
Title Page

Title: A Cyber Kill Chain Based Taxonomy of Banking Trojans for Evolutionary

Computational Intelligence

Authors:

Dennis Kiwia
1
, Ali Dehghantanha

1
, Kim-Kwang Raymond Choo

2,*
, Jim Slaughter

1

1: Department of Computer Science, School of Computing, Science and Engineering,

University of Salford- United Kingdom

2: Department of Information Systems and Cyber Security, University of Texas at San

Antonio, San Antonio, Texas, USA

D.Kiwia@edu.salford.ac.uk, a.dehghantanha@salford.ac.uk, raymond.choo@utsa.edu,

slaughter.james@gmail.com

* Corresponding Author

A Cyber Kill Chain Based Taxonomy of Banking Trojans for

Evolutionary Computational Intelligence

Dennis Kiwia
1
, Ali Dehghantanha

1
, Kim-Kwang Raymond Choo

2
, Jim Slaughter

1

1: Department of Computer Science, School of Computing, Science and Engineering, University of Salford, United Kingdom

2: Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249, USA

D.Kiwia@edu.salford.ac.uk, a.dehghantanha@salford.ac.uk, raymond.choo@utsa.edu, slaughter.james@gmail.com,

Abstract.

Malware such as banking Trojans are popular with financially-motivated cybercriminals. Detection of banking

Trojans remains a challenging task, due to the constant evolution of techniques used to obfuscate and

circumvent existing detection and security solutions. Having a malware taxonomy can facilitate the design of

mitigation strategies such as those based on evolutionary computational intelligence. Specifically, in this paper,

we propose a cyber kill chain based taxonomy of banking Trojans features. This threat intelligence based

taxonomy provides a stage-by-stage operational understanding of a cyber attack, can be highly beneficial to

security practitioners and the design of evolutionary computational intelligence Trojans detection and mitigation

strategy. We evaluate the proposed taxonomy using a real-world dataset of 127 banking Trojans collected from

December 2014 to January 2016 by a major UK-based financial organisation.

Keywords: Cyber Kill Chain; Banking Trojans; Banking Trojans Taxonomy; Evolutionary Computational

Intelligence-based Trojans Detection

I. Introduction

In our current Internet-connected society, e-commerce and e-government (e.g. e-banking and e-payment

systems) are becoming the norm in developing and developed nations. Such systems and services can and have

been targeted by cyber criminals [1],[2], [3], [4],[5], and malware is a popular or common tool used by cyber

criminals [6]–[8]. For example, a cyber attack in South Korea reportedly saw 32,000 computers belonging to

broadcasting organizations and banks infected with a malware that overwrote the Master Boot Record (MBR)

[7]. Also, in 2013, the Crypto-Locker ransomware reportedly infected more than three million machines,

causing more than 6 million USD worth of damages [9]. Malware can be broadly categorized into adware and

spyware, virus, worm and Trojans [10], [11],[12], [13] [15]. The focus of this paper is Trojans, and more

specifically banking Trojans, due to their capability to facilitate the hijacking or acquiring of online banking

credentials and other sensitive information (e.g. credit card details), which are then sent through a backdoor to a

Command and Control (C&C) infrastructure [16], [17].

While malware detection and mitigation research is not new, effectively detecting and mitigate malware remains

challenging due to the constant evolution of malware and malware authors [18]. Cyber Kill Chain (CKC) is one

of the most widely used operational threat intelligence models to explain intrusion campaigns activities [19],

[20]. CKC is based on the kill chain tactic of the US military’s F2T2EA (find, fix, track, target, engage and

assess) [21], and contains seven stages/steps as shown on Figure II.1 [19]–[24].

3

Figure I.1 Lockheed Martin CKC steps

Reconnaissance includes the identification, selection and profiling of potential targets. In Weaponisation, a

cyber weapon is built by, say combining a Remote Access Trojan (RAT) with an exploit code (exploit kits), and

efforts are made to minimize the risk of detection and investigation by the victim. In Delivery, the cyber weapon

is transmitted to the victim(s) environment. Exploitation is the triggering / activating of the malicious payload in

the target environment. During Installation, the cyber weapon allows the adversary to preserve its access and

deliver more payloads to the victim environment. In Command and Control (C2), the adversary establishes

communication with the compromised host(s). Finally, in actions on objectives, an adversary takes planned

activities on target(s) (i.e. exfiltration of data) to achieve the intended goals.

Taxonomies are important tools to organise the knowledge and understanding of existing problems and solution

space [25]. For example, Weaver et al., proposed a taxonomy of computer worms based on the worm target

discovery and selection strategies, carrier mechanisms, activation, and payloads [26]. Jacob et al., proposed a

taxonomy for malware behaviours and divided malicious programs based on their behaviour into two main

families namely simulation-based and formal detectors [27]. Lindorfer et al., suggested a taxonomy for malware

evasive behaviours based on detecting environmental variables [28]. Ugarte-Pedrero et al., suggested a

taxonomy for malware packers based on their runtime complexity measurement and code obfuscation method

[29]. Karim et al., proposed a taxonomy for mobile botnets [30]. With emergence of mobile malwares, a

taxonomy for mobile malware behavioural detection was proposed [31] followed by an android malware attack

vectors taxonomy based on attackers modus-operandi [32]. Khattak et al., proposed taxonomies of botnet

features and botnet detection and prevention techniques [25]. Dagon et al., developed a taxonomy of botnets

structure depicting botnets key metrics and response strategies [33]. Gupta et al., proposed a taxonomy of

various types of phishing attacks and defence solutions [34]. Rodríguez et al., proposed a taxonomy of POS

(Point of Sale) RAM scraping malwares behaviour [35].

In this paper, we propose a CKC-based taxonomy for banking Trojan features which can be used to inform

detection and mitigation strategies, such as those based on evolutionary computational intelligence. The

taxonomy is then evaluated using 127 banking Trojan samples collected from December 2014 to January 2016

from a real-world banking environment in the UK (see Appendix I). To the best of our knowledge, this is the

first Trojan taxonomy based on CKC.

We will explain our proposed Banking Trojans features taxonomy in the next section.

II. Proposed Banking Trojans Features Taxonomy

As Trojans are not used for target selection or profiling, the CKC Reconnaissance phase is not applicable to our taxonomy. However, Trojans have features relevant to

Weaponization, Delivery, Exploitation, Installation, C2 and Actions on Objectives as discussed in this section. Based on the 127 Trojan samples collected from a real-world

banking environment in the UK (see Appendix I), we present the proposed banking Trojans features taxonomy in Figure III.1. Appendix II presents the mapping between the

collected Trojans’ features and our suggested Trojan features taxonomy.

Figure II.1. Taxonomy of Banking Trojans Features based on cyber kill chain.

Weaponization

Weaponization is an essential step to increase success of an attack by reducing opportunities for attack detection

and limiting forensics investigators abilities to analyse detected threats[36]. Banking Trojans are employing

variety of techniques to disguise detection on host-level and network-level and defeat cyber investigators.

Host-based Evasion

Host-based cyber defence is mainly relied on Anti-Virus (AV) and end-point security solutions installed on

the host machines, which scans for known virus signatures or detect and limit malicious behaviours [37],

[38]. Banking Trojans are using different techniques to install themselves on a host while remain undetected

as follow.

Embedding Malicious Code Within Benign Applications: Embedding a malicious code within a benign

payload (application) using techniques such as process hollowing [39]–[42] would allow a malicious

program to run within a known good process space and evade AVs detection even if the malware

signature exists in the AV database [43], [44]. Adversaries that embed their executables within benign

applications will infect the host next time that the benign app is called [38], [44], [45]. Client application

data files such as Adobe Portable Document Format (PDF) or Microsoft Office documents are often used

in this stage [21]. Out of 127 banking Trojans analysed in this research (shown in Appendix I), 96%

utilised Microsoft Office and 4% utilised PDF.

Heap Spraying; in this technique, malicious (shell) codes are divided into several pieces that are loaded

in different locations on the heap memory so there is no single chunk of data mapped to any AV’s

signatures [45]. This technique not only reduces the chance of attack detection but increases the

possibility of successful attack as adversary does not need to know the exact shell-code address in the

heap but piece together shellcode elements using pre-defined gadgets[46]. As an example, Trojan 29 (see

Appendix I - MD5 hash of ab40142988527fe6ce585a9fdfce56ca) has leveraged this technique to avoid

detection.

Network-based Evasion

Firewalls and Intrusion Detection/Prevention Systems (IDS/IPS) are the most common forms of network

protection mechanisms. Similar to any other protection mechanism, the network perimeter defence solutions

are having their own limitations i.e. a malicious document attached to an email is likely to bypass IDS while

an executable would be subject to heavy scrutiny [43], [47]. Banking Trojans are using different techniques

to avoid network-based detection as follow:

Utilisation of Common Protocols and Ports; in this technique, the Trojan only utilises very common

protocols and ports to conduct its malicious intents. Most Trojans are using protocols like HTTPS, DNS,

and HTTP on ports such as 443, 53 and 80. This technique reduces the chance of port being restricted on

the network perimeter and the communication being detected as malicious [25]. With the use of common

ports, Trojans can communicate with their C2s, download payloads, and upload exfiltrated data.

Network Spoofing; Spoofing is the art of deceiving someone by impersonating origin of a malicious

content as if it is coming from a known good and reliable source. Symantec reported 74% of spam

campaigns used real companies domain in the sender’s address [48], [49]. Most banking Trojans

obfuscate their origin to well-known companies’ domains which are local to their victims (i.e. using

British Telecom (BT), and Royal Mail for targets within UK) to to avoid being blacklisted on network

perimeters, detected and/or identified by any other means including by the end users themselves [50]–

[57].

