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Abstract. A creative inquiry introduces a swarm simulation as a generative mech-

anism, providing a third agency in music creation alongside agency of composi-

tion and performance. When applying an evolutionary model such as swarms to 

music the challenge is to develop a performance interaction model beyond im-

provised explorations so that the model can facilitate the integrities for, and 

emerging dynamics in, all agencies. To minimize a performer’s cognitive over-

load another challenge is management of dataflow in interactive architecture for 

generating music. An interaction model for structured reciprocity is investigated 

as a design solution that applies model-based indirection. In the scope of musical 

composition, reciprocity is exhibited as a time dependent relationship between a 

performer’s actions and evolutionary swarm tendencies applied to generate mu-

sical outcomes. Reciprocity is structured using levels of indirection as a construct 

of mapping data from a swarm simulation to an interactive music performance 

application. The paper presents an approach to encoding, activating, generating 

and measuring reciprocity. A comparative case study demonstrates the implemen-

tation of these concepts in two musical works. The paper concludes 1) reciprocity 

in interactive applications helps optimize actions to leverage emergent tenden-

cies, including their intuitive qualities, towards realizing desired outcomes; and 

2) data analysis from the case study indicates temporal signatures of reciprocity

are related to indirection in interaction scenarios for generative musical perfor-

mance.
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1 Introduction 

Complexity in generative factors in musical performance steers a research agenda for 

designing interactive experiences. This study aims at gaining insights towards a gener-

alizable principle of structured reciprocity. The principle here is applied to designing 

efficient and intuitive musical interactions and performance scenarios. Reciprocity in 

an interactive scenario characterizes a relationship of time-coupled decisions ex-

changed between a human participant and computation. Cases of creative process focus 

on where and when decision-making takes place and the transparency of it. A simple 

interactive system is chosen to emphasize facile real-time selections. The hypothesis is 

that reciprocity may provide a signature of dynamic selection flow: a process of defer-

ring and taking decisions to render shared creative output.  

 To investigate reciprocity this work identifies musical composition and perfor-

mance applications that use generative properties of simulated swarm agents. While 

musical performance is highly specialized, the use of dynamic simulation in musical 

creation incorporates multiple constructs also applied widely in interactive media and 

digital games. To ascertain suitable assumptions concerning musical creation, this case 

study applies autoethnographic methods to consult the composer and to articulate her 

criteria for composing musical performance experiences.  

The relationship between generative arts and generative mechanisms is commonly 

understood with the definitions anchored on computational autonomy and causality [1, 

2]. Implied in [3] a generative formalism yields how a mechanism can be materialized 

in arts. Romero et al. [4] preface two different criteria between an artistic perspective 

and a scientific standpoint. For the former, the challenge has to do with accepting an 

evolutionary approach through well-established artistic practices and venues. For the 

latter, the challenge is to innovate and develop autonomous systems that would bring 

evolvable aesthetics and new models of human-machine interaction. 

This paper examines reciprocity as a structured relationship between a performer 

and a dynamic simulation, where the simulation is applied as a generative mechanism 

for the interactive production of musical outputs. In musical creation to engage a com-

plex system such as a swarm simulation presents an overarching question: What is the 

model of engagement? Musical creation draws upon a literature of musical practice, 

and evolutionary simulation draws upon a literature of computational practice. If the 

motive for using a simulation is to automate music generation, the automata can be 

designed with layers of rules and algorithms that influence musical outputs. However 

when situating a human performer in an engagement model, the design problem space 

becomes much larger to draw one clean model to work with. For musical performance 

using generative agents the composer devises ways for performers to engage literatures 

of both music and computation. Reciprocity is a signature of this dynamic engagement 

and may be structured to optimize sound production and performance to leverage the 
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integrity of the evolutionary system in terms of inherent qualities and emergent pat-

terns.  

1.1 In and Out of a Musical Paradigm  

To study in context a creative technology application such as game design for gameplay 

experience, assumptions posited will consult criteria and literature of game practice. 

For computational music creation and performance this paper adopts the same ap-

proach. Composition and performance are original sources that bring about interactive 

sound production and inform listening experience. The fundamental tools of interactive 

music generation applied in this work are consistent with digital music technology 

standards. However the works reported here are experimental compositions, meaning 

they do not reproduce established musical genres but rather develop new classes of 

references and computational applications. The paper discusses two musical works that 

present a human performer controlling a “super agent” to interact with autonomous 

agents in a dynamic visualization of a swarm simulation. In these compositions, swarm 

agents are given sounds to play with and the performer plays with the swarms to influ-

ence the sounds. Agents’ collective data controls digital transformations of sounds. 

Swarms’ emergent properties greatly influence the sounds, while the performer can in-

fluence but cannot completely control the agents’ behaviors. This configuration intro-

duces indirection as a condition for reciprocity between a performer and simulated 

agents.  

In terms of the social simulation, through a super agent the swarm agents perceive 

the performer’s movement as movements of their own kind. In the world of swarms the 

perceivable environment is inherently contradictory because a super agent is not con-

strained by agents’ binding social rules. What it can evoke, on the surface, is a metaphor 

of a conductor and an orchestra. However a conductor and orchestra share a common 

goal towards shaping musical events from the beginning to end given musical literature 

to follow. Towards progressing a coherent common goal, music performance rules are 

enforced a priori, cultured with shared repertoires, and manifest through unspoken col-

laborative agreements. Yet why should we entrain swarms to simulate human musicians 

when swarms already exhibit emergent patterns? Study of reciprocity aspires towards 

visions of future use cases, and can also function to guide us what not to do. 

Prior Work in ALife-Informed Music Computation. The purpose and assessment 

value of the works in the field of experimental composition depart from what some 

people may think of as music. Therefor an experimental musical approach may depart 

from some research agendas in the AI community that aim to learn by modeling well-

known musical styles or recognized behaviors [5,6,7,8,9,10]. Originality is also empha-

sized historically, for composers encouraged to learn but not to imitate previous genres. 

