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Abstract 22 

 23 

The animal immune response has hitherto been viewed primarily in the context of resistance 24 

only. However, individuals, can also employ a tolerance strategy to maintain good health in 25 

the face of on-going infection. To shed light on the genetic and physiological basis of 26 

tolerance, we use a natural population of field voles, Microtus agrestis, to search for an 27 

association between the expression of the transcription factor Gata3, previously identified as a 28 

marker of tolerance in this system, and polymorphism in 84 immune and non-immune genes. 29 

Our results show clear evidence for an association between Gata3 expression and 30 

polymorphism in the Fcer1a gene, with the explanatory power of this polymorphism being 31 

comparable to that of other non-genetic variables previously identified as important predictors 32 

of Gata3 expression. We also uncover the possible mechanism behind this association using 33 

an existing protein-protein interaction network for the mouse model rodent, Mus musculus, 34 

which we validate using our own expression network for M. agrestis. Our results suggest that 35 

the polymorphism in question may be working at the transcriptional level, leading to changes 36 

in the expression of the Th2-related genes, Tyrosine-protein kinase BTK and Tyrosine-protein 37 

kinase TXK, and hence potentially altering the strength of the Th2 response, of which Gata3 38 

is a mediator. We believe our work has implications for both treatment and control of 39 

infectious disease. 40 

 41 

 42 

 43 

 44 

 45 
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Introduction 46 

 47 

Tolerance, like resistance, is an active response to infection involving the activation of 48 

molecular and physiological mechanisms. Unlike resistance though, rather than preventing or 49 

clearing an infection, a tolerance response minimises the disease pathology caused by 50 

infection (Caldwell, Schafer, Compton, & Patterson, 1958; Schafer, 1971). This strategy may 51 

be favoured where infection is a daily occurrence, or infection is persistent (Restif & Koella, 52 

2004). In these cases, the costs of constantly mounting an immune response in terms of 53 

damage to host tissue (immunopathology) may be worse than those of infection itself 54 

(Medzhitov, Schneider, & Soares, 2012). A resistant strategy, on the other hand, might be 55 

associated with acute exposure (Restif & Koella, 2004), where the costs of infection outweigh 56 

those of mounting an immune response. Tolerance of infection is now attracting considerable 57 

interest in the immunological and ecological literature (Medzhitov et al., 2012; Råberg, 58 

Graham, & Read, 2009) and provides a new perspective to help understand how the immune 59 

response in animals functions following infection, which has hitherto been viewed primarily 60 

in the context of resistance only.  61 

 62 

Individuals in apparently similar circumstances differ in their responses to infection, and 63 

some are worse than others at either resisting or tolerating infection (Arriero et al., 2017; 64 

Buehler, Piersma, Matson, & Tieleman, 2008; Kluen, Siitari, & Brommer, 2013). Beyond 65 

recognising that such variation exists in natural populations, though, we understand little of 66 

the genetic and physiological basis of this variation but this is a key step towards predicting 67 

which individuals are most vulnerable to infectious disease (Råberg, 2014). Genetic variation 68 

for tolerance has been previously demonstrated in inbred strains of lab mice (Raberg, Sim, & 69 
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Read, 2007) and, to a more limited extent, in natural systems (Regoes et al., 2014). However, 70 

knowledge of specific genes controlling tolerance, and hence potentially driving this heritable 71 

variation in strategy in the wild, is lacking. Candidate genes include those involved in limiting 72 

immunopathology and/or regulation of the immune response (Medzhitov et al., 2012; Råberg 73 

et al., 2009). In the laboratory, a genetic locus on mouse chromosome 11 (Ctrq3) has been 74 

shown to influence tolerance to Chlamydia psittaci infection, with circumstantial evidence for 75 

candidate genes belonging to the family of immunity-related GTPases (Miyairi et al., 2012). 76 

Another study has also identified a signalling protease required for melanisation in 77 

Drosophila melanogaster (CG3066) as being of importance (Ayres & Schneider, 2008). 78 

Finally, in humans, an association between HLA-B genotype and degree of tolerance to HIV 79 

has been shown (Regoes et al., 2014).  80 

 81 

Our own work has previously identified the expression of a particular master transcription 82 

factor, Gata3, as a marker of tolerance in mature male field voles, Microtus agrestis. This 83 

work showed that macroparasite infection in these mature voles gave rise to elevated levels of 84 

Gata3 expression, which in turn gave rise to improved body condition and enhanced survival 85 

