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Abstract

The animal immune response has hitherto been viewed primarily in the context of

resistance only. However, individuals can also employ a tolerance strategy to main-

tain good health in the face of ongoing infection. To shed light on the genetic and

physiological basis of tolerance, we use a natural population of field voles, Microtus

agrestis, to search for an association between the expression of the transcription

factor Gata3, previously identified as a marker of tolerance in this system, and poly-

morphism in 84 immune and nonimmune genes. Our results show clear evidence

for an association between Gata3 expression and polymorphism in the Fcer1a gene,

with the explanatory power of this polymorphism being comparable to that of other

nongenetic variables previously identified as important predictors of Gata3 expres-

sion. We also uncover the possible mechanism behind this association using an

existing protein–protein interaction network for the mouse model rodent, Mus mus-

culus, which we validate using our own expression network for M. agrestis. Our

results suggest that the polymorphism in question may be working at the transcrip-

tional level, leading to changes in the expression of the Th2-related genes, Tyro-

sine-protein kinase BTK and Tyrosine-protein kinase TXK, and hence potentially

altering the strength of the Th2 response, of which Gata3 is a mediator. We believe

our work has implications for both treatment and control of infectious disease.
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1 | INTRODUCTION

Tolerance, like resistance, is an active response to infection involving

the activation of molecular and physiological mechanisms. Unlike

resistance though, rather than preventing or clearing an infection, a

tolerance response minimizes the disease pathology caused by infec-

tion (Caldwell, Schafer, Compton, & Patterson, 1958; Schafer, 1971).

This strategy may be favoured where infection is a daily occurrence,

or infection is persistent (Restif & Koella, 2004). In these cases, the

costs of constantly mounting an immune response in terms of dam-

age to host tissue (immunopathology) may be worse than those of

infection itself (Medzhitov, Schneider, & Soares, 2012). A resistant

strategy, on the other hand, might be associated with acute expo-

sure (Restif & Koella, 2004), where the costs of infection outweigh
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those of mounting an immune response. Tolerance of infection is

now attracting considerable interest in the immunological and eco-

logical literature (Medzhitov et al., 2012; R�aberg, Graham, & Read,

2009) and provides a new perspective to help understand how the

immune response in animals functions following infection, which has

hitherto been viewed primarily in the context of resistance only.

Individuals in apparently similar circumstances differ in their

responses to infection, and some are worse than others at either

resisting or tolerating infection (Arriero et al., 2017; Buehler, Piersma,

Matson, & Tieleman, 2008; Kluen, Siitari, & Brommer, 2013). Beyond

recognizing that such variation exists in natural populations, though,

we understand little of the genetic and physiological basis of this vari-

ation. Improving this understanding is a key step towards predicting

which individuals are most vulnerable to infectious disease (R�aberg,

2014). Genetic variation for tolerance has been previously demon-

strated in inbred strains of laboratory mice (Raberg, Sim, & Read,

2007) and, to a more limited extent, in natural systems (Regoes et al.,

2014). However, knowledge of specific genes controlling tolerance,

and hence potentially driving this heritable variation in strategy in the

wild, is lacking. Candidate genes include those involved in limiting

immunopathology and/or regulation of the immune response

(Medzhitov et al., 2012; R�aberg et al., 2009). In the laboratory, a

genetic locus on mouse chromosome 11 (Ctrq3) has been shown to

influence tolerance to Chlamydia psittaci infection, with circumstantial

evidence for candidate genes belonging to the family of immunity-

related GTPases (Miyairi et al., 2012). Another study has also identi-

fied a signalling protease required for melanization in Drosophila mela-

nogaster (CG3066) as being of importance (Ayres & Schneider, 2008).

Finally, in humans, an association between HLA-B genotype and

degree of tolerance to HIV has been shown (Regoes et al., 2014).

Our own work has previously identified the expression of a

particular master transcription factor, Gata3, as a marker of toler-

ance in mature male field voles, Microtus agrestis. This work

showed that macroparasite infection in these mature voles gave

rise to elevated levels of Gata3 expression, which in turn gave rise

to improved body condition and enhanced survival (Jackson et al.,

2014). This fits with the known role of Gata3 as a mediator of the

Th2 response and the role of the Th2 immune system in tissue

repair (Allen & Wynn, 2011). Furthermore, we have shown

evidence for consistent differences between individuals in their

typical level of Gata3 expression, after other measured sources of

variation have been taken into account (Arriero et al., 2017).