Evolutionary computing has been applied through an iterative training process to gen-

erate musical outputs including scores and recordings of synthesized sounds 

[11,12,13,14,15]. Bilotta and Pantano proposed a mathematical mediation to translate 

CA to musical language in order to transfer the semantics of complexity to a range of 

musical expressions [16]. The process methodology in their work comes close to struc-

turing reciprocity between a generative mechanism and music, employing “musification 
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codes” as a structure that evokes aspects of reciprocity, a mathematical formalization to 

decode CA and re-encode them as music. The codes providing options to read a matrix 

frame (a grid), population growth patterns given input entropy, or local behaviors read 

through color or binary code. For social models, Miranda et al. applied a multi-agent 

listening model in composition with a genetic algorithm, given initial musical materials, 

feature detection and evaluation rules, and each agent adjusts its own deviation with 

respect to the collective outputs [17]. 

The above examples apply IEC – Interactive Evolutionary Computation, a process 

requiring extensive training and assessment to apply creative choices. Tod and Werner 

[18, p.319] describe this process as creating a “fitness bottleneck” and respond by ap-

plying autonomous musical agents to perform creative selections. While the process is 

efficient, the agents’ aesthetic preferences drift without human supervision until they 

generate “unlistenable” music. A goal is to design a system that balances human over-

sight with agents’ decision efficiency, which can provide exploration of emergent prop-

erties without iteration over a predetermined fitness function. Autonomous agents in 

flocking and swarm systems meet this requirement and methods have been imple-

mented for efficient real-time interaction. Unemi [19] developed evolutionary efficien-

cies for breeding agents using a form of NIEC (Narrowly-defined IEC) [20] and 

Sayama [21] further optimized breeding with real-time interaction using HIEC (Hyper-

interactive Evolutionary Computation).  

Generative music methods extract data from simulated swarm agents to control audio 

signal generators. Interaction methods may be classified according to the rate and regu-

larity of scheduled data flow between a swarm system, human users, and sound genera-

tors. Murray-Rust et al. [2006-22] and Huepe et al. [2014-23] adopt methods that apply 

human control during initialization only, with autonomous run-time operation dedicated 

to agent-agent interaction.  Blackwell [2002-24], Grace [2009-25], and Davis and Ka-

ramanlis [2007-26] adopt methods to provide real-time re-initialization of swarm be-

havioral parameters and run-time modification of the mapping from agents’ data to 

sound control. In these approaches the control changes are infrequent and irregular with 

respect to the simulation time step, and the user does not interact directly with individ-

ual agents. Other work using agents in real-time performance includes EvoMove [22-

27], which applies a commensal computing scheme to provide a movement-based musi-

cal companion for dancers, with sounds conceived as ambient feedback rather than pre-

senting a musical structure. 

The above research exhibits a collective concern for management and application of 

emergent behaviors and methods for designing relationships between agents’ tendencies 

and musical content. Scacher et al. [2014 CMJ-28] implement architecture for real-time 

performance interaction with agents, with further focus on symmetry of swarm simulation 

and musical structure, summarizing relationships in five classes: formal, ontogenetic, 

conceptual, interaction, and ecological. These are defined in terms of mapping mecha-

nisms, classified by the extent and kind of separation between agent data and musical 

signal output. The concept of designing indirection introduced in section 2 below encom-

passes these functions. Social interaction between agents and human players is introduced 

by Choi and Bargar [2012-old38-29] and reflected by Scacher et al. as “…a shared space 
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within which the perceptual and behavioural properties of simulated entities and hu-

mans overlap and interrelate [op cit p. 53].” Bisig and Kocher describe performance in-

teractions where “…human behaviour interferes with the emergent swarm behaviour 

and begins to form a meta-system, that might exhibit different states than the purely 

closed world of simulation [2012ICMC p.105-30].” The engineering of reciprocity ad-

dresses structure and design of these formations. Collectively swarm music research 

establishes practice of social agent simulation applied to generative music with recent 

examples of interactive performance. Introducing a concept of reciprocity encompasses 

and reframes prior research perspectives, with relevance for broader examination of rec-

iprocity in the design and assessment of human performance with interactive social 

agents. 

1.2 Basis for Reciprocity 

The concept of reciprocity in composition relates to eliciting structure of emergent be-

haviors in sound rather than reproducing legacy structures or known musical styles. A 

mutual challenge arises to encompass the domains of performance, compositional 

works with evolutionary models, and the definition of composition. Ringer and Cross-

ley-Holland [31] define composition as, “the act of conceiving a piece of music, the art 

of creating music, or the finished product. These meanings are interdependent and pre-

sume a tradition in which musical works exist as repeatable entities. In this sense, com-

position is necessarily distinct from improvisation.” Here the distinction between com-

position and improvisation lies on the existential manifestation of the work as repeata-

ble entity. Emergent properties contribute to interactive creation and challenge tradi-

tional boundaries that define repeatability.  

The implementation of reciprocity introduces how composition is conceived for sit-

uating a performer in this work. Production of musical tones and events is inherently 

circular with an intimate feedback through auditory perception [32]. Kinaesthetic inter-

action between performer and instrument encodes a musical signal, for which the per-

former’s movement determines the features of the signal. The choice of how to govern 

further movement is directed by listening to the previous states generated by previous 

motions. The circuit of internalization of a current state of movement, externalization 

of previous states to guide current state, and projection of future states to build desired 

hysteresis, is so highly integrated at a performer’s sensorimotor level that it is difficult 

to separate. However the quality of performances is shaped through these fleeting mo-

ments of dual sensory-motor and cognitive processing: internalization and externaliza-

tion along with consulting the musical score toward higher-level projection of future 

states. At the core, the chain of kinaesthetic interaction produces music, and listening 

shapes the chaining. These observations are experientially based supported by encour-

aging discoveries in neural mechanisms’ temporal percepts. Recent studies suggest the 

brain does not process time in a serial mechanism but in distribution: interval timing is 

processed by feedback loops, and through these loops the output of an internal clock 

serves to dynamically modify its own input [33, 34]. Reciprocity is enacted by listening 

in this context: a performer listens and mediates the simulation with an action, utilizing 
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auditory feedback (sensory) to guide movements (motor), where the kinaesthetic dy-

namic that feeds the performer’s auditory perception is extended by simulated agents’ 

dynamics. 

