumn seasons (El-Tantawi, 2005; Ageena, 2014). 

The winter is most important for precipitation in the region because of the influence 

of storms originating over the Atlantic and moving toward the west of the 

Mediterranean basin and impinging upon the western European coasts and North 

African coasts (Giorgi & Lionello, 2008).  The northern slopes receive the highest 

average rainfall (Al Mukhtar, 2005); for example, the monthly mean rainfall in 

January at Shahat station is 124 mm yr-1 and at Darnah it is 58 mm yr-1; these 

averages decrease in August to 2 mm yr-1 in Shahat and 0.3 mm yr-1 at Darnah over 

the period 1946 to 2003. The mean annual rainfall is 563mm yr-1 at Shahat and at 

Darnah station on the coast it is about 266 mm yr-1 over the period 1946 to 2003. The 

southern slopes receive no more than 100 mm yr-1; for example, at Al Makhili station 

the mean annual rainfall is 125 mm yr-1, and in the south the rainfall average is less 

than 50 mm yr-1, and even less in the Al Balat area in the north of the desert due to its 

location away from sources of water vapour (the sea) and the impact of the desert 

climate on the region (Bukhechiem, 2006). 

5.2 Assessing climate change in the study area 

Climate data provide a reliable source of information for analysis of climate change 

and are usually available over a long period of time (Ageena et al., 2012). In this 

study, the climate data were used to examine changes in climate elements in the 

study area over 57 years. The meteorological data were collected from the Libyan 

National Meteorological Centre (LNMC) and were available from 1946 to 2003 from 

three main climate monitoring stations within the province (Table 5.1), plus some 
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sub-stations which provided just one climatic element, such as rainfall or temperature 

(Table 5.2) (Figure 5.1).  

Table 5.1: Main climate stations in north-east Libya 

Station Latitude 

( N) 

Longitude 

( E) 

Elevation 

(m) 

Distance 

from the sea 

(km) 

Observation 

period 

Type of 

data 

Darnah 22° 38'  44" 22° 38'  44" 10 0 1946-2003 Synoptic 

Shahat 21° 52'  78" 21° 52'  78" 620 13 1946-2003 Synoptic 

Benina  20° 16'  45" 20° 16'  45" 129 20.5 1946-2003 Synoptic 

Source: Libyan National Meteorological Centre (LNMC), 2003. 

 

Figure 5.1: The locations of climatic stations in the study area (Source: Google Earth, 

2017). 

Table 5.2: Sub-climate stations in the north-east of Libya 

Source: Libyan National Meteorological Centre (LNMC), 2003. 

Station 
Latitude 

(N) 

Longitude 

( E) 

Elevation 

(m) 

Distance 

from the 

sea   (km) 

Observation 

period 

Type of 

data 

Ras Al helal 32° 51' 9" 22° 16' 16" 10 0 1959-1988 Rainfall 

AL Abraq 32° 47' 84" 21° 57' 70" 400 13 1963-1990 Rainfall 

Al Qubah 32° 46' 80" 22° 13' 17" 250 15 1946-2003 Rainfall 

Ayn Marah 32° 46' 45" 22° 22' 47" 250 6.9 1963-1979 Rainfall 

Al Faidia 32° 41' 25" 21° 45' 50" 550 25 1960-1981 Rainfall 

Al Qayqab 32° 43' 85" 22° 05' 56" 701 30 1965-2003 Rainfall 

Susah 32° 53' 22" 21° 56' 26" 10 0 1960-1981 Rainfall 

Al Byadah 32° 33' 48" 21°15'  13" 365 15 1991-2003 Rainfall 

 Main station  

Sub- station 

Darnah 
Al Qayqab 

Ayn Marah 

Ras Al Helal 

Benina 

Shahat 

Al Faidia 

Al Qubah 

Al Byadah 
Al Abraq 

Al Marg 

Al Makhili 

53 Km 

N Susah 
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The research examined temperature and rainfall trends in the study area because they 

are the main elements that impact directly or indirectly on the other climatic elements 

and any changes in those elements may affect vegetation dynamics (Ageena, 2010). 

The approach taken used a number of statistical tests that are a simple way to assess 

temporal changes in climatic data. The mean annual maximum and minimum 

temperature, and the mean annual rainfall, were examined to identify the trends 

between 1946 and 2003. In this study, the mean annual temperature and precipitation 

data were divided into a long-term period (1946-2003) and two short-term periods 

(1946-1971 and 1972-2003), to investigate variations in temperature and rainfall 

during these different periods, with the second period relating directly to the satellite 

image record adopted later in the research. 

Time–series data are normally assessed using statistical methods to test for 

significant trends in the variables of interest. The Mann-Kendall trend test was used 

to assess trends in the climatological time series data. It is “a nonparametric test and 

does not require the data to be normally distributed and has low sensitivity to abrupt 

breaks due to inhomogeneous time series” (Karmeshu, 2012, p.4). The research 

computed the Mann-Kendall tau using SPSS software to test for changes in the 

climate of the study area, and detect the significant trends of temperature and rainfall 

(Karmeshu, 2012; Pohlert, 2015). The research used the test on the assumption that 

the distribution of the climate data is not normal and is used to confirm the related 

results of linear regression and correlation coefficient analysis.  

Regression was used to determine the differences between independent (time; x) and 

dependent (temperature or rainfall; y) variables (Chatterjee & Hadi, 2006) to assess 

the significance of change in temperature and rainfall over the period of study. 

Pearson’s Correlation Coefficient was used to determine the strength of linear 

relationships between the annual rainfall and time (Higgins, 2006), to determine if 

there was a relationship between them. Pearson’s correlation coefficient provides a 

measure of the degree of association between X (time) and the Y (temperature or 

rainfall) when the sample is drawn from a bivariate normal distribution. The 

statistical significance of the correlation between X and Y is tested using the 

correlation coefficient (R). Regression analysis makes a range of assumptions about 

the underlying data and so the non-parametric trend test described earlier was also 
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applied. The climate of the region differs from one station to another due to location, 

landform, elevation and distance from the sea. Climate stations of the study area are 

Darnah, Benina on the coastal plain of the Al Jabal Al Akhdar and Shahat in the 

mountains. This section includes a brief description of the climatic characteristic of 

these stations. 

5.2.1 Darnah station 

The climate of Darnah is characterized by a hot dry summer and warm winter.  The 

mean monthly temperature was between 29 °C in June (the warmest month of the 

year) and 13°C in December (the coldest month) over the period 1946- 2003, with 

mean annual temperature of approximately 23°C.  

The rainy months at the station extend from October to April due to the low pressure 

systems which are formed in the Mediterranean basin during this period. The mean 

rainfall ranges between 58 mm in January (the highest amount of rain in the year), 

and 0.2 mm in August (the lowest amount of rainfall in the year) (Figure 5.2). The 

mean annual rainfall was about 267mm yr-1 in the period 1946-2003.  

Figure 5.2: Mean monthly temperature and rainfall at Darnah (1946-2003). 

5.2.2 Shahat station 

Shahat station is located at 32°47' 31" N and longitude 21°52' 78" E on the second 

terrace of the Al Jabal Al Akhdar at an elevation of 620m above sea level, and 13 km 

from the sea (Bukhechiem, 2006). In this mountain station the mean annual 
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temperature is about 16.5°C. The mean monthly temperature ranges between 15°C in 

April to 23.6°C in July ( the warmest month in the year ) and decreases to 9°C and 

10°C in January and February respectively  over the period of 1946- 2003.  

Shahat station received the highest rainfall in the north east Libya during the period 

at 563 mm yr-1, whereas rainfall ranged between 53 mm in October to 123 mm in 

January (Figure 5.3). Overall, the diversity of natural factors in the Al Jabal Al 

Akhdar such as elevation, landforms, location next to the sea and natural vegetation 

have led to differences in temperature and rainfall across the region (Ageen, 2010; Al 

Mokhtar, 2005; Bukhechiem, 2006), although the differences are small between the 

coastal stations compared with the mountain stations. 

 

Figure 5.3: Mean monthly temperature and rainfall at Shahat (1946-2003). 

5.2.3 Benina station 

Benina is located in the north-west of the coastal plain of the Al Jabal Al Akhdar. It 

is located 20.5 km from the sea at 129 m above sea level (Al Mukhtar, 2005). The 

climate data in this station are available from 1946 to 2010. The mean annual 

temperature is (20 °C) at the station. The mean monthly temperature increases from 

April (20°C) to August (27°C) and decreases to 12.6°C in January (the coldest month 

in the year) over the period 1946 to 2003. 
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In terms of rainfall, the mean annual rainfall was about 270 mm. Rainfall is 

concentrated in mid-autumn and the winter. The mean monthly rainfall ranges 

between 70 mm yr-1 in January (Figure 5.4).  

 

Figure 5.4: Mean monthly temperature and rainfall at Benina (1946-2003). 

 

5.3 Recent temperature changes in the study area 

The temperature differs in the region in terms of temporal and spatial distribution and 

so it is important to identify the thermal characteristics of the region to observe the 

changes in the trends of temperature in the study region during the 57 year period 

examined.  

5.3.1 Long-term trends of temperature at the stations in the study area (1946- 

2003) 

The approach investigated a long time-series of the mean annual, maximum and 

minimum temperature at the Al Jabal Al Akhdar stations that permits consideration 

of general long-term changes and differences in rates of change to test for variations 

in temperature.   

5.3.1.1 Long-term trends in mean annual temperature in the stations of the 

study area (1946- 2003) 
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given area. The mean annual temperature in the Al Jabal Al Akhdar region ranges 
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between 20.1°C and 16.5 °C over the study period (Table 5.3). The coefficient of 

variation (CV) of the mean annual temperature was 2% (Darnah), 2.54 % (Shahat) 

and 2.39 % (Benina). The long-term trend of mean annual temperature differs from 

year to year and from one station to another because of the aforementioned local 

factors (Figures 5.5, 5.6 & 5.7).  

Table 5.3: The mean annual temperature, Mann-Kendall Tau (M-K) and correlation 

coefficient (R) for the study stations. 

 

The Mann-Kendall test and the correlation (R) produced the similar statistical 

significance trends for the mean annual temperature at Darnah, Shahat and Benina 

(Table 5.3) which were all significant (p= 0.01). This indicates that the means annual 

temperature increased at all stations for the period 1946-2003. 

Station Period Mean annual T °C CV 

% 

M-K Sig (p) R  Sig (p) 

Darnah 1946-2003 21.4 2.00 0.331 0.001 0.523 < 0.001 

Shahat  1946-2003 16.5 2.40 0.272 0.003 0.349 0.007 

Benina 1946-2003 20.1 2.39 0.242 0.001 0.465 < 0.001 

 

Figure 5.5: The mean annual temperature at Darnah over the period of study. 
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Correlation coefficient (R) indicated an increase in the mean annual temperature 

across the region over the period of 1946 to 2003. This result confirmed the results of 

previous studies that temperature have increased in the Mediterranean basin since the 

mid- 20th century, with some spatial variability in these rates (IPCC, 2014; Ageena 

et al, 2010).  

 

 

 

Figure 5.6: The mean annual temperature at Shahat over the period of study. 

 

Figure 5.7: The mean annual temperature at Benina over the period of study 
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5.3.1.2 Long term trend of the mean annual maximum temperature at the 

stations of study area (1946- 2003) 

The maximum temperature is the highest temperature measured during the day. 

Estimating the changes in trends of the mean annual maximum temperature is based 

on long-term climatic data from 1946 to 2003 in the region (Figures 5.8, 5.9 & 5.10).  

The mean annual maximum temperature was 23.4°C, 20.5°C and 25.6°C at Darnah, 

Shahat and Benina respectively with a coefficient of variation (CV) of 1.72 % at 

Darnah, 2.34 % at Shahat and 2.16 % at Benina. 

Table 5.4: The mean annual maximum temperature and Mann-Kendall (M-K) and 

correlation coefficient (R) for the study area stations. 

 

Regarding the Mann-Kendall and correlation coefficient results, there was no 

significant increase in the long-term trend of mean annual maximum temperatures at 

Shahat and Benina for the period 1946-2003. In contrast, at Darnah station the result 

showed a significant trend in the mean annual maximum temperature over the same 

period with both tests. 

