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Abstract  
 

The estrogen receptor (ER) is a transcription factor that regulates a wide array of genes 

and whose activity is a determinant for the prognosis of diseases such as breast cancer. 

ER, through L-X-X-L-L (L=leucine, X=any amino acid) motifs, interacts with cofactors 

such as TTC5 (tetratricopeptide repeat domain 5) which is a 440 amino acid protein, 

predicted to have 6 TPR (tetratricopeptide repeat) motifs and 4 LXXLL motifs, which are 

known to mediate protein-protein interactions. TTC5 has been shown previously to 

interact with and regulate the glucocorticoid receptor, which belongs to the same family 

of nuclear hormone receptors as ER. Thus, this provided the basis for the investigation of 

the role of TTC5 in ER signalling. 
 

This investigation revealed that TTC5 interacts with estrogen receptor alpha (ERa) in 

MCF-7 and T47D breast cancer cells, and that ER transcriptional activity on an estrogen 

response element was regulated by different TPR and LXXLL motifs of TTC5 in a cell-

specific manner. Partial knockdown of TTC5 via siRNA led to a decrease of proliferation 

in cells treated with 17b-estradiol (E2), raloxifene and tamoxifen, indicating a potential 

role for TTC5 in breast cancer progression and survival. Effects of TTC5 silencing on 

cyclin D1 makes this molecule a candidate for inhibiting cyclin D1 gene expression 

 

In summary, this thesis uncovers TTC5 as a novel regulatory factor of ER function, and 

identifies effects of TTC5 on cell proliferation. These key findings enhance our 

understanding of ER signalling which, given its importance for diseases such as breast 

cancer, may have important clinical implications for instance through targeting of TTC5. 
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Chapter 1 Introduction 
 

1.1 Cancer 

 

Acquisition of certain epigenetic or genetic mutation events can result in cancer, which 

leads to deregulation in normal function of cellular process involved in DNA repair, 

proliferation, motility and cell survival. As a result, healthy cells accumulate mutations 

leading to uncontrolled proliferation. In early stages of life, cells usually divide more 

frequently allowing growth whereas adult cells commence dividing only to replace worn-

out or dying cells to repair injuries. Cancer cells grow continually, as they have lost 

control at the cell cycle checkpoints which will continue the growth of abnormal cells. 

Cancer cell progression due to loss of cell cycle control, usually happens when a tumour 

suppressor gene loss its function, or when an oncogene becomes activated (Lane, 1992).  

 

Typical oncogenes include human epidermal growth factor receptor 2 (Her2), Myc 

whereas, retinoblastoma protein (pRb) and p53 are typical tumour-suppressor genes. 

Invading other tissue is another feature of cancer cells, which normal cells do not have; 

this process is known as metastasis (Chaffer and Weinberg, 2011). According to cancer 

research UK (CRUK), in 2014, there were approximately 356,860 of new patients 

diagnosed with cancer, which led to 163,000 cancer related deaths (CRUKa, 2014) 

Among all types of cancer; lung, bowel breast and prostate cancers are the most 

predominant ones in the UK (CRUKb, 2014). Cancer is one of the major cause of death 

in the UK and throughout the world. Depending on the cell and tissue of origin there are 

more than 200 different types of cancer (CRUKb, 2014).  

 

Cancer is a complex disease and tumorigenesis involves a number of steps and 

transformation processes in which a normal cell transforms to a cancerous cell have been 

classified as hallmarks of cancer (Hanahan and Weinberg, 2011). These hallmarks are 

shown in Figure 1.1. The question is how many regulatory disruptions can a cell endure 

before the cell becomes cancerous. Hanahan and Weinberg proposed a set of 

characteristic properties of cancer in 2000, which are considered as hallmarks of cancer. 
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One of these hallmarks is that cancer cells become resistant to signals that would normally 

halt cell growth and proliferation. Another hallmark is the independency of cancer cells 

from external proliferative signals as a result of mutation in their growth factor signalling 

cascade. Moreover, evading stimuli that causes apoptosis is another ability of cancer cells. 

An increase in ultimate replication potential is another hallmark of cancer.  Another very 

important characteristics of cancer is cell migration and invasion also known as 

metastasis, where cancer cells can invade into blood and lymph vessels (Hanahan and 

Weinberg, 2011). Cancer cells not only survive under stress conditions but also have the 

ability to grow under conditions such as oxygen starvation, which contributes to 

tumorigenic potential.  A common feature of the tumour microenvironment is deprivation 

of oxygen, which leads to induction of new blood vessels known as tumour angiogenesis. 

What facilities the invasion and metastasis of growing tumours is tumour angiogenesis.  

 

 

 
Figure 1.1. The hallmarks of cancer. 

Schematic diagram of hallmarks of cancer (Adapted from Hanahan and Weinberg, 2011). These hallmarks 

feature key underlying reason of rapid evolution of cancer cells as well as tumour features.  
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1.2 Cell cycle regulation 

 

The proliferative activity of cells in healthy tissues is closely regulated to avoid neoplastic 

growth and maintain homeostasis (Rhind and Russell, 2012). There are checkpoint 

controls known as cyclin proteins and the associated cyclin-dependent kinases whose job 

is to monitor the four phases of cell cycle. For cancer cells to prosper they need to 

overcome anti-proliferative signalling. The Retinoblastoma (RB) pathway funnels the 

majority of these signals, however cyclin Ds and their partners CDK4/6 may inactive the 

RB proteins. Inactivation of RB pathway may be the result of amplification in Cylin D1, 

CDK4 and CDK6 or direct loss of RB which results in perturbation of the RB pathway 

and have been associated with breast cancer (Herschkowitz et al., 2008; Knudsen and 

Knudsen, 2008; Rhind and Russell, 2012).   

 

1.3 The normal human breast anatomy  

 

Normal breast is situated over the pectoral muscles of the chest, which is comprises of, 

glandular, fatty and fibrous tissues. It is during three phases: embryonic, adolescent and 

adult phase that developmental of mammary gland occurs and each phase is regulated 

differentially.  While embryonic branching is hormone dependent, estrogen and ERa are 

required for adolescent branching, and progesterone for adult side-branching 

(Bocchinfuso et al., 2000). Production of the milk for new born is through a highly-

specialized organ, the breast (also known as mammary gland) (Sternlicht, 2006). The 

three main components of the breast are lobules, ducts and the stroma (Figure 1.2). 

Production of milk is through the lobules and the tube-like structures which called ducts 

are responsible for carrying milk from the lobule to the nipple within the breast tissue.  

 

The initiation of human breast development which is a progressive process, starts during 

embryonic life, further growth depends on the high levels of estrogen that are produced 

by ovary and progesterone during puberty. Processes such as proliferation and invasion 

that happens during normal mammary development also occurs in malignant diseases, 

and development or progression of cancer have been linked to pathways that influence 

ductal branching (Sternlicht, 2006). 
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Figure 1.2.Schematic representation of mature human mammary glands. 

[figure adapted from(Society, 2013)].  

 

 

1.4 Breast cancer 

 

Breast cancer is the most common cancer in women in the United Kingdom, and second 

most common cause of cancer death. There are 150 cases of breast cancer being diagnosed 

every day in UK according to CRUK, which accounts for 15% of all new cancer cases in 

the UK (CRUKb, 2014). It has been estimated by CRUK that 1 in 8 women in the UK 

will develop breast cancer during their life time. Since 1970, the incidence of breast 

cancer has been rising however the survival rate has been increasing over the last twenty 

years. Reduction in risk of relapse and long-term survival has been achieved through, 

advances in approaches to treat breast cancer including, radiation, chemotherapy and 

hormone therapy (Jones and Buzdar, 2004). Compared to 1970 survival rate in UK that 

was 5 out of 10 in breast cancer patient in the UK, survival rate has been improved to 8 

out 10 (CRUKd, 2012). 
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1.5 Breast cancer risk factors 

 

Risk of developing cancer in a person depends on various different factors. Although 

estrogen exposure remains the main potential risk factor of developing breast cancer, 

obesity, alcohol consumption, and genetic susceptibility are counted as risk factors. It was 

shown in 19th century that in women with advanced breast cancer, bilateral oophorectomy 

(removal of ovaries) resulted in reduction in tumour size (at least in a proportion of 

women) (Ali and R Charles Coombes, 2002). So, the connection between estrogen and 

breast cancer has been well stablished. In 1930s estrogen was identified as the ovarian 

hormone that promoted mammary tumorigenesis in animal models (Södersten, 2015). 

 

1.5.1 Hormonal factors 

 

Extensive exposure to estrogen is directly associated with risk of breast cancer. Late 

menopause, nulliparity and early menarche are factors that are related to increase in 

estrogen exposure throughout a woman’s lifetime (Clemons and Goss, 2001). High levels 

of endogenous sex hormones like androgens and estrogen in the circulation have been 

associated with developing breast cancer (Key et al., 2002). Not only endogenous 

estrogen, but the use of exogenous hormones like contraceptive pills and hormone 

replacement therapy that contain estrogen, have been linked with significant increase in 

developing breast cancer. It is believed that during pregnancy the breast epithelial cells 

are converted into a more stable state hence, a reduction in breast cancer risk have been 

linked to younger age at first pregnancy (Amir et al., 2010). A lower risk of developing 

breast cancer has been associated with breast feeding, possibly due to the loss of estrogen 

in breast milk and ovulatory delay (Millikan et al., 2008; Amir et al., 2010). 

 

1.5.2 Family history and age 

 

It has been demonstrated in many studies that women with a family history of breast 

cancer have higher risk of developing breast cancer, approximately twice the risk  (Nelson 

et al., 2012). According to the age at which the relative developed cancer, type and 
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number of relatives affected the extent of this risk varies. Also, mutations in one of the 

breast cancer susceptibility genes results in breast cancer (Mangia et al., 2011). 

 

Exposure to carcinogenic agents or epigenetic changes can cause DNA damage, when 

certain mutations in DNA cause loss of function of tumour suppressor genes and 

uncontrolled oncogenes activation can cause normal breast to become cancerous. In case 

of breast cancer, a mutation in BRCA1 (Breast cancer type1 susceptibility protein) and 

BRCA2 (Breast cancer type2 susceptibility protein) genes, can be inherited from a parent. 

BRCA1 and BRCA2, are involved in DNA damage repair and transcriptional regulation 

and both are tumour suppressor genes. Mutated version of BRCA1 and/or 2 genes, are 

unable to perform their normal function of homologous recombination and DNA repair 

properly, hence promoting breast cancer occurrence (Scully and Livingston, 2000; 

Welcsh and King, 2001). 

 

BRCA1/2 proteins both play a pivotal role in repairing DNA damage by utilising identical 

sister chromatids through a process called homologous recombination (HR). When 

BRCA1/2 proteins lose their normal function due to mutations, cells become susceptible 

to follow alternative repair pathways such as single-strand annealing or non-homologous 

end joining (Turner, Tutt and Ashworth, 2004). BRCA1 is known to regulate estrogen 

metabolism through many different enzymes, one example is CYP1A1 hence loss of 

BRCA1 may particularly result in estrogen-driven tumours (Savage et al., 2014). 

 

1.5.3 Mammographic density  

 

One of the recognised risk factor of breast cancer is percent mammographic density 

(PMD), which reflects the proportions of fat, epithelial and stromal tissue that shows a 

dense appearance at mammography (Boyd et al., 2011). A study by Boyd et al in 2011 

showed that indeed the mammographic density is associated with risk of breast cancer. In 

mentioned study, they compared two groups of patients, one group with more than 50% 

PMD and the other with less than 10% and it turned out that an increase in risk of 

developing breast cancer can be seen in women with more than 50% PDM.  
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1.6 Stages of breast cancer 

 

According to diverse criteria breast cancer can be classified by stages or subtypes, such 

as pathological state, tumour and molecular subtype classification (Reis-Filho and 

Pusztai, 2011). When a patient is diagnosed with breast cancer, doctors will assess the 

size of the tumour, and whether it has metastasised (staging (Figure 1.3)).  To identify the 

stage of a cancer TNM (tumour, modes, metastasis) system is usually used, which often 

categorises breast cancer into four stages. 

 

Stage 1: means that the cancer hasn’t spread outside of the breast, and is relatively small. 

Stage 2: is when the size of the tumour is often larger than stage 1, and sometimes the 

cancer has been spread into lymph nodes under the arm. Stage 3 is when cancer cells can 

be found in quite few lymph nodes under the arm. Stage 4 is when the cancer has 

metastasised into other parts of the body, such as lungs, liver, bone or brain (Breast cancer 

grades and stages | Breast Cancer )  

 

 

 

 
 

Figure 1.3.Stages of breast cancer.  

[figure adapted from (Breast cancer grades and stages | Breast Cancer Now)] 
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1.7 Molecular sub-types of breast cancer  

 

A patient is diagnosed with breast cancer, usually through presentation at symptomatic 

breast clinics with a lump or screening programme (Simpson et al., 2005). However, some 

patients present with other symptoms rather than lump such as nipple discharge, skin 

dimpling and inflammation. Based on tumour size, lymph node and metastasis breast 

cancer can be classified into different stages. Accurate staging is important to achieve 

optimal treatment surgery and determining patient prognosis. Breast cancer arises either 

from ductal or lobular tissues, primarily classification of breast cancer is carried out 

through histopathology.   

 

Breast cancer is subdivided into non-invasive and invasive according to histopathological 

classification (Reiner et al., 1988) (Figure 1.4). Non-invasive breast cancer patients are 

those that, the cancerous cells remain within the breast tissue, in other word the cancer 

hasn’t metastasised. In case of invasive breast cancer, cancer cells have the ability to 

spread outside the membrane of the milk duct or lobule into the surrounding tissues, and 

can then migrate even beyond to other organs as well as the lymph nodes in the armpit. 

70% to 80% of all breast carcinomas are invasive ductal carcinoma (IDC), which is the 

most common type of invasive breast cancer, whereas invasive lobular carcinoma is less 

common and accounts for about 10% (Reiner et al., 1988). In addition to these two major 

types, there are other types of breast cancer which are rare such as inflammatory breast 

cancer, tubular carcinomas and medullary breast cancer (Mallon et al., 2000).  

 

In clinical practice biomarkers are important for early detection, prognosis and therapy of 

breast cancer patients. Three important biomarkers of breast cancer include: Estrogen 

Receptor (ER), Progesterone Receptor (PR) and HER-2 receptors, which are important in 

treatment decision. Breast cancer is classified into luminal, HER-2 positive, and triple 

negative subtype (van de Ven et al., 2010). Approximately 70-75% of breast cancer cases 

are ER positive which means they express the estrogen receptor, which makes estrogen 

inhibition an important target for breast cancer therapy (Fisher et al., 2001). 
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1.7.1 Luminal A 

 

Approximately 50-60% of all breast cancer cases are luminal A subtype. Identification of 

luminal A tumour subtype can be achieved through immunohistochemistry by positivity 

for ER or PR and negativity for Her2 antibody (Blows et al., 2010). This subtype 

expresses luminal clusters of genes including forkhead box A1 (FOXA1) and GATA-

binding protein 3 (GATA3). Generally luminal subtype express estrogen receptor, which 

responds to endocrine therapy such as tamoxifen and aromatase inhibitors. 

 

1.7.2 Luminal B 

 

About 10-20% percent of all breast cancer cases are luminal B tumour (Blows et al., 

2010), this subtype just like luminal A subgroup are ER and/or PR positive, however 

overexpression of Her2 can be observed in this subtype (Cheang et al., 2008). Compare 

to luminal A this sub-group has more aggressive phenotype, treatment for this subtype is 

the combination of tamoxifen and neoadjuvant chemotherapy (Eroles et al., 2012). 

 

1.7.3 Her2 positive tumours 

 

About 10-25% of all breast cancers accounts for this subtype (Eroles et al., 2012). As the 

name suggests in HER2 subtype, high expression of human epithelial growth factor 

receptor 2 (HER2) is detected and are ER and PR negative, these patients respond to anti-

HER2 therapy (Weinberg, 1995), these patients often have a poor prognosis, with about 

52-55% survival rate after 10 years (Cheang et al., 2008). 

 

1.7.4 Basal-like tumours 

 

The absence of all three breast cancer biomarkers ER, PR and HER2 is the most important 

characteristic of this subtype. Hence, they usually are referred to as triple negative breast 

cancer (TNBC). TNBC, which has much more aggressive phenotype and it is the most 

difficult one to treat, and treatment is usually with chemotherapy (Milioli et al., 2017). 

This type approximately accounts for 15% of breast cancers (Foulkes, Smith and Reis-
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Filho, 2010), the immunohistochemical staining for this group of tumours are negative 

for ER, PR and Her2 overexpression.   

 

 

 
 

 

Figure 1.4.Breast cancer classification and its subtypes.  

[modified version (Sandhu et al., 2010)]. 
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1.8 Oncogenes and tumour suppressor genes of breast cancer 

 

In approximately 25% of patients with primary breast tumours somatic activating 

mutation in the PIK3CA oncogene have been observed. A transducer of growth factor 

signalling known as phosphoinositide-3-kinase (PI3K) is encoded by PIK3CA oncogene. 

Cancer cell will grow independent of external stimulus when PIK3CA continuously 

activates PI3K (Lee and Muller, 2010). Also, an increase in invasive and metastatic 

potential of breast cancer have been monitored through PI3K signalling via Akt kinases 

(Dillon, White and Muller, 2007). Therefore, acquisition of several necessary hallmarks 

for progression and initiation of breast cancer is likely through PIK3A oncogene.  

Antagonising PIK3 signalling through tumour suppressor phosphatase and tensin 

homologue (PTEN) leads to induction of apoptosis and repression of angiogenesis and 

invasion (Dillon, White and Muller, 2007). Loss of function germ line mutations in PTEN 

gene have been associated with higher risk of developing breast cancer. 

 

TP53 is another tumour suppressor gene, encoding p53. Stimulating cell cycle 

checkpoints and response to pro-apoptotic signals and controlling the expression of 

numerous other genes are governed by p53. Hence loss of function in p53 function leads 

to harmful mutations and uncontrolled cell cycle entry of cells (Lee and Muller, 2010). 

 

As mentioned before an increase in risk of developing breast cancer is associated with 

inheriting mutations in the tumour suppressor genes BRCA1 and BRCA2. Mutations in 

BRCA1 or BRCA2 tumour suppressor genes have been associated with higher risk of 

developing breast cancer. BRCA1 and BRCA2, are involved in DNA damage repair and 

transcriptional regulation and both are tumour suppressor genes. Mutated version of 

BRCA1 and/or 2 genes, are unable to perform their normal function of homologous 

recombination and DNA repair properly, hence promoting breast cancer occurrence 

(Scully and Livingston, 2000; Welcsh and King, 2001). 

 

Approximately 15-30% of breast cancer cases have been seen to contain overexpressed 

HER2 expression, Erb2 breast cancer associated oncogene encodes HER2. Increase 
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recurrence, lymph node metastases and poor prognosis has been linked to HER2 

overexpression (Burstein et al., 2007). 

 

1.9 Breast cancer diagnosis and therapies  

 

Several diagnostic procedures could be taken into account for a woman at normal risk of 

breast cancer. Apart from the clinical breast exam by health care professionals, there are 

number of imaging techniques of paramount importance in early detection of breast 

cancer such as X-ray mammography, ultrasound and magnetic resonance imaging (MRI) 

(Wruk, 2008). The possibility of cancer occurring increases if an abnormality is seen in 

any of the above-mentioned imaging techniques, however the only definitive way to 

determine whether cancer is really present is to do biopsy. An abnormal growth or 

changes in breast tissue before it can even be felt, can be detected with mammography, 

hence it is gold standard for early detection and screening breast cancer (Nelson et al., 

2009). Screening and diagnostic are two different type of mammography, as the name 

suggests the former (screening) is done to improve the chance of detection. The latter 

(diagnostic) is performed in patients who have symptoms and the main purpose of this 

type of mammography is to determine the size and location of the tumour as well as 

looking for any migration to surrounding tissues.  

 

The most appropriate treatment can be determined based on stage and grade of the 

tumour.  Removal of the tumour mass by surgery is usually offered to patients having 

localised breast cancer. To manage the risk of relapse surgery is often combined with 

radiation, adjuvant chemotherapy and endocrine therapy. In case of metastatic breast 

cancer systemic therapies such as chemotherapy and/or endocrine therapy are also used 

(Makhoul and Kiwan, 2011). To penetrate cancer tissues, radiotherapy is used. Depending 

on the type of cancer, stage, grade, and its location, radiotherapy treatment varies. 

Sometimes in order to increase the effectiveness of the surgery, radiotherapy is 

administered pre-surgery to reduce the tumour size.  

 

Chemotherapeutic drugs mode of action is to target rapidly dividing cancer cells rather 

than normal mammary epithelial cells, by affecting pathways of cell growth and DNA 
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synthesis.  Alkylating agent cyclophosphamide is often used as a chemotherapeutic agent 

in combination with doxorubicin which is a DNA intercalating antineoplastic drug. Also, 

sometimes paclitaxel is administered along with these drugs to block mitosis; to prevent 

pyrimidine incorporation during DNA synthesis antimetabolite fluorouracil is advised to 

be taken by breast cancer patients (Berry et al., 2006). 

 

Targeting estrogen signalling pathway to block its proliferative effect on breast cancer is 

carried out by endocrine therapies. In pre-menopausal women estrogen is secreted from 

ovaries in response to luteinising hormone releasing hormone (LHRH), hence blocking 

the secretion of estrogen activity in pre-menopausal women can be achieved by LHRH 

antagonists. Surgical oophorectomy or ovarian ablation is a way of inhibiting oestrogen 

synthesis, in premenopausal women. Ovarian ablation is an effective adjuvant treatment, 

with high survival rate compare to patients who receive chemotherapy alone (Lancet 

(London, England), 1996). The permanent loss of ovarian function is the major 

disadvantage of surgical ovarian ablation. Hence, in order to temporarily supress ovarian 

estrogen production in ovaries, agonists of LHRH have been developed. One example of 

these agonists, is goserelin which inhibits the estrogen synthesis in ovaries by reducing 

the pituitary release of gonadotropins through downregulating LHRH receptors in the 

pituitary (Emens and Davidson, 2003). In premenopausal women with ER positive breast 

cancer goserelin is an effective alternative to chemotherapy.   

 

Compared to other breast cancer treatments there are relatively less side effects associated 

with surgery. In case of radiotherapy during the treatment patients won’t feel any pain, 

however cumulative doses result in tenderness and short-term pain in the localised area. 

Breast cancer patients may experience sickness and weight loss as well. Depending on 

the hormone administered the biological side effects of hormone therapy can vary. Few 

commonly reported side effect includes, diarrhoea, joint pain, nausea. All proliferating 

cells in the body are targeted by chemotherapy agents, this means cancerous cells as well 

as healthy cells, hence adverse side effects can be seen in breast cancer patients undergone 

chemotherapy (nail loss, alopecia, changes in taste and diarrhoea) (Boehmke and 

Dickerson, 2005). Depending on the dose and format of administration the range of side 

effects experienced is different. Two to three weeks following the start of chemotherapy 
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is when the side effects commence. To help manage nausea and vomiting antiemetic 

drugs can be administered (Hesketh, 2009). 

 

In post-menopausal women aromatase inhibitors are used to block the synthesis of adrenal 

androgen to estrogen. Last but not least selective estrogen receptor modulators (SERMs) 

such as tamoxifen are used in both pre-and post-menopausal breast cancer patient to block 

the action of ER.  

 

1.10 Estrogens  

 

It was in 1920’s that estrogen was first described by Edward Doisy (Tata, 2005). Estrogen 

hormones play an essential role in fertility, and are involved in ovulation and pregnancy 

maintenance in females. In addition to female reproduction, the expression of wide range 

of genes in reproductive tract and other areas is known to be influenced by estrogen, like 

maintaining physiological functions of skeletal tissue, cardiovascular and central nervous 

system.  Estrogens are implicated in the maintenance of bone density, spermatogenesis 

and cardiovascular health in males (de Ronde and de Jong, 2011). 

 

The three related hormones that make up the estrogen families in humans are: estrone 

(E1), estradiol (E2) and estriol (E3) (Figure 1.5), which the most biologically active one 

is 17-b-estradiol (E2). E1, is known to be secreted by ovaries during menstrual cycles. 

E2, is produced by ovaries, is the most abundant form of estrogen hormone in the blood 

and is thought to contribute to development of female cancers. Highest levels of E1 and 

E2 are detectable during the follicle maturation and pre-ovulation stages. E3, is only 

produced in significant quantities during pregnancy, being produced by placenta (Gruber 

et al., 2002). 
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Figure 1.5..Structures of normal estrogens. 

Estradiol the most potent intracellular estrogen in human body, estrone and estriol are the weaker agonists 

on estrogen receptor. [structures drawn in ChemDraw]  

 

 

In the elderly, delayed healing process has been linked to estrogen deficiency (Hardman 

et al., 2008). Macrophage migration inhibitory factor (MIF) regulates estrogen anti-

inflammatory effects in the skin, however in a study by (Campbell et al., 2010) it has been 

shown that estrogen promote wound healing independent form its anti-inflammatory 

effects.  In both female and male, the systematic levels of estrogen decreases with age.  

Estrogen beneficial effects on healing became more evident, when taking hormone 

replacement in post-menopausal women resulted in a quicker healing process (Ashcroft 

et al., 1997). 

 

1.11 Estrogen biosynthesis 

 

Fundamentally estrogens are synthesised from cholesterol (Figure 1.6). The formation of 

androgens such as androstenedione and testosterone is through various enzymes that 

metabolises cholesterol. Next in the endoplasmic reticulum of estrogen producing cells, 

the P540 enzyme aromatase convert these androgens to estrogen (SIMPSON et al., 1994). 

During the menstrual cycle in premenopausal women, E1 and E2 are primarily secreted 

by the ovaries. Hypothalamic-pituitary-gonadal tightly regulate the secretion of ovarian 

estrogen. In anterior pituitary glands release of luteinizing hormone (LH) and follicle-

stimulating hormone (FSH) is stimulated by LHRH which is produced in hypothalamus. 
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In the theca cells in the ovary production of the steroid hormone androstenedione (AD) 

and testosterone (T) is stimulated by LH, whilst in granulosa cells FHS stimulates the 

P540 enzyme, which converts AD to E1 and T into E2.  