(Jackson et al., 2014). This fits with the known role of Gata3 as a mediator of the Th2 86 

response, and the role of the Th2 immune system in tissue repair (Allen & Wynn, 2011). 87 

Furthermore, we have shown consistent differences between individuals in their typical level 88 

of Gata3 expression, after other measured sources of variation have been taken into account 89 

(Arriero et al., 2017). Together, our results imply consistent difference between individuals in 90 

the strength of their tolerance response. 91 

 92 
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Here, we address the contribution of genotype to consistent individual differences in the 93 

expression of Gata3, a marker of tolerance. We use a natural population of wild M. agrestis to 94 

search for an association between Gata3 expression and polymorphism in 84 immune and 95 

non-immune genes. We find Gata3 expression associated with polymorphism at the Fcer1a 96 

gene (which encodes the alpha chain of the high affinity receptor for immunoglobulin epsilon, 97 

IgE), and show that the proportion of variation in Gata3 expression explained by this 98 

polymorphism is comparable to that explained by other environmental and physiological 99 

variables. We also shed light on the possible mechanism behind this association by 100 

constructing a protein-protein interaction network for the mouse model rodent, Mus musculus, 101 

which we validate using our own expression network for M. agrestis.  102 

 103 

Materials & Methods 104 

 105 

Field design and animals 106 

 107 

We studied M. agrestis in Kielder Forest, Northumberland (55º13' N, 2º3' W) using live-108 

trapping to access individual animals from natural populations. Our studies were designed to 109 

permit the analysis of individual variation in host condition and survival, infection status, and 110 

the expression of immune genes (for full details of all methods below see Jackson et al. 2011, 111 

2014). The studies were divided into longitudinal and cross-sectional components. 112 

 113 

Initial survey 114 

We repeated our field design at two spatially separate sites (BLB and SQC) in 2008–2009, 115 

and a further two (SCP and KTH) in 2009–2010. Each site contained a central trapping grid 116 
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(~0.375 ha) of 150 (10 x 15) regularly spaced traps (3–5 m intervals) which was used in a 117 

capture-recapture study (reported elsewhere). The cross-sectional component reported here 118 

utilised curvilinear transects of 100 live traps arranged at 5–10 m intervals which were placed 119 

around the margins of each habitat.  120 

 121 

Ten voles per month were destructively sampled from the transects between February and 122 

November (2008–2009) or April and November (2009–2010). In November (2008 and 2009) 123 

and March (2009 and 2010), larger numbers of animals were sampled both from the transects 124 

and from the central grid habitats. These samples are used here to carry out a haplotype 125 

association analysis.  126 

 127 

On capture, each animal was examined for ectoparasites (see below). Only results for male M. 128 

agrestis are reported here given the focus of previous work (Jackson et al., 2014). Males were 129 

classified as either immature (non-mating with undeveloped testes) or mature (mating with 130 

large testes and expanded seminal vesicles). Some biometric data were also collected, 131 

including body weight (g) and snout-vent length (mm). All animal procedures carried out as 132 

part of this initial survey were performed with approval from the University of Liverpool 133 

Animal Welfare Committee and under a UK Home Office license (PPL 40/3235 to MB). 134 

 135 

Parasite assays 136 

On capture, ectoparasite infections were recorded, as direct counts of ticks (Ixodes spp.) and 137 

small flea species (Ctenophthalmus nobilis, Peromyscopsylla spectabilis, Megabothris 138 

walkeri, Malaraeus penicilliger, Rhadinopsylla pentacantha). Captured animals were then 139 

returned to the laboratory where they were killed by an overdose of chloroform followed by 140 
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exsanguination, and dissection in order to take a more comprehensive set of infection 141 

measurements. This included a direct count of adult cestodes found in the gut 142 

(Anoplocephaloides dentata aff., Paranoplocephala sp., Rodentolepis asymmetrica,  143 

Arostrilepis horrida). We collected infection metrics for these macroparasites because they 144 

are the most common species that would be expected to be in strong contact with the host 145 

immune system (Jackson et al., 2014). 146 

 147 

Follow-up survey 148 

In 2015, we collected samples at four sites (GRD, CHE, SCP, COL). Similarly to the initial 149 

survey, each site contained a trapping grid of 150-197 regularly spaces traps (at approx. 5 m 150 

intervals) but this was used both for cross-sectional and longitudinal components (not 151 

reported here). Sixty-four voles were also destructively sampled from the grids between July 152 

and October 2015 to assay expression by RNA-seq. Both females and males were included in 153 

order to maximise sample size. In this study, voles were killed by a rising concentration of 154 

