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Abstract

Background: The order Dasyuromorphia is a diverse radiation of faunivorous marsupials, comprising >80 modern
species in Australia and New Guinea. It includes dasyurids, the numbat (the myrmecobiid Myrmecobius fasciatus)
and the recently extinct thylacine (the thylacinid Thylacinus cyncocephalus). There is also a diverse fossil record of
dasyuromorphians and “dasyuromorphian-like” taxa known from Australia. We present the first total evidence
phylogenetic analyses of the order, based on combined morphological and molecular data (including a novel set
of 115 postcranial characters), to resolve relationships and calculate divergence dates. We use this information to
analyse the diversification dynamics of modern dasyuromorphians.

Results: Our morphology-only analyses are poorly resolved, but our molecular and total evidence analyses
confidently resolve most relationships within the order, and are strongly congruent with recent molecular studies.
Thylacinidae is the first family to diverge within the order, and there is strong support for four tribes within
Dasyuridae (Dasyurini, Phascogalini, Planigalini and Sminthopsini). Among fossil taxa, Ankotarinja and Keeuna do
not appear to be members of Dasyuromorphia, whilst Barinya and Mutpuracinus are of uncertain relationships
within the order. Divergence dates calculated using total evidence tip-and-node dating are younger than both
molecular node-dating and total evidence tip-dating, but appear more congruent with the fossil record and are
relatively insensitive to calibration strategy. The tip-and-node divergence dates indicate that Dasyurini, Phascogalini and
Sminthopsini began to radiate almost simultaneously during the middle-to-late Miocene (11.5–13.1 MYA; composite
95% HPD: 9.5–15.9 MYA); the median estimates for these divergences are shortly after a drop in global temperatures
(the middle Miocene Climatic Transition), and coincide with a faunal turnover event in the mammalian fossil record of
Australia. Planigalini radiated much later, during the latest Miocene to earliest Pliocene (6.5 MYA; composite 95% HPD:
4.4–8.9 MYA); the median estimates for these divergences coincide with an increase in grass pollen in the Australian
palynological record that suggests the development of more open habitats, which are preferred by modern planigale
species.

Conclusions: Our results provide a phylogenetic and temporal framework for interpreting the evolution of modern
and fossil dasyuromorphians, but future progress will require a much improved fossil record.
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Background
Dasyuromorphia is the second most speciose order of Aus-
tralian and New Guinean marsupials, after Diprotodontia
(mainly herbivorous forms such as possums, kangaroos,
wombats and the koala): more than 80 modern dasyuro-
morphian species have been named to date, and new spe-
cies continue to be identified [1–9]. Dasyuromorphians are
predominantly faunivorous, but they exhibit considerable
ecomorphological diversity [3, 4]. The body masses of living
dasyuromorphians span a range of more than three orders
of magnitude, from the world’s smallest living marsupial,
the long-tailed planigale (Planigale ingrami, body mass
~4 g), to the largest living carnivorous marsupial, the
Tasmanian devil (Sarcophilus harrisii, body mass > 8 kg) [3,
4]. This range is even greater when the recently extinct thy-
lacine (Thylacinus cynocephalus), which weighed up to
35 kg [4], is considered. Dasyuromorphia also includes the
only known marsupial specialised for feeding on social in-
sects, the numbat (Myrmecobius fasciatus), as well as a
hopping form, the kultarr (Antechinomys laniger) [4].
Dasyuromorphian reproduction is also of interest: several
dasyurid species are unusual among mammals in exhibiting
semelparity, the males dying after a single breeding season
[10, 11].
Modern dasyuromorphians are currently classified as

comprising three families, of which two are monotypic:
Myrmecobiidae (Myrmecobius fasciatus), Thylacinidae
(Thylacinus cynocephalus) and Dasyuridae (the remaining
species) [1, 4, 9]. There have been numerous published
molecular studies of dasyuromorphian phylogeny, and
these have confidently resolved many relationships within
the order e.g. [8, 12–21]. For example, within Dasyuridae,
the composition and branching order of the four currently
recognised tribes (Dasyurini, Phascogalini, Planigalini and
Sminthopsini) seem robustly resolved, as do several of the
relationships within these clades. Inevitably, however, such
molecular studies lack fossil taxa.
Numerous fossil dasyuromorphians and “dasyuromor-

phian-like” taxa have been described from various sites in
Australia and New Guinea e.g. [22–35], including at least
one entirely extinct family, the “hammer-toothed” malleo-
dectids [36, 37]. At present, the oldest generally accepted
crown-clade dasyuromorphian to be named appears to be
Badjcinus turnbulli from Faunal Zone A deposits at River-
sleigh (currently interpreted as late Oligocene in age [38,
39]), which is currently classified as a thylacinid [29, 40, 41].
However, the affinities of many other fossil taxa are unclear,
largely because most are known only from dental remains;
dasyuromorphians retain a relatively plesiomorphic denti-
tion, and there is a general lack of obvious dental synapo-
morphies for Dasyuromorphia and for subclades within the
order (notably the family Dasyuridae) [24, 42, 43].
A few phylogenetic analyses of dasyuromorphian rela-

tionships based on morphological data have been

published [29, 41, 44–46], and Archer et al. [36] pre-
sented a “molecular scaffold” analysis using a morpho-
logical dataset modified from these earlier studies.
However, all of these have suffered from limited taxon
sampling. In addition, they have been based solely on
characters of the skull and dentition, and unconstrained
analyses show several areas of conflict with molecular
phylogenies [13, 15].
Collectively, these molecular and morphological stud-

ies have improved our understanding of dasyuromor-
phian phylogeny, but a number of key issues remain
unresolved. Particularly important are determining
exactly which putative fossil dasyuromorphian and
“dasyuromorphian-like” taxa belong to Dasyuromorphia
(and, if so, whether they are stem- or crown-members),
and also determining whether the referral of fossil taxa
to modern genera is justified or not. A major stumbling
block to resolving these issues has been a failure to com-
bine available molecular and morphological data in a
total evidence approach. Phylogenies based on morpho-
logical data alone are often poorly resolved, incongruent
with molecular phylogenies, or both (as has been the
case with published morphological phylogenies of
dasyuromorphians [13, 15, 44, 46]); despite this, morph-
ology can provide additional “hidden” support [47] for
clades strongly supported by molecular data when the
two datatypes are analysed in combination [48]. Mor-
phological data may also help robustly resolve relation-
ships in parts of the phylogeny where the phylogenetic
signal in molecular data is weak, for example in the case
of deep, closely spaced divergences [49]. Conversely,
simulations have shown that the inclusion of molecular
data for extant taxa can improve the accuracy of phylo-
genetic estimation of fossil taxa for which molecular
data is unavailable [50].
To date, the morphological evidence used in phylogen-

etic analyses of dasyuromorphians has been restricted to
characters from the skull and dentition. Other anatom-
ical systems should provide additional information, with
the most obvious candidate being the postcranial skel-
eton: postcranial characters have already been shown to
be highly informative for resolving the phylogeny of vari-
ous other marsupial clades [51–59] and so may be simi-
larly useful for relationships within Dasyuromorphia.
The timing of diversification within Dasyuromorphia,

particularly the radiation of modern dasyurids, is also
controversial. A strict reading of the fossil record [24, 27,
28, 60] suggests that modern dasyurids probably did not
begin to radiate widely until the middle-to-late Miocene,
with some early molecular studies reaching similar con-
clusions e.g. [14]. At present, the oldest described fossil
remains that can be convincingly referred to modern
dasyurid genera are from the early Pliocene [24, 27, 28].
However, the most recent broadscale molecular analysis of
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dasyuromorphian phylogeny and divergence dates sup-
ported a much earlier diversification of modern dasyurids,
with the tribes estimated as beginning to radiate in the
early Miocene and all modern genera having originated by
the middle Miocene [15].
There are several explanations for this apparent dis-

crepancy. Despite ongoing fieldwork, the fossil record of
dasyuromorphians and other Australian mammals
remains highly incomplete [24, 27, 28]. Putative phasco-
galins and dasyurins have been reported from Faunal
Zone B deposits at Riversleigh (currently interpreted as
early Miocene in age, ~23.03–15.97 MYA) [28, 38, 39],
which would markedly extend the records of these
tribes, but these specimens are not yet described [28].
The general lack of obvious dental synapomorphies for
Dasyuridae and dasyurid subclades also means that, even
if found, fossils belonging to modern dasyurid lineages
might not be identified as such, particularly if known
from isolated teeth alone.
Conversely, molecular divergence dates should not be

viewed uncritically, because they can be affected by a
range of factors. These include the choice of clock
model, the choice and number of fossils used to calibrate
particular nodes, and the way in which those calibrations
are specified, i.e. either as point estimates or different
prior probability distributions [61–63]. Particularly prob-
lematic is the issue of maximum age constraints, which
are difficult to specify objectively and yet are likely to
have a major impact on resultant divergence time esti-
mates [64–67]. Also of importance is the choice of tree
branching prior: a uniform (= pure-birth or Yule) prior
can result in much older divergence estimates than a
birth-death prior, with the latter more appropriate for
clades in which extinction has occurred [68].
A promising alternative approach to “node dating”