 

Estrogens that are produced in ovaries circulates in the body and act on their target tissues 

after being released into the blood stream. Estrogen can inhibit hypothalamic LHRH and 

pituitary LH through a negative loop (Auchus and Auchus, 2012). Following the decline 

in ovarian function in postmenopausal women the serum level of estrogen in lowered in 

the body. In post-menopausal women estrogen biosynthesis involves aromatization of 

circulating adrenal in tissues such as brain, adipose tissue, the cardiovascular system and 

bone (Gruber et al., 2002). 

 

Estrogen biosynthesis occurring in the ovaries which is the systematic source of estrogen 

production that changes to local synthesis in the peripheral tissue after menopause. 

Although the local estrogen synthesis occurs at younger age, it is only when the 

systematic loss its function that the local estrogen synthesis becomes important. However, 

the amount of estrogen produced by local tissues is not enough compensate the shortage 

of estrogen in systemic levels. Aromatase is believed to play an important role in 

providing supply of estrogen in adipose tissue of skin of the elderly of both genders 

(Purohit and Reed, 2002). 
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Figure 1.6.The biosynthesis of estrogen. 

Hormone synthesis facilitated by members of Cytochrome P450 (CYP), Aldo-keto reductase (ARK) and 

Hydroxysteroid dehydrogenase (HSD) enzyme family [figure adapted form Blair, 2010]. 

 

1.12 Breast cancer and anti-estrogen agents 

 

The development of endocrine therapies to inhibit receptor activation, either through use 

of estrogen antagonists or inhibition of estrogen biosynthesis started when researchers 

realised that estrogen regulates breast cancer (Lewis and Jordan, 2005). Significant 

improvement has been seen in life expectancy of many breast cancer patients since the 

discovery of tamoxifen. Tamoxifen downregulates estrogenic signalling within the cells 
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by inhibiting the binding of estrogen to ERa. Tamoxifen is used routinely in ER positive 

breast cancer patients in clinics (Jordan, 2003; Osborne and Schiff, 2011). It was in 1950s 

that tamoxifen was discovered, and classified in a group of drugs called selective estrogen 

receptor modulators (SERMs) (Riggs and Hartmann, 2003; Cuzick et al., 2013). SERMs 

(Figure 1.7) are able to preserve beneficial action of estrogen in tissues like bone, 

cardiovascular system and brain, while antagonizing the undesirable effects of it. (Jordan, 

2004; Osborne and Schiff, 2005). For past three decades’ tamoxifen has been used as the 

primary adjuvant endocrine agent. Reduction of mortality in ERa positive breast cancer 

patient by a third has been shown in patients that received 5 years of adjuvant tamoxifen 

treatment. Use of tamoxifen has been linked to some beneficial effects such as, lowered 

cholesterol level, reduced heart attack and atherosclerosis (Fisher et al., 2005). Common 

side effect of tamoxifen treatment is the occurrence of hot flushes which is due to 

antagonising estrogen function in the brain (Benson, 2002). Primary function of 

tamoxifen is to antagonise estrogen function, however in many other tissues that are 

targeted by estrogen such as cardiovascular system, bone and endometrium it has agonist 

properties (Lewis and Jordan, 2005). 

 

Although an enhanced risk in endometrial proliferative disorders, like hyperplasia in 

breast can patients undergoing endometrial assessment prior to tamoxifen administration 

have been monitored, tamoxifen ability to increase the chances of a patient of developing 

endometrial lesions is one of the most detrimental side effect of it in postmenopausal 

females. It is the accumulative longer duration of usage that has been linked to endometria 

cancer rather than the daily dosage of the drug (Hu, Hilakivi-Clarke and Clarke, 2015). 

 

Raloxifene is another SERM that has been used an estrogen antagonist in breast tissues, 

and it is been used in postmenopausal women to prevent osteoporosis. The binding mode 

of raloxifene and estradiol was compared by (Brzozowski et al., 1997), and revealed that, 

since both estradiol and raloxifene can make key hydrogen binding interaction through 

their hydroxyl group, and that although they have different binding mode but they both 

bind within the same region of LBD domain of ERa (Brzozowski et al., 1997). An 

antagonist conformation occurs by ERa, upon raloxifene binding which results in 
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blocking the estrogen-induced DNA transcription in both breast and the endometrium 

(Grese et al., 1997).   

 

Compared to tamoxifen treatment that observed an increase in uterine cancer these 

findings were a clear improvement. A comparison treatment on women at high risk of 

developing breast cancer for five years showed that although raloxifene is not as effective 

as tamoxifen it can reduce the incidence of breast cancer (Voegel et al., 1996). 

Furthermore, women who received raloxifene suffered from less side effects (uterine 

hyperplasia, lower incidence of endometrial cancer) compared to those who received 

tamoxifen. Compared to tamoxifen raloxifene seems to exert less agonist side effects on 

the same tissue (Voegel et al., 1996).  

 

 
 

Figure 1.7.Chemical structure of SERMs.  

Structure of two common SERMs raloxifene and tamoxifen [structures drawn in ChemDraw]. 

 

 

A newer class of drugs are aromatase inhibitors (AIs), often used in post-menopausal 

female breast cancer patients, there are two types of these classes of drugs: type I 

(steroidal or irreversible) and type II (non-steroidal reversible) (Brueggemeier, 1994) ( 

Figure 1.8). Aromatase is an enzyme expressed in several tissues including, liver, muscle, 

mammary adenocarcinoma, and normal breast tissue. Aromatase is product of the CYP19 

gene which is part of cytochrome P-450 super family.  AIs mode of action involves 

inhibiting the enzyme aromatase, which is involved in catalysing androstenedione 

conversion to estrogen in peripheral tissues; these tissues are the predominant source of 
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estrogen in postmenopausal women who have undergone ovarian ablation (Johnston and 

Dowsett, 2003).  

 

According to potency of the AIs to inhibit the aromatase enzyme they are classified as 

first, second and third generation. Anastrozole, letrozole and exemestane ( 

Figure 1.8) are from third generation of AIs known to reduce circulating estrogen up to 

98% (Geisler et al., 2001).  By binding to the cytochrome P450 site in the aromatase 

complex, letrozole and anastrozole inhibit aromatase function. Whereas exemestane, 

which is analogous of androstenedione, in competition with natural substrates binds 

strongly to the aromatase enzyme (Johnston and Dowsett, 2003).  

 

 
 

Figure 1.8.Chemical structure of Aromatase Inhibitors.  

Anastrozole, Exemestane and Letrozole three Aromatase Inhibitors that are often used in clinical practice 

[structures drawn in ChemDraw]. 

 

 

Hormonal therapies especially tamoxifen, have been widely used in breast cancer 

treatments, however what limits the efficacy of the treatment is tamoxifen resistance. As 

well as becoming resistant to the treatment, developing side effects of the medications is 

another problem (Ring and Dowsett, 2004).  Therefore, the need for better therapeutic 

efficacy and overcoming endocrine resistance continues.   
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1.13 Introduction to the nuclear receptor (NR) superfamily 

 

The nuclear receptor (NR) family includes a diverse but related range of transcription 

factors, which includes nuclear hormone receptors and orphan nuclear receptors (Olefsky, 

2001). One of the major classes of transcriptional activators are nuclear hormone 

receptors; they regulate gene expression through interacting with specific DNA sequences 

of target genes. The nuclear hormone receptors form a super-family of intracellular 

transcription factors, activated by ligand binding (Aranda and Pascual, 2001). It has been 

shown that abnormalities in NR signalling cascade can cause diseases such as diabetes, 

cancer, obesity and infertility (Mangelsdorf et al., 1995; Gronemeyer, Gustafsson and 

Laudet, 2004).  

 

Based on receptor function, cellular localization and evolutionary relatedness nuclear 

hormone superfamily can be dived into two types. Type I nuclear hormone receptors 

include the steroid hormone receptors: androgen (AR), glucocorticoids (GR), estrogen 

(ER) and progesterone (PR) receptors. Translocation of some of these receptors from 

cytoplasm to nucleus is facilitated through association with co-chaperons (PP5, FKBP52) 

(Pratt et al., 2004), where they associate with DNA response elements of target genes 

(Mangelsdorf et al., 1995). Type II nuclear hormone receptors include: Vitamin D, 

retinoic acid, and retinoid X receptor. Type II nuclear hormone receptors are located in 

the nucleus unlike type I, and in the absence of hormone they act as transcriptional 

repressors (Germain et al., 2006).  

 

All members of nuclear hormone receptors share common structural features: the 

transcriptional activation function called AF-1 which is generally referred as A/B domain, 

the DNA binding domain (DBD), the hinge region and the ligand binding domain (LBD) 

(Dahlman-Wright et al., 1995). The DBD consists of two unique motifs to NRs known as 

zinc-fingers, they target specific DNA sequences called hormone response elements 

(HRE) (Kumar and Thompson, 1999). Depending on the nature and context of the ligand 

that binds to the receptor, LBD promotes chromatin remodelling and chromatin 

modification by recruiting transcriptional coregulatory complexes hence gene activation 
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or repression happens. The C-terminal of LBD consists 12 helices and contain the AF-

2(Sonoda, Pei and Evans, 2008) (Figure 1.9).  

 
 

 
 

Figure 1.9.Schematic presentation of the functional domains of the steroid hormone receptor group. 

The nuclear hormone receptors have a common functional structure containing 2 activation functions: AF-

1 and AF-2 located in the N terminal and ligand binding domains respectively.  The DNA binding domain 

(DBD) is located towards the centre and is next to a hinge region.  The ligand binding domain is found 

towards the C terminus (adapted from (Sonoda, Pei and Evans, 2008). 

 

More detailed mechanism of ER in particular ERa, LBD and DBD are explained below, 

which is the main interest of this study.  

 

1.14 Structure and mechanism of action of estrogen receptor 

 

Binding of two estrogen receptors, ERa and ERb which are encoded on chromosomes 

6q25.1 and 14q23-2.1 (Figure 1.10) respectively, mediates the biological action of 

estrogen. It was in 1996 that oncologist became aware of estrogen receptor beta (ERb), 

its widely expressed in prostate the expression of ERbhas been seen in both normal and 

malignant breasts (Palmieri et al., 2002). ERa  and ERb have high similarity in the DNA 

binding and hormone binding domain though they are transcribed from different genes 

also they have different effect in the cells, while ERbactivity is more relevant in non-

reproductive development, ERa is essential for reproductive development (Maggi, 2011). 

It has been proposed that ERb has lower transcriptional activity, which might be due to a 

repression domain in ER-beta amino-terminus, which lowers the efficiency of this 

receptor (Maggi, 2011). In ERa knockout mice a very little mammary ductal growth was 

observed whereas normal development of mammary gland with regular ductal branching 

were observed in ERb knockout mice, this highlights the importance of ERa in mammary 
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ductal growth (Zilli et al., 2009). Similar knockout studies in other tissues like bone and 

uterus also showed ERa plays an important role in their development than ERb (Couse 

and Korach, 1999).  

 

It was in 1986, that human ERa gene was cloned (Pinzone et al., 2004). The predominant 

mediator of estrogen action is ERa, and as ERa expression has been seen in breast cancer 

patients makes the importance of ERa significant in breast cancer. In breast cancer 

estrogen receptor alpha (ERa) has been of special interest among all the others steroid 

hormone receptors, because elevated level of ERa  has been seen in premalignant and 

malignant breast cancer compared to normal tissue (Sommer and Fuqua, 2001).  

 

The C region of both ERa/ERb encodes the DBD, which comprised of two zinc finger 

motifs. In promoters of estrogen-regulated genes, DBD mediates the binding of estrogen 

to specific DNA sequence known as estrogen response element (ERE). The specificity of 

receptors for its response element, is determined by the so-called P-box which comprises 

of the amino acids located in the C-terminal end of the first zinc finger (Green et al., 

1988). The receptor dimerization between DBDs is mediated by the second zinc finger, 

containing amino acid residues so-called D-box (Schwabe et al., 1993) (Figure 1.10). 

ERa and ERb either as homodimers or heterodimers bind to palindromic DNA response 

elements matching to the 5’-AGGTCANNNTGACCT-3’ consensus ERE sequence 

(Nilsson and Gustafsson, 2002). Region D or the hinge region of ERa seems to be 

involved in coregulatory protein binding, and also a site for post-translational 

modifications (Sentis et al., 2005). 

 

One of the poorly conserved regions between ERa and ERb is the A/B region, this region 

is required for transcriptional activation by ERa, as a reduction in ERa activation of 

reporter genes in a cell specific manner have been monitored in cells lacking A/B region 

(Kumar and Thompson, 1999). Activation function 1 (AF-1) actives gene expression in 

an estrogen-independent manner in the absence of LBD (Berry et al., 1990). However, 

ERa and ERb require functional synergy with a transcription activation function in the 

LBD to complete transcriptional activation (Ascenzi, Bocedi and Marino, 2006).  
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The LBD is the carboxy-terminal E/F domain, and through its activation function 2 (AF-

2) mediates ligand binding and transactivation of target gene expression (Evans, 1988). 

The second most conserved domain between ERa and ERb is the LBD domain. A short 

a-helix motif with the consensus sequence LXXLL (where L is leucine and X is any 

amino acid), mediates the interaction of many coactivators with LBD of NR superfamily 

(Feng et al., 1998). 

 

 

 
 

Figure 1.10.Schematic representation of ERa and ERb common structural and functional domains. 

Domains of the ERa and ERb receptor are indicated from A to F. Different regions are indicated as, 

transcriptional activity, DNA binding, hinge region, ligand binding and interaction with co-activators and 

co-repressors.  

 
 

1.15 Control of gene expression  

 

Gene expression is the main regulatory mechanism that ensures controlled and 

appropriate cellular response to external signals. DNA is transcribed into RNA which is 

translated into protein, this process is called gene expression. The production rate at which 

functional proteins are produced, is regulated during the gene expression process at levels 

of transcription and also post-translational levels. 
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Three enzymes RNA polymerase I, II and III are responsible for gene transcription. All 

three enzymes rely on transcription factors to recognize the promoter sequences, in order 

to start transcription of their specific target genes. Transcribing large ribosomal RNA 

genes is through RNA polymerase I, whereas RNA polymerase II transcribes mRNA and 

small nuclear RNA (snRNA) (Nikolov and Burley, 1997). Ribosomes are molecules 

which are involved in synthesis of proteins, RNA Pol I transcribes ribosomal RNAs into 

ribosomes. The most abundant class of RNAs in the eukaryotic cells are rRNAs (Stults et 

al., 2008).  

 

RNA polymerase II targets gene promoters that contain one core and one regulatory 

region. Generally, the core promoter domain includes a TATA box, an initiator and 

promoter elements. There are so called “TATA less” promoters as not all promoters 

contain TATA box. Generally, RNA polymerase III transcribes genes which encode 

structural or catalytic RNAs such as the components of protein synthesis, and tRNA 

processing complexes (tRNAs are responsible for transferring amino acids to growing 

polypeptides) (Nikolov and Burley, 1997).  

 

Several proteins are needed to facilitate and start the transcription, by RNA polymerase. 

These proteins bind to promoter region of every genes are called general transcription 

factors (GTFs). Coordinated action of GTFs initiates transcription, which includes TFIIA, 

TFIIB, TFIID, TFIIE, TFIIF and TFIIH and the RNA polymerase core enzyme. For pre-

initiation complex (PIC) formation to form, binding of GTFs to the core promoter occurs 

in an ordered manner and as result facilitate the recruitment of RNA polymerase to the 

promoter and transcription start site (TSS) (Figure 1.11) (Nikolov and Burley, 1997).  

 

TATA promoter element which is situated 25 bp upstream of the TSS is the core promoter 

element that controls the positioning of Pol II and TFIID complex, which is the first 

transcription factor recruited to the promoter (Nikolov and Burley, 1997). 

 Recognition and binding of TFIID to the TATA box, is through TFIIDs TATA box 

binding protein (TBP). TFIIF and non-phosphorylated Pol II then bind, followed by 

TFIIE and TFIIH recruitment (Nikolov and Burley, 1997). 
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 Once the PIC is assembled, the next step is initiated once NTPs become available, which 

leads to strand separation at the TSS to give an open complex. The large subunit of Pol II 

is then phosphorylated, resulting in transcription initiation, subsequently followed by Pol 

II promoter release (Nikolov and Burley, 1997).  

 

 

 
  

Figure 1.11.Process of transcription. 

Diagram showing the process of transcription initiation that involves the recruitment of general 

transcription factors (TFIID, B, F, E and H) to the DNA to form the PIC (pre-initiation complex) [Adapted 

from (Nikolov and Burley, 1997)n]. 

 

Only low levels of transcriptional activity (basal levels of expression) are produced 

through the binding of GTFs. There are other sequence-specific TFs that increase or 

decrease the transcription by binding to regions of DNA celled enhancers and silencers 

(Trapnell et al., 2010).  
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Usually a general mediator complex, and a number of proteins that do not bind to DNA 

themselves so called cofactors, aid the interaction between specific TFs and the factors 

assembled at the promoter. The common parts of every transcriptional machinery are the 

mediator complex and the GTFs, however cofactors and TFs can vary for each gene.  

 

 

1.16 Transcriptional regulation by nuclear hormone receptors 

 

Gene transcription through nuclear hormone receptors occurs either by directly binding 

to DNA or by protein-protein interactions, with direct DNA binding being a more 

common mode of nuclear hormone receptors gene targeting. Specific hormone binding 

to its cognate nuclear hormone receptor activates the protein and allows subsequent 

transcriptional regulation. In case of type I nuclear hormone receptors, ligand binding 

induces conformational change that exposes the nuclear localization signals, which then 

leads to nuclear hormone receptor mediated recognition of the specific DNA sequence in 

target genes. Whereas in type II, the interaction between hormone and nuclear receptors 

are in an unliganded manner, which means transcription starts with help of coactivators 

(Roeder, 2005; Wolf et al., 2008).  

 

1.16.1 Estrogen signalling  

 

1.16.2 Estrogen signalling genomic pathway  

 

ER classical paradigm involves three steps: ligand binding, receptor dimerization and 

DNA binding at ERE containing the gene promoter, which then leads to initiating 

transcription by recruiting transcriptional coregulatory protein and RNA polymerase II. 

Upon entering the cells estrogen binds to the ligand binding domain of the target receptor, 

and receptor dissociates from chaperon protein by undergoing a conformational change 

(Pratt et al., 2004). A genomic interaction occurs between the estrogen receptor (ER) and 

specific sequence of DNA known as estrogen response elements (ERE) (Marino, 

Galluzzo and Ascenzi, 2006) and this is known as ER classical pathway (Figure 1.12). 
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ERE classic sequence was found to be composed of two palindromic half-sites 

5’AGGTGAnnnTGACCT3’where n can be any nucleotide (Klein-Hitpass et al., 1986). 

 

However, there are many estrogen responsive genes that do not contain EREs. This is 

when E2 controls gene expression through a non-classical pathway (Figure 1.12). ERa 

can alter gene expression not only in a classic pathway but also in a non-classical manner 

at alternative DNA sequences such as, activator protein-1 (AP-1), specificity protein-1 

(SP-1) and cyclic AMP response elements (CREs) which bind to their specific 

transcription factors, c-jun/c-fos, c-jun/ATF2 and SP-1 respectively (Kushner et al., 2000; 

Saville et al., 2000). Several genes that are involved in growth factor signal transduction 

pathways are regulated by ER non-classical pathway. Cyclin D1, myc and Bcl-2 are 

among the genes whose transcription is induced by estrogen in non-classical pathway 

(Dong et al., 1999).  
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Figure 1.12.Signalling pathway of estrogen receptor. 

In classical pathway when estrogen binds to ER in the nucleus the activated receptor then binds to estrogen 

responsive element of target gene where recruits co-activators to active gene expression. Alternatively, in 

non-classical pathway binding of activated receptor to AP-1 and SP-1 sites, which binds to c-jun and c-fos 

and enhances gene transcription. 

 

1.16.3 Ligand-independent activation of estrogen receptor 

 

However, it is presumed that ERa activation requires ligand binding, several growth 

factors have been shown to stimulate ERa transactivation in absence of ligand, these 

include: epidermal growth factor (EGF), transforming growth factor a (TGFa), heregulin 

(HRG) and insulin like growth factor 1 (IGF-1). Ligand-independent activity also occurs 

as a result of phosphorylation in particular serine of ERa located in AF-1 domain such as 

serine 118 and 167. Phosphorylation of ERa at these residues occurs as a result of 

activation of phosphatidyl-inositol-3-kinase (PI3K) and mitogen-activated protein kinase 

(MAPK) which are growth factor downstream signalling cascade. Indirect modulation of 
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ERa activity through these growth factor signalling pathways can also happen through 

enhancing coactivators activity or inhibiting correpressors activities (Ali and R Charles 

Coombes, 2002; Green and Carroll, 2007). 

 

1.16.4 Estrogen signalling non-genomic pathway  

 

Certain estrogen induced biological effects are simply too rapid, hence it cannot involve 

altered gene transcription or protein synthesis. Direct estrogenic response on the cell 

membrane is the result of rapid estrogenic action. GRP30, which is a G protein coupled 

receptors (GPCRs), have estrogen binding site located on the cell membrane of the cells, 

and non-genomic action of estrogen is believed to be mediated through these proteins. 

Downstream intercellular signal transduction pathways such as AKT and MAPK, gest 

activated as a result of estrogen binding to GPCRs (Simoncini, Rabkin and Liao, 2003; 

Vrtačnik et al., 2014) 

 

 

1.17 Post-translational modifications of ER 

 

ER post-translational modifications (PTMs) influences its transcriptional activity, 

subsellular localization and stability (McKenna and O’Malley, 2002).  Phosphorylation, 

methylation, acetylation and sumolytaion are among the known PTMs (Le Romancer et 

al., 2011).  

 

ERa phosphorylation leads to an increase between ERa an its coactivators (Zwart et al., 

2011), one example is phosphorylation at Y537 of ERa by MAPK kinases, which 

increases cofactor binding efficiency as a result of helix loop conformation. It has been 

suggested that Endocrine resistance could be linked to post-translational modification of 

ERa (Jordan, 2004; Gururaj et al., 2006). Within its AF1 domain (as well as other 

domain) ERa can be phosphorylated at number of different sites including S167 

(Yamashita et al., 2008)S118 (Murphy et al., 2004; Yamashita et al., 2008) S305 (Bostner 

et al., 2013) and threonine-311. Clinical correlation with tamoxifen resistance and S305 

phosphorylation has been shown. It is believed that this is due to increased sensitivity for 
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E2 and decreased inhibition of tamoxifen (Tharakan et al., 2008). Breast cancer patients 

with ERa-S305 positive phosphorylation tend to be resistant to adjuvant tamoxifen 

treatment, however a better recurrence-free survival with tamoxifen treatment have been 

linked to ERa-S305 phosphorylation negative breast cancer (Holm et al., 2009; Kok et 

al., 2011). 

 

Acetylation is another major post-translational modification. Promoting transcriptional 

activation by recruiting several transcription factors and chromatin remodelling 

complexes appears to be a vital role of histone acetylation. Histone Acetyl-Transferases 

(HATs) mediates histone acetylation, CBP, p300 and PCAF are among some of the 

notable HATs (O’Malley et al., 1997a). Importantly, ERa-induced transcriptional activity 

which is associated with histone acetylation is through activity of CBP and p300. The 

formation of a complex between p160 with CBP/p300 and PCAF helps recruiting the 

whole activator complex to the EREs which in turn activates estrogen-responsive 

transcription (Kim, Hsiao and Kraus, 2001; Demarest et al., 2002). In breast cancer 

patients, high expression of p300 is correlated with poor prognosis (Xiao et al., 2011). 

These findings highlight the importance of HATs activity under estrogen-stimulation 

which results in activation of gene expression by interacting with ERa. 

 

1.18 Interaction of ERa with co-repressors and co-activators 

 

It has been shown in vitro that ERa interacts with wide variety of nuclear proteins. 

Coactivators are proteins that can modulate the functional activity of steroid hormone 

family of ligand-dependent transcription factors upon binding to them.  The protein 

family of co-activators and co-repressors are unable to bind to DNA by themselves; 

instead they are recruited to specific gene promoters by transcription factors that are 

coupled to specific genes. Mediating activation or repression of estrogen mediated 

transcription depends on coactivator and corepressor proteins. SERMs like tamoxifen can 

have agonist or antagonist effects depending on balance of coactivator and corepressor 

proteins in a cell. At least 19 different ERa coactivator proteins have been discovered 

over the past 5 years (Klinge, 1999). Co-activators are proteins that act with transcription 

factor to increase the rate of transcription, and are defined according to the nature of 
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interaction with the nuclear factors and their ability to augment gene transcription. Co-

activators are important for the regulation of transcription since they exert positive effects 

on activators, they can be classified into classes, depending on whether they modify 

chromatin or interact with RNA polymerase II and other general transcription factors.  

 

Among the large family of ERa co-regulators, the p160 family is known to be the key 

group. The interaction between ERa and p160 family of proteins, is mediated by 

interaction between the AF-2 region of ligand binding domain of ERa and the p160 

family of coactivators such as SRC-1, SRC-2, SRC-3 and AIB1. There are other 

coactivators of ERa transcription which includes the CREB binding proteins (CBP), p300 

and vitamin-D-receptor-interacting proteins (Nilsson and Gustafsson, 2002).  