CO2, followed by exsanguination. These samples were shown to be comparable in terms of 155 

weight, age and sex to the population sampled in the initial survey (Table S1) and are used 156 

here to construct an expression network for M. agrestis. All animal procedures carried out as 157 

part of this survey were performed with approval from the University of Liverpool Animal 158 

Welfare Committee and under a UK Home Office license (PPL ??? to SP). 159 

 160 

Haplotype association study 161 

 162 

Immunological assays 163 
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We used two-step reverse transcription quantitative real-time PCR (Q-PCR) to measure 164 

messenger RNA (mRNA) accumulation of Gata binding protein 3 (Gata3; a transcription 165 

factor associated with the Th2 response) from splenocyte cultures stimulated with mitogen 166 

phytohaemagglutinin (PHA). Gata3 has previously been identified as a marker of tolerance in 167 

mature male voles (Jackson et al., 2014). PHA preferentially activates and stimulates 168 

proliferation of CD4+ helper T-cells in vitro (O’Donovan, Johns, & Wilcox, 1995). Here, we 169 

use that observed expression profile as a measure of the potential responsiveness of the 170 

immune system in vivo.  171 

 172 

SNP identification and genotyping 173 

We identified 288 single nucleotide polymorphisms (SNPs) in 85 immune-related genes and 174 

25 non-immune genes. Immune genes included cytokine genes and other genes known to be 175 

involved in pathogen resistance. The Immunome database version 1.1. 176 

(http://structure.bmc.lu.se/idbase/Immunome/index.php), a manually curated database 177 

containing information on 893 genes considered essential to the human immune system, was 178 

used a starting point for identifying a list of candidate immune genes (Ortutay & Vihinen, 179 

2006). First, we excluded all those genes in this database with no known orthologue in house 180 

mice. We then applied a heuristic approach to ensure that those genes which were most likely 181 

to be of interest given our previous work (e.g. Jackson et al. 2014) were represented in our 182 

list, and excluded those genes with no known polymorphisms in M. agrestis. We also chose a 183 

set of non-immune genes to act as a control for spurious associations, caused, for example, by 184 

demographic effects. This set was composed solely of metabolic genes, as these are far less 185 

likely to be involved in host-pathogen interactions (see Table S2 for full list of immune and 186 

non-immune genes identified).  187 
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 188 

DNA was extracted from the livers of voles that had been destructively sampled as part of the 189 

cross-sectional study and for which Gata3 expression levels were available (n = 221) using 190 

DNeasy Blood and Tissue Kit (Qiagen). Genotyping was then performed by KBiosciences 191 

(Hoddesdon, UK; http://www.kbioscience.co.uk) using the KASPar SNP genotyping system. 192 

This included negative controls (water) and duplicate samples to validate reproducibility.   193 

 194 

Statistical analyses 195 

All analyses were carried out in R statistical software version 3.4.0 (R Core Team, 2016). The 196 

SNP genotyping data were checked in a number of ways. We used the SNPassoc package 197 

(González, Armengol, Guinó, Solé, & Moreno, 2014) to test for deviations from Hardy-198 

Weinberg equilibrium using exact tests. Because of the large number of exact tests performed, 199 

the Benjamini and Hochberg method of correction was applied to the resulting p-values 200 

(Benjamini & Hochberg, 1995). The degree of linkage disequilibrium (LD) between SNPs 201 

was analysed using the genetics package (Warnes, Gorjanc, Leisch, & Man, 2013). Pairwise 202 

scaled LD estimates (D´) were computed for each pair of SNPs to test (a) whether SNPs 203 

within the same gene demonstrate high LD and therefore are more appropriately used to 204 

identify phenotypic associations in combination, and (b) whether SNPs within different genes 205 

demonstrate low LD, indicative of the independence of genetic loci.   206 

 207 

The SNP genotyping data were (a) converted into haplotype data for each gene and (b) tested 208 

for associations with mitogen-stimulated Gata3 expression while controlling for other known 209 

covariates, using the hapassoc package (Burkett, Graham, & McNeney, 2006; Burkett, 210 