 

Figure 5.8: The mean annual maximum temperature at Darnah over the period of 

study. 
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Station Period Mean annual Max °C CV % M-K Sig (p) R Sig (p) 

Darnah 1946-2003 26.1 1.72 0.311 0.001 0.434 0.001 

Shahat 1946-2003 20.5 2.34 -0.113 0.210 -0.171 0.199 

Benina 1946-2003 25.2 2.16 0.132 0.144 0.175 0.187 
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5.3.1.3 Long term trend of the mean annual minimum temperature at the 

stations of study area (1945- 2003) 

The minimum temperature is the lowest temperature measured during the day. 

Analysis of the minimum temperature in the study area stations was undertaken to 

determine the variations in the minimum temperature trends (Table 5.5).  

Table 5.5: The mean annual minimum temperature and Mann-Kendall (M-K) and 

correlation coefficient (R) for the study area. 

 

Figure 5.9: The mean annual maximum temperature at Shahat over the period of study. 

 

Figure 5.10: The mean annual maximum temperature at Benina over the period of study. 

Station Period Mean annual min °C CV % M-K Sig (p)  R Sig (p) 

Darnah 1946-2003 14.7 3.26 0.244 0.007 0.353 0.006 

Shahat 1946-2003 12.4 11.54 0.277 0.002 0.457 <0.001 

Benina 1946-2003 15 5.26 0.635 <0.001 0.820 <0.001 
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The difference in mean annual minimum temperature at the coastal stations and 

mountain station was clear. At Darnah and Benina it was 14.7 °C and 15 °C, whereas 

at Shahat in the mountains it was 12.4 °C (Figure 5.11, 5.12 & 5.13).

 

Figure 5.11: The mean annual minimum temperature at Darnah over the period of 

study

 

Figure 5.12: The mean annual minimum temperature at Shahat over the period of 

study

 

Figure 5.13: The mean annual minimum temperature at Benina over the period of 

study 
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The results of the M-K trend confirmed that the trends of mean annual minimum 

temperature was significant at all the stations over the period of study (1946-2003), 

at a significance level of 0.01 in Darnah, Shahat and Benina respectively.   

According to the correlation coefficient (R) of the mean annual minimum 

temperature trends, the results indicated a statistical significant increase at the 0.01 

level, at all three stations. 

5.3.2 Short term trends of temperature in two periods (1945-1971) and (1972-

2003) at the stations 

To investigate the variability of temperature over different periods, and the changes 

in the mean annual, maximum and minimum temperature at the Al Jabal Al Akhdar 

stations, the approach divided the period of study into two short periods 1946-1971 

and 1972-2003.  

5.3.2.1 Short term trends in mean annual temperature during two periods 

(1945-1971) and (1972-2003) at the stations 

Dividing periods of climate data into two short periods for analysis permits 

consideration of general short-term changes and  shows the variability of temperature 

during 31 years (1972-2003) compared to the 25 first year period (1946-1971) 

(Ageena, 2010) (Table 5.6).  

Table 5.6: The mean annual temperature, (M-K) and (R) for two short periods in the 

study area. 

 

The trends of the mean annual temperature for two short periods, can be compared at 

all stations (Figures 5.14, 5.15 & 5.16).  

 

Station Period Mean annual T °C M-K Sig (p)  R Sig (p) 

Darnah 
1946-1971 21.3 0.165 0.242 0.258 0.204 

1972-2003 21.5 0.521 0.001 0.680 <0.001 

Shahat 
1946-1971 16.4 0.151 0.280 0.144 0.483 

1972-2003 16.6 0.402 0.001 0.592 <0.001 

Benina 
1946-1971 20 0.253 0.071 0.403 <0.05 

1972-2003 20.3 0.174 0.163 0.300 0.095 
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     Figure 5.14: Two short periods study a (1946-1971) and b (1972-2003) at Darnah 

  

      Figure 5.15: Two short periods study a (1946-1971) and b (1972-2003) at Shahat 

 
 

      Figure 5.16: Two short periods study a (1946-1971) and b (1972-2003) at Benina 
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The graph of mean annual temperatures indicates an increase in the temperature in 

the first and second period of study with a small difference in the second period. The 

trends at Shahat and Darnah increased without statistical significance in the first 

period except Benina which recorded a significant increase in the period 1946- 1971. 

However, the trends of mean annual temperature increased significantly at Darnah 

and Shahat in the second period (p= 0.01). The results of the Mann-Kendall test 

confirmed that the second period recorded an increase in the mean annual 

temperature, more so than in the first period at Darnah and Shahat stations.  

The trends in mean annual temperature at the Al Jabal Al Akhdar climate stations 

reflect an increase in mean annual temperature in the Mediterranean region of 0.75°C 

over the 50 years as confirmed by the IPCC in their fifth assessment report (IPCC, 

2014). 

5.3.2.2 Short term trends in mean annual maximum temperature over two 

periods (1945-1971 and 1972-2003) at the stations 

By comparing the difference between the short periods the mean annual maximum 

temperature in the second period was higher than the first period of study at all 

stations (Table 5.7).  

Table 3.7: The mean annual maximum temperature, (M-K) and (R) for two short 

periods in the study area 

 

The table shows there was no large difference in the maximum temperature between 

the first and second periods at all stations where, the maximum temperature 

increased slightly in the second period at the stations. 

 

Station Period Mean annual max °C M-K Sig (p) R Sig (p) 

Darnah 
1946-1971 25.9 -0.052 0.708 -0.119 0.564 

1972-2003 26.2 0.516 <0.001 0.694 <0.001 

Shahat 
1946-1975 20.4 0.317 0.023 0.429 0.029 

1976-2003 20.5 -0.174 0.163 -0.258 0.153 

Benina 
1946-1975 25.4 0.427 0.111 0.056 0.785 

1976-2003 25.7 -0.083 0.506 -0.126 0.491 
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Figure 5.17: Two short periods of maximum temperature a (1946-1971) and b (1972-2003) 

at Darnah 

  

Figure 5.18: Two short periods of maximum temperature a (1946-1971) and b (1972-2003) at 

Shahat 

  

Figure 5.19: Two short periods of maximum temperature a (1946-1971) and b (1972-2003) 

at Benina 

The mean annual maximum temperatures were small at the stations over the two 

different periods of study. At Darnah, the difference was 0.3°C between the first 
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period (25.9 °C) and the second period (26.2°C) and at  Benina it was 0.3°C, 

however, at Shahat the trend increased by just 0.1°C from the first period (20.4°C) to 

the second (20.5°C).   

Regarding the Mann-Kendell and correlation (R), the mean maximum temperature 

has decreased at Darnah station in the first period and increased significantly in the 

second period, however, the trends at Shahat and Benina show decrease at the second 

period 

5.3.2.3 Short term trend in mean annual minimum temperature in two periods 

(1945- 1971 and 1972 – 2003) at the station  

Analysis of the trend in mean annual minimum temperature indicated an increase in 

the trend significantly during the second period of study (1972-2003) at all the region 

stations with a difference of up to 0.3°C at Darnah and 0.2°C at both of Shahat and 

Benina (Table 5.8). 

Table 5.8: The mean annual minimum temperature and Mann-Kendall (M-K) and 

correlation coefficient (R) for two short periods in the study area. 

 

The mean annual minimum temperatures at Darnah and Shahat have decreased in the 

first period of 1946 -1971 and increased in the second period of 1972- 2003 (Figures 

5.20, 5.21 & 5.22). In contrast, Benina recorded an increase over the first and the 

second periods. The results of the M- K and R indicated there was a decrease in the 

trend of mean annual minimum temperatures in the first period at Darnah and Shahat 

but without statistical significance. In the second period the trends show statistically 

significant increases at all the stations. It is worth noting Benina recorded statistically 

significant increasing trends in the first and second periods of study.  

Station Period Mean annual min °C M-K Sig (p) R Sig (p) 

Darnah 
1946-1971 14.5 0.308 0.027 -0.510 0.008 

1972-2003 14.8 0.446 <0.001 0.592 <0.001 

Shahat 
1946-1975 12.3 -0.089 0.523 -0.114 0.579 

1976-2003 12.5 0.601 <0.001 0.758 <0.001 

Benina 
1946-1975 .14 9 0.438 0.002 0.602 0.001 

1976-2003 15.1 0.533 <0.001 0.759 <0.001 
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Figure 5.20: Two short periods of minimum temperature a (1946-1971) and b (1972-

2003) at Darnah 

  

Figure 5.21: Two short periods of minimum temperature a (1946-1971) and  b (1972-

2003) at Shahat 

  

Figure 5.22: Two short periods of minimum temperature a (1946-1971) and b (1972-

2003) at Benina. 
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5.3.3 Summary of temperature trends 

The results of temperature variability were comparable with previous studies that 

have examined the changes and trends in temperature across Libya, including the 

climate stations of the study area (e.g. El-Tantawi 2005, Bukhechiem 2006 and 

Ageena 2010). All these studies confirmed that there was an increase in temperature 

in Libya. The change rates are supported by El-Tantawi (2005), who identified an 

increase in temperature variation of between 0.2 and 0.19 °C across Libya from 1946 

to 2000 and Ageena (2010) who found an increase in temperature by 0.024 °C during 

the period 1945-2010. 

The mean annual temperature in the Mediterranean region has increased by 0.75 °C 

during the last few decades (IPCC, 2014; Osborne et al., 2000), with expectations of 

increases of 1 to 3°C between 2010 and 2039. Al Jabal Al Akhdar is located in the 

south of the Mediterranean basin; therefore it is affected by climate change in the 

region. The key results of this analysis are:  

(i) There was a difference in the average temperature between the stations of the 

region which may be due to the effect of factors such as the influence of landform, 

altitude, proximity to the sea and differences in vegetation cover in the region. 

(ii) The linear regression analysis indicated there were weakness and strengths in the 

relationships expressed by R value for increased trends of temperature over the 

period of study.  

(iii) Analysis of the mean annual temperature in the Al Jabal Al Akhdar indicated a 

slight increase in temperatures during the period of 57 years (1946-2003). In the two 

different short periods the average mean annual temperature in the second period 

(1972-2003) was higher than the first period (1946-1971) in all stations by 0.2°C in 

both Darnah and Shahat and by 0.3°C at Benina station. 

(iv) There was an increase in mean annual maximum temperature over the period of 

study (1946-2003), especially in the second period at Darnah and Benina by 0.3°C 

compared with the first period. However, the trend at Shahat recorded a slight 

increase over the periods of study, i.e. 0.1°C from the first period (20.4 °C) to the 

second (20.5 °C).   
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(v) The trends of mean annual minimum temperature have increased at all the 

stations of the study area. However, at Darnah and Shahat the trends decreased in the 

first period with statistical significance at Darnah. In contrast, the mean annual 

minimum temperature at Benina has a statistically significant increase over the 57 

year period. 

(vi) The results of the Mann- Kendall and the Correlation Coefficient were similar at 

all stations in terms of the statistical significance for an increase or a decrease in the 

temperatures at all stations of the study area and at different periods (Table 5.9). 

Table 5.9: Comparison of the results of mean annual temperature at the Mann-

Kendall and R 

Station 1946-2003 1946 - 1971 1972 - 2003 

M-K R M-K R M-K R 

Darnah       

Shahat       

Benina       

() statistically significant trend, () no significant trend. 

Overall, the results of examinations of temperatures in the Al Jabal Al Akhdar region  

have confirmed that temperature has changed since the 1950s in the area. 

5.4 Recent precipitation patterns in the study area 

The patterns of precipitation differ in the Al Jabal Al Akhdar region in terms of 

temporal and spatial distribution. To identify the variation of rainfall trends, the 

approach investigated the trend of mean annual rainfall over the 57 year period at the 

climate stations in the study area. Precipitation data were collected from the Libyan 

National Centre (LNMC). The approach collected the rainfall data from 11 stations, 

of which 3 are synoptic stations, and 8 are rain stations distributed across Al Jabal Al 

Akhdar.  These stations were divided into the coastal stations (Darnah, Benina, Ras 

Al helal and Susah), and the mountain stations (Shahat, Al Abraq, Al Qubah, Ayn 

Marah, Al Faidia, Al Qayqab and Al Fatayah). To determine the variations and 

pattern of rainfall trends in the region over the 57 years (1945-2003), the research has 
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relied on the mean annual rainfall at the stations in the study area over the long 

period and two short periods (1946-1971) (1972-2003).  

5.4.1 Long-term trends in mean annual precipitation at the stations in the study 

area (1945- 2003) 

To determine the general patterns in the long-term and any variations in rainfall 

trends, the approach investigated long time-series of the mean annual precipitation 

using the data available from Darnah, Shahat and Benina (1946-2003) in the Al Jabal 

Al Akhdar region (Table 5.10, Figures 5.23, 5.24 & 5.25).  