 

1.18.1 The p160 coactivator family  

 

The p160 family of coactivator proteins are highly homologous and well-characterised 

coactivators. This family of coactivator constitute the most well characterised family of 

nuclear receptor coactivators and consists of three members: SRC1 (NCOA1), SRC2 

(GRIP1, NCOA2, TIF2), SRC3 (RAC3, p/CIP, ACTR, AIB1) (Oñate et al., 1995; 

McKenna and O’Malley, 2002). The three LXXLL motifs that are located within their 

relatively conserved central region of p160 coactivators are required for interaction 

between this family of coactivator and LBD domain in nuclear receptors (Xu, Glass and 

Rosenfeld, 1999).  For example, GRIP1’s (SRC-2) second LXXLL motif is important in 

ER binding, whereas, the third LXXLL motif is more important for AR and GR binding 

(Ding et al., 1998). The SRC-1 family in the presence of agonist has been shown to 

associate with both ERa and progesterone receptor whereas this association was inhibited 

by antagonists. Several different proteins bind to the SRC family, and as a result of this 

binding recruitment of basal transcriptional machinery or molecules that are involved in 

chromatin remodelling such as, coactivator-Associated Arginine Methyltransferase-1 

(CARM1) and p300/CBP associated factor (PCAF) occurs. Enhancement of the 

transcription is the general effect of these coactivators (Glass and Rosenfeld, 2000).  
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SRC-1 and ACTR which are from family of p160 family of protein, have been reported 

to have intrinsic HAT activity (Lynch et al., 2013) however other coactivators like p300 

or P/CAF have weaker HAT activity compare to SRC-1 and ACTR. There are two 

transcriptional activation domains (AD1 and AD2) that are located in C-terminus of p160 

family (O’Malley et al., 1997b) . The recruitment of CBP/p300 carried out by AD-1 

domain that contains additional LXXLL motifs (Voegel et al., 1996) whereas the AD-2 

domain, recruits co-activator associated CARM1 and protein arginine methyltranferase 1 

(PRMT1) interact with the SRC family members and increase transcriptional activity of 

AR, ER and TR through modifying chromatin (Chen et al., 1999; Koh et al., 2001). 

 

 

1.18.2 CBP/p300 co-activators 

 

Ubiquitously expressed proteins CBP/p300 have been shown to be involved in many 

signalling pathways, and known as general coactivators. Their role is to possess histone 

acetyl transferase activity. Several studies have reported the co-activatory role of this 

family of proteins for different transcription factors. Also, they can directly interact with 

basal transcription machinery components (Dilworth and Chambon, 2001). Interaction of 

CBP/p300 and nuclear receptors have been reported in many studies, particularly 

CBP/p300 interaction with ERa results in an increase in transcriptional activity of ERa 

(Kraus and Kadonaga, 1998). Some other proteins with HAT activity, such as pCAF may 

be recruited by CBP and p300. HAT activity of CBP and p300 which enhances the gene 

transcription by chromatin remodelling may be through recruitment of other proteins such 

as p/CAF and GCN5L2 (Hamamori et al., 1999). 

 

1.18.3 SWI/SNF chromatin remodelling complex 

 

The SWI/SNF (switch/sucrose non-fermenting) complexes can regulate cellular process 

including transcription and DNA repair by mediating ATP dependent chromatin 

remodelling (Tang, Nogales and Ciferri, 2010). This complex was originally identified in 

yeast, however human homologues of this group have been shown to interact in a ligand 

dependent manner with ERa, such as SNF2a (BRM1) or SNF2b (BRG) (Belandia et al., 



50 

 

2002). Recruitment or activity of chromatin remodelling complexes is sometimes 

required for function of some co-activators, for instance for SRC-1 and CBP to mediate 

estrogen receptor activation BRG1 is required. Whereas in case of SWI/SNF complexes 

in order to target them to nuclear receptor, additional bridging molecules are required. 

For example, a subunit of SWI/SNF which is BAF5 is required to interact with Flightless-

I (Fli-I) coactivator, which in return recruits SWI/SNF to estrogen receptor target genes 

(Jeong, Lee and Stallcup, 2009). 

 

1.18.4 Histone methyltransferases  

 

The second most common histone-modifying enzymes that have been reported to regulate 

nuclear hormone receptor mediated transcription are histone methyltransferases (HMT). 

Two of the arginine methyltransferases associated with ER are; coactivator-associated 

arginine methyltransferase 1 (CARM1) and protein arginine methyltransferase 1 

(PRMT1). These two proteins are known to methylate histones and nuclear receptors and 

other coactivators (Chen et al., 1999; Ma et al., 1999). Through methylation of histone 

H3 at Arg17 and Arg26 residues, CARM1 was found to enhance nuclear receptor 

transcriptional activation. For instance, it has been shown that glutamate receptor-

interacting protein 1 (GRIP1), causes a synergistic increase in ER transcriptional activity 

by binding to p300 through its AD1 (activation domain 1) and to CARM1 through (AD2) 

activation domain 2. In MCF-7 breast cancer cells CARM1 has been shown to be crucial 

for estrogen-induced cell cycle progression, which makes CARM1 potentially important 

in cancer (Frietze et al., 2008).  

 

Another HMT that has been shown to interact with p160 protein family through their AD2 

domain is protein arginine methyltransferase 1 (PRMT1) (Koh et al., 2001). Another 

PRMT (PRMT2) has been shown to bind to ER via AF-1, the DBD and the LBD in a 

ligand dependent manner (Qi et al., 2002). 
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1.18.5 The TRAP/DRIP/SMCC complex 

 

In a ligand dependent manner thyroid-hormone-receptor-associated protein (TRAP) and 

vitamin-D-receptor-interacting protein (DRIP) binds to nuclear receptor, including ERa, 

this interaction is through direct interaction with a subunit of TRAP/DRIP complex 

known as TRAP220/DRIP205 (Burakov et al., 2000). It has been reported that 

TRAP/DRIP subunits are important for recruitment of Poll II to the gene promoters, as 

these subunits have been found in the mediator complex associated with RNA polymerase 

II (Burakov et al., 2000). 

 

1.19 Co-repressors  

 

Repressing gene expression in an unliganded manner by many receptors is through 

recruiting transcriptional corepressors (Xu, Glass and Rosenfeld, 1999; Ali and R. 

Charles Coombes, 2002). It has been shown in many studies that ERa can repress a large 

number of estrogen regulated genes (Frasor, Jeanne M Danes, et al., 2003), for instance 

upon tamoxifen binding, ERa can represses the expression of some responsive genes. As 

mentioned above coactivators may relax the chromatin by acetylating histones, whereas 

transcription repression might follow the recruitment of Histone deacetylases (HDACs), 

which condense the chromatin by deacetylating lysine residues on histone proteins. 

Transcriptional corepressors like nuclear corepressor (NCoR) and silencing mediator 

(SMRT) (Perissi et al., 2010)facilitate gene repression by recruiting HDACs. In order to 

repress ERa gene expression in absence of ligand, corepressors like NCoR and SMRT, 

interact with AF-2 and LBD domain of ERa (Lazar, 2003), as when ligand binding 

happens corepressors becomes dissociated and co-activators are recruited to the site (Ali 

and R. Charles Coombes, 2002). 

 

Co-activators and co-repressors are essential not only for breast cancer progression but 

also for the response and resistance to endocrine therapy (Figure 1.13.  For example, 

amplified in breast cancer 1 (AIB1), is overexpressed in 50% of the breast tumours, also 

in breast tumours overexpression of HER-2 and AIB1 has been associated with tamoxifen 

resistance (Osborne et al., 2003). In the case of co-repressors, a decrease in rate of survival 
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and also shorter disease-free interval have been associated with low levels of NCoR and 

SMRT (Girault et al., 2003). As mentioned before tamoxifen acts as an antagonist in 

breast cancer, and agonist in other tissues like uterus and bone. Tissue specific action of 

tamoxifen and other SERMs is due to different expression patterns of ERa coregulatory 

proteins (Jordan, 2004). Change in expression levels of coactivators and corepressors 

appears to contribute to the mechanism of resistance. encouraging. Agonist activity of 

tamoxifen has shown to enhanced by overexpressing co-activator or silencing co-

repressor (Shang and Brown, 2002). 

 

 

 

 
Figure 1.13.The coregulatory complexes of ERa.  

Depending on the type of ligand bound to ERa, the recruitment of corepressors or coactivators varies. 

[figure adapted from (Teyssier et al., 2010)] 
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1.19.1 Recruitment of ERa to the DNA with aid of pioneer factors 

 

While some transcription factors interaction with DNA requires a euchromatin structure, 

some have the capacity to associate with condensed chromatin, hence modulating 

chromatin accessibility. Where these factors bind it facilitates binding of other 

transcription factors hence these factors have been termed “pioneer factor” (Figure 1.14) 

(Jozwik and Carroll, 2012; Magnani and Lupien, 2014). 

 

The most studied pioneer factor for ERa signalling is the forkhead transcription factor 

(FOXA1) (Eeckhoute et al., 2006). Displacing linker histones, which leads to de-

compaction of chromatin by FOXA1, is through its unique structure. The winged helix of 

FOXA1 has a similar structure to histone H1, which allows its interaction with histone 

H3 and H4 (Cirillo et al., 1998). In other words, when FOXA1 binds to compact 

chromatin, displaces histone H1 and disrupts H3/H4 hence creating an open chromatin 

(Cirillo et al., 1998). The FoxA1 binding site has been seen at large number of estrogen 

responsive genes in close proximity to the mapped ERE of these genes (Carroll et al., 

2005). Recruitment of ERa to DNA of these EREs seems to be dependent on FoxA1. 

Inhibition of ERa and estrogen-dependent gene expression was observed when FoxA1 

gene was knockdown, this suggested that FoxA1 is important in the recruitment of ERa 

to EREs in estrogen responsive genes (Laganière et al., 2005). GATA3, TLE and PBX1 

are among other pioneer factors that have been associated with hormone dependent cancer 

(Jozwik and Carroll, 2012). 
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Figure 1.14.The pioneer factors functions.  

Once bounded to condensed chromatin, pioneer factors facilitate ERa chromatin interactions by increasing 

accessibility to estrogen response elements (EREs). [adapted from (Jozwik and Carroll, 2012)]. 

 

 

 

1.20 Tetratricopeptide repeat domain 5 (TTC5) a novel cofactor of nuclear receptors 

 

The focus of this study is the 440 amino acid (in mouse) protein TTC5 (tetratricopeptide 

repeat domain 5) previously known as STRAP (Stress responsive activator of p300). The 

gene encoding TTC5 is located on chromosome 14, at the locus 14q11.2. TTC5 is widely 

expressed in mammalian tissues, with the strongest expression detected in brain, lung and 

kidney (Demonacos, Krstic-Demonacos and La Thangue, 2001), the sequence 

conservation between human, rat and mouse TTC5 is greater than 90%.  

 

Analysis of TTC5 protein predicted the presence of six tandem tetratricopeptide repeat 

motifs (TPR motifs) throughout the protein structure (Demonacos et al., 2001). 

Interestingly, TTC5 contains two putative LXXLL motif as well as the six TPR motifs, 

which makes TTC5 a potential cofactor for nuclear receptor binding (Figure 1.15 and 

Figure 1.16). It has been shown that TTC5 has an oligonucleotide (OB) domain at its C 

terminal, it is known that OB containing proteins are critical for various DNA related 

function such as DNA replication, repair, transcription and translation (Adams et al., 

2008).  
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Figure 1.15.TTC5 structure. 

Illustration of six TPR motifs distribution within TCC5, highlighted in yellow and labelled I to VI, a linker 

shown in orange in addition to OB domain shown in pink. Red shows putative LXXLL motifs. 

 

 

 

 
 

Figure 1.16.Positioning of the six TPR motifs in TTC5. 

Approximately each TPR motif consists of 34 amino acid residues assembled as antiparallel alpha helices 

(A and B) which are connected by a short loop. [modified from (Adams et al., 2012)] 
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1.21 Protein-protein interaction motifs  

 

Some proteins are important in mediating protein-protein interaction, and they contain a 

specific motif, among which are the WD40 (Stirnimann et al., 2010) PDZ (Jeleń et al., 

2003) SH3 (Li, 2005) and TPR motifs ((Blatch and Lässle, 1999)WD40 domain are 

implicated in various biological processes such as cell division, chemotaxis, and other 

signal transduction pathways and are highly abundant in eukaryotic proteins; this domain 

consists of 44-60 residues (Jeleń et al., 2003).  PDZ domain binds to the C termini of 

interacting proteins such as transmembrane receptors, channel proteins and other PDZ 

domain containing proteins, and it contains 80-100 amino acid residues (Jeleń et al., 

2003). Recognition and binding to phosphorylated tyrosine containing sequence is part of 

the function of SH2 domain, SH3 which is approximately 60 amino acid long, binds to 

peptides containing consensus sequence PxxP (x being any other amino acid) (Li, 2005). 

 

TPR motifs are another example of a protein interaction motif, these motifs often occur 

in tandem arrays, and are made up of 34 amino acids, which are not generally conserved 

but show similarities in size and spacing (Blatch and Lässle, 1999). TPR motifs are found 

in various proteins in different sub-cellular locations such as nucleus, mitochondria and 

cytoplasm, and are evolutionary conserved form prokaryotes to eukaryotes (Blatch and 

Lässle, 1999). Characterisation of TPR motifs has been revealed through X-ray 

crystallography of TPR proteins such as pp5 (Lamb, Tugendreich and Hieter, 1995; Das, 

Cohen and Barford, 1998). Further observation of the secondary and tertiary structures of 

this motif has shown that TPR motifs consist of two alpha helices forming an anti-parallel 

hairpin structure, this hairpin structure consist of two anti-parallel alpha helical domains 

A and B. Each TPR motif is parallel to each other and there is an angle of about 4 degrees 

between helices A and B of TPR motifs (Lamb, Tugendreich and Hieter, 1995; Das, 

Cohen and Barford, 1998). 

 

Proteins that contain this motif are often found as part of multi-protein complexes, as this 

motif is important for protein-protein interactions.  TPR motifs are involved in many 

protein functions, including protein folding, protein transport and regulatory phosphate 
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turnover. Sequence alignments of different TPR proteins identified amino acid residues 

W (tryptophan), L (leucine), G (glycine), Y (tyrosine), A (alanine), F (phenylalanine), A 

(alanine) and P (proline) at position 4, 7, 8,11,20,24,27 and 32 to be highly conserved 

(Blatch and Lässle, 1999). TPR motifs have been shown to be involved in DNA damage 

repair. For example, PP5 is an ubiquitously expressed serine threonine phosphatase that 

can bind to Hsp90. PP5 has a C terminal and an N terminal TPR motif (Das, Cohen and 

Barford, 1998). 

 

It has been shown that TPR proteins are involved in transcription, the interaction between 

Tfc4 of TFIIC and Brf1 of TFIIB is an important initiating step in RNA polymerase III 

transcription. For the process of RNA polymerase III transcription, this has been shown 

to be the rate-limiting step (Liao, Willis and Moir, 2003) Tfc4 has 11 TPR motifs which 

are important in mediating Tfc4 interaction with Brf1 and Bdp1 needed for the initial 

assembly of TFIIB onto DNA. Mutations within specific TPR regions have been shown 

to disrupt Polymerase III reporter gene transcription and impair interaction between Brf1 

and Tfc4 (Liao, Willis and Moir, 2003). 

 

The protein tetratricopeptide repeat domain 4 (TTC4) is also a TPR protein and was 

originally identified within the gene region implicated in breast cancer (Crevel et al., 

2008). It has been shown that TTC4 interacts with Hsp70, Hsp90 and with the replication 

initiation protein Cdc6 through TTC4 TPR motif (Crevel et al., 2008). An increase in the 

level of TTC4 was seen in melanoma and TTC4 has been shown to be implicated in cancer 

progression as increased level of TTC4 protein are detected in various tumour cell lines 

(Crevel et al., 2008). 

 

 

1.22 TTC5, p300 and JMY 

 

TTC5 has shown to form a complex with p300 and JMY in response to DNA damage.  

 It was back in 1986 that p300 was discovered as a phospho-protein with molecular size 

of 300kDa localized to the nucleus. It was also found that p300 interacts with E1A 

(Adenovirus early region 1A) protein, through an independent N-terminal binding site 
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(Dallas, Yaciuk and Moran, 1997). E1A was shown to repress transcription however p300 

free from an interaction with E1A was able to overcome this repression (Rikitake and 

Moran, 1992). An increase in identity of E1A binding site region of p300 was revealed 

when the sequencing analysis revealed a 63% homology between the human orthologue 

of p300/ CBP (CREB binding protein) (Dallas, Yaciuk and Moran, 1997). When both 

CBP and CREB proteins were cloned it was discovered that they were 85% homologous 

to one another, and also that CBP identified as a CREB binding protein (Arany et al., 

1994). Both proteins can acetylate histones and other proteins such as p53 due to their 

intrinsic HAT activity (Ogryzko et al., 1996).  

 

Through further experiments it was predicted that p300 and CBP have similar functions 

and that they are implicated in several diseases, highlighting their importance in 

homeostasis and growth (Kalkhoven, 2004). p300 seems to act as a tumour suppressor as 

alterations in the protein have been seen in solid tumours (Ozdağ et al., 2002). p300 

protein and CBP are transcriptional co-activators, acting as in adaptor molecules between 

the transcriptional machinery and DNA binding factors (Wang et al., 1993; Zhu et al., 

2001).P300 is implicated in wide array of cellular activities, such as DNA repair, 

proliferation, apoptosis and cell cycle regulation (Wang et al., 1993; Zhu et al., 2001)P300 

also interacts with both positive and negative regulators of p53, meaning it is implicated 

in p53 response (Yuan and Giordano, 2002)Mdm2 which is a negative regulator of p300 

binds to p300 through residues 102-22, mutation in these regions means that Mdm2 

cannot bind to p53, hence degradation of p53 through Mdm2 cannot happen (Yuan and 

Giordano, 2002) 

 

Initially JMY was discovered through a yeast two-hybrid assay, a 110 kDa protein which 

interacts with p300 (two binding domains present between amino acid residues 1-119 and 

469-558) (Shikama et al., 1999a) and named according to its function as “junction 

mediating regulatory protein”. JMY and p300 were found as a multi component 

coactivator that interact with one another (Shikama et al., 1999b). Further analysis of 

JMY sequence, reviled a number of interesting features; among which is a central area 

conserved adenovirus E1A CR2 homology region, a residue of proline rich string at its C 

termini and three consensus sites for CdK in the N-terminal region (Shikama et al., 
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1999b). Initial experiments were carried out to identify JMY chromosomal location, to 

deduce whether it could be implicated in cancer or not. The region that JMY is located at 

(chromosome 5 in band 5q 13.2) has been implicated in various malignancies such as 

leukaemia.  

 

 

1.23 TTC5 functions 

 

Under stress conditions levels of TTC5 increase, as well as the interaction between p300 

and JMY (Demonacos, Krstic-Demonacos and La Thangue, 2001). Facilitating the 

interaction between JMY and p300 through TTC5 was demonstrated through 

overexpressing TTC5 in U2OS cells; in these cells p300 was coimmunoprecipitad with 

JMY and in presence of TTC5, this interaction between p300 and JMY increases. Since, 

in absence or presence of TTC5, p300 protein levels stayed the same in the 

immunocomplex, the coimmunoprecipitated JMY levels most likely increased from the 

influence of TTC5 on the recruitment of JMY to p300 complex. The interaction between 

TTC5 and JMY is through TTC5 N-terminal domain (residue 1 to 205) and the C-terminal 

region interacts with p300 (residue 206 to 438) (Demonacos, Krstic-Demonacos and La 

Thangue, 2001) TTC5 has been reported to stabilize the interaction between JMY/p300 

complex (Figure 1.17).  
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Figure 1.17.TTCR interaction with JMY and p300 through various TPR motifs. 

Residues 1-205 of TTC5 are implicated in JYM interaction and residues 206-438 are implicated with p300 

interaction. ATM phosphorylation site and Chk2 phosphorylation site are pointed at with arrows. 

 

 

1.23.1 TTC5 and DNA damage response 

 

Either from within the cells or from the environment (UV, various chemicals) cells are 

exposed to DNA damaging agents. These agents can cause mismatched bases, single or 

double strand break hence damaging the DNA. When DNA damage occurs, cells identify 

and repair the damage as well as preventing the propagation of the mutations (Branzei 

and Foiani, 2008). Failure of the cells to elicit the DNA damage response, results in 

genetic disease, cancer and severe immunodeficiency (Bartek, Bartkova and Lukas, 

2007).  The phosphatidylinositol 3-kinase like family (PIKK) members which includes: 

ATM, ATR, and DNA-PK identifies the DNA damage. ATM and DNA-PK gets activated 

by double strand break whereas ATR gets activated as a result of single strand DNA 

breaks. Downstream targets including the tumour suppressor p53, checkpoint kinases 

Chk1 and Chk2 are then phosphorylated once these signalling cascades are active (ATM, 

ATR). This signalling cascade aims to repair DNA damage before mutations are passed 
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to the next generation of cells (Cimprich and Cortez, 2008). Depending on the type of 

damage and the phase of the cell cycle different repair mechanism are recruited to the 

site. These repair mechanisms include: non-homologous end joining (NHEJ), 

homologous recombination (HR), and mismatch repair (Branzei and Foiani, 2008). Cell 

death by apoptosis can happen as failure to repair the DNA damage.  

 

In response to DNA damage p53 triggers cell cycle arrest and apoptosis, and its known 

to be frequently mutated in human cancers (Ko and Prives, 1996). The DNA damage 

signalling cascade that is initiated by ATM, ATR and Chk family, stimulates the 

transcriptional activity and stabilization of p53 (Shiloh, 2006). The p300/CBP coactivator 

plays a role in p53 regulation by interacting with it activation domain (Lill et al., 1997; 

Lee and Goldberg, 1998).  

 

It has been reported that, TTC5 activates p300 coactivator complex and affect the p53 

response. When DNA damage occurs due to ionising radiation or chemical agents such 

as etoposide, ATM phosphorylates TTC5 at position Ser203, which is within TPR3 of 

TTC5, resulting in TTC5 nuclear localization (Figure 1.18). Chk2 which is downstream 

of ATM then phosphorylates TTC5 at position Ser221, (Demonacos et al., 2004; Adams 

et al., 2008). This region is between TPR3 and TPR4, and phosphorylation leads to TTC5 

stabilization, which then results in assembly of the TTC5, p300 and JMY complex, 

causing  p53  acetylation, and activation of the DNA damage response (Demonacos et al., 

2004). It has been shown that JMY interacts directly with TTC5 and p300, hence aiding 

the p53 activation by this complex (Shikama et al., 1999a; Demonacos, Krstic-

Demonacos and La Thangue, 2001; Demonacos et al., 2004). TTC5 has also been 

reported to stabilises p53 by reducing Mdm2 mediated degradation (Demonacos, Krstic-

Demonacos and La Thangue, 2001). 
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Figure 1.18.TTC5 and DNA damage response pathway. 

When DNA damage occurs, ATM becomes activated and phosphorylates TTC5 at S203 and causes its 

stabilization. Then TTC5 translocate in to nucleus and forms a complex with p300 and JMY. The complex 

reduces Mdm2 mediated degradation of p53 and increases p53 transcriptional activation, resulting in cell 

cycle arrest or apoptosis. 

 

TTC5 remains in the cytoplasm in ataxia-telangiectasia (AT) cell lines (1BR and 

GM02530) tested, both of which have non-functional ATM. Mutated version of TTC5 

also remains in the cytoplasm which cannot be phosphorylated by ATM. In these 

conditions translocating TTC5 into the nucleus while ATM is defective, results in 

restoring TTC5 stabilization and the DNA damage response (Demonacos et al., 2004; 

Adams et al., 2008). 
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1.23.2 TTC5 role in the heat shock response 

 

There are many stress responses pathways that enable cells to live under a variety of 

environmental stresses (Xu and La Thangue, 2008). Activation of a set of chaperons 

called heat shock proteins are one outcome of cellular response to heat shock stress. Under 

normal conditions HSF1 exist as a monomer in the cytoplasm, the heat shock pathway 

involves HSF1. 

 

It has been shown that TTC5 interacts with HSF1 when cells are heat shocked, and the 

TTC5/HSF1/p300 complex forms which then binds to heat shock elements (HSEs) of 

target shock protein genes like Hsp70 (Xu and La Thangue, 2008). p300 then acetylates 

histones of Hsp70 and results in Hsp70 transcriptional activation (Xu and La Thangue, 

2008). Inhibition of apoptosis through inhibition of caspase activation and cytochrome C 

release is the result of Hsp70 activation (Figure 1.19).   

 

 

 

 
Figure 1.19.TTC5 and the stress response pathway.  

TTC5 interacts with HSF1 under heat shock which results is its phosphorylation and formation of 

HSF1/TTC5/p300 complex. This complex then binds to heat shock elements (HSE) of target genes like 

Hsp70 (heat shock protein 70), and causes its transcription to activate.  
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TTC5 has also been shown to prevent apoptosis in human and murine acute myeloid 

leukaemia (AML) cells. Induction of apoptosis in both human and murine AML cells was 

observed when TTC5 was knocked down and a, similar effect was observed with 

knockdown of p300 (Lynch et al., 2013). Also, knockdown of both p300 and TTC5 

resulted in increased expression of pro-apoptotic genes and a  reduction in expression of 

BCL2 which is an anti-apoptotic gene. The study show that through the interaction of 

TTC5 and p300, Myc becomes acetylated and regulates transcription of anti-apoptotic 

genes (Lynch et al., 2013). Myc is an acetylation target for p300 and knockdown of TTC5 

and p300 leads to accumulation of Myc. Excess levels of Myc have the ability to sensitize 

cells to apoptosis. It is believed that the interaction between p300 and TTC5 prevents the 

excessive accumulation of Myc in AML cells (Lynch et al., 2013). 

 

1.23.3 TTC5 role in GR regulation 

 

 Furthermore, it has been shown that TTC5 is also implicated in glucocorticoid receptor 

(GR) regulation, under cellular stress (Davies et al., 2011). Through interaction with 

glucocorticoids under stress GR becomes activated. Diverse sets of genes that are 

implicated in immune response, inflammation and metabolism are regulated by active 

GR, in a both positive and negative manner (Davies et al., 2011). GRs activity is regulated 

through various mechanisms due to its multifunctional property; for instance, interactions 

with cofactors, protein stability and post-translational modifications. GR is a target for 

degradation through the process of ubiquitination hence protein stability is a critical 

regulator of GR. Interaction of GR with cofactors such as p300 and heat shock proteins 

affects chromatin architecture and interact with the basal transcriptional machinery 

(Figure 1.20) (Davies et al., 2011). As result of GR interaction with hormones a 

significant conformational change occurs within GR, results in exposing a surface that 

have the ability to bind to LXXLL motif of target co-factors.  