Anti-Forensics Techniques

Attackers not only evade detection mechanisms but try to make it difficult for forensics examiners to

understand their techniques, tactics and procedures[58]. Tools that are used by legitimate programmers to

protect their programs from tampering or deter reverse engineers can be used to pack and obfuscate

malwares to throw investigators off track [44], [59], [60]. Obfuscation is deliberate act of disguising codes to

make investigation more difficult. Similar to other malwares Banking Trojans are employing different

obfuscation techniques as follow [60], [61]:

Dead-Code Insertion; this technique involves adding ineffective instructions to a programme to change

its appearance but maintain its behaviour [59]–[61]. It could be as simple as adding “NOP” instructions

in the malware code or putting hundreds of code lines which are never executed or serve no purpose [46],

[59]. This technique is quite often used and 76 of Trojans analysed have indicated utilisation of this

technique (see Appendix II). While this technique could be circumvented by removing ineffective

instructions prior to analysis, detecting those instructions is quite time consuming[61]–[66].

Utilising Packers; in this technique the malware encrypts its main body and only include a decrypting

module which decode encrypted instructions at run time [59], [60]. This technique creates difficulties in

static code analysis and code reversing [26] as investigator should either extract instruction from memory

dumps or write/find a decryption tool [44], [60], [67]. Moreover, parkers change malwares signature

hence, makes the Trojan invisible to signature-based detection technologies [19], [29], [31], [37].

Delivery

Once adversaries have completed Weaponization stage they should find a way to deliver their malicious payload

to intended targets [25], [68]–[70]. The most common methods of malicious payload delivery by banking

Trojans are email attachments, social engineering and drive by download [19]–[21], [71].

Email attachments

Email communication is heavily utilised in most organisations and often associated with an office document

or PDF attachment. These attachments may contain malicious codes in the form of macros (Microsoft Office

documents) or Java Scripts (PDF files) [47], [72]. Once a user enables macros in an office document it may

download a payload that contain a Trojan. Similarly if a PDF is viewed by a privileged user, a JavaScript can

be automatically launched to run a malicious shellcode [73], [74]. Since anti-virus software often fail to

detect these hidden malware and there is a good chance for users to run the file this mechanism becomes

highly effective for delivering Trojans [43], [47], [72].

Social Engineering

Attackers that uses banking Trojans like Dridex, Zeus and Spyeye widely explored social engineering to

prey on user’s weaknesses, hoping the recipient will press a link to open a malicious web page or an

attachment with embedded malicious code [43], [47], [72]. According to Symantec report [75] on Dridex

campaign attackers have sent 271,019 disguised as financial emails e.g. invoice, orders and receipts between

Nov 2015 to Jan 2016 to deliver their Trojan. This is a form of social engineering to lure a victim to open

the attachment thinking it’s something of importance but the attachment contains a malware that is activated

through macros or Javascript embedded on the document[76]–[78].

In our dataset, we found 122 Trojans that are delivered using office documents and 5 delivered using PDF

files (see Appendix II).

Drive-by Download

This mechanism utilises active contents such as a JavaScript or ActiveX [25] to make the users knowingly

(by authorizing to run the active content) or unknowingly download attackers malicious contents while

browsing a compromised or specially crafted web page [25], [71]. Adversaries may include the malicious

code in a seamless object like an advert or a widget and eventually lure a victim to download a Trojan

without intending to do so [71].

7

Exploitation

After delivery of the malware, intruders’ code should be triggered on the target machine by running the

malicious application or exploiting a system vulnerability [19]–[21]. A successful exploitation may lead to

exfiltration of private information, injection of code into web applications, log keystrokes, steal passwords, steal

cookies or download other modules that may perform intended malicious activities. Banking Trojans are

utilising a variety of techniques for exploitation which can be categorised into Web injection, key stroke logging

and API hooking.

Webinject

Trojans are equipped with a functionality called web-inject [17], that can silently modify a webpage on the

infected victim’s machine to intercept private credentials such as username, password and even 2
nd

 factor

authentication credentials [16], [17]. Two main features are mostly utilised for web injection by banking

Trojans as follow:

Form Grabber: this is one of the famous techniques deployed for example by SpyEye Trojan, to

manipulate and inject arbitrary contents into data transmitted between an HTTP(s) server and a client

browser [16], [17]. The module is placed between the browser rendering engine and the HTTP(S) API

function, so that the Trojan has access to decrypted data even if an encryption is utilised (e.g. SSL). In

this mechanism, the Trojan presents the victim browser with a web page which is almost identical to the

requested online banking site, while web form fields contents such as username and password are

intercepted by the Trojan.

Userland Rootkits; In this technique the Trojan uses communication API hooking to inject its malicious

code during initialization of victim’s web browser and intercepts and manipulates web traffic [16]. Zeus

v.2 is a well-known Trojan leveraging this technique by manipulating WININET.DLL library in loading

of Internet Explorer by hooking high-level API communication functions such as HttpQueryInfoA,

HttpSendRequestA, InternetReadFile, InternetReadFileExA, etc., in user-mode. Therefore, the Trojan

can conveniently intercept data before it gets encrypted in sessions secured by HTTPS[16].

Keystroke Logging

In Keystroke logging an adversary covertly records user's keystroke as they are being typed either through a

software program or a hardware device or even by monitoring electromagnetic emissions. Deployed through

variety of methods, malware programmers often leverage software key loggers as a payload or a client-side

exploit [79], [80]. Software based keystroke logging can be implemented in kernel, hypervisor or in

memory.

Kernel-based Keystroke Logging; this technique requires privileged access to the victim machine since

the malware should run as root or system administrator. This type of keystroke logging is facilitated by

kernel-mode rootkits, where by the rootkits modify the kernel code (for example system calls) or kernel

data to change the kernel behaviour in order to enforce stealthy capabilities to hide malicious activities

i.e. kernel level keystroke logging [81]. Keystroke logging done at this level are immune to techniques

that reveal user-mode activities [81]–[83].

Hypervisor-based Keystroke Logging; This type of Trojans resides on hypervisor level which is “Ring -

1” [81] lower than kernel (i.e. “Ring 0”). Therefore, these Trojans are much more stealthier giving more

control to attackers. Virtual Machine Based Rootkits (VMBR) install a virtual machine monitor (VMM)

underneath the existing operating system that facilitates hypervisor keylogging by Trojans.

Target
Application

Target
Application

Target Operating System

Host Hardware

Target
Application

Target operating system

Host Operating System

Host Hardware

Virtual Machine Monitor (VMM)

Target
Application

Malicious
Service

Malicious
Service

Before Infection

After Infection

Figure II.2. System structure of machine before and after infection of VMBR.

Once a machine is infected the malware can modify the VMM's emulated network card and log all

network packets or use virtual-machine introspection to trap instructions and reconstruct data from the

target system whilst being invisible to the target OS[82]. Since virtual-machine introspection can trap all

SSL socket write calls, clear text data can be logged before being encrypted [82].

In-Memory Injection; this keylogging mechanism can be achieved by patching memory tables or

injecting directly into a process memory. Direct Memory Access (DMA) technique is usually used for

injecting a key logger into a process [84], [85]. As memory injection happens at user level, attacker only

requires similar privilege as injecting process for successful deployment of a keystroke into the process

memory [80].

API Hooking

API hooking is a technique by which the behaviour and flow of applications can be influenced and modified

through inserting memory break point and JMP (jump) instructions. API functions manipulations on system

libraries such as Kernel32.dll, advapi32.dll and ntdll.dll can provide a privileged access to attackers [16].

Inline hooks, and Import Address Table (IAT) hooks are the main API hooking techniques implemented by

different banking Trojans.

Inline Hooking: this is a common Windows API hooking technique that replaces the byte code of an

API function with a code redirection instruction to a code section controlled by the Trojan [16]. The

allocation of 5 bytes of NOPs (No-OPeration) at the beginning of every Windows system function for hot

patching provides needed space for Trojan to implement an unconditional jump [16].

Import Address Table (IAT) Hooks: whenever a Windows loader loads a PE (Portable Executable) file

an IAT is filled with the virtual address of all functions or variables that are called or imported by the

executable (DLL) [16], [86]. An IAT hook, overwrites the original destination of an imported API

function and points it to the attacker code. Therefore, executing the application would load and run

attacker codes as well.

Installation

In this stage the adversaries try to extend their access to more systems and compromise more nodes. Trojan

developers often use tactics that are not easily detectable like DLL side loading and Heap Spray for a successful

installation [19], [21].

DLL Side-Loading

9

Windows allows applications to load DLLs by either specifying full path of the DLLs or using DLL

redirection, or utilising a manifest [87]. If none of these locate the DLL, then Windows will perform a search

through predefined directories like WinSxS [87]–[89]. Attackers abuse this feature by putting their malicious

DLLs in higher priority locations than original location of benign DLLs, hence the application would load

the malicious DLLs instead [87]. With the use of Windows’ Side-by-Side (WinSxS or SxS) a Trojan can

load any malicious DLL from i.e. %WINDIR%\WinSxS (e.g.

C:\Windows\WinSxS\x86_microsoft.windows.common-

controls_6595b64144ccf1df_6.0.9600.16384_none_a9f4965301334e09) [87].

Heap Spray

This technique increases the chance of successful attack because attackers do not need to know the exact

location of their malicious code in heap [46]. The heap spraying attack insert as many malicious code blocks

as possible into the heap [46]. Therefore, even if a benign application hits malware codes resided in the heap,

the shellcode will be executed and the malware will be running.