Together, our results imply consistent difference between individu-

als in the strength of their tolerance response.

Here, we address the contribution of genotype to consistent

individual differences in the expression of Gata3, a marker of toler-

ance. We use a natural population of wild M. agrestis to search for

an association between Gata3 expression and polymorphism in 84

immune and nonimmune genes. We find Gata3 expression associ-

ated with polymorphism at the Fcer1a gene (which encodes the

alpha chain of the high-affinity receptor for immunoglobulin epsilon,

IgE) and show that the proportion of variation in Gata3 expression

explained by this polymorphism is comparable to that explained by

other environmental and physiological variables. We also shed light

on the possible mechanism behind this association by constructing a

protein–protein interaction network for the mouse model rodent,

Mus musculus, which we validate using our own expression network

for M. agrestis.

2 | MATERIALS AND METHODS

2.1 | Field design and animals

We studied M. agrestis in Kielder Forest, Northumberland (55°130N,

2°330W), using live-trapping to access individual animals from natural

populations. Our studies were designed to permit the analysis of

individual variation in host condition and survival, infection status

and the expression of immune genes (for full details of some of the

methods below, see Jackson et al., 2011, 2014). The studies were

divided into longitudinal and cross-sectional components.

2.1.1 | Initial survey

We repeated our field design at two spatially separate sites (BLB

and SQC) in 2008–2009, and a further two (SCP and KTH) in 2009–

2010. Each site contained a central trapping grid (~0.375 ha) of 150

(10 9 15) regularly spaced traps (3- to 5-m intervals) which was

used in a capture–recapture study (reported elsewhere). The cross-

sectional component reported here utilized curvilinear transects of

100 live traps arranged at 5- to 10-m intervals, which were placed

around the margins of each habitat.

Ten voles per month were destructively sampled from the tran-

sects between February and November (2008–2009) or April and

November (2009–2010). In November (2008 and 2009) and March

(2009 and 2010), larger numbers of animals were sampled both from

the transects and from the central grid habitats. These samples are

used here to carry out a haplotype association analysis.

On capture, each animal was examined for ectoparasites. Only

results for male M. agrestis are reported here given the focus of pre-

vious work (Jackson et al., 2014). Males were classified as either

immature (nonmating with undeveloped testes) or mature (mating

with large testes and expanded seminal vesicles). Some biometric

data were also collected, including body weight (g) and snout-vent

length (mm). All animal procedures carried out as part of this initial

survey were performed with approval from the University of Liver-

pool Animal Welfare Committee and under a UK Home Office

licence (PPL 40/3235 to MB).

Parasite assays

On capture, ectoparasite infections were recorded, as direct counts

of ticks (Ixodes spp.) and small flea species (Ctenophthalmus nobilis,

Peromyscopsylla spectabilis, Megabothris walkeri, Malaraeus penicilliger,

Rhadinopsylla pentacantha). Captured animals were then returned to

the laboratory where they were killed by an overdose of chloroform

followed by exsanguination and dissection in order to take a more

comprehensive set of infection measurements. This included a direct
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count of adult cestodes found in the gut (Anoplocephaloides dentata

aff., Paranoplocephala sp., Rodentolepis asymmetrica, Arostrilepis hor-

rida). We collected infection metrics for these macroparasites

because they are the most common species that would be expected

to be in strong contact with the host immune system (Jackson et al.,

2014).

2.1.2 | Follow-up survey

In 2015, we collected samples at four sites (GRD, CHE, SCP, COL).

Similarly to the initial survey, each site contained a trapping grid of

150-197 regularly spaces traps (at ~5 m intervals), but this was used

both for cross-sectional and longitudinal components (not reported

here). Sixty-four voles were also destructively sampled from the

grids between July and October 2015 to assay expression by RNA-

Seq. In this study, voles were killed by a rising concentration of CO2,

followed by exsanguination. Both females and males were included

to maximize sample size. These samples were shown to be compara-

ble in terms of weight, age and sex to the population sampled in the

initial survey (Table S1) and are used here to construct an expression

network for M. agrestis. All animal procedures carried out as part of

this survey were performed with approval from the University of

Liverpool Animal Welfare Committee and under a UK Home Office

licence (PPL 70/8210 to SP).