 

 

 

In A549 cells (lung cancer cells) it has been shown that TTC5 interacts with GR, and that 

TPR2, TPR3, TPR6 and LTSAL (LXXLL motif) are the most critical motifs in this 
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interaction. This was determined, because mutations of these motifs especially TPR6 and 

LTSAL seemed to reduce the GR binding to TTC5. TTC5-GR interaction inhibits GR 

degradation hence TTC5 is an important regulator of GR stability and its stabilization by 

increasing GR half-life (Davies et al., 2011).  

 

 

 
 

 

Figure 1.20.Regulation of GR by TTC5.  

A tri-meric GR/Hsp/TTC5 complex is formed under stress, resulting in GR stability, through Mdm2 

inhibition. By preventing the action of the ubiquitin proteasome pathway (UPP), possibly through ubiquitin 

ligase Mdm2, TTC5 stabilizes GR.  After hormone binding the receptor translocate into nucleus where it 

binds to glucocorticoid response element (GRE) of its target gene. TTC5, Hsp, JMY and p300 are all 

implicated in the regulation of GR associated related gene transcription. [Table adapted from (Davies et al., 

2011)] 

 

1.23.4 TTC5 role in AP-1 pathway 

 

TTC5 also regulates another transcription factor function. The pathway of transcription  
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factor activator protein-1 (AP-1) has been shown to play an important role in 

transformation, proliferation and death. It has been shown that AP-1 is composed of 

proteins similar to c-Jun and c-Fos and activating transcription factor (ATF) families 

(Xiong et al., 2013). AP-1 ability to regulate the expression of cell cycle regulators such 

as p53, cyclin D1 and p21, makes it an important protein to control cell proliferation and 

cell death.  AP-1 can be both antioncogenic and oncogeneic which either induces 

apoptosis or sends signals which lead to cell survival. TTC5 has been shown to inhibit 

AP-1 and c-Jun transcriptional activity in HEK293T, HeLa and HCT116 cells through 

stress-activated protein kinases (SAPK)/Jun amino-terminal kinases (JNK) MAPK 

pathway (Xiong et al., 2013). This discovery happened through observing Ser63 protein 

level status which is a phosphorylated c-Jun when TTC5 were overexpressed. Indeed, 

TTC5 overexpression lead cells to have lower level of phosphorylated c-Jun and c-Jun 

compared to control group. Furthermore, the protein expression of three main subgroups 

of MAPK family ERK1/2, JNK/SPAK and p38 MAPK were measured when TTC5 was 

transfected, and the results revealed that TTC5 overexpression only had effects on 

JNK/SPAK phosphorylation but not ERK1/2 and p38 pathway. 

 

1.23.5 TTC5 regulates ATP synthase 

 

In response to DNA damage mitochondria are the central death regulator, and critical for 

p53-depedent death (Mihara et al., 2003). The outer mitochondrial membrane (OMM) 

undergoes permeabilization when mitochondria receive a death signal, as a result potent 

death factors such as cytochrome c are released form intermembraneous space into the 

cytosol (Mihara et al., 2003). 

 

More recent a new role for cofactor TTC5 in mitochondria has been discovered; it has 

been shown that TTC5 through ATP synthase, regulates oxidative phosphorylation and 

p53 mitochondrial activity (Maniam et al., 2015). For intracellular pathways, 

mitochondrial ATP production is the main source of energy. It has been shown that, 

reduction in ATP-dependent ion pumps can be due to defective ATP production or 

excessive consumption of ATP, which can lead to apoptosis. To trigger caspase activation 

and favouring apoptosome formation during apoptosis a sufficient supply of ATP is 
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necessary, and the mode of programmed cell death is usually determined by the severity 

of reduction in cellular ATP (Maniam et al., 2015a). 

 

Wide variety of metabolic pathways like glycolysis and oxidative phosphorylation are 

modified by p53 activity, which enables cells to respond to metabolic stress. Induction of 

apoptosis through p53 can occur both in transcription-dependent or transcription-

independent fashion. The transcription-independent activation of apoptosis by p53 is 

through is localisation to mitochondria; where the interaction of p53 with Bcl2 family of 

genes occurs (Bax and Bak) and regulates their activity. This interaction results in caspase 

activation in cytosol which is a consequence of realising soluble proteins like cytochrome 

c as a result of p53 influencing the intrinsic pathway of apoptosis (Maniam et al., 2015b).  

 

As it was discovered that p53 and TTC5 interact with each other, a derivative form of 

TTC5 that was exclusively directed to mitochondria was made to facilitate the analysis 

of TTC’s mitochondrial role in ATP synthesis. Through mass spectrometry the ATP 

synthase b-subunit was identified as the predominant interacting protein with TTC5. b-

subunit is localised at the inner mitochondrial membrane which is an essential component 

of ATP synthase. Also, the cellular ATP levels seemed to be affected by TTC5, as 

enhanced cellular ATP levels were observed when TTC5 was knocked.  The 

mitochondrially localised TTC5 seemed to  significantly reduce levels of cellular ATP 

hence sensitising cells to apoptosis which is dependent on p53 activity(Maniam et al., 

2015).  
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Figure 1.21.TTC5 role in nucleus versus mitochondria.  

Model illustrating role of TTC5 in p53 response, where TTC5 (green) stimulate apoptosis in mitochondria, 

by downregulating ATP synthase (orange) while inhibiting ATP production [modified version form 

Maniam et al., 2015]. 
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1.24 Study aims 

 

ER is known to regulate the transcription of many genes; hence one major question is 

how the activity of this transcription factor is controlled. Coactivators and corepressors 

that are available in different cell types and physiological conditions have been shown to 

modulate ER activity. These findings within this field are likely to be of importance in 

the gene expression area, especially since ER is a transcription factor. Findings could also 

be important for drug design, since and understanding of ER modulation could lead to the 

discovery of novel treatments, with a faster approach on breast cancer treatments.  

 

It has become evident that TTC5 has a rare structural characteristic, that it harbours six 

predicted consecutive TPR domains and two LXLL throughout its sequence. Presence of 

these TPR and LXLL domains within the sequence of TTC5 protein possibly aids this 

protein to interact with several different binding partners, hence being involved in 

multiple signalling pathway. These domains may also be critical to amplify particular 

signal within the cells.  

 

Previous studies in our laboratory established that TTC5 both positively and negatively 

regulates GR activity in a gene specific manner (Davies et al., 2011). The interaction 

between hormone and GR causes a significant conformational change within GR, which 

expose a surface that binds to the LXXLL motif of target co-factors. Due to the fact that 

ER and GR are from same family of nuclear hormone receptor and have similar structure, 

hypothesis is that TTC5 co-regulates ER transcriptional activities. Therefore, the aims of 

my project are  

      

1) To investigate the role played by different motifs of TTC5 on ER transcriptional 

activity, 

2) Determine whether TTC5 interacts with ERa in breast cancer cells, 

3) Monitor the effect of estrogen agonist and antagonists on TTC5 protein levels in 

breast cancer cells, 

4) Monitor the effect of TTC5 knockdown on cell viability of breast cancer cells 

5) Follow ERa target gene  
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Together these studies, aim to define the mechanism by which TTC5 regulates ERa 

activity in breast cancer cells and identify which surface of TTC5 is more important in 

this interaction, for development of potential new therapeutic agents for breast cancer 

treatment.  
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Chapter 2 Materials and Methods 
 

2.1 Materials  

 

2.1.1 Reagents and materials  

 

General chemicals and reagents were obtained from Sigma-Aldrich (UK), VWR Ltd 

(UK), and Fisher Scientific (UK). Molecular biology reagents such as protein ladders 

were obtained from Invitrogen (UK), SYBER Green real-time PCR reagents and kits for 

DNA and RNA preparation were obtained from Bioline (UK). Transfection reagent 

PolyFect was obtained from Qiagen (UK), and small interfering RNAs (siRNA) oligos 

and Dharmafect1 were obtained from Dharmacon (UK). DH5α competent cells 

(subcloning efficiency) were from Invitrogen. mmobilon-P PVDF membrane was from 

Millipore. Marvel milk powder was used for antibody incubation and mouse monoclonal 

and rabbit polyclonal horseradish peroxidase (HRP) linked secondary antibodies were 

from Amersham. Western blot signals were detected using Pierce supersignal
 
west pico 

chemiluminescent HRP substrate and Fujifilm medical X ray film. Protein-A sepharose 

beads and Flag beads were both from Sigma. Luciferase reporter lysis buffer and 

luciferase reagent were from Promega (UK). Glycine, glycerol, sodium chloride, lithium 

chloride, potassium chloride and Tris base were purchased from VWR. Antibodies used 

were as follows: rabbit polyclonal TTC5 antibody was purchased from Abcam (UK), and 

b-Actin loading control was from Abcam.  

 

2.1.2 Cell culture equipment and reagents  

 

Cells were maintained in a Thermo Scitific (UK) CO2 incubator at 37o in a humidified air 

atmosphere supplied with 5% CO2. Cell culture manipulations were carried out in Class 

II biological safety cabinet (Esco, UK), Dulbecco’s Modified Eagle’s Medium (DMEM), 

L-Glutamine (200mM), Penicillin-Streptomycin solution and trypsin solution were 

supplied by Sigma-Aldrich (UK). Fetal bovine serum (FBS), Dextran coated charcoal 

treated FBS (DCC FBS) was purchased from Life Technologies (UK).  
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2.2 Cell lines and culturing medium 

 

Dulbecco’s Modified Eagle’s medium (DMEM) (Sigma, UK) supplemented with 10% 

foetal bovine serum (FBS) (Sigma, UK) and 1% penicillin and streptomycin (P/S) 

(Sigma, UK) and 1% Non Essential Amino Acids (NEAA) (Sigma, UK) was used to 

maintain the human breast cancer cell lines MCF-7 (ER-alpha positive, p53 wild-type) 

and T47D (ER-alpha positive, p53 mutated) and MDA-MB-468 (ER-negative, p53 

mutated) Table 2.1. All three cell lines were purchased from ATCC. The variation in ER-

alpha status of these cell lines provides a suitable system to study the crosstalk between 

ER-alpha and transcription factors.  

 
Table 2.1.Human cell lines used in this study. 

Cell line Source  Tumor Type Passage No. 

MCF-7 ATCC Derived from 

metastatic site of a 

69 years old Homo 

sapiens female. 

       

            16 

T47D ATCC Derived from 

metastatic site of a 

54 years old Homo 

sapiens female. 

           

            6 

       

 

 

 

2.3 Cell maintenance  

 

Cells were maintained in 75 cm2 vented tissue culture flasks (SLS, UK) and subcultured 

when they reached 70-80% confluency. In order to provide safe and sterile environment 

cell culture work was carried out in Class II Biological Safety Cabinets (Esco, UK). In 

order to split the cells, the media was aspirated from the flask and then washed with 
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Phosphate buffered saline (PBS: 170mM NaCl, 3.3 mM KCl, 1.8 mM Na2HPO4, 10.6 

mM KH2PO4; pH 7.4), then the PBS was aspirated out and replaced with 1 ml of trypsin 

(Sigma, UK). Cells were incubated at 37 °C for 2 to 3 minutes in order to detach from the 

flask surface. Fresh DMEM medium with FBS and P/S was added to dilute trypsin and 

cells were passaged at a ratio of 1:5 and flasks were left at 37oC in humidified atmosphere 

containing 5% CO2. Cells were seeded into 6 well plates for Western blot, RNA extraction 

and luciferase assay, 96 well plates for siRNA and 100mm plates for co-

immunoprecipitation (co-IP). 

 

2.4 Cell counting  

 

A ruled haemocytometer (Labtech, UK) was used to perform cell count under a light 

microscope (Olympus, UK) (Figure 2.1). The cells were detached from the flasks and 

suspended well in order to avoid cell clumps. 100µl of trypan blue (Sigma, UK) (trypan 

blue was used to assess viability of cells), solution was mixed with 100µl of cell 

suspension. 10µl of cell suspension was loaded into the haemocytometer and the cell 

count was performed according to manufacturer’s guide line. 
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Figure 2.1.Heamocytometer gridlines.  

The cells in blue areas were counted and the total number of cells was calculated. 

 

In order to use the appropriate number of cells, cell counting was carried out prior to 

performing experiments. The C1V1 = C2V2 equation was used to calculate how to obtain 

an appropriate number of cells/ml for specific experiments. 

 

2.5 Cryogenic storage of cells 

 

To freeze the cells for future use, cells were detached using trypsin-EDTA. The detached 

cells were then washed with appropriate amount of medium and pelleted by centrifugation 

at 1,200 rpm for 4 minutes and resuspended in 1ml of FBS (Labtech, UK) and 10% 

DMSO (Sigma, UK). Adding DMSO prevents the formation of ice crystals, DMSO + 

FBS was added drop by drop to the cell pallet and the cell suspension was then aliquoted 

into cryovials (SLS, UK), and stored at -80oC. 
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2.6 Thawing cells 

 

Vials of frozen cells were removed from -80 ºC freezer to restore the cell culture, 1ml of 

warm DMEM media was added to the vial rapidly, to reduce the formation of damaging 

ice crystals during rehydration. Cells were then resuspended in DMEM supplemented 

with 10% FBS and 1% penicillin/streptomycin and transferred into 25 cm2 culture flask 

and incubated for 3-4 hours. After cells were attached to the surface of flask the media 

was changed to fresh media. After reaching 70 – 80% confluency, cells were transferred 

to 75cm2 flasks.  

 

2.7 Cell treatments  

 

17 beta-estradiol (Sigma, UK) and two selective estrogen modulators, tamoxifen (Sigma, 

UK) and raloxifene (Sigma, UK) been used. Prior to treating cells with above mentioned 

hormones, medium was substituted with DMEM supplemented with, 1% penicillin 

streptomycin (P/S) 10% Dextran coated charcoal treated FBS (DCC FBS) (Labtech, UK) 

since normal FBS contains hormones and other reagents which could interfere with E2 

activity. Breast cancer cells (MCF-7 and T47D) were incubated for a number of hours 

depending on the requirements of each experiment with 100nM final concentration of 

each hormone. 

 

2.8 DNA transformation and isolation 

 

2.8.1 Preparation of LB agar plates and LB broth 

 

LB agar plates were prepared by dissolving 12.5 grams of Luria-Bertani (LB) (Invitrogen, 

UK) powder in 500 ml of distilled water followed by addition of 7 grams of agar (Sigma, 

UK). The solution was then autoclaved at 15psi and 121oC. The solution was then left to 

cool down under aseptic condition and ampicillin (100 µg/ml) was added. Approximately 

10ml of the cooled mixture was poured in sterile 90cm petri dishes and stored at 4oC.  
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LB broth was prepared by adding 12.5gr of LB into 50ml of distilled water which was 

then autoclaved. After the solution was cooled down ampicillin (100 µg/ml) (Sigma, UK) 

was added to the solution under aseptic conditions.  

 

2.8.2 Transformation  

 

The process of bacterial cells taking up naked DNA molecules is called transformation. 

Since the bacterial genome is made up of circular DNAs and plasmids it has the ability to 

replicate foreign DNA alongside their own DNA when the foreign plasmid DNA has an 

origin of replication recognized by the host cell DNA polymerases.  

 

Per transformation 20 µl of DH5α strain of Escherichia coli (E. coli) (Invitrogen, UK) 

were thawed on ice, 200 ng of DNA was added to the cells and carefully mixed by flicking 

the tube. Then cells were left on ice for 30 minutes and then heat shocked at 42oC for 45 

seconds then placed on ice for 2 minutes. 500 µl of LB broth was added to the cells and 

they were incubated in a shaker for 1 hour at 37oC. 200 µl of the resultant mixture was 

streaked on an LB agar plate containing ampicillin. Then the plate was incubated for 16 

hours at 37oC. 

 

2.8.3 Plasmid purification: maxi preps  

 

Plasmid DNA that was obtained from DH5Aα (Invitrogen, UK) cells colonies through 

transformation was inoculated in LB-Amp overnight at 37° C with shaking. The samples 

were centrifuged at 4000g for 10 minutes and the supernatant was discarded. Maxi preps 

were carried out using the protocol and buffers provided with the Invitrogen Maxi prep 

Kit. First the filtration cartridge was inserted in the PureLink HiPure Maxi Column. Then 

15ml of Equilibrium Buffer (EQ1) were directly added to the filtration catridge, the 

solution was left to drain by the gravity flow. Next 10 ml of resuspension buffer (R3) with 

RNAase A were added to the pellet until the cell suspension became homogenous. Next 

10ml of lysis buffer (L7) was added to the pellet and left at room temperature for 5 

minutes until the mixture became homogenous. Then 10 ml of precipitation buffer (N3) 

was added, in order to mix the solution, the tubes were inverted. Finally, the precipitated 
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lysate was transferred into the column, the solution was left to flow through the column 

by gravity . The inner cartridge was then discarded, and the column was washed with 50 

ml Wash Buffer (W8). A 50 ml centrifuge tube was placed underneath the HiPure Filter 

Column. 15 ml of elution buffer (E4) were added to the column, again the solution was 

left to follow through column by gravity. The DNA was then precipitated with 

isopropanol and collected by centrifugation at 15, 000 rpm at 4 °C for 30 minutes. The 

pellet was then washed with 70% ethanol, and then the pellet was resuspended in 300 µl 

of TE buffer.  The concentration of DNA was then measured using 1 µl of the maxi prep 

on a Nanodrop at 260 nm. 

 

2.8.4 Plasmid purification: mini prep 

 

A single colony from the agar plate was inoculated in 3ml of LB containing ampicillin 

and left in a 37 °C shaker for 15 hours. The DNA was then purified using the mini prep 

kit from Bioline, following the manufacturers guidelines.  

 

The inoculation was centrifuged for 30 second at 11,000g, and the supernatant was 

discarded. Pellet was re-suspended in 250 µl of P1 buffer by vortexing, then a further 250 

µl of lysis buffer P2 were added to the pellet. The solutions were then mixed by gently 

inverting the tubes 6 to 8 times.  Then the tubes were left at room temperature for 5 

minutes until the lysate appears clear. 300 µl of neutralization buffer P3 was added and 

then the lysate was centrifuged at 11,000 g for 5 minutes. The ISOLATE II Plasmid Mini 

spin column was place onto a 2ml collection tube. Then 750 µl of the clarified sample 

was pipetted onto the column. The flow-through was discarded and the solution was 

centrifuged at 11,000 g for 1 minute. 500µl of PW1 buffer that was preheated at 50°C 

was then added to the pellet and the lysate were centrifuged at 11,000g for 1 minute. Then 

600µl of PW2 buffer was added followed by centrifugation for 1 minute at 11,000g was 

carried out. The flow-through was discarded at this point, and the collection tube was 

centrifuged for 2 minutes at 11,000g. 50µl of elution buffer P was directly added onto 

centre of silica membrane, and was left at room temperature for 1 minute. A final 

centrifugation step for 1 minute at 11,000g was carried out and then the concentration of 

DNA was measured using 1 µl of the mini prep on a Nanodrop at 260 nm. 
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2.8.5 Measurement of DNA concentration 

 

Determining nucleic acid concentration can be achieved by UV light as the nucleic acids 

absorb the UV light. UV light also is used to measure the purity of the DNA. DNA yield 

determination is based on its ability to absorb light at maximally 260nm. Presence of 

excess salt, contaminating proteins or organic solvents may affect DNA purity, the ratio 

of the absorbance at 260nm to 280nm provides an estimation of the purity. For the DNA 

sample to be considered pure the ratio should be close to 1.8±0.05. The DNA 

concentration and its purity was determined using NanoDrop ND-1000 UV visible 

spectrophotometer. Instrument was calibrated using 1 µl of distilled water, after the 

calibration step 1 µl of sample was loaded to measure the concertation of desired sample.  

 
2.9 Site directed mutagenesis 

 

Quick lightning site directed Mutagenesis Kit from Technologies was used to introduce 

one or more mutations into desired DNA sequence. A summary of the procedure is shown 

in Table 2.2.  
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Table 2.2.The components and volumes required for site directed mutagenesis 

 Control F26A A88G A243G LI16A 

10X Reaction 

Buffer (µl) 
5 5 5 5 5 

dsDNA 

template(µl) 
5 0.5 0.5 0.5 0.5 

Forward 

primer (µl) 
1.25 0.97 1.22 1.22 1.11 

Reverse 

primer (µl) 
1.25 0.97 1.22 1.22 1.11 

dNTP mix(µl) 1 1 1 1 1 

Quick 

solution 

reagent(µl) 

1.5 1.5 1.5 1.5 1.5 

Distilled 

water(µl) 
34 39.06 38.56 38.56 38.78 

Quick change 

enzyme (µl) 
1 1 1 1  

Total (µl) 50 50 50 50 50 

  

 

After sample preparation, each reaction samples were left on thermos cycler with 

following details: 

 

Segment Cycles Temperature Time  

1 1 95oC 2 minutes  

2 

 

 

 

18 95oC 20 seconds 

60oC 10 seconds 

68oC 30 seconds 

3 1 68oC 5 minutes 
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2 µl of the Dpn I restriction enzyme that was provided was directly added to each 

amplification reaction. The reaction was then mixed by pipetting and were then 

immediately incubated at 37 oC for 5 minutes. 45µl of XL10-Gold competent cells was 

thawed on ice and 2µl of the b-ME that was provided with the kit was added to the 

competent cells; the contents of the tube were gently swirled and left on ice for 2 minutes.  

 

2µl of the Dpn I-treated DNA was then added to aliquots of the ultracompotent cells, the 

transformations reactions were mixed by swirling and left on ice for 30 minutes. The 

NYZ+ was preheated in 42oC water bath for 30 seconds and 0.5 ml of it were added to 

each tube, then incubated at 37oC for 1 hour with shaking at 225-250 rpm. The appropriate 

volume of each transformation reaction was plated. Mutations were then confirmed by 

sequencing.   

 

2.10 Luciferase assay  

 

PolyFect reagent was used to transfect cells with appropriate plasmids for luciferase 

assay; polyFect has positive net charge and is spherical in shape. Because of its properties 

polyFect facilitates cellular uptake of plasmid DNA. MCF-7 or T47-D cells were split in 

6-well plates and were incubated for 24 hours. Into the recommended amount of DNA 8 

µl of polyFect reagent (Qiagen, UK) was added in 15 ml centrifuge tubes containing 

required volumes of plain DMEM (following the manufacturer’s guidelines (Figure 2.2). 

The mixture was vortexed and then incubated at room temperature for 5-10 minutes. 

While the DNA mixtures were left for incubation, cells were washed twice with sterile 

PBS, and 3 ml of complete media (10% FBS, 1% P/S) was added to the cell well. During 

the incubation time of the mixture, the media was aspirated from cells, and then the cells 

were rinsed twice with sterile PBS. At the end of the incubation time 600 µl of DMEM 

(10% FBS, 1% P/S) medium was added to the transfection mixture, which was then added 

to the specific well. Plates were kept in 37ºC (5% CO2) incubator and when treatment 

was required, the media was changed to DMEM/DCC treated FBS with antibiotics after 

24 hours. 
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Figure 2.2.Summary of transfection using PolyFect solution.  

[Figure adapted from QIAGEN Polyfect transfection protocol] 
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2.10.1 DharmaFECT 

 

Small interfering RNA (siRNAs) that are produced by cleavage of longer RNAs, are non-

coding, double stranded RNA molecules (Hamilton and Baulcombe, 1999; Elbashir et al., 

2001). One of the two strands of siRNA separate and integrates into the RNA induced 

silencing complex (RISC) leading to reduced gene expression through siRNA. It is via 

the siRNA single strand that RISC binds to a complementary sequence of mRNA, and as 

a result the active component of RISC Argonaute then cleaves the mRNA preventing 

translation (Liu et al., 2004). 

 

To transfect MCF-7 and T47D cells with siRNA, DharmaFECT 1 reagent was used and 

the manufacturers guidelines were followed. A 2µM concentration of each siRNA was 

made using RNase free water. 100 µl of each siRNA was mixed with 100µl of DMEM 

(serum and antibiotics free). In a separate tube 6µl of DharmaFECT reagent was mixed 

with 194µl of DMEM (serum and antibiotics free). Both tubes were left at room 

temperature for 15 minutes, after incubation time the siRNA/media mixture was added to 

DharmaFECT/media mixture. In order to form complex tubes were left at room 

temperature for 20 minutes. 2ml of DMEM with 10% FBS (no antibiotics) was added to 

the transfection samples. Media was removed from culture plates and the entire 

transfection reagent was gently added to the well. Plates were then incubated in 37oC. 
 

 

2.11 Beta-galactosidase assay 

 

In order to measure the transfection efficiency β-galactosidase assay was performed. β-

galactosidase is an enzyme and its known to be encoded by the lacZ gene of the lac operon 

in E.Coli. Cleaving lactose to glucose and galactose is done by β-galactosidase. o- 

nitrophenyl-β-D-galactoside (ONPG) is a synthetic compound that is known to cleave to 

yield galactose and o-nitrophenol that has a yellow colour which its absorbance can be 

measured at 420nm. The concentration of β-galactosidase is proportional to the 

conversion of ONPG to o-nitrophenol.  
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Cells were grown in 6 well plates and transfected with desired plasmids using Polyfect 

transfection reagent. After 24 hour cells were either treated with E2 for 24 hours or left 

untreated. Then cells were harvested using Reporter lysis buffer (Promega, UK) then 

centrifuged at 13,000 rpm for 20 minutes at 4oC. 30µl of the supernatant was added to 

βgal buffer (Table 2.3) samples were then left in 37oC incubator for 1 hour. The 

absorbance was measured at 420nm after adding 500µl of distilled water to the samples.  

 
Table 2.3.The components and volumes required to make bgal buffer. 