Table 5.10: The mean annual precipitation, the Mann-Kendall (M-K) and correlation 

coefficient (R) at the stations over the period (1946-2003) 

  

The mean annual rainfall is the average of amount of rainfall for the entire year at 

any given area. The mean annual rainfall ranges between 266 mmyr-1 and 270 mmyr-

1 at coastal stations with a coefficient of variation (CV) of 28.16% at Darnah, and 

30.06% at Benina over the period of study. In the mountain stations, Shahat receives 

approximately 563 mm yr-1 which is the highest amount of rainfall in the northeast of 

Libya with (CV) of 20.46%.  

The trend of mean annual rainfall has fluctuated over the period of study at all 

stations without clear trends at the coastal stations and decreased at Shahat station in 

the mid of1970s. The 1950s and 1970s periods witnessed a decline at all stations 

whereas, the 1990s is characterized by increased rates of rainfall. 

 Regarding M-K and R results, there were no significant trends for the mean annual 

rainfall at all stations of the study area. The changes in the pattern of rainfall in the 

study area in terms of change the amounts of rainfall in the months were similar to 

the change of precipitation patterns in the Mediterranean region as respond to the 

global warming (Abbott & Le Maitre, 2010; IPCC, 2014). 

Station Period Mean annual mm CV% M-K Sig (p) R Sig (p) 

Darnah 1946-2003 266 28.16 0.051 0.569 0.014 0.916 

Shahat 1946-2003 563 20.46 -0.088 0.331 -0.131 0.327 

Benina 1946-2003 270 30.06 0.001 0.989 0.028 0. 831 
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Figure 5.23: The mean annual rainfall at Darnah station over the period of study 

 

Figure 5.24: The mean annual rainfall at Shahat station over the period of study 

 

Figure 5.25: The mean annual rainfall at Benina station over the period of study 

y = 0.0679x + 262.46
R² = 0.0002

0

150

300

450

600

750

1
9

46

1
9

48

1
9

50

1
9

52

1
9

54

1
9

56

1
9

58

1
9

60

1
9

62

1
9

64

1
9

66

1
9

68

1
9

70

1
9

72

1
9

74

1
9

76

1
9

78

1
9

80

1
9

82

1
9

84

1
9

86

1
9

88

1
9

90

1
9

92

1
9

94

1
9

96

1
9

98

2
0

00

2
0

02

M
ea

n
 a

n
n
u
al

 r
ai

n
fa

ll
 (

m
m

)

Yeas

y = -1.0073x + 592.62
R² = 0.0172

0

150

300

450

600

750

900

1
9

46

1
9

48

1
9

50

1
9

52

1
9

54

1
9

56

1
9

58

1
9

60

1
9

62

1
9

64

1
9

66

1
9

68

1
9

70

1
9

72

1
9

74

1
9

76

1
9

78

1
9

80

1
9

82

1
9

84

1
9

86

1
9

88

1
9

90

1
9

92

1
9

94

1
9

96

1
9

98

2
0

00

2
0

02

M
ea

n
 a

n
n
u
al

 r
ai

n
fa

ll
 (

m
m

)

Years

y = 0.1387x + 265.56
R² = 0.0008

0

150

300

450

600

750

1
9

46

1
9

48

1
9

50

1
9

52

1
9

54

1
9

56

1
9

58

1
9

60

1
9

62

1
9

64

1
9

66

1
9

68

1
9

70

1
9

72

1
9

74

1
9

76

1
9

78

1
9

80

1
9

82

1
9

84

1
9

86

1
9

88

1
9

90

1
9

92

1
9

94

1
9

96

1
9

98

2
0

00

2
0

02

M
ea

n
 a

n
n
u
al

 r
ai

n
fa

ll
 (

m
m

)

Years



                            Chapter 5: Recent climate change in the Al Jabal Al Akhdar 

86 
 

For example, a strong drying trend starting in the early 1960s in southern Europe – 

Turkey region and the Levant with increased precipitation rates in the late 1990s, 

(Lelieveld et al. 2012), and this was similar to the trends of rainfall at the study 

stations. 

5.4.2 Short term trends in mean annual precipitation over two periods (1945-

1971) and (1972-2003) at the stations  

To examine the trend of mean annual rainfall over different periods, the rainfall data 

was divided into two short periods 1946-1971 and 1972-2003 at the main station 

stations, plus short different periods at 8 the rain stations across the region to give a 

general picture about the pattern of rainfall across the study area (Tables 5.11). 

Table 5.11: The mean annual precipitation, (M-K) and (R) for two short periods at 

the stations. 

 

The table shows the changes in the mean annual precipitation at the stations in the 

study area over the second period of study (1972-2003) (Figures 5.26, 5.27 & 5.28). 

Regarding the Mann-Kendall and R tests, there were no statistically significant trends 

for either period at the stations in the region over the different periods, however, it is 

worth noting that at Benina station the rainfall trend decreased in both the periods of 

study and Shahat the trend deceased in the second period (1972-2003). 

 There was a decrease in the average rainfall in Darnah and Shahat stations by 5 mmyr-

1 and 43 mmyr-1 respectively in the second period compared with Benina which saw 

an increase on average of 11 mm yr-1. 

Stations Periods Mean annual (mm) M-K Sig (p) R Sig (p) 

Darnah 

 

1946-1971 267 0.007 0.137 0.003 0.987 

1972-2003 262 0.137 0.270 0.149 0.415 

Shahat 

 

1946-1971 586 0.077 0.582 0.081 0.693 

1972-2003 544 0.008 0.948 -0.028 0.880 

Benina 

 

1946-1971 264 0.046 0.741 -0.125 0.543 

1972-2003 275 0.026 0.833 -0.014 0.940 
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Figure 5.26: Two short periods of mean annual rainfall a (1946-1971) and b  

(1972-2003) at Darnah 

 
 

Figure 5.27: Two short periods of mean annual rainfall a (1946-1971) and b 

(1972-2003) at Shahat 

 
 

Figure 5.28 Two short periods of mean annual rainfall a (1946-1971) and b  

(1972-2003) at Benina 
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To identify the variation pattern of precipitation in the Al Jabal Al Akhdar, the mean 

annual rainfall for the rest of the stations was calculated (Table 5.12) and presented 

in graphs (Figures 5.29 to 5.36). 

Table 5.12: The mean annual rainfall, (M-K) and (R) at rain stations in the Al Jabal 

Al Akhdar in different periods 

 

The pattern trends of annual precipitation differed between the stations and there was 

no similarity between the mountain stations ( Al Faidia, Al Qayqab, Al Byadah, Al 

Abraq, Al Qubah and Ayn Marah), which have the same topography and distance 

from the sea, where the trends of annual rainfall have fluctuated from station to 

station at different periods. 

 

Figure 5.29: The mean annual precipitation (mm) at mountain station of Faidia 

 (1960-1980) 
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Year

Sig (p) R Sig (p) M- K CV % Mean annual mm Station 

0.452 -0.169 0.800 -0.039 36.9 419 Al Faidia 

0.057 0.357 0.024 0.296 30.9 332 Al Qayqab 

0.723 -0.076 0.535 -0.091 4.53 299 Al Byadah 

0.346 0.185 0.489 0.093 40.2 398 AL Abraq 

0.327 -0.131 0.331 -0.088 20.5 563 Al Qubah 

0.674 0.110 0.410 0.147 46.9 325 Ayn Marah 

0.385 -0.164 0.232 -0.154 36.3 384 Ras Al helal 

0.284 -0.239 0.185 -0.203 31.9 372 Susah 
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Figure 5.30: The mean annual precipitation (mm) at mountain station of Al Qayqab 

(1965-1990). 

 

Figure 5.31: The mean annual precipitation (mm) at mountain station of Al Byadah 

(1991-2003) 

 

Figure 5.32: The mean annual precipitation (mm) at mountain station of AL Abraq 

(1963-1990) 
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Figure 5.33: The mean annual precipitation (mm) at mountain station of Qubah  

(1946-2003). 

 

Figure 5.34: The mean annual precipitation (mm) at mountain station of Ayn Marah 

(1963-1979) 

In contrast, the coastal stations recorded a decrease in the mean annual rainfall 

during the different periods (Figures 3.35 & 3.36). 

 

Figure 5.35: The mean annual precipitation (mm) at coastal station of Ras Al Helal 

(1959-1987) 
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Figure 5.36: The mean annual precipitation (mm) at coastal station of Susah 

(1960-1981). 

5.4.3 Summary of precipitation trends  

The results of the patterns of precipitation indicated spatial and temporal changes in 

the Al Jabal Al Akhdar area over the last 57 years. These changes in the trends of 

rainfall were similar to the precipitation pattern changes in the Mediterranean region 

as a result of global warming. The key results of this study are as follows: 

(i) The trends of mean annual rainfall have fluctuated at all stations without clear 

trends over the periods of study (1946-2003).   

(ii) The period of the 1950s and 1970s witnessed a decline at all stations, whereas the 

1990s was characterized by increasing rates of rainfall. 

 (iii) Change in a spatial and temporal precipitation  were found at the mountain 

stations in terms of increases or decreases in the average rainfall, in spite of, the 

distance between the rain stations of no more than 30 m, whereas the coastal stations 

had the similar trends whether they be increases or decreases.  

(iv) The results of Mann-Kendall confirmed the result of correlation coefficient (R), 

in terms of an increase or decrease in the trends of rainfall at the station of study 

area. The results indicated there were no significant trends for the mean annual 

rainfall over the period of study (Table 5.13). 
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Table 5.13: Comparison of the results of mean annual rainfall at the Mann-Kendall 

and R 

 

 

 

 

 () no significant trend. 

 

5.5 Correlation coefficient between long trend of the mean annual 

precipitation and the mean annual temperature at the stations 

(1946-2003) 

To identify the relationship between increases in the temperature and changes in 

patterns of precipitation in the Al Jabal Al Akhdar, a correlation coefficient was used 

to determine if there was relationship between the mean annual temperature and the 

mean annual precipitation over the 57 years (Table 5.14). 

Table 5.14: The Correlation coefficient between precipitation and mean annual 

temperature in the study area (1945-2003). 

 

 

The analysis of correlation showed there was no relationship between the mean 

annual temperature and the mean annual rainfall at the stations in the region. Thus, 

the increase in temperature, which has occurred in the region was not associated with 

the change in the pattern of rainfall. 

5.6 Summary 

Analysis of the correlation coefficient (R) showed that there was no relationship 

between the annual temperature and annual rainfall at all the stations, furthermore, 

Station 
1946-2003 1946 - 1971 1972 - 2003 

M-K R M-K R M-K R 

Darnah       

Shahat       

Benina       

Station Period Mean annual T  °C Mean annual P mm R 

Darnah 1945-2003 20.1 266.2 0.035 

Shahat 1945-2003 16.5 562.9 - 0.31 

Benina 1945-2003 20.1 269.6 0.038 
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the annual temperature trend increased after 1975, a period when warming occurred, 

as IPCC confirmed in their fourth and fifth reports (IPCC, 2007; IPCC 2014). While 

it is true that the mean annual rainfall fluctuated over the period of study (1945- 

2003), there was no clear trend for the precipitation in the study area.  

5.7 Conclusion  

The analysis of climate data from the study stations provided a general picture for the 

climate of the study area and identified any changes in the climate of the study area 

which in turn may have an effect on the long term vegetation cover. 

 

Overall, the conclusion is that the mean annual temperature has increased 

significantly in the study area with fluctuations in rainfall over the 57 years. These 

results were similar to the climate change of the Mediterranean region, in terms of 

increases in temperature, although there was no trend for the rainfall. Many studies 

of vegetation change in the Mediterranean region (mentioned in chapter 2), have 

confirmed that climate change has affected productivity and the structure of 

vegetation cover.  

 

Climate change may be a factor affecting vegetation change in the study area, 

especially in the south of the Al Jabal Al Akhdar where there is a lack of rainfall and 

an increase in temperature in addition to the influence of the desert in the south of the 

study area. The next chapter presents an examination of the vegetation change over 

42 years in the study area. 
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CHAPTER 6: VEGETATION INDEX CHANGE 

DETECTION IN THE STUDY AREA 

 

This chapter presents an assessment of vegetation cover change in the study area 

over the period 1972- 2014 through the use of a time-series of three different 

vegetation indices.  

The approach uses a pixel by pixel statistical analysis to test for significant trends in 

vegetation indices. Maps of significant trends are generated to show the spatial 

distribution of change in the study area.   