with molecular clock models is “tip dating”, which allows
phylogenetic relationships and divergence times of fossil
and extant taxa to be inferred simultaneously in the con-
text of a single analysis [69–72], rather than using fossil
taxa as a priori calibrations. However, in several cases tip
dating has been shown to result in unrealistically ancient
divergence dates, particularly when a uniform tree
branching prior was used [72–75], rather than a bio-
logically more plausible fossilised birth-death (FBD)
prior [either with or without the possibility of sampling
ancestors; [70, 74, 76, 77]. Recently, it has been argued
that node dating and tip dating should be combined into
a hybrid “tip-and-node dating” approach, in which mini-
mum age constraints of selected nodes are specified by a
priori fossil calibrations, and maximum age constraints
for nodes resulting from the interaction between node
calibrations and fossil tips [72, 78].
Here we present morphological, molecular and first total

evidence analyses of modern and fossil dasyuromorphians,

using maximum parsimony (for the morphological data
only), and undated and dated Bayesian analysis. The dated
Bayesian analyses employed three different approaches:
node dating using a molecular clock, tip dating using a
total evidence clock, and tip-and-node dating using a total
evidence clock [72, 78], in each case using the FBD
prior and allowing for the possibility of sampled
ancestors [70, 74, 76, 77]. We used the resultant phy-
logenies to infer relationships within Dasyuromorphia
and probable divergence times. We investigate the
pattern of diversification for the order implied by our
tip-and-node dating analyses using Lineage Through
Time (LTT) plots, and compare these against palaeo-
environmental change and patterns of faunal change
in the fossil record. Finally, we use Bayesian Analysis
of Macroevolutionary Mixtures (BAMM) to identify
whether there is evidence for one or more statistically
significant shifts in the rate of diversification within
Dasyuromorphia, and to calculate speciation and
extinction rates.

Methods
Systematics
To minimise ambiguity when discussing the phylogeny
of dasyuromorphians, we propose formal phylogenetic
definitions for Dasyuromorphia, and for clades within
Dasyuromorphia that have been consistently recognised
in previous studies and that have received strong sup-
port in recent phylogenetic analyses (Table 1). For higher
level systematics we follow Aplin and Archer [79], Beck
et al. [80], Jackson and Groves [9], and Beck [81].

Taxon sampling for morphological data
For our morphological dataset, we included at least one
representative of each currently-recognised modern
genus [1, 15]. We specifically selected our modern
dasyuromorphian terminals to take into account possible
generic non-monophyly. Thus, we included representa-
tives of all five genera recognised by Van Dyck [46]
within Murexia sensu lato - namely Micromurexia
hageni, Murexia longicaudata, Murexechinus mela-
nurus, Paramurexia rothschildi and Phascomurexia naso
– because Van Dyck’s [46] morphological analyses failed
to group these genera in a clade, although we note that
molecular data strongly support monophyly of Murexia
sensu lato [13, 15, 20, 21]. Within Sminthopsis, we in-
cluded a representative of both the ‘Macroura’ group (S.
crassicaudata) and the ‘Murina’ group (S. murina), to
test the possibility that Sminthopsis might be paraphy-
letic with respect to either Antechinomys, Ningaui, or
both [15, 19, 21]. We included Parantechinus apicalis,
Pseudantechinus (= ‘Parantechinus’) bilarni and Ps.
maccdonnellensis, because the precise relationships be-
tween these three taxa have been controversial [16, 21,
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22, 82]. Finally, we included three extant representatives
of Dasyurus (D. albopunctatus, D. hallucatus and D.
maculatus) to test the possibility that Dasyurus is para-
phyletic with regard to Sarcophilus, as found in several
morphological analyses [29, 41, 44]. This resulted in a total
of 31 modern dasyuromorphian terminals (Additional file 1:
Table S1).
We also included 13 fossil terminals that have previ-

ously been identified as dasyuromorphians or “dasyuro-
morphian-like” taxa (Additional file 1: Table S1). To
ensure reasonable character overlap between taxa, we in-
cluded only named fossil taxa that are currently known
from at least one upper molar and one lower molar.
Among the “dasyuromorphian-like” taxa, we included
Ankotarinja tirarensis and Keeuna woodburnei from the
late Oligocene [26, 83, 84] Ditjimanka Local Fauna from
the Etadunna Formation of central South Australia,
which were originally described as dasyurids [85], but
more recently have been referred to Marsupialia incertae
sedis [24, 86]. We also included Djarthia murgonensis
from the early Eocene Tingamarra Fauna of southeastern
Queensland, which appears to be a plesiomorphic aus-
tralidelphian [58, 59, 86].
For our outgroup terminals, we used representatives of

the following modern marsupial orders: Peramelemor-
phia (the extant Echymipera kalubu and Perameles
nasuta, and the fossil Yarala burchfieldi), which is a
close relative of Dasyuromorphia within the superorder
Agreodontia [80]; Microbiotheria (the extant Dromiciops

gliroides), which is the closest modern relative of Austra-
lian marsupials [87]; and Didelphimorphia (the extant
Caluromys philander, Didelphis virginiana, and Mar-
mosa murina), which are relatively plesiomorphic non-
australidelphian marsupials [88]. We also included three
well-preserved fossil stem-marsupials, all from the
early or middle Palaeocene Tiupampa Fauna in Bolivia
[89–92]: Andinodelphys cochambambensis, Mayulestes
ferox and Pucadelphys andinus. Our final morpho-
logical matrix comprised 54 taxa (Additional file 1:
Table S1).

Morphological characters
Our craniodental characters were modified from those
of Wroe et al. [44], Wroe and Musser [41] and Murray
and Megirian [29]. We reviewed all 77 original charac-
ters defined by Wroe et al. [44], and excluded those that
appeared ambiguous or that we could not score consist-
ently. We also modified several of the remaining charac-
ters and character states to better correspond to our
observations, resulting in a final set of 58 craniodental
characters. The 16 multistate characters that represented
apparent morphoclines were ordered. We scored these
characters for the additional terminals not present in the
Wroe et al. [44], Wroe and Musser [41] and Murray and
Megirian [29] matrices. Where possible, we also reas-
sessed the original scorings of the other terminals, and
revised some character scores as a result. In general, we
scored our characters based on direct observations of

Table 1 Formal phylogenetic definitions proposed here for Dasyuromorphia and selected dasyuromorphian subclades

Clade Definition Definition
type

Dasyuromorphia the most inclusive clade including Dasyurus viverrinus, but excluding Perameles nasuta, Notoryctes
typhlops, Phalanger orientalis and Dromiciops gliroides

stem

Dasyuroidea the least inclusive clade including Dasyurus viverrinus, Myrmecobius fasciatus and Thylacinus
cynocephalus

crown

Dasyuridae the most inclusive clade including Dasyurus viverrinus, but excluding Myrmecobius fasciatus
and Thylacinus cynocephalus

stem

Myrmecobiidae the most inclusive clade including Myrmecobius fasciatus, but excluding Dasyurus viverrinus
and Thylacinus cynocephalus

stem

Thylacinidae the most inclusive clade including Thylacinus cynocephalus, but excluding Dasyurus viverrinus
and Myrmecobius fasciatus

stem

Dasyurinae the most inclusive clade including Dasyurus viverrinus, but excluding Sminthopsis crassicaudata stem

Sminthopsinae the most inclusive clade including Sminthopsis crassicaudata, but excluding Dasyurus viverrinus stem

Dasyurini the most inclusive clade including Dasyurus viverrinus, but excluding Phascogale tapoatafa,
Planigale ingrami
and Sminthopsis crassicaudata

stem

Phascogalini the most inclusive clade including Phascogale tapoatafa, but excluding Dasyurus viverrinus,
Planigale ingrami
and Sminthopsis crassicaudata

stem

Planigalini the most inclusive clade including Planigale ingrami, but excluding Dasyurus viverrinus,
Phascogale tapoatafa and Sminthopsis crassicaudata

stem

Sminthopsini the most inclusive clade including Sminthopsis crassicaudata, but excluding Dasyurus viverrinus,
Phascogale tapoatafa and Planigale ingrami

stem
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actual specimens or high quality casts; however, for
some taxa (e.g. the Tiupampan stem-marsupials) we
used published descriptions [89, 91–94]. Where possible,
we examined multiple specimens for each species, with
up to six specimens per species examined. In cases of
intraspecific polymorphism, the modal condition was
scored if one character state clearly predominated, fol-
lowing Voss and Jansa [88, 95]. If the different character
states were approximately equally common, the charac-
ter was scored as polymorphic.
In addition to our craniodental characters, we de-

vised a novel set of postcranial characters intended to
resolve dasyuromorphian phylogeny. The postcranial
characters of Horovitz and Sánchez-Villagra [55] and
Flores [57] were used for an initial assessment of
variability within the marsupial postcranium. This was
combined with information from other studies of
postcranial morphology in marsupials and other
metatherians [52, 53, 93, 96–106] and with additional
personal observations to develop 115 characters that
document the major morphological variability we
observed among our taxon set. Thirty-one multistate
characters that represented probable morphoclines
were specified as ordered. Due to a lack of postcra-
nial specimens, we were able to score these characters
for only a subset of our morphological taxon sample
(32 out of 54 terminals; Additional file 1: Table S1),
and for most of these we were only able to examine
one or two specimens. A list of our revised morpho-
logical characters and specimens examined to score
these is given in Additional file 2: Text S2. The final
morphological matrix (in Nexus format) is given in
Additional file 3: Text S3. The morphological matrix
is also available from Morphobank (Project 858:
http://morphobank.org/permalink/?P858).