McNeney, & Graham, 2004). This software allows likelihood inference of trait associations 211 
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with SNP haplotypes and other attributes, adopts a generalized linear model framework and 212 

estimates parameters using an expectation-maximization algorithm. If the haplotype 213 

combination of an individual cannot be inferred from its genotyping data (a) because it is 214 

heterozygous at two or more markers or (b) because it has missing data for a single marker, 215 

the approach implemented in hapassoc is to consider all possible haplotype combinations for 216 

that individual. Standard errors accounting for this added uncertainty are calculated using the 217 

Louis’ method (Louis, 1982).  218 

 219 

We assumed an additive genetic model, where Gata3 expression is linearly related to the 220 

number of copies of a haplotype present and we pooled together all those haplotypes with 221 

frequencies below 5%. Gata3 expression values were Box-Cox transformed to achieve 222 

approximately normal residuals. Other non-genetic covariates included in this model were site 223 

(BLB, SQC, SCP & KTH), maturity (either immature or mature male), residual weight 224 

(adjusted for body size) and the first principal component from a PCA summarising the 225 

macroparasites measured. This component explained 47% of the variation in macroparasite 226 

burden and showed high positive loadings for all three macroparasite groups (ticks: 0.56, 227 

fleas: 0.57 and adult cestodes: 0.60). Grouping of ectoparasites and endoparasites in this way 228 

is in line with previous work that shows that both ectoparasites (V. D. Boppana, Thangamani, 229 

Alarcon-Chaidez, Adler, & Wikel, 2009; V. Boppana, Thangamani, AJ, & Wikel, 2009) and 230 

endoparasites (Anthony et al., 2007; Harris & Gause, 2011) stimulate the Th2 response, 231 

which has been suggested to act “as an adaptive tissue repair mechanism that quickly heals 232 

the wounds they inflict” (Allen & Wynn, 2011). These variables have previously been 233 

identified as important predictors of Gata3 expression (Jackson et al., 2011, 2014). All non-234 
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genetic covariates were tested for independence (Pearson correlation coefficients = -0.2 - 235 

0.35).  236 

 237 

As required by the hapassoc package, we excluded all genes with a single SNP and all 238 

monomorphic SNPs (see Table S2 for these), resulting in a total of 238 SNPs in 62 immune-239 

related genes and 22 non-immune genes being included in the analysis (see Table S3 for final 240 

list of immune and non-immune genes). We also excluded those subjects for which more than 241 

one single-locus genotype had missing data. Because of the large number of association tests 242 

performed, the Benjamini and Hochberg method of correction was applied to all p-values, 243 

with the false discovery rate set to 0.1 (Benjamini & Hochberg, 1995). Resulting q-values 244 

(FDR-corrected p-values) were checked for a uniform distribution. 245 

 246 

We were unable to include any random variables or interaction terms in the initial trait 247 

association analysis, as the hapassoc package does not have his capability. So, following this 248 

analysis, a linear mixed effects model (LMM) for Gata3 expression was constructed to 249 

confirm these results. This included season [four levels, designated as: spring (March to 250 

May), summer (June to August), autumn (September to November) and winter (December to 251 

February)], assay plate number and site as random effects. It also included previously 252 

identified interactions between maturity and macroparasitic load, as well as maturity and 253 

residual weight (Jackson et al. 2014). Three haplotypes were identified at this locus: GCC, 254 

ACC and ACT. GCC was found to be the haplotype of interest in relation to Gata3 expression 255 

in the initial trait association analysis (see Results). Genotype was therefore coded as a the 256 

number of GCC copies. This was treated as a continuous variable because only five 257 

individuals were found to have two copies of the GCC haplotype, making it difficult to make 258 
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reliable comparisons between factor levels. Treatment of genotype as a continuous variable 259 

also reduced the number of degrees of freedom by one. Only those individuals whose 260 

combination of haplotypes or ‘haplotype phase’ could be determined with certainty were 261 

included in this analysis, but this was the majority of individuals (n = 191; 86%). The 262 

contribution of genotype relative to other predictors in explaining variance in Gata3 263 

expression was assessed by calculating the marginal R2 using the MuMIn package (Barton, 264 

2016) for (a) the full LMM, and (b) the LMM with each of the fixed effects (as well as any 265 

associated interaction terms) removed individually.  266 

 267 

RNA-Seq study 268 

 269 

RNA preparation 270 

PHA-stimulated splenocyte cultures from the 64 voles collected in 2015 were used in the 271 