2.2 | HAPLOTYPE ASSOCIATION STUDY

2.2.1 | Immunological assays

We used two-step reverse transcription quantitative real-time PCR (Q-

PCR) to measure messenger RNA (mRNA) accumulation of Gata binding

protein 3 (Gata3, a transcription factor associated with the Th2

response) from splenocyte cultures stimulated with mitogen phyto-

haemagglutinin (PHA; see Jackson et al., 2011 for details). Gata3 has

previously been identified as a marker of tolerance in mature male voles

(Jackson et al., 2014). PHA preferentially activates and stimulates prolif-

eration of CD4+ helper T cells in vitro (O’Donovan, Johns, & Wilcox,

1995). Here, we use that observed expression profile as a measure of

the potential responsiveness of the immune system in vivo.

2.2.2 | SNP identification and genotyping

We identified 288 single nucleotide polymorphisms (SNPs) in 85

immune-related genes and 25 nonimmune genes. Immune genes

included cytokine genes and other genes known to be involved in

pathogen resistance. The Immunome database version 1.1. (http://

structure.bmc.lu.se/idbase/Immunome/index.php), a manually curated

database containing information on 893 genes considered essential to

the human immune system, was used a starting point for identifying a

list of candidate immune genes (Ortutay & Vihinen, 2006). First, we

excluded all those genes in this database with no known orthologue in

house mice. We then applied a heuristic approach to ensure that those

genes which were most likely to be of interest given our previous work

(Jackson et al., 2014) were represented in our list and excluded those

genes with no known polymorphisms in M. agrestis. We also chose a

set of nonimmune genes to act as a control for spurious associations,

caused, for example, by demographic effects. This set was composed

solely of metabolic genes, as these are far less likely to be involved in

host–pathogen interactions (see Table S2 for full list of immune and

nonimmune genes identified).

DNA was extracted from the livers of voles that had been destruc-

tively sampled as part of the cross-sectional study and for which Gata3

expression levels were available (n = 221) using DNeasy Blood and Tis-

sue Kit (Qiagen). Genotyping was then performed by KBiosciences

(Hoddesdon, UK; http://www.kbioscience.co.uk) using the KASPar SNP

genotyping system. This included negative controls (water) and

duplicate samples to validate reproducibility.

2.2.3 | Statistical analyses

All analyses were carried out in R statistical software version 3.4.0 (R

Core Team, 2017). The SNP genotyping data were checked in a

number of ways. We used the SNPASSOC package (Gonz�alez, Armen-

gol, Guin�o, Sol�e, & Moreno, 2014) to test for deviations from

Hardy–Weinberg equilibrium using exact tests. Because of the large

number of exact tests performed, the Benjamini and Hochberg

method of correction was applied to the resulting p-values (Ben-

jamini & Hochberg, 1995). The degree of linkage disequilibrium (LD)

between SNPs was analysed using the GENETICS package (Warnes,

Gorjanc, Leisch, & Man, 2013). Pairwise scaled LD estimates (D0)

were computed for each pair of SNPs to test (i) whether SNPs

within the same gene demonstrate high LD and therefore are more

appropriately used to identify phenotypic associations in combina-

tion and (ii) whether SNPs within different genes demonstrate low

LD, indicative of the independence of genetic loci.

The SNP genotyping data were (i) converted into haplotype data

for each gene and (ii) tested for associations with mitogen-stimulated

Gata3 expression while controlling for other known covariates, using

the HAPASSOC package (Burkett, Graham, & McNeney, 2006; Burkett,

McNeney, & Graham, 2004). This software allows likelihood infer-

ence of trait associations with SNP haplotypes and other attributes,

adopts a generalized linear model framework and estimates parame-

ters using an expectation–maximization algorithm. If the haplotype

combination of an individual cannot be inferred from its genotyping

data (i) because it is heterozygous at two or more markers or

(ii) because it has missing data for a single marker, the approach

implemented in HAPASSOC is to consider all possible haplotype combi-

nations for that individual. Standard errors accounting for this added

uncertainty are calculated using the Louis’ method (Louis, 1982).