Taxon sampling for molecular data
We obtained molecular data for all the 31 modern
dasyuromorphian terminals and the six modern out-
group terminals that were scored for morphological
characters, plus an additional 41 extant dasyurid species.
This total of 72 dasyuromorphian species represents
approximately 84% of named modern species (however,
we note that additional species undoubtedly remain to
be described, for example within Planigale) [8]. Our final
molecular matrix included 78 taxa (Additional file 1:
Table S1).

Molecular sequence data
We downloaded existing DNA sequence data from the
online GenBank database for seven mitochondrial genes,
namely the protein-coding cytochrome b (MT-CYB),
cytochrome oxidase I (MT-CO1), cytochdrome oxidase
II (MT-CO2), NADH:ubiquinone oxidoreductase core

subunit 1 (MT-ND1) and NADH:ubiquinone oxidore-
ductase core subunit 2 (MT-ND2) genes, and the
ribosomal 12S RNA (MT-RNR1), and 16S RNA (MT-
RNR2) genes, and eight nuclear protein-coding genes
or gene fragments, namely exon 26 of apolipoprotein
B (APOB), intron 7 of fibrinogen beta chain (FGB),
exon 10 of BRCA1, DNA repair associated (BRCA1),
haemoglobin subunit epsilon 1 (HBE1), exon 1 of
retinol binding protein 3 (RBP3; often called inter-
photoreceptor retinoid binding protein, or IRBP), pro-
tamine 1 (PRM1), recombination activating 1 (RAG1)
and exon 28 of von Willebrand factor (VWF). These
genes were selected based on their use in previous
molecular studies of dasyuromorphian phylogeny [8,
13, 15–17, 19], which means that there is good cover-
age for our modern taxon sample. In general, where
more than one sequence of the same gene was avail-
able for a single species, the most recent and/or
complete sequence was selected. A full list of Gen-
bank accession numbers for the sequences used is
given in Additional file 1: Table S1.
All protein-coding genes were aligned in MEGA 6.0

[107], using default settings for the alignment algorithm
MUSCLE [108]. Intronic sequences were aligned using
the standard MUSCLE algorithm, whilst exonic se-
quences were aligned using MUSCLE for codons. HBE1
and PRM1 were both subdivided into intronic and ex-
onic sequences, and these were aligned separately. The
mitochondrial ribosomal genes MT-RNR1 and MT-RNR2
were aligned manually in BioEdit 7.1.9 [109], with sec-
ondary structure (i.e. stems and loops) taken into
account, based on published structures [110, 111] and
the online RNA database OGRe [112]. After alignment,
the aligned sequences of all genes and gene fragments
were concatenated into a single matrix of ~16.4 kb. The
final molecular matrix (in Nexus format) is given in
Additional file 3: Text S3.

Taxon sampling for total evidence data
We combined our morphological and molecular matri-
ces to produce a total evidence matrix that included all
taxa represented by morphological data and all taxa rep-
resented by molecular data. Where possible, we avoided
creating supraspecific hybrids when combining the mor-
phological and molecular data. The sole exception was
Micromurexia, for which our morphological characters
were scored using M. hageni, whereas the molecular se-
quence data represented M. habbema. Our final total
evidence matrix included 95 taxa, with 17 fossil taxa
represented by morphological data only, and 41 modern
taxa by molecular data only (Additional file 1: Table S1).
The final total evidence matrix (in Nexus format) is
given in Additional file 3: Text S3.
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Maximum parsimony analyses
We carried out maximum parsimony analysis of the
morphological matrix using TNT version 1.5 [113, 114].
Our maximum parsimony tree searches comprised an
initial “new technology” search using ratchet, drift and
tree fusing, until the same minimum length had been hit
100 times, followed by a “traditional” search using tree
bisection-reconnection branch swapping among the
trees saved from the initial search. All most parsimoni-
ous trees were saved, and then summarised using strict
consensus. Bootstrap values were calculated in TNT as
absolute frequencies, based on 250 replicates.

Undated Bayesian analyses
We carried out undated, model-based Bayesian analyses
using MrBayes 3.2 [115]. We analysed our morpho-
logical matrix using a single Mk model applied to the
morphological characters [116], with the assumption
that only variable characters were scored, and with a
gamma distribution to model rate heterogeneity across
characters, i.e. the Mkv + G model. For our molecular
sequence data, we first used PartitionFinder v1.1.1 [117]
to identify an appropriate partitioning scheme and
models for each partition. The molecular sequences
were initially partitioned by gene, codon position (for ex-
onic sequences of protein-coding genes), and stem and
loop regions (for the ribosomal genes MT-RNR1 and
MT-RNR2); intronic sequences were not partitioned fur-
ther. For the PartitionFinder analysis, we restricted com-
parisons to models implemented by MrBayes, with the
assumption of linked branch lengths, the “greedy” search
algorithm, and with the Bayesian Information Criterion
used for model selection, as preferred by Lanfear et al.
[117]. The MrBayes analysis then applied the best-fitting
partitioning scheme and models identified by Partition-
Finder. We also carried out analyses of the nuclear genes
only and the mitochondrial genes only, again using
PartitionFinder to identify the best-fitting partitioning
scheme and models. Finally, we carried out an undated
Bayesian analysis of the total evidence matrix, using the
same models as for the morphological and combined
molecular analyses.
All undated Bayesian analyses comprised four runs of

four chains (one cold, three heated) each, sampling trees
every 5000 generations. The morphological and molecu-
lar analyses were run for 10 million generations, whilst
the total evidence analysis was run for 20 million gener-
ations. For all three analyses, the MrBayes output was
examined in Tracer v1.6 [118] to identify when station-
arity and convergence between chains had been reached.
The post-burn-in trees were summarised using 50% ma-
jority rule consensus, with Bayesian posterior probabil-
ities (BPPs) as support values.

Identification of unstable taxa
Analysis of the morphological matrix using maximum
parsimony and undated Bayesian analysis resulted in
relatively unresolved consensus trees, particularly for re-
lationships within Dasyuridae. The Roguenarok algo-
rithm [119] was therefore used to identify the most
unstable taxa in each analysis; these taxa were then de-
leted and the analyses re-run.

Molecular node-dating
To estimate divergence times within Dasyuromorphia,
we carried out dated Bayesian analyses of the molecular
dataset using node dating. We used a single Independent
Gamma Rates (IGR) clock model, implementing a fossi-
lised birth-death tree branching prior that assumed “di-
versity” sampling [70] and a sample probability of 0.8 for
our modern taxa; this value is slightly less than the pro-
portion of named dasyuromorphian species in our
matrices (0.84), but allows for the existence of a few
additional undescribed species see e.g. [8]. Because the
molecular analyses include modern taxa only, the fossil-
isation prior was fixed as 0. For the molecular analyses,
we employed six node calibrations, of which two were
within Dasyuromorphia and four outside this clade. De-
tails of these node calibrations are given in Additional file 4:
Text S4.
Node calibrations can be implemented in a variety of

ways, either as point estimates or as different types of
probability distributions; the different implementations
make different assumptions regarding the quality of the
fossil record, which can have a major impact on the
divergence dates estimated using those calibration(s)
[61]. To investigate the impact of these, we implemented
our node calibrations in two different ways. In the first
scheme (NodeCalib1), all six node calibrations were spe-
cified as offset exponential distributions, with a “hard”
minimum bound, and a “soft” maximum bound such
that there was a 5% probability that the divergence date
is older than this; this scheme assumes that the diver-
gence date falls relatively close to the minimum bound
[61]. In the second scheme (NodeCalib2), node calibra-
tions 1 (=Didelphimorphia-Australidelphia split, i.e. the
root), 2 (= crown-clade Didelphidae), 3 (= crown-clade
Australidelphia) and 5 (= crown-clade Dasyuromor-
phia or Dasyuroidea) were specified as uniform distribu-
tions with “hard” minimum and maximum bounds,
reflecting the particularly poor or uncertain fossil
records of these groups, whilst node calibrations 4
(= crown-clade Peramelidae) and 6 (= crown-clade Dasyur-
idae) were maintained as offset exponential distributions
(see Additional file 4: Text S4). The molecular node-dating
analyses were run for 20 million generations, with MrBayes
settings as for the undated molecular analysis.
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Total evidence tip-dating
In addition to the molecular node dating analyses, we
estimated divergence times within Dasyuromorphia,
using tip dating of the total evidence data [69–72]. As in
the molecular node-dating analyses, we used a single
IGR clock model, and assumed “diversity” sampling with
a sample probability of 0.8 for our modern taxa. The fos-
silisation, extinction and speciation priors used the
MrBayes default values. Tip dating requires that each
terminal is specified an age, either as a point estimate or
a range. Our Recent terminals were all assigned an age
of 0 Ma, whereas fossil taxa were assigned age ranges
based on the published literature and Gradstein et al.
[120]. A full list of taxon ages and references for these is
given in Additional file 5: Text S5. The age ranges of the
fossil taxa were specified as uniform distributions.
To ensure comparability with the molecular node dating,

we also included two node calibrations (see Additional file 4:
Text S4). The first of these corresponds to node calibration
1 (= Didelphimorphia-Australidelphia split) in the molecular
node dating analysis. A further calibration, node calibration
7, was placed on the root node (= the split between the
Tiupampan stem-marsupials Andinodelphys, Mayulestes
and Pucadelphys, and the remaining taxa), as is usual for
tip-dating analyses [74]. Similarly to the molecular node dat-
ing analyses, we implemented these two node calibrations
either as offset exponential distributions, with a ‘hard’ mini-
mum bound and a “soft” maximum bound such that there
was a 5% probability that the divergence date is older than
this (TipCalib1), or as uniform distributions with “hard”
minimum and maximum bounds (TipCalib2). The two total
evidence tip dating analyses were both run for 50 million
generations, with MrBayes settings otherwise the same as
for the undated and node dating molecular analyses.