Reciprocity is illustrated here for two compositions with musical elements synthe-

sized by eliciting structure of emergent swarm behaviors. Each composition constitutes 

two components, a score and a system of interaction. The two works, Mutandrum and 

Human Voice, are encoded in a computer system for programming interactive digital 

sound and for routing sound control data from the swarm simulation. The composer’s 

selection and design of agents’ tendencies is encoded alongside the sound synthesis 

design. The software encoding requires a performer’s interaction to realize the compo-

sitions. For performers the compositions are represented as musical scores that indicate 

musical sequences but do not adopt traditional western music notation. Both scores 

provide blueprints for performers to work with: 1) navigation plans to move within 

constraints from one local free form to the next while agents play by rules at all times; 

2) plans to initialize diverse types of swarms that were curated during the composition 

process using NIEC and HIEC. The plans are expressed in the form of scores to function 

as time-based musical roadmaps. The scores by no means convey all audible details or 

musical depth that is programmed in the composition software. The scores provide a 

layout of basic elements including notated instructions and a high-level rule: Move 

from one section to the next until all sections are exhausted. In the form of scores, at 

least, they structure activity so that the activity is repeatable and rehearsable. Perfor-

mance here is twofold: for agents, rule-based behavioral movements; for human play-

ers, locally free form play along with agents, guided by the score. A performer does not 

improvise but responds to the score and to agents with situational awareness and makes 

decisions in a context for playing both, the composition and the swarm. 

2 Rationale and Research Methods 

Case studies of two compositions of this author will be presented with a comparative 

analysis. From experience working with nonlinear dynamical systems such as the cha-

otic Chua’s circuit [35, 36], this author recognized that nonlinearity and self-organiza-

tional principles are often implied in a creative process itself, at subconscious level 

while encountering material suggestions and imageries, and at conscious level while 

translating them into tangible ideation. The agency of composition can be articulated 

by the traces of its processes and the agency of performance is articulated through re-

alizing the composition. However other agency is challenging to articulate, such as the 

source of inspiration, whether it sparked as spontaneous brain chemistry or intuition. 

Another challenge is the management of dataflow in performance architecture to mini-

mize a performer’s cognitive overload during the complex audiovisual and sensorimo-

tor interaction with a swarm’s dynamics. To assess this complex scenario most psycho-

acoustics-related findings are not readily applicable, because they largely rely on iso-

lated stimulus tests in simple settings. However, the recent discussions in neural basis 

of music perception [37] and the ERP processing time window [38] indicate more 

promising directions. orks presented here was motivated three ways: 1) to articulate 
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examples and implications of the hidden agency of creative choice, by introducing 

swarms as visibly working through an artistic inquiry; 2) to explore how swarm dy-

namics may yield new pathways in music creation, and further how this inquiry may 

contribute to the artificial life research agenda; 3) to gain quantitative insights for de-

signing indirection for a complex evolutionary interaction, by constructing data through 

the case study.    

2.1 Analytic Autoethnographic Method 

The workflow for this research begins with a music composition process, continues to 

a music performance process, and culminates in an assessment process that reflects on 

previous stages to develop an analytical position. This workflow exhibits parallels 

with interaction design, then implementation, then testing. The case studies here draw 

upon musical work by this author as composer and performer. With awareness there 

may be many shortcomings in autoethnographic methodology in general [39], the 

methodology adapted here can be best described as an analytic autoethnography [40], 

including numerical data, towards establishing a new theoretical framework bridging 

art and science. Each step of the way keeps in sight the requisite variety [41] between 

the two domains with an attempt to avoid blind spots. This method recalls cybernetics 

of observing systems as introduced by von Foerster’s analysis of self-organizing sys-

tems and their dependence upon energy and structure in their environments [42]. Self-

reflexive research is performed by truly searching again one’s creative results, with a 

reflective investigation that is objectively driven. The aim is to formalize and reframe 

methodologies, techniques, and aesthetic criteria, along the way noting right or wrong 

design intuitions, and other factors constituted for finishing the two works 

Framing Research Questions. When designing a system to compose in and compose 

with, the creative and technical problem space hinges on non-typical conditions that 

juxtapose two domains: a music composition that uses a fixed notated score, and an 

evolutionary system that exhibits emergent behaviors. By explicating this problem the 

working question is framed: How do you work with a collective body that follows sim-

ple rules and self organizes, and displays unexpected patterns of behaviors, to produce 

and perform music that can be reproducible and rehearsed? This questions motivates a 

series of investigations that were undertaken roughly in the following order: 

1. How swarms work: 

a. How swarms work when engaged by a player  

b. How swarms work to control sound synthesis 

c. How indirection can be designed, using knowledge gained from (a) and (b), lead-

ing to how to work with swarms 

 

2. How to work with swarms  

a. How to work with swarms when the compositional plan is exogenous to the 

swarms’ world – applying compositional agility for planning with adaptability  



8 

 

b. How to work with swarms within an overall plan – applying compositional strat-

egies for performance 

c. How to work with swarms in multiple levels of indirection and time scale 

Through these research questions, three types of agencies are articulated: swarm, com-

position, and performance. The undercurrents of discussion are based on results ob-

tained from investigations with this framework. Sections 3 and 4 apply the two framing 

topics, how swarms work and how to work with swarms, drawing upon comparisons of 

the two compositions. Section 3 introduces two techniques: emergent feature analysis 

and procedural sound design patterns. Section 4 surveys musical structure, discusses 

model-based indirection, and introduces PGAU as a tool for quantifiable analysis of 

performance engagement with agents. Section 5 focuses on reciprocity, and section 6 

reviews the investigation of indirection and time scale, using the LIDA framework [43, 

44] for comparison with temporal studies of cognitive cycles.  