RNA-Seq experiment. RNA was extracted using Invitrogen PureLink kits. cDNA sequencing 272 

libraries were prepared using Illumina RiboZero kits to deplete rRNA followed by library 273 

construction with NEBNext Ultra directional RNA library prep kit according to 274 

manufacturers protocols. Samples were sequenced to produce 2 x 75bp paired-end reads on an 275 

Illumina HiSeq4000 platform. Adaptor sequences were removed using Cutadapt version 1.2.1 276 

and further trimmed with Sickle version 1.200 with a minimum window quality score of 20. 277 

This resulted in a mean library size of 18 million (range = 5 – 50 million) paired-end reads. 278 

 279 

Read mapping  280 

High quality reads were mapped against a draft genome for M. agrestis (GenBank Accession 281 

no: LIQJ00000000), using TopHat version 2.1.0 (Trapnell, Pachter, & Salzberg, 2009). 282 
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BRAKER2 was used to generate a set of predicted gene models using mapped reads to guide 283 

Augustus (Hoff, Lange, Lomsadze, Borodovsky, & Stanke, 2015). Mapped reads were then 284 

counted using featureCounts (Liao, Smyth, & Shi, 2014). Further analysis of gene count data 285 

was performed in R version 3.4.0 (R Core Team, 2016) using the edgeR package (Robinson, 286 

McCarthy, & Smyth, 2010). Count data were filtered to remove those genes with fewer than 3 287 

counts per million across all samples to avoid convergence problems later on. Following 288 

filtering, library sizes were recalculated, data were normalised and MDS plots were generated 289 

to check for any unusual patterns in the data.  290 

 291 

Protein-protein interaction network construction  292 

The STRING database version 10 (Szklarczyk et al., 2015) for M. musculus was used to 293 

construct a network of proteins known to interact with either Gata3 or Fcer1a using the 294 

stringApp in Cytoscape version 3.3.0 (Shannon et al., 2003). The default confidence score 295 

cut-off of 0.4 was used to extract those interactions that were well supported. The application 296 

PesCa version 3.0.8 (Scardoni, Tosadori, Pratap, Spoto, & Laudanna, 2016) was then used to 297 

extract the shortest paths between Fcer1a and Gata3 from this network.  298 

 299 

Expression network construction 300 

To validate the M. musculus network, which included seven genes (including Fcer1a and 301 

Gata3; see Results), we constructed a network for the same seven genes using the normalised 302 

count data. Spearman rank correlation coefficients were calculated for each combination of 303 

these genes, and associated p-values deduced from a null distribution composed of 2 x 108 304 

coefficients generated from a randomised version of the dataset. Only statistically significant 305 

correlations (p < 0.05) were reported and included in the network. Two paralogous vole genes 306 
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were found for the mouse gene, Btk, but these were summarised as a single node in the vole 307 

network. This resulted in one pair of duplicated edges between these Btk paralogues and Jun - 308 

the more significant edge is presented in the network. 309 

 310 

Results  311 

 312 

The majority of SNPs were found to be in Hardy-Weinberg equilibrium (n = 259; 90%) and 313 

only four genes were found to have all SNPs departing from Hardy-Weinberg equilibrium: 314 

Gucy2f, Il13ra1, Tlr13, Tlr7 and Tlr8 (see Table S2 for summary of all loci). High LD was 315 

detected between SNPs within the same genes (mean D´ = 0.76; 95% CI = 0.72 – 0.81) but 316 

not between SNPs located in different genes (mean D´ = 0.28; 95% CI = 0.28 – 0.28). 317 

 318 

Gata3 expression is associated with polymorphism in Fcer1a  319 

Of the 84 immune and non-immune genes tested, only polymorphism in the gene Fcer1a was 320 

found to be significantly associated with Gata3 expression (q = 0.07; FDR cut-off = 0.1). 321 

Three haplotypes were identified at this locus: GCC, ACC and ACT at frequencies of 0.12, 322 

0.76 and 0.07 respectively. The GCC haplotype was associated with lower expression levels 323 

of Gata3 than the ACC and ACT haplotypes (p = 0.003; 0.01; Fig. 1). This was confirmed by 324 

the LMM (p = 0.002; Table 1). No significant association was found between polymorphism 325 

in the Gata3 gene itself and Gata3 expression (q = 1.00).   326 

 327 

The Fcer1a polymorphism is comparable in explanatory power to non-genetic variables 328 

previously identified as important predictors of Gata3 expression 329 
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The percentage variance in Gata3 expression explained by the fixed effects in the full model 330 