Total evidence tip-and-node dating
O’Reilly and Donoghue [78] argued in favour of combin-
ing tip and node calibrations, concluding that this
“makes the best use of palaeontological data in the con-
struction of evolutionary timescales”. We therefore
implemented total evidence tip-and-node dating analyses
by combining the tip calibrations and all seven of the
node calibrations discussed above (see Additional file 4:
Text S4 and Additional file 5: Text S5). Similarly to the
total evidence tip dating analyses, we used a single IGR
clock model, we assumed “diversity” sampling with a
sample probability of 0.8 for our modern taxa, and used
the MrBayes default values for fossilisation, extinction and
speciation priors, with age ranges of fossil taxa specified as
uniform distributions. Similarly to the molecular node
dating and total evidence tip dating analyses (see above),
the node calibrations were either all implemented as offset
exponential distributions (TipNodeCalib1), or with node
calibrations 1 (= Didelphimorphia-Australidelphia split),

2 (= crown-clade Didelphidae), 3 (= crown-clade Aus-
tralidelphia) and 5 (= crown-clade Dasyuromorphia)
from the molecular node dating analyses and the
root calibration from the total evidence tip dating
analyses (node calibration 7; = Andinodelphys-Mayu-
lestes-Pucadelphys-Marsupialia split) specified as uni-
form distributions (TipNodeCalib2). MrBayes requires
that calibrated nodes are constrained to be monophy-
letic a priori; the contents of the calibrated nodes were
therefore determined based on the results of the un-
dated and tip dating total evidence analyses, resulting
in (for example) Ankotarinja, Keeuna and Djarthia
being excluded from crown-clade Australidelphia. The
two total evidence tip dating analyses were both run
for 50 million generations, with MrBayes settings
otherwise the same as for the undated and node dat-
ing molecular analyses and total evidence tip-dating
analyses.

Summarising the results of the dated analyses
For the six dated analyses, Tracer v1.6 was again used to
identify when stationarity and convergence between
chains had been reached. The post-burn-in trees were
concatenated using the perl script Burntrees.pl (available
from https://github.com/nylander/Burntrees), with branch
lengths transformed from substitutions per site to time
units. These post-burn-in trees were then summarised as
maximum clade credibility (MCC) trees using TreeAnno-
tator v1.8.3, with node ages calculated as median heights.
As in the undated analyses, Bayesian posterior probabil-
ities (BPPs) were used to estimate support.

Analyses of diversification
To analyse the pattern of diversification among Dasyuro-
morphia, we produced Lineage Through Time (LTT)
plots of the post-burn-in trees from all six dated analyses
using the R package paleotree [121]. The post-burn-in
trees were first pruned to include only modern members
of Dasyuromorphia (as defined here – see “Systematics”
above and Table 1). LTT plots for the pruned trees were
then produced using the multiDiv command, showing
the median diversity curve and 95% quantiles, and with
interval length set to 0.01 MYA. We also calculated indi-
vidual median diversity curves for the modern represen-
tatives of the dasyurid tribes Dasyurini, Phascogalini,
Planigalini and Sminthopsini.
To investigate whether the diversification of modern

dasyurids might be linked to environmental change,
namely the development of more open, drier habitats
driven by falling temperatures, and/or ecological replace-
ment of thylacinids [14, 15, 28, 42, 43], we compared the
LTT plots with a recent estimate of global surface tem-
peratures over the Cenozoic [122], and with current esti-
mates of thylacinid generic diversity (based on formally
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named taxa only) from the late Oligocene onwards [24,
27–31].
We also used BAMM 2.5.0 to test for shifts in the rate

of diversification within Dasyuromorphia [123, 124],
using the MCC trees from all six dated analyses. We first
used the R package BAMMtools [124] to identify appro-
priate priors for each MCC tree, and then ran BAMM
for 10 million generations, sampling every 2000 genera-
tions, using these priors. We corrected for incomplete
sampling of modern dasyurids by specifying the sam-
pling fraction of each dasyurid genus, based on current
estimates of species numbers [1–9]. Because there is
only a single modern representative of Thylacinidae
(Thylacinus cynocephalus) and a single modern repre-
sentative of Myrmecobiidae (Myrmecobius fasciatus), we
carried out two BAMM analyses for each MCC tree,
firstly for modern dasyuromorphians as a whole, and
secondly with the tree pruned to modern dasyurids only;
this was to see if inclusion or exclusion of these two
monotypic lineages had a major impact on the inference
of rate shifts. We then used BAMMtools to produce 95%
credible sets of rate shift configurations for each of the
12 analyses (i.e. six MCC trees, for either modern
dasyuromorphians as a whole or modern dasyurids
only), assuming a 10% burn-in.

We also used BAMMtools to calculate speciation and
extinction rates for the MCC trees from each of the six
dated analyses, for the following groups: modern dasyur-
omorphians as a whole; non-dasyurid dasyuromorphians
(i.e. Myrmecobiidae and Thylacinidae), dasyurids, and
the four dasyurid tribes.

Results
Undated analyses
Morphology
Both maximum parsimony and undated Bayesian ana-
lysis of the full morphological dataset result in highly
unresolved consensus trees. The Roguenarok algo-
rithm [119] indicated that Myoictis leucura acted as a
rogue taxon in the maximum parsimony analysis, and
that Parantechinus apicalis did the same in the
Bayesian analysis. Repeating the analyses with the
relevant rogue taxon deleted resulted in the phyloge-
nies shown in Fig. 1. Both analyses place the early or
middle Miocene Ankotarinja and Keeuna in a clade
with the early Eocene Djarthia with moderate support
(bootstrap = 62%; BPP = 0.80), with this clade falling
outside Dasyuromorphia. Monophyly of Dasyuromor-
phia is recovered, but without strong support (boot-
strap <50%; BPP = 0.67). In the maximum parsimony

Fig. 1 Undated phylogenies of Dasyuromorphia based on 173 morphological characters. a strict consensus of 3888 most parsimonious trees (length
= 847 steps), with Myoictis leucura deleted from the starting matrix as a rogue taxon. b 50% majority rule consensus of post-burn-in trees from Bayesian
analysis using the Mkv + G model with Parantechinus apicalis deleted from the matrix as a rogue taxon. In a, numbers at nodes represent bootstrap
values ≥50%. Branch lengths are arbitrary in both a and b. Myrmecobiidae is highlighted in orange, Thylacinidae in red, and Dasyuridae in blue
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analysis (Fig. 1a), Barinya (originally described as a
dasyurid) and Mutpuracinus (originally described as a
thylacinid) are placed in a polytomy with Myrmeco-
bius, Dasyuridae and Thylacinidae. A similar arrange-
ment is seen in the Bayesian analysis (Fig. 1b), except
that Myrmecobius is weakly supported as sister to
Thylacinidae (BPP = 0.57). Monophyly of Thylacinidae
is relatively strongly supported in the Bayesian ana-
lysis (BPP = 0.91) but not in the maximum parsimony
analysis (bootstrap <50%). Relationships within Thyla-
cinidae are broadly similar between the two analyses,
with Ngamalacinus sister to the remaining taxa, and
Thylacinus spp. forming a clade, within which there
is moderate-to-strong support for T. potens + T. cyno-
cephalus (bootstrap = 67%; BPP = 0.96).
Monophyly of Dasyuridae is also recovered in both

analyses, and receives moderate support in the Bayesian
analysis (BPP = 0.80). Relationships within Dasyuridae
are also similar in the two analyses: monophyly of Mur-
exia sensu lato is not supported, and instead these taxa
form a grade at the base of Dasyuridae, as also found by
Van Dyck [46]. Both analyses recovered a clade compris-
ing Antechinus, Antechinomys, Ningaui, Planigale, Pseu-
dantechinus and Sminthopsis, which receives moderate
support in the Bayesian analysis (BPP = 0.81). In the
maximum parsimony analysis (Fig. 1a), the remaining
taxa form a single clade, whereas the Bayesian analysis
(Fig. 1b) is slightly less resolved. In the maximum parsi-
mony analysis, Sminthopsis and Antechinomys form a
clade, but Pseudantechinus spp. are part of a polytomy,
whereas the reverse is true in the Bayesian analysis.
Dasyurus is not monophyletic in either analysis, with D.
maculatus instead sister to Sarcophilus; this relationship
receives relatively strong support in the Bayesian analysis
(BPP = 0.91) but not in the maximum parsimony analysis
(bootstrap <50%).
Overall, the morphological results are broadly similar

to those of previous morphological analyses of dasyuro-
morphians, which is perhaps unsurprising given that our
craniodental characters and taxon set has been devel-
oped from these earlier studies [29, 36, 41, 44]. Support
values are generally low in both analyses: only one clade
within Dasyuromorphia (Thylacinus potens + T. cynoce-
phalus) has >50% bootstrap support and none have
>70% [125] in the maximum parsimony analysis (Fig. 1a),
and only one clade (again, Thylacinus potens + T. cyno-
cephalus) has BPP >0.95 in the Bayesian analysis
(Fig. 1b).