3 How Swarms Work in Performance 

The model applied in this work is the heterogeneous swarm model developed by 

Sayama [21]. Unlike Reynolds’ canonical flocking algorithm [45] the agents are decen-

tralized with no leader. To initialize, typically 100 to 300 agents are set in motion with 

constrained random positions and initial velocities. From this initial condition, each 

agent’s motion is dynamically influenced as it behaves with respect to other agents it 

detects within its perceptual range, simulating social engagement, otherwise straying in 

random motion. Sayama provides an efficient matrix method called a recipe, in which 

the number of agents and rules of behaviors can be initialized as a set of parameterized 

values, creating an agent behavioral type. Initializing more than one recipe for separate 

sets of agents forms heterogeneous swarms. Any agent that perceives another is af-

fected in movement regardless of behavioral type.  

Data is extracted from performances with swarms using touch sensitive surfaces. 

Agents are visualized, a performer can touch the visual display and agents respond. 

Data from swarms is interpreted to generate sound control data transmitted to real-time 

sound synthesis engines. Data mapping includes pattern recognition and feature extrac-

tion from swarm behaviors, applying a model based design of indirection that prolongs 

temporal dynamics, discussed is section 4.2. Details of system configuration are re-

ported in [46]. 

Visualization of Swarms. Agents are visualized by colored pixels. A mixture of col-

ored agents represents the simulation’s current state. This simplicity, that agents repre-

sent nothing more than visualized state, provides an important baseline to investigate 

sound with swarm dynamics in tandem with its visual presentation. The whimsical be-

haviors of agents spontaneously bond with others then stray, creating a constant redis-

tribution of the visual mix, a dynamic field for emergent patterns. The evolutionary 

trajectory of a given type of agent can be anticipated as to its patterns over time, how-

ever the detailed trajectories and patterns of heterogeneous swarms are not predictable 
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beyond a local limit. Often clusters of agents forming patterns are a dominant visual 

feature; cluster formation is adopted for sound design to reflect this feature, focusing 

on tracking clusters at the cost of not tracking behavior by agent type. 

Color is used differently in the two compositions to support differences in perfor-

mance requirements. In Mutandrum color visualizes individual agent type and this re-

lates to tone quality transformations (see Figure 1). In Human Voice color visualizes 

collective agent behavior and this relates to the number of active sound sources (see 

Figure 2). Visualization conveys structural differences of the two musical works, in 

terms of different types of sounds and different methods for agent data to transform 

sounds. In Mutandrum, agents’ color by type highlights heterogeneous clusters and il-

lustrates distributions of agent types. Visualizing clusters’ internal structure draws at-

tention to clusters’ internal dynamics, and this data is applied to control timbre trans-

formations (tone quality) of sounds. In Human Voice, agents’ color is determined by 

cluster sequencing and aids the performer’s control of sound by illustrating and tracking 

the progressive number of clusters. The number of clusters determines the number of 

active sound sources, a requirement specified in the performance score. To summarize: 

the focus on inter-agent dynamics in Mutandrum supports a timbre-dominant compo-

sitional approach, and the focus on multi-cluster formations in Human Voice supports 

a compositional approach based on polyphony and counterpoint.  

 

Fig. 1. Color visualization of agents by type, from Mutandrum. The area within each grid 

measures approximately three inches by four inches. Resolution constraints are discussed in sec-

tion 4.1. The performers’ hand is distorting the image projection to the right of center. 
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Fig. 2. Color visualization of cluster formation on a touch sensitive screen, from Human Voice, 

showing performance configuration. 

Emergent Feature Analysis. Cluster formation is a prominent emergent feature of 

swarm behavior and is important for control of musical events and structures. Emergent 

features are not formally modeled in the swarm simulation, so to extract data of clusters 

and other features for sound control the performance system implements feature recog-

nition. Table 1 presents types of swarm data grouped by duration range required for 

extracting the data. In Table 1 agent data AD1, AD2, and AD3 depend upon AD4 – 

data of cluster recognition. AD4 requires automated feature detection, as the clusters 

are not represented in the simulation. Emergence of these features is uncertain and in-

fluenced by a performer, therefor AD4 durations required to induce phase transitions 

may be prolonged beyond the values indicated in Table 1. 
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Table 1. Agent data grouped by duration range required for feature formation, data extraction 

and feature recognition of swarm state 

Sound Design Patterns. A Sound Design Pattern (SDP) is a computational model de-

signed to generate coherent combinations of audible attributes [46, 47]. Attributes and 

their transformations can be organized by duration range, combining the duration re-

quired to generate a pattern and the duration required to recognize the pattern, such as 

a performer responding to influence a pattern. Table 2 presents SDP types based on 

duration ranges of audible attributes used in SDPs. Multiple time scales of sound trans-

formation are concurrent in a sound, and attributes of shorter duration contribute to 

attributes of longer duration. SDP types group sound control parameters to coordinate 

control data across multiple duration ranges. SDPs are not equivalent to sound sources; 

several SDP can combine to control a single sound source, or one SDP can contribute 

to the transformation of several sound sources. Combining SDPs provides a method to 

control features and transformations of complex sounds, and enables the use of swarm 

data to control transformations of attributes concurrently at multiple time scales. The 

lower half of Figure 6 compares the duration ranges of agents’ emergent behavior and 

SDP audible attributes. The durations of swarm features suggests a “best fit” model by 

applying swarm data to SPD types of similar duration. 

Table 2. Audible attributes of Sound Design Patterns grouped by Duration Range. 