Command and Control (C2)

This is a mechanism by which a malware registers to its Command and Control (C&C) server [19]–[21], [25],

[69]. Malware are registering on a C&C domain to receive commands or upload exfilterated data. A Trojan may

find its C&C server through hard coded IP addresses or through domain lookup.

Hard Coded IP Address

This mechanism provides the C&C address by means of static IP address coded in the malware binary or by

means of seeding [25]. In seeding the programmer provides the Trojan with an initial list of active peers in

the botnet which are hidden anywhere on the infected machine with an elusive name to make it difficult to

be detected. This mechanism is considered primitive since reverse engineering of the Trojan can easily lead

to retrieval of the IP addresses or may even lead to detecting the actual Botmaster.

Domain Lookup

The use of domain name system (DNS) is also very common among banking Trojans [90]. Unlike IP

addresses, domain lookup provides stealthier tactical advantage to the malware developers due to its more

complex nature. This mechanism has several advantages from the attacker’s perspective such as:

 Any IP address can be linked to the domain name by the attacker, hence defeating IP blocking

defence solutions.

 Completely blocking all the IPs linked to a domain name can be almost impossible as the attacker

may reroute the traffic through several bots (stepping stones) before reaching the true Botmaster.

 Taking down a domain is complicated as it requires a lot of formalities.

Attackers have several options to include a domain name in their Trojans as follow:

Hardcoded; Pre-defined domain names are hard-coded in the strings of the binary like in the case of IP

address [25]. Attackers may have obtained different domain names that the victim is often visiting and

try to host their Trojans on those or similar domains.

Cache Poisoning; attackers can magnify their malicious response using either web cache or even

browser cache of a single user. If the response of websites is cached, attackers can manipulate the cached

responses and redirect the victim to a different location (DNS cache poisoning attack) [19], [91]. This

mechanism may produce different domain names each time the malware restarts and creates more

polymorphic behaviour hence a stealthier malware.

Generated Domain Names; The domain name can be dynamically generated by an algorithm (Domain

Generation Algorithm) that is known to the attacker and the malware[25], [70]. Unlike cache poisoning

this mechanism produces random domain name depending on the algorithm which also creates more

polymorphic behaviour of the malware and makes it even stealthier [68], [70]. The difference between

this technique and the cache poisoning attack is that in the cache poisoning the malware makes use of the

domain cached in victim DNS while in this mechanism the malware produces a random domain name

[19].

Out of 127 analysed Trojans 22 had IP addresses hardcoded while 13 utilised DNS only while the rest were

using a combination of both IP and DNS for C2 (see Appendix II).

Actions on Objectives

After an attack has completed all other steps in the kill chain what is left is to accomplish its objectives which

could be data exfiltration and/or system disruption [19]–[21]. Banking Trojans are mainly exfilterating data

through a backdoor, FTP (File Transfer Protocol) or even Web and mobile apps.

Backdoors

Attackers often install a secret exit that allows them to send, receive or control victim machines remotely

which is known as backdoor [34], [37]. Backdoor can be described as a feature or defect of a computer

system that allows surreptitious unauthorized access to data [3], [92].

HTTP-based backdoors are very common in banking Trojans, due to their easiness in bypassing connection

restrictions and detection. Moreover, the POST and GET commands are of the utmost interest when it comes

to data exfiltration, both by receiving and sending data [35], [23]. 112 out of 127 Trojan samples in our

dataset make use of backdoors for C&C communication via GET/POST HTTP requests (see Appendix II).

Other than file upload, backdoors provide other means or advantages to attackers like remote login or even

in-depth reconnaissance without users’ knowledge[9], [19], [32].

Web Application

Trojans use MITB (Man-In-the-Browser) or MITM (Man-In-The-Middle) techniques to extract data [16],

[93]–[95]. In MITB a Trojan redirects the victim to a phishing website that is controlled by the adversaries to

harvest credentials such as username, password etc. [93], [94]. In MITM the adversary goes further by

intercepting communications from victims and responses from server and establishing an interactive process

for collecting users data [95], [96].

III. Proposed Banking Trojans Defence Taxonomy

In developing a banking Trojans defence taxonomy, we consider three dimensions, namely: detection, prevention and remedial actions [97]. The first level of our taxonomy

comprises different types of defences, and the second level is constructed based on how a specific defence type can be applied. Detection techniques can run at the host or at

the network [98], while prevention techniques are classified as host-based, network-based and user training. Finally, remedial actions are divided into defensive and offensive

activities; each linked to different techniques [25].

Figure III.1. Banking Trojan Defence Taxonomy.

Detection

Detection techniques provide opportunities to identify a malicious attack in its early stages i.e. during

reconnaissance, weaponisation or delivery [19], [21]. Detection can be conducted on host or network level.

Host Based Detection

The most common host based detection tools are AntiVirus (AV) software which utilise two detection

methods namely signatures-based or behavioural-based [2], [37], [44].

Signature-Based; Signature can be list of domains which are known to be malicious or hashes of the

known malware [37]. These signatures are stored in a large repository for the sake of comparison for

malware detection [37], [78], [99].

Hashes; hashes can either be MD5 or SHA, this mechanism is mostly preferable due to it consistence

and accuracy [37]. AV vendors usually utilise a generic signature which is hash of the code segment

to detect malware samples belong to the same family [37], [38].

Email Signatures; Trojans can spoof sender’s address to reflect well known organisations such as

banks, power companies and post office. A signature based on these known malicious trends can be

created along with a blocking rule on an IDS to prevent users from receiving such emails [100],

[101]. Although this strategy can be easily bypassed by adversaries, it is still effective in the absence

of adversaries’ knowledge of being shunned.

Behavioural Based; this type of detection aims to identify actions performed by malwares and trends of

events rather than syntactic markers to identify an attack [27], [78], [102]. Behavioural/heuristic

technique of detection can be either static or automated, although automated techniques are more

practical than static ones [103]. While we appreciate the applicability of signature based detection in real

life application, heuristic becomes more prominent as they can provide deep and effective analysis to

determine if a file is malicious or not [103]–[105]. The reason this technique is most effective is because

the behaviour of each trojan can be emulated in a sandbox and analysed. Of course, the associated

disadvantages include false positives and consumption of resources.

Network Based Detection

Network based detection techniques can be can be categorised into active or passive [2], [69].

Active Detection; this technique involves interaction with information resources. Once a malware is

detected a comparison is made with a set of previously generated malicious signatures [106]. The main

active detection techniques are signature-based or network behaviour and timing based.

Signature-Based: IDS like SNORT uses sets of signatures to determine if an event is malicious or

not [69]. The comparison could be based on simple features such as header of an email address, the

sender’s domain name or more complicated such as comparing an email with the blacklisted domains

or known malicious activities. Of course this technique is vulnerable to zero-day attacks [107] as

signatures will not be available in the database.

Network Behaviour & Timing; in this technique, the comparison is based on features such as if the

connection is coming from a known malicious IP address, known vulnerable ports, or even analysis

of dishonest requests. Moreover, timing of sent requests can be used as a feature to determine if they

are robot made or human made i.e. multiple request in very short period of time usually signifies a

bot origin [108], [109].

Passive Detection; in this technique, we achieve detection through monitoring activities initiated by

applications to distinguish between malicious Trojans and benign apps. In passive detection, the defender

remain undetected and gather as much information as possible without spooking the adversary[106].

13

Following techniques can be used to hat detect malicious activities in C&C and Data exfiltration stage of

an attack: ,

Packet Inspection; when a Trojan is in rallying or exfiltration phase many indications of

maliciousness can be observed by finding connections to a known blacklisted domains or IP

addresses [110]. We can also observe payloads of individual packets from contents of GET or POST

requests to deduce what the Trojan is sending or receiving [23].

Analysis of Flow Records; this technique considers the flow of the entire traffic instead of individual

packets. In this technique several attributes of communication streams are looked at such as source

and destination addresses, port numbers, communication protocol, the duration of a session, and the

cumulative size and number of transmitted packets[110]. With such attributes a detection matrix can

be constructed to detect malicious activities not only in rallying and data exfiltration stage of the

banking Trojans but also in the delivery stage.

Analysis Of Spam Records; As Trojans are mostly delivered though unsolicited emails (referred to as

spam) [110], analysis of these emails can lead to establishment of a pattern or a detection matrix .

Filters can be set to scan for specific fingerprints from subject headers, message bodies, white and

even black lists email addresses [100], [101].

Analysis of Application Log Files; analysis of logs is not so different than spam emails, except that

logs come from different sources i.e. firewalls, applications, servers etc.! The biggest challenge is

analysing logs on a timely manner to detect malicious or just abusive behaviour of an application or

users of the systems generating the logs [111], [112]. When a trojan runs on a machine one can

discover from a log file what files the Trojan has created, deleted, or DLLs that are injected etc.

Preventive

After a successful detection and information gathering of any attack, what follows next is putting in place

safeguards to prevent future attacks. Preventive techniques can be categorized into host-based, network-based

and user training.

Host Based

When considering prevention at the level of host machine, anti-malware, anti-spyware and other tools are the

most commonly used [37]. With good enough detection signatures this technique is very useful though not

all Trojans can be detected and prevented easily due to the variant created by adversaries. Recent Symantec

security product [75] has highlighted its capability in detecting and preventing attacks from Dridex malware.

The product has highlighted the capability of scanning attachments of the incoming emails on host level and

preventing users from opening malicious attachments.