We assumed an additive genetic model, where Gata3 expres-

sion is linearly related to the number of copies of a haplotype

present and we pooled together all those haplotypes with fre-

quencies below 5%. Gata3 expression values were Yeo-Johnson-

transformed (Yeo & Johnson, 2000) to achieve approximately nor-

mal and homoscedastic residuals. Other nongenetic covariates

included in this model were site (BLB, SQC, SCP & KTH), maturity
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(either immature or mature male), residual weight (adjusted for

body size) and the first principal component from a PCA summa-

rizing the macroparasites measured. This component explained

47% of the variation in macroparasite burden and showed high

positive loadings for all three macroparasite groups (ticks: 0.56,

fleas: 0.57 and adult cestodes: 0.60). Grouping of ectoparasites

and endoparasites in this way is in line with previous work that

shows that both ectoparasites (Boppana, Thangamani, Adler, &

Wikel, 2009; Boppana, Thangamani, Alarcon-Chaidez, Adler, &

Wikel, 2009) and endoparasites (Anthony et al., 2007; Harris &

Gause, 2011) stimulate the Th2 response, which has been sug-

gested to be a mechanism for adaptive and rapid tissue repair

against parasite-induced damage (Allen & Wynn, 2011). These

variables have previously been identified as important predictors

of Gata3 expression (Jackson et al., 2011, 2014). All nongenetic

covariates were tested for independence (variance inflation fac-

tors = 1.09–1.24).

As this was a haplotype association analysis, we excluded all

genes with a single SNP and all monomorphic SNPs (see Table S2

for these), resulting in a total of 238 SNPs in 62 immune-related

genes and 22 nonimmune genes being included in the analysis (see

Table S3 for final list of immune and nonimmune genes). We also

excluded those subjects for which more than one single-locus geno-

type had missing data. Because of the large number of association

tests performed, the Benjamini and Hochberg method of correction

was applied to all p-values, with the false discovery rate set to .1

(Benjamini & Hochberg, 1995). Resulting q-values (FDR-corrected

p-values) were checked for a uniform distribution.

We were unable to include any random variables or interactions

between nongenetic variables in the initial haplotype association

analysis due to the framework adopted by HAPASSOC (Burkett et al.,

2006). So, following this analysis, a linear mixed effects model

(LMM) for Gata3 expression was constructed to confirm these

results. This included season (four levels, designated as spring

[March to May], summer [June to August], autumn [September to

November] and winter [December to February]), assay plate number

and site as random effects. It also included previously identified

interactions between maturity and macroparasitic load, as well as

maturity and residual weight (Jackson et al., 2014). A single haplo-

type of interest was identified in the initial haplotype association

analysis (Section 3.1). Genotype was therefore coded as the number

of copies of this haplotype. This was treated as a continuous variable

because only five individuals were found to have two copies of this

haplotype, making it difficult for reliable comparisons to be made

between factor levels. Treatment of genotype as a continuous vari-

able also reduced the number of degrees of freedom by one. Only

those individuals whose combination of haplotypes or “haplotype

phase” could be determined with certainty were included in this

analysis, but this was the majority of individuals (n = 191; 86%). The

contribution of genotype relative to other predictors in explaining

variance in Gata3 expression was assessed by calculating the mar-

ginal R2 using the MUMIN package (Barto�n, 2017) for (i) the full LMM

and (ii) the LMM with each of the fixed effects (as well as any

associated interaction terms) removed individually. The AICc for each

model was also calculated to compare model fits.

2.3 | RNA-SEQ STUDY

2.3.1 | RNA preparation

Splenocyte cultures from the 64 voles collected in 2015 were used in

the RNA-Seq experiment. These splenocyte cultures were stimulated

with anti-CD3 antibodies (Hamster Anti-Mouse CD3e, Clone 500A2

from BD Pharmingen) and anti-CD28 (Hamster Anti-Mouse CD28,

Clone 37.51 from BD Tombo Biosciences) antibodies for 24 hr at con-

centrations of 2 lg/ml and of 1lg/ml respectively, with cell culture

conditions otherwise equivalent to those used in Jackson et al. (2011).