 

6.1 Introduction 

Detection of vegetation cover change in the Al Jabal Al Akhdar region requires a 

long-term record of data for vegetation cover in order to monitor the changes over a 

long period of time. Multi-temporal Landsat image data are free, with spatial 

resolutions of 79 m (MSS) and 30m (TM, ETM+ and OLI), and are available for the 

period 1972 to the present for the study area. The research selected eleven images 

because they were cloud-free, obtained within a three-month window in summer/ 

autumn and covering the study area. These data sets were pre-processed to surface 

reflectance as described in chapter 4. 

6.2 Objective one 

The main goal in this chapter is to assess vegetation cover change using remote 

sensing vegetation indices and to map the temporal and spatial variation in the 

indices across the study area as a first step towards assessing the factors which 

caused these changes. The objective proposes that there has been a decrease in 

vegetation cover over the period of study. The research therefore tests this by 

assessing trends in vegetation index changes in the study area. 

6.3 Detection of vegetation cover index changes 
 

Vegetation indices allow mapping of vegetation cover based on the characteristic 

reflectance patterns of green vegetation. The approach used three VI to analyse the 

images: Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation 
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Index (SAVI) and Enhanced Vegetation Index (EVI). The research masked the sea 

for all the analysis and used a consistent rectangular spatial frame to define the study 

area. 

These specific indices were chosen because of the diversity in vegetation cover 

density in the study area, and in order to assess the vegetation without the influence 

of other factors such as the atmosphere, soil and vegetation. The NDVI was used so 

as to assess the vegetation cover even in areas with low density of vegetation (Wang 

et al., 2004). The SAVI was used to assess the vegetation cover without the influence 

of the brightness or colour of the soil, which may have an effect on VI values in the 

areas that have low vegetation (Huete et al., 1998). The EVI was used to remove the 

influence of atmospheric conditions on vegetation cover estimates and correct the 

canopy background reflectance signal in areas that have dense vegetation (Jiang et 

al., 2008). 

6.3.1 Normalized Difference Vegetation Index (NDVI) 

The research generated the NDVI images from Landsat images using ERDAS 

Imagine software (Figure 6.1).  

6.3.1.1 Long term NDVI dynamics over 42 years (1972 – 2014)  

 

1972 was the first year when Landsat data became available, so the research used an 

image from this year as the starting point for comparing the different NDVI values. 

In order to estimate NDVI changes, the research created a time-series of the NDVI to 

cover all the years to form a single image with 11 layers (images) using ERDAS 

Imagine. The NDVI time-series is illustrated with the combination of bands 1, 2 and 

3, which represented three years, for example 1972 is represented by the blue band, 

1978 by green and 1987 by red (Figure 6.2). 

 

6.3.1.2 Linear regression of NDVI values per pixel  

To assess the trend of vegetation cover in each pixel of the VI images, the research 

applied a regression equation using ERDAS Imagine to generate a regression slope
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Figure 6.1: NDVI image generated from Landsat TM image, September 1987. 
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Figure 6.2: Generation of NDVI time-series image
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image for NDVI (y) against the time period (i.e. year) (x) for each pixel in the image. 

In ERDAS Imagine the regression and correlation coefficient are applied to two 

images, therefore, the research used the same components of the regression slope 

equation (∑x, ∑y, ∑xy and ∑y2) to apply to 11 images.   

Step 1: Find the following data from the time series of NDVI images: Σx, Σy, Σxy, 

Σx2, Σy2.  X represents the years of the images (1972, 1978, 1986, 1987, 1999, 2001, 

2003, 2006, 2010, 2013 and 2014) and X is the difference between the years (1972 

represents 0). Follow these steps to create a table (Table 6.1) and find Σ x and Σx2.  

Table 6.1:  Σ x and Σx2. 

 

 

 

 

 

 

Step 2: The research calculated ∑y using Model Maker in ERDAS Imagine and 

generated the image of ∑y, where y was the NDVI value in each pixel in the images 

(layers), and ∑y is (layer 1+ layer 2 + layer 3 + layer 4....+layer n).  ∑y2   is ∑ (( 

layer 1* layer 1)+( layer 2* layer 2)+( layer 3* layer 3)+….( layer n* layer n)). 

Step 3: Insert the data into Model Maker and calculate the slope for each pixel in the 

time series of the NDVI image (there is no need to find a); b is the slope of the line 

and a is the y –intercept (Chatterjee & Hadi, 2015) (see appendix 1) (Figure 6.3). The 

regression slope is given as equation 6.1:  

b = (n ∑xy)-(∑x) (∑y) / (n∑x2-(∑x)2).                                                                  [6.1] 

                                                              

Images x x2 

1972 0 0 

1978 6 36 

1986 14 196 

1987 15 225 

1999 27 729 

2001 29 841 

2003 31 961 

2006 34 1156 

2010 38 1444 

2013 41 1681 

2014 42 1764 

∑ 277 9033 
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Figure 6.3: The steps of the regression slope computation 

Each pixel has a regression slope value and presents the trend of NDVI over the 

period for every pixel. The research generated the NDVI slope image using the 

previous equation on the NDVI time-series image in ERDAS Imagine. If the value of 

the slope is positive it means there is an increase in the NDVI trend and a negative 

value signifies a decrease in NDVI over the 42-year period. The output image of the 

regression slope NDVI analysis indicated the trend of VI in each pixel over the 42 

years. The values of the regression slope ranged from -0.004 to 0.001. Pixels with a 

negative value (-) experienced a decrease in VI, while in contrast the pixels with 

positive values (+) experienced an increase in VI.   

The histogram of the NDVI slope values (Figure 6.4) shows the distribution of the 

values from -0.004 to 0.003 with most pixels showing a negative slope, which means 

there was a trend of decreasing NDVI over the period of the study (Figure 6.5). A 

density sliced image of the NDVI slope image was created that divided the positive 

and negative classes, to represent the areas that had positive and negative VI change 

(Figure 6.5). Most of the study area showed a trend of decreasing NDVI.  

The linear correlation coefficient (r) was also calculated for every pixel to assess the 

strength of the relationship between time and NDVI for each pixel.  

Regression slope 

x 

b = (n ∑xy)-(∑x) (∑y) / (n∑x2-(∑x)2) 

Model Maker in 

ERDAS Imagine 

∑x y 

x2 ∑x2 

∑y 
Function definition 

in ERDAS Imagine 



                              Chapter 6: vegetation index change detection in the study area 

100 
 

 
 

Figure 6.4: The histogram of the NDVI regression slope. 

6.3.1.3 NDVI correlation coefficient images  

The correlation coefficient (r) was used to investigate the strength of the linear 

relationship between the VI and time, to determine which pixels showed a 

statistically significant relationship (Sedgwick, 2012) and then determine which pixel 

had a statistically significant change in the VI over the time. In ERDAS Imagine the 

correlation coefficient was applied to 11 images, therefore, the research used the 

same components of the regression slope equation Σx, Σy, Σxy, Σx2, Σy2 to calculate 

the correlation equation for 11 images using Model Maker in ERDAS Imagine 

(Figure 6.7). The formula for the correlation coefficient equation is given in 6.2 

below: 

 

where r = correlation, n = 11 (NDVI images), x = time and, y = NDVI value  (Figure 

6.8)     

-0.009         -0.004                         - 0.001           0                 0.001                  0.0030                  0.010 
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Figure 6.5: The NDVI regression slope image 
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Figure 6.6: The classified NDVI regression slope image
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Figure 6.7: The steps of correlation coefficient computation 

With a sample size of 11 and at a 95% level of confidence, the critical value for r is 

0.553 (n = 11). Thus, if the value is greater than 0.553, it means there is a significant 

increase in VI, however, if the value is less than -0.553, it signifies a significant 

negative relationship. The histograms of the correlation coefficient for the NDVI 

time-series showed the values between 0.33 and -0.87 (Figure 6.9). 

The distribution in the histogram shows that most areas in the study area showed a 

decrease in the NDVI. The values range between a moderate and strong negative 

linear relationship (-0.553 to -0.87) and indicate a significant decrease in the VI 

which may be interpreted as a decrease in vegetation cover. In contrast, the positive 

values indicated no significant linear relationship (values were between 0 and 0.38).  

Correlation coefficient 
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Figure 6.8: The NDVI correlation coefficient image. 
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Figure 6.9: The histogram of NDVI correlation coefficients 

The research used these values to classify the NDVI correlation image to show the 

areas that experienced statistically significant change in vegetation cover. By using 

‘reclassify’ in the spatial analysis tools in Arc-GIS, the research chose the number     

(-0.555) to reclassify the image to two categories; one represents a statistically 

significant change and the other no significant change. (Figure 6.10). 

The results are shown in figure 5.8, where the areas that have a statistically 

significant change in the NDVI are red in colour while the areas that have no change 

are coloured by grey. 

6.3.2 Soil Adjusted Vegetation Index (SAVI) 

The soil-adjusted vegetation index was developed as a modification of 

the Normalized Difference Vegetation Index (Gilabert et al., 2002), was used to 

minimize the influence of soil brightness when vegetative cover is low (Huete, 

1988). It was deemed suitable for the study area because the vegetation cover in the 

study area differs in its density from one place to another. The research generated the 

SAVI images from Landsat images using ERDAS Imagine software (see an example 

in Figure 6.11).  
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Figure 6.10: The classified NDVI correlation coefficient image.
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Figure 6.11: The SAVI image generated from Landsat TM image, September 1987.  
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6.3.2.1 Linear regression of SAVI values per pixel 

Soil background exerts considerable influence over partial canopy spectra and the 

calculation of the vegetation index values, which was noted by way of the slight 

difference between SAVI and NDVI values. Soil brightness variations are due to 

factors such as moisture differences, roughness variations, shadow or organic matter 

differences (Huete, 1988), and this can impact on vegetation index values in the 

study area. The value in SAVI was slightly higher than the value of the NDVI, 

because of a reduction in the soil influences from vegetation reflectance. However, 

the SAVI was similar to the NDVI in the areas that have experienced change over the 

42 years. The research generated the SAVI time-series image to determine the trends 

in SAVI  over the 42 years using linear regression slope and correlation coefficient 

for the SAVI using the previous equations (Figure 6.12).  In Figure 6.12, the time-

series shows bands 1, 2 and 3 in combination, which represented all the years with 

1972 represented by the blue band, 1978 represented by green and 1987 by the red 

band. 

To assess the trend of the vegetation in the study, the research used the linear 

regression equation generated from the SAVI time-series images to determine the 

statistical trend in each pixel and identify the variation in the VI over space and time 

(Figure 6.13).   

The SAVI slope image derived from the time-series of SAVI images shows the 

changing vegetation cover in the region and indicates similar spatial patterns of 

change in the NDVI slope image. The areas with positive or negative values were 

similar to those for the NDVI with the study area dominated by the decreasing VI.  

The histogram shows the variation in the SAVI and the distribution of regression 

slope values in the study area (Figure 6.14). The frequency of the negative values of 

the SAVI increased and the frequency of the positive values decreased in relation to 

the NDVI.
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Figure 6.12: Generation of SAVI time-series image 

 1972 

1987 

1978 



                                                                                Chapter 6: vegetation index change detection in the study area 

110 
 

 

 

Figure 6.13: The SAVI regression slope image 
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Figure 6.14: The histogram of the SAVI regression slope. 

The density sliced image shows the areas that have negative (which indicates a 

decrease in vegetation cover) and positive slopes (Figure 6.15).  

6.3.2.2 The SAVI correlation coefficient image and the histogram  

The research calculated the correlation coefficient (r) for the SAVI time-series image 

using the correlation coefficient equation to assess which pixels showed a 

statistically significant change in the study area over the 42 years. 

With the sample size of 11, the critical value for r = 0.553 (n = 11) at a 95% level of 

confidence.  If the value of SAVI is greater than 0.553 it means there is a significant 

increase in VI, however if the value is less than -0.553 it indicates a significant 

decrease. 

 The histograms of the correlation coefficient SAVI showed the values of the SAVI 

in the study area and the varied values between 0.51 and -0.87(Figure 6.16). 
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Figure 6.15: The classified SAVI regression slope image
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Figure 6.16: The histogram of SAVI correlation coefficient 

 

The values ranged between a moderate and a strong negative linear relationship (-

0.553 to -0.87) and indicated a significant decrease in the VI, which may again be 

interpreted as a decrease in vegetation cover (Figure 6.17).   