Network Based

When casting a wider net for prevention on your network, things tends to get complex but in a long run it’s

much easier managing attacks from their point of entry to your network rather than managing attacks on

individual host machines. Some organisations have achieved this through implementation of SMTP and

HTTP/SSL proxies [38], whereby all traffic from the internet towards organisations’ internal network must

pass these gateways which provides extra layer of security. Moreover, these gateways can be configured

with email filtering rules i.e. any incoming email will be assessed in correlation with the rules set and the

system will decide if an email should be allowed into the network or not. Some organisations have done this

by deploying network Intrusion Prevention Systems (IPS). While one may argue the importance of having

IPS while firewall already exist, the truth is firewalls themselves have limitations. Firewalls can block

traffics basing on IP blocks and ports while an IPS monitors all traffic entering and exiting the network

[113]. With organisations hosting webserver applications like Apache and Microsoft IIS, relying on firewall

alone is ill-advised hence, having an IPS on your layered defensive security provides assurance while

maintain functionality. The advantage of using an IPS as opposed to IDS is the ability of IPS to stop or

redirect attacks pre-emptively [113]. With this feature an IPS is capable of redirecting attacks to the

honeypot machine luring the attackers to believe success while giving the analyst ample time to analyse the

attack and understand it in depth.

User Training

With ISO 27001 standard in play as a minimum requirement the provision of awareness training to all

employees is mandatory. If users understand that most of the current Trojan attacks are based on spam

campaign and receive appropriate training and act accordingly many Trojan attacks were never happened

[114]. Furthermore, understanding that a Microsoft document or attachment may contain embedded malware

will also give users a perspective on how to treat received attachments from a known or unknown sender.

 Remedial

As part of defence strategies, a consideration of safeguard failure should always be accounted. In the event

safeguards against Trojan attack were not successful, we need sets of remedial actions that enable us to revert

the system to a point of proper functionality. Remedial activities can be divided into defensive and offensive. By

defensive we are looking at the actions to be taken after infection to bring your system back to normal, prevent

spreading of the infection and repetition of the infection. On offensive side, we are looking at the actions that

allow us to gather more intelligence about an attack, get an insight of the attacker and possibly trace the attack

to its origin with the sole purpose of dismantling the Trojan infrastructure.

Defensive Strategies

Once an infection has been identified, we need strategies to bring the system back to its normal

functionalities. Even these steps have merits and demerits but with a good plan we can recover from an

attack as quickly as possible. We further classify defensive strategies into those dealing with an individual

host machine and those concerned with the entire network.

Host-based: on the host machine, several steps can be taken to remediate from a Trojan infection among

which disinfection or reinstallation can be considered.

Disinfection; this simply means removing the Trojan from the infected machine. We know the

ultimate non-functionality of Trojan is receiving a STOP or KILL command from its controller. If by

technical means an investigator can figure out the Trojan self-destruction mechanism, it can be

triggered to remove the infection [110]. However, there are off-shelf programs such as Trojan

removal kits that can be used although their ultimate effectiveness is hard to guarantee.

Reinstallation; A complete reinstallation of an infected machine should be considered as the last

option if disinfection is not viable as it takes longer time and involves much more activities. If a disk

image of a clean installation is available, the process can be well shortened, otherwise a clean

installation from preferred OS disk should be considered.

Network-based: when the infection has spread to more than just one machine then the strategy should

also span out accordingly. There are two main techniques for network based remedy of Trojans as

follows:

Quarantine (Walled-garden): isolating machines with symptoms of malware infection either by

seeing their connections to a known C&C or malicious downloads and uploads [25], [110] is referred

as walled-garden. Isolated machines are denied access to any other website except for the ones for

remedial activates until the machine(s) is/are properly cleaned and pass security policies checks.

Block C&C: Trojans are receiving instructions from a controller (C&C server) and send collected

information to C&C. Once a C&C server IP address is identified we need to block communication to

the address to prevent Trojans from receiving instructions or sending information to the controller.

The other way to deal with this is by only allowing traffic to known addresses and block all other

communications to unknown addresses in the network.

15

Offensive strategies

The idea here is intelligent gathering while protecting live environment, and ultimately paralysing the Trojan

botnet. With offensive strategies skiing on the edge of the line of legality and ethics, one needs to be very

careful as attacking back is not only unethical but illegal too.

Honeypot Or Padded Cell Systems: Honeypots are legal traps, intentionally deployed in a network to

detect or deflect unauthorised access to a system [2], [110], [115]. Honeypots contains no business data

so any access to the honeypot is malicious. Honeypots are used to research and study attacks and

discover new information about the strategies and practices used by malware creators. With honeypots

two kinds of information can be gathered. First is type of attack vectors in operating systems and

software used along with the actual exploit code and second are attackers activities performed on an

exploited machine [110].

Padded cells and honeypot use similar concept, but the distinct difference between the two systems is

that, padded cells are highly protected and cannot be easily compromised as compared to honeypots

[116]. In other words, padded cell is a hardened honeypot and operates in tandem with traditional IDS.

With such systems in place, Trojan understanding becomes clearer to an organisation security team and

better defence mechanisms are constructed with high percentage of certainty about future trends.

Distribution of Fake Credentials; The main goal of a banking Trojans is online banking credentials, or

credit and debit card details [110]. By identifying where stolen information is being submitted by a

Trojan (also known as drop zone), crafted false and target-oriented information can be injected into these

drop zones [25], [110], [117]. Therefore, mistrust between botmaster and their customer will be created

and possibly run some players out of business and the entire malicious infrastructure may become

useless. By associating the credentials with a monitored account, banks can trace the money and find

where it is being transferred to and perhaps apprehend a botmaster [110].

Spam Trap; Most Trojans are being distributed by spam campaigns [110]. Spam trap can be used to

capture as much of the spam emails for further analysis. Spam trap is considered as the email address

with no functionality other than receiving unsolicited emails [118], [119]. The simplest setup of this trap

is by advertising an email into many newsletters and forum to make it known so attackers will send their

spam to that address. The evaluation of spam message along with its attachment and included links can

assist security analysts to deduce information about malware families and even lead to detection of

unknown families.

Most of the defence techniques like IDS and/or IPS are used both for detection and prevention but we should

understand their limitations too. Defence techniques highly depend on correct and up to date information.

For instance, detecting an embedded Trojan in an office document by an IDS system can be difficult but if

the IDS system is properly configured on both network perimeter and host the chance of detection increases.

Likewise, detection of signatures highly depends on the software in use, but with the consideration of up to

date signatures and continuous maintenance/update of the software, organisation may not face difficulties in

detecting attacks.

IV. Concluding Remarks

While evolutionary computational intelligence approaches are a viable approach to designing intelligent and

effective malware detection and mitigation solutions, having a features taxonomy can help inform the design of

such approaches by reducing the impreciseness, subjectivity, and knowledge uncertainty in decision making

process.

In this paper, we presented the first Cyber Kill Chain (CKC)-based taxonomy which details banking Trojans,

based on real-world samples. Cyber defenders can then use the taxonomy to design their banking Trojans

detection and mitigation strategy, including those based on evolutionary computational intelligence approaches.

In the future, we plan to extend this taxonomy to cover other malware families as well as implementing the

defence taxonomy using evolutionary computational intelligence (i.e. proof-of-concept) for deployment and

evaluation.

Acknowledgment

The views and opinions expressed in this article are those of authors alone and not the organizations with whom

authors are or have been associated or supported. We thank VirusTotal for graciously providing us with a

private API key to access their data to prepare our dataset. This work is partially supported by the European

Council International Incoming Fellowship (FP7-PEOPLE-2013-IIF) grant.

Appendix I

Allocated

Name MD5 Hash

Allocated

Name MD5 Hash

Allocated

Name MD5 Hash

Trojan1 cd238c1dab76a4336db727cdcbdcfc13 Trojan44 cacb79e05cf54490a7067aa1544083fa Trojan87 f5aee45ce06f6d9f9210ae28545a14c6

Trojan2 c8247ee42c27364c3c33def68102241e Trojan45 265f3b610aed3745ba19fd795a748e57 Trojan88 b8d83b04a06b6853ad3e79a977dd17af

Trojan3 2feb35e572e0339735804c42184f422b Trojan46 59b8bdd04ca78f3ac74f0d2bd414a9cf Trojan89 6e5654da58c03df6808466f0197207ed

Trojan4 eadafc9b1891c74bc13e09c46c4a40c9 Trojan47 c9678ee6a19547fb213126fba9f6036d Trojan90 1fac282d89e9af6fd548db2c71124c38

Trojan5 c96abe929eb587cb2913b638df368b3b Trojan48 eca90bf0af7db8ac5ec7993761f97f49 Trojan91 5bddf5271b1472eca61a6a2d66280020

Trojan6 01078f660f979b30e4624e57cf986b6c Trojan49 514622A1797D9916637EED7833CFD5AF Trojan92 eb7df68bd7eb7cf2968cf541af3472d6

Trojan7 104528e67f01168e12cdac550fc43260 Trojan50 fc4a4449246bbec022339618665a1976 Trojan93 50e3407557500fcd0d81bb6e3b026404

Trojan8 000b2347b8fe2cc625861d7ed3ec834f Trojan51 f3b124852d90b5b32d03131e77b3ac2c Trojan94 c6cefd2923164aa14a3bbaf0dfbea669

Trojan9 dc92858693f62add2eb4696abce11d62 Trojan52 fbca3b9e23ef33b25e74be7511dcecc1 Trojan95 b227c91fbc1ba56e9f01ab4f1e2e502f

Trojan10 96f3aa2402daf9093ef0b47943361231 Trojan53 585381110056b63957a22e6aef59a31e Trojan96 2845499946fd5882f94cc9a4375b364a