This treatment, as for exposure to PHA, selectively promotes the pro-

liferation of T cells (Frauwirth & Thompson, 2002). RNA was extracted

using Invitrogen PureLink kits. cDNA sequencing libraries were pre-

pared using Illumina RiboZero kits to deplete rRNA followed by library

construction with NEBNext Ultra directional RNA library prep kit

according to manufacturers protocols. Samples were sequenced to

produce 2 9 75 bp paired-end reads on an Illumina HiSeq4000 plat-

form. Adaptor sequences were removed using CUTADAPT version 1.2.1

and further trimmed with SICKLE version 1.200 with a minimum window

quality score of 20. This resulted in a mean library size of 18 million

(range = 5–50 million) paired-end reads.

2.3.2 | Read mapping

High-quality reads were mapped against a draft genome for M.

agrestis (GenBank Accession no. LIQJ00000000), using TOPHAT ver-

sion 2.1.0 (Trapnell, Pachter, & Salzberg, 2009). BRAKER2 was used to

generate a set of predicted gene models using mapped reads to

guide Augustus (Hoff, Lange, Lomsadze, Borodovsky, & Stanke,

2015). Mapped reads were then counted using FEATURECOUNTS (Liao,

Smyth, & Shi, 2014). Further analysis of gene count data was per-

formed in R version 3.4.0 (R Core Team, 2017) using the EDGER pack-

age (Robinson, McCarthy, & Smyth, 2010). Count data were filtered

to remove those genes with fewer than 3 counts per million across

all samples to avoid convergence problems later on. Following filter-

ing, library sizes were recalculated, data were normalized and MDS

plots were generated to check for any unusual patterns in the data.

2.3.3 | Protein–protein interaction network
construction

The STRING database version 10 (Szklarczyk et al., 2015) for M. mus-

culus was used to construct a network of proteins known to interact

with either Gata3 or Fcer1a using the stringApp in CYTOSCAPE version

3.3.0 (Shannon et al., 2003). The default confidence score cut-off of

0.4 was used to extract those interactions that were well supported.

The application PESCA version 3.0.8 (Scardoni, Tosadori, Pratap, Spoto,

& Laudanna, 2016) was then used to extract the shortest paths

between Fcer1a and Gata3 from this network.
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2.3.4 | Expression network construction

To validate the M. musculus network, which included seven genes

(Fcer1a, Gata3 and five other genes; see Section 3.3), we con-

structed a network for the same seven genes using the normalized

count data. Spearman rank correlation coefficients were calculated

for each combination of these genes, and associated p-values

deduced from a null distribution composed of 2 9 108 coefficients

generated from a randomized version of the data set. Only statisti-

cally significant correlations (p < .05) were reported and included in

the network. Two paralogous vole genes were found for the mouse

gene, Btk, but these were summarized as a single node in the vole

network. This resulted in one pair of duplicated edges between

these Btk paralogues and Jun—the more significant edge is pre-

sented in the network.

3 | RESULTS

The majority of SNPs were found to be in Hardy–Weinberg equilib-

rium (n = 259; 90%), and only four genes were found to have all

SNPs departing from Hardy–Weinberg equilibrium: Gucy2f, Il13ra1,

Tlr13, Tlr7 and Tlr8 (see Table S2 for summary of all loci). High LD

was detected between SNPs within the same genes (mean D0 = .76;

95% CI = 0.72–.081) but not between SNPs located in different

genes (mean D0 = .28; 95% CI = 0.28–0.28).

3.1 | Gata3 expression is associated with
polymorphism in Fcer1a

Of the 84 immune and nonimmune genes tested, only polymorphism

in the gene Fcer1a was found to be significantly associated with

Gata3 expression (q = 0.07; FDR cut-off = 0.1). Three haplotypes

were identified at this locus: GCC, ACC and ACT at frequencies of

0.12, 0.76 and 0.07, respectively. The GCC haplotype was associated

with lower expression levels of Gata3 than the ACC and ACT haplo-

types (p = .003; 0.01; Figure 1). This was confirmed by the LMM

(p = .002; Table 1). No significant association was found between

polymorphism in the Gata3 gene itself and Gata3 expression

(q = 1.00).