In contrast, the positive values indicate a non-significant linear relationship in VI 

(values were between 0 and 0.51), which may mean there were no statistically 

significant changes in VI in those areas. The histogram shows the distribution of 

SAVI correlation coefficient values in the study area. The frequency of negative and 

positive values of the VI increased in relation to the NDVI. The areas with positive 

or negative values were similar to those for the NDVI, however, the areas dominated 

by decreasing VI in SAVI were more prevalent than the areas that saw a decrease in 

the NDVI. The research used these 
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Figure 6.17: The SAVI correlation coefficient image
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values to classify the SAVI correlation image to show the areas that experienced 

significant change in vegetation cover (see Figure 6.18).  The results are shown in 

figure 6.16 where the areas that have statistically significant change in SAVI are red 

in colour while the areas that have no change are grey in colour.  

6.3.3 Enhanced Vegetation Index (EVI) 

The Enhanced Vegetation Index (EVI) was proposed by the MODIS Land Discipline 

Group. It is widely used for monitoring vegetation cover, biophysical derivation of 

radiometry and structure of vegetation canopies (Matsushita et al., 2007). EVI is used 

to improve vegetation monitoring through a coupling of the canopy background and 

minimizing soil and atmospheric influences (Jiang et al., 2008). In this research only 

seven of the eleven images were used because the Landsat MSS does not have a blue 

wavelength, so the research used the images of TM, ETM and OLI and generated the 

EVI images for 1987, 1999, 2001, 2003, 2010, 2013 and 2014 (see Figure 6.19). The 

research generated the EVI time-series image over a 27 year period (see Figure 6.20). 

The image shows combinations of bands 1, 2 and 3, which represent three years, 

namely, 1987 (blue band), 1999 (green band) and 2003 (red band). 

6.3.3.1 Linear regression of EVI values per pixel  

To assess the trend of the VI in each pixel over the 27 years, the research applied a 

regression equation to the EVI time-series image using ERDAS Imagine to generate 

a regression slope image for EVI against time for each pixel in the image (see Figure 

6.21). The positive slope value means there is an increase in the VI trend and the 

negative value indicates a decrease in the VI. The output image of the regression 

slope EVI analysis indicated the trends of VI over the 27 years and the values of the 

EVI slope ranged between -0.01 and 0.003. Pixels with negative values (-) 

experienced a decrease in the VI and positive values (+) had an increase in the VI. 

The histogram (Figure 6.22) of the EVI slope values shows the distribution of the 

EVI slope values between -0.002 and 0.003 and most pixels show a negative slope 

which means there was a decrease in the EVI trend over the period of study.  
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Figure 6.18: The classified SAVI correlation coefficient image. 

 



                                                                                              Chapter 6: vegetation index change detection in the study area 

117 
 

 

 

Figure 6.19: EVI image generated from Landsat TM image, September 1987. 
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Figure 6.20: Generation of EVI time-series image. 
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Figure 6.21: The EVI regression slope image. 
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Figure 6.22: The histogram of EVI regression slope 

The areas with positive or negative values were similar to those for the NDVI and 

SAVI, however, the areal extent for the areas that had changed in the EVI was less 

than that for the NDVI and SAVI, which may be due to change in vegetation cover in 

the first 15 years (1972- 1987) of satellite images record. 

A density sliced image shows areas that have negative (indicating a decrease in 

vegetation cover) and positive values (indicating an increase or no change in 

vegetation cover) (Figure 6.23). 

6.3.3.2 The EVI Correlation coefficient image  

The research calculated the correlation coefficient (r) for the EVI time-series image 

to determine which pixels shared statistically significant changes in the study area 

over the 27 years. With a sample size of 7 at a 95% level of confidence, the critical 

value for r = 0.666.  If the value of EVI is greater than 0.666 it means there is a 

significant increase in VI, however, if the value is less than -0.666 it indicates a 

significant negative relationship (see Figure 6.24).  
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Figure 6.23: The classified EVI regression slope image.
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The correlation coefficient values of EVI range between -0.87 and 0.33. The values 

range between a moderate and a strong negative linear relationship (-0. 666 to -0.87) 

and indicate a significant decrease in the VI, which may be interpreted as a decrease 

in vegetation cover. The positive values indicated a non-significant linear 

relationship in the VI (values were between 0 and 0.33), which may mean there were 

no detectable changes in vegetation cover in those areas (see Figure 6.25).  
 

 

 

 

Figure 6.24: The histogram of EVI correlation coefficient 

The histograms (Figure 6.24) of the EVI correlation coefficient show the distribution 

of values in the study area. The frequency of negative and positive values of the VI 

were different from those of the NDVI and SAVI, however, the areas with negative 

values were similar. The research used the value -0.666 to classify the EVI 

correlation image to show the areas that experienced statistically significant change 

in vegetation cover (see Figure 6.26). 
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Figure 6.25: The EVI correlation coefficient image 
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Figure 6.26: The classified EVI correlation coefficient image  
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6.4 Comparison of the VI changes 

Differences and similarities when assessing vegetation cover were compared among 

various spectral vegetation indices. All VI showed qualitative variations in 

vegetation cover. However, there were significant differences in the values of the VI 

over desert, agricultural areas, and forests. The spatial and temporal distribution of 

the VI produced insights for assessing vegetation cover change in the study area.  

To explore these relationships, the research chose the highest negative value in the 

NDVI correlation image, and collected the values for the same pixel from the NDVI 

time-series image (11 values), to calculate the linear regression slope and R for this 

pixel. The research then collected the values of the same pixel from the SAVI and 

EVI time series images (see Table 6.2). 

Table 6.2: Comparison of the highest negative values between the VI 

Julian date Years NDVI SAVI EVI 

250 1972 0.163 0.115 - 

245 1978 0.15 0.124 - 

279 1986 0.106 0.098 - 

273 1987 0.125 0.073 0.075 

298 1999 0.123 0.051 0.069 

209 2001 0.165 0.101 0.081 

253 2003 0.042 0.033 0.033 

248 2006 0.021 0.03 - 

235 2010 0.053 0.053 0.039 

251 2013 0.046 0.02 0.018 

234 2014 0.044 0.031 0.014 

 

The table shows the value which had the highest negative value in different years in 

each VI. The Julian date calendar was used to indicate the date of the image within a 

particular year (collected between July and October) and to avoid seasonal 

differences in vegetation cover (see Figures 6.27, 28 & 29). 
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Figure 6.27: The highest negative value in the NDVI time-series image. 

 

Figure 6.28: The highest negative value in the SAVI time-series image. 

 

Figure 6.29: The highest negative value in the EVI time-series image. 

 

The results obtained from all the indices are shown in Figure 6.27, depicting the 

trends for the values in different years and the differences in values among the VI. 

Although there were differences among the VI in values, all the VI showed areas 

which saw a decrease in the VI (vegetation cover) over the period of study. It is 

noted that the largest residual in all three cases was for 2001, on Julian day 209 
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which was the earliest image used in terms of the vegetation growing season and 

may represent an early season greening in this area. 

 

6.5 Conclusion  

The results obtained from assessing the vegetation cover change were consistent with 

previous local studies that have examined the natural vegetation in the Al Jabal Al 

Akhdar region such as Al Mukhtar (2005), Ben Khaial and Bukhechiem (2005), 

Ibrahim (2006), the Libyan Agriculture Department (2004), and Oune (2006), and 

confirms that there has been a decrease in the vegetation cover in the region.  

The results confirmed that the decrease in the VI may be interpreted as showing a 

decrease in vegetation cover in the study area over the last 42 years. The spatial and 

temporal distribution of vegetation cover change across the study area has been 

examined using time-series spatial resolution satellite imagery and VI. The key 

results were: 

(i) The effectiveness of remote sensing techniques to monitor vegetation change has 

been demonstrated in the study area, although there were relatively few images 

covering the study area over the last 42 years. 

(ii)  The results of the regression analysis of the VI in the Al Jabal Al Akhdar region 

indicated a change in the VI in some areas over the last 42 years. The negative values 

of the VI slope showed a decrease in the VI trend and therefore a decrease in 

vegetation cover in some areas. In contrast, the areas which have positive values saw 

no significant change in vegetation cover. 

(iii) The correlation coefficient of the VI showed the pixels which revealed a 

statistically significant change at a 95% level of confidence in the study area over the 

42 years. 

(iv) The results of the VI correlation indicated a statistically significant decrease in 

the VI in some areas.  

(v) Although there were some differences between the NDVI, SAVI and EVI in 

terms of values, all the VI shared areas which had experienced a decrease in the VI 
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(vegetation cover) over the period of study. The spatial distribution and causes of 

significant decrease in vegetation cover are explored in the next two chapters. 

The aim of this chapter was to assess vegetation cover change in the study area. 

Vegetation Indices (VI) obtained from Landsat images represent quite a  simple and 

effective technique for quantitative evaluation of vegetation cover for the whole of 

the study and it can also identify the quantity of vegetation cover in the area. Also, 

the VI can provide extremely useful insights into vegetation cover change in the 

study area by examining the time series of VI over a long period.  

 

The statistical analysis of regression and the correlations that were applied in this 

chapter for the VI index contributed to showing the strength of the linear relationship 

between the VI and time. It determined which pixels showed a statistically 

significant relationship, and then determined which pixels had statistically significant 

trend in the VI over time.  

 

This chapter has provided statistically significant results for the changes in 

vegetation cover and produced maps for the changes in vegetation cover of the Al 

Jabal Al Akhdar region over 42 years. These were hitherto not available in Libya 

because most the studies relied on fieldwork and specific locations. The output of 

this part of the research will be used to detect the factors which caused these 

changes. 
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CHAPTER 7:  LAND COVER CHANGE IN THE STUDY 

AREA 

This chapter addresses the third research question and assesses land cover and land use 

change in the Jabal Al Akhdar over the period from 1972 to 2014.  

The chapter uses supervised classification of archived Landsat MSS, ETM+, TM and 

OLI images for the study area to determine the nature and scale of long-term land cover 

change that has occurred at this site over a 42 year period. It assesses changes that have 

occurred within this period and affected the quantity and distribution of vegetation 

cover in these areas. 

7.1 Introduction 

Understanding land cover dynamics allows the possibility of predicting the influence of 

land cover changes on ecosystems in the future (Foody, 2002; Knorn, 2012). Land 

cover and land use are two separate phenomena. Although land cover and land use are 

often used interchangeably, their actual meanings are quite distinct (Rawat & Kumar., 

2015). Land cover refers to the physical material at the Earth’s surface, whether it be 

vegetation, urban infrastructure, water, bare soil, and so on. Land use refers to human 

activity on the land, for example, recreation, urban enterprise or agriculture (Rawat & 

Kumar, 2015; Sohl & Sleeter, 2012). Land cover changes affect land use and land use 

affects land cover (Knorn, 2012). 

Monitoring the dynamics of land cover and land use change in Al Jabal Al Akhdar is 

important in assessing these changes and the factors that caused them. The research 

therefore classified the time series of Landsat imagery to detect the changes in land 

cover and land use in the study area. 

7.2 Objective two 

The general objective of this chapter is to assess the dynamics of land cover and land 

use in the study area over the 42 years. This overall objective proposes that land use has 

changed as a result of an increase in human activity in the region. Initially, land cover 

change is assessed and then in chapter 8 these changes are used with population 
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distributions to determine the relationship between these changes and vegetation cover 

change in the study area. 

7.3 Detecting land cover change in the study area 

Land cover mapping normally requires collecting data from the field to generate the 

map and test its accuracy, but difficulties resulting from problems of gaining access to 

the study area made this impossible. Remote sensing provides a long term record of 

land cover dynamics. It covers a large area and collects data from areas which are 

difficult to access. To assess the land cover changes, the research relied on Landsat 

images to create thematic maps for each land cover class and to assess the changes in 

these classes over the 42 years. 

7.3.1 Image classification  

The production of thematic maps for land cover and land use, using image classification 

is one of the most common applications of remote sensing (Foody, 2002). Thematic 

maps of the study area were based on the supervised classification method; the research 

used ERDAS software and Arc-GIS to generate the maps from the satellite images by 

going through several steps, described below.  

7.3.1.1 Collect the training areas  

In this step the research determines how many land cover categories there are in the 

study area and allocates a name for each one. . The approach identified 12 categories 

covering the image of Al Jabal Al Akhdar based on personal knowledge of the study 

area with the interpretation of imagery from Google Earth. Furthermore, use was made 

of background information on land cover and a vegetation map of Libya from the report 

of FAO in 2009 (Figure 7.1) and a classification map of agricultural areas and 

vegetation in the north east of Libya from the report of the Libyan Agriculture 

Department in 2004 (Figure 7.2). 