Trojan11 e4cc002a95caaf4481cb7140bbe96c58 Trojan54 66120bf739f2d53ef930194165eb5d09 Trojan97 37ceca4ac82d0ade9bac811217590ecd

Trojan12 a4e14c88da9e1a74cd7c26ded99b6a0a Trojan55 66120bf739f2d53ef930194165eb5d09 Trojan98 D752837D0EE0E5D49D1F72F52279948E

Trojan13 e8cd8be37e30c9ad869136534f358fc5 Trojan56 0D02257EC18B92B3C1CF58B8CB6B3D37 Trojan99 289af95f99f58c751a7d1d0a26d7cdb3

Trojan14 3e3a09644170ad3184facb4cace14f8a Trojan57 48d496afc9c2c123e1ab0c72822a7975 Trojan100 289af95f99f58c751a7d1d0a26d7cdb3

Trojan15 03ab12e578664290fa17a1a95abd71c4 Trojan58 373c9e5461c2b234f70e4d6102198eff Trojan101 e25a05d3fecceb14667048c07494d65f

Trojan16 e46dcc4a49547b547f357a948337b929 Trojan59 b5d68075a093c263fb3392cb92d92bef Trojan102 4c3d0e0a944fc6755a28452e913e0347

Trojan17 2ecf5e35d681521997e293513144fd80 Trojan60 ea4bbf027eb58b92566eb4d98002f976 Trojan103 1de3889fde95e695adf6eadcb4829c6d

Trojan18 6c784bec892ce3ef849b1f34667dccac Trojan61 e14f089df621262bcbf172b5a5346d33 Trojan104 e4bb8a66855f6987822f5aca86060f2c

Trojan19 673626be5ea81360f526a378355e3431 Trojan62 148112df459ba40b9127f7d4f1c08df2 Trojan105 7f0076993f2d8a4629ea7b0df5b9bddd

Trojan20 02492b954b48f13412a844d689d064f1 Trojan63 ee265704cf0a371029ed28e958e06549 Trojan106 39837c6ba74a922f935d184d8f0f0d7b

Trojan21 1FC2ABEC9C754E8CC1726BF40E0B3533 Trojan64 154faec2f2ac9c0fb028680e0e0ee78c Trojan107 999ebe8b65caf99faf1172074d7e5d3c

Trojan22 e52a8d15ee08d7f8b4efca1b16daaefb Trojan65 a49149e8822c5c692cd71736a513d268 Trojan108 74dc37b7aabf745eac1d5fc65428488e

Trojan23 e52a8d15ee08d7f8b4efca1b16daaefb Trojan66 53ba28120a193e53fa09b057cc1cbfa2 Trojan109 a5c52bd47f7fdfd54a2584a669eabe59

Trojan24 DA26ED1B6FE69D15A400B3BC70001918 Trojan67 a29122dfa93bcac56ab9e5e05ac1d41a Trojan110 6c14578c2b77b1917b3dee9da6efcd56

Trojan25 6aa26f04b22b284dda148ce317f53de8 Trojan68 20343AE1698C45FB3ECE073745D28D4C Trojan111 FDD95B4CC10B536934486C7D3FDEE04F

Trojan26 e1c7eccc8fec00a10c1e0cd65e443635 Trojan69 eb19dfe2116be14283c254a16a786482 Trojan112 5ab2a67268b3362802a13594edafbd2e

Trojan27 0864bc6951795b86d435176c3320a8bc Trojan70 ace2a3e0ca6bdfa6331a6e7d519ab1e7 Trojan113 32a34ce536ca62c61cc05ce3e3f3c54f

Trojan28 0864bc6951795b86d435176c3320a8bc Trojan71 ace2a3e0ca6bdfa6331a6e7d519ab1e7 Trojan114 aab74722020e631147836fc009f9419d

Trojan29 ab40142988527fe6ce585a9fdfce56ca Trojan72 dcc7f58bff80b337e5e7723b2ac9dad7 Trojan115 264E49C78F3693F4DEEBA9D62F3F5C89

Trojan30 a68b72fbfb76964261a3601daa270647 Trojan73 d41421a918ce05632374081c33879d4c Trojan116 4ba35d78df77a4d5ad1207cdeeef78b3

Trojan31 23964bc22c2c81f9a41fb9f747a6c995 Trojan74 461689d449c7b5a905c8404d3a464088 Trojan117 c66dfa4304d9782f19cab27379191f7a

Trojan32 fd7b410fd7936dd51c4b72ef4047c639 Trojan75 02cfa3e6fdb4301528e5152de76b2abf Trojan118 cfeab92b4e304d188c3e6f81d6d6925b

Trojan33 0316dbd20fbfd5a098cd8af384ca950f Trojan76 107a3bef0da9ab2b42e3e0f9f843093b Trojan119 741fad6dabdc81f485c6fbd8a8ce125d

Trojan34 6e8f48e7d53ac2c8f7b863078e9050b2 Trojan77 4c7f72fc16ac8daf5237cfc4e5546ac0 Trojan120 dd93f9f9d2ec75096ed843e386d68f4c

Trojan35 FC1E5521A5F2479EA3226288B6205300 Trojan78 107a3bef0da9ab2b42e3e0f9f843093b Trojan121 a8a42968a9bb21bd030416c32cd34635

Trojan36 dcb019624fb8e92eb26adf2bef77d46c Trojan79 716d1dc7285b017c2dbc146dbb2e319c Trojan122 6bd532a798f5b473e4237342c3d4d580

Trojan37 8b288305733214f8e0d95386d886af2d Trojan80 412ce577521a560459cd711f5966caf4 Trojan123 b4fb40b3dfa5780732d599eba6023309

Trojan38 f9c00d3db5fa6cd33bc3cd5a08766ad0 Trojan81 818231cb0be9bf597d33013edb85e1a7 Trojan124 f71529ae0cab12fa089b91e333ac5d6f

Trojan39 1fbf5be463ce094a6f7ad345612ec1e7 Trojan82 dd7adc5b140835dc22f6c95694f9c015 Trojan125 c97fcb5f276542ac719fef3d32fbd2bf

Trojan40 D73D599EF434D7EDAD4697543A3E8A2B Trojan83 3fcc933847779784ece1c1f8ca0cb8e4 Trojan126 f23c05c44949c6c8b05ab54fbd9cee40

Trojan41 d5e717617400b3c479228fa756277be1 Trojan84 d2f825ecfb3d979950b9de92cbe29286 Trojan127 75b6411071a27959394ffba9ecdea4a7

Trojan42 d5e717617400b3c479228fa756277be1 Trojan85 af15ba558c07f8036612692122992aad

 Trojan43 6932a004ce3ad1ad5ea30f43a31b0285 Trojan86 7008675da5c1b0a6b59834d125fafa45

Appendix II

Trojan Al-

located
Name

Banking Trojans Features

Weaponisation Delivery
Exploitation Installation

C&C
Data Exfil-

tration

Host-

Based
Evasion Anti-forensics

Email Attachments

 Rootkit
Dead-

Code

Utilising

Packers
Macros PDF(JS) API Hooking

Heap

Spraying

DLL Side

loading

Hardcoded

IP

Domain

Name
Backdoors

Trojan1 ✓ ✓ ✓ ✓

Trojan2 ✓ ✓ ✓ ✓ ✓

Trojan3 ✓ ✓ ✓ ✓

Trojan4 ✓ ✓ ✓ ✓ ✓

Trojan5 ✓ ✓ ✓ ✓ ✓

Trojan6 ✓ ✓ ✓ ✓

Trojan7 ✓ ✓ ✓ ✓ ✓

Trojan8 ✓ ✓ ✓ ✓ ✓ ✓

Trojan9 ✓ ✓

Trojan10 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan11 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan12 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan13 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan14 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan15 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan16 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan17 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan18 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan19 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan20 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan21 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan22 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan23 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan24 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan25 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan26 ✓ ✓ ✓ ✓ ✓ ✓

Trojan27 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan28 ✓ ✓ ✓ ✓ ✓ ✓

Trojan29 ✓ ✓ ✓ ✓

Trojan30 ✓ ✓ ✓ ✓

Trojan31 ✓ ✓ ✓ ✓

Trojan32 ✓ ✓ ✓ ✓ ✓

Trojan33 ✓ ✓ ✓ ✓ ✓

Trojan34 ✓ ✓ ✓ ✓ ✓ ✓

Trojan35 ✓ ✓ ✓ ✓ ✓ ✓

Trojan36 ✓ ✓ ✓ ✓ ✓

Trojan37 ✓ ✓ ✓ ✓ ✓

20

Trojan38 ✓ ✓ ✓ ✓ ✓ ✓

Trojan39 ✓ ✓ ✓ ✓ ✓ ✓

Trojan40 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan41 ✓ ✓ ✓ ✓

Trojan42 ✓ ✓ ✓ ✓

Trojan43 ✓ ✓ ✓ ✓ ✓ ✓

Trojan44 ✓ ✓ ✓ ✓ ✓ ✓

Trojan45 ✓ ✓ ✓ ✓

Trojan46 ✓ ✓ ✓ ✓ ✓

Trojan47 ✓ ✓ ✓ ✓ ✓

Trojan48 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan49 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan50 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan51 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan52 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan53 ✓ ✓

Trojan54 ✓ ✓ ✓ ✓ ✓ ✓

Trojan55 ✓ ✓ ✓ ✓ ✓ ✓

Trojan56 ✓ ✓ ✓ ✓ ✓

Trojan57 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan58 ✓ ✓ ✓ ✓ ✓ ✓

Trojan59 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan60 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan61 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan62 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan63 ✓ ✓ ✓

Trojan64 ✓

Trojan65 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan66 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan67 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan68 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan69 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan70 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan71 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan72 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan73 ✓ ✓ ✓ ✓

Trojan74 ✓ ✓ ✓ ✓

Trojan75 ✓ ✓ ✓ ✓

Trojan76 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan77 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

21

21

Trojan78 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan79 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan80 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan81 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan82 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan83 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan84 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan85 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan86 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan87 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan88 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan89 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan90 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan91 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan92 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan93 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan94 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan95 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan96 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan97 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan98 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan99 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan100 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan101 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan102 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan103 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan104 ✓ ✓

Trojan105 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan106 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan107 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan108 ✓ ✓

Trojan109 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan110 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan111 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan112 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan113 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan114 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan115 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan116 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan117 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

22

Trojan118 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan119 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan120 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan121 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan122 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan123 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan124 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan125 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan126 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trojan127 ✓ ✓ ✓ ✓ ✓ ✓ ✓

23

23

References

[1] A. C. Kim, S. Kim, W. H. Park, and D. H. Lee, “Fraud and financial crime detection model using

malware forensics,” Multimedia Tools and Applications, vol. 68, no. 2, pp. 479–496, Jan. 2014.