Molecular
In contrast to the morphological analyses, the undated
analysis of the combined nuclear and mitochondrial genes
is characterised by high support values (BPP >0.95)
for most clades (Fig. 2a). Within Dasyuromorphia,

Myrmecobius is strongly supported as sister to Dasyuridae
(BPP = 1.00), with Thylacinus the first taxon to diverge, in
agreement with previous molecular studies [15, 20, 21,
126]. Relationships within Dasyuridae are also in agree-
ment with most recent molecular phylogenies [8, 15, 17,
19, 20].
There is strong support for monophyly of the subfam-

ilies Dasyurinae and Sminthopsinae, the dasyurine tribes
Dasyurini and Phascogalini, and the sminthopsine tribes
Sminthopsini and Planigalini (see Table 1). Within
Dasyurini, Dasyurus is monophyletic and sister to Sarco-
philus, with this clade sister to Neophascogale + Phascolo-
sorex. In turn, this clade is sister to a clade comprising
Dasycercus, Dasykaluta, Dasyuroides, Myoictis and Para-
ntechinus. Myoictis is monophyletic, Parantechinus is sis-
ter to Myoictis, and Dasycercus and Dasyuroides form a
clade. Within Phascogalini, Antechinus, Phascogale and
Murexia sensu lato are all monophyletic, with Phascogale
sister to Murexia. Within Sminthopsini, Sminthopsis is
paraphyletic, with Antechinomys sister to S. crassicaudata,
and Ningaui spp. sister to a clade corresponding to the
“Macroura” group of Krajewski et al. (2012).
When the nuclear and mitochondrial genes were ana-

lysed separately, the nuclear-only phylogeny showed
greater overall topological similarity to the combined
analysis than did the mitochondrial-only phylogeny (see
Additional file 6: Text S6). However, the nuclear-only
analysis weakly supports a Myrmecobius + Thylacinus
clade (BPP = 0.68). The mitochondrial-only analysis
agrees with the combined analysis in supporting a
Myrmecobius + Dasyuridae clade; however, this clade
receives lower support in the mitochondrial-only ana-
lysis (BPP = 0.88) than in the combined analysis (BPP =
1.00; Fig. 2a), suggesting that the nuclear genes may be
providing hidden support [47].

Total evidence
Similarly to the undated molecular analysis, the undated
total evidence analysis placed Thylacinidae as the first
family to diverge within Dasyuromorphia (Fig. 2b), but
support for Myrmecobius + Dasyuridae is only moderate
(BPP = 0.73). Monophyly of Thylacinidae is strongly sup-
ported (BPP = 0.97), although, as in the morphological
analyses, Mutpuracinus is not recovered as a member of
this clade. Instead, Mutpuracinus is in a polytomy with
Dasyuridae and Barinya + Myrmecobius. The latter clade
is intriguing and has not been found in previous pub-
lished analyses, but receives only weak support (BPP =
0.60). Monophyly of Dasyuridae receives strong support
(BPP = 0.92), with relationships among modern dasyur-
ids essentially identical to those found in the undated
molecular analysis; however, many support values are
lower, presumably because of the destabilising effect of
including fossil taxa that lack sequence data. The fossil
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Dasyuroides achilpatna is recovered as sister to Dasycer-
cus cristicauda, not Dasyuroides byrnei, although this is
relatively weakly supported (BPP = 0.64). The fossil
Sminthopsis floravillensis is placed within Sminthopsini,
but does not form a clade with any particular sminthop-
sin subgroup

Dated analyses
Unsurprisingly, the two dated molecular analyses (Node-
Calib1 and NodeCalib2) and four dated total evidence
analyses (TipCalib1, TipCalib2, TipNodeCalib1 and Tip-
NodeCalib2) recovered overall topologies that are very
similar to their undated equivalents (Fig. 3 and Additional
file 6: Text S6). However, Badjcinus is placed as a stem-

dasyuromorphian rather than within Thylacinidae in both
TipNodeCalib1 and TipNodeCalib2, whilst Mutpuracinus
is sister to Barinya + Myrmecobius in TipNodeCalib1 and
a stem-member of Dasyuridae in TipNodeCalib2, al-
though these relationships are only very weakly supported
(BPP <0.5: Additional file 6: Text S6).
Similarly unsurprisingly, divergence dates in the NodeCa-

lib1 analysis (in which all fossil calibrations were specified
as exponential distributions) were consistently younger
than those from the NodeCalib2 analysis (in which four of
the six fossil calibrations were specified as uniform distribu-
tions); this is particularly marked for the deepest diver-
gences, (e.g. Marsupialia, crown-clade Australidelphia,
Agreodontia), but divergence dates within Dasyuromorphia

Fig. 2 Undated Bayesian molecular and total evidence phylogenies of Dasyuromorphia. a 50% majority rule consensus of post-burn-in
trees from Bayesian analysis of 16.4 kb of combined nuclear and mitochondrial sequence data. b 50% majority rule consensus of post-
burn-in trees from Bayesian analysis of 16.4 kb of combined nuclear and mitochondrial sequence data and 173 craniodental and postcranial characters.
Branch lengths are arbitrary in both a and b. Myrmecobiidae is highlighted in orange, Thylacinidae in red, and Dasyuridae in blue.
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are also 15–25% older in NodeCalib2 than in NodeCalib1
(Table 2 and Additional file 6: Text S6). By contrast, age
estimates for the two tip-dating analyses (TipCalib1 and
TipCalib2) are almost identical (Table 2). It is striking that

median estimates for divergence dates within Dasyuromor-
phia in TipCalib1 and TipCalib2 are very similar to those
in NodeCalib1, but slightly younger; the 95% HPD intervals
are also slightly narrower (Table 2 and Additional file 6:

Fig. 3 Dated total evidence phylogeny of Dasyuromorphia based on 16.4 kb of combined nuclear and mitochondrial sequence data and 173
morphological characters. Divergence dates were calculated using Bayesian tip-and-node dating, assuming a single IGR clock model and the
“TipNodeCalib1” calibration scheme. The topology is a maximum clade credibility (MCC) tree of post-burn-in trees. Branch lengths are proportional
to time, and bars at nodes represent 95% highest posterior densities (HPDs). Myrmecobiidae is highlighted in orange, Thylacinidae in red, and
Dasyuridae in blue
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Text S6). This is despite the fact that no nodes within
Dasyuromorphia were calibrated in the tip-dating analyses.
Median estimates and 95% HPD intervals for most diver-
gence dates are almost identical between the two tip-and-
node dating analyses (TipNodeCalib1 and TipNodeCalib2),
despite the difference in calibration strategy between the
two.
In all six analyses, the origin of crown-Dasyurinae (=

Dasyurini-Phascogalini split) and the origin of crown-
Sminthopsinae (=Sminthopsini-Planigalini split) are esti-
mated as having occurred almost simultaneously, with
estimates ranging from the late Oligocene or early Mio-
cene in NodeCalib2 to the early or middle Miocene in
the tip-dating and tip-and-node dating analyses (Table 2).
The first splits within the tribes Dasyurini, Phascogalini
and Sminthopsini are also estimated as occurring at
roughly the same time, with the estimates again oldest
in NodeCalib2 (early to middle Miocene) and youngest
in the tip-and-node-dating analyses (middle to late
Miocene). Our results also suggest that Planigalini began
to diversify between 5 and 9 Ma later than the other
three tribes, with the first split within Planigale esti-
mated to be as old as the middle Miocene in NodeCa-
lib2, but as young as the early Pliocene in the tip-dating
and tip-and-node dating analyses (Table 2).