Training sites were used as references for each land cover class from the first image of 

1972 to generate the training signatures files, which included all the classes of the study 

area, in ERDAS image software. The approach selected more than 25 training areas for 

each category of the study area. 
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Figure 7.1: Land cover and vegetation map of Libya (Source: FAO, 2009) 
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Figure 7.2: The agricultural areas and vegetation cover of north east Libya (source: Libyan Agriculture Department, 2004) 
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7.3.1.2 Generating the signature files 

The approach opened a new signature file from the supervision classification toolbar in 

ERDAS, and opened the Landsat image in ERDAS viewer and displayed either a true or 

false colour composite image which was used to draw the training areas. The approach 

entailed drawing a polygon on each site using the previous information and google earth 

to represent the class of land cover and save it in a signature file with the name of the 

class. Some classes were easy to identify such as the sea, sandy beaches, agricultural 

areas, urban sites and quarries. Other classes were difficult to draw because they were 

overlaid with other classes or they had the same colour. For example, the forest and 

high density shrubland have similar colours, so the approach relied on personal 

knowledge of the sites of the forests which was limited in the study area. In terms of 

determining high or low shrubland, the researcher chose pixels which identified about 

75% or more coverage by shrubs as high density shrubland, and for low density 

shrubland, the research chose the pixels which showed partial coverage less than 75% 

with appearing the ground in those pixels. The class of bare area was easy to determine, 

but the outer limits of this class were overlaid with the beginning of the desert class, so 

the boundaries of these categories were difficult to define. The approach used the 

signature files for every image in the supervised classification in ERDAS Imagine and 

generated classified images which relied on the Maximum Likelihood (ML) 

classification method (Figure 7.3). The Maximum Likelihood (ML) method is a 

supervised classification derived from the Bayes theorem (Ahmad, 2012), which uses a 

discriminant function to assign pixels to the class with the highest likelihood 

(Dougherty et al., 1992). 

7.3.1.3 Accuracy assessment of the classified image 

Thematic mapping from remotely sensed data contains innumerable errors for a number 

of reasons, such as (1) geometric error or incomplete atmospheric correction; (2) 

clusters incorrectly labelled after unsupervised classification; (3) training sites 

incorrectly labelled before supervised classification; and (4) indistinguishable classes 

(Foody, 2002).  A classification error constitutes a discrepancy between the situation 

depicted on the thematic map and reality (Foody, 2002). Therefore, the term accuracy is 

used to express 

https://www.sciencedirect.com/science/article/pii/003132039290020J#!
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Figure 7.3: Classification process steps. 

the degree of correctness of a map or classification. It is one of the most important steps 

in any classification process because, without an accurate assessment, the output or 

results are of little value. At this stage, the approach evaluated the classified image file 

using known ground truth locations and values for assessing the accuracy of the land 

cover map of the study area. 

To evaluate classification images for the study area, the approach collected 1500 

randomly selected reference data (ground truth) using Google Earth imagery for 2010, 

which was clear and free of cloud cover (Figure 7.4), and transferred them into an Excel 

table. These points encompassed the study area and incorporated a variety of land 

covers. The research chose the classified image of 2010 for verification of the validity 

of land cover classification and references on the ground.  

To determine land cover in the image, the research identified every type of land cover in 

each selection point using Google Earth. For example, if a pixel covered an urban area, 

the coordinates of this pixel were used to validate a category in the classified image.  

Accuracy assessment begins with the generation of an error matrix which expresses the 

number of sample units assigned to each land cover type compared to the reference 

data. An error matrix is usually used as the quantitative method of characterising image 

classification accuracy (Congalton, 2007). It is a table that shows correspondence 

between the classification result and a reference image (Table 7.1). 
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Figure 7.4: Land cover map for 2010.   
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Table 7.1: Error matrix for the classified image of 2010  
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Category 

                                                               Reference data 

Agriculture 
Bare 

area 
Desert Forest 

High 

density 

Low-

density 
Quarry 

Sandy 

beach 

Rocky 

beach 
The sea urban Total 

Producer`s 

accuracy 

Agriculture 184 58 1 0 28 114 2 0 0 1 5 393 79.31% 

Bare area 14 115 40 0 1 19 0 0 0 0 2 191 60.20 % 

Desert 0 1 145 2 0 0 5 0 0 0 0 153 57.21% 

Forest 0 0 0 30 10 0 0 0 0 0 0 40 75 % 

High density 

shrubland 
11 5 0 0 66 30 0 0 0 0 1 113 90.91% 

Low density 

shrubland   
20 11 0 0 40 81 2 0 0 1 10 165 45.52% 

Quarry 0 0 15 1 0 0 77 3 0 0 3 99 32.93% 

Sandy beach 0 0 0 0 0 0 0 18 1 0 0 19 89.53% 

Rocky beach 2 0 0 0 0 0 0 5 14 3 0 28 66.67% 

The sea 0 0 0 0 0 1 0 0 0 122 3 126 93.33% 

Urban 1 6 0 0 0 1 0 0 0 1 76 85 95.31% 

Total 232 200 201 33 145 246 86 26 15 128 100 1412     71.45% 

 

72.10% 

 

User`s 

accuracy 
46.82% 60.21% 94.77% 75% 58.41% 49.1% 77.78% 94.74% 50% 96.83% 89.41%  
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The columns in the matrix table are reference data (actual land cover), and the rows are 

the classes of the classified image to be assessed. Cells of the table show the number of 

pixels for all the possible correlations between the ground truth and the classified image 

and the major diagonal of the matrix indicates agreement between the reference data 

and the interpreted land cover types.  

The research also described the amount of errors of classification made by the 

Producer’s accuracy indicator. It is the number of correctly identified pixels divided by 

the total number of pixels in the reference image (Foody, 2002). The table shows the 

percentage accuracy which should be more than 65% in each class (Congalton, 2007) to 

render the classification processing a successful reference. The overall accuracy of 

classification was 71.45% for the producer’s accuracy and 72.10% for the user’s 

accuracy. The results recorded in the table indicated accurate scores in some classes 

such as the desert, forest, sandy beach and quarry area. However, other categories were 

less than 65% accurate, which was due to the overlapping of some classes, for example, 

low and high density shrubland overlapping with bare areas and desert on the one hand, 

and bare areas with agricultural areas without crops on the other hand, because of 

similarities in their spectral nature.  

 

7.4 Assessing land cover change 

The research classified eleven images of the study area and produced eleven thematic 

maps showing the land cover in the Al Jabal Al Akhdar extracted from Landsat MSS for 

1972, 1978 and 1986, and TM for 1987, 2003, 2006 and 2010, and ETM+ for 1999 and 

2001, and OLI for 2013 and 2014 (Figure 7.2).  A total of 12 land cover types are 

displayed, namely: agricultural area, bare area, desert, forest, high-density shrubland, 

low-density shrubland, quarry, rocky beach, sandy beach, the sea and urban area. These 

maps were used to assess the changes in the land cover and land use over 42 years. 

The areal extents were derived from the pixel counts for class in a given land cover 

map, taking into account the spatial resolution of the imagery. The areal cover of each 

land cover class was completed and compared between the dates (Table 7.5). For 

example, the areal extent of ‘agriculture’ in 1987 was deemed to be of pixels of this 

class*30*30/1000000 to give the area in km2.
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Figure 7.5: Multi-date land cover classification for the study area. 
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Table 7.2: The areas (km2) of each land cover over the period of study. 

 

 

Category/Years 1972 

MSS 

1978 

MSS 

1986 

MSS 

1987 

TM 

1999 

ETM 

2001 

ETM 

2003 

TM 

2006 

TM 

2010 

TM 

2013 

OLI 

2014 

OLI 

Unclassified 0.00 0.00 21.80 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Agriculture  746.29 763.35 1028.38 1057.18 1230.48 1381.80 1504.00 1635.90 1813.20 2099.00 2088.60 

Bare area 886.73 1025.43 1062.80 937.60 1008.46 1045.20 993.40 953.10 815.10 1010.70 904.20 

Desert 1045.88 847.46 852.00 946.75 927.04 921.10 921.00 830.10 878.30 858.30 815.50 

Forest 661.33 643.48 357.13 256.78 225.29 252.8 208.7 191.4 87.2 79.5 80.9 

High density shrubland 1338.76 1258.93 1185.66 928.65 801.69 712.3 676.7 641.3 606.6 578.2 543.5 

Low density shrubland 1030.79 1070.32 1037.37 695.95 685.95 642.8 616.7 606.6 661.7 650.3 631 

Quarry 75.06 53.63 69.85 37.89 47.59 52.9 155.9 181.7 190.9 191.9 193 

Rocky beach 10.24 15.98 24.15 130.61 136.36 171.64 67.58 67 57.19 51.45 453.45 

Sandy beach 27.36 5.53 8.68 4.40 3.02 923.79 775 775.05 742.12 317.81 128.93 

The sea 508.56 640.67 646.52 1262.75 1090.29 4.25 4.29 3.99 4.13 3.18 2.84 

Urban 96.56 102.79 133.23 168.72 271.42 319 504.4 541.4 571 587.3 585.7 

Total area 6427.57 6427.57 6427.57 6427.56 6427.56 6427.58 6427.67 6427.54 6427.44 6427.64 6427.62 
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In this table, the unclassified pixels for the given years are shown in the first row. The 

table provides the areal extent (km2) for all categories and this is then used to derive the 

magnitude of land cover change over the period of study.  

7.4.1 The areal extent of land cover change  

Land cover in the study area has changed as indicated in the previous table. The areal 

extent (km2) has decreased for natural vegetation such as the forests and shrubland. In 

contrast, land cover which has been exploited by humans, such as agriculture, urban and 

quarry, have increased over the 42 years. The research illustrated the long-term trends 

of land cover in graphical form (Figure 7.6). 

The areal extent of bare area and desert has fluctuated at different periods because of the 

overlaying of the classes during the classification process. 

The graph for forests indicated some degradation in the areal extent of forests from 

1987 to 2014 in the Al Jabal. However, it should be noted that the forest area in 1999 

was higher than in 1987. This may have been due to some error in the ETM image of 

1999 which has had wedge-shaped gaps on both sides of each scene, resulting in loss of 

some data which may have had an effect on the classification process. 

The graphs of high and low density shrubland reveal a significantly decreasing trend 

from 1986 to 2014. The areal extent for high and low density shrubland decreased from 

1185 and 1037.4 km2 to 543.5 and 631 km2 respectively in 2014. 

In contrast, assessment of land cover which related to human activity or land use change 

is an important component for assessing vegetation cover change, as it can contribute to 

the current debate on the effects of human activity on land cover change in the Al Jabal 

Al Akhdar region. The graphs of land use show the changing trends in the study area 

and increases in the areal extent of agriculture from 746.3 km2 in 1972 to 2088.6 km2 in 

2014.  The areal extent of urban activity increased over the period of study, with a 

significant increase being noted from 2003 to 2014. 
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Figure 7.6: Long-term land cover change in the study area 
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7.4.2 The magnitude of land cover change 

To identify the magnitude and rates of land cover change in the study area, the research 

calculated the rates and percentages of changes from land cover categories over the 42 

years. The research divided the period of study into three periods based on 12 year 

differences. The first period starts from 1972 to 1987 (15 years), the second period is 

1987 to 1999 (12 years) and the third period is 2000 to 2014 (14 years). The patterns of 

transition from one land cover to another which took place in the study area from 1972 

to 2014 are presented in Table 6.3. 

The table indicates the rates of change in the categories of the study area at different 

times. The above change rates indicate the changes that have occurred in a given land 

cover type in relation to the others. 

It is quite evident from the negative rates and magnitude of change in the previous table 

that the forests, and high-density shrubland and low-density shrubland declined between 

1972 and 2014 by -580.4, -795.3 & -399.8 km2 respectively. The positive rates have 

reversed, increasing land use in the area. The agricultural area, quarries and urban area 

increased significantly by 1342.3, 182.8 and 489.1 km2 respectively. 

The influence of land use was evident in the spatial distribution of land cover change, 

for example forested areas declined steadily from 1972 to 2014 at a rate of -78.2%. In 

contrast, built up areas had notable increases at a rate of 71.7% from 1972 to 2013 with 

annual rates surpassing 25%, at least, for one or two dates. 

The results in the table indicate that the bare area and desert registered a mix of 

increases and decreases in their cover proportions. The rates of change -7.2% to -6%, 

were due to the overlap in the classes in the classification process, so the areal extent for 

both of them has changed due to the previous process.  