[2] M. Damshenas, A. Dehghantanha, and R. Mahmoud, “A Survey On Malware Propagation, Analysis,

And Detection,” International Journal of Cyber-Security and Digital Forensics (IJCSDF), vol. 2, no. 4,

pp. 10–29, 2013.

[3] K.-K. R. Choo, "Cyberthreat landscape faced by financial and insurance industry," Trends & Issues in

Crime and Criminal Justice, vol. 408, pp. 1–6, 2011.

[4] M. Riek, R. Bohme, and T. Moore, “Measuring the Influence of Perceived Cybercrime Risk on Online

Service Avoidance,” IEEE Transactions on Dependable and Secure Computing, vol. 13, no. 2, pp. 261–

273, Mar. 2016.

[5] K.-K. R. Choo, " Zombies and botnets," Trends & Issues in Crime and Criminal Justice, vol. 333, pp.

1–6, 2007.

[6] E. I. Edem, C. Benzaid, A. Al-Nemrat, and P. Watters, “Analysis of Malware Behaviour: Using Data

Mining Clustering Techniques to Support Forensics Investigation,” in 2014 Fifth Cybercrime and

Trustworthy Computing Conference, 2014, pp. 54–63.

[7] Y. Kim, I. Kim, and N. Park, “Analysis of Cyber Attacks and Security Intelligence,” in Mobile,

Ubiquitous, and Intelligent Computing, vol. 274, Berlin, Heidelberg: Springer-Verlag Berlin

Heidelberg, 2014, pp. 629–636.

[8] C. M. Colombini, A. Colella, M. Mattiucci, and A. Castiglione, “Cyber Threats Monitoring:

Experimental Analysis of Malware Behavior in Cyberspace,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

8128 LNCS, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 236–252.

[9] N. Lee, “Cyber Warfare: Weapon of Mass Disruption,” in Counterterrorism and Cybersecurity, Second,

Ed. New York, NY: Springer New York, 2013, pp. 99–118.

[10] Mohamad Fadli Zolkipli and A. Jantan, “An approach for malware behavior identification and

classification,” in Computer Research and Development (ICCRD), 2011 3rd International Conference,

2011, pp. 191–194.

[11] M. F. Zolkipli and A. Jantan, “Malware Behavior Analysis: Learning and Understanding Current

Malware Threats,” in 2010 Second International Conference on Network Applications, Protocols and

Services, 2010, pp. 218–221.

[12] N. Kiyavash, F. Koushanfar, T. P. Coleman, and M. Rodrigues, “A Timing Channel Spyware for the

CSMA/CA Protocol,” IEEE Transactions on Information Forensics and Security, vol. 8, no. 3, pp. 477–

487, Mar. 2013.

[13] A. Singh, B. Singh, and H. Joseph, “Malware Analysis,” in Vulnerability Analysis and Defense for the

Internet, Boston, MA: Springer US, 2008, pp. 169–211.

[14] J. T. Jackson and S. Creese, “Virus Propagation in Heterogeneous Bluetooth Networks with Human

Behaviors,” IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 6, pp. 930–943, Nov.

2012.

24

[15] D. Salomon, “Trojan Horses,” in Elements of Computer Security, London: Springer-Verlag London

Limited, 2010, pp. 123–135.

[16] A. Buescher, F. Leder, and T. Siebert, “Banksafe Information Stealer Detection Inside the Web

Browser,” in Recent Advances in Intrusion Detection, vol. 6961 LNCS, Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 262–280.

[17] C. Criscione, F. Bosatelli, S. Zanero, and F. Maggi, “ZARATHUSTRA: Extracting Webinject

signatures from banking trojans,” in 2014 Twelfth Annual International Conference on Privacy, Security

and Trust, 2014, pp. 139–148.

[18] E. W. Burger, M. D. Goodman, P. Kampanakis, and K. A. Zhu, “Taxonomy Model for Cyber Threat

Intelligence Information Exchange Technologies,” in Proceedings of the 2014 ACM Workshop on

Information Sharing & Collaborative Security - WISCS’14, 2014, pp. 51–60.

[19] T. Yadav and A. M. Rao, “Technical Aspects of Cyber Kill Chain,” in Security in Computing and

Communications, vol. 377, Cham: Springer International Publishing Switzerland, 2015, pp. 438–452.

[20] K. E. Heckman, F. J. Stech, R. K. Thomas, B. Schmoker, and A. W. Tsow, Cyber Denial, Deception

and Counter Deception. Cham: Springer International Publishing, 2015.

[21] E. M. Hutchins, M. J. Clopp, and P. D. Rohan M. Amin, “Intelligence-driven computer network defense

informed by analysis of adversary campaigns and intrusion kill chains,” Lockheed Martin Corporation,

no. July 2005, pp. 1–14, 2011.

[22] S. Caltagirone, A. Pendergast, and C. Betz, “The Diamond Model of Intrusion Analysis,” Threat

Connect, vol. 298, no. 704, pp. 1–61, 2013.

[23] A. Al-Bataineh and G. White, “Analysis and detection of malicious data exfiltration in web traffic,” in

2012 7th International Conference on Malicious and Unwanted Software, 2012, pp. 26–31.

[24] L. Martin, “Cyber Kill Chain® · Lockheed Martin.” [Online]. Available:

http://www.lockheedmartin.com/us/what-we-do/aerospace-defense/cyber/cyber-kill-chain.html.

[Accessed: 29-Mar-2017].

[25] S. Khattak, N. R. Ramay, K. R. Khan, A. A. Syed, and S. A. Khayam, “A Taxonomy of botnet behavior,

detection, and defense,” IEEE Communications Surveys and Tutorials, vol. 16, no. 2, pp. 898–924,

2014.

[26] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy of computer worms,” in

Proceedings of the 2003 ACM workshop on Rapid Malcode - WORM’03, 2003, p. 11.

[27] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware: from a survey towards an

established taxonomy,” Journal in Computer Virology, vol. 4, no. 3, pp. 251–266, Aug. 2008.

[28] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti, “Detecting Environment-Sensitive Malware,” in

Recent Advances in Intrusion Detection, vol. 6961 LNCS, Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 338–357.

[29] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “SoK: Deep Packer Inspection: A

Longitudinal Study of the Complexity of Run-Time Packers,” in 2015 IEEE Symposium on Security and

Privacy, 2015, vol. 2015–July, pp. 659–673.

[30] A. Karim, S. A. A. Shah, and R. Salleh, “Mobile Botnet Attacks: A Thematic Taxonomy,” in New

Perspectives in Information Systems and Technologies, vol. 2, Cham: Springer International Publishing,

2014, pp. 153–164.

25

25

[31] A. Amamra, C. Talhi, and J.-M. Robert, “Smartphone malware detection: From a survey towards

taxonomy,” in 2012 7th International Conference on Malicious and Unwanted Software, 2012, pp. 79–

86.

[32] L. Delosières and D. García, “Infrastructure for Detecting Android Malware,” in Information Sciences

and Systems 2013, vol. 264, Cham: Springer International Publishing Switzerland, 2013, pp. 389–398.

[33] D. Dagon, G. Gu, C. P. Lee, and W. Lee, “A Taxonomy of Botnet Structures,” in Twenty-Third Annual

Computer Security Applications Conference (ACSAC 2007), 2007, pp. 325–339.

[34] B. B. Gupta, A. Tewari, A. K. Jain, and D. P. Agrawal, “Fighting against phishing attacks: state of the

art and future challenges,” Neural Computing and Applications, pp. 1–26, Mar. 2016.

[35] R. J. Rodríguez, “Evolution and characterization of point-of-sale RAM scraping malware,” Journal of

Computer Virology and Hacking Techniques, pp. 1–14, May 2016.

[36] O. Osanaiye, H. Cai, K.-K. R. Choo, A. Dehghantanha, Z. Xu, and M. Dlodlo, “Ensemble-based multi-

filter feature selection method for DDoS detection in cloud computing,” EURASIP Journal on Wireless

Communications and Networking, vol. 2016, no. 1, p. 130, Dec. 2016.

[37] F. Daryabar, A. Dehghantanha, and H. G. Broujerdi, “Investigation of malware defence and detection

techniques,” International Journal of Digital Information and Wireless Communications (IJDIWC), vol.

1, no. 3, pp. 645–650, 2011.

[38] F. Daryabar, A. Dehghantanha, N. I. Udzir, and N. Fazlida, “Analysis of Known and Unknown Malware

Bypassing Techniques,” International Journal of Information Processing and Management(IJIPM), vol.