SDP Type Audible Attributes of sounds Duration Range of SDP 

SDP1 Pitch change, loudness change 50ms-200ms   

SDP2 Timbre, Resonance, Filtering 200ms-500ms 

SDP3 
Sound Source Location cues; 

Spatial and Directional cues 

450ms-2.0 sec 

SDP4 
Sound Event (from onset to  

evolution to termination) 

500ms up to many seconds 

SDP5 
Patterns of Rhythm, Tempo,  

Spoken Words, Melody 

1sec up to many seonds 

Agent 

Data Type 
Agent Data Source 

Duration Range needed 

to extract feature data 

AD1 Number of Agents in each Cluster 15-20ms 

AD2 Energy of Agents 25-35ms 

AD3 Area of each cluster 50-70ms 

AD4 Position of each Cluster in  

performance space 

75-100ms 

AD5 Velocity of each Cluster 80-120ms 

AD6 Cluster Deformation 250ms to 2 sec 

AD7 Cluster Divide 1sec to 3sec 

AD8 Cluster Merge 500ms to 2sec 
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4 How to Work with Swarms in Experimental Performance 

Traditional music composition dimensions include 1) form and tonal relationship, 2) 

temporal arrangement of elements including structure of repetition, 3) thematic devel-

opment, 4) harmonic progression, and 5) instrumentation. Working with swarms does 

not deviate from these dimensions, but shifts paradigms in the ideation of the elements 

in them.  

4.1 Experimental Compositional Dimensions 

1) FORM: In both compositions, the musical form organizes types of agents’ collective 

behavior and associates these to sounds. Behavioral types are used to organize musical 

structure.  

2) TEMPO: In both compositions, the agents’ behaviors were systemically studied 

for temporal signature then categorized by tempo and temporal agility: the degree of 

slow to fast, and the range of fluctuation in tempo caused by the degree of stability in 

swarm dynamics. The temporal signatures are investigated through alternating sound 

synthesis methods then curated as musical elements using coupled sets of parameters 

mapping swarm domain to sound range. To produce exact repetition a coupled set is 

initialized with the same initial condition.  

3) THEME: Thematic development in music often relies on recognizable units of 

tones and rhythms. In Mutandrum repeated patterns output by tone generators were 

modulated by swarm dynamics, applying progressive fragmentation. In Human Voice, 

phrases with spoken texts functioned as semantic themes with musical meanings, which 

are not solely dependent on the meaning of individual texts but emerge from combina-

torial bindings according to swarm dynamics.  

4) PROGRESSION: Harmonic progression is a dominant technique in Western com-

mon practice tonal music. In these works the function of progression is carried by tim-

bre (Mutandrum) and texture (Human Voice). Instead of melody and harmony, Mutan-

drum applies techniques for progressive derivation of spectral evolution (tone quality) 

in sounds, using swarms’ evolutionary dynamics. Human Voice exploits additional pro-

gression in poetic form and linguistic content by generating multiple voices that present 

spoken texts in layers. 

5) ORCHESTRATION: Instrumentation is orchestrated by sound source selection 

and by Sound Design Patterns (SDP), and these associations are controlled by selected 

behavioral tendencies of swarms; see Tables 1 and 2 and the discussion below regarding 

sound source selection and manipulation.   

Mutandrum: Musical Goals and Features. Mutandrum explores the plasticity of 

sound in relationship to the plasticity of swarms, described as “sound tangibility” in 

[47]. This describes the kinesthetic relationship of motion dynamics between a human 

agent and simulated agents, and how auditory feedback confirms that relationship. The 

ability to engage a visualization of agents through a touch interface evokes an interac-

tive “electro-visual-acoustic” experience, with attributes determined by relative visual 
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and audible responsiveness. To explore audiovisual plasticity, swarm clusters’ sym-

metry and shape deformation are identified as top priority for feature recognition. Clus-

ter deformation data is applied to synchronize transformations of sounds with changing 

cluster shapes, ensuring an obvious local correspondence between performer’s action, 

swarm response and sound response. To further establish local correspondence the clus-

ter’s position in x-axis in the performance space drives the stereo position of the sound 

source associated with the cluster. Additionally the temporal dynamics of the micro-

movements, or “jitters” of the agents are emphasized by sounds. When swarm jitter 

values are highest the sounds return strong rhythmic features and a notable pulse. When 

swarm jitter values are attenuated the sounds return sustained tones focusing on timbre 

transformations. 

 

Fig. 3. Performance with large tabletop capacitive panel enabling hand-sized control regions. 

Visualization of swarms is projected on the performance surface from above and also projected 

for audience members. 

Compositional choices in Mutandrum reflect the physical limitations of the capaci-

tive surface used for the original performance, supporting only two simultaneous touch 

points on a 36 by 48-inch table top. The reliable resolution of position sensing for touch 

interaction was an area of roughly 0.3 inches square with fuzzy boundaries, approxi-

mating a differentiable resolution of 160 x 120 units. Agents visualized at 1024 x 768 

pixels scaled to 48 x 36 inches producing a unit of about 0.05 inches/pixel. The ratio of 

this resolution to the rate of change of agents’ movements and the lower-resolution 

capacitive sensing determines the rate of change of sound control data. Given these 

constraints, manipulation of large clusters is most accurate and reliable; in response 
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compositional design focuses on spectral explorations therefor strategizes with a lim-

ited number of sound sources. During the flow of the performance, a maximum of four 

complex sources are made available, and the concurrent number of sound sources varies 

from section to section. The quality of sounds is determined by a dominant frequency 

and spectral (tone quality) portrait. Cluster size determines the frequency: the larger the 

cluster the lower the fundamental frequency. The shape of clusters influences the spec-

tral resonance. To avoid the feature recognition task of disambiguating complex cluster 

shapes, data extraction is only applied to detect relative deviation from the symmetry 

of the native cluster state, which is usually circular. The deformation data is applied to 

vary spectral resonance: the thicker the shape, the greater the resonance. All local clus-

ter deformations dynamically affect the quality of sounds in all states, as sounds were 

designed using SDPs with high-level synthesis parameters exposed to receive the de-

formation data. Figure 3 shows a performance image with swarm visualization pro-

jected for the audience. 