Component Volume/weight 

2-Mercaptoethanol (Sigma, UK) 70 µl (from 14.3 M stock) 

Magnesium chloride (MgCl2) (Sigma, UK) 20 µl (from 1 M stock) 

o-nitrophenyl-β-D-galactopyranoside 

(ONPG) (Sigma, UK) 

 

                          13.3 mg 

Sodium phosphate (pH 7.3) (Sigma, UK) 2 mL (from 1 M stock) 

Deionised water Up to 10 mL 

 

 

 

2.12 Immunoblotting 

 

2.12.1 Preparation of whole cell extract 

 

For western blotting when cells reached 60-70% confluency they were seeded in 100mm 

culture plates. After 24 hours of leaving the plates in 37oC incubator wherever necessary 

cells were transfected with Polyfect or DharmaFECT transfection reagent, or media was 

changed to DCC media and cells were treated with appropriate hormones for periods 

mentioned in each experiment. The media then was removed and cells were washed in 

1X PBS (170mM NaCl, 3.3 mM KCl, 1.8 mM Na2HPO4, 10.6 mM KH2PO4; pH 7.4) 

then 300µl of High Salt Lysis buffer or TNN buffer was added to cells on ice, then cells 

were scraped and samples collected in 1.5ml centrifuge tubes. 
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Centrifuge tubes were then left rotating at 4oC for 20 minutes followed by centrifugation 

at 4oC for 20 minutes at 12,000 rpm. Supernatant were carefully transferred into fresh 

centrifuged tubes and pellets were discarded.  

 

2.12.2 Determination of protein concentration 

 

The Bradford protein assay was used for determining protein concentration from cell 

extracts. The Bradford’s assay is a colorimetric assay which is based on Bradford dye-

binding method to measure total protein concentration. The principle behind this assay is 

based on colour change of Coomassie brilliant blue G-250 dye after binding to different 

concentration of proteins. The concertation of protein samples then can be measured by 

measuring the absorbance at 595 nm. 

 

The Bio-Rad working solution was prepared by adding 800 µl of distilled water to 200 µl 

of the Bio-Rad reagent (1 part of water to 4 part of the Bio-Rad reagent) in a 1.6 ml, 1 cm 

path visible cuvette. In order to calibrate 2 µl of distilled water was used and the 

spectrophotometer was set at 595 nm and was used as blank. To normalise the protein 

samples concentration 2 µl of samples was added to diluted dye and mixed and the 

absorbance of the solution was measured. Equal amounts of protein were mixed with 3 X 

SDS sample buffer (1M Tris pH 6.95 (Sigma, UK), 10% glycerol (Sigma, UK), 5% 2-

Mercaptoethanol (Sigma, UK), 0.6g SDS (Sigma, UK)) and either loaded on SDS PAGE 

on the same day or left at -20oC. 

 

2.12.3 SDS polyacrylamide gel electrophoresis 

 

The first step in studying proteins by western blot is to separate them on SDS gel by 

means of the electrophoresis technique. SDS is an anionic detergent that binds to 

polypeptide chains of proteins in a manner that is proportional to molecular mass of the 

polypeptide. Smaller molecules move faster than the larger molecules on a poly 

acrylamide gel as it contains pores. In order to make sure that the charge to mass ratio is 

the same among the samples, protein samples were denatured incubating at 95oC for 5 
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min in SDS sample buffer (187mM Tris, 30% Glycerol, 6% SDS,15% 2-mercaptoethanol, 

0.01% bromophenol blue).   

To detect proteins SDS-PAGE was performed using 10% gels, components of 10% gel 

and volumes are shown in Table 2.4. 

 
Table 2.4.The components and volumes required to create the resolving gel for one 10% acrylamide.  

Component Volume 

Deionised water 5.24 mL 

Acrylamide (Fisher, UK) 4.67 mL 

1.5 M Tris (pH8.95) (Fisher, UK) 3.5 mL 

10% SDS (Fisher, UK) 0.14 mL 

10% Ammonium persulphate (Sigma, UK) 0.075 mL 

0.2 M EDTA(Fisher, UK) 0.14 mL 

TEMED(Sigma, UK) 0.0085 mL 
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Table 2.5.The components and volumes required to create 6% stacking gel for one stacking gel.  

Component Volume 

Deionised water 3.37 mL 

Acrylamide (Fisher, UK) 0.835 mL 

1.5 M Tris (pH6.95) (Fisher, UK) 0.625 mL 

10% SDS (Fisher, UK) 0.050 mL 

10% Ammonium persulphate (Sigma, UK) 0.075 mL 

0.2 M EDTA (Fisher, UK) 0.050 mL 

TEMED (Sigma, UK) 0.0085 mL 

 

 

 

According to manufacturer’s guide line the gel casting apparatus was set-up. The 

components in Table 2.4 were prepared and the mixture was poured between the plates. 

To prevent gel from drying and removing the air bubbles after the resolving gel was 

poured into the gel casting apparatus, 500 µl of distilled water was poured on top. Once 

the gel was set the water was removed stacking gel mixture was poured on top of resolving 

gel and 1.5 mm wide well combs were inserted into the stacking gel solution (Table 2.5). 

Since the stacking gel has lower percentage of acrylamide and lower pH comparing to 

resolving gel it allows the proteins to be stacked before they leave the stacking gel and 

entering resolving gel. When the stacking was set the gels were fitted into electrophoresis 

mini buffer tank and the tank was filled with 1x SDS-PAGE running (25 mM Tris, 190 

mM glycine, 3 mM SDS). Protein samples were boiled at 95oC for 5 minutes and loaded 

into the wells of gel. 5 µl of prestained protein ladder (Fisher, UK) was loaded in every 

gel and the samples were run at 90V until they enter the resolving gel and then at 110V. 

 



87 

 

2.12.4 Western transfer 

 

When proteins resolved on the gels they were transferred to a polyvinylidene fluoride 

PVDF membrane (Millipore, UK) using western transfer method. Western transfer 

apparatus (Bio-Rad, UK) was set up according to manufacturer’s guideline and the tank 

was filled with western transfer buffer (28 mM Tris, 0.15 M glycine, 20% methanol). The 

transfer was carried out for 90 minutes in 0.4amps with ice pack changed every 45 

minutes. When the transfer was completed the PVDF membranes were blocked in 5% 

dried milk in 1x phosphate buffered saline (PBS) (170mM NaCl, 3.3 mM KCl, 1.8 mM 

Na2HPO4, 10.6 mM KH2PO4; pH 7.4) for 1 hour. The membrane then was incubated 

with desired antibody in 2.5% milk/0.1% PBS Tween (PBS + 0.1% Tween-20) overnight 

on a rocking platform at 4oC.  

 

The day after incubation membranes were washed three times each time 10 minutes in 

PBS 0.1% tween, and then membrane was incubated in relevant secondary anti-rabbit or 

anti-mouse IgG horseradish peroxidise conjugated secondary antibody in 2.5% milk 

PBS/tween.  

 

Three further washes with PBS Tween (each wash for 10 minutes) were carried out. In 

order to visualise the proteins SuperSignal™ West Femto (Thermo Fisher, UK) or 

SuperSignal™ West Pico (Thermo Fisher, UK) Chemiluminescent reagent was added on 

to the membrane and proteins were visualised on medical X-ray films (Fujifilm, UK) 

using developer. 

 

2.12.5 Western blot quantification 

 

Image J 1.48 was used to quantify western blot results with readings of each protein band 

normalized to their corresponding actin band. Readings were then expressed relative to 

the control lane and results were then presented as bar charts. As shown below in Figure 

2.3 a square was drawn around the protein bands, and by selecting a specific tool protein 

bands were represented as separate peaks. The software in a different window then 

calculated the density represented by peaks.  
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 Figure 2.3.Summary of ImageJ quantification. 

 

 

2.12.6 Striping the membranes 

 

In order to strip the antibody off the membranes after detecting the first protein whenever 

necessary, the membranes were incubated in striping buffer (100 mM 2-Mercaptoethanol, 

2% SDS, 62.5 mM Tris-HCl pH 6.7) for 30 minutes at 50oC and washed three times in 

0.1% PBS tween for 10 minutes. Membranes were then blocked with the desired primary 

antibody.  

 

2.13 Co-Immunoprecipitation (Co-IP) 

 

Co-IP is a popular technique used widely to identify protein-protein interactions and 

validation. The principle of Co-IP is fairly straight forward, an antibody will be added to 

cell lysate against target protein, then they will form a complex and this complex is then 

precipitated through binding to the beads and the proteins that are not precipitated on the 

beads are washed away. When suitable antibody is added to the samples it will bind to 

protein of interest and it will form a complex with beads.  
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Protein-A sepharose (Sigma, UK) beads were washed 3 times in TNN (50 mM Tris pH 

7.5, 120 mM NaCl, 5 mM EDTA, 0.5% Igepal, 1 µg/ml protease inhibitor cocktail, 1 mM 

DTT, 1 mM PMSF, 2 mM sodium orthovanadate, 5 mM sodium pyrophosphate and 20 

mM β glycerophosphate) buffer and once with PBS samples were lysed in TNN buffer 

and saved for the input, and to the rest of the extract the antibody of interest was added 

as well as 15 µl protein-A sepharose rotated at 4˚C overnight. Samples were then washed 

with TNN buffer 3 times and once with PBS and were pelleted at 4˚C by centrifugation. 

Then before loading the samples onto the gels they were boiled for 3 minutes at 95°C in 

30 µl 3 x SDS sample buffer, and the beads were pelleted out with centrifugation 13,000 

rpm for 2 minutes. In order to analyse the immunoprecipitated proteins western blotting 

was used.  

 

2.14 Quantitative Real Time PCR (qRT-PCR) 

 

2.14.1 RNA isolation 

 

The total RNA was extracted using ISOLATE II RNA Mini Kit (Bioline, UK). 

Approximately 5 x 106 cultured cells were lysed using 350µl Lysis Buffer RLY and 3.5 

2-mercaptoethanol (Sigma, UK). Protocol was carried out according to manufacturer’s 

guideline. A Bioline silica column was then used to further purify the eluted RNA, DNase 

digestion as part of the RNA extraction kit was carried out according to manufacturer’s 

instructions. Silica membrane was the washed once with 200µl of wash buffer 1 (RW1) 

and another wash was carried out with 600µl of wash buffer 2 (RW2). RNA was finally 

eluted in RNase free eater and stored in -80oC until further use.  

 

2.14.2 cDNA synthesis  

 

From the isolated RNA, the cDNA was generated in a process called reverse transcription. 

Synthesis of cDNA was carried out using SensiFAST cDNA Synthesis Kit (Bioline, UK). 

Synthesis was performed in a total volume of 20µl the master mix preparation as shown 

below Table 2.6: 



90 

 

 

            Table 2.6Components of cDNA master mix. 

Total RNA (up to 1 µg)  n µl 

5x TransAmp Buffer 4 µl 

Reverse Transcriptase 1 µl 

DNase/RNase free-water Up to 20 µl 

 

 

 

Mastermix was then mixed gently, and left on thermocycler with the following PCR 

cycle:  

• 25oC for 10 min (primer annealing) 

• 42oC for 15 minutes (reverse transcription)  

• 85oC for 5 min (inactivation) 

• 4oC hold  

 

 

2.14.3 qPRT-PCR 

 

cDNA levels of each corresponding RNA content of specific genes were determined by 

quantitative real-time PCR. The SensiFASTTM SYBER dye (Bioline, UK) interacts only 

with double strand PCR products, so the fluorescence signal is proportional to the number 

of amplified copies. The components used for qRT-PCR reactions are shown in table 

below     Table 2.7.  

  



91 

 

 

               Table 2.7.Components of SYBR green master mix. 

Reagent Volume  

2x SensiFAST SYBR No ROX Mix 10µl 

10µM forward primer  0.8µl 

10µM reverse primer 0.8µl 

Template up to 8.4µl 

 H2O As required 

20µl Final volume 

 

 

16 µl of specific master mix with desired forward and reverse primer (    Table 2.7 and 

Table 2.8) was loaded in the corresponding wells of 96 well plate, followed by addition 

of 4µl of cDNA in duplicate. Lids were attached and the plate centrifuged at 1,000 rpm 

for 1 minute.  Opticon 3.1 software on a chromo 4 machine was used to perform the PCR 

reaction with the following cycle:  

 

 

                                                        10 minutes at 45oC 

2 minutes at 95oC 

5 seconds at 95oC 

10 seconds at 60oC 

5 seconds at 72oC 

 

Melting curve 72 ºC-95 ºC, reading every 1 ºC, with a 30 second hold. The Opticon 3.1 

software was used to carry out analysis, quantifying samples using the standard curve 

method. RPL19 housekeeping gene was used to normalise the values of each sample.  
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Figure 2.4.Principle involved in qPCR assay 

 

 
       Table 2.8.List of qRT-PCR primers.  

Gene Primer Sequence  

  RPL19 
Forward ATG TAT CAC AGC CTG TAC CTG  

Reverse TTC TTG GTC TCT TCC TCC TTG  

 

TTC5 

Forward CAG CGG TGC CGT CAT CCT G  

Reverse GCA CTC CCC AGC TCT GCA C  

 

CyclinD1 

 

Forward CCG TCC ATG CGG AAG ATC GTC 

Reverse GAA GAC CTC CTC CTC GCA CTT C 

 

 

Where there is a significant increase in fluorescence that determines the threshold cycle 

(Ct value). The baseline area is where there is no significant fluorescence early in the 

cycle. The intensity of SYBR green florescence at end of every cycle determines the copy 

number of amplified DNA.  
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2.15 MTT assay 

 

MTT is a colorimetric assay which determines the number of viable cells. In 

metabolically active cells the yellow tetrazolium MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-

diphenyltetrazolium bromide) is reduced by the action of dehydrogenase enzymes, to 

generate reducing equivalent such as NADH and NADPH. The intracellular purple 

formazan that is produced as a result can be solubilized and quantified by 

spectrophotometric means (Mosmann, 1983) 

 

Cells were seeded at concertation of 2500 cells/well in 100µl of appropriate media on 96-

well plate (SLS, UK) and incubated at 37oC containing 5% CO2 incubator. Following day 

transfection of siRNA was done as described previously, 24 hours after the transfection 

cells were washed twice in 1xPBS and dosed with the relevant concentration of each drug 

and incubated for 24 or 48 hours, this was carried out in triplicate to increase accuracy. 

Following the end of each incubation time 50µl of MTT (Sigma, UK) working solution 

(3 mg/ml in 1xPBS) was then added to each well and the plates were then incubated in 

the 37oC for a further 3 hours. After the 3 hour incubation period, the solution in each 

well was carefully aspirated, avoiding aspirating the purple crystals formed at the bottom 

of the walls. Crystals were then dissolved in 200 µl of Dimethyl sulfoxide (DMSO) 

(Sigma, UK) and the absorbance was then read using an Ascent Plate reader.  The 

difference between the two measurements one at 540 nm and one at 690 nm is what the 

computer software shows as the final data.  

 

2.16 Identification of transcription factor binding sites  

 

The QIAGEN Champion Chip Transcription Factor Search Portal was used in order to 

search for putative ERE on TTC5. A list of potential regulators of TTC5 were then listed.  
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2.17 Kaplan-Meier Analysis 

 

Kaplan-Meier is a non-parametric estimator that incorporates censoring for estimating 

survival probabilities (Klein 1997). The Kaplan-Meier test was used to analyse the 

survival data for the entire breast cancer patient group based on TTC5 expression. Using 

publicly available database (KM plotter; www.kmplot.com). 

 

 TTC5 was entered as the gene symbol, the auto selects best cut off box on the main page 

was ticked as well as exclude outlier arrays in the quality control tab. And high quality 

images the TIF was ticked in more options tab. In order to restrict the analysis to ERa 

positive patients the ER status was marked as positive.  

 

2.18 High-performance Integrated Virtual Environment (HIV) analysis   

 

The public domain of HIV through the George Washington University was accessed to 

identify the single-nucleotide variations of TTC5 among all cancer type, as well as 

mutations that are known to be associated with breast cancer.  

 

2.19 Statistical analysis  

 

Statistics Statistical analysis was performed in Microsoft Excel. In all figures * = p < 0.05, 

two tailed T-Tests were performed where specifically mentioned. 
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Chapter 3 Results  
 

3.1 TTC5 levels in MCF-7 and T47D breast cancer cell lines  

 

As mentioned before role the of cofactors in regulating estrogen receptor activity is vital 

and that activity of a protein is often correlated with its level in the cell. As the area of 

interest in this thesis is to investigate the role of TTC5 as a cofactor, this section focus is 

on monitoring TTC5 protein expression in breast cancer cell lines of interest (MCF-7 and 

T47D) and how hormone treatment affects TTC5 protein levels, hence western blot 

analysis (completed by densitometry) was employed on MCF-7 and T47D cells under E2, 

tamoxifen and raloxifene treatment. 

 

The relative levels of TTC5 expression in MCF-7 and T47D cells were determined by 

western blotting, and followed by qPCR analysis of TTC5 gene expression. For western 

blotting actin was used as a protein loading control, and the antibodies used were specific 

to either actin or TTC5 as the corresponding bands aligned with the marker at their known 

molecular weight, namely 42 kDa and 50kDa respectively.  

 

As for the qRT-PCR, total mRNA was extracted from breast cancer cells and subjected 

to reverse transcription and the cDNA was used as template for qRT-PCR for the 

amplification of TTC5. Rpl119 primers were used for amplification of Rpl19 cDNA 

levels and used as internal control. The ratio of TTC5 mRNA levels with the Rpl19 

mRNA levels in the non-treated cells was arbitrarily set to 1. 

 

To ensure that the changes in TTC5 expression were not a result of slightly altered protein 

loading within different lanes, each TTC band was normalised against its corresponding 

actin band.  Following quantification by densitometry, the untreated values were set as 

100% and the TTC5 treated with hormones (E2, tamoxifen or raloxifene) values 

expressed as a percentage of the untreated value. Since triplicate experiments were not 

carried out on the same gel or membrane hence the normalisation step was imposed. 
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Figure 3.1.TTC5 expression in MCF-7 cells assessed by western blot.  

A: MCF-7 cells were either left untreated or treated with E2 (100nM), tamoxifen (100nM) or raloxifene 

(100nM) for 24 hours. Whole cell lysate was then probed against TTC5 and b-actin in MCF-7 cells. b-

Actin was used as control protein loading. B: densitometry analysis of western blot data by ImageJ. The 

data of each treated sample were normalised to each corresponding b-Actin band. The band intensity of 

TTC5 protein was normalized to the band intensity of Actin. The values of untreated were considered 100 

and the values form E2, tamoxifen and raloxifene treated cells calculated accordingly. Error bars present 

standard errors of the mean form triplicate experiments. (P-value < 0.05 is indicated by *).  

 

 

Analysis of immunoblotting data by densitometry confirmed that TTC5 is expressed in 

MCF-7 cells (Figure 3.1A). E2 treatment seems to cause a significant decrease in TTC5 

protein levels after 24 hours when compared to control (lane 2 to lane 1, Figure 3.1B). 

 



97 

 

Interestingly the two SERM’s tamoxifen and raloxifene seems to have different effect on 

TTC5 protein levels in MCF-7 cells. Comparing lane 3 to lane 1 in  Figure 3.1B shows 

that treating MCF-7 cells with 100nM of tamoxifen for 24 hours slightly increased the 

TTC5 protein levels in these cells. Raloxifene seemed to decrease TTC5 protein levels in 

MCF-7 after 24 hours however this observation was not significant (comparing lane 4 to 

lane 1 in Figure 3.1B).  

 

 
 

Figure 3.2.qRT-PCR analysis of the effect of hormone on the mRNA levels of TTC5 in MCF-7 cells. 

MCF-7 cells were either treated with 100nM of E2, tamoxifen or raloxifene for 24 hours or left untreated 

(control). RNA was extracted from cells, reverse transcribed, before gene expression analysis was 

performed using qRT-PCR. Graph shows relative expression of TTC5 mRNA from qRT-PCR using TTC5 

specific primers with data normalised to a housekeeping gene Rpl19.The ratio of TTC5 mRNA levels with 

the Rpl19 mRNA levels in the non-treated cells was arbitrarily set to 100 (control). values form E2, 

tamoxifen and raloxifene treated cells calculated accordingly.  Error bars present standard errors of the 

mean from two independent experiments performed in duplicates (P-value < 0.05 is indicated by *). 

 

Furthermore, effect of hormone on TTC5 mRNA levels were analysed using qRT-PCR. 

The aim of qRT-PCR analysis was to measure TTC5 mRNA levels and monitor the effect 

of hormone on TTC5 gene expression, and also to see whether the effect of indicated 

hormones on TTC5 protein levels correlates with mRNA levels of TTC5 after treatments 

or not.  
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Based on DDCt values, the statistical analysis of qPCR data was done where, DDCt = DCt 

of sample - DCt of housekeeping gene, DCt value was calculated as following Ct of target 

gene (gene of interest, in this case TTC5 – Ct of reference gene (internal control, Rpl19 

was used in this study). Rather than showing the raw data as DDCt values the relative 

expression is given as 2-DDCt. 

 

If mRNA levels were compared with the results from western blotting; the gene 

expression of TTC5 decreased significantly after treatment with 100nM of E2 in MCF-7 

cells (comparing lane 2 to lane 1Figure 3.2) which shows correlation to western blot data 

(Figure 3.1B comparing lane 2 to 1). Next the qRT-PCR result obtained from treating 

MCF-7 cells with tamoxifen illustrates that tamoxifen treatment slightly increased TTC5 

expression (comparing lane 3 to lane 1 Figure 3.2). This effect didn’t seem to be 

significant, however it does correlate with western blot data obtained from treating MCF-

7 with tamoxifen (Figure 3.1B comparing lane 3 to 1). Next monitoring the effect of 

raloxifene on levels of TTC5 gene expression indicated that raloxifene treatment resulted 

in slight decrease (comparing lane 4 to lane1 Figure 3.2 ) on TTC5 expression which 

although it isn’t significant shows the same trend as western blot data. 
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Figure 3.3.TTC5 expression in T47D cells asses by western blot. 

A: T47D cells were either left untreated or treated with 100nM of E2, tamoxifen or raloxifene for 24 hours. 

Whole cell lysate was then probed against TTC5 and b-actin in T47D cells. b-Actin acts to control protein 

loading. B: densitometry analysis of western blot data by ImageJ. The data of each treated sample were 

normalised to each corresponding b-Actin band. The band intensity of TTC5 protein was normalized to the 

band intensity of Actin. The values of untreated were considered 100 and the values form E2, tamoxifen 

and raloxifene treated cells calculated accordingly. Error bars present standard errors of the mean from at 

least triplicate experiments. (P-value < 0.05 is indicated by *)  

 

 

Next, we were interested to investigate the effect of E2 (100nM), tamoxifen(100nM) and 

raloxifene(100nM) on T47D breast cancer cells. For this reason, T47D cells were treated 

with desired hormone (E2, tamoxifen or raloxifene) for 24 hours. Whole cell lysate was 
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extracted from tissue culture plates with high salt lysis buffer and western blotting was 

performed.   

 

 

 

As shown in Figure 3.3, TTC5 protein was successfully detected in T47D cells and 

hormone treatment had modest effect the levels of this protein in T47D cells. Comparing 

lane 2 to lane 1 of Figure 3.3A, indicates that E2 treatment slightly but significantly 

increased the TTC5 protein level, however E2 appeared to have the opposite effect in 

MCF-7 cells on TTC5 protein levels (Figure 3.1A comparing lane 2 to lane 1). 

 

The two SERM’s (tamoxifen and raloxifene) seemed to have the same effect on TTC5 

protein levels in T47D cells. Comparing bar 3 of Figure 3.3 to lane 1 shows that tamoxifen 

slightly increases the TTC5 protein levels however this didn’t seem to be statistically 

significant, same pattern have been monitored in MCF-7 cells (Figure 3.1A comparing 

lane 3 to lane 1). Raloxifene had the same effect as tamoxifen on TTC5 protein levels in 

T47D cells, comparing lane 4 to lane 1 of Figure 3.3B however raloxifene seemed to have 

different effect on MC-7 cells (Figure 3.3B comparing lane 4 to lane 1). 
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Figure 3.4. qRT-PCR analysis of the effect of hormone on the mRNA levels of TTC5 in T47D cells. 

T47D cells were either treated with 100nM of E2, tamoxifen or raloxifene for 24 hours or left untreated 

(control). RNA was extracted from cells, reverse transcribed, before gene expression analysis was 

performed using qPCR. Graph shows relative expression of TTC5 mRNA from qRT-PCR using TTC5 

specific primers with data normalised to a housekeeping gene Rpl19. The ratio of TTC5 mRNA levels with 

the Rpl19 mRNA levels in the non-treated cells was arbitrarily set to 100 (control) and the values form E2, 

tamoxifen and raloxifene treated cells calculated accordingly. Error bars present standard errors of the mean 

from two independent experiments performed in duplicates (P-value < 0.05 is indicated by *). 

 

 

The analysis of the qRT-PCR was carried out as explained before. T47D cells were either 

not treated or treated with 100nM of E2, tamoxifen or raloxifene for 24 hours. RNA was 

extracted from the cell lysates following the manufacturers instruction described in the 

materials and method section. Results displayed in Figure 3.4 indicate that E2 causes 

slight significant increase of TTC5 mRNA levels (comparing lane 2 to lane 1 of Figure 

3.4) in T47D cells, which correlates to a great extent with western blot data.  

 

According to data presented in Figure 3.4, in the presence of tamoxifen treatment TTC5 

mRNA levels increased in T47D cells (comparing lane 3 to 1 of Figure 3.4). Although 

western data was not statically significant when T47D cells were treated with tamoxifen 

the qPCR data seems to be statistically significant.  Raloxifene didn’t seem to have a 
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noticeable or significant effect on T47D cells TTC5 mRNA levels, but a slight increase 

can be seen (comparing lane 4 to lane 1 of Figure 3.4).  

 

The comparison analysis of the effect of E2, tamoxifen and raloxifene on TTC5 protein 

and mRNA levels on two different cell lines (MCF-7 and T47D) would be as follows: 

 

• E2: resulted in reduction of both protein and mRNA levels of TTC5 in MCF-7 

whilst it had the opposite effect on T47D cells. 

•  Tamoxifen: resulted in an increase in both protein and mRNA levels of TTC5 in 

both cell lines (MCF-7 and T47D). 

•  Raloxifene: caused in reduction of both protein and mRNA levels of TTC5 in 

MCF-7 cells, whilst in T47D cells resulted in slight increase both in mRNA and 

protein levels. 