4, no. 6, pp. 50–59, 2013.

[39] L. Rocha, “Malware Analysis – Dridex & Process Hollowing | Count Upon Security,” 2015.

[Online]. Available: https://countuponsecurity.com/2015/12/07/malware-analysis-dridex-process-

hollowing/. [Accessed: 09-Mar-2017].

[40] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A. Kiayias, “Scalability, fidelity

and stealth in the DRAKVUF dynamic malware analysis system,” in Proceedings of the 30th Annual

Computer Security Applications Conference on - ACSAC’14, 2014, pp. 386–395.

[41] T. K. Lengyel, “Malware Collection and Analysis via Hardware Virtualization,” 2015.

[42] J. Leitch, “Process Hollowing,” 2013.

[43] M. Z. Shafiq, S. A. Khayam, and M. Farooq, “Embedded Malware Detection Using Markov n-Grams,”

in Detection of Intrusions and Malware, and Vulnerability Assessment, Berlin, Heidelberg: Springer

Berlin Heidelberg, 2008, pp. 88–107.

[44] F. Daryabar, A. Dehghantanha, and N. I. Udzir, “Investigation of bypassing malware defences and

malware detections,” in 2011 7th International Conference on Information Assurance and Security

(IAS), 2011, pp. 173–178.

[45] D. Stevens, “Malicious PDF Documents Explained,” IEEE Security & Privacy Magazine, vol. 9, no. 1,

pp. 80–82, Jan. 2011.

[46] J. Song, J. Song, and J. Kim, “Detection of Heap-Spraying Attacks Using String Trace Graph,” in

Information Security Applications, vol. LNCS 8909, Cham: Springer International Publishing, 2015, pp.

17–26.

[47] N. Nissim, A. Cohen, and Y. Elovici, “Boosting the Detection of Malicious Documents Using

26

Designated Active Learning Methods,” in 2015 IEEE 14th International Conference on Machine

Learning and Applications (ICMLA), 2015, pp. 760–765.

[48] C. Lin and C. Chen, “Efficient Spear-phishing Threat Detection Using Hypervisor Monitor,” The 49th

Annual IEEE International Carnahan Conference on Security Technology, pp. 299–303, 2011.

[49] A. Jayan and S. Dija, “Detection of spoofed mails,” in 2015 IEEE International Conference on

Computational Intelligence and Computing Research (ICCIC), 2015, pp. 1–4.

[50] J. Yu, E. Kim, H. Kim, and J. Huh, “A Framework for Detecting MAC and IP Spoofing Attacks with

Network Characteristics,” in 2016 International Conference on Software Security and Assurance

(ICSSA), 2016, pp. 49–53.

[51] B. Liu, J. Bi, and A. V. Vasilakos, “Toward Incentivizing Anti-Spoofing Deployment,” IEEE

Transactions on Information Forensics and Security, vol. 9, no. 3, pp. 436–450, Mar. 2014.

[52] S. Gajek and A.-R. Sadeghi, “A Forensic Framework for Tracing Phishers,” in The Future of Identity in

the Information Society, Boston, MA: Springer US, 2008, pp. 23–35.

[53] I. R. A. Hamid and J. Abawajy, “Hybrid Feature Selection for Phishing Email Detection,” in Algorithms

and Architectures for Parallel Processing, Springer, Berlin, Heidelberg, 2011, pp. 266–275.

[54] M.-E. Maurer and L. Höfer, “Sophisticated Phishers Make More Spelling Mistakes: Using URL

Similarity against Phishing,” in Cyberspace Safety and Security, Springer, Berlin, Heidelberg, 2012, pp.

414–426.

[55] E. D. Frauenstein and R. von Solms, “An Enterprise Anti-phishing Framework,” in Information

Assurance and Security Education and Training, Springer, Berlin, Heidelberg, 2013, pp. 196–203.

[56] J. Hajgude and L. Ragha, “‘Phish mail guard: Phishing mail detection technique by using textual and

URL analysis,’” in 2012 World Congress on Information and Communication Technologies, 2012, pp.

297–302.

[57] J. V. Chandra, N. Challa, and S. K. Pasupuleti, “A practical approach to E-mail spam filters to protect

data from advanced persistent threat,” in 2016 International Conference on Circuit, Power and

Computing Technologies (ICCPCT), 2016, pp. 1–5.

[58] K. Shaerpour, A. Dehghantanha, and R. Mahmod, “TRENDS IN ANDROID MALWARE

DETECTION,” Journal of Digital Forensics, Security and Law, vol. 8, no. 3, pp. 21–40, 2013.

[59] I. You and K. Yim, “Malware Obfuscation Techniques: A Brief Survey,” in 2010 International

Conference on Broadband, Wireless Computing, Communication and Applications, 2010, pp. 297–300.

[60] M. Alazab, S. Venkatraman, P. Watters, M. Alazab, and A. Alazab, “Cybercrime: The Case of

Obfuscated Malware,” in Global Security, Safety and Sustainability & e-Democracy, vol. 99 LNICST,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 204–211.

[61] M. Musale, T. H. Austin, and M. Stamp, “Hunting for metamorphic JavaScript malware,” Journal of

Computer Virology and Hacking Techniques, vol. 11, no. 2, pp. 89–102, May 2015.

[62] P. Vinod, V. Laxmi, M. S. Gaur, and G. Chauhan, “MOMENTUM: MetamOrphic malware exploration

techniques using MSA signatures,” in 2012 International Conference on Innovations in Information

Technology (IIT), 2012, pp. 232–237.

[63] G. Shanmugam, R. M. Low, and M. Stamp, “Simple substitution distance and metamorphic detection,”

Journal of Computer Virology and Hacking Techniques, vol. 9, no. 3, pp. 159–170, Aug. 2013.

27

27

[64] S. Madenur Sridhara and M. Stamp, “Metamorphic worm that carries its own morphing engine,”

Journal of Computer Virology and Hacking Techniques, vol. 9, no. 2, pp. 49–58, May 2013.

[65] S. Alam, I. Sogukpinar, I. Traore, and R. Nigel Horspool, “Sliding window and control flow weight for

metamorphic malware detection,” Journal of Computer Virology and Hacking Techniques, vol. 11, no.

2, pp. 75–88, May 2015.

[66] J. Raphel and P. Vinod, “Heterogeneous Opcode Space for Metamorphic Malware Detection,” Arabian

Journal for Science and Engineering, vol. 42, no. 2, pp. 537–558, Feb. 2017.

[67] M. Alazab, S. Venkataraman, and P. Watters, “Towards Understanding Malware Behaviour by the

Extraction of API Calls,” in 2010 Second Cybercrime and Trustworthy Computing Workshop, 2010, pp.

52–59.

[68] T. Barabosch, A. Dombeck, K. Yakdan, and E. Gerhards-Padilla, Research in Attacks, Intrusions and

Defenses, vol. 8688, no. 2012. Cham: Springer International Publishing, 2014.

[69] A. Karim, R. Bin Salleh, M. Shiraz, S. A. A. Shah, I. Awan, and N. B. Anuar, “Botnet detection

techniques: review, future trends, and issues,” Journal of Zhejiang University SCIENCE C, vol. 15, no.

11, pp. 943–983, Nov. 2014.

[70] A. K. Sood and S. Zeadally, “A Taxonomy of Domain-Generation Algorithms,” IEEE Security &

Privacy, vol. 14, no. 4, pp. 46–53, Jul. 2016.

[71] V. S. Subrahmanian, M. Ovelgonne, T. Dumitras, and B. A. Prakash, The Global Cyber-Vulnerability

Report, no. November 2013. Cham: Springer International Publishing, 2015.

[72] H.-K. Kang, J.-S. Kim, B.-I. Kim, and H.-C. Jeong, IT Convergence and Security 2012, vol. 215.

Dordrecht: Springer Netherlands, 2013.

[73] I. A. AL-Taharwa, H.-M. Lee, A. B. Jeng, K.-P. Wu, C.-H. Mao, T.-E. Wei, and S.-M. Chen, “RedJsod:

A Readable JavaScript Obfuscation Detector Using Semantic-based Analysis,” in 2012 IEEE 11th

International Conference on Trust, Security and Privacy in Computing and Communications, 2012, pp.

1370–1375.

[74] D. Cosovan, R. Benchea, and D. Gavrilut, “A Practical Guide for Detecting the Java Script-Based

Malware Using Hidden Markov Models and Linear Classifiers,” in 2014 16th International Symposium

on Symbolic and Numeric Algorithms for Scientific Computing, 2014, pp. 236–243.

[75] D. O. Brien, “Dridex : Tidal waves of spam pushing dangerous financial Trojan,” 2016. [Online].

Available:

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/dridex-

financial-trojan.pdf. [Accessed: 11-Jul-2016].

[76] S. Mohtasebi and A. Dehghantanha, “A Mitigation Approach to the Privacy and Malware Threats of

Social Network Services,” in Digital Information Processing and Communications, Springer, Berlin,

Heidelberg, 2011, pp. 448–459.

[77] C. K. Joe-Uzuegbu, U. C. Iwuchukwu, and L. C. Ezema, “Application virtualization techniques for

malware forensics in social engineering,” in 2015 International Conference on Cyberspace (CYBER-

Abuja), 2015, pp. 45–56.

[78] P. Jyotiyana and S. Maheshwari, “A Literature Survey on Malware and Online Advertisement Hidden

Hazards,” in Intelligent Systems Technologies and Applications 2016, Springer, Cham, 2016, pp. 449–

460.