Human Voice: Musical Goals and Features. Voice explores a poem and uses the 

recorded voice of the poet as the primary sound source. The compositional intent is to 

create emergent discourse through structure of call and response by constructing mul-

tiple voices of the poet as sound sources. Onsets and durations of sound sources em-

phasize temporal dynamics at phrase level, rather than the micro-temporal levels of 

timbre transformation as in Mutandrum. The number of sound sources and when they 

come and go is paramount, with the management of multiple voices derived from clus-

ter division, merger, and movement, evoking musical idioms such as polyphony and 

antiphony. In contrast to Mutandrum, the use of timbre in Human Voice is subordi-

nated. Sounds do not undergo major timbre transformations synchronized with cluster 

transformations. Timbre is applied with nuance to help distinguish multiple voices and 

to enhance the clarity of spoken texts. Local synchronization of image and sound is not 

emphasized by cluster deformation, but only at the points of cluster division and mer-

ger. These cluster phase transitions are consistently reflected by the introduction and 

termination of voice sources. The autonomous phase transition behavior of clusters is 

an important contributor to the musical texture. Cluster states also require close moni-

toring by the performer to defer unwanted phase transitions. To do this the performer 

applies a “shepherding” movement technique to prolong the current swarm state and 

achieve longer phrase structures (see “Melisma” in Table 3).  

Compositional choices in Human Voice reflect the physical affordances of a digital 

capacitive touch screen with a 16:9 ratio, 1920 x 1080 pixel resolution, and screen area 

of 21 x 12.5 inches. The resolution of 0.01 inches per pixel supports ten fingers’ inde-

pendent touch points capacity with arm arch range and wrist orientation supported by 

the performer’s standing position. Figure 4 shows performance with ten-finger touch 

applied to swarm visualization projected for the audience. As spoken text is present 

throughout the piece, the compositional design focuses on textual antiphony and on 

polyphonic explorations. Therefor the strategy is to present these voices with intelligi-

bility and clarity, avoiding extreme timbre and pitch deformation while applying subtle 

affects such as chorusing and simulated spatial characteristics such as sound source 

locations. To achieve this design objective the deformation relationship between cluster 



15 

 

and sound is not as heightened as in Mutandrum. At all times the number of sound 

sources are subjected to the continuous tracking of four distinct levels of cluster bifur-

cation. Therefor in Human Voice, swarm bifurcation has a structural role in the musical 

progression.  

 

Fig. 4. Performance of Human Voice with high-resolution capacitive touch screen, showing ten-

finger control signal capacity 

 

Fig. 5. Comparative illustration of a performer’s kinesthetic orientation with the gayaguem (left) 

and swarm agents (right) 

As an instrumental paradigm, there are many table top models. Touch introduces 

excitatory signals into the system. From the author’s experience, performing Human 

Voice is reminiscent to the 12 silk string instrument called gayaguem, illustrated in 
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Figure 5. Of course, these have completely different tactile sensation and resistance; 

still the kinaesthetic address from a performer’s perspective is highly compatible. Hav-

ing performed gayageum, this author can report that cognitive plasticity of digital music 

instruments is possible with proper HCI engineering with adequate building blocks. 

4.2 Design and Implementation of Model Based Indirection 

The experimental system presents an interaction modality through which a performer 

inputs data to sound indirectly, based upon a model. Performer’s actions on the touch 

screen engage swarm agents, influencing agents’ collective emergent features, then 

control signals are transmitted from feature extracted data to parameterized sound syn-

thesis engines. This pathway of indirection provides affordances for reciprocity be-

tween the performer and the swarm simulation. With traditional music instruments rec-

iprocity is generated when a performer inputs excitatory energy into a resonating body, 

and the instrument amplifies and differentiates that energy to contribute the resulting 

sound quality. While learning to play music instruments entails learning to shape the 

excitatory input patterns, learning to play swarms in these works entails learning the 

model of introducing excitatory energy into sound engines by working with swarms 

through social engagement.  

Designing indirection and engineering audio-visual presentation including process 

time is guided by sensitivity for intersensory asynchronies in perception, for example 

the Just Noticeable Different (JND) boundary of 50ms for cross modal performance 

and permissible ranges. The compiled study from [48] reports optimal intersensory JND 

between audio and visual when audio is presented 50ms before visual. Due to the 

brain’s capacity for adaptively widening, when audio precedes visual the permissible 

JND ranges from 250ms, when audio follows visual it is 150ms [49, 50]. In another 

example, in Human Voice the most frequently used gesture articulation unit is longer 

than 500ms in order to accommodate syllable durations ranging 240ms to 340ms.  

The analogy of HCI direct manipulation [51] in music performance comes close to 

instruments like harp and drum, but is not ubiquitous. Musical instruments are physi-

cally fabricated complex systems refined through extensive conditioning and tuning. 

The response characteristics of an instrument are complex and nonlinear: to produce 

musical tones requires skillful manipulations. Sound is produced by microvariations at 

oscillatory level; a performer cannot directly control single oscillations or manipulate 

all conditions of instrumental components to shape an absolute result.  

Musical instruments are designed to transmit performers’ nonlinear energy patterns 

into the physical components of the instrument that shape the quality of sound. This is 

why a large class of musical instruments can be modeled with nonlinear oscillators 

coupled to passive linear systems [52, 53]. This scenario tests the limits of the analogy 

of direct manipulation adopted from HCI because the music instrument is already a 

case for indirection for resulting sound. An obvious example is a violin. The bow is a 

physical model that offers an indirection with a degree of freedom to generate more 

variety of sounds than afforded by bare fingers. And this indirection can be computa-

tionally modeled as bow pressure and angle, etc. to simulate the friction dynamics [54, 

55, 56]. For a working definition, model based indirection is a technique to instrument 
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an extended interactive pathway to optimize the relationship between performance in-

put and resulting sounds, where the extension model engages a generative mechanism.   