 

 

The most important finding to take away from this section is that TTC5 presence both at 

the level of protein and gene expression in MCF-7 and T47D, and that hormone treatment 

can affect these levels.  

 

  

3.2 ERE identification on TTC5 promoter 

 

At this point we thought of a bioinformatics approach to investigate the possibility of 

TTC5 being under ER control, hence the sequence analysis of TTC5 by QIAGEN 

Champion Chip Transcription Factor Search Portal reviled two ERa binding site on TTC5 

promoter  
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Figure 3.5.Identification of putative EREs on the TTC5 promoter. 

[Table adapted from the QIAGEN Champion Chip Transcription Factor Search Portal].  

 

 

Figure 3.5 shows the two putative ERE binding site on TTC5 promoter hence indicates 

the possibility of TTC5 being a target for ER. 

 

 

 

3.3 TTC5 interacts with ERa in MCF-7 and T47D cells 

 

As mentioned previously TTC5 interacts with GR (Davies et al., 2011), therefore to 

investigate whether TTC5 could be a common cofactor for multiple members of the 

nuclear hormone receptor family, co-IP experiment was carried out.  If TTC5 acts as a 

cofactor for the estrogen receptor, it is likely that it would be found in a complex with 

ERa. In order to assess whether TTC5 interacts with ERa in vivo, co-IP assays were 

performed on MCF-7 and T47D cells. 

 

Appropriate cell lysate was incubated with antibodies against ERa and subsequent 

immune-complexes were isolated from cell lysates using protein-A agarose beads 

together with the protein lysate control were subjected to western blotting for TTC5. Also, 

in order to determine the hormone dependency of the interaction cells were left untreated 

or treated with 100nM estradiol, tamoxifen or raloxifene for 24 hours.  
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Figure 3.6.ER interacts with TTC5 endogenously in MCF-7 cells. 

MCF-7 cells were treated for 24 hours with 100nM of E2 (A), tamoxifen (B) and raloxifene (C), or received 

no treatment. ERa was immunoprecipitated from cell lysate of MCF-7 cells using ERa monoclonal 

antibody, TTC5 interaction with ERa was detected by western blot. Mouse IgG was used as negative 

control, lane 2 and 4 of the IP panel in A and B, and lane 1,3 of IP panel in C. The top 2 panels show input 

levels of protein and lower 2 panels shows IP results (A, B and C). 
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Results from Figure 3.6 show that ERa interacts with TTC5 endogenously, in MCF-7 

cells both in absence and presence of E2, tamoxifen and raloxifene. Input levels of 

proteins showed expression of ERa and TTC5 ( Figure 3.6 A, B and C input panel) which 

was the positive control, whilst no proteins were detected in negative control co-IP using 

control IgG (Figure 3.6A and B IP panels lanes 2 and 4 and Figure 3.6C IP panels lanes 

1 and 3). The concept behind analysis is to first monitor weather hormone treatment has 

any effect on ERa/TTC5, and also compare the proportion of TTC5 that is in complex 

with ERa to levels of ERa alone. 

 

As shown in Figure 3.6A, TTC5/ERa interaction in MCF-7 didn’t seem to change 

considerably under E2 (100nM) treatment after 24 hours (comparing lane 3 to lane 1 

Figure 3.6A lower IP panel). However, it appears that in absence of hormone higher 

proportion of TTC5 is in ERa/TTC5 complex (comparing lane 1 of IP panel IB: TTC5 to 

lane 1 IP panel IB: ERa), where this amount increases when treated with hormone 

(comparing lane 3 of IP panel IB: TTC5 to lane 3 I P panel IB: ERa) 

 

Figure 3.6B, shows that when ERa was immunoprecipated using ERa antibody, TTC5 

could be detected as an interacting protein. TTC5 binding to ERa seemed to slightly 

increase in the presence of tamoxifen treatment (Figure 3.6 B, IP: TTC5 panel comparing 

lane 3 to lane 1). It seems a higher proportion of TTC5 is in the complex with ER after 

hormone treatment (comparing lane 3 of IP panel I B: TTC5 to lane 3 of IP panel IB:ERa). 

 

Figure 3.6C, shows the effect of raloxifene on ERa/TTC5 interaction. Raloxifene seems 

to increase the interaction between ERa and TTC5 in MCF-7 cells (comparing lane 4 of 

lower IP panel to lane 2).  
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Figure 3.7.ER interacts with TTC5 endogenously in T47D cells.   

T47D cells were treated for 24 hours with 100nM of E2 (A), tamoxifen (B) and raloxifene (C), or received 

no treatment. ERa was immunoprecipitated from cell lysate of MCF-7 cells using ERa monoclonal 

antibody, TTC5 interaction with ERa was detected by western blot. Mouse IgG was used as negative 

control, lane 1 and 2 of the lower IP panel in A, lane 2 and 4 and in B, and lane 1 and 2 of the lower IP 

panel in C. The top 2 panels show input levels of protein and lower panels shows IP results (A, B and C). 
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In order to further investigate the ERa/TTC5 interaction, co-IP experiment was carried 

out on T47D cells. The above results present in Figure 3.7 show that ERa interacts with 

TTC5 in T47D cells in absence and presence of hormones.  

 

In order to assess whether this interaction is affected by E2 treatment, T47D cells were 

treated with 100nM E2 for 24 hours, and ERa was immunoprecipated and levels of bound 

TTC5 under E2 treatment are shown in Figure 3.7A. While no bands were detected in 

negative control sample where IgG (lane 1 and 2 lower IP panel) was used to 

immunoprecipitate proteins, a noticeable increase can be seen comparing lane 2 to lane 1 

of IP panel IB: TTC5 this means in T47D cells the interaction between TTC5 and ERa is 

hormone dependent. Also noticeably higher proportion of TTC5 is in complex with ERa 

in presence of hormone (lane 2 of IP panel IB:TTC5 to lane 2 of IP panel IB:ERa). 

 

Next, we monitored if tamoxifen had any effect on TTC5/ERa interaction in T47D cells. 

Figure 3.7B, shows that tamoxifen increases the interaction between ERa and TTC5 in 

T47D cells (comparing lane 3 to lane 1 IP panel, IB: TTC5). A very faint line was detected 

in IP panel immune blot with ERa in absence of hormone compare to hormone treated 

samples (comparing lane 1 to lane 3 of upper IP panel), it seems this interaction is highly 

dependent on hormone.  

 

Furthermore, raloxifene effect on TTC5/ERa interaction was observed, as shown in 

Figure 3.7C, interaction of TTC5 with ERa showed no dependency on raloxifene, as 

slight increase can be seen (comparing lane 2 IP panel IB: TTC5 to lane 1). However, it 

appears a higher proportion of TTC5 is in a complex with ERa compared to the levels of 

ERa detected in IP panel (comparing lane 2 of IP panel IB: TTC5, to lane of IP panel IB: 

ERa). 

 

Overall, these sets of experiments (Figure 3.6 and Figure 3.7) indicates that TTC5 

interacts with ERa, and as previously it was shown that TTC5 interacts with GR, hence 

TTC5 could be a common cofactor for multiple members of the nuclear hormone receptor 

superfamily. Following the confirmation of ERa interactions with TTC5, the next 
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objective of this study is to determine which surface of TTC5 regulated ER’s 

transcriptional activity. 

 

 

3.4 The role of TPR and LXXLL motifs in regulation ER transcriptional activities  

 

3.4.1 TTC5 plasmid titration in MCF-7 and T47D cells 

 

The working concentration of the TTC5 plasmid for the luciferase assay was first selected 

as a primary step using a series of plasmid concentrations. Following the effect of 

WTTTC5 on ERE transcriptional activity can potentially improve understanding of the 

role of this cofactor in estrogen effects on breast cancer cells. MCF-7 and T47D cells 

were chosen for purpose of this experiment as they are both estrogen receptor positive, 

and allow us to follow endogenous ER activity on ERE and assess effect in two different 

cell lines.   

 

MCF-7 cells were transfected with 200, 400 and 600ng of WTTTC5, 200ng of ERE-

luciferase reporter plasmid and 200ng of CMV-b galactosidase, and a suitable 

concentration of pcDNA3. After 24 hours cells were then incubated with 100nM of E2 

for 24 hours and cells were harvested and subjected to analysis of the luciferase and b-

galactosidase activity. The control lane of Figure 3.8 contains ERE, b-gal and pcDNA3 

plasmid, the transcriptional activity of ER is expected to increase in presence of ERE 

when treated with E2. Indeed, ER transcriptional activity increased on ERE promoter 

when cells were treated with 100nM of E2 for 24 hours (comparing lane 2 to lane 1 of 

Figure 3.8).  

 

Comparing lane 3 to 1 shows transfection of 200 ng of WTTTC5 results in slight increase 

in ER transcriptional activity which was not statically significant. Transcriptional activity 

of ER increased significantly in absence and presence of hormone when 400ng of 

WTTTC5 was transfected into the cells (comparing lane 5 to lane 1 and lane 6 to lane 2). 

And finally, introduction of 600ng of WTTTC5 into MCF-7 cells, activated the 

transcriptional activity of ER in absence and presence of hormone, however this result 
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was statistically insignificant. Based on the observation presented in Figure 3.8, 400ng of 

WTTTC5 plasmid was selected as the working concentration to be used in reporter gene 

experiments on MCF-7 cells. 

 

 
 

Figure 3.8.Titration of TTC5 plasmid concentration in MCF-7 cells.  

Relative luciferase value normalised to beta galactosidase values are displayed. 200ng, 400ng, and 600ng 

of TTC5 expression plasmid was transfected into MCF-7 cells. MCF-7 cells were transfected with ERE-

luciferase reporter plasmid (all lanes), pcDNA3 (all lanes) CMV-bgalactosidase (all lanes) and TTC5 (lane 

3,4,5,6,7 and 8). Cells were either treated with 100nM of E2 or received no treatment for 24 hours. Relative 

luciferase values normalised to b-Galactosidase values are displayed. The value obtained from untreated 

samples (pcDNA3 and CMV-bgalactosidase) were arbitrarily set to 100 (lane1) and rest of the values were 

calculated accordingly. Error bars present standard errors of the mean from three independent experiments 

(± SEM) (P-value < 0.05 is indicated by *) 
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Figure 3.9.Titration of TTC5 plasmid concentration in T47D cells.  

Relative luciferase value normalised to beta galactosidase values are displayed. 200ng, 400ng, and 600ng 

of TTC5 expression plasmid was transfected into T47D cells. T47D cells were transfected with ERE-

luciferase reporter plasmid (all lanes), pcDNA3 (lane 1,2) CMV-bgalactosidase (all lanes) and TTC5 (lane 

3,4,5,6,7 and 8). Cells were either treated with E2  or received no treatment for 24 hours. Relative luciferase 

values normalised to b-Galactosidase values are displayed. The value obtained from untreated samples 

(pcDNA3 and CMV-bgalactosidase) were arbitrarily set to 100 (lane1) and rest of the values were 

calculated accordingly. Error bars present standard errors of the mean from three independent experiments 

(± SEM) (P-value < 0.05 is indicated by *) 

 

Same experiment with exact same conditions as described above was carried out on T47D 

cells, as shown in Figure 3.9, ER transcriptional activity increased when T47D cells were 

treated with 100nM of E2 for 24 hours as expected (Figure 3.9 comparing bar 2 to 1).  

 

Introducing 200ng of WTTTC5 plasmid into T47D cells initiated a repressory effect on 

ER transcriptional activity (Figure 3.9 comparing lane 3 to lane 1) in absence of hormone 

and in presence of hormone a slight increase on ER transcription can be observed (Figure 

3.9 comparing lane 4 to 1). Furthermore, 400ng of WTTTC5 induced a noticeable 

significant decrease in ER transcriptional activity in absence of hormone (Figure 3.9 

comparing lane 5 to lane 1), however hormone treatment induced significant increase in 

ER transcriptional activity (Figure 3.9 comparing lane 6 to 1). Finally, 600ng of WTTTC5 
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was transfected into the cells which in absence of hormone (E2) caused a slight but 

significant decrease in ER transcriptional activity (comparing lane 7 to 1), however 

hormone treatment resulted in increasing ER transcriptional activity (Figure 3.9 

comparing lane 8 to 7). It appears that, 400ng of WTTTC5 plasmid can be used as 

working concentration for both MCF-7 and T47D cells in reporter gene experiments. 

 

 

3.4.2 Site directed mutagenesis of TPR and LXXLL motifs of TTC5 

 

TTC5 was shown to comprise of 6 TPR motifs and two LXXLL motifs. Proteins that 

contain TPR motifs can interact with various proteins from transcription factors to multi-

meric scaffolding proteins (Strauss and Keller, 2008). TTC5 has been shown to regulate 

GR, which is a member of the nuclear hormone receptors and a steroid receptor like ER. 

It was shown in A549 cells that TTC5 interacts with GR and the most critical motif in 

this interaction is known to be TPR 2,3 and 5 and LTSAL (which is a LXXLL motif) 

motif (Davies et al., 2011).  

 

Though in a short period of time genome sequencing could solve human health issues, 

complex diseases like breast cancer remain difficult to tackle. However, with advanced 

high-throughput sequencing (HTS), that provides genomics data by sequencing a large 

number of tumour samples across cancer types useful information can be achieved.  These 

HTS are the result of several international collaborations such as The Cancer Genome 

Atlas (TCGA) and International Cancer Genome Consortium (ICGC). Whether a specific 

gene has been mutated or how a mutation affects protein function can be revealed through 

such analysis, hence we investigated the abundance or depletion of TTC5 across all 

cancer type and specially breast cancer (Appendix Figure 5.1). Table 3.1 represent the 

mutations in TTC5 that have been associated with breast cancer by bioinformatics 

approaches (Refer to methods section 2.18) . An interesting observation from this data 

was the missense mutation at serine 221, which correlated with the previous study by 

Demonacos et al., 2004 where they discovered when DNA damage occurs TTC5 

phosphorylates ATM at the Serine 221 (S221) and as a result this activates the p53 
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response. It becomes apparent that mutations in this residue augments the p53 response 

hence the mutations are passed on to the next generation of cells.  

 

 

 
Table 3.1.TTC5 mutations associated with breast cancer. *Phosphorylation site for chk2 kinase 

 
 

It was after this observations that we assumed TTC5 is involved in ER regulation, hence 

in order to investigate the role of TTC5 multiple surfaces in ER mediated transcriptional 

activation, we performed an ERE-luciferase assay to detect estrogen signalling.  In order 

to determine the role of TTC5, TPR and LXXLL motifs in ER transcriptional activity, 

site directed mutagenesis was used to mutate crucial residues in these motifs, as shown in 

Figure 3.10A and Figure 3.10B. 
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Figure 3.10.Different surfaces of TTC5. 

A: TTC5 is a 440 amino acid protein. Amino acid underlined are predicted TPR motifs, and the green fonts 

are predicted LXXLL motifs. B: TPR motifs show homology in their amino acid sequence, length, spacing 

and hydrophobicity. TPR motifs consists of two alpha helices forming an antiparallel hairpin structure. 

TTC5 contains of 6 TPR motifs, a 34 amino acid residue domain. Pink font indicates the position of the 

chosen amino acid for mutation. TPR1 was labelled as F26A as the phenylalanine residue at position 26 of 

TTC5 sequence was changed to Alanine (this was done for the rest of the TPR and LXXLL mutants). [B 

modified from (Adams et al., 2012)] 

 

 

3.4.3 Different motifs of TTC5 affect the transcriptional activity of ER 

 

In order for transcription to start, ER binds to estrogen response element (ERE), this 

complex then interacts with coactivator proteins and components of RNA polymerase II 

transcription initiation. However, details of this process and how its deregulation leads to 

cancer or drug resistance are still not very clear. Following the effect of TTC5 on ER 

transcriptional activity can potentially improve understanding of the role of this cofactor 

in estrogen effects on breast cancer cells. MCF-7 and T47D cells were chosen for purpose 
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of this experiment as they are both estrogen receptor positive, and allow us to follow 

endogenous ER activity on ERE-luciferase reporter and assess effect in two different cell 

lines with identical ER status. The ERE-luciferase reporter was a gift form Professor Arun 

Rishi (Apendix Appendix Figure 5.2). 
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Figure 3.11. Effect of TPR mutants on ER transcriptional activity on ERE promoter in MCF-7 cells. 

A. Illustration of relative luciferase of ER on ERE promoter in MCF-7 cells. MCF-7 cells were transfected 

with ERE-luciferase (all lanes), CMV-b galactosidase (all lanes), pcDNA3 (all lanes) and either WTTTC5 

or TPR mutants TPR1 (F26A), TPR2 (A88G), TPR3 (A122G), TPR4 (V145A), TPR5 (G186A), TPR6 

(A243G). Relative luciferase values normalised to b-Galactosidase values are displayed. Cells were either 

treated with E2 (100nM) or received no treatment for 24 hours. Reporter gene activity for the vector control 

of untreated samples were taken as 100 and all other activities are shown relative to this. Error bars present 

standard errors of the mean from three independent experiments (± SEM) (P-value < 0.05 is indicated by 

*). B. Western blot for the same experiment was done using MCF-7 cells transfected with pcDNA3, 

WTTTC5 and the six TPR mutants. 
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Luciferase assays were performed to measure the activity of endogenous ER by 

transfecting ERE reporter into MCF-7 cells using PolyFect transfection reagent in the 

absence and presence of E2. MCF-7 cells were transfected with 200 ng of CMV b-

galactosidase, 200ng of ERE-luciferase and 400ng of WTTTC5 or 400ng of TRR1/F26A, 

TPR2/A88G, TPR3/A122G, TPR4/V145A, TPR5/G186A, and TPR6/A243G and 

pcDNA3 as required to reach a final concentration of 1.5 µg of total DNA for PolyFect 

transfection. The cells were then either not treated or treated with 100nM of E2 for 24 

hours. While b-gal assay was performed as an internal control for transfection efficiency, 

western blot shown in Figure 3.11, was also used as a positive control for transfection 

efficiency. β-actin and TTC5 levels were analysed by means of western blot using 

primary antibodies against β-actin, and TTC5. 

 

 

The control lane which measures the ER transcriptional activity on ERE promoter was 

used as a positive control for this assay as well as the b-gal assay (internal control). As 

expected E2 treatment increased the transcriptional activity of ER on ERE promoter 

(comparing lane 2 to lane 1Figure 3.11A).  Wild type (WTTC5) increases ER activity on 

ERE promoter in both absence and presence of hormone (comparing lane 3 to 1 and lane 

4 to lane 2) and was shown previously in the titration experiment Figure 3.8. The notion 

of statistical analysis that was carried out in these sets of experiments, was to compare 

the effect of each mutant on ER transcriptional activity (in absence and presence of 

hormone) with control bar and also to the WTTTC5 bar.  

 

In Figure 3.11, it is evident that although F26A (TPR1) induced a slight increase in ER 

transcriptional activity both in absence and presence of hormone comparing to control 

(comparing lane 5 and 6 to lane 1). However, in comparison with WTTTC5 this motif 

activated ER transcription to lesser degree (comparing lane 5 and 6 to lane 3 and 4). As 

shown in Figure 3.11, A88G (TPR2) didn’t appear to have any noticeable effect on ER 

activity in absence of hormone (comparing lane 7 to lane 1), although hormone treatment 

induced an coactivatory effect on ER transcription but not above the degree of activation 

that WTTTC5 caused (comparing lane 8 to lane4).  
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Results of Figure 3.11 show A122G (TPR3) mutant were overexpressed in T47D cells 

and indicates, that although both in absence and presence of hormone this mutant induces 

a slight increase on ER transcription levels compare to control (comparing lane 9 and10 

to lane 1),  this mutant less activatory effect in comparison with WTTTC5 (comparing 

lane 9 to lane 3 and 10 to lane 4).  In Figure 3.11, it is observed that the V145 (TPR4) is 

triggering a significantly strong repression on ER transcription both in absence and 

presence of hormone (lanes 11 and 12 compared to control and WTTTC5 lanes), this 

reside appeared to be one of the strongest corepressor, which makes this TPR a possible 

coactivator for ER activity.  According to Figure 3.11G186A (TPR5) mutant also is 

repressing ER activity both in absence and presence of hormone (comparing lane 13 and 

14 to both control and WTTTC5 bar) but to a greater degree than V145A mutant. 

Although A243G (TPR5) mutant may seem to activate ER transcription compare to 

untreated control group (comparing lane 15 and 16 to lane1) but in comparison with 

WTTTC5 lanes (comparing lane 15 to lane 3 and lane 16 to lane 4) this mutant activated 

ER in lesser extent. Hormone treatment doesn’t seem to play a noticeable role on this 

mutant.  

 

Taken together, these luciferase assay results performed on MCF-7 cells (Figure 3.11A), 

indicates that WTTTC5 and the 6 TPR motifs can activate ER transcriptional activity on 

ERE promoter, nevertheless the extent of this effect may vary depending on the surface 

of the TPR motif utilised for ER-TTC5 interaction.  

 

 

 

 



118 

 

 
 
Figure 3.12. Effect of LXXLL mutants on ER transcriptional activity on ERE promoter in MCF-7 cells. 

A. Illustration of relative luciferase of ER on ERE promoter in MCF-7 cells. MCF-7 cells were transfected 

with ERE-luciferase (all lanes), CMV-b galactosidase (all lanes), pcDNA3 (all lanes) and either WTTTC5 

or LXXLL mutants (LTSAL and L16A). Relative luciferase values normalised to b-Galactosidase values 

are displayed. Cells were either treated with E2 (100nM) or received no treatment for 24 hours. Reporter 

gene activity for the vector control of untreated samples were taken as 100 and all other activities are shown 

relative to this. Error bars present standard errors of the mean from three independent experiments (± SEM) 

(P-value < 0.05 is indicated by *). B. Western blot for the same experiment was done using MCF-7 cells 

transfected with pcDNA3, WTTTC5 and the two LXXLL mutants. 
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Next MCF-7 cells were transfected with same ERE reporter, and this time the effect of  

LXXLL mutants on ER transcriptional activity was observed. MCF-7 cells were 

transfected with 200ng of CMV b-Galactosidase, 200ng of ERE-luciferase and 400ng of 

WTTTC5 or 400ng of TTC5/LTSAL, TTCC5/L16A and pcDNA3 as required to reaching 

a final concentration of 1.5 µg of total DNA for PolyFect transfection. The cells were 

then either not treated or treated with 100nM of E2 for 24 hours. 

 

The results are summarised in Figure 3.12, where (A) presents the relative luciferase of 

ER and (B) is the western blot used as positive cell transfection control. Figure 3.12A, 

revealed that LI16A mutant repressed transcription of ER dramatically both in absence 

and presence of hormone (comparing lane lanes 5 and 6 to lane 1 and also to WTTC5 

lanes). Although LTSAL mutant appears as an activator of ER transcription on ERE 

promoter (comparing lane 7 to lane 1), this observation wasn’t statically significant.  Also, 

the level of activation by this mutant was in lesser degree than WTTTC5 both the absence 

and presence of hormone (comparing lanes 7 and 8 to lanes 3 and 4).  

 

These results revel that ER transcription is affected by LXXLL motifs of TTC5 on ERE 

promoter, and that the reduction in ER activity with mutated LXXLL motifs on ERE 

promoter indicates that perhaps these two LXXLL motifs are required for activating ER 

transcriptional activity.  
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Figure 3.13. Effect of TPR mutants on ER transcriptional activity on ERE promoter in T47D cells. 

A. Illustration of relative luciferase of ER on ERE promoter in T47D cells. T47D cells were transfected 

with ERE-luciferase (all lanes), CMV-b galactosidase (all lanes), pcDNA3 (all lanes) and either WTTTC5 

or TPR mutants (F26A, A88G, A122G, V145, G186A, A243G). Relative luciferase values normalised to 

b-Galactosidase values are displayed. Cells were either treated with E2 (100nM) or received no treatment 

for 24 hours. Reporter gene activity for the vector control of untreated samples were taken as 100 and all 

other activities are shown relative to this. Error bars present standard errors of the mean from three 

independent experiments (± SEM) (P-value < 0.05 is indicated by *).  B. Western blot for the same 

experiment was done using MCF-7 cells transfected with pcDNA3, WTTTC5 and the six TPR mutants. 
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Previous experiment on MCF-7 cells showed that TPR motifs are important for both 

coactivator or corepressor function of ER activity on ERE promoter. In order to further 

investigate if these effects are specific to one type of cells, the same luciferase assay was 

carried out on T47D cells. T47D cells were transfected with 200 ng of CMV b-

Galactosidase, 200ng of ERE-luciferase and 400ng of WTTTC5 or 300ng of TTC5/F26A, 

TTCC5/A88G, TTC5/A122G, TTC5, V145, TTC5/G186A, and TTC5/A243G and 

pcDNA3 as required to reaching a final concentration of 1.5 µg of total DNA for PolyFect 

transfection. The cells were then either treated or not treated with 100nM of E2 for 24 

hours.  
 

The results are summarized in Figure 3.13 where the relative luciferase levels showed 

that WTTTC5 significantly induces repression on ER activity on ERE promoter in 

absence of hormone (comparing lane 3 to lane 1) however hormone treatment caused a 

slightly increased ER activity but this didn’t appear to be greater than in absence of TTC5 

(comparing lane 4 to lane 2). According to Figure 3.13A, F26A (TPR1) mutant seems to 

weakly repress ER activity in T47D cells both in absence and presence of hormone 

(comparing lanes 5 and 6 to lane 1). As for the TTC5 mutant A88G (TPR2), this mutant 

activated ER activity on ERE promoter (lane 7) compared to control (lane1), the 

coactivatory effect of this mutant seemed to be higher than the WTTTC5 (lane 7 to lane 

3) however these results were insignificant. On the other hand, hormone treatment caused 

dramatic decrease of ER transcription (comparing lane 8 to lane 1 and 4). This suggest 

the hormone dependency of this mutant on T47D cells, which means in absence of 

hormone this mutant acts as activator while in presence acts as repressor.  