3.2 | The Fcer1a polymorphism is comparable in
explanatory power to nongenetic variables previously
identified as important predictors of Gata3
expression

The percentage variance in Gata3 expression explained by the fixed

effects in the full model (or marginal R2) including genotype was

10%. This dropped to about 5% when genotype, macroparasites or

maturity was removed (individually) and to 8% when matu-

rity 9 macroparasites was removed, indicating that genotype was

comparable in explanatory power to other nongenetic variables pre-

viously identified as important predictors of Gata3 expression

(Table 2). Furthermore, the greatest increase in AICc (relative to the

full model) was observed when genotype was removed

(DAICc = 7.7). However, a degree of overlap or multicollinearity

between the variables was evident from these estimates.

3.3 | Both Fcer1a and Gata3 are associated with
Btk and Txk in the mouse model and vole

The M. musculus network included seven nodes (the proteins Fcer1a

and Gata3, as well as Txk, Btk, Jun, Fos and Itk) and 18 edges (Fig-

ure 2a). The M. agrestis network included six of these nodes con-

nected by 10 edges (Figure 2b). Itk could not be included as it was

not annotated in the vole genome. Nine of 18 of the edges in the

M. musculus network were identified, in addition to a significant

edge between Btk and Txk (q = �.32; p < .01). Btk was found to be

significantly correlated with both Fcer1a (q = .26, p = .02) and Gata3

(q = �.41, p < .001), as was Txk (Fcer1a: q = �.23, p = .03; Gata3:

q = .43, p < .001).
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F IGURE 1 Predicted Gata3 expression level for each haplotype
(parameters site BLB, maturity immature, residual weight and
macroparasite load set to 0; error bars represent 95% confidence
intervals; Gata3 expression levels are Yeo–Johnson-transformed)

TABLE 1 Parameter estimates, standard errors and associated
significance from LMM for Gata3 expression, including all fixed
terms, random terms and interactions

Estimate SE t p

(Intercept) 0.186 .025 7.289 <.001

Maturity �0.024 .027 �0.911 .367

Residual weight �0.003 .007 �0.422 .673

Macroparasites �0.037 .022 �1.655 .101

Genotype �0.065 .021 �3.070 .002

Maturity 9 residual weight 0.004 .008 0.442 .659

Maturity 9 macroparasites 0.059 .024 2.436 .016
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4 | DISCUSSION

In this study, we have found an association between polymorphism

in the gene Fcer1a and the expression of the transcription factor

Gata3, which has previously been identified as a marker of tolerance

to infection in this system. We have also shown that this polymor-

phism is comparable in explaining power to other nongenetic vari-

ables previously identified as important predictors of Gata3

expression (Jackson et al., 2014).

Our results indicate that genotype has the potential to play an

important role in driving consistent individual differences in immune

gene expression in the wild (Arriero et al., 2017). This suggests that

individuals are, to a significant, detectable degree, hard-wired to

respond in a certain way to challenges from parasites and pathogens.

However, little is known about how natural selection acts on toler-

ance. Previous studies have found evidence for tolerance being less

costly than resistance (Howick & Lazzaro, 2014). Under this scenario,

one may expect tolerance to evolve more quickly and to have lower

levels of genetic variation than resistance (R�aberg, 2014). Indeed,

some evidence for positive directional selection on tolerance already

exists (Hayward et al., 2014). However, genetic variation may also

be maintained by temporal shifts in the strengths and directions of

selection pressures. This may lead to low frequencies of individual

haplotypes, as observed here.