Diversification analyses
Based on the arguments of O’Reilly and Donoghue [78],
we consider that our two tip-and-node dating analyses
(TipNodeCalib1 and TipNodeCalib2) are likely to have
given the most accurate estimates of divergence time
within Dasyuromorphia. Thus, we have focused on the
results of these two analyses to investigate the pattern of
diversification through time seen in modern dasyuro-
morphians. LTT plots of modern dasyuromorphians for
TipNodeCalib1 are shown in Fig. 4, but results for Tip-
NodeCalib2 are very similar. Median diversity curves
were plotted from the post-burn-in trees, for Dasyuro-
morphia as a whole, and for the dasyurid subtribes
Dasyurini, Phascogalini, Planigalini and Sminthopsini;
the 95% confidence interval is also shown from Dasyuro-
morphia (Fig. 4).
There is evidence of an increase in the rate of diversifica-

tion within Dasyuromorphia, centred around the late
middle Miocene, which was driven by the radiation of the
dasyurid tribes Dasyurini, Phascogalini and Sminthopsini
(Fig. 4); the median estimate for the radiation of Sminthop-
sini (the first of the tribes to diversify) is 12.8 MYA in
TipNodeCalib1 and 13.1 MYA in TipNodeCalib2. This is
shortly after a rapid decline in global temperatures
(the middle Miocene Climatic Transition) that

Fig. 4 Lineage through time (LTT) plots of modern dasyuromorphians compared with global temperature and thylacinid diversity. The diversity
curves were plotted based on the post-burn-in trees from the “TipNodeCalib1” total evidence tip-and-node dating analysis (see Fig. 3 and text).
The black line represents the median diversity curve for modern dasyuromorphians as a whole, with the grey shading representing the 95%
confidence interval (based on the post-burn-in trees). The red line represents estimated global surface temperature (taken from Hansen et al.
2013). Arrow 1 indicates the middle Miocene Climatic Optimum (MMCO), arrow 2 the middle Miocene Climatic Transition (MMCT), and arrow 3
the major increase in grass pollen seen in the palynological record of Australia (see Martin and McMinn, 1994: Fig. 2). The upper bar graph represents
thylacinid generic diversity through time based on named genera (note that Mutpuracinus was not included, based on our results – see Figs 1, 2, 3),
with five temporal bins used: late Oligocene (28.1–23.03 MYA), early Miocene (23.03–15.97 MYA), middle Miocene (15.97–11.62 MYA), late Miocene
(11.62–5.333 MYA), Pliocene (5.333–2.58 MYA) and Quaternary (2.58–0 MYA)
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followed the ~15–17 MYA middle Miocene Climatic
Optimum (Fig. 4) [122, 127–129]. It also appears to
coincide with a major drop in thylacinid generic diversity,
from five named genera in the middle Miocene (Maximu-
cinus, Muribacinus, Nimbacinus, Wabulacinus and Thyla-
cinus; note that Mutpuracinus was not included in this
total, because it was not recovered as a thylacinid in any
of the phylogenetic analyses presented here – see above),
to only two in the late Miocene (Thylacinus and Tjarrpeci-
nus) (Fig. 4).
The radiation of Planigalini/Planigale is estimated as a

much more recent event, with the median estimate
being 6.5 MYA in both TipNodeCalib1 and TipNodeCa-
lib2, i.e. latest Miocene. These dates coincide with
palaeobotanical evidence for a major increase in the
abundance of grasses in Australia ~6–7 MYA (Fig. 4)
[130, 131].
The LTT plots for Dasyurini, Phascogalini and

Sminthopsini all show a relatively constant accumulation
of lineages before plateauing in the Pleistocene, with the
plateau probably because we have failed to sample re-
cently diverged cryptic species and/or multiple lineages
within species. The LTT plots for Planigalini/Planigale
are less smooth, probably due to failure to sample
several major lineages [8], but possibly also because of
the overall fewer number of species.

BAMM analysis was carried out on 12 trees (the MCC
trees from each of the six dated analyses, with the trees
either pruned to modern dasyuromorphians or to mod-
ern dasyurids only) to identify possible diversification
rate shifts. BAMM analysis of modern dasyuromor-
phians as a whole consistently identified either zero
shifts or only one shift within the 95% credible set of
rate shift configurations: the highest posterior probability
was for zero shifts, with a markedly lower probability of
single shift occurring along the branch leading to
Dasyuridae (Table 3). No shifts were identified within
the 95% credible set of rate shift configurations when
the analyses were repeated for modern dasyurids only
(Table 3). Thus, although the LTT plots show a sharp
increase in the diversification of dasyurids, related to the
diversification of Dasyurini, Phascogalini and Sminthop-
sini, this is not interpreted as a significant change in
diversification rate.
We also used BAMM to estimate mean rates of speci-

ation and extinction for Dasyuromorphia as a whole,
and for subgroups within the order (Additional file 7:
Text S7). Relative rates are fairly consistent across the
six dated analyses. Unsurprisingly, estimated speciation
rates were higher in those analyses that had younger
divergence dates (i.e. TipNodeCalib1 and TipNodeCa-
lib2), but extinction rates were also higher. Collectively,

Table 3 Summary of BAMM analyses to test for evidence for of shifts in diversification rate within Dasyuromorphia

Analysis Clade Number of rate shift configurations within 95% credible set
(and number of distinct shifts within each configuration)

Location of shift
(and posterior probability)

NodeCalib1 Dasyuromorphia 2 (0, 1) No shifts (PP = 0.78)

Dasyuridae (PP = 0.19)

Dasyuridae 1 (0) No shifts (PP = 1.00)

NodeCalib2 Dasyuromorphia 2 (0, 1) No shifts (PP = 0.78)

Dasyuridae (PP = 0.18)

Dasyuridae 1 (0) No shifts (PP = 1.00)

TipCalib1 Dasyuromorphia 2 (0, 1) No shifts (PP = 0.77)

Dasyuridae (PP = 0.23)

Dasyuridae 1 (0) No shifts (PP = 1.00)

TipCalib2 Dasyuromorphia 2 (0, 1) No shifts (PP = 0.85)

Dasyuridae (PP = 0.15)

Dasyuridae 1 (0) No shifts (PP = 1.00)

TipNodeCalib1 Dasyuromorphia 2 (0, 1) No shifts (PP = 0.86)

Dasyuridae (PP = 0.12)

Dasyuridae 1 (0) No shifts (PP = 1.00)

TipNodeCalib2 Dasyuromorphia 2 (0, 1) No shifts (PP = 0.86)

Dasyuridae (PP = 0.12)

Dasyuridae 1 (0) No shifts (PP = 1.00)

MCC trees from each of our six dating analyses were tested, pruning the taxa to either modern dasyuromorphians only (“Dasyuromorphia”) or to modern dasyurids only
(“Dasyuridae”), and correcting for the incomplete sampling of dasyurid species. BAMM analyses were run for 10 million generations, sampling every 2000 generations,
with the first 10% discarded as burn-in
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these results suggest that non-dasyurid dasyuromor-
phians have been characterised by only slightly lower
mean speciation rates but markedly (~5-6×) higher
mean extinction rates than dasyurids; however, it is diffi-
cult to accurately estimate extinction rates from phylog-
enies of extant taxa only [132, 133]. Strikingly, mean
speciation and extinction rates are almost identical
across all four modern dasyurid tribes.

Discussion
Phylogenetic relationships
Our morphology-only analyses are relatively poorly re-
solved, even after deletion of unstable taxa, and support
values are generally low. The morphological analyses
also show several areas of conflict with the molecular
and total evidence analyses presented here, as well as
with other recent molecular analyses e.g. [15, 20, 21].
Monophyly of Thylacinidae (excluding Mutpuracinus)
and of Dasyuridae (excluding Barinya) is recovered, but
only with moderate support, and then only in the Bayes-
ian analysis. The relationship of Myrmecobius to these
two clades was not clearly resolved with morphological
data, and relationships within Thylacinidae and Dasyuri-
dae were also poorly resolved. Furthermore, relation-
ships within Dasyuridae were relatively incongruent with
molecular data in, for example, failing to recover mono-
phyly of the currently recognised modern dasyurid
subfamilies and tribes, as is also the case in other
morphology-only analyses of Dasyuromorphia [29, 41,
46, 134].
Morphological data alone might not always be capable

of fully resolving relationships within a clade, even in
principle [135], which may explain, at least in part, the
relatively low resolution and low support values for most
clades. Areas of actual incongruence between our mor-
phological phylogenies and our molecular and total
evidence phylogenies, meanwhile, may be due to factors
such as non-independence and/or saturation of morpho-
logical characters [136–140], rather than simply homo-
plasy, and this warrants further investigation. Like other
mammalian clades, the fossil record of Dasyuromorphia
is dominated by dental specimens, with several taxa
known only from isolated teeth [22–25, 27, 141]. How-
ever, dental characters have been shown to perform
worse than the rest of the skeleton at recovering mam-
malian phylogeny, as measured by their ability to recover
clades that are strongly supported by molecular data
[142]. Ultimately, the discovery of additional well-
preserved fossil material may be required to increase
congruence between morphological and molecular esti-
mates of relationships within Dasyuridae [143].
The phylogenies that result from our combined mo-

lecular and total evidence analyses, by contrast, are
highly congruent with most recent molecular studies