The research has chosen different periods for 1972, 1999 and 2013 to show the changes 

in the percentage of land cover using pie charts in these selected years (Figures 7.7, 7.8 

& 7.9). 
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Table 7.3: The area, magnitude and rates of land cover change in the study area (km2). 

 

 

Land cover 

Categories 

Area (km2) Change in magnitude (km2) Change rate per period (%) 

1972 1987 1999 2001 2014 1972-1987 1987-1999 2001-2014 1972-2014 1972-1987 1987-1999 2001-2014 1972-2014 

Agriculture  746.3 1057.2 1230.5 1382 2089 310 173.3 706.8 1342.31 17.2 7.6 20.4 47.3 

Bare area 886.7 937.6 1008.5 1045 904.2 50.9 70.86 -141 -17.5 2.8 3.6 7.2 -1 

Desert 1045.9 946.7 927.0 921.1 815.5 -99.1 -19.7 -105.6 -230.4 -5 -1 -6 -12.4 

Forests 661.3 256.8 225.3 252.8 80.9 -404.5 -31.49 -171.9 -580.4 -44.1 -6.5 -51.5 -78.2 

High-density 

shrubland 
1338.8 928.6 801.7 712.3 543.5 -410.1 -126.96 -168.8 -795.3 -8.1 -7.3 -13.4 - 42.3 

Low-density 

shrubland 
1030.8 696.0 686.0 642.8 631 334.8 -10 -11.8 -399.8 -19.4 -0.72 -0.92 -24 

Quarry 10.2 37.9 47.6 52.9 193 27 9.7 140.1 182.8 57.5 11 57 89.9 

Urban area 
96.6 168.7 271.4 319 585.7 72.2 102.7 -266.7 489.1 27.2 23.3 29.5 71.7 
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Figure 7.7: The land cover in an image of 1972 

 

Figure 7.8: The land cover in an image of 1999 

 

Figure 7. 9: The land cover and land use in an image of 2013 
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The graphs show the changes in land cover in the study area; for example, the 

proportion of agricultural land was 13% in 1972, increasing significantly to 24% 

during the next 27 years and continuing to increase significantly to 35% in 2013. 

 

7.5 Conclusions  

This chapter has addressed the second objective which aimed to generate and analyse 

land cover change for the period of 1972 to 2014 in the Al Jabal Al Akhdar region, 

using Landsat data. This research demonstrates the ability of GIS and image 

classification to capture spatial-temporal data and provide thematic maps for the Al 

Jabal Al Akhdar region, attempting to assess as accurately as possible categories of 

land cover which have changed over time.  

The results confirmed the hypothesis of land cover change. These changes were 

spread across the Al Jabal Al Akhdar and were not confined to one particular 

location. Based on the results obtained, the following conclusions can be drawn: 

(i) The thematic maps that were extracted from classified Landsat images for the 

study area proved effective in measuring the areal extent for each land cover. Apart 

from some problems in accurately calculating some classes due to overlaying, the 

classes in the classification process could be clearly distinguished for each year. 

 (ii) The trend in relation to land cover covered by natural vegetation shows a 

decline. The changes could be clearly seen by way of the decreasing trend in forest 

and shrubland cover over the 42 years.  

(iii) The magnitude and proportions of forest and shrubland cover declined in the 

study area and were less than zero in terms of both percentage (%) and spatial extent 

(km2). The dominant nature of change that has occurred due to the conversion of land 

cover has led to the increase in the latter. 

(iv) Land use change was assessed through evaluating the gains and losses in the 

study area and the net changes in each land use class. The result indicates a dynamic 

change in land use, which was expected since most of the changes were caused by 

human action. 
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(v) The magnitude and the rates of land use change in the study area exceeded 45 in 

percentage terms (%), and 400 in terms of spatial extent (km2) in cultivated areas and 

built-up areas from 1972 to 2014. 

Landsat image classification was an effective procedure and an important method of 

information extraction for land cover change. It contributed to identifying the land 

cover of the study area and assessing the changes in each class.  

This chapter features thematic maps for land cover from 1972 to 2014, which were 

not previously available in Libya for this period. These maps are usable and show 12 

categories of land cover of the study area and provide information for land cover and 

land use change. The land use change represents the evidence of human activities in 

the area and its effect on vegetation cover. This information will be used in the next 

chapter to detect which factor affected vegetation cover change in the study area. 

Overall, although using Landsat data to delineate change detection was a valuable 

method through image classification, it still needs some refinement within individual 

classes in the classification process such as reclassify some classes which were 

overlaid with the others in the study area. 
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CHAPTER 8: A SPATIAL ANALYSIS OF FACTORS 

AFFECTING VEGETATION CHANGE IN THE STUDY 

AREA 

 

Overall this chapter addresses the main aim of this study which is to assess the 

factors affecting vegetation change in the Al Jabal Al Akhdar region. This chapter 

first assesses the relationship between vegetation cover change and population data, 

secondly, evaluates the relationship between land cover change and population data 

and finally, assesses the relationship between vegetation cover change and land cover 

change in the study area. In addition the results of the analysis of climate change in 

the study area, which may contribute to vegetation cover change are considered. 

 

8.1 Introduction 

The spatial and temporal distribution of vegetation cover change across the Al Jabal 

Al Akhdar region was examined in chapter 6 using time-series satellite imagery and 

Vegetation Indices (VI). The key output was new maps of the distribution of 

statistically significant vegetation index change over the last 42 years and an 

inference of the areas that experienced changes in vegetation cover.  

Land cover of the study area was assessed in chapter 7 using time-series Landsat 

image classification. The main outputs of this chapter were determination of the 

magnitude and the rates of land cover change over the period of study, and thematic 

maps for land cover change categories. These changes are set in the context of 

increased temperatures at the stations studied in chapter 5, and a further inference 

that this temperature change may have contributed to decreasing vegetation cover.  

Consequently, to investigate the factors affecting vegetation change in the study area, 

the research used the outputs of previous objectives to identify the relationships 

between vegetation change and land cover changes, and then the influences of human 

activity on vegetation cover change. 

 

 

 

 



      Chapter 8 A spatial analysis of factors affecting vegetation change in the study area 

147 
 

8.2 Objective three 

The proposal related to the third objective is that areas which exhibit statistically 

significant vegetation cover change over the last 42 years, are the same areas that 

have dense populations and a variety of human activities, while other areas with 

significant vegetation change and sparse populations may be responding primarily to 

climate change. This chapter evaluates the relationship between the areas 

experiencing vegetation cover change and the main factors that may be causing this 

change. Population data are used to assess possible relationships between vegetation 

cover change and the likely distribution of human activity.  

8.3 Assessing the relationship between vegetation cover change and 

population  

Population has an influence on vegetation cover by exploitation of land leading to 

land cover change. The first step was therefore to examine the spatial correlation 

between areas that exhibited vegetation cover change and the distribution of 

population. The population data were described in section 4.4 and classified as 1 km 

resolution population counts for 2013. 

The three VI correlation images were used in a binary classification with 0 

representing no significant VI change and, 1 representing statically significant 

change (p< 0.05) (Figure 8.1). These data were overlaid on the population data and 

the two layers multiplied together. The outputs were new data layers showing the 

population of 1 x 1km pixels where there was a significant change in the VI detected 

at finer resolution using the Landsat data. The results are shown in figure 8.2 with the 

VI change periods coloured by population. Histograms of the new images were used 

to give insights into the counts of population in relation to the areas with significant 

vegetation cover change (Figure 8.3). 

This result provides an ideal panel data set of the relationship between population 

and vegetation cover. The histograms show the population of the 1 x 1 km areas 

where one or more statistically significant change in the VI was recorded and the 

counts of population in the new outputs represent the influences of population on 

vegetation cover through its activities in these areas. 
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Figure 8.1: The VI classified images
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Figure 8.2: The relationship between the population and VI change. 
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Figure 8.3: The distribution of population on the NDVI (A), SAVI (B) and EVI (C) 
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The main conclusion showed that most of the areas with a statistically significant 

decrease in VI are low population areas.  

8.4 Assessing the relationship between the VI change and land cover 

change in the study area 

Land cover has changed in the study area due to the expansion of human activity 

during the last 42 years. Land use such as agriculture, quarrying and urbanisation has 

significantly increased, while the forests and high and low density shrublands have 

declined as a result of increased human activity which has led to the development of 

farmland and industrial areas. 

The research first produced 12 binary images, one for each land cover class, for each 

year. Each image represents one type of land cover in which every 30 m pixel has 

number 1 and all other classes have number 0. An example for the urban class is seen 

in Figure 8.4. 

Each new layer was overlaid on SAVI, which showed the largest area of significant 

vegetation change compared to the NDVI and EVI due to the removal of the soil’s 

influence and the longer period of study. The two layers were multiplied together and 

produced new data layers showing land cover in pixels where there was a significant 

change in the SAVI. The results are show in Figure 8.5 with the SAVI change 

coloured by the urban area. 

The results show pixels classified as Urban in 2003, which also show a long term 

significant decrease in SAVI. The areas within the urban boundary have seen a 

reduction in vegetation cover due to urban development.  Also, new data layers show 

a decrease in vegetation cover in some areas as a result of agricultural expansion 

over the period of study.  

The approach assessed all the land cover classes over the period of study with SAVI 

to assess the land cover in those pixels where there was a significant change in the 

VI.



                                                               Chapter 8: A spatial analysis of factors affecting vegetation change in the study area 

152 
 

 

Figure 8.4: The urban area classified image of 2003 
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Figure 8.5: The relationship between SAVI and urban area in 2003. 
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 The areal extents of each area of land cover at each date were calculated to assess 

whether there was a change in the proportions of each class through time (Figure 

8.6).  

The graphs show several key phenomena. First, the low density shrubland class was 

consistently the most frequent land cover in pixels showing a significant change in 

SAVI (except for the most recent image). Second, the agriculture class showed lower 

frequency of change pixels, but increasing through time. Third, other land cover 

classes exhibit some changes, although the frequencies for the desert and quarry 

classes were very low.  

Overall, the graphs show that the land cover of pixels showing statistically 

significant VI change are mostly from the low density shrubland and agriculture 

classes, although they also occur for other land cover classes. The inference here is 

that VI change in the agricultural areas are most likely caused by changes in land 

cover and land use. However, in the areas of low density shrubland, where there is 

likely to be less human influence, the VI change may be more directly related to 

climate change. 

8.5 Assessing the relationship between land cover change and the 

population data in the study area 

The population of Libya increased from 5,670,688 in 2006 to 6,733,620 in 2012 

(General Directorate of Documentation and Information, 2012), which has led to an 

expansion in human-influenced land cover in the region. The research assessed the 

relationship between land cover change and the population distribution data for 2013 

(since the population data was published in 2012). The aim was to verify the 

relationship between population and land cover. The approach used the classified 

land cover images and overlaid them on the population data and the two layers were 

multiplied together. 

The outputs were new data layers showing the population of 1 x 1 km areas where 

there was land cover change.
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Figure 8.6: The relationship between land cover and significant decrease in SAVI 
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The images show the concentration of people in the agricultural area and low density 

shrubland in 2013(Figure 8.7). The approach calculated the population per km2 on each land 

cover area, to identify the relationship between cover change and density of population per 

km2 (Table 8.1) 

Table 8.1: The distribution of population in land cover in the study area in 2013. 

 

 

 

 

 

 

 

The table and figure show the distribution of population per km2 by land cover in 2013. The 

population was concentrated in small areas in the cities at about 260,000 per 587.31 km2 or 

every 442/ km2, while in the agricultural area, the population was about 33,500 in 2099 km2 

or 16 /km2 in 2013. 

8.6 Assessing the influence of climate change on vegetation cover change in 

the Al Jabal Al Akhdar 

The climate has changed in the study area during the past 57 years, with the mean annual 

temperature increasing over the 31 years from 1972 to 2003 by 0.2°C at Darnah and Shahat 

stations and 0.3°C at Benina station in the Al Jabal Al Akhdar region. Furthermore, the results 

of analysis of the patterns of precipitation indicated no changes in the trends of precipitation 

in the study area but showed fluctuations in rainfall at all stations over the period of study.  

Thus, climate change may be affecting vegetation cover, especially in the areas that show a 

change in vegetation cover but low population densities.   

Category area (km2) population population/km2 

Agricultural area 2099 33447 16 

Bare area 1010.7 19710 20 

Desert 858.3 966 1 

Forest 79.5 1254 16 

High density shrubland 578.2 17158 30 

Low density shrubland 650.3 12979 20 

Quarry 191.9 3714 19 

Urban area 587.3 259610 442 
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Figure 8.7: The distribution of population in (A) the agricultural area and (B) low 

density shrubland in 2013. 