 

Overexpression of A122G (TPR3) motif strongly inhibited ER activity on ERE promoter 

in T47D cells (comparing lane 9 to lane1and 3) and hormone treatment further decreased 

this effect (comparing lane 10 to lane 1 and 4). Mutations in amino acid residues of this 

motif resulted in strong corepressory effect on ER transcriptional activity on ERE 

promoter, which means this residue is responsible for activating ER transcriptional 

activity. According to Figure 3.13A, the V145 (TPR4) mutant overexpression in T47D 

cells triggered an increase on transcription of ER both in absence and presence of 

hormone (lanes 11 and 12), this mutant didn’t seem to be under the influence of hormone. 
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Results presented in Figure 3.13A, indicates that, ER transcriptional activity at ERE 

promoter significantly increased when G186A (TPR5) mutant was transfected into T47D 

cells (comparing lane 13 to lane 1), however E2 treatment decreased this effect but the 

overall effect was still coactivatory (lane 14 to lane 1 and lane 4). This mutant seems to 

be the only significant coactivator of ER transcription in T47D cells. A243G (TPR6) 

motif in absence of hormone didn’t have any noticeable effect on ER transcriptional 

activity (compare lane 15 to lane 1 and lane 3) however hormone treatment caused slight 

significant increase (comparing lane 16 to lane 1). The effect of this mutant on ER 

transcriptional activity appeared to be hormone dependent. 
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Figure 3.14. Effect of LXXLL mutants on ER transcriptional activity on ERE promoter in T47D cells. 

A. Illustration of relative luciferase of ER on ERE promoter in T47D cells. T47D cells were transfected 

with ERE-luciferase (all lanes), CMV-b galactosidase (all lanes), pcDNA3 (all lanes) and either WTTTC5 

or LXXLL mutants (LTSAL and L16A). Relative luciferase values normalised to b-Galactosidase values 

are displayed. Cells were either treated with E2 (100nM) or received no treatment for 24 hours. Reporter 

gene activity for the vector control of untreated samples were taken as 100 and all other activities are shown 

relative to this. Error bars present standard errors of the mean from three independent experiments (± SEM) 

(P-value < 0.05 is indicated by *). B. Western blot for the same experiment was done using MCF-7 cells 

transfected with pcDNA3, WTTTC5 and the six TPR mutants. 
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T47D cells were transfected with 200 ng of CMV b-Galactosidase, 200ng of ERE-

luciferase and 400ng of WTTTC5 or 400ng of TTC5/LTSAL, TTCC5/L16A and 

pcDNA3 as required to reaching a final concentration of 1.5 µg of total DNA for PolyFect 

transfection. The cells were then either not treated or treated with 100nM of E2 for 24 

hours.  As shown in  

Figure 3.14A, both LI16A and LTSAL had similar effect on ER transcriptional activity on 

ERE promoter in T47D cells. They both inhibited ER activity in T47D cells compare to 

control (comparing LI16A and LTSAL bar to control and WTTTC5 bar). Taken together, 

luciferase date suggests that TTC5 derivatives carrying TPR and LXXLL mutated motifs 

can activate, repress or have little effect on ER transcriptional activity inT47D cells 

depending on the TTC5 surface utilised (Figure 3.13 and  

Figure 3.14) The comparison analysis of contribution of each individual TPR and LXXLL 

motif towards ER transcriptional activity in two different cell lines (MCF-7 and T47D) 

would be as follows:  

 

• F26A (TPR1) was a corepressor of ER in MC-7 while it was a coactivator in 

T47D cells. 

• A88G (TPR2) was a corepressor of ER transcriptional activity in MCF-7 cells, 

while it was a coactivator in T47D cells. 

• A122G (TPR3) was a coactivator of ER in MCF-7 cells while it was a major 

corepressor inT47D cells. 

• V145A (TPR4) was a major coactivator of ER in MCF-7 while it was a 

corepressor in T47D cells. 

• G186A (TPR5) was the major regulator of ER activity in MCF-7 while it was the 

most prominent co repressor in T47D. 

• A243G (TPR6) motif was showing similar upregulation effects on ER in both cell 

lines. 

• LI16A (LXXLL) motif triggers strong coactivation in MCF-7 cells while a 

corepressor of ER activity in T47D cells.  

• LTSAL (LXXLL) motif was corepressing ER activity in MCF-7 and coactivating 

in T47D 

 



125 

 

 

3.5 Optimisation of siRNA mediated inhibition of TTC5 in MCF-7 and T47D cells 

 

Two specific receptors, estrogen receptor ERa and ERb  mediate the effect of estradiol. 

As mentioned before in introduction, it is through the classical pathway that ER binds to 

ERE and activates the expression of target genes. Studies have shown estradiol stimulates 

the proliferation of estrogen positive breast cancer cells (Glaeser et al., 2006).  

  

The aim of this series of experiments was to determine role of TTC5 and ER crosstalk 

using TTC5 knockdown/MTT assay and determining potential effects on MCF-7 and 

T47D cells proliferation when treated with various concentration of E2, tamoxifen and 

raloxifene. 

 

For successful knockdown specific factors are required such as suitable amount of 

transfection reagent and number of cells.  First step of optimisation was to determine the 

optimal concentration of DharmaFECT 1 (DF1) transfection reagent that would provide 

the highest transfection efficiency and lowest cytotoxicity.  Using the MTT assay cellular 

viability was measured with 3 different concentrations of DF1 (0.125µl-0.25µl and 0.5µl). 

For optimisation purpose a non-targeting (NT) siRNA was used as control.  qRT-PCR 

was performed to confirm the efficiency of knockdown prior to every experiment. 

Transfection was repeated on MCF-7 and T47D cells at 2500 cells/well before a specific 

concentration of DF1 was chosen for further studies. 

 

In order to determine experimental conditions where the siRNA mediated TTC5 

knockdown was maximal and the viability of the cells was least affected, concentration 

of the siRNA pool plus the DF1 transfection reagent was varied. 

 

The non-targeting siRNA was recommended by GE Dharmacon company as a control for 

optimisation. Using a 96-well plate 2500 cells were seeded per well and 2µM stock of 

each siRNA were made, and transfected into cells with DF1. After 24 hour samples were 

collected to measure the percentage of TTC5 knockdown before each MTT experiment.  
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Figure 3.15.Optimisation of MCF-7 cells with various concentrations of DF1 transfection reagent. 

A. MTT assay of MCF-7 cells treated with TTC5 siRNA and non-targeting (NT) siRNA with various 

concentration of DF1, showing cellular viability after 24 and 48 hours (A). Normalised to control (cells 

with no transfection reagent). Untreated samples were taken as 100 and all other activities are shown 

relative to this. B. qRT-PCR analysis showing percentage of TTC5 knockdown against non-targeting 

siRNA after 24 hours in MCF-7 cells. Error bars present standard errors of the mean from three independent 

experiments (± SEM) (P-value < 0.05 is indicated by *).   
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As shown in Figure 3.15B, the highest recorded knockdown of TTC5 (90%) (Figure 

3.15B (DF1 0.5µl/well), also induced a high level of cytotoxicity in MCF-7 cells. 

Analysis of Figure 3.15A and B, determined that 0.125µl of DF1 was sufficient to provide 

an efficient level of knockdown with less cytotoxicity compared to other two 

concentrations of DF1.  
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Figure 3.16.Optimisation of T47D cells with various concentration of DF1 transfection reagent.  

MTT assay of T47D cells treated with TTC5 siRNA and non-targeting (NT) siRNA with various 

concentration of DF1, showing cellular viability after 24 hours (A). Normalised to control (cells with no 

transfection reagent). Untreated samples were taken as 100 and all other activities are shown relative to 

this. qPCR analysis showing percentage of TTC5 knockdown against non-targeting siRNA after 24 hours 

in T47D cells (B). Error bars present standard errors of the mean from three independent experiments (± 

SEM) (P-value < 0.05 is indicated by *).  
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Same sets of experiments were carried out on T47D cells in order to choose the right 

amount of DF1 that result in highest knockdown percentage with high cell viability. In 

T47D cells as shown in  

Figure 3.16, 0.25µl of DF1 reagent is sufficient to provide about 85% of TTC5 knockdown 

with minimal cytotoxicity.  

 

 

3.5.1 Effect of TTC5 knockdown on ERa positive breast cancer cell proliferation  

 

Small interfering RNA (siRNAs) that are produced by cleavage of longer RNAs, are non-

coding, double stranded RNA molecules (Elbashir et al., 2001; Hamilton and Baulcombe, 

1999). One of the two strands of siRNA separate and integrates into the RNA induced 

silencing complex (RISC) leading to reduced gene expression through siRNA. It is via 

the siRNA single strand that RISC binds to a complementary sequence of mRNA, and as 

a result the active component of RISC Argonaute then cleaves the mRNA preventing 

translation (Liu et al., 2004). siRNA molecules are designed in a way to be 

complementary for a gene interest which in this study is TTC5, therefore introducing 

siRNA into cultured cells prevents translation of TTC5.   

 

Once the optimisation of DF1 and siRNA pools were completed, to evaluate the role of 

TTC5 and ER in cell apoptosis, TTC5 was then knockdown in ER alpha positive breast 

cancer cells (T47D and MCF-7) using DF1. To measure the percentage of cell death due 

to knockdown of TTC5, cells were exposed to different concentrations of drugs (estradiol, 

tamoxifen and raloxifene) for 24 and 48 hours and the cell viability was determined by 

MTT assay.  
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Figure 3.17.Effects of TTC5 silencing on MCF-7 cells viability under various concentration of E2. 

MCF-7 cells were either left transfected with no siRNA (blue bars), or non-targeting siRNA (orange bars) 

and TTC5 siRNA (grey bars), using DF1. Cells either received no treatment (0) or were treated with 

increasing concentrations of E2 (0.39µM-25µM), and cell viability was analysed via MTT assays. A. MCF-

7 cells were treated with E2 for 24 hours. B.  MCF-7 cells were treated with E2 for 48 hours. The value 

obtained from untreated samples of each condition were taken as 100 (lane1,2,3) and all other activities are 

shown relative to this. Error bars present standard errors of the mean from three independent experiments 

(± SEM) (P-value < 0.05 is indicated by *).  
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The results presented in Figure 3.17 indicates that, the negative control (non-targeting) 

seemed to not have any effect as the value of orange bars are similar to the control (blue 

bars).  Though at 24 hours, no major difference between control (blue bars) and TTC5 

knockdown cells (grey bars) can be seen from 0.39µM to 12.5µM, E2 at its highest 

concentration (25µM) caused in slight significant decrease in cell viability of siRNA 

TTC5 transfected cells compared to control can be seen (compare lane 25 to lane 23).  

 

Next MCF-7 cells were left with increasing concentration of E2 for 48 hours and MTT 

assay was performed (Figure 3.17B). E2 appeared to continue to proliferate MCF-7 cells 

growth significantly at almost every concentration apart from 3.12µM (lane 15) and 

6.25µM (lane 18). The non-targeting seemed to follow the same pattern as control cells, 

apart from the 3.12µM concentration were the difference between non-targeting and 

control was noticeable. An interesting observation is the apparent decrease in cellular 

viability of knockdown cells compared to control Figure 3.17B. The difference between 

viability of knockdown and control cells seemed to be statically significant from 0.78µM 

to 25µM (except 6.25µM) after 48 hours. These results highlight that TTC5 silencing 

inhibits MCF-7 cell growth when estradiol is present at longer time course.  
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Figure 3.18. Effects of TTC5 silencing on MCF-7 cells under various concentrations of tamoxifen. 

MCF-7 cells were either left transfected with no siRNA (blue bars), or non-targeting siRNA (orange bars) 

and TTC5 siRNA (grey bars), using DF1. Cells either received no treatment (0) or were treated with 

increasing concentrations of tamoxifen (0.39µM-25µM), and cell viability was analysed via MTT assays. 

A. MCF-7 cells were treated with tamoxifen for 24 hours. B.  MCF-7 cells were treated with tamoxifen for 

48 hours. The value obtained from untreated samples of each condition were taken as 100 (lane1,2,3) and 

all other activities are shown relative to this. Error bars present standard errors of the mean from three 

independent experiments (± SEM) (P-value < 0.05 is indicated by *).   
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To further investigate the role played by TTC5 knockdown on MCF-7 cells, cellular 

viability; cells were treated with tamoxifen over a wide range of concentration (0.39 to 

25µM). Results from 3 to 5 independent MTT experiment were polled and bar char graphs 

were obtained Figure 3.18. At 25 µM a significant antiproliferative effect was observed 

(Figure 3.18A, comparing lane 23 to lane 1). TTC5 knockdown appeared to follow the 

same pattern as control cells, however it appears that tamoxifen at its highest 

concentration 25µM has slight significant additional inhibitory effect on knockdown cells 

growth (Figure 3.18A, comparing lane 25 to 23) 

 

Results present in Figure 3.19B indicates, further inhibition of cell growth of MCF-7 by 

tamoxifen after 48 hours of incubation time. Although no significant effect was observed 

at 0.78µM, 1.56µM and 3.12µM doses of the control group (lanes 7, 10 and 14), at higher 

doses of the hormone 6.25µM, 12.5µM and 25µM tamoxifen significantly inhibited cell 

proliferation up to 70% (lanes 17, 20 and 23). Knockdown of TTC5 in MCF-7 cells 

resulted in significant further increase in cell death (Figure 3.18B, lanes 19, 22 and 25). 

 

 

 



134 

 

 
 
Figure 3.19.Effects of TTC5 silencing on MCF-7 cells under various concentrations of raloxifene. 

MCF-7 cells were either left transfected with no siRNA (blue bar), or non-targeting siRNA (orange bar) 

and TTC5 siRNA (grey bar), using DF1 for 24 and 48 hours. Cells either received no treatment (0) or were 

treated with increasing concentrations of raloxifene (0.39µM-25µM), and cell viability was analysed via 

MTT assays. A. MCF-7 cells were treated with raloxifene for 24 hours. B.  MCF-7 cells were treated with 

raloxifene for 48 hours. The value obtained from untreated samples of each condition were taken as 100 

(lane1,2,3) and all other activities are shown relative to this. Error bars present standard errors of the mean 

from three independent experiments (± SEM) (P-value < 0.05 is indicated by *).   
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Data presented in Figure 3.19A and B, are results of at least three independent MTT 

assays performed on MCF-7 cells treated with various doses of raloxifene for 24 and 48 

hours. The cytotoxic effect of raloxifene on MCF-7 cells can be clearly seen at 25µM 

after 24 hours, which is shown to be statically significant (Figure 3.19A comparing lane 

23 to lane 1). Moreover, the difference between control cells and knockdown cells didn’t 

appear to be dramatic when treated with various concentration of raloxifene, as shown in 

Figure 3.19A (comparing grey bars to blue bars).  

 

Figure 3.19B, shows raloxifene effect on MCF-7 cells, and TTC5 knockdown cells after 

48 hours incubation. The treatment of the MCF-7 (control group) cells with raloxifene 

didn’t seem to be statically significant at lower doses, although at higher does 6.25µM, 

12.5µM and 25µM raloxifene induced cell death  on MCF-7 cells (lane 17, 20 and 23 

compared to lane 1).  Raloxifene appeared to have negligible effect on knockdown cells 

in comparison to control group (comparing grey bars to blue bars). However, at 0.78µM 

and 25µM a slight significant difference observed between TTC5 silenced cells and 

control (comparing lane 9 to 7 and lane 25 to 23 respectively). 
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Figure 3.20.Effects of TTC5 silencing on T47D cells under various concentrations of E2. 

T47D cells were either left transfected with no siRNA (blue bar), or non-targeting siRNA (orange bar) and 

TTC5 siRNA (grey bar), using DF1 for 24 and 48 hours. Cells either received no treatment (0) or were 

treated with increasing concentrations of E2 (0.39µM-25µM), and cell viability was analysed via MTT 

assays. A. T47D cells were treated with E2 for 24 hours. B.  T47D cells were treated with E2 for 48 hours. 

The value obtained from untreated samples of each condition were taken as 100 (lane1,2,3) and all other 

activities are shown relative to this. Error bars present standard errors of the mean from three independent 

experiments (± SEM) (P-value < 0.05 is indicated by *).   
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Following on from the findings, on the effect of TTC5 knockdown on MCF-7 cells 

viability in presence of E2, tamoxifen and raloxifene, it was important to evaluate these 

findings in another ERa positive cell line. Therefore, MTT assay was performed, with 

exact same condition on T47D cells, transfected with non-targeting, and TTC5 

knockdown siRNA.  

 

Figure 3.20 represents the result from at least 3 independent MTT experiments that were 

combined, and a bar chart was obtained. As shown in Figure 3.20A, although E2 didn’t 

seem to exert an effect on T47D cells at lower doses, it didn’t cause a noticeable decrease 

in cellular viability either (0.39µM to 3.12µM lanes 4,7,10 and 14). TTC5 knockdown 

resulted in inhibition of cell growth when treated with E2 compared to control group at 

0.39µM,0.78µM and 1.56µM (comparing lane 6 to 4, 9 to 7 and 12 to 10) these data were 

not significant. All three different conditions seemed to be statically significant when 

treated with 3.12µM, and it is clear that TTC5 knockdown results in further increase in 

cell death (comparing lane 16 to 14). 

 

Interestingly E2 treatment resulted in increased proliferation of T47D cells after 48 hours, 

from 0.39µM to 6.25 µM (Figure 3.20B comparing lanes 17, 14, 10, 7, 4 to lane 1). The 

most important observation to note by comparing Figure 3.20B to A, is that E2 at lower 

doses inhibits cellular growth in TTC5 knockdown cells (Figure 3.20b 0.39µM and 

0.78µM, Figure 3.20A 0.39µM, 0.78µM, comparing lane 6 to 4 and 9 to 7 in both figures). 

However, at higher doses the difference between the control group and TTC5 silenced 

cells were small (Figure 3.20B, 6.25µM, 12.5µM and 25µM comparing grey bars to blue 

bars).  
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Figure 3.21.Effects of TTC5 silencing on T47D cells under various concentrations of tamoxifen. 

T47D cells were either left transfected with no siRNA (blue bar), or non-targeting siRNA (orange bar) and 

TTC5 siRNA (grey bar), using DF1 for 24 and 48 hours. Cells either received no treatment (0) or were 

treated with increasing concentrations of tamoxifen (0.39µM-25µM), and cell viability was analysed via 

MTT assays. A. T47D cells were treated with E2 for 24 hours. B.  T47D cells were treated with tamoxifen 

for 48 hours. The value obtained from untreated samples of each condition were taken as 100 (lane1,2,3) 

and all other activities are shown relative to this. Error bars present standard errors of the mean from three 

independent experiments (± SEM) (P-value < 0.05 is indicated by *).   
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T47D cells were transfected with non-targeting siRNA and TTC5 siRNA using DF1, and 

treated with tamoxifen over a wide range of concentrations (0.39 to 25µM). MTT assay 

result presented as bar chats Figure 3.21A and B. 

 

Significant antiproliferative effect of tamoxifen can be seen on T47D cells after 24 hours 

Figure 3.21A, and that TTC5 knockdown further increases this antiprliferative effect 

(comparing grey bars to blue bars). This effect was shown to be statically significant at 

12.5µM and 25µM were the difference between control bar and TTC5 knockdown cells 

was noticeable (Figure 3.21A comparing lane 22 to 20). Compare to 48 hours treatment 

(Figure 3.21B), increase in cell death due to TTC5 knockdown, was more dramatic during 

24 hours of treatment and especially significant at higher doses of tamoxifen treatment 

12.5-25µM Figure 3.21A. 

 

After 48 hours tamoxifen exhibited a complete inhibitory effect on cell proliferation 

(P<0.05) of T47D cells. As shown in Figure 3.21B after 48 hours compared with control, 

TTC5 knockdown cells displayed a small but significant increase in cell death at lower 

concertation of tamoxifen treatments (0.39-6.25µM).  Furthermore, when cells treated 

with higher concentrations of tamoxifen (12.5-25µM) knockdown of TTC5 caused 

significant increase in cell death compared to control (p<0.05) (Figure 3.21B) 
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Figure 3.22. Effects of TTC5 silencing on T47D cells under various concentrations of raloxifene. 

T47D cells were either left transfected with no siRNA (blue bar), or non-targeting siRNA (orange bar) and 

TTC5 siRNA (grey bar), using DF1 for 24 and 48 hours. Cells either received no treatment (0) or were 

treated with increasing concentrations of raloxifene (0.39µM-25µM), and cell viability was analysed via 

MTT assays. A. T47D cells were treated with raloxifene for 24 hours. B.  T47D cells were treated with 

raloxifene for 48 hours. The value obtained from untreated samples of each condition were taken as 100 

(lane1,2,3) and all other activities are shown relative to this. Error bars present standard errors of the mean 

from three independent experiments (± SEM) (P-value < 0.05 is indicated by *).   
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Lastly, the raloxifene effect on T47D knockdown and normal cells were analysed as 

shown in Figure 3.22A and 3.22B. Raloxifene didn’t seem to have any major significant 

or noticeable effect on T47D cells viability when treated with various concentration of 

raloxifene after 24. After 48 hours compared with control, raloxifene at its highest 

concentration (25µM) resulted in a slight but significant decrease in cell viability of T47D 

cells (comparing lane 25 to 23).  

 

  

Here is an overall comparison summary of effect of each hormone on MCF-7 and T47D 

cells: 

 

• E2: TTC5 silencing during the first 24 hours didn’t seem to affect the proliferation 

of MCF-7 cells up until the highest concentration (25µM) however, reduction in 

cell viability of MCF-7 became more apparent after longer exposure to E2 

treatment (Figure 3.17A). TTC5 knockdown in T47D cells exhibited a reduction 

in cellular viability especially at lower doses of E2 treatment after 24 hours, while 

it didn’t affect the cellular viability at higher doses, this effect persisted after the 

48 hours’ time point (Figure 3.20A). 

 

• Tamoxifen: while a dose dependent decrease in cell viability was observed in 

control group in both cell lines after tamoxifen treatment. TTC5 silencing 

appeared to increase effect of tamoxifen on MCF-7 at higher doses after 48 hours 

while in T47D cells a noticeable reduction in viability of knockdown cells was 

observed at time point of 24 hour (Figure 3.18 and Figure 3.21). 

 

• Raloxifene: TTC5 knockdown didn’t seem to have any major significant effect 

on cellular viability of MCF-7 and T47D cells, at 24-hour time point. Slight 

significant decrease of cellular viability was observed inT47D cells at the highest 

dose (Figure 3.19 and Figure 3.22). 
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3.6 TTC5 effect on mRNA levels of cyclin D1  

 

Several methods such as chromatin immunoprecipitation (CHIP) assay and microarray 

analysis identified several groups of genes that are either positively or negatively 

regulated by ER. However, the role played by TTC5 on ER regulatory mechanism on 

those genes is yet to be identified. One of the direct transcriptional target genes of ER is 

cyclin D1. TTC5 was shown to influence mRNA levels of a number of GR target genes 

(GILZ, p57 and MCJ) in a study by Davies et al., in 2011. Hence, in this section we aim 

to study the role of knockdown and overexpression of TTC5 on cyclin D1 mRNA levels 

and also the effect of, TPR and LXXLL motifs on cyclin D1 gene expression, by qRT-

PCR technique. Cyclin D1 is involved in cell cycle progression, and that in 10-15% of 

invasive breast carcinomas cyclin D1 amplification has been observed.  

 

In the first series of experiments, MCF-7 and T47D cells were transfected with pcDNA3 

only (control bars) or 400ng of WTTTC5, or TTC5 containing mutations in TPR or 

LXXLL motifs and then cells either treated with 100nM E2 or received no treatment for 

24 hours. RNA was extracted from the cell lysates and converted to cDNA. control bar 

represents the endogenous level of cyclin D1 in absence and presence of hormone, rest of 

the value obtained were normalised to endogenous levels of cyclin D1 in MCF-7 cells in 

absence of hormone. The idea behind the analysis is to compare the mutant effect to both 

control group and WTTTC5 group to make an overall conclusion.  

 

 

 

 



144 

 

 
Figure 3.23.Effect of WTTTC5, TPR and LXXLL motifs on cyclin D1 expression in MCF-7 cells. 

A. Graph summarizing the effect of TTC5 TPR motifs on mRNA levels of cyclinD1 in MCF-7 cells that 

were transfected with 400ng of WTTTC5, F26A, A88G, A122G, V145A, G186A and A243G. MCF-7 cells 

were either left untreated or treated with 100nM of E2. B. diagram summarizing the effect of TTC5 LXXLL 

motifs on mRNA levels of cyclinD1 in MCF-7 cells that were transfected with WTTTC5, LI16A and 

LTSAL. Cells were either left untreated or treated with 100nM of E2. The value obtained from untreated 

samples (pcDNA3) were taken as 100 (lane1) and all other activities are shown relative to this. The average 

reading from 2 independent experiment in duplicate (± SEM) are presented. (Statistical analysis was 

performed using t-test *P < 0.05 significant). 
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Results presented in Figure 3.23A, that E2 increases the mRNA levels of cyclin D1 in 

MCF-7 cells indicates the positive control worked perfectly (comparing lane 2 to lane1). 

Next, WTTTC5 overexpression in MCF-7 results in increase in mRNA levels of cyclin 

D1 both in absence and presence of hormone (comparing lane 3 and 4 to lane 1).  

 

In the absence of E2 the F26A mutant didn’t have a noticeable effect on cyclin D1 mRNA 

levels compare to control (comparing lane 5 to lane 1). In presence of hormone this mutant 

significantly decreased mRNA levels of cyclin D1 compare to control (comparing lane 6 

to lane 1). This means that the normal function of the DNA at F26A leads to increase in 

gene expression of cyclin D1. As shown in Figure 3.23A, in absence of hormone the 

TTC5 derivatives carrying TPR motifs; A88G (lane 9) and A122G (lane 11) resulted in 

increase in cyclin D1 gene expression in comparison with control (lane 1). While in 

presence of hormone A88G mutant resulted in noticeable decrease in cyclin D1 gene 

expression (comparing lane 8 to lane 2), A122G also resulted in decrease in mRNA levels 

of cyclin D1 but in lesser degree than A885 to control (comparing lane 10 to lane 2). 

There was noticeable increase in cyclin D1 mRNA levels with V145, G186A, and A243G 

mutants in absence of hormone compared to control (comparing lanes 11, 13 and 15 to 

1). It appears hormone treatment had opposite effect and repressed cyclin D1 gene 

expression compare to control (comparing lane 12, 14 and 16 to lane 2).  