[8, 13, 15, 19, 20, 126], and show high support values
for most nodes. Myrmecobius was consistently recov-
ered as the sister to Dasyuridae, with Thylacinidae
branching off earlier as also found by [15, 20, 21,
126], usually with strong support. However, analysis
of the nuclear genes alone weakly supported Myrme-
cobius + Thylacinus (Additional file 6: Text S6). Lar-
ger, “phylogenomic” datasets, or rare genomic changes
that show minimal homoplasy (such as retroposon
insertions) [87, 144–146], will probably be required to
robustly resolve the relationship between the three
modern dasyuromorphian families.
Interestingly, the molecular study of May-Collado et

al. [21] shows several conflicts with our results and those
of other recent molecular analyses of dasyurid
relationships; for example, it failed to recover monophyly
of Pseudantechinus or a Dasyuroides + Dasycercus clade.
We suspect that this is due to May-Collado et al.’s [21]
use of relatively old (pre-2000) MT-CYB sequences that
differ markedly (in several cases, >5%) from more recent
sequences from the same species (Additional file 8: Text
S8); we did not use these early, possibly anomalous se-
quences in our analyses.
Among modern taxa, monophyly of all currently

recognised genera was supported, with the exception of
Sminthopsis, which was paraphyletic with regard to
Antechinomys and Ningaui see also [15, 19–21]. The
latter two genera should therefore either be reduced to
subgeneric rank within Sminthopsis, or alternatively,
additional monophyletic genera should be created within
Sminthopsini. Given that our dated analyses suggest that
earliest divergences among species currently classified as
Sminthopsis are similar in age to those within Phascoga-
lini and Dasyurini (both of which are classified into mul-
tiple genera), the second of these options is probably
more appropriate. However, a new, thorough taxonomic
revision of sminthopsins that builds on Archer’s [147]
monograph on Sminthopsis, and which robustly resolves
species-level relationships within the tribe as a whole, is
needed; it seems likely that such a study will reveal add-
itional cryptic species-level diversity. Murexia sensu lato
(Micromurexia, Murexia, Murexechinus, Paramurexia
and Phascomurexia) is monophyletic, contra our mor-
phological analyses and those of Van Dyck [46], but in
agreement with recent molecular studies [13, 15, 20, 21].
Turning now to our fossil taxa, the Miocene taxa

Ankotarinja and Keeuna do not fall within Dasyuromor-
phia in any of the analyses in which their relationships
were left unconstrained, but instead consistently form a
clade with the early Eocene Djarthia. Our choice of taxa
and characters was aimed at determining the member-
ship of, and relationships within, Dasyuromorphia, and
Ankotarinja and Keeuna are also both highly incom-
plete; thus, this result should be viewed with caution.
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Nevertheless, Ankotarinja, Keeuna and Djarthia share a
distinctive putative synapomorphy [86] that is absent in
all our other taxa: presence of a “central cusp” between
the apex of the centrocrista and the stylar shelf of the
upper molars,. Previous research suggests that Djarthia
is a plesiomorphic australidelphian, based largely on
tarsal evidence [59]. However, Djarthia does not consist-
ently fall within Australidelphia in our analyses, probably
because our dataset was not intended to resolve marsu-
pial interordinal phylogeny. Nevertheless, while a close
relationship between these three taxa is plausible, we
prefer to classify Ankotarinja and Keeuna as Marsupialia
incertae sedis following [24, 86], rather than Australidelphia
incertae sedis. Additional, non-dental material (e.g. tarsal
specimens) will probably be required to clarify their
relationships.
Barinya wangala was originally described as the oldest

known dasyurid by Wroe [60]. Mutpuracinus archibaldi
was originally described as a thylacinid by Murray and
Megirian [45], a conclusion that was maintained by these
authors in a subsequent paper based on more complete
material (a partial skull) [29]. However, only one of our
analyses placed Barinya in Dasyuridae, and none placed
Mutpuracinus in Thylacinidae. Barinya was consistently
placed as sister to Myrmecobius in our total evidence
analyses; this arrangement is intriguing, particularly
given an otherwise total lack of a fossil record for myr-
mecobiids. However, it was only weakly supported, and
should be viewed with caution pending the discovery of
definitive fossil myrmecobiids that retain functional den-
titions (the very reduced dentition of Myrmecobius
fasciatus cannot be meaningfully compared to other
dasyuromorphians for many of the dental characters
used here). Mutpuracinus was recovered as either a
stem-dasyurid or sister to Barinya + Myrmecobius, but
this relationship was also weakly supported. Based on
these results, we suggest that Barinya and Mutpuracinus
should be considered Dasyuromorphia incertae sedis,
pending further studies and the discovery of more
complete material of both taxa.
Finally, the late Oligocene Badjcinus fell outside

Thylacinidae in some analyses, forming the sister taxon
to the rest of Dasyuromorphia; this relationship was also
found by Wroe et al. [44]. However, most of our analyses
place Badjcinus within Thylacinidae, in agreement with
the original description by Muirhead and Wroe [40], the
morphological analyses of Wroe and Musser [41] and
Murray and Megirian [29], and the molecular scaffold
analysis of Archer et al. [36]. Based on available evi-
dence, we suggest that Badjcinus should be classified as
?Thylacinidae.
The relationships of the other fossil taxa were

broadly as expected. Taxa currently identified as
thylacinids (except Mutpuracinus and Badjcinus,

discussed above) consistently formed a clade. The
Plio-Pleistocene Sminthopsis floravillensis consistently
fell within Sminthopsini as in [36], although it is un-
clear whether this fossil taxon is a member of any
particular sminthopsin subclade. Finally, the Pliocene
Dasyuroides achilpatna consistently fell as sister-
taxon of Dasycercus cristicauda, rather than Dasyur-
oides byrnei, albeit with only weak support. Archer
[22] only tentatively referred this fossil taxon to
Dasyuroides, and in his original description Marshall
[148] identified it as a “possible ancestral form of
Dasyuroides or Dasycercus (or both)”. Dasyuroides
achilpatna shares with Dasycercus cristicauda the
synapomorphic presence of only a single talonid cus-
pid on m4, whereas two cuspids are present in
Dasyuroides byrnei. Based on this, and on the results
of our analyses, this taxon should perhaps be reas-
signed to Dasycercus.
Divergence times estimated using molecular node

dating were broadly similar to the recent studies by
Mitchell et al. [20] and Westerman et al. [15] (Table 2).
Specifically, dates in the NodeCalib1 analysis (in which
all six node calibrations were specified as exponential
distributions) were closer to those of Mitchell et al. [20],
who used uniform priors with hard minima and soft
maxima (97.5%), whereas dates in the NodeCalib2
analysis (in which four of the six node calibrations were
specified as uniform distributions) were closer to those
of Westerman et al. [15], who used normal distributions
(it should be noted that normal distributions are gener-
ally unsuitable for fossil calibrations) [61].
Despite this congruence, we note here that some of

the fossil calibrations used by Mitchell et al. (2014) and
Westerman et al. [15, 149] appear inappropriate in the
light of current evidence. For example, both Mitchell et
al. [20] and Westerman et al. [15] used a minimum of
4.36 MYA for the split between modern peramelemor-
phian subfamilies Peroryctinae and Echymiperinae,
based on “cf. Peroryctes” tedfordi from the early Pliocene
Hamilton Local Fauna; however, this fossil taxon has
now been referred to a new genus, Silvicultor, and does
not form a clade with Peroryctes in published phylogen-
etic analyses [150–155]. Likewise, both studies used
“Antechinus” sp. from the Hamilton Local Fauna to date
the split between Antechinus and Phascogale as >4.36
MYA. However, the Hamilton taxon was specifically
considered by [22] to be most similar among modern
species to “Antechinus mayeri” [156, 157], which is now
classified as Phascomurexia naso, and a then-unnamed
“Antechinus” species from Mount Wilhelm in New
Guinea that Van Dyck [46] subsequently referred to
Micromurexia habbema, i.e. two species of Murexia
sensu lato. Thus, the Hamilton “Antechinus” is inappro-
priate for calibrating the Antechinus-Phascogale split;
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however, it may be appropriate for calibrating the split be-
tween Murexia and other phascogalins. Finally, Wester-
man et al. (2015) used a minimum of 65.18 MYA for the
split between Australidelphia and Didelphimorphia on the
assumption that peradectids (which are first known from
the earliest Palaeocene) are didelphimorphians, based on
Horovitz et al. [158]. However, subsequent studies have
shown that peradectids are at best only questionably
members of Marsupialia [58, 80, 159, 160], and so are not
suitable for dating the Australidelphia-Didelphimorphia
split. The oldest known taxon that can be confidently
referred to Marsupialia is the early Eocene Djarthia
murgonensis [58, 59, 80, 159, 160].
It is interesting to note that the divergence times we

estimated using total evidence tip dating were broadly
similar to the molecular node dating, even though no
nodes within Dasyuromorphia were calibrated; the only
temporal information was provided by two node calibra-
tions deeper in the tree plus the ages of the tips. Diver-
gence dates were almost identical between the
NodeCalib1, TipCalib1 and TipCalib2 analyses, with the
NodeCalib2 analysis slightly older (Table 2).
Finally, it is striking that, in contrast to the molecular

node dating, our total evidence tip-and-node dating
analyses appear to have been relatively insensitive to the
way in which node calibrations were specified, i.e.
whether as offset exponential or uniform distributions:
the TipNode1 (in which all seven node calibrations were
specified as offset exponential calibrations) and Tip-
Node2 (in which five of the seven node calibrations were
specified as uniform calibrations) analyses resulted in
almost identical median estimates for all nodes (Table 2).
The total evidence tip-and-node dating analyses gave the
youngest dates out of our analyses, presumably because
the additional temporal information provided by the tips
resulted in tighter maxima being placed on the cali-
brated nodes [78].
It is worth emphasising that the comparatively young

dates that result with tip-and-node dating are not simply
due to the fact that none of our dasyuromorphian tips
are older than the late Oligocene. Both tip dating and
tip-and-node dating assume an underlying clock model
in which the amount of change along a branch is as-
sumed to be proportional to the length of time that
branch represents [69]. Thus, the estimated divergence
times for a particular node can be pushed far back in
time relative to the tips descending from that node, if
those tips are highly apomorphic and so represent com-
paratively long branches. The relatively young dates
found here reflect the fact that our tips are not particu-
larly apomorphic relative to the morphology inferred for
their ancestral nodes. We agree with O’Reilly and Dono-
ghue [78] that tip-and-node dating “makes the best use
of palaeontological data in the construction of

evolutionary timescales”, in particular by providing a
more objective basis for defining maximum and mini-
mum bounds on nodes [78]. We therefore consider that
the divergence date estimates from our total evidence
tip-and-node dating analyses are likely to be the most
accurate such estimates for Dasyuromorphia currently
available.