In the study area, the climate change effect may be most significant on the south-

facing slopes of the Al Jabal Al Akhdar region since temperatures are higher than on 

the north-facing slopes and rainfall is lower (Ageen, 2010: Bukhechiem, 2006). 

Human activity was shown to be much lower in this area and yet the research showed 

that there were significant decreases in the SAVI from 1972 to 2014.  
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8.7 Conclusion   

This chapter has presented a range of results aimed at testing the third hypothesis 

where it was expected that the areas that show vegetation cover change in Al Jabal 

Al Akhdar were the same areas that have either (i) dense populations and a variety of 

human activities or (ii) the areas that have vegetation change and low population 

which may be responding primarily to climate change.  

This research demonstrated the relationship between vegetation cover change, land 

cover change, the population data and climate change in the region to determine 

whether these factors may be affecting vegetation cover change. Based on the results 

obtained in chapters 5 (climate change), 7 (vegetation cover change) and 8 (land 

cover change) in relation to the study area using a remote sensing technique, the 

research in this chapter synthesized all these results to assess the relationships, and 

the following conclusions were drawn: 

(i) The research evaluated the relationship between vegetation cover change and the 

population data of the study area to identify the effect of population distribution on 

vegetation change. The result indicated a large number of areas that experienced 

change in vegetation cover where population density ranged between medium and 

high-density.  

(ii) The influence was clear in the areas around the cities where population density 

was highest and vegetation cover decreased over the period of study. 

(iii) There was a relationship between the distribution of population and land cover 

change, where the concentration of population in the urban areas was higher than the 

population in shrubland, forests, desert and bare areas. 

Overall, there are a variety of factors affecting vegetation cover change, however, the 

effect of human activity on vegetation was clear and rapid through changing land use 

in the region over the 42 years. The effect of climate change was less clear in other 

parts of the study area. However, the research suggests that the areas that 

experienced changes in vegetation cover in shrubland areas with low population 



    Chapter 8: A spatial analysis of factors affecting vegetation change in the study area 

159 
 

density, especially in the areas in the south of the Al Jabal Al Akhdar, responded to 

increasing temperatures. 

The aim of this chapter was to identify the reasons for changes in vegetation cover in 

the Al Jabal Al Akhdar region over the 42 years.  The chapter has used outputs of all 

the objectives, the VI change maps, land cover change, climate change and 

population data which were used as a proxy for human activities that cannot be 

observed on satellite imagery. Use was made of overlay analyses for this aim, and 

new maps were presented for matching between areas that have significant 

vegetation cover change and human activity areas showing land use change. 

The important conclusion to be drawn from this chapter is that there are areas with 

low human activity which have experienced significant changes in vegetation cover 

over the period, therefore, the probability is that climate change may be responsible 

for this change, or it may be due to desertification, overgrazing, the making of 

charcoal using the wood of trees or decreasing groundwater. This result needs more 

investigation for these specific areas by field work and more research needs to be 

conducted to determine which factors are causing vegetation cover change.   
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CHAPTER 9: DISCUSSION AND CONCLUSIONS 

 

9.1 Introduction 

  

The Al Jabal Al Akhdar in north east Libya has very significant environmental and 

economic importance for the local cities, because it is the only region that has natural 

vegetation with much of the rest of the country being desert. This vegetation belongs 

to the Mediterranean region and provides many services for the cities which are 

located north of the Libyan Desert. The main objective of this thesis was to 

investigate vegetation cover change in the Al Jabal Al Akhdar region over a 42 year 

period and assess the factors affecting vegetation change in this area.  

In recent years, vegetation cover in the study area has been decreasing according to a 

number of local studies (Al Mukhtar, 2005; Ben Khaial & Bukhechiem, 2005; 

Ibrahim, 2008). These studies relied on fieldwork to examine the vegetation in a 

small number of places in the study area and for specific periods of time. The work 

conducted in this thesis aimed to address some of the shortcomings and gaps in the 

previous research by introducing a new original research theme.  Although the work 

is intrinsically linked with previous research and is built upon many of its principles, 

it investigates vegetation cover change over 42 years using remote sensing 

techniques, and identifies the factors causing this change, which has not previously 

been explored in this region.  

The research presented in this thesis was driven by three main objectives which 

involved assessing vegetation cover change, human activity, and climate change in 

the study area, and used the findings to investigate spatial patterns in the factors 

affecting vegetation change.  

To achieve these objectives, the research used time-series Landsat imagery for 

detecting vegetation cover change, which is one of the most important applications of 

multi-temporal remote sensing images. In particular, the research used three 

vegetation indices (VI) to analyse the images and produce maps of vegetation index 

change. The VI were the Normalized Difference Vegetation Index (NDVI), Soil 

Adjusted Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI).  The key 
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points from the research are discussed in the next four sections, followed by a set of 

final conclusions from the research. 

9.2 Climate change 

Statistical analysis of climate data from a small number of climate stations in the 

study area showed that there was an increase in mean annual temperature over the 57 

years of available climate records. No statistically significant changes in rainfall 

were detected. Two key limitations were the small number of stations available and 

the incomplete record of data, with recent climate records unavailable because of 

unrest in the area since 2011. This curtailed the number of records available for 

analysis, and prevented spatial interpretation of the data to a gridded data product. In 

spite of these limitations the results confirmed those of other studies such as the 

IPCC Fourth and Fifth Reports (2007, 2014) and Liberato (2011) in the 

Mediterranean area, and El-Tantawi (2005) and Ageena (2010) in Libya. The 

remaining work of the thesis builds on this overall observation of increasing 

temperatures, and an assumption that this increase was present across the study area. 

In the future, i.e. post-conflict, more data from existing and new meteorological 

stations may become available, enabling the length of the climate change record to 

be extended, inspiring more confidence in the climate change observations. 

9.3 Vegetation cover change 

Vegetation cover change was observed in the Al Jabal Al Akhdar region over the 42 

year study period, through a statistical analysis of available long-term Landsat 

imagery. The results of the analysis of VI using linear regression and correlation 

analysis showed that there was a statistically significant decrease in vegetation cover 

in some areas over the period of study.  

The main limitation here was the lack of Landsat imagery available to cover the 

whole of the study area. There were up to 200 images for the study area but just 11 

images were usable due to cloud cover, or being in a different season. This led to 

limitations in the analysis of the spatial and temporal records for vegetation cover. 
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In spite of this limitation, the results provided maps for vegetation cover change in 

the study area, and confirmed the local-scale results of vegetation cover change in 

previous studies such as Fox et al. (2012) and Horion et al. (2013) in the 

Mediterranean area, and Al Mukhtar (2005) and Ibrahim (2014) in the Al Jabal Al 

Akhdar region. 

The remaining part of the thesis builds on this work to fill some of the gaps in the 

previous studies in Libya, by introducing new methods to monitor the dynamics of 

environmental phenomena using long-term remote sensing records. In the future, 

images from different sensors may become available to use for long-term observation 

of vegetation change and the time-series can then be extended, promoting more 

confidence in future assessments of the nature and patterns of vegetation cover 

change. 

9.4 Land cover change 

The effect of human activity on vegetation cover was clearly observed in the study 

area through changes in land cover. The results based on classified time-series 

Landsat imagery showed an increase in the rates of land use change and in particular 

decline in the area of forests and shrubland over the 42 years.   

There were classification errors in all outputs for the study area and there is a need to 

improve some accuracies within individual classes in the classification process. This 

was a key limitation in this objective. The results confirmed the change in land cover 

with overall classification accuracy of about 72%.  The thematic maps for land cover 

change in the study area over the 42-year period provided approximate rates and 

magnitudes of change for each land cover. These results confirmed the previous 

studies which examined land cover change such as, Stefanidis et al.(2016), Al 

Qurashi & Kumar.(2013) in some areas in the Mediterranean area, and Oune (2006), 

Ibrahim (2014) in Libya, which used the classification method and showed a 

decrease of vegetation cover in some areas in the Mediterranean region and Libya 

and an increase in human land use in those areas.  

The remaining work for this objective was based on identifying the negative effect of 

human activity on land cover change, in an attempt to provide the evidence for 
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environmentalists and decision-makers who are concerned with the effects of human 

intervention on vegetation cover. 

9.5 Exploring the causes of vegetation change 

Population expansion and human activities were the main factors causing change in 

vegetation cover in the study area. The analysis of the statistically significant VI 

change and the population data showed a strong positive relationship between 

population and vegetation cover change, through concentration of population in the 

areas that experienced a change in vegetation cover. Furthermore, there was also a 

strong relationship between a decrease in the extent of forest and shrubland and an 

increase in the areas covered by human activity in the study area over the period of 

study due to an increase in the population. In terms of the effect of climate change, 

the research assumed that in the areas that had changes in vegetation cover combined 

with low human population and human activity, climate change may have been 

responsible for this change.  

There were three limitations to achieving this objective: first, non-availability of 

population data for previous years to determine the relationship between the time-

series of population and long-term vegetation cover change; second, the lack of 

spatial analysis of the relationship between climate change and the areas that have 

vegetation change due to the small number of climate stations which covered the 

study area; third, limited background research on the factors affecting vegetation 

change in the study area, which may help to explain the factors causing vegetation 

cover change. 

In spite of these limitations, the results confirmed other studies such as Estes et al. 

(2012) and McMichael et al. (2003) which showed the effect of human activity on 

vegetation cover change in the Mediterranean region, and El-Tantawi (2005) and 

Oune (2006), who illustrated the effect of human activity on degradation of 

vegetation cover in west Libya.  
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9.6 Conclusions 

Based on the results obtained from investigating the objectives, the following 

conclusions are drawn: 

(i) The effectiveness of remote sensing techniques to assess vegetation cover change 

has been demonstrated successfully in the study area. 

(ii) The research used three VI indices (NDVI, SAVI and EVI), to examine 

vegetation cover change, and although the results of the analysis of the VI  were 

slightly different, they confirmed that there was spatial and temporal change in 

vegetation cover over the 42 years across the Al Jabal Al Akhdar region.  

(iii) The results of statistical analysis of the VI correlation coefficient indicated a 

statistically significant decrease in the trend of vegetation cover in some areas and 

other areas with no statistically significant change in vegetation cover. 

(iv) The thematic maps that were derived from classification Landsat images for the 

study area proved effective in measuring the areal extent for each land cover.  

(v) Land cover has changed across the study area, with results showing a decrease in 

forest and shrubland cover, with an increase in human activity in terms of conversion 

to cultivated land or built-up areas. 

(vi) There was a positive relationship between the decrease in forest area and 

shrubland and the increase in human land use in the study area. The area covered by 

forests in 1972 was about 128.9 km2 and declined in 2014 to 35 km2. In contrast, 

there was an increase in the area of agriculture from 50 km2 in 1972 to 201 km2 in 

2014 due to an increase in population and increased requirements for food.  

The overall conclusion of this work is that vegetation cover in the Al Jabal Al 

Akhdar has changed over the 42 years and the reasons for this change can be traced 

to a variety of factors which have affected vegetation cover. 

The main aim of this thesis was to assess vegetation cover of the Al Jabal Al Akhdar 

region and detect any changes over the 42 years, especially during the period of 

recent unrest in Libya since 2011, using available  Landsat images (1972- 2014) , 

including any negative effects of human activity on vegetation cover. The main 
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finding was that there was a statistically significant change in vegetation cover in 

many areas across the region, confirming local studies of vegetation cover change in 

some areas and in specific years. In consequence, the research examined the factors 

that may have caused these changes, which had not been examined by other local 

studies, and used a variety of methods to detect these factors.    

The influence of human activity on vegetation cover through increased human-

related land use in the region during the period of study was clear and rapid through 

increased agricultural use and urbanisation which were observed from the time series 

of Landsat image classification. Other areas showing a decline in vegetation cover 

where there was population but no agricultural activities, quarries or big cities were 

observed from satellite imagery. leading to the conclusion that there were some 

illegal activities, such as overgrazing, cutting down trees for fuel, and bush burning 

for extension of farmland. 

However, the research indicated that in the areas that experienced changes in 

vegetation cover along with low levels of human activity, climate change may be 

primarily responsible, especially, in the areas in the south of the Al Jabal Al Akhdar 

region where there were increases in temperature along with low rainfall. Other 

possible factors might be onset of desertification or lack of groundwater. These areas 

need more investigation and field work to identify these reasons for these particular 

changes. 
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