Our results also shed light on the potential molecular and phys-

iological mechanisms driving tolerance in the wild, which hitherto

TABLE 2 Marginal and conditional R2 estimates for LMM for Gata3 expression, with different variables removed (as well as associated
interactions)

Model Variable removed
Marginal
R2

Conditional
R2 AICc

Genotype, maturity, residual weight, macroparasites, maturity 9 residual weight,

maturity 9 macroparasites

NA .10 .28 �193.68

Maturity, residual weight, macroparasites, maturity 9 residual weight,

maturity 9 macroparasites

Genotype .05 .22 �185.98

Genotype, maturity, residual weight, macroparasites, maturity 9 macroparasites Maturity 9 residual

weight

.10 .28 �195.71

Genotype, maturity, residual weight, macroparasites, Maturity 9 residual weight Maturity 9 macroparasites .08 0.25 �190.24

Genotype, residual weight, macroparasites Maturity .05 .21 �189.25

Genotype, maturity, macroparasites, maturity 9 macroparasites Residual weight .10 .28 �197.94

Genotype, maturity, residual weight, maturity 9 residual weight Macroparasites .06 .21 �190.02

Fos

Fcer1a

Jun

Txk

Gata3

Btk

Jun

Itk

Fos

Btk

Txk

Gata3Fcer1a

(a) (b)

F IGURE 2 Panel figure showing (a) Mus musculus protein–protein interaction network and (b) M. agrestis gene expression network. Edge
weights represent (a) confidence scores (range = 0.50–1.00) or (b) p-values (range = <.001–.03)
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have been neglected. We find no effect of polymorphism in the

Gata3 gene on its own expression, but rather a trans-acting effect

of Fcer1a on Gata3 expression. By starting with an existing mouse

protein-protein interaction network and subsequently validating this

using a novel vole expression data set, we have also found evi-

dence for a functionally relevant mechanism for this association.

Fcer1a encodes the alpha chain of the high-affinity receptor for

immunoglobulin epsilon (IgE). This receptor is expressed on baso-

phils, mast cells and eosinophils. When activated by an antigen

interacting with Fcer1-bound IgE, these cells promote a cascade of

antimacroparasitic Th2 responses, of which Gata3 is also a media-

tor. This is reflected by the fact that, among other proteins, both

Gata3 and Fcer1a are known to interact with two nonreceptor

kinases: Tyrosine-protein kinase BTK (Btk) and Tyrosine-protein

kinase TXK (Txk). Btk plays a key role in B-cell development, differ-

entiation and signalling (Maas & Hendriks, 2001), and Txk exerts its

effects on Th cell differentiation and function (Sahu et al., 2008).

We were able to validate both of these interactions using our own

expression network for M. agrestis. This suggests that the polymor-

phism in question may be working at the transcriptional level, lead-

ing to changes in the expression of Th2-related genes and hence

potentially altering the strength of the Th2 response.

We focus here on tolerance, as this is a neglected area of

study, but a diversity of immune strategies have been identified in

natural populations (Abolins, Pocock, Hafalla, Riley, & Viney, 2011;

Buehler et al., 2008). In our own study population of voles, we

have shown a link between Gata3 expression and macroparasite

resistance in immature male voles (Jackson et al., 2014), suggestive

of an important role for Gata3 not just as a marker of tolerance,

but more generally, of the immune strategy adopted by an individ-

ual. Indeed, this is consistent with previous work in a laboratory

setting, which shows that polymorphism at a single locus can con-

fer both resistance and tolerance (Ayres & Schneider, 2008; Miyairi

et al., 2012). In the context of tolerance though, these results

could have important implications for controlling the spread of dis-

ease, as high levels of tolerance can be associated with neutral or

even positive effects on parasite prevalence (Miller, White, &

Boots, 2006; Roy & Kirchner, 2000) and tolerant individuals can

act as “superspreaders,” responsible for a large proportion of trans-

mission events (Lloyd-Smith, Schreiber, Kopp, & Getz, 2005). In

general, the identification of tolerance genes or haplotypes could

facilitate the identification of such high-risk individuals, enabling

more targeted control and helping to prevent the spread of disease

in the wild. On the other hand, tolerance is also associated with

good health and condition despite infection, which could act as a

potential pathway for the development of new treatments for

infectious disease (Medzhitov et al., 2012; R�aberg, 2014). Mapping

out the network mediating the effects of a tolerance gene is a

first step towards this. For these reasons, we believe this is an

exciting and rare example of a candidate tolerance gene in a natu-

ral population, which we hope to continue monitoring to shed fur-

ther light not only on tolerance, but on immune strategy more

generally, in the wild.
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