28

[79] S. Gunalakshmii and P. Ezhumalai, “Mobile keylogger detection using machine learning technique,” in

Proceedings of IEEE International Conference on Computer Communication and Systems ICCCS14,

2014, pp. 051–056.

[80] S. Ortolani, C. Giuffrid, and B. Crispo, Recent Advances in Intrusion Detection, vol. 5758, no. 216917.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[81] P. Stewin, “Technical Background, Preliminaries and Assumptions,” in Detecting Peripheral-based

Attacks on the Host Memory, Cham: Springer International Publishing, 2015, pp. 9–19.

[82] S. T. King and P. M. Chen, “SubVirt: implementing malware with virtual machines,” in 2006 IEEE

SymposiumonSecurityandPrivacy(S&P’06), 2006, p. 14 pp.-pp.327.

[83] L. Xianghe, Z. Liancheng, and L. Shuo, “Kernel rootkits implement and detection,” Wuhan University

Journal of Natural Sciences, vol. 11, no. 6, pp. 1473–1476, Nov. 2006.

[84] P. Stewin and I. Bystrov, “Understanding DMA Malware,” in Detection of Intrusions and Malware, and

Vulnerability Assessment, vol. 7591 LNCS, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.

21–41.

[85] F. L. Sang, E. Lacombe, V. Nicomette, and Y. Deswarte, “Exploiting an I/OMMU vulnerability,” in

2010 5th International Conference on Malicious and Unwanted Software, 2010, pp. 7–14.

[86] J. Choi, Y. Han, S. Cho, H. Yoo, J. Woo, M. Park, Y. Song, and L. Chung, “A Static Birthmark for MS

Windows Applications Using Import Address Table,” in 2013 Seventh International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing, 2013, pp. 129–134.

[87] A. Stewart, “DLL Side-Loading: A Thorn in the Side of the Anti-Virus Industry,” FireEye, Inc, 2016.

[Online]. Available: https://www.fireeye.com/content/dam/fireeye-www/global/en/current-

threats/pdfs/rpt-dll-sideloading.pdf. [Accessed: 11-Jul-2016].

[88] B. Min and V. Varadharajan, “Secure Dynamic Software Loading and Execution Using Cross

Component Verification,” in 2015 45th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, 2015, pp. 113–124.

[89] G. Yucheng, W. Peng, L. Juwei, and G. Qingping, “A Way to Detect Computer Trojan Based on DLL

Preemptive Injection,” in 2011 10th International Symposium on Distributed Computing and

Applications to Business, Engineering and Science, 2011, pp. 255–258.

[90] K. Alieyan, A. ALmomani, A. Manasrah, and M. M. Kadhum, “A survey of botnet detection based on

DNS,” Neural Computing and Applications, pp. 1–18, Dec. 2015.

[91] C. J. Dietrich, C. Rossow, F. C. Freiling, H. Bos, M. Van Steen, and N. Pohlmann, “On Botnets That

Use DNS for Command and Control,” in 2011 Seventh European Conference on Computer Network

Defense, 2011, pp. 9–16.

[92] A. Javed and M. Akhlaq, “Patterns in malware designed for data espionage and backdoor creation,” in

2015 12th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2015, pp.

338–342.

[93] P. Goyal, N. Bansal, and N. Gupta, “Averting man in the browser attack using user-specific personal

images,” in 2013 3rd IEEE International Advance Computing Conference (IACC), 2013, pp. 1283–

1286.

[94] F. Bin Mat Nor, K. Abd Jalil, and J. Ab Manan, “An enhanced remote authentication scheme to mitigate

man-in-the-browser attacks,” in Proceedings Title: 2012 International Conference on Cyber Security,

Cyber Warfare and Digital Forensic (CyberSec), 2012, pp. 271–276.

29

29

[95] In-A Song and Young-Seok Lee, “Improvement of Key Exchange protocol to prevent Man-in-the-

middle attack in the satellite environment,” in 2016 Eighth International Conference on Ubiquitous and

Future Networks (ICUFN), 2016, pp. 408–413.

[96] M. Tiwari, T. Sharma, P. Sharma, S. Jindal, and Priyanshu, “Prevention of Man in the Middle Attack by

Using Honeypot,” in Proceedings of International Conference on Advances in Computing, India:

Springer India, 2013, pp. 593–600.

[97] G. Loukas, D. Gan, and Tuan Vuong, “A taxonomy of cyber attack and defence mechanisms for

emergency management networks,” in 2013 IEEE International Conference on Pervasive Computing

and Communications Workshops (PERCOM Workshops), 2013, no. March, pp. 534–539.

[98] A. Karim, R. Salleh, M. Shiraz, S. Shah, I. Awan, and N. Anuar, “Botnet detection techniques: review,

future trends, and issues,” Computers & Electronics, vol. 15, no. 11, pp. 943–983, 2014.

[99] J. a P. Marpaung, M. Sain, and H.-J. Lee, “Survey on Malware Evasion Techniques: State of the Art and

Challenges,” in 14th International Conference on Advanced Communication Technology (ICACT),

2012, pp. 744–749.

[100] O. Fonseca, E. Fazzion, P. H. B Las-Casas, D. Guedes, W. Meira, C. Hoepers, K. Steding-Jessen, and

M. H. Chaves, “Neighborhoods and bands: an analysis of the origins of spam,” Journal of Internet

Services and Applications, vol. 6, no. 1, p. 9, Dec. 2015.

[101] M. Takes, “Cascaded Simple Filters for Accurate and Lightweight Email-Spam Detection,” in 2010

Fourth International Conference on Emerging Security Information, Systems and Technologies, 2010,

pp. 160–165.

[102] M. Damshenas, A. Dehghantanha, K.-K. R. Choo, and R. Mahmud, “M0Droid: An Android Behavioral-

Based Malware Detection Model,” Journal of Information Privacy and Security, vol. 11, no. 3, pp. 141–

157, Jul. 2015.

[103] I. Firdausi, C. Lim, A. Erwin, and A. S. Nugroho, “Analysis of Machine learning Techniques Used in

Behavior-Based Malware Detection,” in 2010 Second International Conference on Advances in

Computing, Control, and Telecommunication Technologies, 2010, pp. 201–203.

[104] M. Ramilli and M. Prandini, “Always the Same, Never the Same,” IEEE Security & Privacy Magazine,

vol. 8, no. 2, pp. 73–75, Mar. 2010.

[105] D. B. Prelipcean, A. S. Popescu, and D. T. Gavrilut, “Improving Malware Detection Response Time

with Behavior-Based Statistical Analysis Techniques,” in 2015 17th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2015, pp. 232–239.

[106] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-based features model for malware detection,”

Journal of Computer Virology and Hacking Techniques, vol. 12, no. 2, pp. 59–67, May 2016.

[107] Y. Kugisaki, Y. Kasahara, Y. Hori, and K. Sakurai, “Bot Detection Based on Traffic Analysis,” in The

2007 International Conference on Intelligent Pervasive Computing (IPC 2007), 2007, pp. 303–306.

[108] A. Boukhtouta, S. A. Mokhov, N.-E. Lakhdari, M. Debbabi, and J. Paquet, “Network malware

classification comparison using DPI and flow packet headers,” Journal of Computer Virology and

Hacking Techniques, vol. 12, no. 2, pp. 69–100, May 2016.

[109] M. A. Ahmad, S. Woodhead, and D. Gan, “A countermeasure mechanism for fast scanning malware,” in

2016 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security),

2016, pp. 1–8.

30

[110] D. Plohmann, E. Gerhards-Padilla, and F. Leder, “Botnets: Detection, Measurement, Disinfection &

Defence,” European Network and Information Security Agency (ENISA), p. 153, 2011.

[111] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and Big Heterogeneous Data: a

Survey,” Journal of Big Data, vol. 2, no. 1, p. 3, Dec. 2015.

[112] K. Thakur, S. Kopecky, M. Nuseir, M. L. Ali, and M. Qiu, “An Analysis of Information Security Event

Managers,” in 2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing

(CSCloud), 2016, pp. 210–215.

[113] P. Cascón, J. Ortega, Y. Luo, E. Murray, A. Díaz, and I. Rojas, “Improving IPS by network processors,”

The Journal of Supercomputing, vol. 57, no. 1, pp. 99–108, Jul. 2011.

[114] K.-H. Choi and D. Lee, “A study on strengthening security awareness programs based on an RFID

access control system for inside information leakage prevention,” Multimedia Tools and Applications,

vol. 74, no. 20, pp. 8927–8937, Oct. 2015.

[115] M. Szczepanik and I. Jóźwiak, “Detecting New and Unknown Malwares Using Honeynet,” in Advances

in Multimedia and Network Information System Technologies, vol. 80, Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 173–180.

[116] I. Technologies, “Honey pots, honey nets, and padded cell system.” [Online]. Available:

http://www.idc-

online.com/technical_references/pdfs/data_communications/Honey_Pots_Honey_Nets_Padded_Cell_sy

stem.pdf. [Accessed: 09-Apr-2016].

[117] S. McCombie and J. Pieprzyk, “Winning the Phishing War: A Strategy for Australia,” in 2010 Second

Cybercrime and Trustworthy Computing Workshop, 2010, pp. 79–86.

[118] J. White, J. S. Park, C. A. Kamhoua, and K. A. Kwiat, “Social network attack simulation with

honeytokens,” Social Network Analysis and Mining, vol. 4, no. 1, p. 221, Dec. 2014.

[119] S. Chakravarty, G. Portokalidis, M. Polychronakis, and A. D. Keromytis, “Detection and analysis of

eavesdropping in anonymous communication networks,” International Journal of Information Security,

vol. 14, no. 3, pp. 205–220, Jun. 2015.