4.3 Performance Gestural Articulation Units (PGAU) 

Table 3 presents a comparative analysis of indirection and resulting temporal dynamics 

in the two compositions. Indirection is observed with respect to the actions of a per-

former and the corresponding swarm data and resulting sound patterns. The table com-

pares indirection across four types of hand movements, referred to as Performance Ges-

tural Articulation Units (PGAU). In order of increasing duration and indirection the 

units are named after Gregorian notation, punctum, brevis, longa, and melisma. The 

nomenclature is adopted in reference to chant tradition where durations are context de-

pendent with no absolute values. For a generalizable definition applicable to both hu-

man movements and computational model, PGAU can be defined as a context depend-

ent unit of gesture with a recognizable pattern having onset and termination in varying 

duration within a limit. PGAU are applied to express a functional contribution to the 

temporal dynamics in situ of performance along with system constituents [47]. In this 

context, the constituents are swarms, SDPs and a performance score. 

For each type of PGAU in the two compositions, Table 3 shows SDP models and 

agent data (from Tables 1 and 2). The two compositions adopt different combinations 

of agent data groups and SDPs for PGAU. The differences reflect the different sound 

sources and compositional structure in the two cases. As an example, Human Voice 

does not apply SDP1 and SDP2, which generate micro-variations of pitch, loudness, 

and timbre. This is because in Human Voice, these attributes are rendered by the rec-

orded voice performance of a poet, and are preserved at the performance timescale ra-

ther than transformed. Timbre and loudness variation are applied using longer–duration 

SDPs. 

PGAU is an expression unit of temporally defined hand gestures analogous to excit-

atory input of a music instrument. Similarly, impact from PGAU propagates through 

indirection dataflow in the system, accumulating data extraction time and sound pro-

cessing time while inheriting the temporal definitions of the SDPs. These accumula-

tions result in duration of indirection extending sound events beyond PGAU hand 

movement. Table 3 illustrates how PGAU engages simultaneously multiple agent data 

types and SDPs, generating multiple levels of indirection. Indirection built into the de-

sign is most easily observed in the latency of prolonged sound responses to PGAUs. 

The Maximum Latency of Indirection (Table 3) was comparatively observed in rec-

orded performances of each composition, measured from the onsets of PGAUs to the 

response times in the sounds, also from the releases of PGAUs to the latent duration of 

lasting effects in the sounds. While a novice can play with this system, a performance 

skill deepens in part through mastering the relationship between PGAU, swarms, and 

sounds shadowing swarms through model based indirection. 
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Table 3. Comparing Indirection Profiles of two compositions, Mutandrum and Human Voice. 

Comparison is drawn against the duration ranges of performance gestural articulation units 

(PGAU) and latency of indirection for each PGAU. Duration ranges of agent data types are pre-

sented in Table 1. Duration ranges of sound design patterns (SDP) are presented in Table 2. 

 

 

 

PGAU: 

             Mutandrum Human Voice 

PGAU Duration 

Range 

Agent Data 

Type 
SDP Type 

Maximum 

Latency of 

Indirection 

Punctum 
100ms-

500ms 

300ms 

-1sec 

AD  

1, 2, 3 

AD  

6, 7, 8 

SDP 

1 & 2 
SDP 4 500ms 1.5 sec 

Brevis 
300ms -

2sec 

500ms 

- 2sec 

AD  

3 to 6 

AD  

7 & 8  

SDP  

1,2, 3 

SDP  

3 & 4 
1sec 3 sec 

Longa 
4sec - 

9sec 

3sec -

15sec 

AD  

4 to 8 

AD 

4, 5, 6 

SDP 

2, 3, 4 

SDP 

3, 4, 5 
3sec 5 sec 

Melisma 
8sec -

13sec 

5sec -

60sec 

AD  

4, 5, 6 

AD 

1 to 5 

SDP 

2, 3, 5 

SDP  

3, 4, 5 
4sec 6 sec 

5 Composing Structured Reciprocity 

Each composition encodes association of temporal dynamics between swarms and 

sounds, as follows. For each section of the musical score an HIEC selection of swarm 

agent types has been assigned, and for each section of the music performance code 

SDPs have been developed to respond to agent behaviors. The reproducibility of these 

associations enables a performer’s learning curve when encountering the predicted be-

haviors so that each composition can be rehearsable. Reciprocity is structured in a time 

window that represents concurrent presence of agent behaviors and SDPs. This struc-

ture is composed anticipating the efforts require to rehearse, to perform, and to listen. 

Emergent swarm behaviors generate control data for sounds’ attributes that are too de-

tailed for a performer to control directly. The performer rehearses the reliability of 

swarm behaviors and how to induce and prolong cluster phase transitions and steady 

states, generating sound control data required to render the musical score. Reciprocity 

emerges as a practice of shared control data generation in performance.  

The following outlines the process end-to-end for encoding, activating, generating, 

and measuring reciprocity. Encoding: In the experimental system reciprocity is encoded 

in the temporal dynamics of the indirection model. This encoding combines the model 

of PGAU performance engagement, the swarm feature data extraction, and the temporal 

dynamics of the SDPs. Activating: Reciprocity is activated by the performer’s PGAU 

prioritized for swarms’ behavioral tendencies and the levels of sound transformation 

specified in the score. Generating: Reciprocity is generated by the requirements of the 

musical score and the performer’s engagement with the swarm tendency “envelope”—

the average rate a swarm recovers its native tendency following a PGAU intervention. 

Measuring: Reciprocity is measured by the performer in judging the need to induce 
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changes in swarm behaviors with respect to the SDP. During the bidirectional process 

when the composer develops SDPs and swarm tendencies, the composer anticipates the 

performer’s measure of reciprocity, as follows: 1) SDPs are computationally modeled 

to express the compositional idea; 2) swarms are designed to exhibit tendencies that are 

a good fit for expressive control of the SDPs; 3) swarm data feature extraction is tuned 

to recognize collective behaviors; 4) SDP mapping is fine tuned to reflect the variety 

of detail in the swarm data. 