(or marginal R2), including genotype was 10%. This dropped to about 5% when genotype, 331 

macroparasites or maturity were removed (individually) and to 8% when maturity × 332 

macroparasites was removed, indicating that genotype was comparable in explanatory power 333 

to other non-genetic variables previously identified as important predictors of Gata3 334 

expression (Table 2). Furthermore, the greatest increase in AICc (relative to the full model) 335 

was observed when genotype was removed (ΔAICc = 7.7). However, a degree of overlap or 336 

multicollinearity between the variables was evident from these estimates.  337 

 338 

Both Fcer1a and Gata3 are associated with Btk and Txk in the mouse model and vole 339 

The M. musculus network included seven nodes (the proteins Fcer1a and Gata3, as well as 340 

Txk, Btk, Jun, Fos and Itk) and 18 edges (Fig. 2a). The M. agrestis network included six of 341 

these nodes connected by 10 edges (Fig. 2b). Itk could not be included as it was not annotated 342 

in the vole genome. Nine out of 18 of the edges in the M. musculus network were identified, 343 

in addition to a significant edge between Btk and Txk (ρ = -0.32; p < 0.01). Btk was found to 344 

be significantly correlated with both Fcer1a (ρ = 0.26, p = 0.02) and Gata3 (ρ = -0.41, p < 345 

0.001), as was Txk (Fcer1a: ρ = -0.23, p = 0.03; Gata3: ρ = 0.43, p < 0.001). 346 

 347 

Discussion 348 

 349 

In this study, we have found an association between polymorphism in the gene Fcer1a and the 350 

expression of the transcription factor Gata3, which has previously been identified as a marker 351 

of tolerance to infection in this system. We have also shown that this polymorphism is 352 



 16 

comparable in explaining power to other non-genetic variables previously identified as 353 

important predictors of Gata3 expression (Jackson et al., 2014).  354 

 355 

Our results indicate that genotype has the potential to play an important role in driving 356 

consistent individual differences in immune gene expression in the wild (Arriero et al., in 357 

press). This suggests that individuals are, to a significant, detectable degree, hard-wired to 358 

respond in a certain way to challenges from parasites and pathogens. However, little is known 359 

about how natural selection acts on tolerance. Previous studies have found evidence for 360 

tolerance being less costly than resistance (Howick & Lazzaro, 2014). Under this scenario, 361 

one may expect tolerance to evolve more quickly and to to have lower levels of genetic 362 

variation than resistance (Råberg, 2014). Indeed, some evidence for positive directional 363 

selection on tolerance already exists (Hayward et al., 2014). However, genetic variation may 364 

also be maintained by temporal shifts in the strengths and directions of selection pressures. 365 

This may lead to low frequencies of individual haplotypes, as observed here.  366 

 367 

Our results also shed light on the potential molecular and physiological mechanisms driving 368 

tolerance in the wild, which hitherto have been neglected. We find no effect of polymorphism 369 

in the Gata3 gene on its own expression, but rather a trans-acting effect of Fcer1a on Gata3 370 

expression. By starting with an existing mouse PPI network and subsequently validating this 371 

using a novel vole expression dataset, we have also found evidence for a functionally relevant 372 

mechanism for this association. Fcer1a encodes the alpha chain of the high affinity receptor 373 

for immunoglobulin epsilon (IgE). This receptor is expressed on basophils, mast cells and 374 

eosinophils. When activated by an antigen interacting with Fcer1-bound IgE these cells 375 

promote a cascade of anti-macroparasitic Th2 responses, of which Gata3 is also a mediator. 376 
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This is reflected by the fact that, among other proteins, both Gata3 and Fcer1a are known to 377 

interact with two non-receptor kinases: Tyrosine-protein kinase BTK (Btk) and Tyrosine-378 

protein kinase TXK (Txk). Btk plays a key role in B cell development, differentiation and 379 

signalling (Maas & Hendriks, 2001), and Txk exerts its effects on Th cell differentiation and 380 

function (Sahu et al., 2008). We were able to validate both of these interactions using our own 381 

expression network for M. agrestis. This suggests that the polymorphism in question may be 382 

working at the transcriptional level, leading to changes in the expression of Th2-related genes 383 

and hence potentially altering the strength of the Th2 response.  384 

 385 

We focus here on tolerance, as this is a neglected area of study, but a diversity of immune 386 

strategies have been identified in natural populations (Abolins, Pocock, Hafalla, Riley, & 387 