 

Next, effects of mutations in potential LXXLL motifs in TTC5 were tested. As shown in 

Figure 3.23B the LI16A mutant caused an increase in cyclin D1 mRNA expression both 

in absence and presence of hormone compare to control (comparing lane 5 to 1 and lane 

6 to lane 2). The LTSAL mutant also resulted in an increase in mRNA levels of cyclin 

D1 compare to control, however to a lesser degree than LI16A (comparing lane 7 to lane 

1 and lane 8 to lane 2). 

 

In general, the effect that was caused on cyclin D1 mRNA levels by TTC5 mutants wasn’t 

above the value obtained for WTTTC5. Taking away what was significant these sets of 

data his indicates that overexpressing WTTTC5 in MCF-7 cells significantly increases in 

expression of cyclin D1. 
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Figure 3.24.Effect TPR and LXXLL motifs on cyclin D1 expression in T47D cells. 

A. Graph summarizing the effect of TTC5 TPR motifs on mRNA levels of cyclinD1 in T47D cells that 

were transfected with pcDNA3, WTTTC5, F26A, A88G, A122G, V145A, G186A and A243G. T47D Cells 

were either left untreated or treated with 100nM of E2 . B. diagram summarizing the effect of TTC5 LXXLL 

motifs on mRNA levels of cyclinD1 in T47D cells that were transfected with pcDNA3, WTTTC5, LI16A 

and LTSAL. Cells were either left untreated (blue bar) or treated with 100nM of E2 (grey bar). The value 

obtained from untreated samples (pcDNA3) were taken as 100 (lane1) and all other activities are shown 

relative to this. The average reading from 2 independent experiment (± SEM) are presented (Statistical 

analysis was performed using t-test *P < 0.05 significant) 
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In order to shed some more light on the role of WTTTC5 and its surfaces on cyclin D1 

expression, qRT-PCR were performed on T47D cells. As shown in Figure 3.24A and 

Figure 3.24B, WTTTC5 over expression lead to slight significant increase in cyclin D1 

expression compared to control (lane 3 to lane1). Hormone treatment caused further 

activation of cyclin D1 gene expression in T47D cells containing overexpressed WTTC5 

(comparing lane 4 to lane 2 in Figure 3.24).  

 

Figure 3.24, shows that F26A mutant results in a slight increase in cyclin D1 gene 

expression both in absence and presence of hormone compared to control bar (comparing 

lane 5 and 6 to lane1). Both in absence and presence of hormone A88G didn’t seem to 

have any noticeable effect on cyclin D1 mRNA levels (comparing lane 7 to lane 1 and 

lane 8 to lane 2). According to Figure 3.24A, A122G and V145A motifs both increased 

mRNA levels of cyclin D1 in absence of hormone (comparing lane 9 and 11 to lane 1), 

however in presence of hormone these two mutants decreased cyclin D1 mRNA 

expression compare to control (comparing lanes 10 and 12 to lane 2). G186A significantly 

represses cyclin D1 genes expression in T47D cells both in absence and presence of 

hormone (comparing lane 13 to lane 1 and lane 14 to lane2). A2435 mutant appeared to 

increase cyclin D1 mRNA level both in absence and presence of hormone in comparison 

with control (comparing lane 15 to lane 1 and lane 16 to lane 2). 

 

As shown in Figure 3.24B, the two LXXLL motifs seemed to exert different effect on 

cyclinD1 expression in T47D cells. LI16A mutant seemed to increase cyclin D1 

expression both in absences and presence of hormone (comparing lane 5 to lane 3and lane 

6 to lane 4). The second LXXLL motif LTSAL didn’t have any significant Effet on cyclin 

D1 gene expression (comparing lane 7 to lane 1), hormone treatment caused and slight 

increase in cyclin D1 mRNA levels compare to control (comparing lane 8 to lane2).  

 

In comparison with WTTTC5, the 6 TPR mutants and the two LXXLL motif generally 

repressed cyclin D1 activity in T47D cells. 
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3.7 Effect of TTC5 knockdown on mRNA levels of cyclin D1  
 

 
 

 

Figure 3.25.TTC5 knockdown effect on cyclin D1 mRNA levels.  

MCF-7 and T47D cells were either transfected with non-targeting siRNA (dark grey) and TTC5 siRNA 

(light grey), using DF1 for 24 hours. RNA was isolated form cells and qPCR with primers specific to cyclin 

D1 and Rpl19 was performed. The average reading of form 2 independent experiment in duplicate (± SEM) 

are presented. Values obtained from non-targeting samples were taken as 100 and all other activities are 

shown relative to this. Statistical analysis was performed using t-test (*P < 0.05 significant). 

 

MCF-7 and T47D were transfected with non-targeting siRNA and TTC5 siRNA using 

DF1 transfection reagent. After confirming the successful knockdown of TTC5, qRT-

PCR was performed with primers specific to cyclin D1 and Rpl19.  

 

As shown in Figure 3.25 when TTC5 is partially knockdown (~89% in this prior to 

performing qRT-PCR) in MCF-7, cyclin D1 expression noticeably decreased in a 

significant manner (comparing lane 2 to lane 1). This data correlates with overexpression 

data presented in Figure 3.23 that shows overexpressing WTTTC5 results in an increase 

in cyclin D1 expression.  Next, we carried on the same experiment on T47D cells, TTC5 

knockdown in T47D cells resulted in almost 50 percent reduction in cyclin D1 mRNA 

levels (comparing lane 4 to lane 3) however this didn’t seem to be statistically significant.  
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3.8 TTC5 gene expression effect on breast cancer patients overall survival  

 

 
 

Figure 3.26.Kaplan-Meier survival plots. 

A. In patients with breast cancer who had low or high expression of TTC5. B. Overall survival in ERa 

breast cancer patients who had low or high levels of TTC5. 

 

To evaluate whether there is any correlation between our data and the data obtained from 

breast cancer patients in clinics, Kaplan Meier survival curve was plotted which shows 

the probability of survival against time. Figure 3.26A represents data obtained from 523 

patients, and Kaplan Meier indicated patients with higher levels of TTC5 gene expression 

had better survival chance to begin with however at longer period of time the line drops 

which indicates over longer period of time patients with lower levels of TTC5 gene 

expression have higher chances of survival. Because the focus of this study was ERa 

breast cancer cells, Kaplan Meier analysis were carried out to evaluate the effect of TTC5 

gene expression on ERa breast cancer patients. Figure 3.26B indicates that although there 

was a dramatic drop in number of patients in this category, it seems in ERa breast cancer 

patients lower levels of TTC5 gene expression leads to higher chances of survival.  
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Chapter 4 Discussion  
 

The initiation and progression of breast cancer is tightly linked to estrogen activity. ERa 

regulates genes that are known to promote breast cancer cell proliferation and survival, 

hence ERa is known as the main mediator of estrogen function (Foster et al., 2001; 

Frasor, Jeanne M. Danes, et al., 2003)  Significant improvement in disease free and 

overall survival in women with ERa-positive breast cancer have been achieved through 

endocrine therapies aiming at inhibiting ERa action. However, a considerable number of 

patients do not respond to these therapies, or they develop resistance after initial response 

to these agents (Ali and R. Charles Coombes, 2002; Ring and Dowsett, 2004). Therefore, 

there is an urgent need to identify novel cofactors, that can modulate ERa activity; by 

either repressing or activating its regulation and as a result control estrogens activity. 

 

Previous published data have indicated TTC5 as an important regulator of GR activity 

(Davies et al., 2011), and is implicated in the DNA damage and p53 function, heat shock, 

inhibition of AP-1 pathway, and ATP pathway (Adams et al., 2008; Xiong et al., 2013; 

Maniam et al., 2015a). However, the function of TTC5, TPR and LXXLL domains and 

motifs in ER activity are poorly defined. Here we investigate the task performed by these 

TTC5 surfaces on ER activity. Formerly in the introduction chapter, TTC5 was shown to 

comprise of six TPR and two LXXLL motifs (Davies et al., 2011). TTC5 seems to have 

dual regulatory function where it both represses and activates GR mediated gene 

regulation. It is hypothesized that this function may be similar in controlling ER 

dependent pathways, as GR and ER are from the same family of nuclear hormone 

receptors.  

 

The primary aim of this study was to shed some light on the nature of TTC5 and ER 

interaction and the impact of such interactions on ER transcriptional activity and gene 

regulation. In order to develop or modify treatments for life threating diseases such as 

breast cancer, the result of such study is vital, as it will contribute to better understanding 
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of ER mode of actions and the different intracellular pathways that this receptor is 

involved in.  

 

The TTC5 protein levels were initially investigated in breast cancer cell lines MCF-7, and 

T47D (Figure 3.1 and Figure 3.3) treated with ER agonist (E2) and antagonists (tamoxifen 

and raloxifene). As shown in Appendix Figure 5.3 TTC5 protein levels were detected in 

MDA-MB-468 cells in both absence and presence of hormone; these cells are ER negative 

this means TTC5 not only in ER positive cells but also ER negative cells is expressed at 

protein levels.  

 

Then to study the TTC5 gene expression at the transcriptional level the TTC5 mRNA 

levels were followed in these breast cancer cell lines under the same experimental 

conditions using qRT-PCR. The obtained data from these experiments suggested that E2 

effects TTC5 protein and mRNA levels in a cell specific manner, as a down regulation 

occurred in levels of TTC5 in MCF-7 cells after hormone treatment while an upregulation 

was observed in T47D cells. Given that these cell lines do not harbour mutations in ERa 

these findings suggest that other genetic alterations may be the result of TTC5 cell specific 

response to E2 hormone. ER agonist tamoxifen resulted in an increase in TTC5 protein 

and mRNA levels in both cell lines (T47D and MCF-7) while raloxifene didn’t have a 

significant effect on T47D cells and elicited a slight repression on TTC5 mRNA and 

protein levels in MCF-7 cells. Since we identified two putative ERE on TTC5 gene 

(Figure 3.5) one hypothesis is that through this binding ER either represses or activates 

TTC5 activity by recruiting other transcription factors to the binding site. A similar effect 

has been reported by other cofactors of ER, for example the family of p160 coactivators 

play gene specific roles in regulating mRNA and protein expression hence their 

contribution to breast tumorigenesis is unique (Karmakar, Foster and Smith, 2009). As 

shown in the Appendix Figure 5.3) apart from ERa, there were multiple putative binding 

sites of ER cofactors known to interact with ER on TTC5 promoter from the family of 

FOX (Forkhead box) proteins on TTC5 promoter; such as FOXO1, FOXO3 and FOX04. 

There is a large body of evidence highlighting the interaction between FOXO3 and ER, 

which as a result inhibits the E2 dependent, ER regulated transcriptional activities (Zou 

et al., 2008). The dual activity of TTC5 can be explained by different recruitment of these 
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factors; as upon hormone treatment different coregulatory or co repressory molecules 

could be recruited to ER TTC5 binding site.  

 

Moreover, taking into account statistically significant results; with reference to the dual 

effect of E2 on TTC5 expression it is possible that that p53 plays a part in this process 

since MCF-7 express wild type p53 while T47D cells express mutated p53, however other 

factors may play a role as well.  

 

After these observations, we became interested to investigate whether TTC5 interacts 

with ERa in MCF-7 and T47D cells and if so, how does hormone treatment affect this 

interaction. As shown in Figure 3.6 and 3.7 the two proteins interact endogenously in both 

cell lines, however the effect of hormones on this interaction wasn’t clear. In absence of 

hormone TTC5 strongly interacted with ERa, as higher levels of TTC5 were detected in 

the complex. It is well stablished that ER remains in an inactive state in absence of 

hormone, while after binding to E2, ER dissociates from heat shock protein Hsp90, is 

phosphorylated and then translocates into nucleus. It has been shown by previous lab 

members that TTC5 is both nuclear and cytoplasmic, but upon glucocorticoid hormone 

treatment TTC5 translocated into the nucleus (Sadeq, 2013) from cytoplasm. TTC5 may 

or may not be associated with ER and the heat shock chaperone complex while in 

cytoplasm, but the fact that TTC5 is a TPR protein makes it a candidate for binding to 

heat shock proteins hence to ER. However, since hsp90 only encloses one C-terminal 

TPR binding site makes the binding to the heat shock proteins competitive (Lee et al., 

2011). Previous data has shown that TTC5 forms a complex with GR, our data suggests 

that TTC5 interacts with ER in vitro, hence TTC5 could be involved in the regulation of 

the superfamily of nuclear hormone receptors and a wide range of other transcription 

factors (Demonacos et al., 2001, Davies et al., 2011) 

 

Since TTC5 endogenously interacts with ERa in vitro, we thought of exploring whether 

overexpressed TTC5 has any effect on ER’s transcriptional activity. TTC5 is composed 

of 6 TPR motifs, throughout its structure and also contains two potential nuclear receptor 

interaction motifs, LXXLL. Hence it is very likely that TTC5 binds to ER through one to 
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more of protein-protein interaction motifs and influences ER’s activity through this 

binding.  

 

The relative luciferase levels confirmed that WTTTC5 is capable of inducing endogenous 

ER transcriptional activities in MCF-7 and T47D cells in absence and presence of 

hormone, on ERE promoter using an optimal concentration of 400ng of DNA (Figure 3.8 

and Figure 3.9) 

 

Overexpression of WTTTC5 in MCF-7 cells increased ERE promoter luciferase activity, 

and hormone treatment caused further increase, implying that WTTTC5 binds to ER to 

facilitate ER mediated transcription. Since E2 treatment led to a clear increase in 

ER/TTC5 interaction it is possible that, hormone treatment increases levels of TTC5 thus 

leading to increase in ER mediated transcription. Furthermore, it is also possible that 

different TTC5 surfaces are employed for hormone independent versus hormone 

dependent interaction (Figure 3.11A. Nevertheless, WTTTC5 over expression in T47D 

cells on the same promoter caused a slight but significant repression in ER transcriptional 

activity in the absence of hormone, whereas hormone treatment increased ER 

transcriptional activity on ERE promoter in these cells, although not above the values 

obtained in the absence of TTC5 (Figure 3.13). Since the reporter gene used for the 

luciferase assay was the same in both cell lines, these results provided further support to 

the notion to the idea that TTC5 effects ER in a cell specific manner.  Moreover, this dual 

action of TTC5 as coactivator/corepressor has been reported by previous studies on GR, 

where TTC5 regulated GR transcriptional activity both in positive and negative manner 

(Davies et al., 2011).  

 

In previous studies, it has been shown that TTC5 stabilizes p53 by reducing Mdm2 

mediated degradation, on the other hand transcription of ER has been shown to increase 

in presence of wild type p53 (Shirley et al., 2009). So, our hypothesis is that in cells 

expressing wildtype p53 (MCF-7) over expression of WTTTC5 leads to activating p53 

hence activating ER transcription, while in T47D cells this effect is reversed as they 

express a mutated version of p53.  
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 Figure 4.1. Model illustrating the effect of overexpressed WTTTC5 on ER transcriptional activity. 

  

With the purpose of identifying the role of each of the six TPR and putative LXXLL 

motifs on TTC5 in regulating ER function, each TPR and LXXLL motifs was subjected 

to one amino acid substitution and that resulted in mutated TPR and LXXLL motifs (apart 

from the LTSAL motif that was made by previous lab members).  The TTC5 mutants 

were introduced into MCF-7 and T47D cells to assay effect of each mutant on ER 

transcriptional activity on ERE promoter using luciferase assay. In general, the TTC5 

TPR mutants (F26A, A88G, A122G, V145, G186A and A243G) were promoting an 

induction in ER transcriptional activities on ERE promoter, (Figure 3.11 andFigure 3.13). 

One interesting observation by taking into account what was significant by carrying the 

statistical analysis, is the fact that G186A mutant which was the strongest coactivator in 

MCF-7 cells appeared to be the strongest corepressor in T47D cells (Figure 3.11, Figure 

3.13). Davies et al., in 2011 reported G186A as one of the major motif that is involved in 

TTC5 interaction with GR by means of co-IP. Somewhat surprisingly, Serine 221 residue 

at the Chk2 site (which is involved in TTC5 response during DNA damage) is believed 

to be between TPR5 (G186A) and TPR6 (A243G) and phosphorylation of these residues 
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results in dissociation of the hydrogen bonding of TPR5 and 6, which possibly results in 

protein interaction by widening out the TPR channel (Adams et al., 2012). It is possible 

that this residue may be the main surface involved in ER TTC5 complex which brings 

different coregulatory proteins to the complex and effect either represses or activates ER 

transcriptional activity in ERa positive cells. 

 

These observations would lead to the realization of that TPR motifs were playing the role 

of possible repressor or coactivator boxes and were either downregulating or upregulating 

the ER transcriptional activities on ERE promoter depending on cell type. In fact, there is 

a segregation between the TPRs, that breaks them up into two groups, TPRs1 (F26A), 4 

(V145A) and 5(G186A) that were located on the N terminus (Adams et al., 2012) and 

TPRs 2 (A88G), 3 (A122G) and 6 (A243G) that were on C terminus (Adams et al., 2012). 

Whether the difference in ER activation levels was correlated to the location of the TPR 

to the N or C terminus needs more investigation, however previous studies have indicated 

TTC5 stress dependent regulation of the GR depends on both the TTC5 N and C terminal 

(Davies et al., 2011).  

 

Another possibility is that individual TPR motifs do induce an induction in ER 

transcriptional activity on the ERE promoter, that might act a group of motifs to effect 

transcription. For instance, according to Figure 3.11A, all 6 TPR’s seemed to act as strong 

coactivators hence the overall effect of WTTTC5 on MCF-7 in absence and presence of 

hormone was to coactivate ER transcription. While in T47D cells 4 TPR’s (A88G, 

V145A, G186A and A243G) out of 6 were strongly acting as corepressors, hence the 

overall activity of WTTTC5 was to repress ER’s transcriptional activity.  

 

Next, each LXXLL motifs were subjected to one amino acid mutation to identify the role 

played by them on ER transcriptional activity. It has been shown by previous researchers 

that many proteins with LXXLL motifs exert vital effects on nuclear hormone receptors, 

and that mutation in these residues may lead to deregulation of this pathway. For example, 

a mutated LXXLL motif of mediator subunit 1 protein (MED1) in knockout mice resulted 

in down regulation of ERa target genes (Jiang et al., 2010). The TTC5 mutant LTSAL 

was promoting repression in both T47D and MCF-7 cell line, however LI16A seemed to 
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be a strong activator of ER activity in MCF-7 cells while a repressor in T47D cells (Figure 

3.12A). The various degrees of repression or coactivation between the different TTC5 

LXXLL motifs in ER transcriptional activities could be explained by the fact that certain 

coregulatory proteins can both activate and repress the same transcription factor. Studies 

have shown that the histone methyltransferase G9a has a dual and selective role as a 

coregulatory factor for ERa target genes (PurCell et al., 2011). Another example, is the 

receptor interacting protein (RIP140) that on different nuclear receptors and different 

response elements acts as both coactivator and corepressor (Subramaniam et al., 1999). 

 

The luciferase reporter assay provided further endorsement to the view that overexpressed 

TTC5 affects transcriptional activity of ER in MCF-7 and T47D cells. Next, we evaluated 

the effect of TTC5 knockdown on cell proliferation of MCF-7 and T47D cells with 

various concentration of ER agonist (E2) and antagonist (tamoxifen and raloxifene). For 

this purpose, TTC5 gene was silenced by the introduction of targeted TTC5 RNAi 

(siRNA) and non-targeting siRNA as control. Generally, the effect of TTC5 knockdown 

on both cell lines resulted in an decreased cell viability compared to control, in order to 

make sure this effect wasn’t due to the DF1 (the transfection reagent) we carried out series 

of various titration of the DF1. The choice of assay to use in a siRNA screen of cell 

viability is a difficult one as different assays have certain disadvantages. The clonogenic 

survival assay is the ‘gold standard’ method for assessing intrinsic radio sensitivity. 

(Franken et al., 2006). This in vitro cell survival assay is based on the ability of a single 

cell to grow into a colony (which is defined as consisting of at least 50 cells). The assay 

essentially tests every cell in the population for its ability to undergo “unlimited” division. 

Unfortunately, this assay is not suitable for use in large scale siRNA screens due to the 

highly labour intensive nature of the assay.  

 

Next taking into account the fact that TTC5 knockdown resulted in decreasing cell 

viability of breast cancer cells, we monitored cyclin D1 expression levels when TTC5  

knockdown to investigate whether TTC5 silencing has any effect on cyclin D1 mRNA 

levels. In order to address this hypothesis qrt-PCR analysis were carried on MCF-7 and 

T47D cells to measure mRNA levels of cyclin D1. Interestingly, TTC5 knockdown 

resulted in repression of cyclin D1 mRNA levels. In order to shed some light on the role 
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of overexpressed WTTTC5 and also the TPR and LXXLL motifs on cyclin D1 gene 

expression, mRNA levels of cyclin D1 were measured using the qRT-PCR technique. 

These results were in agreement with knockdown data where TTC5 silencing resulted in 

cyclin D1 repression so the overexpression had opposite effect.  

 

Generally, all six TPR mutants and the two LXXLL motifs seemed to repress cyclin D1 

activity. However G186A activates the cyclin D1 mRNA levels in MCF-7 cells while it 

significantly represses cyclin D1 gene expression T47D cells. This mutant appears to be 

a critical motif in how TTC5 regulates ER activity as it had different regulatory effect on 

ER transcriptional activity in cell specific manner.  

 

Cyclin D1 plays an important role in cell cycle progression. For a successful transition 

from the G1 into S phase highly expressed cyclin D1 expression is needed. Cyclin D1 

was shown to be induced as a result of estrogen stimulation in MCF-7 cells both at mRNA 

and protein expression levels (Prall et al., 1997; Sabbah et al., 1999; Silva, Kabil and 

Kortenkamp, 2010). There is a regulatory pathway between p53 and cyclin D1; it is 

through induction of p21 that p53 induces cyclin D1 overexpression, this inductive effect 

of p53 on p21 is abolished by mutations within the p53 gene. Overexpression of Cyclin 

D1 protein in tumors with wild type p53 and ER positive status have been reported more 

frequently (Fouladdel et al., 2008). An interesting study by (Grillo et al., 2006)revealed 

that overexpression of cyclin D1 results in an increase in cell proliferation of MCF-7 cells, 

while when cyclin D1 expression was silenced the growth rate of cells fell below the 

control group. They demonstrated that hyperphosphorylation of retinoblastoma gene is 

associated with cyclin D1/CDK4 activity, this hyperphosphorylation results in an increase 

passage of the cells through the G1-S phase of the cell cycle division. Hence, they silenced 

the CDK4 expression with siRNA which in turn resulted in partial G1-S phase arrest.  

 

Our data on TTC5 effects on cyclin D1 gene expression suggests that TTC5 may well be 

a suitable cyclin D1 inhibitor in MCF-7 and T47D breast cancer cells. It is possible that, 

the MTT assay results which showed that TTC5 knockdown results in a decrease of cell 

proliferation is due to partial inactivation of cyclin D1 in these cells. However, the 

mechanism which TTC5 knockdown leads to results in this repression of Cylin D1 gene 
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is yet to be studied. More mechanistic studies need to be performed in order to dissect the 

exact mechanistic pathway of how TTC5 affects cyclin D1 levels and leads to as cell 

cycle progression.  

 

The data obtained by Kaplan Meier analysis, indicated that low levels of TTC5 gene 

results in higher survival rate, though this didn’t seem to be statistically significant but it 

indeed correlates with data obtained by this study. 

 

4.1 Conclusion  

 

This thesis demonstrated that TTC5 is a novel cofactor for ER functions in breast cancer 

cells. In this study, we revealed that TTC5 endogenously interacts with ERa in breast 

cancer cells. Furthermore, we show through experimental investigations that TTC5 

possibly modulates ER mediated gene regulation at various levels including, 

transcriptional activity and gene expression through its unique TPR motifs.  

 

The results were indication of significance dominancy of TPR5 (G186A) motif, suited to 

the N-terminal of TTC5 in affecting ER transcriptional activities in different manner. We 

have also presented evidence to suggest that silencing TTC5 levels inhibits the growth of 

ERa positive cells, and that TTC5 is possibly a candidate for repressing cyclin D1 gene 

expression. 

 

 

4.2 Future directions 

 

This work characterised the role of TTC5 in ER regulation, but the mechanism of action 

is still not clear. Future work investigating the possible ways in which TTC5 could 

stabilize ER protein levels and coregulates its transcriptional activity would be very 

interesting.  
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• Co-IP assay to identify the different co-activating and corepressing proteins that 

partner with TTC5 while interacting with ER via the TPR and LXXLL motifs 

using specific antibodies against TTC5 and ERa. 

 

• Clonogenic assay to examine if partial knockdown of TTC5 increases or decreases 

the cell viability and colony formation of breast cancer cells. Immunofluorescent 

microscopy to detect alteration in ER subcellular localization in cells 

overexpressing TPR and LXXLL mutant derivatives. 

 

• The luciferase assay using a cyclin D1 reporter gene to test the effect of each TPR 

and LXXLL motifs on transcriptional activity of cyclin D1.  

 

• Flow cytometry technique to investigate the effect of each TPR and LXXLL 

motifs on cell cycle progression. 

 

• The chromatin immunoprecipitation assay to test ER and TTC5 occupancy on 

certain gene promoters in cells overexpressing TPR and LXXLL motif mutant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



160 

 

 

Chapter 5 Appendices  
 

 

5.1 Primers that were used for mutating the TPR and LXXLL motifs 
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Appendix Figure 5.1.The frequency of single nucleotide variations for TTC5 among all cancer types. 

 

 

 

 

 

5.2 ERE reporter gene sequence  

 

 
Appendix Figure 5.2.Sequence of the ERE reporter gene 
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Appendix Figure 5.3.identification of putative EREs on the TTC5 promoter. 
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Appendix Figure 5.4. MCF-7 cells were either left untreated or treated with E2 (100nM) for 24 hours. 

Whole cell lysate was then probed against TTC5 and b-actin in MCF-7 cells. b-Actin was used as control 

protein loading. 
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