 

Fig. 6. Comparison of minimum and maximum duration ranges of agent data types, SDPs, PGAU 

types, and the LIDA model. The darker shaded areas are the valid range for each item. The du-

ration scale left to right is Log2. Arrows on SDP4 and SP5 indicate potential prolongation. 

Swarms and sounds are scheduled by a series of initializations, some automated, some 

activated by the performer, as outlined in a performance score. Layers of SDPs respond 

concurrently to parallel data streams. Figure 6 synthesizes PGAUs with the durations 

of four sets of agent data types (AD1-4) and five types of SDPs (SDP1-5) from Tables 

1-3. The onset of a PGAU can transform multiple concurrent data streams. In Figure 3, 

agent data streams AD1 and AD2 are updated roughly at 10 Hz while behaviors in AD3 
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and AD4 emerge over longer durations. The arrows at AD3 and AD4 in Figure 6 indi-

cate the potential for a performer to prolong those behaviors. Concurrently, SDP1 up-

dates at about 5 Hz and SDP 2 updates at 2 to 4 Hz, while SDP3, 4 and 5 progress 

across longer durations. The arrows at SDP4 and 5 indicate the potential for a performer 

to further prolong PGAUs. Figure 6 across the top indicates maximum and minimum 

durations for PGAU types observed in performances of two compositions, to the dura-

tion limit of the figure.  

For experimental analysis the LIDA model [36] provides a reference to measure the 

range of performer’s engagement in reciprocity with respect to the system temporal 

dynamics. Figure 6 compares the duration of the LIDA cognitive cycle to durations of 

agent data types and SDPs, discussed in the next section. The layered profile in Figure 

6 illustrates a multi-temporal capacity for designing indirection, which is used to prior-

itize the data from selected swarm tendencies. The mapping from swarm to sound at 

multiple time scales formalizes the mappings from swarm emergent features to SDPs.  

6 Discussion 

Reciprocity structured by designed indirection in the signal path enables the integrity 

of the three agents of co-creation: swarms, composition, and performance. Designing 

indirection utilizes PGAU, swarms’ behavioral tendencies, and SDP. Coherently de-

signed, structured reciprocity leverages performer’s associative memory for learning 

and refining performance skills with the interactive system.  

During the performance with audiovisual continuity driven by swarm dynamics, a 

performer experiences a time window for action selection across evolving swarms and 

a stream of sounds. SDPs are building blocks for model based indirection that increase 

the degree of freedom and capacity for PGAU, to act in nested time windows with 

respect to the concurrent duration groups (Figure 6 and Tables 1 and 3), with multiple 

layers of indirection extending from the swarm state. The swarm data at any given time 

will be reflected in sound during the time delay of each SDP window. The temporal 

extension of each indirection layer depends on the SDP parameters and swarm tendency 

envelope. For understanding performers’ parallel engagement with multiple temporal 

layers, LIDA’s single cognitive cycle provides a reference model to distinguish percep-

tion, understanding, and action selection. 

The LIDA model provides a 260-390ms cognitive cycle with an initial 200-280ms 

unconscious processing comprised of perception (80-100ms), then understanding, fol-

lowed by conscious action selection (60-110ms). The durations considered in compos-

ing for reciprocity reflect this model, commencing with short durations of sensorimotor 

engagements that do not require deliberation, followed by longer durations involving 

action planning and recognition of musical patterns. SDP1 events occur within a per-

ception time window of 50-100ms (compared to 80-100ms in LIDA). SDP2 events oc-

cur from 200-500ms, many within the 200-280ms LIDA unconscious period. Roughly 

a 50-280ms time windows encompass the basic perception of pitch, loudness, and 

pulses, and continuing transformation of sounds that have been already set in motion. 
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A performer’s action decision falls into two categories at any given moment, PGAU 

onset and the purpose. Most of the time, performers intervene in bifurcation modes or 

influence the transformation modes of already launched events. SDP1 and SDP2 do not 

require interpretation and planned response and can be modified by performer’s ongo-

ing actions. Recognition of spatial cues in SDP3 falls on the borderline of the 390ms 

cognitive cycle proposed in the LIDA model.  

Agent data is detected in multiple time scales: 15-120ms for AD1 and AD2 afford 

duration for sensorimotor response; 250ms-3 sec for AD3 and AD4 afford duration for 

recognition of evolving patterns and phase transitions. SDP4 can carry all of SDP1, 2, 

3 in a single sound event and SDP5 can carry multiple sound events forming a larger 

phrase structure. SDP4 and SDP5 are programmed to host indirection with durations 

greater than the 390ms action cycle. The duration required for action planning with 

SDP4 or SDP5 depends on the emerging complexity and temporal dynamics, but is 

approximately twice the minimum duration (500ms) of SDP4, which allows at least 

two cognitive cycles for action planning.  

To conclude: 1) Structured reciprocity helps optimize the use of evolutionary tenden-

cies including their intuitive qualities, towards desired outcomes in interactive applica-

tions. The ongoing generative mechanism of the swarm model accompanies performers 

with a “visual metronome” to gauge and anticipate tendencies and emerging patterns. 

The intuitive quality of visualized swarm dynamics aids the performer’s capacity to 

predict future states and to plan action repertoire towards future states of sounds. 2) 

Observational data from the case study lends quantitative guidance towards formalizing 

indirection for complex interactive scenarios. Model-based indirection provides per-

formers with time latency needed for action planning. With indirection design, the goal 

is to engage swarms in the model of indirection, which facilitates the efficient use of 

data from swarms’ inherent tendencies. The efficiency is achieved by consulting the 

swarms’ generative mechanism to drive details of musical outcomes along with SDPs. 

The better the fit of inherent swarm tendencies, the closer the resulting association of 

visualized swarm dynamics with anticipated sounds.  
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