Viney, 2011; Buehler et al., 2008). In our own study population of voles, we have shown a 388 

link between Gata3 expression and macroparasite resistance in immature male voles (Jackson 389 

et al., 2014), suggestive of an important role for Gata3 not just as a marker of tolerance, but 390 

more generally, of the immune strategy adopted by an individual. Indeed, this is consistent 391 

with previous work in a laboratory setting, which shows that polymorphism at a single locus 392 

can confer both resistance and tolerance (Ayres & Schneider, 2008; Miyairi et al., 2012). In 393 

the context of tolerance though, these results could have important implications for 394 

controlling the spread of disease, as high levels of tolerance can be associated with neutral or 395 

even positive effects on parasite prevalence (Miller, White, & Boots, 2006; Roy & Kirchner, 396 

2000) and tolerant individuals can act as ‘superspreaders’, responsible for a large proportion 397 

of transmission events (Lloyd-Smith et al. 2005). In general, the identification of tolerance 398 

genes or haplotypes could facilitate the identification of such high-risk individuals, enabling 399 

more targeted control and helping to prevent the spread of disease in the wild. On the other 400 
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hand, tolerance is also associated with good health and condition despite infection, which 401 

could act as a potential pathway for the development of new treatments for infectious disease 402 

(Medzhitov et al., 2012; Råberg, 2014). Mapping out the network mediating the effects of a 403 

tolerance gene is a first step towards this. For these reasons, we believe this is an exciting and 404 

rare example of a candidate tolerance gene in a natural population, which we hope to continue 405 

monitoring to shed further light not only on tolerance, but on immune strategy more 406 

generally, in the wild. 407 
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Tables  593 

 594 
Table 1 Parameter estimates, standard errors and associated significance from LMM for 595 

Gata3 expression, including all fixed terms, random terms and interactions.  596 

 597 

 Estimate SE t p 

(Intercept) 

 

0.186 0.025 7.289 < 0.001 

Maturity 

 

-0.024 0.027 -0.911 0.367 

Residual Weight 

 

-0.003 0.007 -0.422 0.673 

Macroparasites 

 

-0.037 0.022 -1.655 0.101 

Genotype 

 

-0.065 0.021 -3.070 0.002 

Maturity × Residual Weight 

 

0.004 0.008 0.442 0.659 

Maturity ×  Macroparasites 0.059 0.024 2.436 0.016 
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Table 2 Marginal and conditional R2 estimates for LMM for Gata3 expression, with different 624 

variables removed (as well as associated interactions). 625 

 626 

 627 

Model Variable 

removed 

Marginal 

R2 

Conditional 

R2 

AICc 

Genotype, Maturity, Residual 

weight, Macroparasites, Maturity × 

Residual weight, Maturity × 

Macroparasites 

 

NA 0.10 0.28 -193.68 

Maturity, Residual weight, 

Macroparasites, Maturity × 

Residual weight, Maturity × 

Macroparasites 

 

Genotype 0.05 0.22 -185.98 

Genotype, Maturity, Residual 

weight, Macroparasites, Maturity × 

Macroparasites 

 

Maturity × 

Residual 

weight 

0.10 0.28 -195.71 

Genotype, Maturity, Residual 

weight, Macroparasites, Maturity × 

Residual weight 

 

Maturity × 

Macroparasites 

0.08 0.25 -190.24 

Genotype, Residual weight, 

Macroparasites 

Maturity 0.05 0.21 -189.25 

Genotype, Maturity, 

Macroparasites, Maturity × 

Macroparasites 

Residual 

Weight 

0.10 0.28 -197.94 

Genotype, Maturity, Residual 

weight, Maturity × Residual weight 

Macroparasites 0.06 0.21 -190.02 
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 638 

 639 

Figures  640 

 641 

Fig. 1 Predicted Gata3 expression level for each haplotype (Parameters Site BLB, Maturity 642 

Immature, Residual Weight and Macroparasite Load set to 0; Error bars represent 95% 643 

confidence intervals; Gata3 expression levels are Box-Cox transformed).  644 

 645 

Fig. 2 Panel figure showing (a) M. musculus protein-protein interaction network and (b) M. 646 

agrestis gene expression network. Edge weights represent (a) confidence scores (range = 0.50 647 

– 1.00), or (b) p-values (range = < 0.001 – 0.03). 648 
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