Diversification dynamics of modern dasyuromorphians
The pattern of diversification dynamics within modern
dasyuromorphians indicated by our tip-and-node dating
analyses is much more congruent with the Australian
fossil record and known palaeoenvironmental changes
than other recent studies [15, 20]. Most obviously, we
find evidence of an increase in net diversification rate in
Dasyuridae starting 12.8–13.1 MYA (composite 95%
HPD: 10.8–15.9 MYA), i.e. the late middle Miocene.
This is due to the almost simultaneous diversification in
three of the four dasyurid subfamilies, namely Dasyurini,
Phascogalini and Sminthopsini (however, it should be
noted that our BAMM analyses did not identify these as
representing significant shifts in the rate of diversifica-
tion; Table 3). The fossil record indicates a major turn-
over in Australian mammals at the end of the middle
Miocene, with the apparent extinction of several families
and the first appearance in the fossil record of several
modern lineages; this turnover was likely connected with
the replacement of closed, wet forest by more open,
drier forest and woodland, in response to a fall in global
temperatures of up to 7 °C (the middle Miocene
Climatic Transition) [28, 122, 127–129, 161]. An in-
crease in diversification in Dasyuridae at this time is
congruent with such a turnover event.
By contrast, the molecular divergence dates of Wester-

man et al. [15] suggest that Dasyurini, Phascogalini and
Sminthopsini probably began to diversify during the
early Miocene (~18–19 MYA), at a time when closed,
wet forest was widespread [28]. The Westerman et al.
[15] dates are highly incongruent with the known fossil
record, which instead indicates that during the early
Miocene carnivorous-insectivorous niches in Australia
were largely filled by thylacinids, peramelemorphians,
and non-dasyuromorphian taxa such as Ankotarinja and
Keeuna [40, 42, 60, 150, 162–165]. Dasyurids appear to
have been very uncommon at this time, and no definitive
members of the modern subfamilies (i.e. Dasyurinae and
Sminthopsinae) have been described that are older than
the Pliocene [24, 27, 60]. Black et al. [28] reported puta-
tive phascogalins and dasyurins from the early Miocene
of Riversleigh, but these have yet to be described, and so
their true affinities must be treated as uncertain at this
stage.
As part of the end-middle Miocene turnover event,

there was a major reduction in the diversity of
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thylacinids, from five genera in the middle Miocene
(excluding Mutpuracinus, which we consider to be
Dasyuromorphia incertae sedis) to only two in the
late Miocene [24]. Several archaic faunivorous pera-
melemorphian lineages (e.g. species of Galadi,
Bulungu and Yarala) [166] also appear to have gone
extinct at this time. This is of significance because
several authors have proposed that dasyurids diversi-
fied to fill the carnivorous-insectivorous niches previ-
ously occupied by thylacinids and peramelemorphians
[40, 42, 60, 150, 162–165]. Ultimately, this hypothesis
will need to be tested, for example by quantitative
comparison of ecological metrics such as tooth shape
[167] and bite force [168], to see whether or not
Oligo-Miocene thylacinids and peramelemorphians
did indeed fill similar dietary niches to modern
dasyurids (Beck et al., in prep.), and by the discovery
of postcranial material to see if they show similar
locomotory adaptations. Also in need of testing is
Wroe’s [42, 43] hypothesis that the ear auditory
regions of dasyurids (which are relatively strongly
pneumatised and largely enclosed by prominent tym-
panic processes) are better adapted to more open
environments than those of thylacinids (which are less
well pneumatised, with much smaller tympanic pro-
cesses), which might explain the greater success of
dasyurids following the development of drier, more
open habitats from the middle Miocene onwards.
Improvements in the dating of Australian fossil sites

will also be required to clarify the exact timing of the
declines in diversity of thylacinids and archaic peramele-
morphians. Radiometric dates are now available for a
few Riversleigh sites [38], but many others lack dates,
and the ages of many other Oligo-Miocene sites in
Australia are poorly constrained or otherwise controver-
sial. Without precise temporal information, it is difficult
to determine whether the declines in diversity of thylaci-
nids and archaic peramelemorphians coincided with the
increase in diversification of dasyurids identified here, or
whether they preceded or followed it. Distinguishing be-
tween these possibilities might help clarify whether: 1)
thylacinid and archaic peramelemorphian diversity
declined due to abiotic factors (e.g. the appearance of
drier, more open habitats), with dasyurids diversifying
later to fill the vacant niches (passive replacement); or 2)
the diversifying dasyurids caused the decline in thylaci-
nids and archaic peramelemorphians due to direct com-
petition (active replacement); or 3) there was no link
between the declines in thylacinid and archaic peramele-
morphian diversity and the diversification of dasyurids.
An increase in diversification rate can be the result of

an increase in speciation rate, a decrease in extinction
rate, or both. Our BAMM results (Additional file 7: Text
S7) suggest that modern dasyurids have been

characterised by slightly higher speciation rates and
much lower extinction rates than modern non-dasyurid
dasyuromorphians (i.e. the lineages leading to Myrmeco-
bius and Thylacinus). However, estimating extinction
rates from phylogenies of modern species only is fraught
with difficulty [133, 169–172], and so we view these re-
sults with caution.
To fully understand the diversification dynamics of

dasyuromorphians, additional fossils from sites around
Australia e.g. [26, 32, 173], will need to be incorporated
within the broad phylogenetic context established here
and in other studies e.g. [15, 20]. However, given the
weakly supported relationships found in our morphology-
only analyses, it may be difficult to robustly resolve their
affinities, particularly those known only from dental speci-
mens (some, e.g. Maximucinus muirheadae, are known
from a single tooth). Thus, the use of methods for infer-
ring diversification dynamics that do not require a
phylogeny should also be investigated [174–176].
All of our dated analyses indicate that Planigalini (repre-

sented by the genus Planigale) began diversifying ~5–
9 Ma later than the other three tribes; our tip-and-node
dating analyses place this event (6.5 MYA; composite 95%
HPD: 4.4–8.9 MYA), i.e. the latest Miocene to earliest
Pliocene. Westerman et al.’s [15] point estimate for this
event, 12.3 MYA, is nearly twice as old as ours, and, like
their other dates, is strongly incongruent with the fossil
record; the oldest known specimen of Planigale is from
the Bluff Downs Local Fauna [22], which is between 3.6
and 5.2 Ma old [177]. Interestingly, our median estimate
for the diversification of Planigalini roughly coincides with
a major increase in the abundance of grass pollen (from 1
to 2% to ~35% of the total pollen count) in a deep sea core
taken off the coast of northwestern Australia [130]:
Figure 2, [131]. Modern planigale species are typically
found in woodland with a grassy understory, shrublands
and grasslands, particularly in association with cracking
soils [178–181]. The increase in grass pollen observed by
Martin and McMinn [130] in the latest Miocene may
mark the development of these types of habitat in
Australia, which in turn may have driven planigale diversi-
fication. The spread of grasses in Australia has been pro-
posed to be causally linked to events in the evolution of
several other Australian mammals, including the diversifi-
cation of macropodin kangaroos and wallabies [182], and
the loss of visual function in the lineage leading to modern
marsupial moles (Notoryctes spp.) [183].

Conclusion
Although most relationships recovered by our morphology-
only analyses of dasyuromorphian phylogeny are only
weakly supported, our total evidence analyses result in a
relatively well-supported phylogeny that is highly congruent
with previous studies. The temporal information provided
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by our fossil taxa also has a major impact on estimated di-
vergence times, with the strong congruence between our
two tip-and-node dating analyses (despite major differences
in the representation of node calibrations between the two
analyses) particularly striking. Tip-and-node dating has
been argued to result in divergence times that are “better
justified, more precise and accurate” than either node-
dating or tip-dating alone [78]; we concur, and we suggest
that the divergence times from our two tip-and-node dating
analyses are likely to be the most accurate such estimates
currently available for Dasyuromorphia. They indicate a
pattern of diversification among modern dasyurids that is
highly congruent with the known fossil record, and which
can be linked to palaeoenvironmental factors that have pre-
viously been considered to have had a profound effect on
mammal evolution in Australia [28]. Among marsupials,
peramelemorphians and macropodoids also exhibit consid-
erable modern and fossil diversity and both have large mo-
lecular [149, 184, 185] and morphological [152, 154, 182,
186, 187] datasets already available; as such, they are obvi-
ous candidates for this kind of analysis, which should reveal
whether they show similar patterns of diversification to
dasyuromorphians.
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